2,986 research outputs found

    Procedurally generated realistic virtual rural worlds

    Get PDF
    Manually creating virtual rural worlds is often a difficult and lengthy task for artists, as plant species selection, plant distributions and water networks must be deduced such that they realistically reflect the environment being modelled. As virtual worlds grow in size and complexity, climates vary on the terrain itself and a single ecosystem is no longer sufficient to realistically model all vegetation. Consequentially, the task is only becoming more difficult for these artists. Procedural methods are extensively used in computer graphics to partially or fully automate some tasks and take some of the burden off the user. Input parameters for these procedural algorithms are often unintuitive, however, and their impact on the final results, unclear. This thesis proposes, implements, and evaluates an approach to procedurally generate vegetation and water networks for realistic virtual rural worlds. Rather than placing these to reflect the environment being modelled, the work-flow is mirrored and the user models the environment directly by specifying the resources available. These intuitive input parameters are subsequently used to configure procedural algorithms and determine suitable vegetation, plant distributions and water networks. By design, the placeable plant species are configurable so any type of environment can be modelled at various levels of detail. The system has been tested by creating three ecosystems with little effort on the part of the user

    Simulating solar-induced chlorophyll fluorescence in a boreal forest stand reconstructed from terrestrial laser scanning measurements

    Get PDF
    Solar-induced chlorophyll fluorescence (SIF) has been shown to be a suitable remote sensing proxy of photosynthesis at multiple scales. However, the relationship between fluorescence and photosynthesis observed at the leaf level cannot be directly applied to the interpretation of retrieved SIF due to the impact of canopy structure. We carried out a SIF modelling study for a heterogeneous forest canopy considering the effect of canopy structure in the Discrete Anisotropic Radiative Transfer (DART) model. A 3D forest simulation scene consisting of realistic trees and understory, including multi-scale clumping at branch and canopy level, was constructed from terrestrial laser scanning data using the combined model TreeQSM and FaNNI for woody structure and leaf insertion, respectively. Next, using empirical data and a realistic range of leaf-level biochemical and physiological parameters, we conducted a local sensitivity analysis to demonstrate the potential of the approach for assessing the impact of structural, biochemical and physiological factors on top of canopy (TOC) SIF. The analysis gave insight into the factors that drive the intensity and spectral properties of TOC SIF in heterogeneous boreal forest canopies. DART simulated red TOC fluorescence was found to be less affected by biochemical factors such as chlorophyll and dry matter contents or the senescent factor than far-red fluorescence. In contrast, canopy structural factors such as overstory leaf area index (LAI), leaf angle distribution and fractional cover had a substantial and comparable impact across all SIF wavelengths, with the exception of understory LAI that affected predominantly far-red fluorescence. Finally, variations in the fluorescence quantum efficiency (Fqe) of photosystem II affected all TOC SIF wavelengths. Our results also revealed that not only canopy structural factors but also understory fluorescence should be considered in the interpretation of tower, airborne and satellite SIF datasets, especially when acquired in the (near-) nadir viewing direction and for forests with open canopies. We suggest that the modelling strategy introduced in this study, coupled with the increasing availability of TLS and other 3D data sources, can be applied to resolve the interplay between physiological, biochemical and structural factors affecting SIF across ecosystems and independently of canopy complexity, paving the way for future SIF-based 3D photosynthesis models.Peer reviewe

    Computational virtual measurement for trees

    Get PDF
    National forest inventory (NFI) is a systematic sampling method to collect forest information, including tree parameters, site conditions, and auxiliary data. The sample plot measurement is the key work in NFI. However, compared to the techniques 100 years ago, measuring methods and data-processing (modeling) approaches for NFI sample plots have been improved to a minor extent. The limit was that the newly-developed methods introduced additional validation workflows and would increase the workload in NFI. That was due to that these methods were usually developed based on species-specific and site-specific strategies. In order to overcome these obstacles, the integration of the novel measuring instruments is in urgent need, e.g., light detection and ranging (LiDAR) and the corresponding data processing methods with NFI. Given these situations, this thesis proposed a novel computational virtual measurement (CVM) method for the determination of tree parameters without the need for validation. Primarily, CVM is a physical simulation method and works as a virtual measuring instrument. CVM measures raw data, e.g., LiDAR point clouds and tree models, by the simulation of the physical mechanism of measuring instruments and natural phenomena. Based on the theory of CVM, this thesis is a systematic description of how to develop virtual measuring instruments. The first work is to introduce the CVM theory. CVM is a conceptual and general methodology, which is different from a specific measurement of tree parameters. Then, the feasibility of CVM was tested using a conceptual implementation, i.e., virtual ruler. The development of virtual ruler demonstrated the two key differences between CVM and conventional modeling methods. Firstly, the research focus of CVM is to build an appropriate physical scenario instead of finding a mathematical relationship between modeling results and true values. Secondly, the CVM outputs can approach true values, whereas the modeling results could not. Consequently, in a virtual space, tree parameters are determined by a measuring process without mathematical predictions. Accordingly, the result is free of validation and can be regarded as true values, at least in virtual spaces. With the knowledge from the virtual ruler development, two exceptional implementations are further developed. They are the virtual water displacement (VWD) method and sunlight analysis method. Both of them employ the same CVM workflow, which is firstly measured in reality and secondly measured in virtual space. The VWD aims to virtually measure the point clouds using the simulation of water displacement methods in reality. There are two stages in this method. The first stage is to apply the simulation of water displacement using massive virtual water molecules (VWMs). Some empirical regressions have to be employed in this stage, due to the limitation of computer performance. In the second stage, a single (or few) VWM (or VWMs) is developed to remove those empirical processes in VWD. Finally, VWD can function as a fully automatic method to measure point clouds.The sunlight analysis method aims to virtually measure the tree models using the simulation of solar illumination during daylight. There are also two stages in this method. The first stage is to develop sunlight analysis for a single tree. The second stage is to analyze the interference from neighboring trees. The results include default tree attributes, which can be collected in the future NFI. The successful developments of CVM, along with implementations of VWD and sunlight analysis methods, prove the initial assumptions in this thesis. It is the conversion of mathematical processing of data into virtual measurements. Accordingly, this is a different philosophy, i.e., the role of data is extended to the digital representative of trees. It opens an avenue of data processing using a more natural approach and is expected to be employed in the near future as a standard measuring instrument, such as a diameter tape, in NFI.Die Nationale Waldinventur (NFI) ist eine systematische Stichprobenmethode zur Erfassung von Waldinformationen, einschlieÃƞlich Baumparameter, Standortbedingungen und Hilfsdaten. Die Messung von Stichprobenparzellen ist die SchlĂƒÂŒsselarbeit der NFI. Im Vergleich zu den Techniken vor 100 Jahren wurden die Messmethoden und DatenverarbeitungsansÀtze (Modellierung) fĂƒÂŒr NFI-Stichprobenparzellen jedoch in geringem Umfang verbessert. Die Grenze lag darin, dass die neu entwickelten Methoden zusÀtzliche ValidierungsablÀufe einfĂƒÂŒhrten und den Arbeitsaufwand in der NFI erhöhen wĂƒÂŒrden. Dies war darauf zurĂƒÂŒckzufĂƒÂŒhren, dass diese Methoden in der Regel auf der Grundlage art- und standortspezifischer Strategien entwickelt wurden. Um diese Hindernisse zu ĂƒÂŒberwinden, ist die Integration der neuartigen Messinstrumente dringend erforderlich, z.B. Light Detection and Ranging (LiDAR) und die entsprechenden Datenverarbeitungsmethoden mit NFI. Vor diesem Hintergrund wird in dieser Arbeit ein neuartiges rechnergestĂƒÂŒtztes virtuelles Messverfahren (CVM) zur Bestimmung von Baumparametern ohne Validierungsbedarf vorgeschlagen. CVM ist in erster Linie eine physikalische Simulationsmethode und arbeitet als virtuelles Messinstrument. CVM misst Rohdaten, z.B. LiDAR-Punktwolken und Baummodelle, durch die Simulation des physikalischen Mechanismus von Messinstrumenten und NaturphÀnomenen. Basierend auf der Theorie des CVM ist diese Arbeit eine systematische Beschreibung, wie virtuelle Messinstrumente entwickelt werden können. Die erste Arbeit dient der EinfĂƒÂŒhrung in die Theorie des CVM. CVM ist eine konzeptuelle und allgemeine Methodik, die sich von einer spezifischen Messung von Baumparametern unterscheidet. Anschliessend wird die DurchfĂƒÂŒhrbarkeit des CVM anhand einer konzeptuellen Implementierung, d.h. eines virtuellen Lineals, getestet. Die Entwicklung des virtuellen Lineals zeigte die beiden Hauptunterschiede zwischen CVM und konventionellen Modellierungsmethoden auf. Erstens besteht der Forschungsschwerpunkt von CVM darin, ein geeignetes physisches Szenario zu erstellen, anstatt eine mathematische Beziehung zwischen Modellierungsergebnissen und wahren Werten zu finden. Zweitens können sich die Ergebnisse des CVM den wahren Werten annÀhern, wÀhrend die Modellierungsergebnisse dies nicht konnten. Folglich werden in einem virtuellen Raum die Baumparameter durch einen Messprozess ohne mathematische Vorhersagen bestimmt. Dementsprechend ist das Ergebnis frei von Validierung und kann, zumindest in virtuellen RÀumen, als wahre Werte betrachtet werden. Mit dem Wissen aus der Entwicklung des virtuellen Lineals werden zwei aussergewöhnliche Implementierungen weiterentwickelt. Es handelt sich um die Methode der virtuellen WasserverdrÀngung (VWD) und die Methode der Sonnenlichtanalyse. Beide verwenden den gleichen CVM-Workflow, der erstens in der RealitÀt und zweitens im virtuellen Raum gemessen wird. Das VWD zielt darauf ab, die Punktwolken virtuell zu messen, wobei die Simulation von WasserverdrÀngungsmethoden in der RealitÀt verwendet wird. Diese Methode besteht aus zwei Stufen. Die erste Stufe besteht in der Anwendung der Simulation der WasserverdrÀngung unter Verwendung massiver virtueller WassermolekĂƒÂŒle (VWMs). Aufgrund der begrenzten Computerleistung mĂƒÂŒssen in dieser Phase einige empirische Regressionen angewandt werden. In der zweiten Stufe wird ein einzelnes (oder wenige) VWM (oder VWMs) entwickelt, um diese empirischen Prozesse im VWD zu entfernen. SchlieÃƞlich kann VWD als vollautomatische Methode zur Messung von Punktwolken fungieren. Die Methode der Sonnenlichtanalyse zielt darauf ab, die Baummodelle virtuell zu messen, indem die Simulation der Sonneneinstrahlung bei Tageslicht verwendet wird. Auch bei dieser Methode gibt es zwei Stufen. In der ersten Stufe wird die Sonnenlichtanalyse fĂƒÂŒr einen einzelnen Baum entwickelt. Die zweite Stufe ist die Analyse der Interferenz von benachbarten BÀumen. Die Ergebnisse umfassen Standard-Baumattribute, die in der zukĂƒÂŒnftigen NFI gesammelt werden können. Die erfolgreichen Entwicklungen von CVM, zusammen mit Implementierungen von VWD- und Sonnenlichtanalysemethoden, beweisen die anfÀnglichen Annahmen in dieser Arbeit. Es handelt sich um die Umsetzung der mathematischen Verarbeitung von Daten in virtuelle Messungen. Dementsprechend handelt es sich um eine andere Philosophie, d.h. die Rolle der Daten wird auf die digitale Darstellung von BÀumen ausgedehnt. Sie eröffnet einen Weg der Datenverarbeitung unter Verwendung eines natĂƒÂŒrlicheren Ansatzes und wird voraussichtlich in naher Zukunft als Standard-Messinstrument, wie z.B. ein Durchmesser-Band, in der NFI eingesetzt werden

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    Full text link
    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a 3-Dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of Solar System and exoplanetary terrestrial planets. Its parent model, known as ModelE2 (Schmidt et al. 2014), is used to simulate modern and 21st Century Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (slowly rotating to more rapidly rotating than modern Earth, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the Solar System such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents we can then expand its capabilities further to those exoplanetary rocky worlds that have been discovered in the past and those to be discovered in the future. We discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.Comment: Revisions since previous draft. Now submitted to Astrophysical Journal Supplement Serie

    Proceedings of the 7th International Conference on Functional-Structural Plant Models, SaariselkÀ, Finland, 9 - 14 June 2013

    Get PDF

    Reconciling the contribution of environmental and stochastic structuring of tropical forest diversity through the lens of imaging spectroscopy.

    Get PDF
    Both niche and stochastic dispersal processes structure the extraordinary diversity of tropical plants, but determining their relative contributions has proven challenging. We address this question using airborne imaging spectroscopy to estimate canopy ÎČ-diversity for an extensive region of a Bornean rainforest and challenge these data with models incorporating niches and dispersal. We show that remotely sensed and field-derived estimates of pairwise dissimilarity in community composition are closely matched, proving the applicability of imaging spectroscopy to provide ÎČ-diversity data for entire landscapes of over 1000 ha containing contrasting forest types. Our model reproduces the empirical data well and shows that the ecological processes maintaining tropical forest diversity are scale dependent. Patterns of ÎČ-diversity are shaped by stochastic dispersal processes acting locally whilst environmental processes act over a wider range of scales

    Optimal Design of Plant Canopy Based on Light Interception: A Case Study With Loquat

    Get PDF
    Canopy architecture determines the light distribution and light interception in the canopy. Reasonable shaping and pruning can optimize tree structure; maximize the utilization of land, space and light energy; and lay the foundation for achieving early fruiting, high yield, health and longevity. Due to the complexity of loquat canopy architecture and the multi-year period of tree growth, the variables needed for experiments in canopy type training are hardly accessible through field measurements. In this paper, we concentrated on exploring the relationship between branching angle and light interception using a three-dimensional (3D) canopy model in loquat (Eriobotrya japonica Lindl). First, detailed 3D models of loquat trees were built by integrating branch and organ models. Second, the morphological models of different loquat trees were constructed by interactive editing. Third, the 3D individual-tree modeling software LSTree integrated with the OpenGL shadow technique, a radiosity model and a modified rectangular hyperbola model was used to calculate the silhouette to total area ratio, the distribution of photosynthetically active radiation within canopies and the net photosynthetic rate, respectively. Finally, the influence of loquat tree organ organization on the light interception of the trees was analyzed with different parameters. If the single branch angle between the level 2 scaffold branch and trunk is approximately 15° and the angles among the level 2 scaffold branches range from 60 to 90°, then a better light distribution can be obtained. The results showed that the branching angle has a significant impact on light interception, which is useful for grower manipulation of trees, e.g., shoot bending (scaffold branch angle). Based on this conclusion, a reasonable tree structure was selected for intercepting light. This quantitative simulation and analytical method provides a new digital and visual method that can aid in the design of tree architecture
    • 

    corecore