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Existing mechanisms to monitor vehicular traffic, such as the 
use of induction loops or cameras are expensive to deploy and 
maintain. Vehicular communications open a new world of 
optimization opportunities as each vehicle can be used as a 
sensor to measure the fundamental variables defining the 
traffic state (flow, density and speed). In this article we 
propose ABEONA, a distributed algorithm for traffic 
monitoring that captures current and recent-past traffic trends 
to forecast near future road conditions. Compared to existing 
monitoring approaches, ABEONA allows estimating the 
vehicular density and, reducing installation and maintenance 
costs. ABEONA's algorithm incurs in low overhead and 
enables drivers to use forecast traffic congestion events to re-
plan their route accordingly. 

Introduction 
Traffic congestion is a major economic and collective 

problem of the modern world. While social aspects are difficult 
to quantify, the economic impact is easier to estimate. The 
2011 Urban Mobility Report published by Texas University1 
claims that the total cost for traffic jams in the U.S. that year 
was $100 billion. Traffic congestion does not only make an 
impact on factors like fuel consumption or increased pollution, 
but also on loss of working hours. 

There are three key aspects in traffic management 
systems: i) traffic monitoring, ii) congestion 
detection/prediction, and iii) efficient information 
dissemination. Existing traffic monitoring techniques, such as 
induction loops and video cameras, present several drawbacks, 
as they are not flexible (measurement points cannot be easily 
moved) and are very expensive to deploy and maintain. 
Congestion prediction is challenging, as current methods (e.g., 
use of floating car data) lack flexibility and might be inaccurate 
(e.g., those based on off-line seasonal data). Moreover, current 
systems do not yet exploit vehicular communication 
capabilities that could be used to gather and disseminate data. 

 
1http://tti.tamu.edu/documents/mobility-report-2011.pdf 
 

Vehicular communications have been extensively 
researched with the aim of enabling vehicles to exchange 
information among them and also with the infrastructure. In 
addition to the use of cellular networks, vehicular ad-hoc 
networks (VANETs) are expected to be a complementary 
technology, allowing vehicles to share information in real time, 
especially within a limited geographical region [1,2]. 

This article proposes a traffic management solution – 
called ABEONA (A BEacON based Traffic Congestion 
Forecasting Algorithm), which benefits from the use of 
vehicular communications technologies. The key points of the 
solution are: i) ABEONA allows monitoring traffic conditions 
in real-time in a flexible and cost-feasible way; ii) ABEONA is 
based on a cooperative and distributed knowledge of traffic 
conditions (average vehicular speed, flow and density); iii) 
ABEONA is able to forecast short-term traffic conditions (with 
a window of 15 to 20 minutes). This makes possible to warn 
drivers of future forecast traffic congestion events, so 
alternative routes can be planned, reducing the overall travel 
time. Note that this article does not specifically address how 
predicted events are disseminated, but focuses on how the 
prediction is actually performed. 

This article is organized as follows; we first overview the 
classical theory used to model vehicular traffic including a 
validation analysis using real traces. Then, we introduce the 
theoretical basis for traffic density and flow estimation, and 
their prediction, before presenting and validating our solution 
using real vehicular traces. 

Modeling vehicular traffic 
Vehicular traffic has been investigated since the 1950s and we 
can now find micro-, meso- and macroscopic models available, 
many of them reviewed in [3]. 
Macroscopic models are based on drivers' behavior and analyze 
three fundamental factors: speed v [km/h], flow q [veh/h] and 
density k [veh/m]. Parameters q and k are directly proportional 
until reaching a critical density kc that corresponds to a 
maximum flow qm. For lower densities, vehicles travel under 
free-flow conditions, while for higher densities, vehicles’ 
behavior depends on their neighbors. For density values k 
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higher than kc, q and k are inversely proportional. When k is 
equal to the traffic jam density km, q is equal to 0 (i.e., vehicles 
are not moving). The vehicular speed v fixes the shape of the 
relation function.  
Among the many theories proposed since the 1970’s analyzing 
the interaction of vehicles, one of the most accepted studies is 
the “Three-phase traffic theory” – firstly proposed by Kerner in 
[4] and then extended by the same author in [5] – that classifies 
traffic state into three categories: 
• Free flow: when the vehicular density is reasonably low 

and drivers can easily keep their desired speed and 
overtake slower vehicles. The average speed of each lane 
is independent. 

• Synchronized traffic: when the density is such that 
overtaking is not easy, so that the average speed of each 
lane sharply decreases and synchronizes. Drivers’ 
behavior is influenced by other drivers. 

• Traffic jam: when vehicles are stopped or follow a “stop 
and go” pattern. 

Kerner also studied the transitions between the different 
phases, concluding that they can be modeled as first-order 
phase transitions. 

Figure 1 Phase transitions diagram. 

Figure 1 shows an example of a “Free flow → Synchronized 
traffic” transition. The phase transition is (mostly) related to 
the easiness of overtaking experienced by drivers. When the 

road is in Free flow state, the probability of overtaking is quite 
high. When the road is congested, this probability is close to 
zero, as vehicles are travelling at similar speed and it is 
difficult to find room for possible overtakes. There is an 
“undefined area” (between ks and kc(free)), where a 
perturbation of one of the three variables can result in a 
different outcome: for example, a wrong maneuvering can lead 
to other drivers to temporarily slow down and then come back 
to Free flow state, while a road suffering a continued increase 
in the traffic demand will end up in the transition from the Free 
flow to the Synchronized traffic state. In Free flow conditions, 
vehicles travel at a speed that depends on the road state, the 
vehicle type and the weather conditions, and it is ultimately 
limited by the road’s speed limit. Interestingly, the speed is the 
variable that has the least linear behavior, being an abrupt 
decrease possible when traffic experiences a change from Free 
flow to Synchronized traffic state. 

Figure 2 Average speeds in “Free flow” state. 

In order to assess the correctness of Kerner's model we have 
used real traffic measurements from the city of Madrid, 
specifically from a 24-hour trace collected by an induction loop 
placed at the km 4.4 of the M30 orbital motorway, northbound, 
which at this point has three central lanes available and a speed 
limit of 90 km/h. Figures 2and 3 show the relation between the 
average speed of different lanes in Free flow and Synchronized 
traffic states, respectively. Similarly, Figures 4 and 5 show the 
complete relations of the two variables that can be directly 
captured by an induction loop: flow and speed. Figure 4 depicts 
the complete speed and flow time series2 and it can be observed 
that the transition between Free flow and Synchronized traffic 
states is a first order transition that involves both flow and 
density variables. As already shown in Figure 1, the state 
transition triggers an hysteresis that can also be noticed in 
Figure 5: for the same flow rate q=150 veh/min, values around 
40-50 km/h and around 90 km/h are possible. 

 
2Values are window-averaged with a window equal to 10 minutes to 
avoid excessive glitches. 
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Figure 3 Average speeds in “Synchronized traffic” state. 

 
Figure 4 Flow-speed vs. time plot from real measurements. 

Figure 5 Flow-speed plot from real measurements. 

Traffic monitoring and congestion prediction 
Nowadays there are three main approaches in use to monitor 
traffic in real-time: induction loops, cameras and floating cars. 
The oldest and still more widely deployed mechanism is the 
use of induction loops, which consist in a continuous loop of 
wires buried under the pavement that are able to detect when a 
vehicle passes over it by a sensor measuring a change in the 
magnetic field. The use of subsequent loops allows detecting 
the type of vehicle and its speed. With the latest advances in 
license plate recognition software, cameras installed on poles 
or bridges along the road are now also used as traffic 
monitoring systems, being capable of providing additional 

information compared to the induction loops. Third and most 
recent technique (called floating cars) comes from the use of 
data gathered anonymously from wireless devices present 
inside vehicles (e.g., mobile phones)3. 
In order to correctly understand the traffic state, the three 
variables (speed, density and flow) have to be monitored, as a 
perturbation in one of them can trigger a transition. However, it 
is difficult to measure or estimate density using the three 
classic monitoring techniques revised above. While the floating 
cars technique is a cheap mechanism, data from every vehicle 
cannot be easily obtained and it is not straightforward to extend 
it for monitoring flow and density. Alternatively, cameras can 
measure all the three variables, but they have high deployment 
and maintenance costs, and introduce privacy issues. Last but 
not least, induction loops, although cheaper than cameras, can 
only measure speed and flow.  
Vehicular traffic forecasting can be divided into long-term and 
short-term prediction. The former exploits the so-called 
seasonality property of vehicular traffic: people tend to move 
following regular patterns [6]. The threshold between long term 
and short-term prediction is usually set around 15-20 minutes. 
In [7], Kanoh et al. propose a neural-network based solution. A 
different approach, using the analysis of the flow time series, 
was presented by Thomas et al. in [8]. Both of them are 
validated using real measurements and claim that, if used in 
conjunction with intelligent transportation systems, prediction 
techniques can help optimizing flows and other aspects of road 
conditions (e.g., waiting times at traffic lights). These two 
works propose algorithms both for long-term and short-term 
forecasting. However, while the analysis for long-term 
forecasting is more complex, the short-term part is easier, 
depending on the conditions from the previous 15-20 minutes. 
Chrobok et al. propose in [9] different methods for short-term 
traffic forecasting, and they find out that even a very simple 
forecasting method like linear prediction can achieve good 
results in estimating the short-term traffic demand. 
All the aforementioned methods do not specify any procedure 
to gather the data needed by the prediction algorithm as they 
work on off-line data. 
Bauza et al. in [10] propose a mechanism to evaluate the length 
and intensity of a traffic jam using V2V techniques. In [1], 
Leontiadis et al. present a vehicular navigation system based on 
the dissemination of data sensed by vehicles. While both of 
them use vehicular communication concepts, none of them 
work with the concept of flow and density variables to provide 
forecasting capabilities for future traffic conditions. 
In the next sections we describe our traffic congestion 
prediction framework, which is composed of two main aspects: 
i) VANET-based traffic monitoring (i.e., collaborative flow 
and density estimation), and ii) traffic forecasting (i.e., short-
term prediction). 

 
3TomTom HD Traffic™: 
http://www.tomtom.com/en_gb/services/live/hd-traffic/ 



ABEONA: VANET-based traffic monitoring 
The flexibility and infrastructure independence of vehicular ad-
hoc networks (VANETs) make them suitable for the 
implementation of distributed algorithms for traffic monitoring. 
A VANET can be briefly described as a set of On Board Units 
(OBUs) deployed inside vehicles, and Road Side Units (RSUs) 
installed along roads to provide access to the infrastructure. 
OBUs and RSUs can communicate among them using Dedicate 
Short Range Communications (DSRC), like the widely used 
802.11 standard. Application Units (AUs) inside the vehicles 
run automotive or infotainment software and rely on OBUs for 
obtaining connectivity. Vehicular communications can be 
divided into two main families: Vehicle-to-Vehicle 
communications (V2V), and Vehicle-to-Infrastructure (V2I). 
ABEONA makes use of V2V communications to exchange 
data among vehicles – which are used as distributed “sensors”. 
It should be noted that ABEONA assumes that all the vehicles 
have V2V capabilities. ABEONA needs a spatial-temporal 
reference which can be provided by a GPS device with an 
accuracy of 1s. Each vehicle groups the monitored data in 1-
minute sets, identified by an epoch value (i.e., the current 
minute) called EpochId. The spatial reference is provided by 
dividing the road into different regions, each of them identified 
by a unique RoadId identifier, and including this information 
into an enriched version of the digital map or Local Dynamic 
Map (LDM) [12] used by the in-vehicle navigation system. The 
knowledge of the RoadId and EpochId values allows the use of 
time persistent content distribution techniques, firstly proposed 
by Leontiadis et al. in [11]. 
Each vehicle periodically broadcasts the sensed information 
within its region (identified by the RoadId), not only about the 
current epoch, but also about the most recent past ones (i.e., 
historical data). This ensures that the information required at 
each region to forecast future traffic conditions remains 
available at the area. Vehicles traveling within the region 
cooperatively store and share this information. For example, 
when a vehicle leaves RoadId A and enters RoadId B, it 
stops broadcasting RoadId A related information and waits to 
receive information about RoadId B sent by other vehicles 
that are currently in that region. The messages exchanged by 
vehicles staying in the same road region include both data 
related to the current epoch and historical data. 

Current epoch data estimation 
A first goal of ABEONA is to correctly estimate the flow and 
the density for the current EpochId. In order to do so, there are 
two key parameters that need to be exchanged by cars: a 
VehicleId that uniquely identifies each vehicle, and the current 
position (i.e., a<Latitude, Longitude> pair). Vehicles include 
this information in ABEONA beacons that are broadcast 
periodically (i.e., typically every 1 or 2 seconds). 

Density Estimation 
The density of a given road region can be independently 
estimated by each vehicle using the information included in the 
beacons received from other vehicles. First, each vehicle, by 
listening to these beacons, can build an updated map of the 
surrounding vehicles (i.e., a neighbors’ table). A local 
estimation of the density can be inferred by taking the distance 
between the pair of neighbors that are furthest away from each 
other and dividing it by the current number of neighbors (see 
Figure 6). This value, calculated independently by each 
vehicle, is included in the ABEONA beacon. With the 
information collected from the neighbors, each vehicle 
calculates a weighted average of the density estimated locally 
and the one estimated by its neighbors. This estimation can be 
even furthermore improved by time-averaging it (i.e., among 
30 and 60 beacons are received in an epoch).  

Figure 6 Local estimation of the traffic density. 

Flow Estimation 
Estimating the vehicular flow in a distributed way is a more 
complex task, as vehicles need to agree on a common 
observation reference point. In order to do so, ABEONA uses 
the concept of Virtual Induction Loop (VIL) [13], which is a 
virtual reference line crossing the road. The information about 
the position of the VIL of each road segment (there is only one 
per RoadId) is included in the enriched digital map used by the 
in-vehicle navigation system. ABEONA’s flow estimation 
algorithm works as follows (see Figure 7). Each vehicle 
maintains a VIL table, containing the list of the vehicles that 
have already crossed the VIL reference line during the current 
epoch. When a vehicle traverses the VIL reference line, it adds 
its own VehicleId in its VIL table. Information from the VIL 
table is included in the ABEONA beacons broadcast by each 
vehicle, so neighbors can merge this information with the one 
contained in their local VIL table. By doing this, information is 
kept consistent among all the vehicles from the same road 
region. However, to limit the beacon size and avoid sending 
too much redundant information, only a small set of random 
entries from the VIL table is included in each beacon. As 
beacons are sent often and each vehicle is receiving 
information from multiple sources, vehicles end up building a 
consistent VIL table or just with negligible deviations. 
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Figure 7 Cooperative estimation of the traffic flow. 
 

Historical data management 
Congestion prediction is based on the analysis of current and 
recent past traffic conditions. Each vehicle tracks the density 
and flow values estimated per epoch, storing them in a 
historical epoch local table. The amount of data maintained by 
each vehicle is limited in size, discarding older values (i.e., a 
historical data length of 20 epochs). Since the historical epoch 
local tables are shared among the different vehicles within the 
same road region, the information used by each participant 
tends to be consistent, though minor deviations may appear. 
Vehicles merge the information locally maintained for each 
EpochId with the data received from beacons as follows. Upon 
receiving a beacon, if a vehicle does not have information 
about a particular past epoch, then the historical epoch local 
table is updated with the data in the beacon. On the contrary, if 
the vehicle already has information for this epoch, a new 
density value is calculated as the average of the densities 
contained in the beacon and in the current value. Regarding the 
flow, the highest value is taken as new estimated flow value for 
this epoch. 

Beacon size and possible implementation 
A beacon basically contains the following information: 
VehicleId, vehicle’ position, RoadId, current EpochId, the 
density estimation for the current EpochId, VIL table 
(containing the VehicleId of a random set of cars that have 
traversed the VIL reference line during current EpochId) and 
historical data (i.e., containing the estimated <flow, density> 
pairs for the past recent epochs).  
ABEONA’s beacon could be contained into the Context 
Awareness Messages (CAMs) defined by the European 
Telecommunications Standards Institute (ETSI) for the 
dissemination of data of local interest. As the CAM messages 
are defined in ASN.1 notation, there are fields that can be 
extended to achieve a flexible management of the different 
packet format versions. Moreover, CAMs are already used to 
broadcast vehicles’ position. Using a 10-entry VIL table 
(containing 64 bit long VehicleIds) and 20min historical data, 
the total CAM size would be increased by 240 bytes. 
Traffic efficiency applications may not be classified as 
meritorious of being broadcast on the high priority control 
channel. So the information needed by ABEONA can be split 

into CAMs (which deliver Vehicle Ids and their positions) and 
an application packet that provides all the rest of the 
information.   
ABEONA can use its knowledge of the vehicular traffic 
conditions to reduce the saturation of the wireless channel in 
crowded situations. When the traffic goes to Synchronized 
traffic state (i.e., the vehicular network is crowded), there is no 
need for ABEONA’s beacons to be broadcast, thus ABEONA 
beacons could be reduced or even disabled. 

Lack of connectivity issues 
One of the main barriers of VANET-based approaches is the 
intermittent connectivity problem. This problem, already 
studied in [14], does not impact ABEONA as we can argue that 
in the previous moments leading to a congestion event, the 
traffic density will be such that guarantees that there is 
connectivity between the vehicles. This observation is 
supported by the empirical results shown in Figure 4. 

ABEONA: VANET-assisted traffic forecasting 
Each vehicle can autonomously forecast the future values of 
density and flow (qe and ke), using the current and historical 
epoch information, and compare them with a set of reference 
values (qr and kr). These reference values represent the 
threshold leading to a state transition between Free flow and 
Synchronized traffic states, and are characteristic for each road 
region, so they can be included in the enriched digital map. 
Note that these values are quite stable for a given road, so the 
typical update pattern of navigation software is sufficient to 
keep these parameters up-to-date. 
To forecast future density and flow values, ABEONA uses a 
linear prediction algorithm [9], namely the linear least squares. 
Although more complex estimators could be used to 
furthermore refine the prediction outcome, this simple 
algorithm has proven to be more than sufficient. When a 
vehicle detects that qe>qr and ke>kr this means that a traffic state 
change is forecast, triggering a warning message to be sent to 
the traffic control center. The traffic control center keeps track 
of the warning messages received, marking a given road region 
to be “likely to become congested” if more than a 
preconfigured number of warning messages is received from 
different vehicles over a preconfigured window time. The 
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traffic control center shares this information with all the 
vehicles that can benefit from knowing it. 

Experimental evaluation 
In order to conduct a performance evaluation, and given the 
difficulties associated to conducting real experiments with a 
vehicular mechanism under real-life traffic conditions, we 
decided to use trace-driven simulations. The simulation 
environment is the following: ABEONA has been implemented 
in OMNeT++4, and SUMO5 has been used to emulate vehicles 
behavior. A three-lane wide, 1 km-length road region has been 
used, placing the VIL reference line at a fixed point in each 
simulation run. Vehicles are equipped with standard IEEE 
802.11g connectivity, being their initial positions and speeds 
taken from real traces collected at the M30 road (Madrid). 

Figure 8 ABEONA flow and density estimation. 

We first introduce some terminology that will be used in this 
section. By real values we refer to the ones coming directly 
from the vehicular traces: flow and speed, as density cannot be 
measured with induction loops. By estimated values we refer to 
the outcomes of the current epoch data estimation procedure 
detailed before, and which are broadcast in beacons. Finally, 
predicted values are those derived from ABEONA’s prediction 
algorithm. 
We first assess ABEONA’s capability of estimating the traffic 
flow variable. The upper part of Figure 8 shows the real flow 
and the estimated one before and during a traffic congestion 
situation (around t=120 min). The lower part of the figure 
depicts the vehicular density. Speed is also shown, in order to 
better identifying when a traffic congestion event happens. The 
estimated density is compared with the real one generated by 
the mobility simulator (i.e., the actual one that ABEONA has to 
monitor). The main performance metric of ABEONA is its 
capacity to forecast future traffic state transitions based on the 

 
4 http://www.omnetpp.org/ 
5 http://sumo.sourceforge.net/ 

estimated flow and density variables. We next evaluate this 
performance using 20-minute historical data and a prediction 
window of 10 minutes (i.e., the density and flow are forecast 
10 minutes in advance). Figure 9 shows the estimated and 
predicted density (top) and flow (bottom), as well as the speed 
(to help identifying the transition to Synchronized traffic state). 
It can be observed that ABEONA predicted density and flow 
closely follow the estimated values (which are a good 
approximation of the real traffic variables), therefore enabling 
the forecast of future traffic conditions. 

Figure 9 ABEONA flow and density prediction. 

ABEONA’s goal is to anticipate the transition from Free Flow 
to Synchronized traffic state, in order to effectively warn the 
approaching vehicles about the forthcoming major change of 
the traffic conditions. ABEONA prediction is based on the use 
of two different thresholds: qr and kr, which have to be 
carefully chosen to minimize false positives or undetected 
congestion events. These values are derived offline using past 
historical data observed for each road region. Note, that in this 
article we have experimentally validated the feasibility of 
ABEONA using real traces from one road of Madrid. Future 
work includes analyzing traces from additional roads in order 
to infer the appropriate thresholds. 
Additionally, there are two more parameters that affect 
ABEONA’s performance: the size of the past data used to 
make the prediction (historical data), and the time in advance 
that this prediction is made (prediction window). In the results 
shown in Figure 9, we set up these values to be 20 and 10 
minutes respectively, which are the ones providing the best 
results for this road. We also evaluated the impact of using 
different values for these two parameters. Using longer past 
data sets makes the prediction algorithm to react more slowly, 
and using shorter data sets leads to the opposite effect, which 
may result in potential false alarms. Finally, as expected, using 
shorter prediction windows leads to more accurate predictions, 
but at the cost of leaving less time to react and re-plan the 
route. 



Conclusions 
This article proposes ABEONA, a traffic congestion prediction 
framework based on the cooperative monitoring and estimation 
of two of the three principal variables that define macroscopic 
traffic behavior: density and flow. ABEONA is a VANET-
assisted mechanism that enables vehicles equipped with a GPS 
navigation system to estimate current flow and density, by 
cooperating and sharing locally monitored information. The 
availability of these accurate estimated parameters (density and 
flow), enables vehicles to perform a short-term forecast of a 
potential congestion event. 
We have conducted a simulation-based validation analysis, 
using real traffic traces collected at one road of the city of 
Madrid. Obtained results support the feasibility and correctness 
of our proposal, which can help drivers to properly re-plan their 
routes, leading to important savings in commuting time. 
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