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Abstract 

 

This research aimed to create new knowledge and pioneer a path in the area relating to 

future trends in the WSN, by resolving some of the issues at the MAC layer in Wireless 

Sensor Networks. This work introduced a Multi-channel Distributed Coordinated 

Function (MC-DCF) which takes advantage of multi-channel assignment.  The backoff 

algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to 

invoke channel switching, based on threshold criteria in order to improve the overall 

throughput for wireless sensor networks. 

This work commenced by surveying different protocols: contention-based MAC 

protocols, transport layer protocols, cross-layered design and multichannel multi-radio 

assignments. A number of existing protocols were analysed, each attempting to resolve 

one or more problems faced by the current layers. 

The 802.15.4 performed very poorly at high data rate and at long range. Therefore 

802.15.4 is not suitable for sensor multimedia or surveillance system with streaming 

data for future multichannel multi-radio systems.  

A survey on 802.11 DCF - which was designed mainly for wireless networks –supports 

and confirm that it has a power saving mechanism which is used to synchronise nodes.  

However it uses a random back-off mechanism that cannot provide deterministic upper 

bounds on channel access delay and as such cannot support real-time traffic. The 

weaknesses identified by surveying this protocol form the backbone of this thesis 

 

The overall aim for this thesis was to introduce multichannel with single radio as a new 

paradigm for IEEE 802.11 Distributed Coordinated Function (DCF) in wireless sensor 

networks (WSNs) that is used in a wide range of applications, from military application, 

environmental monitoring, medical care, smart buildings and other industry and to 

extend WSNs with multimedia capability which sense for instance sounds or motion, 

video sensor which capture video events of interest.  

Traditionally WSNs do not need high data rate and throughput, since events are 

normally captured periodically.  With the paradigm shift in technology, multimedia 

streaming has become more demanding than data sensing applications as such the need 

for high data rate protocol for WSN which is an emerging technology in this area.  The 

IEEE 802.11 can support data rates up to 54Mbps and 802.11 DCF was designed 

specifically for use in wireless networks.  



Abstract  
      

 3 

 This thesis focused on designing an algorithm that applied multichannel to IEEE 

802.11 DCF back-off algorithm to reduce the waiting time of a node and increase 

throughput when attempting to access the medium.  Data collection in WSN tends to 

suffer from heavy congestion especially nodes nearer to the sink node. Therefore, this 

thesis proposes a contention based MAC protocol to address this problem from the 

inspiration of the 802.11 DCF backoff algorithm resulting from a comparison of IEEE 

802.11 and IEEE 802.15.4 for Future Green Multichannel Multi-radio Wireless Sensor 

Networks.   
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CHAPTER 1   
 

Introduction 
 

1.1 Motivations 

 

Recent advances in Access Networks have made voice, data and multimedia 

communications ubiquitous and have knowingly/unknowingly changed life styles.  

However, important challenges still stand in the way of widespread use of wireless 

applications; power consumption, lack of spectrum, end user acceptance and 

interoperability. In fact, the complexity of mobility and traffic models, together with the 

dynamic topology and the unpredictability of link quality that characterise wireless 

networks made every application has different characteristics and requirements such as 

data type, rate of data transmission and reliability. Wireless Sensor Networks [1-9] are 

an emerging fast growing technology where the growing interest can be contributed to 

new applications enabled by large scale networks. The demand for using this medium is 

increasing with wide range of deployment for monitoring and surveillance systems as 

well as for military, Internet and scientific purposes. Packets from all nodes in the 

network converge at nodes near the sink as such the need to prioritised medium access 

control (MAC) protocol.  There have been a number of proposed MAC protocols [10-

12] to improve network performance in WSNs. A survey study has been carried out on 

the contention based protocols of WSNs and also the traditional ones such as 802.11 

DCF. 

From observation it can be easily seen that wireless networks are growing increasingly 

less structured. However, the dynamic interactions arising in these networks make it 

difficult to analyse and predict performance, inhibiting the development of wireless 

technologies. Thus, in order to deal with such challenging demands, a constant and 

thorough research is required for improving existing protocols, developing new 

standards and technologies. 
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A comparison between 802.11 and 802.15.4 was carried out to consider the future 

medium for wireless sensor networks operating in a multichannel environment at high 

data rate with streaming data. Both 802.11 and 802.15.4 use the CSMA/CA mechanism 

for contention based network and operate in the 2.4GHz frequency band.  

The research presented in this thesis is motivated by the following issues: 

1. WSNs that are rapidly gaining increasing attention on the experimentation level 

as well as the application-deployment level.WSN is a preferred choice due to its 

relative economic efficiency, ease of deployment, and its relatively superior 

monitoring capabilities[4]. These networks, however, suffer from severe 

congestion, packet loss, unfair utilization of bandwidth and unreliable data 

delivery to destination. The research presented in this thesis address solutions for 

enhancing the MAC contention-based protocol to reduce the congestion, packet 

loss and the unreliable data delivery. 

2. Owing to the revolution of new technology, wireless sensor networks should be 

able to cope with multimedia traffic and delivery of data in keeping with 

technological trends. Currently, neither IEEE 802.11 contention based protocol 

nor the 2.4 GHz frequency band has the capability for high data rate 

transmission.  This research determined the feasibility in having 802.11 being 

considered as a future medium for WSNs to operate high data rate with 

streaming data in the 2.4 GHz frequency band that requires timely and efficient 

delivery. 

3. Multi-channel MAC protocols have recently obtained considerable attention in 

wireless networking research because they promise to increase capacity of 

wireless networks significantly by exploiting multiple frequency bands.  Multi-

channel allows wireless networks to assign different channels to different nodes 

in real-time transmission.  IEEE 802.11 standard play a vital role for contention-

based networks and divide the wireless spectrum into spectral bands called 

‘channels’. The research address issues relating to simultaneous 

communications, limits interference between nodes while allowing the 

coexistence of multiple wireless networks on different channels. 

4. The research proposes an original model that addresses shortage of spectrum 

which limits current capability to introduce new wireless services and improve 
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existing ones. This research introduces a model that allows different wireless 

systems to share multiple channels and switch channels without causing 

excessive harmful interference to other neighbours. This system will increase the 

amount of communications that can take place in a given network, which would 

defiantly lead to a revolution in the world of wireless services and applications, 

resulting in less expensive networks transmitting higher data rate than currently 

exist. 

  

 

1.2 Aims and Objectives   

 
The aims and objectives of the research presented in this thesis are to introduce 

multichannel and channel switching assignment in the IEEE 802.11 DCF contention-

based MAC protocol. The research aims and objectives are summarised by the 

following points: 

1. To review the area of MAC protocols to identify related paradigms for 

contention-based MAC protocols.  

2. To compare IEEE 802.11 and IEEE 802.15.4 MAC protocol to determine the 

feasibility of IEEE 802.11 being utilised in the future as a medium for wireless 

sensor networks operating in a high data rate multichannel environment with 

streaming data.  

3. To use the backoff algorithm of the 802.11 DCF for multichannel assignment 

and channel switching when a set criterion is met to reduce contention for a 

single medium, collision and congestion. 

4. To design an efficient and distributed algorithm that overcomes the severe 

degradation at the sink node when using single radio to switch to multiple 

channels.  

5. To utilise simulation experiments in order to investigate and analyse the 

performance of the proposed MC-DCF protocol of multi-channel 

communication in wireless sensor networks using an NS2 platform.  
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1.3 Contribution to Knowledge 

 

This thesis contributes to knowledge by designing a contention-based protocol for 

multichannel WSN with the options to do channel switching when a channel is busy. 

This is aiming at reducing the unnecessary delays by nodes sending data to the sink 

node over a single radio interface.  

Furthermore, the thesis presented a round robin cycle solution to aid delivery from 

sources to the sink node(s) when the radio interface switching between receiving nodes 

on the same channel to retrieve data packets.  

The key contributions are summarised as follows: 

1. Comparison of IEEE 802.11 and IEEE 802.15.4 for Future Green Multichannel 

Multi-radio Wireless Sensor Networks.  This comprises: 

a. Details of the IEEE 802.15.4 MAC protocol determined to aid an 

understanding of CSMA/CA and PAN coordinator.  

b. Details of the IEEE 802.11 MAC protocol aimed at giving an 

understanding of CSMA/CA and DCF. 

c. Investigating and evaluating the performance of both IEEE 802.15.4 and 

IEEE 802.11 MAC protocol through simulation results conducted in NS2 

to make a rational decision which protocol is feasible for future WSN 

operating with multimedia or surveillance system in a multichannel 

multi-radio environment.   

d. The simulation is based on CBR streaming data with 100kbps and 

2Mbps at 10 and 50m range respectively.  

2. Multi-channel Distributed Coordinated Function over Single Radio in Wireless 

Sensor Networks, which aims at having the design of multi-channel 

communication based on the 802.11 DCF over a single radio for WSNs in order 

to improve its communication performance namely throughput, end-to-end delay 

and channel access delay.  

a. Multi-channel protocols utilise bandwidth better and thus may perform 

favorably in cases of applications demanding high data rates.  

b. The 802.11 standards provide up to 12 non-overlapped channels, 

respectively, in 2.4 GHz and 5 GHz spectrums.  
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c. Nodes within the transmission range of each other can operate on 

different non-overlapped channels so as to avoid interference.  

d. Node interface will be able to switch between channels.  

e. The approach will have all nodes aware of the channels in use but each 

node interface can only tune into one channel at a given time.  

f. At initialisation, a random assigner that employs uniform distribution 

will be applied to distribute node interfaces to channels. 

g. Channel switching among sending nodes will only occur after a set 

threshold has been reached during the backoff period. 

3. Multi-channel Multi-Radio using 802.11 based Media Access for Sink Nodes in 

Wireless Sensor Networks as an extension to Multi-channel Distributed 

Coordinated Function over Single Radio in Wireless Sensor Networks to study 

the problem of designing an efficient and distributed algorithm that overcomes 

the severe degradation at the sink node when using single radio to switch to 

multiple channels. 

a. Multichannel Multi-Radio (MCMR) [13-14] problem has been modelled 

as a unidirected graph where vertices represent radios comprising the 

wireless network and edges between vertices representing node links.   

b. A binary vector defines where only one channel can be assigned to each 

logical link between the lists of elements.  

c. The number of sink nodes increases to collect data from receiving nodes.  

The sink nodes will equip with a single radio and will be required to do 

channel switching in the same manner as in 2. 

d. Multiple radio interface increases in the sink node to receive data from 

each non-overlapping channel. 
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1.4 Research Methodology 

 

The initial phase of the research is focused on literature review; relevant research 

articles, books, research papers which included conference proceedings and journal 

papers, IEEE standards, progress and proposals of IEEE task groups, and different white 

papers on Wireless Sensor Networks, heterogeneous wireless networks, MAC protocols, 

Transport protocols and Channel assignments and Cross layered approaches were 

studied.  During this stage, basic definitions, types and classifications of MAC and 

transport protocols were examined and issues related to sensor networks and its recent 

extinctions, resource allocations in Ad-Hoc networks and multichannel multi-radio 

assignment were identified. 

 

Literature review was followed by comparison study of IEEE 802.15.4 [15,16] and 

IEEE 802.11 MAC sub layer [17] controls access to the radio channel by using a Carrier 

Sense Multiple Access with Collision Avoidance (CSMA-CA) mechanism. The main 

differences involve the time slotted behaviour, the backoff algorithm, and the clear 

channel assessment (CCA) procedure used to sense whether the channel is idle.  

Different parameters and scenarios for each case were carried out using different 

performance metrics: aggregate throughput, delivery ratio and access delay. Not only 

the performance of each was tested but it also helped in developing a different 

perspective, such as, looking at the issues of long range transmission, data rate and the 

effect when the same channels are used by both in the same frequency band. An overlap 

between them can adversely impact on the operation of IEEE 802.15.4.  

 

In the final stage, development of simulation models of different radio interface 

selection mechanisms based on static or dynamic factors have been implemented in 

order to compare them with the solutions introduced in this research. Apart from 

implementing the proposed protocols, Multichannel multi-radio assignments were also 

implemented at the sink node(s) to improve the performance. The proposed models and 

various components were designed and tested in NS2. NS2 [18] is an open source 

simulator and new models can be easily implemented using either C++ or Tool 

Command Language (TCL). However, NS2 creates trace files and NAM screen shots to 
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visualise node movement in wireless networks, to collect the simulation results from 

NS2 a number of Perl scripts were written for this purpose. On the other hand, the work 

done for cognitive radio cognitive network (CRCN) [19] GUI provides easy, interactive 

environment in using NS2.  

 

 

1.5 Thesis Structure 

 
This thesis comprises six chapters. Chapter two examined various MAC and transport 

protocols and the need for cross-layer MAC-Transport scheme for WSN, in order to 

obtain a vivid perspective for future trend in the WSN arena and to shape the research 

objective for multichannel MAC protocol.    

 

Chapter three outlined a comparative study of IEEE 802.15.4 and IEEE 802.11 MAC 

sub layer controls access to the radio channel by using a Carrier Sense Multiple Access 

with Collision Avoidance (CSMA-CA) mechanism. The differences detected from the 

comparison, greatly determined the design for the MC-DCF protocol. 

 

Chapter four focused on the design of a new approach, Multi-channel Distributed 

Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment.  

The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was 

modified to invoke channel switching, based on threshold criteria in order to improve 

the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. 

 

Chapter five addressed the severe degradation at the sink node when using single radio 

to switch to multiple channels.  However due to limited non-overlapping channels, delay 

and congestion, the problems at the sink node needed to be improved for MC-DCF to 

work efficiently with future networks and to considered for cross layered design.  

 The chapter provided necessary steps to verify the feasibility of round robin technique 

in these networks at the sink node by using the technique to regulate multi-radio 

multichannel assignment. Simulation results indicated that dynamic channel assignment 

scheme using the multi-radio, multichannel at a single sink node can perform close to 
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optimal on the average while multiple sink node assignment also performed well.  The 

methods proposed in the chapter can be a valuable tool for network designers in 

planning network deployment and for optimising different performance objectives. 

  

Finally, the thesis summary conclusions are presented in chapter six along with some 

seminal ideas for future proposals based on the research carried out in this work.   



Chapter 2: Literature Review 
 

 

30 

Chapter 2  

 

L ITERATURE REVIEW  
 

2.1 Introduction 

 

Wireless communication is the most vibrant area in the communication field of research 

today. It has been a topic of research since the 1960’s but with the paradigm shift 

experienced through the transition from wired to wireless networks, new research 

advances have been created in the wireless arena which has seen a massive growth both 

in terms of services provided and the type of technology that have become available. 

These have revolutionised the entire wireless networks and will play an important role 

in future generation wireless sensor network for multimedia applications such as video 

surveillance systems. 

Wireless Sensor Networks (WSNs) [1-2,4,10] are an emerging technology that has 

become one of the fastest growing areas in the communication industry. They consist of 

sensor nodes that use low power consumption which are powered by small replaceable 

batteries that collect real-world data, process it, and transmit the data by radio 

frequencies to their destination.  WSNs are usually static nodes that send data to a server 

or a sink node for processing.   

WSN based applications usually have relaxed bandwidth requirement, the demand for 

using this medium is increasing with wide range of deployment for monitoring and 

surveillance systems as well as for military, Internet and scientific purposes.  WSNs can 

be classified under a number of areas including security and military sensing, home 

automation, consumer electronics, agriculture and environmental purposes, industrial 

control and monitoring. 

Security and Military sensing applications are usually used for magnetic door opening, 

smoke detection, to locate and identify targets for potential attack.  Home automation 

and consumer electronics include universal remote control; a personal digital assistant 

type of device, wireless keyboards, toys, light control and remote keyless entry.  



Chapter 2: Literature Review 
 

 

31 

Industrial control and monitoring sensors may include heating, ventilating and air 

conditioning unit of buildings that can regulate the temperature, the monitoring and 

controlling of moving machinery and detection of the presence of poisonous or 

dangerous material. 

 

 

Figure 2-1: Wireless Sensor network architecture 
 

Other applications such as environmental monitoring over large areas may require 

frequent battery replacement as such network nodes in this kind of WSN must employ 

other means of energy or obtain their energy from other sources such as energy 

scavenging [2] (photovoltaic cell, mechanical vibration). With the rapid development 

and fast growth of new technologies such as multimedia streaming over wireless 

medium arise the need for improved or new MAC and transport protocols in the WSN. 

However, these networks suffer from severe congestion, packet loss, unfair utilisation of 

bandwidth and unreliable data delivery to destination.  Owing to the revolution of new 

technology, wireless sensor networks should be able to cope with multimedia traffic and 

delivery of data by a specific time [1].   

In this chapter an overview of medium access control and transport layer protocols have 

been examined; as well as the need for cross-layer design among two layers, MAC and 

Transport for WSN. These will give a vivid perspective for future trend in the WSN 

arena and to aid the focus of the research objective for multichannel MAC protocol.  
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2.2 Medium Access Control (MAC) Overview 

 

MAC protocol [1,4,10,11] is responsible for reliable, error free data transfer with 

minimum retransmissions; in order to meet performance requirements such as 

controlling bandwidth, power awareness, contention resolution, minimise interference 

and collision avoidance. 

Data collection in WSN tends to suffer from heavy congestion especially nodes nearer 

to the sink node – which gather, control and store data collected by other sensor nodes. 

MAC protocols, proposed in literature, to combat these problems can be categorised as 

contention free or contention based while in [10] has classified these protocols as 

scheduled and unscheduled or random protocols. 

  

2.2.1 MAC Protocols 

 

MAC protocols can be categorised as Contention-free and Contention-based, as shown 

in Figure 2-2. 

 

Figure 2-2: MAC protocols. 
 

 

2.2.1.1 Contention Free Protocols 

 

The contention free [1,4,10,11] protocols are more efficient than those of the contention 

based, they do not make the assumption that network traffic is intrinsically random, 

instead traffic is ordered in a bounded channel assignment. These schemes are generally 

based on TDMA, FDMA or CDMA that utilises the synchronisation technique and the 

channel access mechanism of the physical layer, where the structure of the network is 
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spatially divided into slots or cells [4]. These protocols works well for multimedia 

traffic and are more applicable for static networks with centralise control. However, 

these schemes are more complex, require centralise control, use multiple channels 

simultaneously, specialised sensor hardware and there is a dependency on the physical 

layer. Therefore the focus is mainly on the contention based and transport layer 

schemes, where WSN need to cope with congestion, fairness and packet loss. 

 

 2.2.1.2 Contention Based Protocols 

 

Most of the proposed contention based protocols use Carrier Sense Multiple Access 

(CSMA) [2,20] scheme, where for a station (STA) to transmit, it must sense the medium 

to determine if another station is transmitting.  If the medium is busy, the STA will 

defer until the end of the current transmission. After deferral or just before attempting to 

transmit again, the STA shall select a random back-off interval and shall decrement the 

back-off interval counter while the medium is idle.   

The transmitting and receiving STA exchange short control frames (RTS and CTS 

frames) after determining that the medium is idle and after any deferrals or back-offs, 

prior to data transmission. 

The CSMA/CA protocol is designed to reduce collision between multiple stations 

accessing the medium.  However CSAM/CA tends to suffer from hidden and exposed 

node problems. 

 

 
Figure 2-3: Hidden and Exposed node 
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2.2.1.2.1 Hidden Node 

 

In Figure 2-3, nodes A and C are in the range of node B, but they are not in the range of 

each other. If node A is transmitting to node B, and Node C wishes to transit to node B, 

node C may sense the channel and find it idle and transmit causing collision at the 

receiving node, B with node A’s transmission. 

 

2.2.1.2.2 Exposed Node 

 

In Figure 2-3 if node B is transmitting to node A, and node C wishes to transmit to D, 

node C may sense the channel, find it busy by node B and refrain from transmitting 

even though a transmission by node C to node D would not cause an interference at 

Node A. 

 

To combat the problems encountered by CSMA a number of protocols have been 

developed to improve upon CSMA deficiencies such as:  

• Multiple Access Collision Avoidance (MACA) 

• Floor Acquisition Multiple Access (FAMA)  

• Power Aware Multi Access with Signalling (PAMAS)  

• 802.11 Distributed coordination function (DCF)  

 

The MACA [10-11] protocols are an improvement of CSMA/CA that eliminates some 

of the inefficiencies.  It does not use carrier sensing instead it uses the Request-To-

Send/Clear-To-Send (RTS/CTS) control to avoid collisions. The main idea of MACA 

[10] is that any neighbouring node which overhears a RTS packet has to refrain from 

sending for some time. The RTS/CTS packets are much shorter than the data packets 

and as such collisions are much inexpensive and nodes sensing these messages can 

determine how long to delay before attempting to transmit.  MACA has made an 

improvement over CSMA/CA in that the RTS/CTS packets are much shorter than the 

data packets.  However, the hidden node problem is not completely solved and therefore 

collisions can occur when different nodes send RTS and CTS packets. In addition when 

a node receive a RTS that is destined for another node, but do not receive the CTS to 
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begin data exchange, this can lead to exposed node inefficiencies.  MACA also does not 

provide any acknowledgement of data transmission and if a transmission fails, 

retransmission has to be initiated by the transport layer [11]. 

 

The FAMA [11-12] is a MACA based scheme that allows every transmitting station to 

have control of the medium before sending data packets.  It requires that collision 

avoidance be performed at the sender and at the receiver. FAMA uses non-persistent 

packet (NPP) sensing or non-persistent carrier sensing (NCS) RTS with response with 

CTS that plays the role of a busy signal and contains the address of the sending node.  

The packets repeat long enough so that hidden nodes can overhear it and refrain from 

sending.  The objective of FAMA-NCS is for a station that has data to send to acquire 

control of the channel in the vicinity of the receiver before sending any data packet and 

to ensure that no data collides with any other packet at the receiver.  The medium (the 

floor) is acquired using non-persistent carrier sensing with the RTS-CTS exchange. The 

length of CTS in FAMA-NCS is larger than the aggregate length of an RTS plus one 

maximum roundtrip time across the channel, the transmitter receives turnaround time, 

and any processing time. The length of the RTS is larger than the maximum channel 

propagation delay plus the transmit-to-receive turn-around time and any processing 

time. This is required to avoid one station hearing a complete RTS before another has 

started to receive it. The CTS is given dominance over the RTS based on its size. Once 

a station has begun transmission of a CTS, any other station within range of it that 

transmits an RTS simultaneously will hear at least a portion of the dominating CTS, 

which acts as a jamming signal and back off, thereby  letting the next data packet to 

arrive free from collision. 

 

FAMA-Non-persistent Packet Sensing (NPS) [12] does not use carrier sensing, for a 

packet with sensing to work with hidden terminal, the CTS must be transmitted multiple 

time.  FAMA-NPS assumes that it is used in a fully connected network and CTS is 

transmitted only once.  A station defers its transmission only after it has received and 

understood a complete RTS or CTS. FAMA-NPS does not enforce any waiting times 

after transmission periods, the RTS and CTS specify how long stations should defer.  

Following the deferment, there is a random waiting period before transmission begins. 
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The random waiting time enforces an idle period after a successful transmission and an 

unsuccessful period is also followed by an idle period, because any transmission attempt 

during (or adjacent to) the failed period would be included as part of the unsuccessful 

period. Therefore, FAMA-NPS busy period is limited to either a single successful 

transmission period or a failed transmission period.  However the exposed nodes 

problem still exists with this technique [11]. 

 

PAMAS [11,21] was developed mainly for energy conservation, nodes would listen on 

the signalling channel to determine when to power off their transceivers. Similarly to 

MACA, PAMAS uses RTS/CTS packets and data packets which are sent over different 

channels utilising two transceivers in order to prevent collision and save power.  

PAMAS devices power down under two conditions: the device has no data to transmit 

and a neighbour device begins transmitting to another device, or when the sender node 

has two neighbours involved in communication. The first case saves energy since the 

device cannot receive a data message without corruption, so the node may power down 

the transceivers.  The second condition saves energy since the device cannot transmit or 

receive without a collision resulting at itself or its receiving neighbour. To determine the 

length of time to sleep, each data message includes the transmission duration so a 

device that overhears the start of the message can calculate the length of time to sleep. 

PAMAS [21] also uses a busy tone signal on the RTS/CTS signalling channel such 

nodes that did not overhear the RTS and CTS would know that the data channel is busy. 
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Figure 2-4: The PAMAS protocol [21].  
 

 

Figure 2-4 outlines the behaviour of the PAMAS protocol. A node may be in any one of 

six states as outline in the figure:   

• Idle  

• AwaitCTS,  

• BEB (Binary Exponential Backoff),  

• Await Packet 

• ReceivePacket  

• Transmit Packet. 

When a node is not transmitting or receiving a packet, or does not have any packets to 

transmit, or does have packets to transmit but cannot transmit, because a neighbour is 

receiving a transmission it is in the Idle state. When it gets a packet to transmit, it 

transmits an RTS and enters the AwaitCTS state. If the awaited CTS does not arrive, the 

node goes into binary exponential backoff. If CTS does arrive, it begins transmitting the 

packet and enters the Transmit Packet state. The intended receiver, upon transmitting 

the CTS, enters the Await Packet state. If the packet does not begin arriving within one 

roundtrip time (plus processing time), it returns to the Idle state. If the packet does begin 

arriving, it transmits a busy tone over the signalling channel and enters the Receive 
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Packet state. When a node is in the idle state receives a RTS, it responds with CTS, if no 

neighbour is in the Transmit Packet state or in the AwaitCTS state. It is easy for a node 

to determine if any neighbour is in the Transmit Packet state, by sensing the data 

channel. However, it is not always possible for a node to know if a neighbour is in the 

AwaitCTS state because the transmission of the RTS by that neighbour may have 

collided with another transmission over the control channel. If a node that is in the idle 

state and has a packet to transmit, it will transmit an RTS and enters the AwaitCTS 

state. If, however, a neighbour is receiving a packet that neighbour responds with a busy 

tone (twice as long as a RTS/CTS) that will collide with the reception of the CTS. This 

will force the node to enter the BEB state and not transmit a packet. If no neighbour 

transmits a busy tone and the CTS arrives correctly, transmission begins and the node 

enters the Transmit Packet state.  Any node that transmitted an RTS but did not receive 

a CTS message, will enter the BEB state and waits to retransmit a RTS. If, however, 

some other neighbour transmits a RTS to this node, it leaves the BEB state, transmits 

CTS, if no neighbour is transmitting a packet or is in the AwaitCTS state and enters the 

Await Packet state (waits for a packet to arrive). When the packet begins arriving, it 

enters the Receive Packet state. If it does not hear the packet in the expected time 

(round trip time to the transmitter plus some small processing delay at the receiver), it 

goes back to the Idle state [21].  

When a node begins receiving a packet, it enters the Receive Packet state and 

immediately transmits a busy tone (whose length is greater than twice the length of 

CTS). If the node hears a RTS transmission (directed to some other node) or noise over 

the control channel at any time during the period that it is receiving a packet, it 

transmits a busy tone. This ensures that the neighbour transmitting the RTS will not 

receive the expected CTS. Thus, the neighbour transmission which would have 

interfered with the node receiving a packet is blocked.   

This scheme would be beneficial for large data stream such as multimedia data, 

however for small size data, utilising two transceivers would not be energy efficient. 

 

IEEE 802.11 DCF [10,20] is based on CSMA with collision avoidance (CSMA/CA), it 

is mostly used for wireless LANs.  It is a combination of CSMA and MACA schemes.  

This protocol uses RTS-CTS-DATA -ACK sequence for data transmission.  This 
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scheme uses a virtual carrier sense mechanism known as Network Allocation Vector 

(NAV) that predict the future traffic on the medium based on duration information that 

is announced in RTS/CTS frame.  The RTS/CTS frames contain a duration field that 

defines the period of time that the medium is to be reserved to transmit the actual data 

from the returning ACK frame. Each device maintains the NAV, that indicates the 

channel activity whether it has a non-zero value.  Each device update the NAV based on 

the length present in the control message they receive.  Each device also periodically 

decrement its NAV so the current transmission ends when the NAV reaches zero. Using 

the NAV allows a device to quickly check for possible channel activity without having 

to activate the device transceiver.   DCF also uses a back-off procedure that sets a back-

off timer to a random time, all back-off slots occur following a DCF inter-frame space 

(DIFS) period during which the medium is determined to be idle for the duration of the 

DIFS period.  All STA using DCF is allowed to transmit if its carrier sense (CS) 

mechanism determines that the medium is idle and its backoff time has expired.  When 

a node successfully receives a data message it sends a short inter-frame space (SIFS).  

The SIF is the time from the end to the last symbol of the previous frame to the 

beginning of the first symbol of the preamble of the subsequent frame as seen at the 

wireless interface[10]. 

Figure 2-5 illustrates the DIFS backoff procedure used to invoke a station to transfer 

when finds the medium busy by the CS mechanism as well as to invoke when a 

transmitting STA infers a failed transmission. 

 

 

 
Figure 2-5: Back-off procedure [20]. 
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This scheme will work well in WSN that have short transmission range.  Collision can 

still occur based on the transmission range of the destination node that the packet is sent 

to.  

 

The Contention-based protocols discussed in this paper demonstrate their improvement 

over the CSMA scheme that senses the medium before transmitting, to determine if the 

medium is free. Each attempt to resolve problems based on the hidden or exposed node 

and to save energy as in the case of PAMAS.  

 

The MACA [10] technique improvement relates to RTS/CTS packets that are 

substantially shorter than data packets, however RTS/CTS enable nearby nodes to 

reduce collisions at the receiver but not at the sender.  Collision can also occur between 

different RTS and even though each sending node waits for a random chosen interval 

time to attempt sending again, if constant collisions keep occurring the system will 

degrade significantly as well as increase in overhead. It should be noted that while the 

MACA technique partially overcomes the hidden node problem; if there is a 

transmission failure it does not send ACK. The sender therefore will have no clue that 

the packet was not transmitted successfully unless notification is received by the 

transport layer.  The MACA technique may not work effectively in WSNs based on the 

deficiencies highlighted - collision occurrence, lack of ACK, and the requirement for 

node to incessantly sense the medium. 

 

FAMA [12], an improvement of MACA [10] was designed to solve the short fall of 

MACA, by addressing the hidden node problem, in which the sender uses non-

persistent carrier sensing to transmit a RTS. This lasts much longer than an RTS to force 

all hidden nodes to hear or sense that the medium is busy.  This technique works well in 

addressing the hidden node problem, but the exposed nodes still exist even though RTS 

lasts longer than the maximum propagation delay and CTS last longer than the time it 

takes to transmit an RTS. Having RTS utilising the maximum propagation delay time 

and RTS taking a longer time on the medium, nodes wishing to transmit may experience 

a long wait time, causing packets to drop based on time-out issues, which is a drawback 
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of this technique as well as collision of nodes owing to the fact that most features used 

utilises CSMA, where nodes wait a random time before transmitting. 

 

PAMAS [21] main purpose was to save energy by having all RTS and CTS transmitting 

over a separate channel from the data packet. PAMAS actually uses a mix of MACA 

along with the idea of separating signal channel.  In a sensing network packet 

transmitting will be overheard by all nodes in range and thus every node hearing the 

transmission will consume power regardless that they are not transmitting.  However 

PAMAS implements control where nodes are turned off if they are not transmitting or 

required to transmit.  In utilises more than one transceivers on the contrary utilises 

energy, even if the turnaround time is minimal.  This was not considered in the PAMAS 

scheme, utilising two transceivers is not energy efficient for small packets; however this 

scheme would be advantageous for multimedia data. 

 

The 802.11 DCF [20] was designed mainly for wireless networks, this scheme known to 

work well in WSNs that has a power saving mechanism which are used to synchronise 

nodes.  However it uses a random back off mechanism that cannot provide deterministic 

upper bounds on channel access delay and as such cannot support real-time traffic.  The 

contention and back off strategy is unfair to the already existing nodes that are backing 

off due to collisions, especially under heavy traffic conditions [10]. 

  

2.3 Transport layer overview 
 

A transport layer is used to mitigate congestion, reduce packet loss, provide fairness in 

bandwidth allocation and guarantee reliable end-to end delivery.  TCP and UDP [22] are 

two traditional transport protocols used in providing transportation within the Internet 

and cannot directly implement for WSN.  TCP, a connection-oriented protocol, assumes 

that all packet losses are due to network congestion, as well both congestion and 

reliability are coupled with receipt of an acknowledgement (ACK) where as wireless 

networks packet losses are mainly due to high bit error rate.  

UDP does not provide reliable delivery, no flow control and congestion control 

mechanism [22].  
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WSNs transport protocols should be designed to support and cope with multiple 

applications, variable reliability, packet-loss recovery and congestion control owing to 

the fact that WSNs do not only facilitate existing small sensor network with limited 

processing and computing resources, but take a paradigm shift in supporting multimedia 

traffic and applications. A number of studies [23-27] have proposed various techniques 

that can handle the congestion control and reliable transport. 

 

 2.3.1 Transport Protocols 
 

A number of protocols have been proposed which are based on one or more of the 

following transport protocols [22] mechanism: 

• Congestion Control [23,24, 25] 

• Reliable Transport [26,27] 

• Energy conservation [28,29] 

 

2.3.1.1 Congestion Control Mechanism  
 

Accurate and efficient congestion detection plays an important role in congestion 

control for sensor networks. A number of proposed congestion detection protocols have 

been designed such as: 

• Congestion Detection and Avoidance (CODA) 

• FUSION  

• Priority-based Congestion Control Protocol (PCCP) 

 

Congestion Detection and Avoidance (CODA) [23] is a congestion protocol that based 

on queue length at intermediate nodes and channel status on the basis of channel 

sampling and monitoring the current buffer occupancy.  The authors propose the CODA 

energy efficient congestion control scheme that comprises three mechanisms namely: 

• Congestion detection – this technique uses a combination of the present and past 

channel loading conditions and the current buffer occupancy to infer accurate 

detection at each receiver with low cost. CODA uses a sampling scheme that 
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activates the local channel monitoring at the appropriate time to minimise cost 

while forming an accurate estimation. Nodes inform their upstream neighbours 

via a backpressure mechanism once congestion is detected. 

• Open-loop, hop-by-hop backpressure – this technique broadcasts backpressure 

messages as long as it detects congestion.  Back pressure signals are propagated 

upstream toward the source. When there is an impulse data event in dense 

networks the backpressure will propagate directly to the source. When an 

upstream node receives a backpressure message it decides whether or not to 

further send the message upstream, based on its own local network conditions. 

• Closed-loop, multi-source regulation – this technique operates over a slower 

time scale and is capable of asserting congestion control over multiple sources 

from a single sink in the event of persistent congestion.  When the source event 

rate is less than some fraction of the maximum theoretical throughput, the source 

regulates it. When the rate exceeds the maximum throughput a congestion 

control is triggered. At this point the source requires a constant, slow time-scale 

feedback from the sink to maintain its rate.  If there is a failure from source in 

receiving acknowledgment in maintaining rates each nodes are forced to 

maintain their own rates. 

In designing the CODA scheme two metrics were defined to analyse the performance of 

the system: namely the Average Energy Tax – which calculates the ratio between the 

total number of packets dropped and the total number of packets received at the sink 

node; and the Average Fidelity Penalty – which measures the difference between the 

average numbers of data packets received at the sink using CODA against other scheme. 

CODA provides congestion control as well as conserves energy; however, it does not 

provide reliability in scenarios with sparse source and high data rate. 

 

FUSION [24] is similar to CODA and suffers from the similar deficiencies. This 

protocol uses a combination of three techniques to control congestion: 

• Hop-by-hop flow control – nodes signal local congestion to each other via 

backpressure, reducing packet loss rates and preventing the wasteful 

transmission of packets that are only destined to be dropped at the downstream. 
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• Source rate limiting – this alleviate the serious unfairness towards sources that 

have to traverse a larger number hops.  The rate control used is similar to the 

token bucket mechanism. This mechanism assumes that the data rate of each 

sensor nodes is the same. 

• Prioritised MAC layer – this gives a backlogged node priority over non-

backlogged nodes for access to the shared medium, hence avoiding buffer drops. 

Although this scheme uses a combination of three techniques to control congestion, a 

performance comparison need to be evaluated  and a rate limitation algorithm need to be 

design to correctly handles node failures. 

 

PCCP [25] uses packet inter-arrival time and packet service to measure congestion.  

Congestion level is captured at the node or at the link through a parameter referred to as 

congestion degree which is the ratio of service over inter-arrival time. It employs 

weighted fairness to allow nodes to receive priority-dependent throughput. PCCP results 

in low buffer occupancy and as a result, it can avoid or reduce packet loss and therefore 

improve energy-efficiency as well as achieves high link utilisation and low packet 

delay. PCCP is made up of three main:   

• Intelligent congestion detection (ICD), which detects congestion based on packet 

inter-arrival time and packet service time. The joint participation of inter-arrival 

and service times reflects the current congestion levels that provide relevant 

congestion information.  

• Implicit congestion notification (ICN), this allows congestion information to be 

piggybacked in the header of data packets. Taking advantage of the broadcast 

nature of wireless channel, child nodes can capture such information when 

packets are forwarded by their parent nodes towards the sink. 

• Priority-based Rate Adjustment (PRA), this rate adjustment is implemented in 

each sensor node in order to guarantee fairness and throughput, where each 

sensor node is given a priority index. 

PCCP also uses implicit congestion notification to avoid transmission of additional 

control messages and therefore help improve energy-efficiency.  This scheme suffers 

from the same drawback as CODA and FUSION.   
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2.3.1.2 Reliable Transport mechanism 
 

Reliable Multi-Segment Transport (RMST) [26] and Reliable Bursty Convergecast 

(RBC) [27] are reliable transport protocols that provide reliability through a hop by hop 

loss recovery.   

 

RMST is designed to run in conjunction with directed diffusion. In diffusion, a sink 

subscribes to an interest that names a particular type and source of data. The naming of 

data is accomplished via attribute-value pairs. It uses a filter that could be attached to 

any diffusion node on an as needed basis without recompilation of the diffusion core or 

gradient filter.  Figure 2-6 demonstrates the relationship of RMST to a basic diffusion 

node. 

 

Figure 2-6: Relation of RMST to a Basic Diffusion Node [26]. 
 

RMST provides segmentation and reassembly of data packets and also guarantees 

delivery of all packets from each source to sink.  Receivers are responsible for detecting 

whether or not a fragment needs to be resent.  In the non-caching mode, only sinks 

monitor the integrity of an RMST entity in terms of fragment received and in a caching 
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mode, an RMST node collects fragments which are capable of initiating recovery for 

missing fragments to the next node along the path toward the source. Reliability for all 

packets is inherently wasteful in many to one data transmission environment and it does 

not exploit the redundancy of traffic.  Therefore RMST mechanism is not suitable of 

WSNs. 

 

RBC design a window-less block acknowledgment scheme which guarantees 

continuous packet forwarding irrespective of the underlying link unreliability as well as 

the resulting packet- and ack-loss.  It was shown to increase channel utilisation, reduce 

the probability of loss in acknowledgment for a received packet. To improve 

retransmission incurred channel contention different contention control was introduced 

which rank nodes by their queuing conditions as well as the number of times that the 

queued packets have been transmitted.  In addition a timer-based retransmission control 

was designed to rectify the following: 

• Continuous changing ACK delay by using an adaptive retransmission timer 

which adjust itself as network state changes. 

• Reduce delay in timer-based retransmission and expedite retransmission of lost 

packets. RBC uses block-NACK, retransmission timer reset and channel 

utilisation protection in this regards. 

In RBC a receiver switches to transmit mode immediately after receiving a packet and 

sends back the acknowledgement without going through the procedure of channel 

access control.  It also takes advantage of the fact that every node except the base 

station, forward the packet it receives and the forward packet can act as the ACK to the 

sender of the previous hop. RBC therefore resolved the problems of hop by hop 

recovery mechanism. The scheme appears to be effective for burst traffic consisting of 

simple sensor data, but would require more bandwidth for multimedia traffic that may 

have more intense traffic burst and is jitter prone [22].  
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2.3.1.3 Congestion/Reliable/energy efficient mechan ism 
 

Sensor Transmission Control Protocol (STCP) [28] and Event to Sink Reliability 

Transport (ESRT) [29] are transport protocols that attempt to resolve more than one of 

the transport protocol mechanisms. 

 

STCP implements both congestion control and reliability in a single protocol, it offers 

different control policies to both guarantee application requirements and improve 

energy efficiency.  Before STCP transmit packets, sensors node establishes an 

association with the base station by a session initiation packet.  The session initiation 

packet informs the base station of the number of flows coming from the node, the type 

of data flow, transmission rate and required reliability. For continuous flow the base 

station calculates the running average for the reliability; reliability is measured as a 

fraction of successfully received packets. If there are multiple nodes transmitting, a 

single initiation packet is send with each packet detail.  STCP uses ACK/NACK 

mechanism. Sensor nodes retransmit packets only on receiving a NACK.  The 

transmitted packets are buffered but a timer is maintained to prevent buffer overflow, 

once the threshold is reached the buffer is cleared. 

For event driven flows, the base station cannot estimate arrival times of data thus ACK 

are used by source to know if a packet has reached the base station. The source node 

buffers each transmitted packets until an ACK is received, then the corresponding 

packet is deleted from the buffer. 

STCP only send NACK when reliability goes below the required level, even if base 

station does not receive a packet within the expected time interval. 

 

ESRT is a novel transport solution that seeks to achieve reliable event detection with 

minimum energy expenditure and congestion resolution. To achieve the desired event 

detection accuracy with minimum energy expenditure, ESRT uses a control mechanism 

that serves dual purposes of reliable detection and energy conservation.  To also achieve 

reliability, the reporting frequency rate is aggressively increased to attain the required 

reliability as soon as possible.  Only the sink and not the sensor nodes can determine the 

reliability and act accordingly.  The authors think that end-to-end transmissions and 
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ACK/NACK overheads are a waste of limited sensor resources, hence the congestion 

detection mechanism is based on local buffer level monitoring in the sensor nodes.  

ESRT also address multiple event detection and uses an event ID field to determine if 

there is a single event or multiple events. This is done by checking the event ID when 

data packets are received at the sink; if the event IDs are the same it is assume to be a 

single event otherwise it is a multiple event. 

ESRT implicitly assumed that the Event IDs can be obtained or distributed by using any 

existing high level network information collection mechanisms such as the existing in-

network data aggregation method or location-aware routing for data aggregation or 

using the cluster-based event identification method. One simple conceivable Event ID 

assignment methodology is the dynamically random Event ID assignment strategy that 

is initiated at the time when the event is first detected. In such case, the sensor node that 

is the first in detecting the event chooses a random Event ID with a length of 16 bits. 

Since it first detects the event, generates the data packet conveying the event 

information and captures the wireless communication channel; it sends its data packet 

with the randomly selected Event ID. Any neighbouring node hearing the local 

broadcast uses the Event ID to stamp its packet headers. The randomly selected Event 

ID is dynamically propagated within the event coverage area. 

Note that this dynamic event ID distribution terminates at the boundary of the event 

coverage area. Thus, the forwarding sensor nodes do not need to perform any 

modification on the Event ID field of the data packets being routed. On the other hand, 

when the event is first sensed by a sensor node which randomly assigns an Event ID and 

broadcasts its packets with it, the other sensor nodes may also sense the event and 

attempt to assign an ID to the same event. However, since the medium is not idle due to 

the local broadcast of the sensor node which was the first in sensing the event, they 

defer their broadcast at the MAC level. Hence, the other sensor nodes hear this first 

broadcast, and use this ID in the Event ID field of their packet headers. Therefore, it is 

also highly unlikely to generate two different Event IDs for the same event. 

Consequently, this dynamic random Event ID assignment strategy does not lead to ID 

conflict problem and can be used for this objective. 

However, it should be noted that the ESRT operation for multiple event occurrence 

scenarios do not depend on a specific event ID assignment strategy, and hence other 
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possible approaches for distributed ID assignment can be easily incorporated into the 

ESRT protocol operation. 

The handling of large packets were not addressed and as such not guaranteed network 

scalability.  Also data segmentation and accurate reassembly have not been addressed. It 

does not support end-to-end delivery and the sink node controls congestion. 

 

 

Protocols 

Mechanism 

Congestion 

control 

Reliable Energy 

conservation 

CODA Yes No Yes 

FUSION Yes No No 

PCCP Yes No No 

RMST No Yes No 

RBC No Yes No 

STCP Yes Yes No 

ESRT Yes Yes Yes (minimum) 

 
Table 2-1: Summary of Transport Protocols Mechanism 

 

Table 2-1 summarily highlights the various transport protocol measured against three 

critical transport protocol mechanisms. In this chapter three mechanism discussed 

(congestion control, reliability and energy efficient) that are used to obtain an efficient 

and effective transportation of packets within the medium for WSNs.  Congestion is the 

key problem, it not only waste energy due to large number of retransmissions and drop 

packets, but has a direct impact on reliability and energy efficiency.  Congestion is very 

much a realistic problem in WSNs as nodes use radio channel to transmit their data 

toward the sink node, which is not a guided medium and as such suffers enormously 

from noise, interference and other external forces. 

 

CODA [23] which attempts to solve the congestion problem allows a sink to regulate 

multiple sources associate with a single event just in case of persistent congestion.  The 

open-loop back pressure cannot deal with persistence congestion and will drop data 
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packets upon receiving them.  More so, congestion interference in CODA is based on 

queue length at intermediate nodes. 

CODA only regulates the source relates to a data event that contributed to congestion or 

impeded by hotspots between sources and sink.  It does not use a single high powered 

control message but hop-by-hop signalling between the sink and sources.  Also the cost 

of closed-loop flow control is typically high comparing to simple loop control because 

of the required feedback signalling. 

CODA looks promising for future WSNs, since it can be integrated to support data 

dissemination schemes and can be responsive to a number of different congestion 

control scenarios.  However, CODA needs to be tested on large scale WSNs to 

determine its future. 

 

The mechanism used by FUSION is similar to CODA.  It uses hob by hop flow control 

to prevent nodes from transmitting if their packets are destined to be dropped due to 

insufficient space in output queues at downstream nodes.  Nodes are only allowed to 

send when its token count is above zero and the rates limits approach only allow nodes 

to send at the same rate of each of its descendants. 

In FUSION it is difficult to adequately make provision for varied link capacity of large 

scale deployment as the nature of its technique makes transit node particularly prone to 

buffer drops and the correlated event workload need congestion control to handle the 

sudden burst of traffic that spatially correlated events generated. 

For future FUSION would require a more robust rate limiting algorithm that can 

handles node failures and an alternative congestion control scheme to handle heavy 

traffic. 

 

PCCP functionality and drawbacks are similar to that of CODA and FUSION.  They all 

used implicit notification to reduce congestion, rate adjustment to apply channel fairness 

and hop by hop upstream flow control.  However PCCP employed a priority index 

where nodes with higher priority index get more bandwidth and node with sufficient 

traffic gets more bandwidth than those that generate less traffic.  Such technique shows 

that PCCP provides good fairness within the medium, although the index declines when 

traffic increases.  
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RMST was implemented for reliable transport, using a filter without recompilation of 

the diffusion core or gradient.  It buffers packet at the intermediate node, in order to 

have a packet loss retransmit much faster.  However there is an overhead of using 

limited buffer space at a given sensor node for caching packets destined for other nodes.  

This can cause excessive NACK traffic by constant flushing of the buffer or dropping of 

packets.  This problem can be address as future work, if RMST will be considered for 

multimedia applications. 

 

RBC technique similarly to RMST was designed to ensure reliability by the transport 

layer.  RBC does cope well with retransmission and the design mechanism to alleviate 

delay incurred by retransmission as well as reduces the probability of ACK-loss.  It also 

addresses the challenges of bursty convergecast on timer-based transmission.  RBC 

design a window-less block ACK scheme, where packets are continuously being 

forwarded irrespective of the underlying link and unacknowledged packets are stored in 

a virtual queue, in order for newly arrived packet can be sent immediately.  However, 

packets being forwarded irrespective of the link do not make the system energy efficient 

and also unacknowledged packets are stored in FIFO (first in first out) order, therefore 

preference is not placed on priority packets. 

 

STCP and ESRT were both implemented to resolve congestion and reliability within the 

transport layer.  ESRT take in some consideration of energy efficiency within its design.  

Most of the functionalities for these two techniques are implemented at the base station 

and as such before packets can be transmitted, the nodes have to establish an association 

with the base station. 

Having the base station performing all the critical functions, nodes have to rely upon the 

base station to inform them of any anomalies such as congestion before each sending 

node can refrain from sending packets.  This is not an optimal solution as congestion 

within a WSN tends to be closer to the base station and as such there is no guarantee 

that nodes further apart, especially when congestion is intense will be able to receive the 

message sent by the base station regarding congestion. 
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2.4 Cross-layer design 
 

Traditional layered approach was designed for wired network, the Open System 

Interconnection (OSI) model [30], where all layers need not communicate with each 

other, as the architecture layout is built on top of the one below.  Neither was there 

severe problems with sharing the medium as each layer offers services to the respective 

higher layer and provides an abstract interface for its service. 

 

In the wireless environments users communicate over scarce and changeable 

transmission medium which are prone to interference, weak signal strength and other 

channel conditions.  With these challenges protocols can no more develop in isolations 

and as such the invention of cross-layer approach. The idea of cross-layer design is 

where layers (example MAC and Transport), as shown in Figure 2-7, can exchange 

information between them in an intelligent way during communication to improve the 

performances of the system.  

 

Application Layer

Transport Layer

Network Layer

MAC Layer

Physical Layer

Cross Layer 

Optimization

(Congestion Control, 

Power, Bandwidth, 

Channel Assignment)

 

Figure 2-7: MAC and Transport Cross-Layer Optimisation. 
  

In [31] discussed useful cross-layer information and differentiate the channel state as it 

relates to signal strength, interference level, and channel response estimate in time and 

frequency domain.  The layering approach to network design does not fit in the wireless 

network as mentioned by [32], in which an in depth analysis of cross-layering 

approaches for wireless adhoc has been discussed.  However a number of issues should 

be taken into consideration as it relates to cross-layer design in wireless network using 
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the IEEE 802.11 medium which is based on shared media and node contentions. These 

include traffic flow(s) which will have impact on the available bandwidth of all its 

neighbouring nodes, nodes transmit and receive data on a single channel; the delivery of 

a single traffic flow involved and the contention of channel resource within the node(s). 

As a result, different nodes (i.e., the source, the destination, intermediate nodes, and 

neighbouring nodes along the end-to-end route) may consume different amount of 

bandwidth resource for the transmission of a specific traffic flow. 

 

In IEEE 802.11, the available bandwidth cannot be estimated directly from the overall 

throughput being achieved, because of the following reasons: 

• The maximum throughput is not constant for a given data rate, is affected by the 

average packet length and the number of active contending nodes.  

• The data rates of links are not the same due to multi-rate supports. 

Therefore the cross-layer interactions is a technique to boost the performance by 

effectively adapt to the dynamic environment.  

A number of cross layer approach have studied among two or more layers to find a 

common communication among the layers and to effectively derive a workable solution.  

In [33-36] have used the layered approach to solve the cross-layered control problem, 

they use a feasible rate region that is similar to the wired network with simpler set of 

constraints.  In general network settings, it is not possible to find such simple rate 

region, the rate region will also reduces the set of feasible rates that congestion control 

can utilise.  There are also a number of cross-layered designs that have been developed 

by researchers to jointly optimisation congestion control and scheduling [37-43].  

Different layers, transport for congestion control, network for routing and MAC for 

scheduling and power, has shown in [43] that through limited amount of information 

being passed back and forth optimal performance can be achieved through cross-layer 

solution. Cross layer design aims at coupling the functionality of network layers, with 

the goal of boosting system-wide performance which showed that the trend is more 

evident at the interface between the physical and MAC layers was studied in [44].  More 

studies in cross-layer design across various layers can be obtained at [45-49]. 
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Many research studies focus on the effect of link layer on the congestion mechanism of 

TCP. A solution to mitigate the  problem with the TCP congestion mechanism, where it 

can not differentiate between congestion and packet loss due to other reasons, has been 

proposed in [50] where they have devised to “Smooth” the channel by suitable coding 

and link layer automatic repeat request (ARQ) at a faster timescale than that of TCP 

control.  Additional reference relating to the wireless link delay is perceived as a 

constant channel, but lower capacity can be obtained at [51]. 

 

In [52] they consider a stationary, multi-hop wireless network using IEEE 802.11 

distributed coordinated function (DCF). A single wireless channel is shared among all 

nodes in the network. Only receivers within the transmission range of the sender can 

receive the packets. In IEEE 802.11 DCF, each packet transmission is preceded by a 

control handshake of RTS/CTS messages. Upon overhearing the handshake, the nodes 

in the neighbourhood of either the sender or the receiver will defer their transmissions 

and yield the channel for subsequent DATA-ACK transmissions. Because they use 

stationary network, they did not consider packet loss due to routing breakage. They 

assume that multi-hop contention, i.e., due to hidden/exposed terminal problem, is the 

main source for packet losses. Note that packets can also get dropped due to out-of-band 

channel errors. In IEEE 802.11 networks, the retransmission mechanism hides most 

uncorrelated channel noises for non broadcast traffic. 

There are many studied TCP flavours such as New Reno [53], and SACK [54], which 

differ in how they react to packet loss. There implementations differ by manipulating 

the window size of the TCP by calculating the throughput, setting threshold and 

checking packet drops. 

 

Having examined cross-layer design in WSN networks, it drives the sense of awareness 

that in wireless network each layers are not isolated from each other but communication 

between them should be taken into consideration when designing or improving upon a 

protocol at any of the layers. The intention of this thesis is to design a novel MAC 

protocol for congestion control using multichannel assignment. As mentioned before, 

the most popular contention based MAC is the CSMA/CA where a number of improved 

techniques have derived such as 802.11 DCF. The transport layer, which provides the 
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end to end communication service, mainly uses the user datagram protocol (UDP) and 

the transmission control protocol (TCP), that the improve techniques covered are based 

on to support reliable flow and congestion as well as error recovery.    

The challenges to be overcome as it relates to WSN are: 

• Sensor nodes are more constrained in computational, energy and storage 

resources because of its limited energy which are usually batteries and are 

difficult to replace when consumed.  

• Interference among the transmission, since more nodes are deployed in a sensor 

network, up to hundred or thousand nodes, than in other wireless networks. 

• Redundant information since in most case neighbouring nodes often sense the 

same events from their environment thus forwarding the same data to the base 

station.  

• Topology changes due to node failure even though most sensor nodes are 

usually stationary.   

The transport layer using TCP for wireless transmission will create additional 

challenges as TCP makes assumption that packet losses are due to congestion. In 

wireless networks a number of issues may cause packet losses such as: 

• Bit Error Rate (BER), which is usually high base on the changes within the 

environment. 

• Bandwidth limitation 

• Round Trip Time (RTT), the overall throughput and increase in delay will be 

affect because of longer latency within the wireless medium. 

 

 

2.5 Multichannel Multi-radio assignments 
 

Multiple non-overlapping channels present in the IEEE 802.11 ISM free frequency band 

have been exploited by mapping them to multiple-radios to increase the overall capacity 

and connectivity of the wireless mesh network’s backbone. A centralised, graph based 

approach has been proposed in [55], [56] and [57] where links and nodes are considered 

as edges and vertices of a graph respectively and formulating radio/channel assignment 

by assigning edges to vertices. The limitation of these methods is that it is very difficult 
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to capture network load information with a graph model. Network flow based 

centralised approaches can be found in [58],[59] and [60], where multi radio multi-

channel (MRMC) is modelled based on network flows and therefore overcomes the 

limitations associated with graph based approaches. These approaches are not realistic 

as constant traffic sources are assumed all the time while network traffic can be bursty 

in nature. A distributed gateway centred multi-radio multi-channel approach has been 

developed by [13] and [14] where mesh gateways are considered as sink and source of 

data.  

 

Although the MRMC enormously increases network throughput, connectivity, 

robustness and resilience; it requires extra resources e.g. energy because addition of 

extra radios consumes more power. Keeping in view these constraints, applying MRMC 

techniques directly to WSN’s needs further investigation for optimisation. None of the 

research work done in this area has considered the power constraint as WSN’s nodes 

have limited energy supplies. The use of multiple channels with a single radio can also 

be an interesting future study where the power limitation is kept in mind. Furthermore, 

the effect of channel assignment on the transport layer has been ignored by the 

researchers. Since the channel condition at the MAC layer has a considerable effect on 

the TCP congestion mechanism, it needs to be further investigated with a cross layer 

optimisation. 

   

 

2.6 Conclusion and Future MAC-Transport   
 

This chapter has presented an overview of the contention-based MAC protocols, 

transport layer protocols, cross-layered design and multichannel multi-radio 

assignments. A number of existing protocols were analysed, each attempting to resolve 

one or more problems faced by the current layers; hidden and exposed nodes, 

congestion, fair utilisation or reliable transportation within the medium while providing 

energy conservation.  The MAC protocols mentioned in this chapter mainly addressed 

the hidden or exposed node problem in the CSMA scheme but not both simultaneously, 

except for PAMAS which focused mainly on energy efficiency.  The 802.11 DCF that 
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was developed mainly for wireless networks scheme will work well for short 

transmission range, the back-off procedure used does not work well in noisy 

environment, therefore the need for longer range transmission need to be explored in 

WSNs, as well as the consideration of the effect for channel errors. 

The transport protocols for WSNs have implemented a number of techniques for energy 

efficiency, reliability and congestion. However these techniques mainly considered a 

single or multiple solutions but not a complete solution for the entire existing problem 

except ERST and STCP, they both attempted to resolve both congestion and reliability 

problem. ERST also resolved energy consumption to a lesser extent.  Overall, both 

MAC and transport worked in isolation in resolving the problems faced by both layers 

and as such cross-layer design was discussed as a means to optimise both layer to have 

them function as an entity to combat the problems, and to obtain an energy efficient 

WSNs.  

 

For future work in this area, the implementation in real sensor network to realise the full 

potential and integrity of most of the studied techniques are recommended in a real 

sensor environment.  A cross layer design to optimise and confer both MAC and 

transport is being recommended to maximise efficiency, allow both layers to 

communicate simultaneously, reduce packet overhead, to provide reliable transmission 

and to support multimedia traffic. To have cross-layer communications takes place 

effectively, the need to design a MAC or transport protocol to effectively utilise the 

single medium transmission for the contention-based protocol is the next step to achieve 

such efficiency.   

 

This thesis focused on designing a multichannel assignment MAC protocol for 

contention-based wireless sensor networks in order to efficiently utilise the medium by 

having nodes options to switch channels during congestion.  This research will aid 

future work to address most of the major limitations in WSNs across the MAC and 

transport protocol, with the use of the multichannel assignment. Multichannel 

assignment will create additional overhead in terms of switching delays, 

synchronisation among the nodes, extra control packets and hence more energy. 

However the research considered WSN for streaming high data rate and not the 
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traditional WSN that periodically send data to its sink node.  The researcher explored 

multiple non overlapping channels with minimum overhead for increased capacity and 

minimum power usage 
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Chapter 3  

 

Comparison of IEEE 802.11 and IEEE 802.15.4 for 
Future Green Multichannel Multi-radio Wireless 
Sensor Networks 
  

3.1 Overview 
 

Multi-channel MAC protocols have recently obtained considerable attention in wireless 

networking research because of their promise to increase capacity of wireless networks 

significantly by exploiting multiple frequency bands. This chapter compares IEEE 

802.11 and IEEE 802.15.4 networks and investigates the performance between both 

using simulations conducted in NS2. This investigation aims to determine the feasibility 

of having IEEE 802.11 utilised as a future medium for wireless sensor networks 

operating in a multichannel environment at high data rate with streaming data that 

would be a challenge for IEEE 802.15.4.  

 

In IEEE 802.15.4, each operation can only begin at the boundary of time slots. Only 

when the backoff counter reaches zero does the node sense the channel.  The backoff 

counter of a node decreases regardless of whether the channel is idle or busy and the 

contention window size is reset to its minimum value at the beginning of each 

retransmission attempt.  In IEEE 802.11, the notion of a slot exists only insofar as 

backoff counting is concerned, nodes are constantly sensing while in backoff, thereby 

incurring an additional consumption of energy. The backoff counting pauses whenever 

the channel becomes busy and the contention window size is reset to its minimum value 

at the beginning of each retransmission attempt.   

 

The demonstration through simulations showed that IEEE 802.11 perform better with 

high data rate,  streaming constant bit rate, and at longer range comparing to 802.15.4 

which operates better with small data size at much shorter range.   
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The outcome from this chapter will be valuable for future work in designing a 

multichannel MAC protocol for contention-based 802.11 WSN.  

 

3.2 Introduction 
 

Wireless technologies continue to be a popular interest in the communication arena and 

are increasingly replacing the wired technology in a number of areas such as monitoring 

and control applications. They have also become an integral part of the Internet. The 

IEEE 802.11[15] and the IEEE 802.15.4 [16] standard play a vital role for contention 

based networks and divide the wireless spectrum into different spectral bands called 

‘‘channels”. This allows simultaneous communications and limits interference between 

nodes. Also allowing the coexistence of multiple wireless networks on different 

channels, frequency division to increases capacity of the wireless networks in 

infrastructure mode by operating on different channels. 

IEEE 802.11 is concerned with features such as Ethernet matching speed, long range 

(100m), complexity to handle seamless roaming, message forwarding, and data 

throughput of 2-54Mbps, while IEEE 802.15.4 on a space around a person or object that 

typically extends up to 10m in all directions. The IEEE 802.15 working group is formed 

to create WPAN standard. This group has currently defined three classes of WPANs 

that are differentiated by data rates, battery drain and quality of service (QoS). 

 

The study of wireless sensor networks (WSNs) [1-9] has become a hot topic in 

networking due to the convergence of data and telecommunication over IP based 

networks that paved the way for communication technologies innovation and security 

provision that will see many systems such as closed-circuit TV (CCTV) rely on the 

premises of WSN surveillance systems for tracking and create alerts from sensors rather 

than standalone video circuits.  Current development indications, herald a future of 

WSNs operating at high data rate for streaming data over multichannel multi-radio 

assignment over IEEE 802.11 networks. This chapter does a comparison of IEEE 

802.15.4 and IEEE 802.11 to determine such feasibility for WSN in 2.4 GHz frequency 

band as opposed to IEEE 802.15.4. 

 The feasibility for IEEE 802.15.4 to cope in the 2.4 GHz frequency band when the 

IEEE 802.11n becomes popular will be problematic, as at high traffic load 802.11n will 

be able to use a total bandwidth of 40MHz leaving no channel for IEEE 802.15.4 and 
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also will not be free from channel interference of IEEE 802.11n. The future of WSN - 

which involve sending all data monitored to a sink - will be on channel assignment. 

 This thesis will focus on the popular 2.4 GHz range of operation and the MAC sublayer 

to formulate the outcome for a future green multichannel multi-radio WSN. The chapter 

is organised as follows: subsection 3.3 briefly details the IEEE 802.15.4 MAC protocol 

to convey an understanding of CSMA/CA and PAN coordinator. Subsection 3.4 briefly 

details the IEEE 802.11 MAC protocol highlighting elements of CSMA/CA and DCF. 

Subsection 3.5, deals with related work and in subsections 3.6 and 3.7, the focus area 

and the simulation results are discussed. Finally, subsection 3.8 concludes the chapter. 

 

3.3 IEEE 802.15.4 
 

Wireless Personal Area Networks (WPANs) [16] are used to convey data 

communication devices with low data rate, low power, low complexity and short range 

Radio Frequency (RF) transmissions.  Unlike Wireless Local Area Networks (WLANs), 

connections effected via WPANs involve little or no infrastructure. This feature allows 

small, power-efficient, inexpensive solutions to be implemented for a wide range of 

devices. The data rate is 250kbps at 2.4GHz, 40kbps at 915MHz and 20kbps at 

868MHz.  IEEE and ZigBee Alliance [17] have been working closely to specify the 

entire protocol stack.  IEEE Std 802.15.4 defines the physical layer (PHY) and medium 

access control (MAC) sublayer specifications for low-data-rate wireless connectivity 

with fixed, portable, and moving devices with no battery or very limited battery 

consumption requirements typically operating in the Personal Operating Space (POS) of 

10 m. It is foreseen that, depending on the application, a longer range at a lower data 

rate may be an acceptable trade-off.  A central controller known as the personal area 

network (PAN) coordinator is used to builds the network in its personal operating space. 

The MAC layer has two mode of operation: beacon enable and beaconless.  The beacon 

enabled mode allows splitting of time into multiple clusters where nodes have exclusive 

access to the transmission channel during its active duration.  In beaconless operation 

there is no division of time and a node competes for channel access with other nodes in 

its radio range using unslotted CSMA/CA algorithm. This section will focus on the 

beaconless operation of the IEEE 802.15.4 MAC layer.   
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3.3.1 Medium Access Control (MAC) Sublayer 
 

The IEEE 802.15.4 [16] MAC sub layer controls access to the radio channel by using a 

Carrier Sense Multiple Access with Collision Avoidance (CSMA-CA) mechanism. This 

sub layer is responsible for transmitting beacon frames, synchronisation and providing a 

reliable transmission mechanism.  The MAC sublayer provides two services: the MAC 

data service and the MAC management service interfacing to the MAC sublayer 

management entity (MLME) service access point (SAP) (MLMESAP). The MAC data 

service enables the transmission and reception of MAC protocol data units (MPDU) 

across the PHY data service. Fig. 3-1 depicts the components and interfaces of the MAC 

sublayer. 

 

 

Figure 3-1: The MAC Sublayer Components [16]. 
 

3.3.1.1 CSMA-CA Algorithm 
 

In the slotted CSMA/CA channel access mechanism each device will maintain three 

variables for each transmission attempt: Number of Backoff (NB), Contention Window 

(CW) and Backoff Exponent (BE). NB is the number of times the CSMA-CA algorithm 

is required to backoff while attempting the current transmission; this value shall be 

initialised to zero before each new transmission attempt.  

CW is the contention window length, defining the number of backoff periods that need 

to be cleared of channel activity before the transmission can commence.  This value 

shall be initialised to one before each transmission attempt and reset to one each time 

the channel is assessed to be busy. Otherwise this value shall be initialised to two before 

each transmission attempt and reset to two each time the channel is assessed to be busy. 
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The CW variable is only used for slotted CSMA-CA.   In a slotted CSMA-CA system 

with the Battery Life Extension (BLE) subfield set to zero, the MAC sublayer shall 

ensure that, after the random backoff, the remaining CSMA-CA operations can be 

undertaken and the entire transaction can be transmitted before the end of the 

Contention Access Period (CAP). If the number of backoff periods is greater than the 

remaining number of backoff periods in the CAP, the MAC sublayer will pause the 

backoff countdown at the end of the CAP and resume it at the start of the CAP in the 

next superframe. If the number of backoff periods is less than or equal to the remaining 

number of backoff periods in the CAP, the MAC sublayer will apply its backoff delay 

and then evaluate whether it can proceed. If the MAC sublayer can proceed, it will 

request that the PHY perform the CCA in the current superframe. If the MAC sublayer 

cannot proceed, it will wait until the start of the CAP in the next superframe and apply a 

further random backoff delay before evaluating whether it can proceed again. 

 

In a slotted CSMA-CA system with the BLE subfield set to one, the MAC sublayer 

shall ensure that, after the random backoff, the remaining CSMA-CA operations can be 

undertaken and the entire transaction can be transmitted before the end of the CAP. The 

backoff countdown shall only occur during the first macBattLifeExtPeriods full backoff 

periods after the end of the interframe space (IFS) period following the beacon. If the 

MAC sublayer can proceed, it shall request that the PHY perform the CCA in the 

current superframe. If the MAC sublayer cannot proceed, it shall wait until the start of 

the CAP in the next superframe and apply a further random backoff delay [step (2)] 

before evaluating whether it can proceed again. 

 
If superframe structure is used in the PAN, then slotted CSMA-CA shall be used. If 

beacons are not being used in the PAN or a beacon cannot be located in a beacon-

enabled network, unslotted CSMA-CA algorithm is used. In both cases, the algorithm is 

implemented using units of time called backoff periods, which is equal to 

aUnitBackoffPeriod symbols.  In slotted CSMA-CA channel access mechanism, the 

backoff period boundaries of every device in the PAN are aligned with the superframe 

slot boundaries of the PAN coordinator. In slotted CSMA-CA, each time a device 

wishes to transmit data frames during the CAP, it shall locate the boundary of the next 

backoff period.  The mechanism to be followed before accessing the channel is depicted 

in fig. 3-2 of the CSMA-CA flow chart. 
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Figure 3-2:  CSMA-CA Flowchart [16]. 
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3.3.2 Channels 
 

There are 16 channels between 2.4 and 2.4835GHz as shown in Fig. 3.  The standard 

also allows dynamic channel selection, a scan function that steps through a list of 

supported channels in search of beacon, receiver energy detection, link quality 

indication, channel switching.  The physical layer provides the capability to perform the 

Clear Channel Access (CCA) according to at least one of the following three methods: 

• CCA Mode 1: CCA shall report a busy medium upon detecting any energy 

threshold. 

• CCA Mode 2: Carrier sense only. CCA shall report a busy medium only upon 

the detection of a signal compliant with this standard with the same modulation 

and spreading characteristics of the physical layer that is currently in use by the 

device. This signal may be above or below the energy detection (ED) threshold. 

• CCA Mode 3: Carrier sense with energy above threshold. CCA will report a 

busy medium using a logical combination of: 

• Detection of a signal with the modulation and spreading characteristics 

of this standard and 

• Energy above the ED threshold, where the logical operator may be AND 

or OR. 

•  

 

Figure 3-3: Channels for IEEE 802.15.4 [17].  
 

 

 

 



Chapter 3: Comparison of IEEE 802.11 and IEEE 802.15.4 for Future Green 
Multichannel Multi-radio WSNs 
 

 

 
66 

3.4 IEEE 802.11 
 

3.4.1 MAC Sublayer 
 

The MAC sublayer [15] of the IEEE 802.11, defines the Distributed Coordination 

Function (DCF), the Point Coordination Function (PCF), the Hybrid Coordination 

Function (HCF).  The focus will be on the DCF that allows automatic medium sharing.  

3.4.1.1 Basic Access 
 

The basic access mechanism called DCF is a carrier senses multiple access collision 

avoidance (CSMA/CA) mechanism.  The CSMA protocol allows a station wishing to 

transmit to sense the medium, if the medium is busy it defer its transmission but if the 

medium is free then the station is allowed to transmit.  CSMA is very effective when the 

medium does not have high traffic, since all medium transmit with minimum delay.  

Stations transmitting at the same time result in collision as the protocol initially are 

designed for single channel transmission. CA allows the medium that is busy and defers 

to wait and allow the medium to be free for a specific time called distributed interframe 

space (DIFS) then the station is allowed to transmit.  Fig. 3.4 illustrates the basic access 

with immediate access when the medium is free.  

 

 

Figure 3-4: Basic Access Method [15]. 
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3.4.1.2 DCF 
 

DCF [15] is the basic and mandatory MAC mechanism of legacy IEEE 802.11 WLANs 

that allows for automatic medium sharing between compatible physical layers through 

the use of CSMA/CA and a random backoff time following a busy medium condition. 

In addition, all individually addressed traffic uses immediate positive acknowledgment 

(ACK frame) where retransmission is scheduled by the sender if no ACK is received. 

The CSMA/CA protocol is designed to reduce the collision probability between 

multiple stations accessing the medium, at the point where collisions would most likely 

occur. Multiple collision occur more frequently after a busy period when there are 

multiple stations waiting on the medium to transmit their data. This situation 

necessitates a random backoff procedure to resolve medium contention conflicts 

through carrier sense (CS) functions. CS can be performed both through physical and 

virtual mechanisms.  The virtual CS mechanism is achieved by distributing reservation 

information announcing the impending use of the medium. It reduces the probability of 

two stations colliding that cannot hear each other.  

 

3.4.1.3 CS Mechanism 
 

Both the physical and virtual CS functions are used to determine whether the medium is 

busy or idle. When either function indicates a busy medium, the medium will be 

considered busy otherwise, it shall be considered idle.  The virtual CS mechanism is 

provided by the MAC referred to as the network allocation vector (NAV) which 

predicts the future traffic on the medium. The CS mechanism combines the NAV state 

and the station’s transmitter status with physical CS to determine the busy/idle state of 

the medium. The NAV also act as a counter, which counts down to zero at a uniform 

rate. When the counter is zero, the virtual CS indicates that the medium is idle and when 

nonzero indicates busy.  
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3.4.1.4 Random Backoff Time 
 

In this procedure, a station with a packet to transmit waits until the medium becomes 

idle, when it senses that the medium is busy. When the medium is left idle for the 

duration of Distributed Interframe Space (DIFS) period,   the station sets its Backoff 

timer to random()*aSlotTime. aSlotTime is set at a time which is equal to the time 

needed at any station to detect the transmission of packet from any other station.  

Random() = Pseudo-random integer drawn from a uniform distribution over the interval 

[0, CW], where CW is an integer within the range of values of the physical layer 

characteristics of the minimum and maximum window (aCWmin and aCWmax), 

aCWmin ≤ CW ≤ aCWmax. In 802.11 the default value of aSlotTime is 20 µs for 

802.11b and 9 µs for 802.11a/g, if no medium activity is indicated for the duration of a 

particular backoff slot then the Backoff slot is decreased by aSlotTime.  If the medium 

is sensed as busy during a backoff slot, the backoff timer is suspended until the medium 

is idled for the duration of DIFS period, then the backoff timer will resume again.  

When the backoff timer reaches zero, transmission will start and after the transmission 

gives an acknowledgement indicating whether or not the transmission was successful.  

If the transmission was successful, the station will set its backoff timer again before 

transmitting the next packet.  However, the Control Window (CW) will take the next 

value in the series every time there is an unsuccessful attempt to transmit. This allows 

either station retry counter to increment, until the CW reaches the value of the 

maximum window size (aCWmax). Once it reaches aCWmax, the CW shall remain at 

the value of aCWmax until the CW is reset; Fig. 3-5 illustrates the exponential increase 

of CW.  The CW will reset to aCWmin after every successful attempt in transmitting 

data or after a station long retry count.  
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Figure 3-5: Exponential increase of CW [15]. 
 

The backoff procedure will be invoked when a station is ready to transfer a frame and 

finding the medium busy as by the indication of the physical or virtual CS mechanism.  

The backoff procedure will also be invoked when a transmitting station infers a failed 

transmission.  The station will set its backoff timer to a random backoff following a 

DIFS period during which the medium is determined to be idle.  The station performing 

the backoff procedure will use the CS mechanism to determine any activities during the 

backoff slot.  If there is no activity indicated the backoff procedure will decrement it 

backoff time by aSlotTime. Figure 3-6 illustrates a backoff procedure with multiple 

stations deferring and go into random backoff. 
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3.4.2 Channels 
 

In IEEE 802.11, there are 14 possible channels in the 2.4 GHz frequency range.

channel width is 22 MHz and each channel is spaced 5 MHz apart.

overlap between channels.

overlapping to avoid using the overlapping channels.  Fig. 

centre frequency which is defined in sequential 1.0 MHz steps beginning with the first 

channel.  Occupied channel bandwidth will meet all applicable local geographic 

regulations for 1 MHz channel spacing. The rate at which the PMD entity will hop is 

governed by the MAC. The hop rate is an attribute with a maximum dwell time subject 

to local geographic regulations

 

Figure 3-7: Channel C
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Figure 3-6: DCF Back-off Procedure [15]. 

In IEEE 802.11, there are 14 possible channels in the 2.4 GHz frequency range.

channel width is 22 MHz and each channel is spaced 5 MHz apart.  

. IT professional will often use channels 1, 6, and 11 

to avoid using the overlapping channels.  Fig. 3-7 illustrates t

centre frequency which is defined in sequential 1.0 MHz steps beginning with the first 

channel.  Occupied channel bandwidth will meet all applicable local geographic 

for 1 MHz channel spacing. The rate at which the PMD entity will hop is 

governed by the MAC. The hop rate is an attribute with a maximum dwell time subject 

to local geographic regulations [15]. 
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In IEEE 802.11, there are 14 possible channels in the 2.4 GHz frequency range.  The 

 This creates an 

IT professional will often use channels 1, 6, and 11 non-

illustrates the channel 

centre frequency which is defined in sequential 1.0 MHz steps beginning with the first 

channel.  Occupied channel bandwidth will meet all applicable local geographic 

for 1 MHz channel spacing. The rate at which the PMD entity will hop is 

governed by the MAC. The hop rate is an attribute with a maximum dwell time subject 

 

for IEEE 802.11 in the 2.4 GHz Range  
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3.5 Related Work 
 

A number of researchers [61-72] have used a combination of both the IEEE 802.15.4 

and the IEEE 802.11 networks within the WSN for comparison and evaluation in 

different scenarios or  802.11 is use as Access Point (AP) and at cluster heads to relay 

802.15.4 sensor network data to sink and other network servers and applications. In [61] 

they introduce distributed algorithms to optimise the 802.15.4 performance under 

varying 802.11 interference pattern.  Nakatsuka et al [66] adjust the 802.11 b/g protocol 

to prevent inter-channel interference between 802.15.4 in order to have both protocols 

operating in the same frequency channel, they conclude that inter-channel interference 

between 802.14.5 and 802.11 b/g can be mitigated by sharing time controlling traffic of 

802.11 b/g but they have not considered the effect of 802.11n when it becomes popular 

with the multiple input, multiple output (MIMO) effect and significant increase in the 

maximum raw data rate from 54 Mbps to 600 Mbps with the use of four spatial streams 

at a channel width of 40 MHz. Bertocco et al [68] presented in their work a new 

simulator allowing cross-layer analysis of interference arising among 802.15.4 and 

802.11 and predicts possible interference effect, this is still a work in progress for the 

researchers.  

 

 

3.6 Formulation 
 

Both IEEE 802.15.4 and IEEE 802.11 use the CSMA/CA mechanism for contention 

based network.  The slotted CSMA/CA mechanism adopted with the PAN mode of 

IEEE 802.15.4 is different from the well-known IEEE 802.11 CSMA/CA scheme. The 

main differences involve the time slotted behaviour, the backoff algorithm, and the clear 

channel assessment (CCA) procedure used to sense whether the channel is idle. The 

differences are outline as follows: 

• In IEEE 802.15.4, each operation (channel access, backoff count, CCA) can only 

begin at the boundary of time slots, which recall is termed backoff periods. In 
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IEEE 802.11, the notion of a slot exists only insofar as backoff counting is 

concerned. 

• In IEEE 802.15.4, only when the backoff counter reaches zero does the node 

sense the channel (CCA).  

• In IEEE 802.11, nodes are constantly sensing while in backoff, thereby incurring 

an additional consumption of energy. 

• In IEEE 802.15.4, the backoff counter of a node decreases regardless of whether 

the channel is idle or busy. In contrast, in IEEE 802.11 the backoff counting 

pauses whenever the channel becomes busy. 

• In IEEE 802.15.4, unlike in IEEE 802.11, the contention window size is reset to 

its minimum value at the beginning of each retransmission attempt. 

When IEEE 802.15.4 and IEEE 802.11 use the same channels, their CSMA/CA 

functions enable them to share the same time slot. When the same channels are used by 

both it cause 802.15.4 to suffer long delays while having 802.11 with a higher 

frequency range provides priority access of the channel in most cases. An overlap 

between them can adversely impact on the operation of IEEE 802.15.4, since it is a low 

power protocol which uses a small channel width compared to the transmitted power 

levels and channel width used by IEEE 802.11. The frequency bands in which these 

interference issues are more critical for wireless network include the 2.4 GHz Industrial, 

Scientifical and Medical (ISM) band. See Fig. 3-8 showing 802.11 and 802.15.4 

channels in the 2.4 GHz ISM band. 

 

 

Figure 3-8: Channels Comparison of 802.11 and 802.15.4 [65]. 
 

In non-beacon enabled mode and under moderate data rate, the new IEEE 802.15.4 

standard, compared with IEEE 802.11, is more efficient in terms of overhead and 



Chapter 3: Comparison of IEEE 802.11 and IEEE 802.15.4 for Future Green 
Multichannel Multi-radio WSNs 
 

 

 
73 

resource consumption. It also enjoys a low hop delay on average.  However, 802.11n 

can have a data rate as high as 248 Mbps in the same frequency band as the other 

standards. The major large in increase in data rate and range is achieved by using 

technique called Multiple-Input Multiple-Output (MIMO). MIMO uses more than one 

sender and receiver antennas and combines this with special coding techniques in order 

to squeeze even more data through the same frequencies. For example in Polepalli et al 

[71] their test bed results showed that an overlap with IEEE 802.11n control channel 

causes severe deterioration in both loss rate and packet latency for IEEE 802.15.4 traffic 

and that the overlap is much more serious with the extension channel of 802.11n.  IEEE 

802.11 is better suited for high rate sensor and voice applications, while 802.15.4 is 

better suited for low rate sensors and devices used for control applications that do not 

require high data rate but must have long battery life, low user interventions and mobile 

topology.  The new short range, low power, low rate wireless networking protocol, 

802.15.4, complements the high data rate technologies such as WLAN and open the 

door for many new applications when using a combination of both because the 

predicted environment of these devices demands maximisation of battery life. The 

protocols tend to favour the methods which lead to it, implementing periodic checks for 

pending messages, the frequency of which depends on application needs. However 

when the environment intends to focus purely on high data rate with streaming data 

such as multimedia systems and sensor surveillance system that rely on their image and 

data over wireless networks, the consideration of 802.11 need to be the focus as such 

systems will not be able to cope with periodic transmission.  

 

 

3.7 Simulation Results and Discussions 
 

The simulation model used is based on NS2 [18] using the existing MACs protocol 

stack and the work done for cognitive radio cognitive network (CRCN) [73] GUI, SNR 

lab/Michigan Technological University and the Hyacinth model [19] for multi-channel, 

single-radio. This model already provided many radio models including 802.11 and 

802.15.4, this NS2 also incorporates different topology and traffic generator which 

enable the creation of different simulation scenarios.  Different simulation scenarios will 
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be studied according to three different performance metrics: aggregate throughput, 

delivery ratio and access delay.  The sensor nodes are randomly placed in a 

1000x1000m2 area. The number of nodes is 50 and simulation run for 300s. Data will be 

sending to a sink node. The distributed coordination function of IEEE 802.11 and IEEE 

802.15.4 is used as the MAC layer. The researcher does not assume large networks that 

are densely deployed; but considered a sensor network with continuous streaming data 

that could be deployed for organisation, parks and vehicular traffic not for remote 

monitoring.  In this instance nodes will always be static and powered and as such the 

depletion of battery life is not considered.  The simulation of CBR traffic is to be sent 

every 2 seconds to prevent buffer overflow and to replicate streaming data and 

investigated the effect of both 802.11 and 802.15.4 to analyse the effect with different 

data rates at different ranges. 

 

Figure 3-9 represents an access delay comparison between the 802.11 and the 802.15.4 

networks. The access delay is the backoff time used in both networks.  Nodes only 

transmit to neighboring nodes within range. In this scenario nodes were placed at an 

interval of 10m and the data rate set at 100kbps, access delay was measured in units of 

seconds.  This comparison aimed to determine the efficiency of either network in 

relation to access delay based on distance between nodes and varying data rates.  

 

 

Figure 3-9: Delay comparison for 802.11 and 802.15.4 at 10m range and data of 100kbps. 
 

 Both networks performed virtually similar when transmitting data in this scenario up to 

20 nodes. However, after 20 nodes both protocols start experiencing high delay in 
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transmitting data packets. The comparatively higher delay experienced after 30 nodes at 

low data rate resulted from streaming data which created buffer overflow and constant 

backing off as all nodes are contending for the medium and the succession of the data is 

not periodic. Even though 802.11 was designed for high data rate [15] the simulation 

result indicated that it can perform at lower data rates and short ranges. Both networks 

utilises the CSMA/CA scheme when sending data. The protocol overheads that 

associate with this scheme such as the contention process, interframe spacing, physical 

layer level headers (Preamble + PLCP) and acknowledgment frames, impact negatively 

on small data size, consequently rendering 802.11unfeasible to operate at low data rate.   

 

Figure 3-10 compares the Access Delay performance of both networks in a scenario 

where the interval between nodes is increased from 10m to 50m range and data rate 

increased from 100kbps to 2Mbps. When the distance between nodes and the data rates 

is increased a significant difference in access delay between networks resulted. The 

result showed that 802.11 out-performed 802.15.4 by over 65% and that the 802.11 had 

a significantly lower delay in packet transmission, but gradually access delay increased 

after 30 nodes. This is normal as all nodes are contending for the same medium. 

 

 
Figure 3-10: Delay comparison for 802.11 and 802.15.4 at 50m range and data of 2Mbps. 

 

The comparatively poor performance of 802.15.4 occurred because of the high data rate, 

streaming data and the distance to transmit data; these effect have caused buffer 

overflow, data loss, constant backing off of the medium which does not allow the 

capability of 802.15.4 to operate effectively under such severe constraint.  The result is 
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consistent with 802.15.4 network which perform more effectively at short ranges 

between nodes and with small data packet size [62], therefore it is inconsistent for 

802.15.4 network to operate efficiently with streaming data – which require high data 

rate. 

 

Figure 3-11 represents a Packet Delivery ratio comparison between 802.11 and the 

802.15.4 networks, based on distance between nodes and varying data rates. The 

delivery ratio is the ratio of total number of packets received by the nodes to the total 

number of packets transmitted multiplied by the total number of receivers.  In this 

scenario the nodes were placed at an interval range of 10m, and data rate set at 100kbps. 

The performance of both networks followed the same basic pattern, that is, packet 

delivery ratio decreased progressively as the number of nodes increased. 802.11 

perform slightly better after 20 nodes than 802.15.4. 

 

 

Figure 3-11: Delivery ratio comparison for 802.11 and 802.15.4 at 10m range and data of 100kbps. 
 

 

Figure 3-12 represents the Packet Delivery ratio comparison between both networks 

when the interval between nodes is increased from 10m to 50m range and data rates 

increased from 100kbps to 2Mbps.  Similar to the access delay scenario, when the 

distance between nodes and the data rates are increased the 802.11 network significantly 

outperformed the 802.15.4 network. This result indicates that 802.15.4 cannot perform 

well with streaming data even if operating at low data rate and would not be feasible for 
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sensor network with multimedia or surveillance system that rely on image and data over 

the wireless medium. 

 

 

Figure 3-12: Delivery ratio comparison for 802.11 and 802.15.4 at 50m range and data of 2Mbps 

 

 

Figure 3-13 represents the Aggregate MAC throughput comparison between the 802.11 

and the 802.15.4 networks. The Aggregate MAC throughput is denoted by the total amount of 

data delivered to the sink per unit time by the MAC protocol, and is measured in kbps.  In this 

scenario the distance between nodes is 10m and the data rate set at 100kbps.  The result 

indicated that has the number of nodes increased aggregate throughput declined over both 

networks. This decline was greater in the 802.15.4 network as compared to the 802.11 network. 

 

 

Figure 3-13: Throughput comparison for 802.11 and 802.15.4 at 10m range and data of 100kbps 
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Figure 3-14 represents the Aggregate MAC throughput comparison between both 

networks when both distance between nodes and the data rate are increased.  The 

interval between nodes was increased from 10m to 50m and the data rate from 100kbps 

to 2Mbps.  

As was evident from the Access Delay and Delivery Ratio tests; a significance 

difference in performance resulted in both networks when distance between nodes and 

data rate were increased. 

 

 

Figure 3-14: Throughput comparison for 802.11 and 802.15.4 at 50m range and data of 2Mbps 
 

  The 802.11 networks exhibited comparatively higher aggregate throughput when 

compared to the 802.15.4 indicating its superior performance in a high data rate 

environment.  On the other hand the significantly poor performance of the 802.15.4 

network in a high data rate and wide node range environment make it unsuitable for 

streaming data in a WSN.  
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3.8 Conclusion  
 

In this Chapter the MAC sublayers for IEEE 802.15.4 and IEEE 802.11 MAC protocol 

were studied to aid the understanding of 802.11 and 802.15.4 CSMA/CA scheme. The 

performance of both have been investigated and evaluated through simulation results 

conducted in NS2 to make a rational decision which protocol is feasible for future WSN 

operating with multimedia or surveillance system in a multichannel multi-radio 

environment.  The result obtained from simulation outcome through streaming data with 

100kbps and 2Mbps at 10 and 50m range respectively, shows that 802.15.4 is at a 

disadvantage performing at long range with high data rate streaming and or at low data 

rate with streaming data.  The aggregate throughput, delivery ratio and access delay 

performance metrics were used, where 802.15.4 performed very poorly at high data rate 

and having 802.11 perform slightly better after 20 nodes at low streaming data rate. It 

was concluded that 802.15.4 is not feasible for sensor multimedia or surveillance 

system with streaming data for future multichannel multi-radio systems.  

Having investigating the performance between IEEE 802.11 and IEEE 802.15.4 it 

became feasible to design the 802.11 contention-based protocols for multichannel 

assignment. The proposed design is a multichannel distributed coordinate function over 

single radio for WSNs.  The designed protocol was tested with simulation scenarios 

from NS2. The overall goal for such design proposal was to utilise multichannel 

transmission for future 802.11 wireless sensor surveillance systems to process video 

data for automated real-time alerts and also to consider a more cost effective solution 

for WSN.   
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Chapter 4  

 

Multi-channel Distributed Coordinated Function over 
Single Radio in Wireless Sensor Networks 

 

4.1 Overview 
 

Multi-channel assignments are becoming the solution of choice to improve performance 

in single radio for wireless networks.  Multi-channel allows wireless networks to assign 

different channels to different nodes in real-time transmission. In this chapter, a new 

approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes 

advantage of multi-channel assignment is examined.  The backoff algorithm of the IEEE 

802.11 DCF was modified to invoke channel switching, based on threshold criteria in 

order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 

networks. 

 Simulation experiments were conducted in order to investigate the characteristics of 

multi-channel communication in wireless sensor networks using an NS2 platform. Nodes 

only use a single radio and perform channel switching only after specified threshold is 

reached. Single radio can only work on one channel at any given time. All nodes initiate 

constant bit rate streams towards the receiving nodes. In this work, the impact of non-

overlapping channels in the 2.4 frequency band was studied based on: Constant Bit Rate 

(CBR) streams, node density, source nodes sending data directly to sink and signal 

strength by varying distances between the sensor nodes and operating frequencies of the 

radios with different data rates.  

Results showed that multi-channel enhancement using the proposed algorithm provides 

significant improvement in terms of throughput, packet delivery ratio and delay. This 

technique can be considered for WSNs future use in 802.11 networks.   
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4.2 Introduction 
 

Wireless Sensor Networks (WSNs) [1-4] are used over a wide range and in varying fields 

such as military application, environmental monitoring, medical care, smart buildings and 

other industries.  WSNs sensors are generally deployed randomly in the field of interest, 

delivering myriad types of events from simple periodic reports to unpredictable bursts of 

messages triggered by external events that are being sensed. These sensor nodes will 

work collaboratively to sense a given environment, perform in-network computations and 

communicate with a base station when a targeted event occurs. A large number of WSN 

based applications are emerging when compared with conventional wireless networks. 

WSNs also have several defined characteristics including limited transmission bandwidth, 

limited computation capability of individual nodes and limited energy supply. The current 

WSNs paradigm also has some interesting features including self-organisation, dynamic 

network topology and multi-hop routing. These are important features for many real 

world applications nowadays. 

 

The 802.15.4 standard defines a protocol for Low Rate Wireless Personal Area Networks 

(LR-WPAN). This allows for low cost of components, reduced coverage area, low 

transmission power, low bit rate and energy consumption [64]. The 802.15.4 PHY layer 

can operate at 868MHz, 915MHz and 2.4GHz bands. The network bandwidth is very 

limited and the MAC layer packet is very small with a typical size of 30 – 50 bytes 

compared to 512 bytes in the 802.11 networks. The 802.15.4 networks typically operate at 

2.4GHz Industrial, Scientific and Medical (ISM) band, which is used by popular 802.11 

networks as well.  

 

A number of researchers [66-72] have used a combination of both the 802.15.4 and the 

802.11 networks within WSNs for comparison and evaluation purposes considering 

different scenarios, or 802.11 is used as an access point (AP) and at cluster heads to relay 

802.15.4 sensor network data to sinks and other network servers and applications. When 

802.15.4 and 802.11 are using the same channels, their CSMA/CA functions enable them 

to share time slots. However, using the same channels will cause 802.15.4 to suffer long 

delays while having 802.11 with a higher frequency range provides priority access of the 

channel in most cases. An overlap between them may adversely impact on the operation 
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of 802.15.4, since it is a low power protocol which uses a small channel width compared 

to the transmitted power levels and channel width used by 802.11. The frequency band in 

which such interference issues are nowadays more critical for wireless networks.  

 

The 802.11 standard [15] defines a communication protocol for wireless local area 

networks (WLANs), providing a total of 14 frequency channels, each of which is 

characterised by 22 MHz bandwidth. The fundamental media access method of the 

802.11 is a DCF known as Carrier Sense Multiple Access with collision avoidance 

(CSMA/CA). It is a contention-based protocol that concentrates on the collisions of 

transmitted data and was developed mainly for wireless networks. Applying a multi-

channel assignment to this scheme would help to reduce contention for a single medium, 

collision and congestion. 

 

Multi-channel as it relates to wireless networks is used to assign different nodes to 

different channels in real-time transmission. This gives rise to having communications on 

different frequency bands. When sensor nodes are densely deployed, single channel MAC 

protocols may be inadequate due to a higher demand for the limited bandwidth. There 

have been a number of proposed MAC protocols lately, in order to improve network 

performance in WSNs using multi-channel assignments [58, 60, 74-85].  

 

The research focused on the design of multi-channel communication based on the 802.11 

DCF over a single radio for WSNs in order to improve its communication performance 

namely throughput, end-to-end delay and channel access delay. Multi-channel protocols 

utilise bandwidth better and thus may perform favorably in cases of applications 

demanding high data rates. The 802.11 standards provide up to 12 non-overlapped 

channels, respectively, in 2.4 GHz and 5 GHz spectrums. Nodes within the transmission 

range of each other can operate on different non-overlapped channels so as to avoid 

interference. The following factors are considered when focusing on using 802.11 for 

WSNs: 

• Like 802.15.4, the 802.11 DCF operations are also based on the CSMA/CA 

algorithm. It can be used for a wireless sensor surveillance system that is low-

cost, reliable, easy to manage, easy to deploy and can process video data for 

automated real-time alerts. Despite much attention in recent years, researchers 
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have yet to achieve the goal of long term, independent operations of sensor 

network deployments under this constraint. 

• 802.15.4 is applied to low data rate and short distance communication sensor 

networks where topology of a sensor network changes very frequently. Having 

802.15.4 and 802.11 operating within the same frequency band may become 

problematic when 802.11n networks are in use. 802.11n has several new 

features such as the use of multiple input and output streams (MIMO) and 

channel bonding that would allow the data rates up to 450 Mbps to be 

achieved. In particular, channel bonding refers to the use of a 20MHz wide 

extension channel in addition to the control channel used by 802.11 networks. 

At high traffic loads, an 802.11n network would use a total bandwidth of 

40MHz when operating in 2.4GHz band. Two or more 802.11n networks 

operating in the same location with an 802.15.4 network would leave no 

802.15.4 channel free from 802.11n interference. 

 

The rest of this chapter presents related work, the proposed system model and how nodes 

are assigned to channels, simulation results, and the performance analysis. Finally the 

conclusion is presented. 

 

 

4.3 Related Work 
 

Multi-channel assignment for WSNs has been studied by a number of researchers. The 

hybrid approach studied in [74] are similar wherein each node has a fixed interface on a 

common channel which is used for package control and exchange while the other 

interfaces are switched among the remaining channels for data transmission.   

 

Other hybrid multi-channel protocols in [58] consist of two parts wherein one part 

handles MAC issues such as queuing, switching and broadcast and the second part is a 

distributed assignment algorithm. These models maintain a table which records the 

channels being used by its neighbors.  In this technique, nodes constantly check the table 

in order to determine the number of nodes assigned to a channel.  In [75], they also 
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proposed a hybrid approach for each semi-fixed channel assignment, a heuristic algorithm 

used based on transferring from a coloring based problem. 

 

In [58, 60, 75-76] static and dynamic strategies were used to assign channels. In [74], a 

load-aware channel assignment was proposed. In [74,77-80], multi-channel MAC 

protocols were proposed; these protocols either require multiple radio transceivers at each 

node or certain kind of messages for channel negotiation.  However, using multiple 

transceivers require the use of energy which is a constraint in WSNs.  In this case channel 

negotiation packets are not seen as a small overhead. Both TMMAC [81] and MMSN 

[82] are multi-channel MAC protocols designed for WSNs.  They are protocols that were 

designed to assign different channels to nodes in a two hop neighborhood so as to avoid 

potential interferences. 

 Simulation results show that they improve performance compared to single channel 

protocols. The downside is that a node has a different channel from its downstream and 

upstream nodes. In the multi-hop flow, nodes have to switch channels in order to receive 

and forward packets. This causes frequent channel switching and potential packet losses. 

In order to prevent packet loss these protocols use some negotiation or scheduling 

schemes to coordinate channel switching and transmission among nodes with different 

channels.  The challenges they face are that they need many orthogonal channels for 

channel assignment in dense networks; they also require precise time synchronisation at 

nodes with frequent channel switching delays and scheduling overheads especially for 

high data traffic. In [80], empirical experiments with Micaz motes were done to show that 

node-based protocols may not be suitable for WSNs in practice. 

 

In [83], a channel scheduling mechanism is used to manage and decide when a node 

should switch channel to support the current communication requirements. They also 

adopt the graph base approach. 

 

Ozlem et al. [84] proposed a multi-channel scheme based on LMAC which allows the 

node to utilise new frequency channels on-demand, if the network reaches a density limit. 

This method is composed of two phases, one where the nodes try to select timeslots 

according to the single channel in LMAC rule and the second involves nodes which are 
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unable to grab a timeslot in the first phase invite the neighbor nodes which are free to 

listen to them on an agreed channel or time slot. 

 

Nasipuri’s scheme [85] was one of the first multi-channel CSMA protocols that used 

channel reservation. If there are N channels, the protocol assumes that each node can 

monitor all N channels simultaneously with N transceivers. This multi-channel scheme 

was just a simple extension from the single channel 802.11 MAC, which requires each 

node to have N transceivers with one for each channel; this was not feasible for a practical 

system. 

 

 

4.4 Proposal for MC-DCF 
 

This approach will use multi-channel assignments in 802.11 DCF over a single radio for 

WSNs known as MC-DCF.  Node interface will be able to switch between channels. The 

approach will have all nodes aware of the channels in use but each node interface can 

only tune into one channel at a given time. At initialisation, a random assigner that 

employs uniform distribution will be applied to distribute node interfaces to channels. 

This ensures that each channel will have about the same number of neighboring nodes 

assigned to it at start up.  A number of approaches that have been used are highlighted in 

the related work.   This will increase the number of nodes that are granted access to the 

wireless medium.  

In this approach nodes will switch channel when the contention window of DCF has 

reach an assign threshold. The sink node will perform interface switching in order to 

receive data from channels coming from source nodes. If there is a collision, the MAC 

method will invoke the backoff procedure implemented within the MAC protocol. Nodes 

will only monitor activities on the current channel they are assigned to and when switched 

to another channel it will listen to the signal within range and update itself. If all the 

channels are busy they will revert to backoff state. 
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4.4.1 Existing Challenges 
 

There were existing challenges in WSN that needed to be considered when operating in 

the 802.11 network, which were considered in our simulation set-up. These issues which 

included interferences among neighboring nodes were addressed using non-overlapping 

channels. Bandwidth limitation, hidden terminal nodes and single channel architecture 

were addressed with the use of multichannel. The considerable decrease in the 

performance of 802.11 DCF in multi-hop network due to collision, and Contention for the 

medium was addressed by utilising channel switching technique. The topology of sensor 

network which changes very frequently, as well as the limitation in energy consumption 

was addressed by the use of static nodes. 

 

  

4.4.2 IEEE 802.11 DCF Backoff Procedure 
 

The original random backoff timer is invoked when finding a medium busy by the carrier 

sense (CS) mechanism of the DCF. This will be modified to invoke channel switching 

based on a set threshold criteria. The implementation will be done in NS2 for multi-

channel, single-radio by using the existing MACs protocol stack and the work done by for 

cognitive radio cognitive network (CRCN) GUI, SNR lab/Michigan Technological 

University and the Hyacinth model. In the designs, multiple channel objects have been 

created through the TCL library. Nodes will be switching to different channel objects 

during the simulation process. During network initialisation all nodes will be made known 

of the channels by a channel notifier. The channel sensor invokes the random assigner 

after the channel notifier updates node of all channels on the network and will uniformly 

distribute radios of nodes to a channel in a load balancing format.  When a node intends 

to transmit and senses that the medium busy, it will back-off and re-try. If the contention 

window threshold is reached the sensor will invoke and initiate channel switching.  Nodes 

will switch to other channels in order to check if they are busy. If another channel is free, 

a node will update itself off its neighboring node on the same channel and will transmit 

based on the MC-DCF procedure in Figure   4-1. 
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Figure 4- 1: MC-DCF procedure. 

 

 

 

4.4.3 Multi-Channel 
 

In the design approach, dynamic assignments have been utilised. As regards the dynamic 

assignment, each node is assigned a channel for data transmission, once sending data the 

node will not be able to switch channel. It will be able to switch channel if searching for 

an available channel to transmit and update its information about neighboring nodes on 

the same channel.  Each node will know the number of channel available for switching at 

initialisation. Having a dynamic assignment utilising a single interface can provide 

significant performance benefits over a static approach - as it can potentially utilise 

instantaneous traffic or interference information and reduce wastage of the precious 

already limited bandwidth. This is due to the fact that WSN cannot provide reliable and 

timely communication with high data rate requirements over single channel because of 

interference, radio collision and limited bandwidth, since they are mainly for nodes 

placed in a remote area that periodically send data to the host. 

  

Why multi-channel over 802.11 DCF which uses high data rate?  As previously 

mentioned in this work WSN is an emerging technology that has become one of the 

fastest growing areas in the communication industry.  The demand for using this medium 

is increasing with a wide range of deployment for monitoring, surveillance systems and 

other multimedia systems such as streaming or real time data. With this in mind, 802.11 

standard has been utilised which uses a range of data rate.   

 

 

 

MC-DCF Procedure  
Channel is free 
Immediate Access 

DIFS Data 

Busy Channel Back-off timer Contention window 
Differ Access Threshold Channel switching 
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4.4.4 Channel Switching 
 

Nodes are not bound to a particular channel and have the option of switching between 

channels.  Channel switching among sending nodes will only occur after a set threshold 

has been reached during the backoff period. The radio will not switch during 

transmission, as this can cause data packet to get lost or corrupted. Therefore, during 

transmission the radio will remain on the channel until completion of transmission.  

However, at the receiving/sink node channel switching will be more intense as the sink 

node will be receiving data from more than one source nodes.  The switching delay 

incurred will depend on the packet size being received at each interface.  Consider for 

example a data packet of 1kb being accepted. On the premise that the maximum data 

capacity for the medium is 54Mbps, the time taken for transmission of 54x106 bits -

representing the link capacity - is equal to 1 second. Time required to transmit one bit 

(54*106) = packet size (1kb or 8000 bits) divided by data rate.  

 

Hence: 

Time taken by 1 bit 
���� �

��∗	�
 ��� 

 

The radio will take 160µs to switch to the next channel. 

The impact of channel switching will be studied from simulation scenarios between the 

sources that are sending data directly to the sink.  

 

4.4.5 System Modeling 
 

In order to develop sensor algorithms for assigning all channels to node interfaces, 

channel checking and switching, this proposal has utilised the 802.11 DCF contention 

based protocol where decisions are made base on the window size and backoff algorithm 

on multiple non-overlapping channels over single radio.  The problem in a contention 

based network is that all nodes contend for the same medium.  Multi-channel will have 

nodes contending for greater than one channel instead of a single channel. The backoff 

mechanism of DCF cannot provide deterministic upper bound channel access delay for 

sensor networks.  The contention and backoff strategy is unfair to the already existing 
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nodes that are backing off.  Implementing channel sensor and switching within the 

backoff mechanism will eliminate the unfair strategy on the backing off for all nodes and 

a node will only keep updated with its neighboring nodes with range on the same channel.  

This approach is a novel one that has not been done by any other research to the 

knowledge of this author.  The overall goal for this design is to have multi-channel sensor 

network with 802.11 so that nodes can switch channels and prevent severe delay, packet 

losses, increased throughput and having nodes options of channel to transmit, with no 

central scheduler to assign channels. As constant traffic sources cannot be assumed at all 

times and traffic can be bursty in nature. 

 

4.4.6 Design Approach 
 

NS-2 is used as the simulation platform. At initialisation, all nodes are made aware of the 

number of channels available through a channel notifier.  When a node requires 

transferring data, the Carrier Sense (CS) mechanism is invoked in order to determine if 

the channel is busy or idle.  If the CS is zero, this indicates that the channel is idle; 

otherwise the channel is busy and will be determined as transmitting data.  During the 

backoff period of the original DCF, the contention window (CW) parameter will take an 

initial value of the control window (CWmin).  The CW will take the next value in series 

every time an unsuccessful attempt to transmit causes the retry counter to increment. 

When the CW reaches maximum (CWmax), it will remain until the window is reset. In 

the proposal model the retry counter will reach its threshold after the third attempt and 

switch channel based on the design parameters. Nodes will enter wait state if all channels 

are busy.  

 

In Figure 4-2 during initialisation of the network, the channel notifier uses combined 

functions from the management system in order to obtain information regarding the 

number of interfaces at the upper layer by invoking a logical communication with the 

Distribution System Medium (DSM) [15] at the MAC sub layer.  The channel notifier 

will assume that all nodes are in the same basic service set (BSS) and broadcast all the 

available channels within the BSS.  The random assigner and channel switching is under 

control of the channel sensor that references the channel notifier.  The sensor invokes the 

random assigner after the channel notifier updates nodes of all channels on the network. 
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The assigner keeps a count of interfaces from which a uniform distribution algorithm 

mandates the proportionality for each channel i.e. how many interfaces to a channel. The 

random assigner randomly assigns interfaces to channels during the initialisation process.  

Each node keeps updated information of its neighbors on the same channel within range 

by sensing the medium periodically and learning about the medium through the virtual 

carrier sense mechanism [15].  The CS also determines the busy/idle state of the medium 

as outlined in [15].  

 

 

 
Figure 4-2:  MC-DCF Design Model 

 

The MC-DCF model proposed for WSN in Figure 4-2 is a multi-channel model using a 

contention based technique in a carrier sensed co-coordinated function process. This 

multi-channel backoff model brings added qualities of the diverse MAC resolution 

mechanisms of WSN. It is made up of three different MC-DCF techniques: channel 

notifier, channel sensor and the non-overlapping channels. These techniques allow nodes 

to be aware of the available channels, switch to another channel and to enter wait state 

when no channel is available.  

 

During channel assignment where  is the number of non-overlapping channels available 

and �� is the number of nodes interfaces to be assigned to channels within the IBSS (B). 
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 = (	, �, �,... �), where � is the channel number � = (1, 2, 3,...i) where i is the total 

number of node interfaces. The calculated uniform distribution equation is:    

 
� ��

�
���

�     (4.1) 

 

 

 
Figure 4-3: Contention window with defined threshold 26-1. 

 

When a station (STA) wishing to transmit and sense busy, the CW shall take the next 

value in series every time an unsuccessful attempt to transmit causes the STA retry 

counter to increment.  The channel sensor shall maintain a retry counter and after the 

define threshold is reached; it will invoke the channel switching parameter. Figure 4-3 

shows the contention window with the define threshold 26-1. 

 

 

 
Figure 4-4: Contention period and channel switching. 
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In Figure 4-4, if node A is transmitting a data packet and node B senses that the medium 

is busy and waits, after the initial attempt of waiting to transmit  it senses the medium on 

the channel being used, attempts on the first retry and detects that the medium is free of 

other transmissions.  The node waits for a predetermined DIFS (distributed inter-frame 

spacing) period [15]; once it senses no other transmission before the end of the DIFS 

period, it computes a random backoff time between values of CWmin and CWmax then 

commences its transmission. Node C senses the medium to be busy and makes three 

repeated attempts, after the initial attempt to transmit a packet; the computed backoff 

period is doubled with each attempt until the specified threshold is reached.  When the 

threshold is reached the channel sensor invokes the channel switching.  The node 

interface will tune to another channel, senses if the medium is busy. If busy, it will switch 

otherwise it will proceed with transmission.  If all channels are busy the node will revert 

to random backoff time and set its backoff timer using the equation in [15]. 

 

Contention based techniques are best resolved by preventive methods but are most 

difficult to predict due to all nodes contending for a single channel. These clearly indicate 

that multi-channel with switching control systems as shown in Figure 4-5 will provide the 

needed best overall practice access control in accessing the medium while reducing 

collision, delay and the hidden node problem in the WSN. The idea is to achieve a multi-

access, simultaneous transmission and maintain a good quality of communication which 

can be obtained as long as the distance between the sensor node and the sink node are 

short enough and the adequate strength of the signals are received.   

 

The challenges in the MAC channel access control, highlighted previously in this chapter, 

and the DCF backoff algorithm coupled with the channels within the 2.4 GHz frequency 

band can be mitigated by the combination and integration of the MC-DCF Models as 

shown in Figures 4-2 and 4-5 and further linking them to other application in 802.11 

WLAN and ad hoc network systems.  
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Figure 4-5:  Flow chart for channel assignments. 
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4.5 Results and Discussion  
 

4.5.1. Simulation Procedure 
 

MC-DCF being the proposed protocol for Multi-channel Distributed Coordinated 

Function will be studied using the NS-2 simulation platform. As mentioned before, at 

initialisation all nodes will be made aware of the number of channels available. When a 

node wants to transfer data the Carrier Sense (CS) mechanism is invoked in order to 

determine if the channel is busy or idle. During the backoff period the contention window 

(CW) parameter will reach its threshold after the third attempt and switch channel. A 

node will enter a wait state if all channels are busy. 

 

In this chapter, the performance of the MC-DCF protocol by extensive simulations with 

NS2 is analysed. The aim is to investigate multi-channel performance within a single-hop 

(the link quality), i.e. the packet reception rate. Different simulation scenarios were 

studied according to three different performance metrics: aggregate throughput, delivery 

ratio and access delay.   

 

The sensor nodes were randomly placed in a 1000x1000m2 area, the radio range is set to 

50m, and the radio bandwidth at 2Mbps.  The number of nodes is 100 and the simulation 

time for each scenario is 500 seconds (s).  The number of channels ranges from 3 to 10 

since the spectral mask only defines power output restrictions up to ±11 MHz from the 

centre frequency to be attenuated by 30 dB. It is often assumed that the energy of the 

channel extends no further than these limits.  

 

The 802.11 channels are effectively 22 MHz wide, the consequence is that stations can 

only use every fourth or fifth channel without overlap, typically 1, 6 and 11 in the 

Americas, and in theory, 1, 5, 9 and 13 in Europe although 1, 6, and 11 are typical there 

too. However if transmitters are closer together, overlap between the channels may cause 

unacceptable degradation of signal quality and throughput.  The MAC protocols are 

802.11 DCF and MC-DCF.   
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The aggregate throughput is calculated as the total amount of data delivered to the sink 

per unit time by the MAC protocol and is computed as: 

 Aggregate throughput =� ��� ×  
! "

#

�$	
 , (4.2) 

where n is the number of receiver R, throughput is B/t, B is the bytes received by a 

receiver i in some duration of time and i = {1, 2, 3,...,n}.  

 

The delivery ratio is the ratio of total number of packets received by the nodes to the total 

number of packets transmitted times the number of receivers and is computed as: 

  
∑ &'(���
∑ )'(���

  ,   (4.3) 

where *� means total data size of CBR packet node i sent, �� means total data size of CBR 

packet node i received. 

 

The access delay is the backoff time used in DCF [15], the access delay can also be 

calculated as the packet size x 8 (1 byte) divided by the link size plus the propagation 

delay that is 

  
+,-./! 0�1/ ×� 

2�#. 0�1/  + Propagation delay. (4.4) 

Nodes only transmit to neighboring nodes within range, transmitting over a wider range 

may consume more energy which is not desired by WSN and also to eliminate 

communication interference and hidden node problems [2]. 

 

4.5.2 Performance Analysis of the Proposed MC-DCF P rotocol 
 

In the simulation scenarios the network is considered for sensor surveillance system with 

continuous streaming data - large densely deployed networks were not assumed. 

Surveillance systems are mainly deployed for organisation, parks and vehicular traffic not 

for remote monitoring.  In this instance nodes will always be static and powered and as 

such the depletion of battery life is not considered.  CBR traffic will be simulated and sent 

every 2 second to prevent buffer overflow and to replicate streaming data.  The default 

data rate for MC-DCF will be 2Mbps.  
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4.5.2.1 Performance Analysis: 802.11DCF, MC-DCF and MMSN Protocols  
 

Figures 4-6, 4-7, and 4-8, analysed the performance of 802.11 DCF, MC-DCF and 

MMSN protocols based on number of channels, measured against the three mentioned 

metrics – channel access delay, aggregate MAC throughput and packet delivery ratio. 

Zhou et al [82] introduced the MMSN multi-frequency MAC protocol that was designed 

for WSN.  It is a slotted CSMA protocol which at the beginning of each timeslot, nodes 

needs to contend for the medium before they transmit.  

 

Figure 4-6 shows the comparative delay impact performance of each protocol as it relates 

to multichannel.  In this scenario both MMSN and MC-DCF followed the same 

performance pattern.   As the number of channels increased there is a downward trend in 

channel access delay, although MMSN showed comparatively lower delays. The 802.11 

DCF protocol performed the most stable of all three protocol showing virtually little 

change in channel access delay across the multiple channels.  The performance however 

occurs with a significantly higher level of channels access delay when compared to 

MMSN and MC-DCF.  This performance of the 802.11 is consistent with its design for 

use over single channel. In essence it lacks the capability to perform efficiently in a 

multichannel environment, due to its inability to detect multichannel. 

 

 
Figure 4-6: Impact of Multi-Channels on Channel Access Delay 
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Figure 4-7 shows the comparative aggregate MAC throughput performance of the three 

protocols over multiple channels. In this scenario both MMSN and MC-DCF performed 

similarly. As the number of channels increase so does aggregate MAC throughput of 

these two protocols.  The 802.11 DCF protocol on the other hand showed significantly 

lower level of aggregate MAC throughput of all three protocols. This comparatively 

lower throughput remains virtually unchanged even as the number of channels increases. 

 

 
Figure 4-7: Impact of Mutli-Channels on Aggregate MAC Throughput 
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Figure 4-8: Impact of Multi-Channels on Packet Delivery Ratio 
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access delay which is similar in performance to the 802.11 DCF protocol – which is 

designed to operate over a single channel. 

 

 
Figure 4-9: Impact of CBR Streams on Channel Access Delay 
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Figure 4-10: Impact of CBR Stream on Packet Delivery Ratio 
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Figure 4-11: Impact of CBR Streams on Aggregate MAC Throughput 

 

 

0.94

0.95

0.96

0.97

0.98

0.99

1

10 20 30 40 50 60

P
ac

ke
t d

el
iv

er
y 

ra
tio

No. CBR Stream

802.11 DCF

MC-DCF (1 Ch)

MC-DCF (2 Ch)

MC-DCF (3 Ch)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50 60

A
gg

re
ga

te
 M

A
C

 th
ro

ug
hp

ut
 (

M
B

P
S

) 

No. CBR Stream

802.11 DCF

MC-DCF (1 Ch)

MC-DCF (2 Ch)

MC-DCF (3 Ch)



Chapter 4: Multi-channel Distributed Coordinated Function over Single Radio in WSNs 
 

 

 
101 

4.5.2.3 Performance Analysis: Impact of Node Density on 802.11DCF and MC-DCF 

(1-3 Channels)   
 

Figures 4-12, 4-13 and 4-14 analysed the impact of node density on the performance of 

802.11DCF, and MC-DCF using one, two, and three channels - by varying the number of 

nodes. This comparative performance was measured within context of the three 

mentioned metrics by varying the number of nodes sending CBR streams every 2 

seconds. MC-DCF performed better when nodes have 3 channels to transmit on 

simultaneously. 

 

Figure 4-12 shows 802.11 DCF and MC-DCF experienced the highest delays as more 

nodes transmit more packets and the network become denser.  When two or more 

channels are transmitting there is a relative improvement in delay. The MC-DCF with 

three channels recorded the lowest level of channel access delays as the node density of 

the network increases.  

  

 
Figure 4-12: Impact of Node Density on Channel Access Delay 
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performance of the network correspondingly degrades. This is not unusual as nodes will 

be switching channels, backing off and entering wait state which is the norm in a 

contention based network.  

 

 
Figure 4-13: Impact of Node Density on Packet Delivery Ratio 
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Figure 4-14: Impact of Node Density on Aggregate MAC Throughput  
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Figure 4-15: Sink node with single radio doing channel switching
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delivery ratio decreases in a corresponding

be constantly switching between channels in order to receive data, which incur severe 

switching delay in addition to

indicated that 802.11 DCF and MC

than the multi-channel protocols.  This is due to the fact that the sink node is operating in 

a single channel mode with no extra overhead and switching delay occurring when 

receiving data. 

 The aggregate throughput degradation that has been observed in previous simulation 

within two or more channels can be accounted for mainly at the sink node where severe 

delay has been encountered. This results in drop packets.  More work will be done in this 

area in order to improve delivery of packets from the source to the sink in a 

environment.   
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within its range that are sending data to be received. From observation, 
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indicated that 802.11 DCF and MC-DCF with a single channel gave a better performance 
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l mode with no extra overhead and switching delay occurring when 
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: Sink node with single radio doing channel switching 

receiving data directly 

. From observation, 

 and the packet 

manner. This is due to the sink node having to 

be constantly switching between channels in order to receive data, which incur severe 

the time taken to accept data before switching. The findings 

DCF with a single channel gave a better performance 

channel protocols.  This is due to the fact that the sink node is operating in 

l mode with no extra overhead and switching delay occurring when 

throughput degradation that has been observed in previous simulation 

or more channels can be accounted for mainly at the sink node where severe 

. This results in drop packets.  More work will be done in this 

area in order to improve delivery of packets from the source to the sink in a multi-channel 
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In Figure 4-16 as the number of source nodes within range of the sink increases, the level 

of access delay at the sink correspondingly increases. This degradation of performance 

holds consistently for all protocols - single or multi channels. The single channel 

protocols (802.11 and MC-DCF(Ch1), however, outperformed the multi-channel 

protocols at the sink, due to the fact that the sink node is operating in a single channel 

mode with no extra overhead and switching delay occurring when receiving data. 

 

 
Figure 4-16: Impact of Source Node Density on Access Delay at the Sink  

 

 

In Figure 4-17 all protocols recorded declining levels of packet delivery ratio at the sink 

as the number of source nodes within range of sink increased. The highest rate of decline 

was evident in the protocols with at two or more channels. 

 

 
Figure 4-17: Impact of Source Node Density on Packet Delivery Ratio at the Sink 
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4.5.3. Performance Analysis of 802.11a/b/g Networks  
 

Simulations were conducted to analyse the signal strength with different data rate over the 

802.11a/b/g networks. The same metrics were used: access delay, delivery ratio and 

aggregate throughput to analyse the performances. The performance among the networks 

will aid in determining the range, data rate and preferable 802.11 networks to operate 

WSN.  The above simulations indicated that WSN can operate in 802.11 networks for 

sensor surveillance system with continuous streaming data which is not densely deployed. 

Nodes will always be static and powered and as such the depletion of battery life is not 

considered.  

In the simulation scenarios, for analysing the performance of 802.11a/b/g networks: 

sensor nodes were placed in a 1000x1000m2 area, the radio range and radio bandwidth 

with each scenario in order to determine suitable signal strength when operating in the 

802.11 network for WSN.  The number of nodes was 100 and the number of non-

overlapping channels was 4 - using the UK 2.400-2.4835 GHz frequency band.  The 

proposed MC-DCF MAC protocol was configured to operate with the 802.11a/b/g 

network for channel assignment and switching the multichannel to analyse the impact on 

802.11a/b/g and the radio range. 

 

4.5.3.1 Packet Delay Analysis: 802.11a/b/g Networks     
 

The experiment results in Figures 4-18 and 4-19 shows the delay that occurred when 

transmitting 2Mbps over 50m and 100m ranges for 802.11a/b/g. In Figure 4-18 nodes are 

placed at 50m intervals with data transmitting at a rate of 2Mbps. In this simulation, 

delays declined over all three networks as the number of channels increased. The most 

significant decrease in delays occurred when three channels were transmitting. When the 

distance between nodes were increased from 50m to 100m range – depicted in Figure 4-

19 - access delays increased dramatically for all three networks, as compared to 

performance at the 50m node ranges.   The increase in delay that is experienced by all 

networks indicates that 100m range among nodes results in weak signal, which makes it 

difficult for transmission and as such degradation of the networks. 
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Figure 4-20: Delay at 50m range and data rate at 2Mbps. 
 

 

 

 

 

 

 

Figures 4-20 and 4-21 show the delay that occurs when simulating at 10Mbps over 50m 

and 100m node intervals. At the 50m range the lowest level of delays occurred, contrary 

to the pattern in performance experienced at the 100m range where degradation of the 

networks is much higher. However, 802.11a also shows an improvement in delay, this 

indicates that 802.11a operates better at 6Mbps and above but 802.11b/g gives a better 

performance which shows that if signal quality becomes an issue 802.11b/g can scale 

back to lower transfer data rate. 

 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

      Figure 4-18: Delay at 100m range and data rate at 2Mbps 
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Figure 4-19: Delay at 50m range and data rate at 2Mbps 
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Figure 4-22: Delay at 50m range and data rate at 10Mbps. 
 

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4

de
la

y 
(s

)

Number of Channels

802.11a

802.11b

802.11g

 

Figure 4-21: Delay at 100m range and data rate at 10Mbps. 
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Figure 4-20 shows that a higher level of delay occurred in 802.11a network compared to 

802.11b/g. When the range is increased from 50m to 100m, increases in packet delay 

occurred among the tested networks - 802.11a/b/g -  with 802.11a  experiencing the 

highest delay. The high delay experienced by 802.11a resulted from it not being backward 

compatible to 802.11b; in addition to the fact that it was designed to operate at a 

minimum data rate of 6Mbps. Therefore operating with a data rate of 2Mbps causes 

possible frequent dropped connections and degradation of service.   

 

Figures 4-22 and 4-23 show the delay that occurred at 54Mbps. Both 802.11a/g show a 

better performance than 802.11b, which seems not to show any improvement during the 

simulation over all the channels.  This clearly showed that 802.11b cannot operate with 

data rate higher than 11Mbps. Also from the simulation results the data rate does not 

make a positive impact regarding operating at 100m range. At 100m range the networks 

experience high delay which degrades the system significantly. 

 

   

  

 

 

 

 

 

 

 

 

 

   

Throughout the group of simulations, the impact on delay over different range and 

channels show that a better performance is achieved at the 50m range to that at the 100m 

range in delays.  Also when 2 or more non-overlap channels within the 2.4 frequency 

band are used, there are even better performances achieved, evident in Figures 4-18, 4-20 

and 4-22. 

 

 

Figure 4-23: Delay at 50m range and data rate at 54Mbps 
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Figure 4-24: Delay at 100m range and data rate at 54Mbps 
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4.5.3.2 Aggregate Throughput Analysis: 802.11a/b/g Networks     
 

The performance results on the aggregate throughput are shown below. The results have 

been simulated over the 50m and the 100m range with different data rates, 2, 10 and 

54Mbps for 802.11a/b/g on 4 non-overlapping channels. The results show a similar 

pattern where the 50m range results in better performance having more data delivered at 

the receiving nodes. Figures 4-24 and 4-25 show that 802.11a performed worse at a 

2Mbps data rate.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4-26 shows that all network performance at 10Mbps have slight variations with a 

maximum throughput of 8.8Mbps when operating over 4 non-overlapping channels. The 

results showed that with streaming data every 2 seconds with more than 1 channel at data 

rate of 10Mbps with the option to switch channel can yield a high performance among all 

the networks. Figure 4-27 shows significant network degradation when operating at the 

100m range with aggregate throughput within the range of 0.1 to 1.75Mbps.  

 

             

Figure 4-25: Aggregate throughput: 50m range and data rate of 2Mbps
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Figure 4-26: Aggregate throughput: 100m range and data rate of 2Mbps 
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Figures 4-28 and 4-29 with data rate of 54Mbps the 802.11a/g networks outperformed the   

802.11b which showed no performance change when the range is increased from 50m to 

100m; again this is due to the maximum data rate of 11Mbps for 802.11b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-27: Aggregate throughput: 50m range and data rate of 10Mbps 
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Figure 4-28: Aggregate throughput: 100m range and data rate of 10Mbps 
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Figure 4-29: Aggregate throughput: 50m range and data rate of 54Mbps 
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Figure 4-30: Aggregate throughput: 100m range and data rate of 54Mbps 
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4.5.3.3 Packet Delivery Analysis: 802.11a/b/g Networks     
 

The packet delivery ratio results are shown below in Figures 4-30 to 4-35 as a function of 

the number of 4 overlapping channels. Performance was measured at 50m and 100m 

intervals while the data rate varied from 2Mbps to 54Mbps.  In Figure 4-30, while there 

was an increase in packet delivery for the 802.11a/g networks as the number of channels 

increase, there was virtually zero percent (0%) delivery rates for 802.11a – which does 

not perform well under 6Mbps. This performance remained virtually similar over all three 

networks when the node range was increased from 50m to 100m, as depicted in Figure 4-

31.  

  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figures 4-32 and 4-33 all networks delivered almost similar number of packets ranging 

between 20-87% delivery rates, except for the 802.11a which showed virtually no packets 

being delivered. Significantly lower percentages of packet delivery ratio was evident as 

the node range increased from 50m to 100m, although there was an upward trend in 

packet delivery over the four channels in that scenario. 

 

 

 

 

Figure 4-32: Delivery ratio at 50m range and data rate of 2Mbps 
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Figure 4-31: Delivery ratio at 100m range and data rate of 2Mbps. 
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Figures 4-34 and 4-35 showed that the 802.11b delivery rate was significantly below 10% 

at 54Mbps. This is owing to the fact that 802.11b has a maximum raw data rate of 11 

Mbps.  All networks performed poorly under 50% delivery rate when operating at 100m 

range at 2, 10 and 54 Mbps data rate as can be seen in Fig. 4-31, 4-33 and 4-35.  

 

 

 

 

 

 

 

 

 

 

 

 

The results are similar to that of the aggregate throughput, in that, the more channels 

utilised for transmission, the more packets are delivered.  The most packets are delivered 

at the range interval of 50m, and data rate of 10Mbps. 

 

Figure 4-34: Delivery ratio at 50m range and data rate of 10Mbps 
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Figure 4-33:  Delivery ratio at 100m range and data rate of 10Mbps 

0

2

4

6

8

10

12

14

16

18

1 2 3 4

P
ac

ke
t d

el
iv

er
y 

ra
tio

 (
%

)

Number of Channels

802.11a

802.11b

802.11g

 

Figure 4-36: Delivery ratio at 50m range and data rate of 54Mbps 
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Figure 4-35: Delivery ratio at 100m range and data rate of 54Mbps 

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4

P
ac

ke
t d

el
iv

er
y 

ra
tio

 (
%

)

Number of Channels

802.11a

802.11b

802.11g



Chapter 4: Multi-channel Distributed Coordinated Function over Single Radio in WSNs 
 

 

 
113 

This clearly showed that contention based network perform poorly when the 

communication range exceeds 50m. Moreover, the additional overhead experienced 

during channel switching along with the distance range affect the performance.  There are 

factors that can influence the data delivery performance in wireless network with no 

exception to WSNs including the environment, network topology, and traffic patterns- the 

precise impacts of these could be examined in a future work. In addition the 2.4GHz 

frequency band is already overcrowded with activities of other networks sharing the same 

unlicensed band. WSN gives a better performance at short range and with continuous 

streaming data long range transmission may experience many of the mentioned factors 

which result in poor performance and as such long range transmission not recommended 

for WSN. 

 

 

4.6 Conclusions  
 

In this chapter, the proposed MC-DCF that is a backoff algorithm for multi-channel 

access based on the 802.11 DCF protocols was examined. This algorithm allows node to 

have access to multiple non-overlapping channels by accessing channels dynamically 

through channel switching after a set threshold has been met. During the MC-DCF 

design, the need for multi-channel assignment in WSN was analysed and discussed, 

where the future sensor surveillance system with streaming data may find it difficult to 

operate in 802.15.4 network due to congestion of the most frequently used 2.4GHz 

frequency band.  The results from the simulation results proved futile for future 

development in this area for 802.11 networks. It was observed that better performance is 

achieved when using MC-DCF in analysing the impact of WSN in the 802.11 network.  

MC-DCF was further tested in 802.11a/b/g networks at different distance and rates. It was 

observed that at the 50m range with 10Mbps all network performed well. Overall 802.11g 

performed well with all data rate and this is because it has the additional legacy for 

backward compatibility with 802.11b, up to 80% delivery rate was obtained.   

 

Overall, MC-DCF exhibited prominent ability to utilise multi-channel transmission for 

the future with 802.11 for wireless sensor surveillance system that is low-cost, reliable, 

easy to manage, easy to deploy and can process video data for automated real-time alerts.  
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Researchers will be able to achieve the goal of long term, independent operation of sensor 

network deployments under this constraint.  
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Chapter 5  

 

Multi-channel Multi-radio using 802.11 based Media 
Access for Sink Nodes in Wireless Sensor Networks 
 

 

5.1 Overview 
 

The next generation surveillance and multimedia systems will become increasingly 

deployed as wireless sensor networks in order to monitor parks, public places and for 

business applications. The convergence of data and telecommunication over IP based 

networks has paved the way for wireless networks. Functions become more intertwined 

by the compelling force of innovation and technology. For example many closed-circuit 

TV premises surveillance systems now rely images and data over IP networks instead of 

standalone video circuits.   

These systems will increase their reliability in the future on wireless networks and on 

IEEE 802.11 networks.  However due to limited non-overlapping channels, delay and 

congestion there will be problems at the sink node.  The necessary steps are provided to 

verify the feasibility of round robin technique in these networks at the sink node by 

using the technique to regulate multichannel multi-radio (MCMR) assignment.  

Demonstration through simulations that dynamic channel assignment scheme using the 

multi-radio, multichannel at sink nodes can perform close to optimal on the average 

while multiple sink node assignment also performs well.  The methods proposed in this 

chanpter can be a valuable tool for network designers in planning network deployment 

and for optimising different performance objectives. 

 

5.2 Introduction 
 

Wireless sensor networks are renowned for having limited transmission ranges and 

organise themselves in an ad hoc fashion. When wireless sensor cannot reach the 

receiver directly it relies on other sensor nodes to relay data between them.  They are 
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assumed to have constrained energy sources because they rely on batteries which can or 

cannot be replaced. Wireless sensor networks consist of large number of sensors [1,3-

6,86] each are equipped with the capability of sensing the physical environment, data 

processing and communicating wirelessly with other sensors.  The number of nodes in a 

sensor network is significantly larger than other wireless networks; the difference can be 

of several orders of magnitude.  Sensors are usually low-cost devices with severe 

constraints with respect to energy source, power, computation capabilities and memory.  

Sensors are usually densely deployed and the probability of failure is usually much 

higher.  The sensors are usually stationary rather than constantly moving, however the 

topology can still change frequently due to node failure. 

 

The previous chapter and works [87-88] studied multichannel communication based on 

the 802.11 DCF over a single radio for wireless sensor networks in order to improve its 

communication performance on throughput, end-to-end delay and channel access delay. 

The proposed backoff algorithm, MC-DCF allows node to have access to multiple non-

overlapping channels by accessing channels dynamically through channel switching 

after a set threshold has been met. These works focus on high data rate streaming that 

would be considered for sensor surveillance system that would be deployed for 

organisation, parks, and vehicular traffic not for remote monitoring. For this reason 

static nodes that are always powered were considered and as such the depletion of 

battery life was not considered. In the previous chapter MC-DCF performance analysed 

the non-overlapping channels on the mentioned metric against other protocols, it studied 

the impact of the number of non-over-lapping channel in the 2.4 frequency band of the 

802.11 network, analysed the density of the network, examined the effect of the sink 

node receiving data directly from sources within its range and finally the a performance 

analysis of 802.11a/b/g was done. It was observed that MC-DCF had encountered poor 

performance when receiving data at the sink node due to a single radio that had to be 

constantly switching channels and as such more work needed to be done in this area to 

improve the performance at the sink. Also it was observed that at 50m range with 

10Mbps all network performed well.   In this chapter the focus is on improving the 

severe degradation that resulted at the sink node and the relationship between 

communication links from a graph based approach; this approach has been formally 
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modelled by researchers and the following will be considered to improve the MC-DCF 

model: 

• Multiple sinks with single radio 

• Single sink with multiple radios 

• Single sink with multi-radios in a round robin fashion 

• Multiple sink with multi-radios 

 

These solutions improve contention, limited bandwidth and interference which are some 

of the barriers preventing successful delivery of large amount of data. The multichannel 

MAC protocol designed to provide high throughput and high delivery ratio during high 

rate traffic in the IEEE 802.11 network that normally use as Access Points (APs) or at 

cluster heads in sensor networks.  WSN in our studies uses constant bit rate (CBR)  for 

streaming data that mimics surveillance and multimedia sensor network data that is 

foresee to pose significant problem operating in smaller network such as IEEE 802.15.4 

and when IEEE 802.11n becomes popular in the future. Exploring the best possible use 

is a challenging problem, but the future of WSN is foreseen to be used on hand held 

devices such as mobile phones to sense and interact around environment for safety of 

individual travelling in areas such as parks and or lonesome areas that trigger alerts to 

security personnel. 

 

A number of works has been devoted to the problems of sensor networks but not for 

high data rate for 802.11 networks as in the previous chapter. This work looked at 

topology control [89-90], power management [44,91], energy aware and optimal routing 

[92-101]. Recent focus has shown concentration in multichannel assignment [58,75-

82,84,100,102].  Multichannel communication is an efficient method to eliminate 

interference and contention on wireless medium by enabling parallel transmissions over 

different frequency channels. Most work on multichannel focus on: 

• Static approach where each interface is fixed permanently or for a long period 

of time on a channel.  

• Dynamic approach, which allows interfaces to switch channel from time to 

time to exploit the maximum channel diversity. 
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• Hybrid approach, where a fix interface on a channel is used for package 

control and exchange.  The other interfaces are used to switch among 

remaining channels for data transmission.  Other hybrid approaches consist of 

two parts; one part handles MAC issues and the second part is a distributed 

assignment algorithm. 

 

The rest of this chapter is organised as related work, system model and problem 

formulation, simulation results and discussions, and, finally conclusion and future work. 

 

5.3 Related Work 
 

The multichannel multi-radio approach in IEEE 802.11 based wireless networks has 

been widely studied by a number of researchers and can be categorised as centralised 

and distributed approaches. The centralised approach has been further categorised as: 

• Flow based 

• Graph based  

• Partition based  

 

A centralised flow based approach presented in [58,74,103-104] proposes a centralised 

joint channel assignment and multi-path routing algorithm. The channel assignment 

algorithm first considers high load edges. The routing algorithm uses both shortest path 

routing and randomised multi-path routing which is a set of paths used between any pair 

of communicating nodes. The joint channel assignment and multi-path routing 

algorithm proceeds in an iterative fashion. However, their algorithm is based on 

heuristics and the worst performance bound on its performance is not known. In 

addition to their scheme no guarantees on fair allocation of bandwidth is provided.  

However, simulation study shows that by deploying just 2 NICs per node, it is possible 

to achieve a factor of up to 8 times improvements in the overall network goodput, when 

it is compared with the conventional single-NIC-per-node on wireless ad hoc networks. 

This is inherently limited to one single radio channel.  In [74] they assumed that there is 

no system or hardware support to allow a radio interface to switch channels on a per-

packet basis. They also assumed a radio interface is capable of switching channels 
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rapidly and is supported by system software. Their evaluation demonstrates that our 

algorithm can effectively exploit the increased number of channels and radios, and 

performs much better than the theoretical worst case bounds.  Kodialam et al [103] 

define a standard multi-commodity flow problem on a MC-MR network; they assume 

that the traffic demand for different source destination pairs is given in the form of a 

rate vector. In their algorithms, it is not clear if it is possible to jointly optimise routing, 

link channel assignment and scheduling in a distributed manner. 

 

A centralised, graph based approach has been proposed in [56-57,105], where links and 

nodes are considered as edges and vertices of a graph respectively in formulating radio 

and channel assignment by assigning edges to vertices.  The limitation of these methods 

is that it is very difficult to capture network load information with a graph model. 

Network flow based centralised approaches can be found in [58,74] and [103], where 

multi-radio multichannel is modeled based on network flows to overcome the 

limitations associated with graph based approaches. These approaches are not realistic 

as constant traffic sources are assumed all the time while network traffic can be bursty 

in nature. Mahesh et al [105] have considered the channel assignment, radio-channel 

mapping problem in multi-radio wireless mesh networks. They have argued that a 

traffic-independent channel assignment that provides a connected and low interference 

topology can serve as a basis for dynamic, efficient and flexible utilisation of available 

channels and radios. In [78] a simple approach to address this issue is common channel 

assignment (CCA) which assumes that radio interfaces at each node are assigned to the 

same set of channels. This leads to inefficient channel utilisation in the typical case 

where number of interfaces per node is fewer relative to the number of channels.  

Another graph based approach studied in [57] on an extensive evaluation via 

simulations shows that multi-radio scenarios, yields performance gains in excess of 

40% compared to a static assignment of channels. In [106], authors have addressed co-

existence of heterogeneous interfaces and introduced a radio based novel graph model 

which captures the heterogeneity of interfaces.   

 

A partition approach [107] designs a new algorithm that takes advantage of the inherent 

multi-radio capability of Wireless Mesh Networks (WMNs). They partition a network 

in a manner that not only expands the capacity regions of sub-networks but also allows 
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distributed algorithms to achieve the capacity regions.  However, they will need to 

allow dynamic channel allocation that will require the channel allocation algorithms for 

online and distributed operation. 

 

A distributed gateway for multi-radio multichannel approach has been developed by 

[13] and [14] where mesh gateways are considered as sink and source of data. These 

approaches consider the coexistence of more than one radio interfaces of the same 

homogenous standard on a mesh router and use more than one available orthogonal 

channel. In [106], authors have addressed co-existence of heterogeneous interfaces and 

introduced a radio based novel graph model which captures the heterogeneity of 

interfaces. They have also formulated scheduling, routing and channel assignment as an 

optimisation problem. Their results show improvement in network capacity while 

preserving node level fairness.  In [108] the given network consists of a set of stationary 

wireless routers where some of them also act as gateways to the Internet. They assume 

that the paths between the routers and the gateways have been pre-determined, for 

example, the neighbor-to-interface binding mechanism in [13] which can be used to 

determine the paths and the logical topology of the network. In their work the 

implementation can either be centralised or distributed. For distributed implementation, 

each node is responsible for assigning the optimal channels to some links. One of the 

distinct advantages of this algorithm is that it has the ability to assign the non-

overlapping channels and also the partially overlapping channels. This allows the IEEE 

802.11 frequency band to be fully utilised. 

 

 

5.4 Problem formulation 
 

The problem of designing an efficient and distributed algorithm was studied to 

overcome the severe degradation at the sink node when using single radio to switch to 

multiple channels.  The aim is to achieve better performance in terms of delay, 

throughput and packet delivery ratio.  In the previous works [87-88] the single radio 

switches nodes to receive data from other sending nodes on different channels.  The 

results obtained at the sink from the sending nodes have been observed that MC-DCF 
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performs very poorly.  Source nodes close to the sink suffer from severe delay in 

delivering packets to the sink.  This was as a result of more than one channel delivering 

packet to sink node which operate on a single radio, where switching between channel 

has caused build up of congestion in that a bottleneck has been created.  The problem 

will be addressed at the sink node in the following ways: 

 

5.4.1 Multiple sink nodes 
 

The number of sink nodes will increase to collect data from receiving nodes.  The sink 

nodes will equip with a single radio and will be required to do channel switching in the 

same manner as in [87-88].  The advantage is that all data from senders will be received 

by more sink nodes located in strategic position. This will eliminate the burden 

encounter by a single sink node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multiple radio interfaces will be assigned in the sink node to receive data from each 

non-overlapping channel. Each radio is assigned to a channel from each sending nodes.  

 TCL Script 

TCL Library 

Network Layer 

MAC 

Radio 1 Radio 2 Radio 3 

Channel 1 Channel 2 Channel 3 

Figure 5-1: Design overview for Multi-channel Multi-radio 
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This will eliminate channel switching to all sending nodes by a single radio interface.  

Figure 5-1 shows modification at the MAC of the existing MACs protocol stack [73] 

this incorporate multiple radios, a new component is added to define the radio and radio 

number is set in the TCL script of the NS2.  A new field is also created in the MAC into 

the packet header to index the channel object.  This helps to achieve conflict free or 

reduce interference among neighbouring nodes.  To reduce communication interference 

nodes within communication range sense the network and conduct channel switching as 

illustrate in [87-88] and in chapter 4. 

It was taken into consideration that it is not practical to have same number of radio and 

same number of channels at all time.  The practicality of it depends on the network size.  

A medium to large network may have more nodes sending data to the sink. 

 

By taking advantage of physical characteristics of the radio environment, the same 

channel can be reused by two or more nodes provided that the nodes are spaced 

sufficiently.  To avoid co-channel interference non-overlapping channels have been 

used.  Since nodes are aware of all the channels at start-up and are able to switch 

channels based on a set criterion in [87-88], the nodes sending packets to the sink are set 

to operate on a particular channel.  All nodes are place where they are in reach of the 

sink but separated by enough gaps between sending nodes.  The reason for such 

arrangement is to ensure radio interface switching between nodes on same channel will 

avoid co-channel interference. 

Formally, channel assignments problems have been modelled as: 

• Graph based [109-110] where the vertices V correspond to nodes and edges 

correspond to pairs of stations whose transmission areas intersect. 

• Ring based [110] is considered as a form of vector where the ring is a sequence 

of n vertices.  

• Grid based [110] is considered a form of vector represent tessellations of a plane 

with regular polygon, where the grid has row (r) and column (c) indexed from 

top to bottom and from left to right. The grid based can be classified as: 

o Bi-dimensional 

o Cellular 

o honeycomb 
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• Tree based [110] a unidirected graph T= (V, E) is a free tree when it is 

connected and has exactly |V|-1 edges. 

These assignment techniques all used various vectors colouring problems which are 

based on arithmetic progressions to solve the channel assignment problems. 

 

5.4.2 Multi-Radio Switching 
 

The WSN considered in [87-88] has been formed by static nodes and a sink node. The 

multichannel assignment will be presented into two ways. One way, each sink node is 

equipped with a single radio and can switch channels to receive data packets.  The other 

way, sink node is equipped with multiple radio interfaces and has a distinct channel 

assign to each radio.  However the transmitting nodes to sink remain on the same 

channel and not allowed to switch channel during transmission.  In case of any changes 

or failure of any node or radio interface should occur, the sink node will update itself 

about the changes. 

 

Multichannel Multi-Radio (MCMR) problem can be modelled as an undirected graph 

where vertices denoting radios comprise the wireless network and a set of unidirected 

edges between vertices representing node link.  The rationale is to prevent nodes on 

same channel to attempt to send to the same radio interface.  Nodes are numbered to 

prevent conflicts.  Transmission take place interns base on number.   Unidirected graph 

modelling [108] has been used to model channel assignment in wireless network. 
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Figure 5-2:  Sink Node with 3 Radios Receiving from 6 Transmitting Nodes on 
3 non-overlapping channels (C1, C2, C3) 

 

Consider a graph G = (V, E) where V is the set of wireless radios at the sink and L is the 

set of communication links between radios and transmitting nodes. For example, there 

are three radio interfaces at the sink node as illustrated in fig. 5-2 R1...i, each radio 

interface is correspond to one or more edge nodes Ni...x but only one link can be active at 

any given time.  The broken line represents the inactive link and only becomes active 

when the associate radio switches to the active channel of that node.  Each transmitting 

node is assign to a channel and each radio only switch to a node on the same channel. A 

radio can receive data packet from more than one node on same channel. The radio link 

derives as: Ri ≤ Nxn, where x and n is the node and channel number respectively.  

Consequently, only three links in fig. 5-2 can be active simultaneously, if D, E, F 

attempt to transmit when A, B, C is transmitting then a radio link conflict graph 

colouring problem has occurred. To avoid a conflict graph colouring problem from 

occurring each Edge (E) that connected to a Vertex (V) is assign a different colour. In 

the case where there are two E connected to each V, they are given colours True and 

False, this means that all the True can be transmitted at the same time and all the false 

become inactive.  The colour false becomes active when the radio link switches to the 

inactive edge.   
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Algorithm 1:  Relationship between two communication links using G = (V, E).  

G represents a graph, while V represents Vertex and E Edge(s). 

• For this algorithm V is a single Vertex while E can be 2 or greater (E ≥ 2). 

• The equation G = (V, E) can therefore be replaced by G = (V, EI), where the 

subscript ‘I’ represents the variable for the number of Edges available. 

The graph methodology is used to express the relationship between two communication 

links (represented by E in the equation) sending data to a single radio receiver 

(represented by V in the equation) non-simultaneously. Therefore at no time should 

both communication links be active to the common receiver/radio interface. The 

algorithm shown below represents a system using two communication links or edges.  

The objective is to ensure that only one communication link is active at any one time.  

The algorithm is laid out in a semi programming format.   

_____________________________________________ 

Integer E1; /*E one of EI*/ 
Integer E2; /*E two of EI*/ 
Integer Communication_Link_Active_Status; 
Integer Communication_Active_Link; 
Integer Active; 
______________________________________________ 
1. Start Program; 

 
2. POLLING_TX _ACTIVE_STATUS: /*Program location*/ 

3. Poll (Communication_Link_Active_Status); 

4. Active = 1 

5. If (Communication_Link_Active_Status == Active); 

6. { 

7. Goto (ACTIVE_TX_SELECT); 

8. } 

9. Else 

10. { 

11. Goto (POLLING_TX _ACTIVE_STATUS);       

12. } 

 
13. ACTIVE_TX_SELECT: /*Program location*/ 

14. While (Communication_Link_Active_Status == Active); 

15. { 

16.    Poll (Communication_Link_Active); 

17.       If (Communication_Link_Active >0); 

18.       { 

19.          if (Communication_Link_Active == 1); 

20.          { 

21.             Print (“Edge 1 is the active link.”); 

22.           } 

23.             If (Communication_Link_Active == 2);    

24.             { 

25.                Print (“Edge 2 is the active link.”); 
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26.                            } 

27.                                 If (Communication_Link_Active > 2);    

28.                                 { 

29.                                    E_Greater_Than_Two = Communication_Link_Active; 

30.                                    Print ("Edge %i is the active link.\n ", E_Greater_Than_Two); 

31.                                  } 

32.       } 

33.          Else 

34.          { 

35.              Print (“Error! Not active communication link found.\n”); 

36.             Goto (END_PROGRAM); 

37.          } 

38. } 

 
39. Goto (POLLING_TX _ACTIVE_STATUS);  

 
40. END_PROGRAM: /*Program location*/ 

 
41. End Program; 

 
Keys:  
Goto = Jump to program location (Location Name) 
Poll = Check the status flag (Status Flag Name)  

 

The unidirectional links considered between the sink node and the transmitting nodes. 

Each source node is equipped with a single radio but has access to multiple channels.  

The sink node which represents the server is equipped with a set of receiving radio 

interfaces. The ability for success transmission between sender and receiver within the 

wireless range is denoted by a set of logical link (L) with C channels available.  A 

binary vector define as Ll; l the number of links to a channel Cn; n the number of 

channels as follows:  

3(56	) + � =  : 1, => �?@ �=�A BCDC EℎD �?@  GℎH��D�                                             
0, JEℎDKL=CD                                                      (5.1)                            O                    

For n = 1,..C, l = 1,..,L 

 

Since only one channel can be assigned to each logical link �, between the lists of 

elements  3(56	) + 1, 3(56	) + 2 … , 35R, only one of them is equal to 1 and the rest are 

equal to 0. Therefore, the following equality constraints: 

3(56	) + 1 + ⋯ + 3(56	) + � = 1, ∀ � = 1 … , 3   (5.2)           

 U  V3 = 1                                                
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The dimension of the matrix A depends on the link on the same channel which uses the 

same radio interface. The active link is always equal to 1 and 0 otherwise.  Therefore for 

each row in matrix A one of the entry is equal to 1 and 0 otherwise.  

 

The second constraint is imposed by the sink interfaces.  The sink interfaces is the 

solution of interface to node binding problem.  The constraint requires some links from 

a given node to use the same channel and radio. That is, if two links, y and z from a 

given node are assigned to use the same radio, then these two links need to be assigned 

to the same channel.  This can be expressed as: 

3(W6	) + � =  3(X6	) + �,   ∀ � = 1 … ,           (5.3)            

U BV = 0                                       

For each row in matrix B, two of the entries are equal to 1 and -1 respectively, and all 

other entries are equal to 0.  The dimension of B depends on the number of link pairs 

that share a common radio interface. The vector definition in (1) and the equality 

constraints in (2) and (3), together form the following non-empty feasible set. 

Y = Z3 ∶ � ∈  Z0,1]  ∩ V3 = 1 ∩ _3 = 0]    (5.4) 

Any of Y represent one feasible link assignment to a radio interface on same 

channel allocation. 

 

Let’s consider any two arbitrary links d and e, and their associate elements in vector V.  

Two C x 1 vectors have been defined as follows: 

à =  b3(a6	) + 1 3(a6	) + 2 … 3ac d  

è =  b3(e6	) + 1 3(e6	) + 2 … 3ec d       (5.5) 

 

Ri x i define as the radio matrix at the sink. The element RAD Є [0, 1] represents the radio 

interface portion between nodes A and D to switch on the same channel Cn.  R is a 

symmetric matrix and its diagonal elements all equal to 1. If node A and D are assigned 

to links d and e respectively, then  

àf� è = Kgh      (5.6) 
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For example, using the three non-overlapping channels i.e. C = 3. R becomes a 3 x 3 

unitary matrix. If two arbitrary links d and e are assigned the same channel, then  

àf� è = 1. otherwise, the product will equal to zero. 

 

 

5.5 Simulation Results and Discussions 
 
The simulations will be using the design model of chapter 4 and the work in [87-88], 

where the original 802.11 DCF was modified to design an improved contention based 

MC-DCF protocol to perform channel switching in a multichannel single radio 

environment.  This environment was improved upon at the sink node, where previously 

it was observed that channel switching among nodes by a single radio at the sink node 

causes severe degradation. This resulted in high packet delay and delivery ratio. The 

performance was analysed at the sink of the MC-DCF protocol by simulations with NS2 

[18]. The 802.11 radio model of the NS2 used; this model has different topology and 

traffic generator.  

 

Different simulation scenarios have been studied according to three different 

performance metrics: aggregate throughput, delivery ratio and access delay.  The sensor 

nodes randomly placed in a 1000x1000m2 areas. The radio range is set to 50m, 

simulations run for 500s in each scenario and the radio bandwidth 10Mbps. These 

settings have been maintained from chapter 4 and the work in [87-88] where it was also 

observed that MC-DCF performed well within the mentioned range and rate in 

comparison to other ranges and rates.  The number of nodes is 100. The numbers of 

channels used are three non-overlapping of the IEEE 802.11 that was used in our 

previous work [87-88] and which are used to compare result and measure the 

performance improvement. Since the spectral mask only defines power output 

restrictions up to ±11 MHz from the centre frequency to be attenuated by 30 dB. It is 

often assumed that the energy of the channel extends no further than these limits. These 

simulations use static nodes to mimic surveillance sensor network with high data rate 

streaming that would be deployed for organisation, parks, and vehicular traffic with 
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nodes that are always powered, as such the energy consumption of the nodes are based 

on the power output ±11 MHz. 

With the improvements made at the sink(s) to receive data directly from sending nodes 

within range the current simulation results has been compared with the previous results 

in [87-88] and chapter 4 to determined the level of performances in percentages, that is 

new results minus the previous results divided by the previous results multiplied by 100 

(NR-PR/PR*100).  From the formulated solutions and equations derived to improve the 

degradation at the sink node encountered from the previous work the solutions that 

obtain better performance will be considered as the most feasible option for the future 

MC-DCF.   

 

5.5.1 Multiple Sinks with Single Radio 
 

In the previous chapter the effect of the sink received data from sources within range 

that are sending data to be accepted were examined.  It was observed that the more 

sources sending to the single sink the more delays were encountered.  In this scenario 

the number of sink nodes increased to receive data from sources within the ranges of the 

sink nodes.  No modification to the MC-DCF protocol was made except to increase the 

number of sinks to three with each having a single radio and the capability to switch 

channels as in the previous chapter.  The simulation last for 500 seconds all nodes send 

CBR every 2 seconds. 

 

Figure 5-3 show delay impact with the increase in sink nodes that are receiving data 

packets from sending nodes within range.  It has been observed that with three channels 

there has been a 53% reduction in delay at the sink side comparing to the high level of 

delay in the previous chapter when only one sink node was used.  In Figure 5-3 with 

two channels sending data from sources, there has been an approximately 32% delay 

improvement.  Single channel and 802.11 DCF show little improvements. This indicates 

that single channel performance does not improve with increasing sink nodes as the 

decisions are based on the window size resetting, backing off, wait states and the fact 

that all nodes are contending for the same medium.  MC-DCF with multiple channel 

switching and single radio interfaces can yield a better performance when using 
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multiple sinks in comparison to single channel which shows a better performance in the 

previous chapter. 

 

 

Figure 5-3: Delay impact from source nodes using multiple sinks with single radio interface. 
 

 

Figure 5-4 shows an improvement of over 41% for three channels with packet delivery 

ratio when the number of sink increases by three as compare to single sink node in our 

previous work.  With two channels sending data from the sources to the sinks there has 

been improvement by over 25% comparing to the poor performance resulted with single 

channel.  Similarly where the delay with single channel shows no significant 

improvement, packet delivery ratio shows no major improvement. 
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Figure 5-4: Delivery ratio impact from sources using multiple sinks with single radio interface 

The aggregate throughput in Figure 5-5 of the overall system with source nodes sending 

to the sinks have shown that with three channels 38% more data have been delivered to 

the sink compare to that of single channel.  Single channel in all instances has not 

shown any significant improvement with increasing of sink nodes to receive data from 

the source nodes. 

 

 
Figure 5-5: Throughput of overall system using multiple sink nodes with single radio interface. 

 

 

With analysing the impact of MC-DCF with one to three channels in comparison with 
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improvement using a single channel or the original 802.11 DCF which only operates on 

a single channel.  The reason for this improvement is that each sink has less data to 

receive from the senders.  The same amount of data simulated in previous work was 

going to a single sink node.  The improvement proved that increasing the sink nodes 

obtained a better performance as the traffic load has split to be received by more sink 

nodes.  Therefore channel switching by a single radio has less data to retrieve therefore 

less time is spent to switch between channels from senders and the queuing of packet 

data has been reduced.   

 

 

5.5.2 Single Sink with Multiple Radios 
 

In the second set of simulations, a single sink node used and increase the number of sink 

radio interfaces to three.  Figure 5-6 shows sink node with three radio interfaces.  Each 

interface is assign to a channel and three sending nodes assign to each channel to create 

a one to one mapping against interface.  In this case no channel switching is required.  

Each sender to the sink remains on said channel throughout the simulation.  This allows 

constant flow between sending node and the radio interface.   

 

Figure 5-6: Single sink node with multiple radios. 
 

Figure 5-7 shows the impact delay when MC-DCF uses a single sink with three radio 

interfaces to receive packet data which creates a one-to-one mapping in receiving data 
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from sending nodes.  MC-DCF with single radio from previous work had to perform 

channel switching to receive data when two or more non-overlapping channels are 

sending data to the sink.  The result in previous chapter showed that when two or more 

channels were used there was poor performance; the repeat of this performance is 

shown in Figure 5-7, except that only three sources were assigned to send data to the 

three interfaces, where each interface and each node is assign to one of the non-

overlapping channels.   However, when the one-to-one assignment is used there have 

been over 40% successes in improvement for delay.  

  

 

 

Figure 5-7: Delay impact with multichannel multi-radios communication at sink node. 
 

This outcome indicates that if eliminating radio switching between channels and 

receives data flowing constantly from senders to the receiving radio interfaces then the 

performance at the sink can be improved. However this would not be practical when 

network size increases, as one would need to constantly increase the radio interfaces at 

the sink in addition, the limitation of non-overlapping channels would not make it 

feasible as there would not be enough non-overlapping channel to assign to radio 

interfaces. 

 

The packet delivery ratio in Figure 5-8 shows similar improvement of approximately 
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with single radio in our previous work. Each interface on a sending node is assign to 

different non-overlapping channels.  802.11 DCF showed little or no improvement as 

this protocol only design to operate with single channel.  As mention before the one-to-

one assignments is not ideal for a large network as it would not be practical to have each 

radio interface assign to a non-overlapping channel from a sending node.   

 

 

 

Figure 5-8: Delivery ratio impact with multichannel multi-radios communication at sink node. 
 

 

Figure 5-9 also showed a 53% improvement in the one-to-one assignment with 3 non-

overlapping channels for aggregate throughput. However for small parks and building 

areas this kind of implementation can be considered. 
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Figure 5-9: Throughput impact with multichannel multi-radios communication at sink node. 
 

The one to one scenario demonstrated above is not practical in all instances but will 

depend on the size of the network and the number of sending nodes directly to the sink.  

Ideally there will be more nodes sending to the sink that will create a one-to-many 

assignment, where many nodes are sending to the same radio interface.  Sending nodes 

can be odd or even in numbers. Some equations are derived to solve these scenarios for 

our next simulation.   

 

 

5.5.3 Single Sink with Multi-Radios: Round Robin Me thod 
 

The third scenario comprises multiple radios, multiple channels with even number of 

multiple sending nodes. The equations have the capability to simulate odd or even 

sending nodes to the sink node. Sending nodes in these equations are referred to as 

transmitter and the radio interface as receiver. G represents an uneven transmitter 

sending to receiver.  As an uneven transmitter G has the capability of sending data to all 

receivers by switching channels.  To identify G to each receiver: G1 represents G when 

sending to the first receiver, G2 represents G when sending to the second receiver and 

G3 represents G when sending to the third receiver.   

 

0

0.1

0.2

0.3

0.4

0.5

1 2 3

A
gg

re
ga

te
 t

h
ro

u
gh

o
u

t (
M

b
p

s)

Source nodes

MC-DCF (MCMR)

802.11 DCF

MC-DCF (MCSR)



Chapter 5: Multi-channel Multi-radio using 802.11 based Media Access for Sink Nodes 
in WSNs 
 

 

 
136 

The equations contain only logical states (active (1) and inactive (0)) values.  When a 

node is in its active state its value is equal to one and when it is in an inactive state its 

value is equal to zero. For example RX1 = {TXA | TXC, TXG1 = 0}; Where the set RX1 

consist of integer TXA such that TXC, TXG1 equal to zero. Therefore when receiver RX1 is 

transmitting to TXA, TXA value is set to one. TXC and TXG1 cannot be transmitting to 

receiver (RX1) simultaneously as such their values are set to zero (inactive state).  

 

Figure 5-10 illustrate a radio interface at the sink (receiver, RX1) accepting data from a 

node (transmitter, TXA = 1) represented by an unbroken link. Other nodes (TXC, TXG1) 

being zero are represented by broken links to illustrate their inactive state. 

 

 

 

Figure 5- 10: Radio Interface (RX1) Receiving from Node TXA. 
 

 

The following equations for the simulations have been expressed in the tables below.  

 

Even Transmitter to Receiver ratio: (TX:RX); TX = Even Positive Integer, TX ≥ 4, RX ≥ 2 

 

When there are even senders to the sink node, each radio interface share even number of 

sending nodes and the radio interface remain on the assign channel with all nodes get 

even turn in transmitting its data to the sink in a round robin fashion which is explained 

later in this section. Table 5-2 define the equations. 
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The equations contains only logical states; Active (1), non-active (0) values 

Senders (TX = 6) Receivers (RX = 3) Equation 

A = (TXA) 1 = (RX1) RX1 = {TXA | TXD = 0} 

B = (TXB) 2 = (RX2) RX2 = {TXB | TXE = 0} 

C = (TXC) 3 = (RX3) RX3 = {TXC | TXF = 0} 

D = (TXD) 1 = (RX1) RX1 = {TXD | TXA = 0} 

E = (TXE) 2 = (RX2) RX2 = {TXE | TXB = 0} 

F = (TXF) 3 = (RX3) RX3 = {TXF | TXC = 0} 

Table 5-1: Equation for even sender to multiple radios at sink node on 3 non-overlapping channels 
 

 

Uneven Transmitter to Receive ratio: (TX:RX); TX =  Uneven Positive Integer, TX ≥ 5, 

RX ≥ 2 

 

The equations in Table 5-3 demonstrate when there are uneven numbers of sending 

nodes to the radio interfaces at the sink node. When there are uneven numbers of 

senders only one sender can transmit at a given time; a logical state is considered where 

the active node sending is equal to one and all other senders are set to zero.  In the 

equation, 7 senders are defined and the odd sender is assigned in a sequential order 

where it receive equal opportunity to send in respect of which channel it is assign; 

however the uneven node has the option to switch channels but not during its period of 

transmission. 

 

Senders  (TX = 7) Receivers (RX = 3) Equation 

A = (TXA) 1 = (RX1) RX1 = {TXA | TXC,  TXG1 = 0} 

B = (TXB) 2 = (RX2) RX2 = {TXB | TXE, TXG2  = 0} 

C = (TXC) 1 = (RX1) RX1 = {TXC | TXA, TXG1  = 0} 

D = (TXD) 3 = (RX3) RX3 = {TXD | TXF, TXG3  = 0} 

E = (TXE) 2 = (RX2) RX2 = {TXE | TXB, TXG2  = 0} 

F = (TXF) 3 = (RX3) RX3 = {TXF | TXD, TXG3  = 0} 
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G = (TXG1 when sending 

to 1st receiver, TXG2 when 

sending to 2nd receiver, 

TXG3 when sending to 3rd 

receiver) 

*sequential input to 

receivers {1 + 2 + 3}  

RX1 = {TXG1 | TXA,  TXC = 0} 

RX2 = {TXG2 | TXB,  TXE  = 0} 

RX3 = {TXG3 | TXD,  TXF  = 0} 

 

N.B. TXG1, TXG2, and TXG3 are switchable 

communication link from sender G going to each of 

the receivers. Therefore sender G has the same 

number of switchable time period to receivers. When 

G switch to a channel, G waits its turn to transmit 

then has the option to switch to another channel.   

 Table 5-2: Equation for uneven sender to multiple radios at sink node on 3 non-overlapping 
channels 
 

 

 

Uneven Transmitter to Receive ratio: (TX:RX); TX =  Uneven Positive Integer, TX ≥ 5, 

RX ≥ 2  

 

Table 5-4 equations yield the same outcome as Table 5-3 but have been express 

differently. 

• Firstly, begin with senders to Receiver in a ratio of 6:3 which represents 2 

transmitters to each receiver (2:1).  

• Secondly, multiply the output of ODD transmitter by the quantity of receivers, 

an even system have been created where G is the sequential sending nodes that 

can be on any channel, the radio interface at the sink will sense G and updates 

the number of receiver for data acceptance. However, G is not switch-able to 

another channel when data is being sent to the receiver in a cycle. 

 

The equations contain only logical states; active (1) and inactive (0) values. 

Senders (TX =7) Receivers (RX = 3) Equation 

A = (TXA) 1 = (RX1) RX1 = {TXA | TXC,  TXG1 = 0} 

C = (TXC) 1 = (RX1) RX1 = {TXC | TXA,  TXG1 = 0} 

G = (TXG1) *Sequential  time period to receiver 1 RX1 = {TXG1 | TXA, TXC = 0} 
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B = (TXB) 2 = (RX2) RX2 = {TXB | TXE, TXG2  = 0} 

E = (TXE) 2 = (RX2) RX2 = {TXE | TXB, TXG2 = 0} 

G2 = (TXG2) *Sequential  time period to receiver 2  RX2 = {TXG2 | TXB, TXE = 0} 

   

D = (TXD) 3 = (RX3) RX3 = {TXD | TXF, TXG3 = 0} 

F = (TXF) 3 = (RX3) RX3 = {TXF | TXD, TXG3 = 0} 

G3 = (TXG3) *Sequential  input to receiver 3 RX3 = {TXG3 | TXD, TXF = 0} 

Table 5-3: Equation for uneven sender to multiple radios at sink node on 3 non-overlapping channels 
  

 

These equations allow a round robin fashion; each radio operates as a single-Eulerian 

cycle, which listens to every node on same channel once in a cycle. When the radio is 

less than the number of sending nodes, the logics have been derive so that radio 

operates in a round robin fashion. The round robin technique does not limit the number 

of radio interfaces, each interface will operate in the same way which will allow the sink 

node (s) to receive data from senders in a more effective and efficient manner.  Take for 

example 6 sending nodes as illustrate in Figure 5-2 and Table 5-2 with even transmitter 

to receiver equations, assign to three non-overlapping channels, each radio interface will 

switch between 2 nodes per cycle.  When the radio interface on channel 1 senses the 

first sending node, it will receive its data packets and then sense the medium for the 

next node on the same channel.  It will switch to that the sending node receives its data 

and continues in that fashion throughout the simulation period. Figure 5-11 illustrate the 

round robin fashion where the radio interface(s) at the sink can receive from only one 

sender at any given time. When the interface is receiving the transmitter is equal to one 

which is represented by an unbroken link in the diagram and zero otherwise which is 

represented by the broken link. 
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Figure 5- 11: Round Robin Cycle 
 

In the third simulation scenario, a single sink node with three radio interfaces were 

used; each radio interface is assign to one of the 3 non-overlapping channels and six 

sending nodes to the sink, using the equations above in a round robin fashion.  This 

assignment is semi-dynamic where two transmitting node is assign to the same channel 

and each radio interface at the sink switches among sending nodes on the same channel 

which gives a 2:1 ratio; two nodes transmit to one radio interface.   

 

Figure 5-12 shows the delay impact among the six sending nodes and the radio 

interfaces at the sink. MC-DCF with the multichannel multi-radio (MCMR) assignment 

performs significantly better than MC-DCF with multichannel single radio (MCSR).  

When compared to the outcome with the performance of MCSR in the previous chapter, 

there has been an improvement of over 55% for delay.  This outcome indicates that with 

multiple radio interfaces MC-DCF can reduce the high delay encountered with single 

channel as the number of senders need not queue to wait on a single radio interface.  

Instead senders can be distributed among several interfaces.  This also reduces the 

extensive work of a single interface switching between several sending nodes to receive 

their data packages. 
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Figure 5-12: Delay impact comparison with one to many communications at sink node. 

 

 

Figure 5-13 observed a similar trend to that of delay where MCMR obtaining higher 

packet delivery ratio of over 51% compare to MCSR that perform very poorly from the 

previous chapter. Therefore, having multiple radio interfaces at the sink node to receive 

data packets from the three non-overlapping channels have improve the performance 

packet delivery and reduce the traffic load experience by a single radio interface.  

 

 
Figure 5-13: Delivery impact comparison with one to many communications at sink node. 
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Figure 5-14 shows the overall aggregate throughput for the total amount of data 

delivered to the sink. MCMR show an overall better performance of 49.6% in 

comparison to that of MCSR offered load.  

 

 

Figure 5-14: Throughput impact comparison with one to many communications at sink node. 
 

The single sink with multiple channels and radio interfaces scenario demonstrated 

above for MC-DCF has shown improvement in performance over a single sink with 

multiple channels and single radio interface. There has not been any significant 

improvement in the 802.11 DCF, as it is a contention based protocol design to operate 

on a single medium, where all nodes contend for the single medium.  
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encountered severe degradation when receiving from sources by a single sink with 

single radio interface that has to constantly switching between sending node interfaces. 

This scenario analysed the impact of data sending from sources to three sink nodes. 

Each sink was equipped with three radio interfaces using the three non-overlapping 

channels in IEEE 802.11. 

 

 Figure 5-15 shows sensor network with multiple sink nodes each having three radio 

interfaces. 
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Figure 5-15: Multiple Sink Nodes with Multiple Radios 
 

 

 

Figure 5-16 show delay impact with the increase in sink nodes and radio interfaces.  It 

has been observed that with three channels there has been a 96% reduction in delay at 

the sink side comparing to the previous work where the source node transmitting 

directly to the sink experience high level due to channel switching by the single radio 

interface. With two channels sending data from sources, there has been an 

approximately 87.4% delay improvement.  Single channel and 802.11 DCF show little 

improvements. As mention previously single channel performance does not improve 

with increasing sink nodes or radio interfaces as the decisions are based on the window 
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size resetting, backing off, wait states and the fact that all nodes are contending for the 

same medium.  MC-DCF with multiple channel switching and multiple radio interfaces 

have yielded  better performance when using multiple sinks in contrast to single channel 

and 802.11 DCF which shows a better performance in previous work. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-16: Delay impact from source nodes when using multiple sinks with multiple radio interfaces 
 

 

Figure 5-17 shows an improvement of over 90% for three channels with packet delivery 

ratio when the number of sink nodes and radio interfaces increase by three as compared 

to single sink node with single radio interface in our previous work.  With two channels 

sending data from the sources to the sinks there has been improvement by over 81% 

comparing to the poor performance experienced with single channel.  Similarly where 

the delay with single channel shows no significant improvement, packet delivery ratio 

using single channel shows no major improvement. 
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Figure 5-17: Delivery ratio impact from sources when using multiple sinks with multiple radio interfaces 

 

 

The aggregate throughput in Figure 5-18 of the overall system with source nodes 

sending to the sinks have shown that with multiple sink nodes, channels and radio 

interfaces 92% more data have been delivered to the sink compared to that of single 

sink with single radio and single channel.  Single channel and 802.11 DCF in all 

instances has not shown any significant improvement with increasing of sink nodes 

receiving data from the source nodes. 

 

 
Figure 5-18: Throughput of overall system using multiple sink nodes with multiple radio interfaces. 
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5.6 Conclusion 
 

This chapter addressed the poor performance encountered by the sink in the previous 

work.  The aim is to have WSN perform at an optimum rate in a multichannel 

environment of the 802.11 network for high data rate.    A WSN was considered, 

formed by static nodes with increasing the sink node and by assigning multiple radio 

interfaces at the sink.  The multichannel assignment was addressed in two ways: firstly 

each sink node was equipped with a single radio capable of switching channels to 

receive data packets, and secondly, each sink node was equipped with multiple radio 

interfaces with each interface assigned to a distinct channel.  The interface switches to 

receiving nodes on the same channel.   However the nodes transmitting to sink remained 

on the same channel and not allowed to switch channel during transmission.  

Solutions were formulated in solving multichannel multi-radio assignment at the sink by 

using graph technique and a binary vector.  A number of equations were derived to 

solve the odd or even number of transmitting nodes sending data directly to the sink. 

 

From the simulation outcomes it was proven that increasing the number of sink nodes 

and/or increases the number of radio interfaces in the sink a better performance can 

obtain which resulted in an overall performance within the network.  The multi-radio 

interfaces assignment in the sink node will be the network to consider for the future, 

even though when increasing the sink nodes with single interface there have been 

improvement in performance. The simulation scenario with three sink nodes, each 

equipped with three radio interfaces using the three non-overlapping channels in IEEE 

802.11 is the network to be considered for future static WSN with streaming data.  The 

simulation results shown that an average of over 90% improvement in performance can 

be achieved.  As such this kind of assignment can be considered to be more cost 

effective and energy efficient in the future. 
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Chapter 6  

 

Conclusion and Future Work 
 

6.1 Conclusion Summary   
 

This research determined the feasibility in having 802.11 being considered as a future 

medium for WSNs to operate high data rate, multi channel environment with streaming 

data in the 2.4 GHz frequency band that requires timely and efficient delivery. In 

addition an original model was proposed that addressed shortage of spectrum which 

limits current capability to introduce new wireless services and improve existing ones. 

A multi-radio multi channel model was introduced that allows different wireless 

systems to share multiple channels and switch channels without causing excessive 

harmful interference to other neighbours. This system was proven from simulations to 

increase the amount of communications that can take place in a given network. This 

finding creates the framework in which the world of wireless services and applications, 

may be revolutionised resulting in less expensive networks transmitting higher data rate 

than currently exist. 

 

6.1.1 Feasibility Comparison of IEEE 802.11 and IEEE 802.15.4 for WSN 

 

Simulations showed that IEEE 802.11 performed better with high data rate, streaming 

constant bit rate and at longer range comparing to 802.15.4 which operates better with 

small data size at much shorter range. This result indicates that 802.15.4 cannot perform 

well with streaming data even if operating at low data rate and would not be feasible for 

sensor network with multimedia or surveillance system that rely on image and data over 

the wireless medium. The 802.11 networks exhibited comparatively higher aggregate 

throughput when compared to the 802.15.4 indicating its superior performance in a high 

data rate environment.  On the other hand the significantly poor performance of the 

802.15.4 network in a high data rate and wide node range environment make it 

unsuitable for streaming data in a WSN. 
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It was concluded that 802.15.4 is not feasible for sensor multimedia or surveillance 

system with streaming data for future multichannel multi-radio systems.  

Having investigating the performance between IEEE 802.11 and IEEE 802.15.4 it 

became feasible to design the 802.11 contention-based protocols for multichannel 

assignment. The proposed design is a multichannel distributed coordinate function over 

single radio for WSNs. 

Conclusive simulations were conducted to analyse the signal strength with different data 

rate over the 802.11a/b/g networks, using: access delay, delivery ratio and aggregate 

throughput metrics to analyse the performances. 

 

6.1.2 Performance Analysis of Proposed MC-DCF - Protocols  

 

802.11DCF, MC-DCF and MMSN Protocols Figures 4-6, 4-7, and 4-8, analysed the 

performance of 802.11 DCF, MC-DCF and MMSN protocols based on number of 

channels, measured against the three mentioned metrics – packet delivery, aggregate 

throughput, and access delay. The MC-DCF protocol yielded the highest packet 

delivery ratio of the three protocols, however, MMSN performed slightly better than 

MC-DCF in relation to channel access delay and aggregate throughput. However, MC-

DCF will outperform MMSN in the 802.11 network, should both protocols operate 

within the data rates ranging from 2Mbps up to 54Mbps of the 802.11 networks. 

 

 802.11DCF and MC-DCF (1-3 Channels) Figures 4-9, 4-10 and 4-11 analysed the 

performance of 802.11 DCF against MC-DCF using one, two and three channels - 

measured within context of the three mention metrics using the CBR data streams.  In 

this scenario MC-DCF over three channels recorded the lowest level of channel access 

delay even as the CBR stream increased; conversely when transmitting over one 

channel the MC-DCF protocol recorded the highest level of channel access delay. The 

delivery ratio is highest when three channels are used - more packets are delivered compared to 

one and two channels. A similar trend is seen where MC-DCF with 3 channels has a better 

aggregate throughput, where more data are delivered to the receiving node. 

Impact of Node Density on 802.11DCF and MC-DCF (1-3 Channels)   Figures 4-12,  
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4-13 and 4-14 analysed the impact of node density on the performance of 802.11DCF, 

and MC-DCF using one, two, and three channels - The MC-DCF with three channels 

recorded the lowest level of access delays as the node density of the network increases. 

Packet delivery ratio and the aggregate throughput respectively show a comparatively 

better performance of all the tested protocols - when two or more channels are used. 

MC-DCF with three channels recorded the highest level of aggregate MAC throughput, 

of all the tested protocols even as the node density of the network increased. Similar to 

the packet delivery ratio performance, the 802.11DCF and MC-DCF (Ch1), recorded 

declines in performance as the density of the network increases.  

 

 Sink Node with Single Radio - Channel switching performance was observed at the 

sink by varying the number of source nodes the sink received data from. Access delay 

and packet delivery ratio was measured at the sink node. From observation, the more 

sources delivering to the sink the more delays encountered, and the packet delivery ratio 

decreases accordingly. The highest rate of decline was evident in the protocols with at 

two or more channels. This is due to the sink node having to be constantly switching 

between channels in order to receive data, which incur severe switching delay in 

addition to the time taken to accept data before switching.    

 

6.1.3 Performance Analysis of 802.11a/b/g Networks  

 

Packet Delay Analysis: 802.11a/b/g Networks - In Figure 4-18 nodes are placed at 

50m intervals with data transmitting at a rate of 2Mbps. In this simulation, delays 

declined over all three networks as the number of channels increased. The most 

significant decrease in packet delays occurred when three channels were transmitting. 

When the distance between nodes were increased from 50m to 100m there was a 

correspondingly dramatic increase in access delays for all three networks, as compared 

to performance at the 50m node range.   The increase in delay that is experienced by all 

networks indicates that 100m range among nodes results in weak signal, which makes it 

difficult for transmission and as such degradation of the networks. 

  

Figures 4-20 and 4-21 show the delay that occurs when simulating at 10Mbps over 50m 

and 100m node intervals. At the 50m range the lowest level of delays occurred, contrary 



Conclusion and Future Work 
 

 

 
150 

to the pattern in performance experienced at the 100m range where degradation of the 

networks increased significantly- the 802.11a network accounting for the highest 

delays. The high delay experienced by 802.11a resulted from it not being backward 

compatible to 802.11b; in addition to the fact that it was designed to operate at a 

minimum data rate of 6Mbps. Therefore operating with a data rate of 2Mbps causes 

possible frequent dropped connections and degradation of service. This conclusively 

proves that 802.11b cannot operate with data rate higher than 11Mbps.  Both 802.11a/g 

show a better performance than 802.11b, however at 100m range the networks 

experience high delay which degrades the system significantly. 

 

Aggregate Throughput Analysis: 802.11a/b/g Networks: The results show a similar 

pattern where the 50m range results in better performance having more data delivered at 

the receiving nodes.  Figure 4-27 shows significant network degradation when operating 

at the 100m range with aggregate throughput within the range of 0.1 to 1.75Mbps. All 

network performance at 10Mbps have slight variations with a maximum throughput of 

8.8Mbps when operating over 4 non-overlapping channels. Figure 4-27 shows 

significant network degradation when operating at the 100m range with aggregate 

throughput within the range of 0.1 to 1.75Mbps.  Conclusively, the 802.11b network is 

not feasible for operating in a high data rate multi channel environment.   

Packet Delivery Analysis: 802.11a/b/g Networks: Significantly a lower percentage of 

packet delivery ratio was evident as the node range increased from 50m to 100m. The 

802.11b delivery rate was significantly below 10% at 54Mbps. This is owing to the fact 

that 802.11b has a maximum raw data rate of 11 Mbps.  All networks performed poorly 

under that is 50% delivery rate when operating at 100m range at the varying data rates 

of 2, 10 and 54 Mbps. The results are similar to that of the aggregate throughput, in that, 

the more channels utilised for transmission, the more packets are delivered.  The most 

packets are delivered at the range interval of 50m, and data rate of 10Mbps, proving that 

contention based network perform poorly when the communication range exceeds 50m. 

 

6.1.4 Multi-Chanel Multi Radio Access: Sink Nodes in WSN  

 

In the earlier simulations the effect of the sink receiving data from sources within range 

that are sending data to be accepted were examined.  It was observed that the more 
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sources sending to the single sink the more delays were encountered.  In this scenario 

the number of sink nodes increased to receive data from sources within the ranges of the 

sink nodes.  No modification to the MC-DCF protocol was made except to increase the 

number of sinks to three with each having a single radio and the capability to do 

channel switching.  

 

6.1.4.1 Multiple Sinks with Single Radio: Simulation 1       

Delay Impact:  Figure 5-3 show Delay impact from source nodes using multiple sinks 

with single radio interface delay impact with the increase in sink nodes that are 

receiving data packets from sending nodes within range ….. It has been observed that 

with three channels there has been a 53% reduction in delay at the sink… comparing to 

the high level of delay that occurred when only one sink node was  used.  In Figure 5-3 

with two channels sending data from sources, there has been an approximately 32% 

delay improvement.  Single channel and 802.11 DCF show little improvements. This 

indicates that single channel performance does not improve with increasing sink nodes 

as the decisions are based on the window size resetting, backing off, wait states and the 

fact that all nodes are contending for the same medium.  MC-DCF with multiple 

channel switching and single radio interfaces can yield a better performance when using 

multiple sinks in comparison to single channel.  

 

Delivery Ratio:  Figure 5-4 shows Delivery ratio impact from sources using multiple 

sinks with single radio interface Figure 5-4 shows an improvement of over 41% for 

three channels with packet delivery ratio when the number of sink increases by three as 

compare to single sink node in our previous work.  With two channels sending data 

from the sources to the sinks there has been improvement by over 25% comparing to the 

poor performance resulted with single channel. 

  

Aggregate Throughput:  Fig 5-5 shows throughput of overall system using multiple 

sink nodes with single radio interface. The overall system with source nodes sending to 

the sinks have shown that with three channels 38% more data have been delivered to the 

sink compare to that of single channel.  Single channel in all instances has not shown 

any significant improvement with increasing of sink nodes to receive data from the 

source nodes. With analysing the impact of MC-DCF with one to three channels in 
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comparison with the original 802.11 DCF, it was observed that increasing the number of 

sink nodes resulted in an improvement when two or three channels are used.  There was 

little or no improvement using a single channel or the original 802.11 DCF which only 

operates on a single channel.  The reason for this improvement is that each sink has less 

data to receive from the senders. 

 

6.1.4.2 Single Sink with Multiple Radios: Simulation 2 

Figure 5-7 shows the impact delay when MC-DCF uses a single sink with three radio 

interfaces to receive packet data which creates a one-to-one mapping in receiving data 

from sending nodes. When the one-to-one assignment is used there have been over 40% 

successes in improvement for delay. The packet delivery ratio in Figure 5-8 shows 

similar improvement of approximately 46% for MC-DCF operating with multi-radios 

when compared to MC-DCF operating with single radio in our previous work.  One-to-

one assignments is not ideal for a large network as it would not be practical to have each 

radio interface assign to a non-overlapping channel from a sending node. Figure 5-9 

also showed a 53% improvement in the one-to-one assignment with 3 non-overlapping 

channels for aggregate throughput. 

 

6.1.4.3 Single Sink with Multi-Radios: Round Robin Method – Simulation 3              

In the third simulation scenario, a single sink node with three radio interfaces were 

used; each radio interface is assign to one of the 3 non-overlapping channels and six 

sending nodes to the sink, using the equations above in a round robin fashion.  This 

assignment is semi-dynamic where two transmitting node is assign to the same channel 

and each radio interface at the sink switches among sending nodes on the same channel 

which gives a 2:1 ratio; two nodes transmit to one radio interface.  

This outcome indicates that with multiple radio interfaces MC-DCF can reduce the high 

delay encountered with single channel as the number of senders need not queue to wait 

on a single radio interface.  Instead senders can be distributed among several interfaces.  

This also reduces the extensive work of a single interface switching between several 

sending nodes to receive their data packages. Figure 5-14 shows the overall aggregate 

throughput for the total amount of data delivered to the sink. MCMR show an overall 

better performance of 49.6% in comparison to that of MCSR offered load.  
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6.2 Conclusion:  Discussion and Recommendation  

 

6.2.1 Multiple Sink Multi-Radios - Simulation 4   
 

Each scenario showed some level improvement for MC-DCF when the sink node(s)   

obtain data from source nodes, comparing to our previous work where the sink 

encountered severe degradation when receiving from sources by a single sink with 

single radio interface that has to constantly switching between sending node interfaces. 

This scenario analysed the impact of data sending from sources to three sink nodes. 

Each sink was equipped with three radio interfaces using the three non-overlapping 

channels in IEEE 802.11.  

 

Figure 5-16 show delay impact with the increase in sink nodes and radio interfaces.  It 

has been observed that with three channels there has been a 96% reduction in delay at 

the sink side comparing to the previous work where the source node transmitting 

directly to the sink experience high level due to channel switching by the single radio 

interface. With two channels sending data from sources, there has been an 

approximately 87.4% delay improvement.  Single channel and 802.11 DCF show little 

improvements. As mention previously single channel performance does not improve 

with increasing sink nodes or radio interfaces as the decisions are based on the window 

size resetting, backing off, wait states and the fact that all nodes are contending for the 

same medium.  MC-DCF with multiple channel switching and multiple radio interfaces 

have yielded  better performance when using multiple sinks in contrast to single channel 

and 802.11 DCF.  

 

Figure 5-17 shows an improvement of over 90% for three channels with packet delivery 

ratio when the number of sink nodes and radio interfaces increase by three as compared 

to single sink node with single radio interface in our previous work.  With two channels 

sending data from the sources to the sinks there has been improvement by over 81% 

comparing to the poor performance experienced with single channel.  Similarly where 

the delay with single channel shows no significant improvement, packet delivery ratio 

using single channel shows no major improvement. 
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The aggregate throughput in Figure 5-18 of the overall system with source nodes 

sending to the sinks have shown that with multiple sink nodes, channels and radio 

interfaces 92% more data have been delivered to the sink compared to that of single 

sink with single radio and single channel.  Single channel and 802.11 DCF in all 

instances has not shown any significant improvement with increasing of sink nodes 

receiving data from the source nodes. 

 

From the simulation outcomes it was proven that increasing the number of sink nodes 

and/or increases the number of radio interfaces in the sink a better performance can 

obtain which resulted in an overall performance within the network.  The multi-radio 

interfaces assignment in the sink node will be the network to consider for the future, 

even though when increasing the sink nodes with single interface there have been 

improvement in performance. The simulation scenario with three sink nodes, each 

equipped with three radio interfaces using the three non-overlapping channels in IEEE 

802.11 is the network to be considered for future static WSN with streaming data.  The 

simulation results shown that an average of over 90% improvement in performance can 

be achieved.  As such this kind of assignment can be considered to be more cost 

effective and energy efficient in the future.   

 

 

6.3 Future Work 

 

After experimenting with multichannel assignments and evaluating MC-DCF 

performance, it can be confidently said that the results are encouraging.  However, these 

accomplishments need to be followed with further development effort to transform the 

channel assignment into reality and apply MC-DCF in other contexts beyond 

multichannel assignments.  The work in this thesis opens up research on various 

interesting issues and directions. 
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6.3.1 Overlapping Channels 
 

This thesis presented the work on non-overlapping channels in chapters 4 and 5.  If 

transmitters are closer together then channels overlap between the channels may cause 

unacceptable degradation of signal quality and throughput. However, overlapping 

channels may be used under certain circumstances. This way, more channels are 

available. The use of overlapping channels during medium access is an interesting and 

challenging future research direction.  

 

 

6.3.2 Energy Efficiency 
 

One of the most important issues in WSNs is the energy efficiency. Although this thesis 

uses non-overlapping channels and assumes nodes are static and always powered, there 

is no certainty if multi-channel communication can help to reduce energy consumption 

in WSNs. Evaluating the energy consumption of the existing multi-channel protocols, 

together with the impact of channel switching, can be a major research topic. 

 

6.3.3 Real-Time Constraints  
 

In real-time applications, data is delay constrained and has a certain bandwidth 

requirement.  It functions within a time frame that the user senses as immediate or 

current.   For example, scheduling messages with deadlines is important in order to take 

appropriate actions in real time or set alerts that trigger critical activities.  

However, due to the interference and contention on the wireless medium, this is a 

challenging task. Multi-channel communication can help to reduce the delay by 

increasing the number of parallel transmissions and help the network to achieve real-

time guarantees. Reducing the delay in real time application can be an interesting 

research area in the future. 
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6.3.4 Multiple Applications running on the same network 
 

The latest operating systems for WSNs make it possible to have multiple applications 

running on the same network. This can allow larger amounts of data to be transmitted in 

the network and dealing with traffic, with different priority levels, in an energy efficient 

way avoiding collisions and interference which can becomes a major issue. Multi-

channel communication can be a topic to be researched for solving the problems that 

arise with running multiple applications in the network. 

 

6.3.5 Cross Layer Design 
 

The major challenges that WSN need to overcome are:  

• The constrained in computational, energy and storage resources because of its 

limited energy.  

• Interference among the transmission 

• Redundant information since in most case neighbouring nodes often sense the 

same events from their environment thus forwarding the same data to the base 

station.  

• Topology changes due to node failure even though most sensor nodes are 

usually stationary.   

With these challenges protocols can no more develop in isolations and as such the 

invention of cross-layer approach. The idea of cross-layer design can exchange 

information between them in an intelligent way during communication to improve the 

performances of the system.  Useful cross-layer information and differentiate the 

channel state as it relates to signal strength, interference level, and channel response 

estimate in time and frequency domain.  The layering approach to network design does 

not fit in the wireless network as mentioned by [32], in which an in depth analysis of 

cross-layering approaches for wireless adhoc has been discussed.  

Therefore the cross-layer interactions are a technique to boost the performance by 

effectively adapts to the dynamic environment and interactively communicate with each 

layer simultaneously to prevent the major challenges that the wireless systems faces.   

Cross layer design can be a major research area.  
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6.3.6 Upper Layers Multi-Channel Communication  
 

Network settings is not possible to find a simple rate region, the rate region can reduces 

the set of feasible rates that congestion control can utilise. The rate region is studied in 

[33-35].  In WSNs, the local channel contention and interference on the shared 

communication medium causes network congestion [111]. In [112], the proposal of an 

interference-aware rate control for WSNs.  If multi-channel communications are use to 

eliminate interference, the effects of congestion can be alleviated and fair rate control 

could be possible for the nodes that suffer from interference. A congestion control or 

rate control algorithm that utilises multi-channel communication in WSNs can be a 

research area. 

 

6.3.7  Test-Bed 
 

Test-beds replicate testing of theories, computational tools and innovations. When 

compared to WSN simulators, WSN test-bed enables more realistic and reliable 

experimentation in capturing the subtleties of the underlying hardware, software, and 

dynamics of the wireless sensor network. WSN test-bed deployment is further enhanced 

through an increasing collaboration between academia and industry. 

WSN test-beds are the basis for experimentation with wireless sensor networks in real 

world settings; and they are also used by many researchers to evaluate specific 

applications pertaining to specific areas. A WSN test-bed typically consists of sensor 

nodes deployed in a controlled environment. WSN test-beds provide researchers with an 

efficient way to examine and evaluate their algorithms, protocols and applications.  

WSN test-bed can be designed to support different features depending on the objective 

of the test-bed. Among the important features of a WSN test-bed it can be designed to 

remotely configure, run and monitor experiments. Another interesting feature is that the 

WSN test-bed can be used for repeating experiments to produce similar results for 

analysis [113]. Selecting the appropriate level of abstraction in simulation model is a 

complex problem. Thus, it is obvious that the accuracy of a simulator will solely depend 

on its mathematical model. Accordingly, there is a trade-off between simulator’s 

accuracy and computational complexity. The more complex the simulation model is the 

more computational resources and time are required to execute it. This makes the 
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designers of such simulation models tend to make them as simple as possible. It is 

impossible to take all the various aspects of the wireless channel into consideration 

when designing a simulation model [114]. Nonetheless, simulation tools are essential in 

providing affordable environment for the initial design and tuning of wireless sensor 

networks. Such inherent difficulty in faithful modelling motivates many researches to 

build their own WSN test-beds. 

Among the advantages of a real WSN test-bed over a simulator is that it provides a 

realistic testing environment and allows users to get more precise testing results [113]. 

To further appreciate the important role of such WSN budget constraints and cost play 

one of the most important roles in setting-up the WSN test-bed.  WSN test-bed 

monitoring is concerned with collecting information about a spectrum of parameters 

including: node states (battery level, communication power), network topology, 

wireless bandwidth, link state, coverage bounds, and exposure bounds. Based on the 

collected network states, a variety of management control tasks can be performed. 

Highlighting the usefulness of test bed  and knowing that it is not easy to compare the 

results of the simulations performed on different simulators due to the different models 

(e.g., the physical layer, traffic or mobility models) assumed. As emphasised in [115], it 

would be helpful to have a repository of the standard models not only for simulation 

codes but also the implementation details on the test-beds. However, experimenting 

with real test-bed and workloads from a set of different applications is important in 

early stages of future work to continuously improve MC-DCF design through feedback 

arising from real running scenarios. 

 

 



References: 
 

 

 
159 

References: 
 

 

1. F. Akyildiz, T. Melodia, K. R. Chodhury, A survey on wireless multimedia 

sensor networks, Computer Networks, 51, 2007, pp.  921-960. 

2. E. H. Callaway, Jr., Wireless Sensor Networks Architectures and Protocols, 

Auberbach publication, 2004. 

3. C. E-A Campbell, I. A. Shah, K.K. Loo, Medium Access Control and Transport 

protocol for Wireless Sensor Networks: An overview, International Journal of 

Applied Research on Information Technology and Computing (IJARITAC),  

2010, pp. 79-92. 

4. S. Misra, M. Reisslein, G. Xue, A Survey of Multimedia streaming in Wireless 

Sensor Networks, IEEE communications survey & tutorials,  2008, pp. 1553-

1877. 

5. H. Laboid, Wireless ad hoc and sensor networks  N.J : Wiley ISTE, 2008. 

6. C. Cordeiro, D. Agrawal, Ad hoc & Sensor networks: theory and applications, 

Hackensac, NJ: World Scientific Publishing co., 2006. 

7. Dong-Chan Oh, Yong-Hwan Lee, "Energy Detection Based Spectrum Sensing 

for Sensing Error Minimization in Cognitive Radio Networks"; International 

Journal of Communication Networks and Information Security (IJCNIS),  Vo. 1, 

No. 1, 2009, pp. 1-5. 

8. J. Sen, "A Survey on Wireless Sensor Network Security"; International Journal 

of Communication Networks and Information Security (IJCNIS),  Vo. 1, No. 

2, 2009, pp. 59-82. 

9. M. Garcia, J. Lloret, S. Sendra, R. Lacuesta, "Secure Communications in Group-

based Wireless Sensor Networks"; International Journal of Communication 

Networks and Information Security (IJCNIS),  Vo. 2, No. 1, 2010, pp. 8-14. 

10. K. Kredo II, P. Mohapatra, Medium Access Control in Wireless Sensor 

Networks. Computer Networks 51, 2007, pp. 961-994. 

11. Kumar, S. Raghavan, V. Deng, Medium Access Control protocols for ad hoc 

wireless networks: A survey. Ad Hoc Networks 4, 2006, pp. 326-358.  



References: 
 

 

 
160 

12. C. Fullmer, J.J. Garcia-Luna-Aceves, Floor Acquisition Multiple Access 

(FAMA) for packet-radio networks. In: Proc.ACM SIGCOMM, Cambridge MA, 

August 28-September 1, 1995. 

13. A. Raniwala, T. Chiueh,  Architecture and algorithms for an IEEE 802.1 1-based 

multi-channel wireless mesh network. In INFOCOM 2005. 24th Annual Joint 

Conference of the IEEE Computer and Communications Societies. Proceedings 

IEEE, 2005.  

14. S. M. Das, H. Pucha, D. Koutsonikolas, Y. C. Hu, D. Peroulis, DMesh: 

Incorporating Practical Directional Antennas in Multichannel Wireless Mesh 

Networks. IEEE J. Select. Areas Commun., vol. 24, pp. 2028, 2006.  

15. IEEE Standard for Wireless LAN Medium Access Control and Physical Layer 

Specification, STD 802.11-2007. 

16. IEEE std. 802.15.4, Part. 15.4: Wireless Medium Access Control (MAC) and 

Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area 

Networks (LR-WPANs), IEEE standard for Information Technology, IEEE-SA 

Standards Board, Sept. 2006. 

17. Zigbee Alliance, “Zigbee,” http://www.zigbee.org. 

18. T.V. Project, U.C. Berkeley, X. Parc, K. Fall, and E.K. Varadhan, "The ns 

Manual (formerly ns Notes and Documentation) 1," Facilities, 2009.  

19. http://www.ecsl.cs.sunysb.edu/multichannel/ access 17/09/2009. 

20. Part 11: Wireless LAN MAC and PHY specifications, IEEE Std 802.11-2007.  

21. S. Singh, C. Raghavendra, PMAS – power aware multi-access protocol with 

signalling for ad hoc networks. SIGCOMM Computer Communications Review 

28 (3) 1998, 5-26. 

22. C. Wang, M. Daneshmand, B. Li, Sohraby K. A survey of transport protocols for 

wireless sensor networks. IEEE Network, 20(3), 2006, pp. 34–40. 

23. C-Y. Wan, S. Eisenman, A. Campbell CODA: Congestion detection and 

avoidance in sensor networks. In Proc. ACM SenSys, 2003, pp. 266–279. 

24. B. Hull, K. Jamieson, H. Balakrishnan, Mitigating congestion in wireless sensor 

networks. In Proc. ACM SenSys, 2004, pp. 134–147. 

25. C. Wang, K. Sohraby, V. Lawrence, B. Li, Priority-based congestion control in 

wireless sensor networks. In Proc. IEEE International Conference on Sensor 

Networks, Ubiquitous, and Trustworthy Computing (SUTC), 2006, pp. 22–31. 



References: 
 

 

 
161 

26. F. Stann, J. Heidemann, RMST: Reliable data transport in sensor networks. In 

Proc. First International Workshop on Sensor Net Protocols and Applications, 

2003, pp. 102–112. 

27. Y. Iyer, S. Gandham, S. Venkatesan, STCP: A generic transport protocol for 

wireless sensor networks. In Proc. IEEE International Conference on Computer 

Communications and Networks (ICCCN), 2005, pp. 17–19.  

28. Y. Sankarasubramaniam, O. Akan, I. Akyildiz, ESRT: Event-to-sink reliable 

transport in wireless sensor networks. In Proc. 4th ACM Int. Symposium on 

Mobile Ad Hoc Networking & Computing (MobiHoc), 2003, pp. 177–188.  

29. Y. Zang, J. Luo, H. Hu, Wireless Mesh Networking, Architectures, Protocols 

and Standards. Auberbach publication, 2007. 

30. H. Zimmermann, OSI Reference Model--The ISO Model of Architecture for 

Open Systems Interconnection. Communications, IEEE Transactions on , vol.28, 

no.4, pp. 425-432.  

31. V. Raisinghani, S. Iyer, Cross-layer design optimizations in Wireless Protocols 

Stacks. Elsevier Computer  Communications 27, 2004 

32. L. Gavrilovska, Cross-layering approaches in Wireless Ad Hoc Networks. 

Springer Wireless Personal Communications 37, 2006, pp. 271-290. 

33. S. Sarkar, L. Tassiulas End-to-end bandwidth guarantees through fair local 

spectrum share in wireless ad-hoc networks. In Proc. IEEE Conf. Decision and 

Control, Maui, HI, 2003, pp. 564–569. 

34. Y. Yi, S. Shakkottai, Hop-by-hop congestion control over a wireless multi-hop 

network.  In Proc. IEEE INFOCOM, Hong Kong, 2004, pp. 2548–2558. 

35. Y. Xue, B. Li, K. Nahrstedt, Price-based resource allocation in wireless ad hoc 

networks. In Proc. 11th Int. Workshop on Qualityof Service, New York, 

Springer-Verlag, vol. 2707, Monterey, CA, 2003, pp. 79–96. 

36. L. Chen, S. Low, J. Doyle, Joint congestion control and media access control 

design for wireless ad hoc networks. In Proc.IEEE INFOCOM, Miami, FL, 

2005, pp. 2212–2222. 

37. A. Stolyar, Maximizing queuing network utility subject to stability: Greedy 

primal-dual algorithm. Queueing Syst., vol. 50, no. 4, 2005, pp. 401–457. 



References: 
 

 

 
162 

38. X. Lin, N. Shroff, Joint rate control and scheduling in multihop wireless 

networks. In Proc. IEEE Conf. Decision and Control, Paradise Island, Bahamas, 

2004, pp. 1484–1489. 

39. A. Eryilmaz, R. Srikant, Fair resource allocation in wireless networks using 

queue-length-based scheduling and congestion control. In Proc. IEEE 

INFOCOM, Miami, FL, 2004, pp. 1794–1803. 

40. A. Eryilmaz, R. Srikant, Joint congestion control, routing and MAC for stability 

and fairness in wireless networks. IEEE J. Sel. Areas Commun., vol. 24, no. 8, 

2006, pp. 1514–1524. 

41. I. Paschalidis, W. Lai, D. Starobinski, Asymptotically optimal transmission 

policies for low-power wireless sensor networks. In Proc. IEEE INFOCOM, 

Miami, FL, 2005, pp. 2458–2469. 

42. M. J. Neely, E. Modiano, C. Li, Fairness and optimal stochastic control for 

heterogeneous networks. In Proc. IEEE INFOCOM, Miami, FL, 2005, pp. 1723–

1734. 

43. X. Lin, N. Shroff, R. Srikant, A tutorial on Cross-layer Optimization in Wireless 

Networks. IEEE journal on Selected areas in Communications, Vol. 24, No. 8, 

2006 

44. M. Chiang, Balancing transport and physical layer in multihop wireless 

networks: Jointly optimal congestion and power control. IEEE J. Sel. Areas 

Commun., vol. 23, no. 1, 2005, pp. 104–116. 

45. G. Dimic, N. Sidiropoulos, R. Zhang, Medium Access Control-Physical Cross-

Layer Design. IEEE Signal Processing Magazine, 2004, pp. 40-50. 

46. T. Takeuchi, Y. Otake, M. Ichien, A. Gion, H. Kawagui, C. Ohta, M. 

Yoshimoto, Cross-Layer Design for Low-Power Wireless Sensor Node Using 

Wave Clock. IEICE TRANS. COMMUN., VOL.E91–B, NO.11, 2008, pp. 3480 

– 3488. 

47. L. Galluccio, A. Leonardi, G.  Morabito, S. Palazzo, A MAC/Routing cross-

layer approach to geographic forwarding in wireless sensor networks. Elsevier, 

Ad Hoc Networks 5, 2007, pp. 872–884. 

48. C. Suh, Y. Ko, D. Son, An Energy Efficient Cross-Layer MAC Protocol for 

Wireless Sensor Networks. H.T. Shen et al. (Eds.): APWeb Workshops 2006, 

LNCS 3842, 2006, pp. 410–419. 



References: 
 

 

 
163 

49. J. Price, T. Javidi, Cross-Layer (MAC and Transport) Optimal Rate Assignment 

in CDMA-Based Wireless Broadband Networks. IEEE, 2004. pp. 1044-1048. 

50. H. Balakrishnan et al, A Comparison of Mechanisms for Improving TCP 

Performance over Wireless Links. IEEE/ACM Trans. Net., 1997. 

51. Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, M. Gerla, The Impact of multihop 

wireless channel on TCP Performance. IEEE transactions on Mobile computing, 

vol. 4, 2005, pp. 209-221.  

52. V. Jacobson, Congestion avoidance and control. Univ. of California, Berkeley, 

1988. 

53. S. Floyd, T. Henderson, RFC 2582 - The NewReno Modification to TCP's Fast 

Recovery Algorithm, 1999. 

54. M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective 

Acknowledgement Options. RFC 2018, April 1996. 

55. M. Marina, S. Das, A topology control approach for utilizing multiple channels 

in multi-radio wireless mesh networks. In 2nd International Conference on 

Broadband Networks, 2005, pp. 381–390.  

56. J. Tang, G. Xue, W. Zhang, Interference-aware topology control and QoS 

routing in multi-channel wireless mesh networks. In Proceedings of the 6th 

ACM International Symposium on Mobile Ad Hoc Networking and Computing, 

2005, pp. 68-77.  

57. K. Ramachandran, E. Belding, K. Almeroth, M. Buddhikot, Interference-aware 

channel assignment in multi-radio wireless mesh networks. In IEEE INFOCOM, 

2006, pp. 1-12.  

58. A. Raniwala, K. Gopalan, T. Chiueh, Centralized channel assignment and 

routing algorithms for multi-channel wireless mesh networks. ACM 

SIGMOBILE Mobile Computing and Communications Review, vol. 8, 2004, pp. 

50-65.  

59. M. Kodialam, T. Nandagopal, Characterizing the capacity region in multi-radio 

multi-channel wireless mesh networks. In Proceedings of the 11th Annual 

International Conference on Mobile Computing and Networking, 2005, pp. 73-

87. 

60. M. Alicherry, R. Bhatia, L. Li, Joint channel assignment and routing for 

throughput optimization in multi-radio wireless mesh networks. In Proceedings 



References: 
 

 

 
164 

of the 11th Annual International Conference on Mobile Computing and 

Networking, 2005, pp. 58-72.  

61. S. Pollin, M. Ergen, S. Ergen, B. Bougard, L. Der Perre, I. Moerman, a. Bahai, 

P. Varaiya, and F. Catthoor, "Performance Analysis of Slotted Carrier Sense 

IEEE 802.15.4 Medium Access Layer," IEEE Transactions on Wireless 

Communications, vol. 7, 2008, pp. 3359-3371. 

62. Q. Yu, J. Xing, and Y. Zhou, "Performance Research of the IEEE 802.15.4 

Protocol in Wireless Sensor Networks," 2006 2nd IEEE/ASME International 

Conference on Mechatronics and Embedded Systems and Applications, 2006, 

pp. 1-4. 

63. P. Baronti, P. Pillai, V. Chook, S. Chessa, a. Gotta, and Y. Hu, "Wireless sensor 

networks: A survey on the state of the art and the 802.15.4 and ZigBee 

standards," Computer Communications, vol. 30, 2007, pp. 1655-1695. 

64. L.A. Man, S. Committee, and I. Computer, "IEEE STD 802.15.4d-2009 

(Amendment to IEEE Std 802.15.4-2006) IEEE Standard for Information 

technology—Telecommunications and information exchange between 

systems—Local and metropolitan area networks—Specific requirements—Part 

15.4: Wireless LAN Medium Ac," vol. 2009. 

65. S. Pollin, M. Ergen, M. Timmers, A. Dejonghe, L. van der Perre, F. Catthoor, I. 

Moerman, and A. Bahai, "Distributed cognitive coexistence of 802.15.4 with 

802.11," 2006 1st International Conference on Cognitive Radio Oriented 

Wireless Networks and Communications, 2006, pp. 1-5. 

66. K. Nakatsuka, K. Nakamura, Y. Hirata, and T. Hattori, "A Proposal of the Co-

existence MAC of IEEE 802.11b/g and 802.15.4 used for The Wireless Sensor 

Network," 2006 5th IEEE Conference on Sensors, 2007, pp. 722-725. 

67. Kandhalu, A. Rowe, and R. Rajkumar, "DSPcam: A camera sensor system for 

surveillance networks," 2009 Third ACM/IEEE International Conference on 

Distributed Smart Cameras (ICDSC), 2009, pp. 1-7. 

68. M. Bertocco, G. Gamba, a. Sona, and F. Tramarin, "Investigating wireless 

networks coexistence issues through an interference aware simulator," 2008 

IEEE International Conference on Emerging Technologies and Factory 

Automation, 2008, pp. 1153-1156. 



References: 
 

 

 
165 

69. T. Zheng and S. Radhakrishnan, "A Switch Agent for Wireless Sensor Nodes 

with Dual Interfaces : Implementation and Evaluation," Science. 

70. X. Zhang, H. Wang, and A. Khokhar, "An Energy-efficient MAC-Layer 

Retransmission Algorithm for Cluster-based Sensor Networks," 2008 IEEE 

International Networking and Communications Conference, 2008, pp. 67-72. 

71. Polepalli, W. Xie, D. Thangaraja, M. Goyal, H. Hosseini, and Y. Bashir, "Impact 

of IEEE 802.11n Operation on IEEE 802.15.4 Operation," 2009 International 

Conference on Advanced Information Networking and Applications Workshops, 

2009, pp. 328-333. 

72. F. Margono, M. Zolkefpeli, and S. Shaaya, "Performance Study on Energy 

Consuption and QoS of Wireless Sensor Network under different MAC Layer 

Protocols: IEEE 802.15.4 and IEEE 802.11” 2009 IEEE Student Conference on 

Research and Development (SCORel), 2009, pp. 65-68. 

73. Network Simulator (NS2), 

http://www.cse.msu.edu/~wangbo1/ns2/nshowto8.html access 27/11/2010. 

74. Jeng, R. Jan, Role and channel assignment for wireless mesh networks using 

hybrid approach,  Computer Newtorks, Elsevier, 2009.  

75. S. Avallone, I.F. Akyildiz, G. Ventre, A channel and rate assignment algorithm 

and a Layer-2.5 forwarding paradigm for multi-radio wireless mesh networks, 

IEEE/ACM Transactions on Networking 17 (1), 2009, pp. 267–280. 

76. Adya, P. Bahl, J. Padhye, A. Wolman, L. Zhou, A multi radio unification 

protocol for IEEE 802.11 wireless networks, in: Proceedings of BROADNETS, 

2004, pp. 344–354. 

77. P. Kyasanur, N.H. Vaidya, Routing and link protocol for multichannel multi-

interface wireless networks, in:proceeding of the IEEE Wireless  

Communications and Networking Conf., vol. 4,  2005, pp. 2051-2056. 

78. R. Haung, H. Zhai, C. Zhang, Y. Fang, SAM-MAC: An efficient channel 

assignment scheme for multichannel ad hoc networks, Elsevier Computer 

Networks, 2008. 

79. H. Gharavi, “Multi-channel for multihop communication links,” IEEE Int. Conf. 

Telecommunications, 2008, pp. 1-6.  



References: 
 

 

 
166 

80. Y. Wu, J. Stankovic, T. He, S. Lin, “Realistic and Efficient Multichannel 

Communications in Wireless Sensor Networks,” IEEE  INFOCOM,  2008, pp. 

1867-1875. 

81. J. Zhang, G. Zhou, C. Huang, S. Son, J. A. Stankovic, “TMMAC: An energy 

efficient multi-channel MAC protocol for ad hoc networks,” IEEE ICC, 2007. 

82. G. Zhou, C. Huang, T. Yan, T. He, J. A. Stankovic, MMSN: Multi-Frequency  

Media Access Control for Wireless Sensor Networks , IEEE INFOCOM, 2006. 

83. Y. Zeng, N. Xiong, T. Kim, “Channel Assignment and Scheduling in 

Multichannel Wireless Sensor Networks,” 33rd IEEE Confn. on Local Computer 

Networks, 2008, pp. 512-513. 

84. O. D. Incel, P. Jansen, S. Mullender, MC-LMAC: A Multi-Channel MAC 

Protocol for Wireless Sensor Networks, Technical Report TR-CTIT-08-61, 

Centre for Telematics and Information Technology, University of Twente, 

Enschede. ISSN 1381-3625 

85. Nasipuri, J. Zhuang, S. Dias, A multichannel CSMA MAC protocol for multihop 

wireless networks, in: WCNC’99, New Orleans, USA, 1999, 21-24. 

86. A. Wahid, K. Dongkyun, Analyzing Routing Protocols for Underwater Wireless 

Sensor Networks, International Journal of Communication Networks and 

Information Security (IJCNIS) 2 (3), 2010, pp. 253-261. 

87. C. Campbell, K. Loo, R. Comley, A New MAC Solution for Multi-Channel 

Single Radio in Wireless Sensor Networks,  ISWCS 2010, 2010, pp. 907-911.  

88. C. E.-A. Campbell, K.K. Loo, O. Gemikonakli, S. Khan, D. Singh, Multi-

Channel Distributed Coordinated Function over Single Radio in Wireless Sensor 

Networks, Sensors 2011, pp. 964-991 

89. J. Pan, Y. Hou, L. Cai, Y. Shiz, S. Shen, Topology Control for Wireless Sensor 

Networks, MobiCom’03,  2003, pp. 286-299. 

90. A. Warrier, S. Park, J. Min, I Rhee, How much energy saving does topology 

control offer for wireless sensor networks? – A practical study, Computer 

Communications 30 (2007), pp.  2867–2879. 

91. Y. Lu, T Sheu, An efficient routing scheme with optimal power control in 

wireless multi-hop sensor networks, Computer Communications 30 (2007), pp.  

2735–2743 



References: 
 

 

 
167 

92. N. Meghanathan, Grid Block Energy Based Data Gathering Algorithms for 

Wireless Sensor Networks, International Journal of Communication Networks 

and Information Security (IJCNIS) 2 (3), 2010, pp. 151-161. 

93. S. Balasubramanian, D.  Aksoy, Adaptive energy-efficient registration and 

online scheduling for asymmetric wireless sensor networks, Computer Networks 

51, 2007 pp. 3427–3447. 

94. T. van Dam, K. Langendeon, An adaptive energy-efficient MAC protocol for 

wireless sensor networks, in: Proceedings of the ACM SenSys, 2003. 

95. S. M. Kamruzzaman, An Energy Efficient Multichannel MAC Protocol for 

Cognitive Radio Ad Hoc Networks, International Journal of Communication 

Networks and Information Security (IJCNIS) 2 (3), 2010, pp. 112-119. 

96. M. Chen, V. Leung, S. Mao, Y. Xiao, I. Chlamatic, Hybrid geographical 

rounting for flexible energy delay trade-off, IEEE, 2009. 

97. V. Rajendrian, K. Obraczka, J. Garcia-Luna-Aceves, Energy-efficient, collision 

free medium access control for woreless sensor network, ACM 2003, pp. 181-

192 

98. M. Miller, N. Vaidya, A MAC protocol to reduce sensor network energy 

consumption using wakeup radio, IEEE Transcations and Mobile Computing, 

Vol. 4 No. 3, 2005, 228-242. 

99. K. Chowdhury, N. Nandiraju, D. Cavalcanti, D. Agrawal, CMAC-M Multi-

channel energy efficient MAC for wireless sensor networks, WCNC 2006 

proceeding, 2006, pp. 1172-1177. 

100. M. Chen, V. Leung, S. Mao, T. Kwon, Received-oriented load balancing and 

reliable routing in wireless sensor networks, wireless communications and 

mobile computing, 2009, pp. 405-416. 

101. J.Vidhya and P.Dananjayan, Energy Efficient STBC –Encoded Cooperative 

MIMO Routing Scheme for Cluster Based Wireless Sensor Networks, 

International Journal of Communication Networks and Information Security 

(IJCNIS) 2 (3), 2010,  pp. 216-223. 

102. K.M. Yusof, J. Woods, S. Fitz, LFSSR: Localised Frequency Scanning Short 

Range Estimation for Wireless Sensor Networks, International Journal of 

Communication Networks and Information Security (IJCNIS) 2 (3), 2010, pp. 

207-215. 



References: 
 

 

 
168 

103. M K. Rasul et al, Securing Wireless Sensor Networks with An Efficient B+ 

Tree-Based Key Management Scheme, International Journal of Communication 

Networks and Information Security (IJCNIS) 2 (3), 2010, pp. 162-168. 

104. P. Kyasanur, N. Vaidya, Capacity of multi-channel wireless networks: Impact of 

number of channels and interfaces. In Proc. ACM MOBICOM, 2005. 

105. M.  Marina, S. R. Das, "A topology control approach for utilizing multiple 

channels in multi-radio wireless mesh networks," in 2nd International 

Conference on Broadband Networks, 2005, pp. 381–390. 

106. S. Raman, A. Ganz, R. R. Mettu, "Fair bandwidth allocation framework for 

heterogeneous multi-radio wireless mesh networks," in Broadband 

Communications, Networks and Systems, 2007. BROADNETS 2007. Fourth 

International Conference on, 2007, pp. 898-907. 

107. I. Mustapha, J. D. Jiya, B. U. Musa, Modeling and Analysis of Collision 

Avoidance MAC Protocol in Multi-Hop Wireless Ad-Hoc MAC Protocol in 

Multi-Hop Wireless Ad-Hoc Network, International Journal of Communication 

Networks and Information Security (IJCNIS) 3 (1), 2011,  pp. 48-56. 

108. A. Hamed Mohsenian Rad, Vincent W.S. Wong, Joint Optimal Channel 

Assignment and Congestion Control for Multi-channel Wireless Mesh 

Networks, The International Journal of Computer and Telecommunications 

Networking, volume 53 issue 14, September 2009. 

109. J. Leung, Handbook of scheduling: algorithms, models and performance 

analysis, Boca Raton, Fl, London: Chapman & Hall/CRC, 2004. 

110. S. Wu, Y. Tseng, Wireless Ad Hoc Networking: personal-area, local-area and 

the sensory-area networks, Auerbach publications, 2007. 

111. V.C. Gungor, M.C. Vuran, and O.B. Akan. On the cross-layer interactions 

between congestion and contention in wireless sensor and actor networks. Ad 

Hoc Networks, 5(6), ISSN 1570-8705, 2007, pp. 897–909. 

112. S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis. Interference-aware 

fair rate control in wireless sensor networks. In SIGCOMM ’06: Proceedings of 

the 2006 conference on Applications, technologies, architectures, and protocols 

for computer communications, pages 63–74, New York, NY, USA, 2006. ACM. 

ISBN 1-59593-308-5. 



References: 
 

 

 
169 

113. J. Yick, B. Mukherjee and D. Ghosal, "Wireless sensor network survey," 

Computer Networks, vol. 52, 2008, pp. 2292-2330. 

114. P. De, A. Raniwala, S. Sharma and T. Chiueh, "MiNT: A miniaturized network 

testbed for mobile wireless research," in IEEE INFOCOM 2005, March 13, 2005 

- March 17, 2005, pp. 2731-2742. 

115. A. Willig. Wireless sensor networks: concept, challenges and approaches. 

Elektrotechnik und Informationstechnik, 123(6), 2006. 


