80 research outputs found

    On a Joint Physical Layer and Medium Access Control Sublayer Design for Efficient Wireless Sensor Networks and Applications

    Get PDF
    Wireless sensor networks (WSNs) are distributed networks comprising small sensing devices equipped with a processor, memory, power source, and often with the capability for short range wireless communication. These networks are used in various applications, and have created interest in WSN research and commercial uses, including industrial, scientific, household, military, medical and environmental domains. These initiatives have also been stimulated by the finalisation of the IEEE 802.15.4 standard, which defines the medium access control (MAC) and physical layer (PHY) for low-rate wireless personal area networks (LR-WPAN). Future applications may require large WSNs consisting of huge numbers of inexpensive wireless sensor nodes with limited resources (energy, bandwidth), operating in harsh environmental conditions. WSNs must perform reliably despite novel resource constraints including limited bandwidth, channel errors, and nodes that have limited operating energy. Improving resource utilisation and quality-of-service (QoS), in terms of reliable connectivity and energy efficiency, are major challenges in WSNs. Hence, the development of new WSN applications with severe resource constraints will require innovative solutions to overcome the above issues as well as improving the robustness of network components, and developing sustainable and cost effective implementation models. The main purpose of this research is to investigate methods for improving the performance of WSNs to maintain reliable network connectivity, scalability and energy efficiency. The study focuses on the IEEE 802.15.4 MAC/PHY layers and the carrier sense multiple access with collision avoidance (CSMA/CA) based networks. First, transmission power control (TPC) is investigated in multi and single-hop WSNs using typical hardware platform parameters via simulation and numerical analysis. A novel approach to testing TPC at the physical layer is developed, and results show that contrary to what has been reported from previous studies, in multi-hop networks TPC does not save energy. Next, the network initialization/self-configuration phase is addressed through investigation of the 802.15.4 MAC beacon interval setting and the number of associating nodes, in terms of association delay with the coordinator. The results raise doubt whether that the association energy consumption will outweigh the benefit of duty cycle power management for larger beacon intervals as the number of associating nodes increases. The third main contribution of this thesis is a new cross layer (PHY-MAC) design to improve network energy efficiency, reliability and scalability by minimising packet collisions due to hidden nodes. This is undertaken in response to findings in this thesis on the IEEE 802.15.4 MAC performance in the presence of hidden nodes. Specifically, simulation results show that it is the random backoff exponent that is of paramount importance for resolving collisions and not the number of times the channel is sensed before transmitting. However, the random backoff is ineffective in the presence of hidden nodes. The proposed design uses a new algorithm to increase the sensing coverage area, and therefore greatly reduces the chance of packet collisions due to hidden nodes. Moreover, the design uses a new dynamic transmission power control (TPC) to further reduce energy consumption and interference. The above proposed changes can smoothly coexist with the legacy 802.15.4 CSMA/CA. Finally, an improved two dimensional discrete time Markov chain model is proposed to capture the performance of the slotted 802.15.4 CSMA/CA. This model rectifies minor issues apparent in previous studies. The relationship derived for the successful transmission probability, throughput and average energy consumption, will provide better performance predictions. It will also offer greater insight into the strengths and weaknesses of the MAC operation, and possible enhancement opportunities. Overall, the work presented in this thesis provides several significant insights into WSN performance improvements with both existing protocols and newly designed protocols. Finally, some of the numerous challenges for future research are described

    In Ieee 802.15.4 Standard Guaranteed Time Slot Performance, Synchronous Data Acquisition And Synchronization Error

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2008Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2008Bu çalışmada, Freescale Yarıiletken tarafından üretilen 13192 EVK ile Garantilenmiş Zaman Dilimi (GTS) başarımı ölçülmüştür. Ölçülen başarım, kuramsal üretilen iş (throughput) ve kuramsal en büyük yararlı iş (goodput) değerleri ile kıyaslanmıştır. Başarım ölçümlerinin yanında, iki algılayıcı düğümü kullanılarak eş zamanlı veri edinme (data acquisition) de başarıyla gerçekleştirilmiştir. Edinilmiş veriler eşgüdümleyiciye (coordinator) aktarılırken GTS kullanılmıştır. Ayrıca başarım ölçümlerinden elde edilen sonuçlar yardımı ile iki algılayıcı düğümün eşzamanlı hale getirilme ayarlamaları (tune) yapılmıştır. Bir eşzamanlama yöntemine ulaşabilmek için geliştirilen uygulamada IEEE 802.15.4 Standardında tanımlı parıldak haber göstergesi ilkeli (beacon notify indication primitive) kullanılmıştır. Ayrıca düğümler arası eşzamanlama hatası incelenmiştir.In this study, performance of GTS is measured on 13192 Evolution Kit modules from Freescale Semiconductor. This performance is compared with the theoretical throughput and theoretical maximum goodput values. Besides the performance measurements, synchronous data acquisition with two sensor nodes has been successfully realized. While transmitting acquisition data to the coordinator GTS is used. Furthermore, obtained results from the performance measurements used for tuning the synchronization of two nodes. In order to find a synchronization scheme beacon notification indication primitive defined in the 802.15.4 standard has been used in the developed applications. Also synchronization error introduced by the nodes is inspected.Yüksek LisansM.Sc

    An ultra-low duty cycle sleep scheduling protocol stack for wireless sensor networks

    Get PDF
    A wireless sensor network is a distributed network system consisting of miniature spatially distributed autonomous devices designed for using sensors to sense the environment and cooperatively perform a specific goal. Each sensor node contains a limited power source, a sensor and a radio through which it can communicate with other sensor nodes within its communication radius. Since these sensor nodes may be deployed in inaccessible terrains, it might not be possible to replace their power sources. The radio transceiver is the hardware component that uses the most power in a sensor node and the optimisation of this element is necessary to reduce the overall energy consumption. In the data link layer there are several major sources of energy waste which should be minimised to achieve greater energy efficiency: idle listening, overhearing, over-emitting, network signalling overhead, and collisions. Sleep scheduling utilises the low-power sleep state of a transceiver and aims to reduce energy wastage caused by idle listening. Idle listening occurs when the radio is on, even though there is no data to transmit or receive. Collisions are reduced by using medium reservation and carrier sensing; collisions occur when there are simultaneous transmissions from several nodes that are within the interference range of the receiver node. The medium reservation packets include a network allocation vector field which is used for virtual carrier sensing which reduces overhearing. Overhearing occurs when a node receives and decodes packets that are not destined to it. Proper scheduling can avoid energy wastage due to over-emitting; over-emitting occurs when a transmitter node transmits a packet while the receiver node is not ready to receive packets. A protocol stack is proposed that achieves an ultra-low duty cycle sleep schedule. The protocol stack is aimed at large nodal populations, densely deployed, with periodic sampling applications. It uses the IEEE 802.15.4 Physical Layer (PHY) standard in the 2.4 GHz frequency band. A novel hybrid data-link/network cross-layer solution is proposed using the following features: a global sleep schedule, geographical data gathering tree, Time Division Multiple Access (TDMA) slotted architecture, Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), Clear Channel Assessment (CCA) with a randomised contention window, adaptive listening using a conservative timeout activation mechanism, virtual carrier sensing, clock drift compensation, and error control. AFRIKAANS : 'n Draadlose sensor-netwerk is 'n verspreide netwerk stelsel wat bestaan uit miniatuur ruimtelik verspreide outonome toestelle wat ontwerp is om in harmonie saam die omgewing te meet. Elke sensor nodus besit 'n beperkte bron van energie, 'n sensor en 'n radio waardeur dit met ander sensor nodusse binne hulle kommunikasie radius kan kommunikeer. Aangesien hierdie sensor nodusse in ontoeganklike terreine kan ontplooi word, is dit nie moontlik om hulle kragbronne te vervang nie. Die radio is die hardeware komponent wat van die meeste krag gebruik in 'n sensor nodus en die optimalisering van hierdie element is noodsaaklik vir die verminder die totale energieverbruik. In die data-koppelvlak laag is daar verskeie bronne van energie vermorsing wat minimaliseer moet word: ydele luister, a uistering, oor-uitstraling, oorhoofse netwerk seine, en botsings. Slaap-skedulering maak gebruik van die lae-krag slaap toestand van 'n radio met die doel om energie vermorsing wat veroorsaak word deur ydele luister, te verminder. Ydele luister vind plaas wanneer die radio aan is selfs al is daar geen data om te stuur of ontvang nie. Botsings word verminder deur medium bespreking en draer deteksie; botsings vind plaas wanneer verskeie nodusse gelyktydig data stuur. Die medium bespreking pakkies sluit 'n netwerk aanwysing vektor veld in wat gebruik word vir virtuele draer deteksie om a uistering te verminder. Afluistering vind plaas wanneer 'n nodus 'n pakkie ontvang en dekodeer maar dit was vir 'n ander nodus bedoel. Behoorlike skedulering kan energie verkwisting as gevolg van oor-uistraling verminder; oor-uistraling gebeur wanneer 'n sender nodus 'n pakkie stuur terwyl die ontvang nog nie gereed is nie. 'n Protokol stapel is voorgestel wat 'n ultra-lae slaap-skedule dienssiklus het. Die protokol is gemik op draadlose sensor-netwerke wat dig ontplooi, groot hoeveelhede nodusse bevat, en met periodiese toetsing toepassings. Dit maak gebruik van die IEEE 802.15.4 Fisiese-Laag standaard in die 2.4 GHz frekwensie band. 'n Nuwe baster datakoppelvlak/netwerk laag oplossing is voorgestel met die volgende kenmerke: globale slaap-skedulering, geogra ese data rapportering, Tyd-Verdeling-Veelvuldige-Toegang (TVVT) gegleufde argitektuur, Draer-Deteksie-Veelvuldige-Toegang met Botsing-Vermyding (DDVT/BV), Skoon-Kanaal-Assessering (SKA) met 'n wisselvallige twis-tydperk, aanpasbare slaap-skedulering met 'n konserwatiewe aktiverings meganisme, virtuele draer-deteksie, klok-wegdrywing kompensasie, en fout beheer. CopyrightDissertation (MEng)--University of Pretoria, 2012.Electrical, Electronic and Computer Engineeringunrestricte

    An efficient multichannel wireless sensor networks MAC protocol based on IEEE 802.11 distributed co-ordinated function.

    Get PDF
    This research aimed to create new knowledge and pioneer a path in the area relating to future trends in the WSN, by resolving some of the issues at the MAC layer in Wireless Sensor Networks. This work introduced a Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks. This work commenced by surveying different protocols: contention-based MAC protocols, transport layer protocols, cross-layered design and multichannel multi-radio assignments. A number of existing protocols were analysed, each attempting to resolve one or more problems faced by the current layers. The 802.15.4 performed very poorly at high data rate and at long range. Therefore 802.15.4 is not suitable for sensor multimedia or surveillance system with streaming data for future multichannel multi-radio systems. A survey on 802.11 DCF - which was designed mainly for wireless networks –supports and confirm that it has a power saving mechanism which is used to synchronise nodes. However it uses a random back-off mechanism that cannot provide deterministic upper bounds on channel access delay and as such cannot support real-time traffic. The weaknesses identified by surveying this protocol form the backbone of this thesis The overall aim for this thesis was to introduce multichannel with single radio as a new paradigm for IEEE 802.11 Distributed Coordinated Function (DCF) in wireless sensor networks (WSNs) that is used in a wide range of applications, from military application, environmental monitoring, medical care, smart buildings and other industry and to extend WSNs with multimedia capability which sense for instance sounds or motion, video sensor which capture video events of interest. Traditionally WSNs do not need high data rate and throughput, since events are normally captured periodically. With the paradigm shift in technology, multimedia streaming has become more demanding than data sensing applications as such the need for high data rate protocol for WSN which is an emerging technology in this area. The IEEE 802.11 can support data rates up to 54Mbps and 802.11 DCF was designed specifically for use in wireless networks. This thesis focused on designing an algorithm that applied multichannel to IEEE 802.11 DCF back-off algorithm to reduce the waiting time of a node and increase throughput when attempting to access the medium. Data collection in WSN tends to suffer from heavy congestion especially nodes nearer to the sink node. Therefore, this thesis proposes a contention based MAC protocol to address this problem from the inspiration of the 802.11 DCF backoff algorithm resulting from a comparison of IEEE 802.11 and IEEE 802.15.4 for Future Green Multichannel Multi-radio Wireless Sensor Networks

    Deadline-Aware Scheduling Perspectives in Industrial Wireless Networks: A Comparison between IEEE 802.15.4 and Bluetooth

    Get PDF
    In industrial contexts, most of process control applications use wired communication networks. The reliability of wired networks is indisputable and extensively demonstrated by several studies in the literature. However, it is important to consider several disadvantages provided by the use of wired technologies, like high deployment and maintenance costs and low network scalability. Although it is difficult to fully replace wired networks, wireless communication protocols have features which could undeniably affect in positive way the production mechanisms in factories. The wireless networks (WNs) are effectively used to detect and exchange information. The main communication protocols, currently available for WNs, however, do not support real-time periodic traffic flows which, as known, mainly characterize industrial networks. In this paper, we will analyze a real-time scheduling algorithm for both periodic and aperiodic traffic management, applied to networks based on IEEE 802.15.4 and Bluetooth, respectively. The main purpose of this research is to reduce, as much as possible, the packet loss on the channel, increasing at the same time the reliability of the wireless technology. Furthermore, the comparison between IEEE 802.15.4 and Bluetooth will allow to identify the more suitable communication protocol for industrial process control systems

    Transport mechanism for wireless micro sensor network

    Get PDF
    Wireless sensor network (WSN) is a wireless ad hoc network that consists of very large number of tiny sensor nodes communicating with each other with limited power and memory constrain. WSN demands real-time routing which requires messages to be delivered within their end-to-end deadlines (packet lifetime). This report proposes a novel real-time with load distribution (RTLD) routing protocol that provides real time data transfer and efficient distributed energy usage in WSN. The RTLD routing protocol ensures high packet throughput with minimized packet overhead and prolongs the lifetime of WSN. The routing depends on optimal forwarding (OF) decision that takes into account of the link quality, packet delay time and the remaining power of next hop sensor nodes. RTLD routing protocol possesses built-in security measure. The random selection of next hop node using location aided routing and multi-path forwarding contributes to built-in security measure. RTLD routing protocol in WSN has been successfully studied and verified through simulation and real test bed implementation. The performance of RTLD routing in WSN has been compared with the baseline real-time routing protocol. The simulation results show that RTLD experiences less than 150 ms packet delay to forward a packet through 10 hops. It increases the delivery ratio up to 7 % and decreases power consumption down to 15% in unicast forwarding when compared to the baseline routing protocol. However, multi-path forwarding in RTLD increases the delivery ratio up to 20%. In addition, RTLD routing spreads out and balances the forwarding load among sensor nodes towards the destination and thus prolongs the lifetime of WSN by 16% compared to the baseline protocol. The real test bed experiences only slight differences of about 7.5% lower delivery ratio compared to the simulation. The test bed confirms that RTLD routing protocol can be used in many WSN applications including disasters fighting, forest fire detection and volcanic eruption detection

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions

    Asioiden Internetin tietoturva: ratkaisuja, standardeja ja avoimia ongelmia

    Get PDF
    Internet of Things (IoT) extends the Internet to our everyday objects, which enables new kind of applications and services. These IoT applications face demanding technical challenges: the number of ‘things’ or objects can be very large, they can be very con-strained devices, and may need to operate on challenging and dynamic environments. However, the architecture of today’s Internet is based on many legacy protocols and technology that were not originally designed to support features like mobility or the huge and growing number of objects the Internet consists of today. Similarly, many security features of today’s Internet are additional layers built to fill up flaws in the un-derlying design. Fulfilling new technical requirements set by IoT applications requires efficient solutions designed for the IoT use from the ground up. Moreover, the imple-mentation of this new IoT technology requires interoperability and integration with tra-ditional Internet. Due to considerable technical challenges, the security is an often over-looked aspect in the emerging new IoT technology. This thesis surveys general security requirements for the entire field of IoT applica-tions. Out of the large amount of potential applications, this thesis focuses on two major IoT application fields: wireless sensor networks and vehicular ad-hoc networks. The thesis introduces example scenarios and presents major security challenges related to these areas. The common standards related to the areas are examined in the security perspective. The thesis also examines research work beyond the area of standardization in an attempt to find solutions to unanswered security challenges. The thesis aims to give an introduction to the security challenges in the IoT world and review the state of the security research through these two major IoT areas
    corecore