100,715 research outputs found

    A Parallel Implementation of the K Nearest Neighbours Classifier in Three Levels: Threads MPI Processes and the Grid

    Full text link
    The work described in this paper tackles the problem of data mining and classification of large amounts of data using the K nearest neighbours classifier (KNN) [1]. The large computing demand of this process is solved with a parallel computing implementation specially designed to work in Grid environments of multiprocessor computer farms. The different parallel computing approaches (intra-node, inter-node and inter-organisations) are not sufficient by themselves to face the computing demand of such a big problem. Instead of using parallel techniques separately, we propose to combine the three of them considering the parallelism grain of the different parts of the problem. The main purpose is to complete a 1 month-CPU job in a few hours. The technologies that are being used are the EGEE Grid Computing Infrastructure running the Large Hadron Collider Computing Grid (LCG 2.6) middleware [3], MPI [4] [5] and POSIX [6] threads. Finally, we compare the results obtained with the most popular and used tools to understand the importance of this strategy.Aparicio Pla, G.; Blanquer Espert, I.; Hernández García, V. (2007). A Parallel Implementation of the K Nearest Neighbours Classifier in Three Levels: Threads MPI Processes and the Grid. En High Performance Computing for Computational Science - VECPAR 2006. Springer Verlag (Germany). 225-235. doi:10.1007/978-3-540-71351-7_18S225235Cover, T.M., Hart, P.E.: Nearest neighbour pattern recognition. IEEE Trans. on Information Theory 13(1), 2127 (1967)Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. International J. Supercomputer Applications 15(3) (2001), http://www.globus.org/research/papers/anatomy.pdfLCG: World Wide Web Computing Grid. Distributed Production Environment of Physics Data Processing. http://lcg.web.cern.ch/LCGMessage Passing Interface Forum: MPI: A message-passing interface standard (2003), http://www.mpi-forum.org/Gropp, W., et al.: MPI: The Complete Reference. MIT Press, Cambridge (1998)Drepper, U., Molnar, I.: The Native POSIX Thread Library for Linux (2003), http://people.redhat.com/drepper/nptl-design.pdfFrank, E., Hall, M., L.T.: Weka 3: Data Mining Software in Java (2005), http://www.cs.waikato.ac.nz/ml/wek

    CloudMon: a resource-efficient IaaS cloud monitoring system based on networked intrusion detection system virtual appliances

    Get PDF
    The networked intrusion detection system virtual appliance (NIDS-VA), also known as virtualized NIDS, plays an important role in the protection and safeguard of IaaS cloud environments. However, it is nontrivial to guarantee both of the performance of NIDS-VA and the resource efficiency of cloud applications because both are sharing computing resources in the same cloud environment. To overcome this challenge and trade-off, we propose a novel system, named CloudMon, which enables dynamic resource provision and live placement for NIDS-VAs in IaaS cloud environments. CloudMon provides two techniques to maintain high resource efficiency of IaaS cloud environments without degrading the performance of NIDS-VAs and other virtual machines (VMs). The first technique is a virtual machine monitor based resource provision mechanism, which can minimize the resource usage of a NIDS-VA with given performance guarantee. It uses a fuzzy model to characterize the complex relationship between performance and resource demands of a NIDS-VA and develops an online fuzzy controller to adaptively control the resource allocation for NIDS-VAs under varying network traffic. The second one is a global resource scheduling approach for optimizing the resource efficiency of the entire cloud environments. It leverages VM migration to dynamically place NIDS-VAs and VMs. An online VM mapping algorithm is designed to maximize the resource utilization of the entire cloud environment. Our virtual machine monitor based resource provision mechanism has been evaluated by conducting comprehensive experiments based on Xen hypervisor and Snort NIDS in a real cloud environment. The results show that the proposed mechanism can allocate resources for a NIDS-VA on demand while still satisfying its performance requirements. We also verify the effectiveness of our global resource scheduling approach by comparing it with two classic vector packing algorithms, and the results show that our approach improved the resource utilization of cloud environments and reduced the number of in-use NIDS-VAs and physical hosts.The authors gratefully acknowledge the anonymous reviewers for their helpful suggestions and insightful comments to improve the quality of the paper. The work reported in this paper has been partially supported by National Nature Science Foundation of China (No. 61202424, 61272165, 91118008), China 863 program (No. 2011AA01A202), Natural Science Foundation of Jiangsu Province of China (BK20130528) and China 973 Fundamental R&D Program (2011CB302600)

    Resource provisioning in Science Clouds: Requirements and challenges

    Full text link
    Cloud computing has permeated into the information technology industry in the last few years, and it is emerging nowadays in scientific environments. Science user communities are demanding a broad range of computing power to satisfy the needs of high-performance applications, such as local clusters, high-performance computing systems, and computing grids. Different workloads are needed from different computational models, and the cloud is already considered as a promising paradigm. The scheduling and allocation of resources is always a challenging matter in any form of computation and clouds are not an exception. Science applications have unique features that differentiate their workloads, hence, their requirements have to be taken into consideration to be fulfilled when building a Science Cloud. This paper will discuss what are the main scheduling and resource allocation challenges for any Infrastructure as a Service provider supporting scientific applications

    Dynamic Virtualized Deployment of Particle Physics Environments on a High Performance Computing Cluster

    Full text link
    The NEMO High Performance Computing Cluster at the University of Freiburg has been made available to researchers of the ATLAS and CMS experiments. Users access the cluster from external machines connected to the World-wide LHC Computing Grid (WLCG). This paper describes how the full software environment of the WLCG is provided in a virtual machine image. The interplay between the schedulers for NEMO and for the external clusters is coordinated through the ROCED service. A cloud computing infrastructure is deployed at NEMO to orchestrate the simultaneous usage by bare metal and virtualized jobs. Through the setup, resources are provided to users in a transparent, automatized, and on-demand way. The performance of the virtualized environment has been evaluated for particle physics applications

    HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges

    Full text link
    High Performance Computing (HPC) clouds are becoming an alternative to on-premise clusters for executing scientific applications and business analytics services. Most research efforts in HPC cloud aim to understand the cost-benefit of moving resource-intensive applications from on-premise environments to public cloud platforms. Industry trends show hybrid environments are the natural path to get the best of the on-premise and cloud resources---steady (and sensitive) workloads can run on on-premise resources and peak demand can leverage remote resources in a pay-as-you-go manner. Nevertheless, there are plenty of questions to be answered in HPC cloud, which range from how to extract the best performance of an unknown underlying platform to what services are essential to make its usage easier. Moreover, the discussion on the right pricing and contractual models to fit small and large users is relevant for the sustainability of HPC clouds. This paper brings a survey and taxonomy of efforts in HPC cloud and a vision on what we believe is ahead of us, including a set of research challenges that, once tackled, can help advance businesses and scientific discoveries. This becomes particularly relevant due to the fast increasing wave of new HPC applications coming from big data and artificial intelligence.Comment: 29 pages, 5 figures, Published in ACM Computing Surveys (CSUR
    • …
    corecore