527 research outputs found

    Design of a High-Speed Architecture for Stabilization of Video Captured Under Non-Uniform Lighting Conditions

    Get PDF
    Video captured in shaky conditions may lead to vibrations. A robust algorithm to immobilize the video by compensating for the vibrations from physical settings of the camera is presented in this dissertation. A very high performance hardware architecture on Field Programmable Gate Array (FPGA) technology is also developed for the implementation of the stabilization system. Stabilization of video sequences captured under non-uniform lighting conditions begins with a nonlinear enhancement process. This improves the visibility of the scene captured from physical sensing devices which have limited dynamic range. This physical limitation causes the saturated region of the image to shadow out the rest of the scene. It is therefore desirable to bring back a more uniform scene which eliminates the shadows to a certain extent. Stabilization of video requires the estimation of global motion parameters. By obtaining reliable background motion, the video can be spatially transformed to the reference sequence thereby eliminating the unintended motion of the camera. A reflectance-illuminance model for video enhancement is used in this research work to improve the visibility and quality of the scene. With fast color space conversion, the computational complexity is reduced to a minimum. The basic video stabilization model is formulated and configured for hardware implementation. Such a model involves evaluation of reliable features for tracking, motion estimation, and affine transformation to map the display coordinates of a stabilized sequence. The multiplications, divisions and exponentiations are replaced by simple arithmetic and logic operations using improved log-domain computations in the hardware modules. On Xilinx\u27s Virtex II 2V8000-5 FPGA platform, the prototype system consumes 59% logic slices, 30% flip-flops, 34% lookup tables, 35% embedded RAMs and two ZBT frame buffers. The system is capable of rendering 180.9 million pixels per second (mpps) and consumes approximately 30.6 watts of power at 1.5 volts. With a 1024×1024 frame, the throughput is equivalent to 172 frames per second (fps). Future work will optimize the performance-resource trade-off to meet the specific needs of the applications. It further extends the model for extraction and tracking of moving objects as our model inherently encapsulates the attributes of spatial distortion and motion prediction to reduce complexity. With these parameters to narrow down the processing range, it is possible to achieve a minimum of 20 fps on desktop computers with Intel Core 2 Duo or Quad Core CPUs and 2GB DDR2 memory without a dedicated hardware

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    WEATHER LORE VALIDATION TOOL USING FUZZY COGNITIVE MAPS BASED ON COMPUTER VISION

    Get PDF
    Published ThesisThe creation of scientific weather forecasts is troubled by many technological challenges (Stern & Easterling, 1999) while their utilization is generally dismal. Consequently, the majority of small-scale farmers in Africa continue to consult some forms of weather lore to reach various cropping decisions (Baliscan, 2001). Weather lore is a body of informal folklore (Enock, 2013), associated with the prediction of the weather, and based on indigenous knowledge and human observation of the environment. As such, it tends to be more holistic, and more localized to the farmers’ context. However, weather lore has limitations; for instance, it has an inability to offer forecasts beyond a season. Different types of weather lore exist, utilizing almost all available human senses (feel, smell, sight and hearing). Out of all the types of weather lore in existence, it is the visual or observed weather lore that is mostly used by indigenous societies, to come up with weather predictions. On the other hand, meteorologists continue to treat this knowledge as superstition, partly because there is no means to scientifically evaluate and validate it. The visualization and characterization of visual sky objects (such as moon, clouds, stars, and rainbows) in forecasting weather are significant subjects of research. To realize the integration of visual weather lore in modern weather forecasting systems, there is a need to represent and scientifically substantiate this form of knowledge. This research was aimed at developing a method for verifying visual weather lore that is used by traditional communities to predict weather conditions. To realize this verification, fuzzy cognitive mapping was used to model and represent causal relationships between selected visual weather lore concepts and weather conditions. The traditional knowledge used to produce these maps was attained through case studies of two communities (in Kenya and South Africa).These case studies were aimed at understanding the weather lore domain as well as the causal effects between metrological and visual weather lore. In this study, common astronomical weather lore factors related to cloud physics were identified as: bright stars, dispersed clouds, dry weather, dull stars, feathery clouds, gathering clouds, grey clouds, high clouds, layered clouds, low clouds, stars, medium clouds, and rounded clouds. Relationships between the concepts were also identified and formally represented using fuzzy cognitive maps. On implementing the verification tool, machine vision was used to recognize sky objects captured using a sky camera, while pattern recognition was employed in benchmarking and scoring the objects. A wireless weather station was used to capture real-time weather parameters. The visualization tool was then designed and realized in a form of software artefact, which integrated both computer vision and fuzzy cognitive mapping for experimenting visual weather lore, and verification using various statistical forecast skills and metrics. The tool consists of four main sub-components: (1) Machine vision that recognizes sky objects using support vector machine classifiers using shape-based feature descriptors; (2) Pattern recognition–to benchmark and score objects using pixel orientations, Euclidean distance, canny and grey-level concurrence matrix; (3) Fuzzy cognitive mapping that was used to represent knowledge (i.e. active hebbian learning algorithm was used to learn until convergence); and (4) A statistical computing component was used for verifications and forecast skills including brier score and contingency tables for deterministic forecasts. Rigorous evaluation of the verification tool was carried out using independent (not used in the training and testing phases) real-time images from Bloemfontein, South Africa, and Voi-Kenya. The real-time images were captured using a sky camera with GPS location services. The results of the implementation were tested for the selected weather conditions (for example, rain, heat, cold, and dry conditions), and found to be acceptable (the verified prediction accuracies were over 80%). The recommendation in this study is to apply the implemented method for processing tasks, towards verifying all other types of visual weather lore. In addition, the use of the method developed also requires the implementation of modules for processing and verifying other types of weather lore, such as sounds, and symbols of nature. Since time immemorial, from Australia to Asia, Africa to Latin America, local communities have continued to rely on weather lore observations to predict seasonal weather as well as its effects on their livelihoods (Alcock, 2014). This is mainly based on many years of personal experiences in observing weather conditions. However, when it comes to predictions for longer lead-times (i.e. over a season), weather lore is uncertain (Hornidge & Antweiler, 2012). This uncertainty has partly contributed to the current status where meteorologists and other scientists continue to treat weather lore as superstition (United-Nations, 2004), and not capable of predicting weather. One of the problems in testing the confidence in weather lore in predicting weather is due to wide varieties of weather lore that are found in the details of indigenous sayings, which are tightly coupled to locality and pattern variations(Oviedo et al., 2008). This traditional knowledge is entrenched within the day-to-day socio-economic activities of the communities using it and is not globally available for comparison and validation (Huntington, Callaghan, Fox, & Krupnik, 2004). Further, this knowledge is based on local experience that lacks benchmarking techniques; so that harmonizing and integrating it within the science-based weather forecasting systems is a daunting task (Hornidge & Antweiler, 2012). It is partly for this reason that the question of validation of weather lore has not yet been substantially investigated. Sufficient expanded processes of gathering weather observations, combined with comparison and validation, can produce some useful information. Since forecasting weather accurately is a challenge even with the latest supercomputers (BBC News Magazine, 2013), validated weather lore can be useful if it is incorporated into modern weather prediction systems. Validation of traditional knowledge is a necessary step in the management of building integrated knowledge-based systems. Traditional knowledge incorporated into knowledge-based systems has to be verified for enhancing systems’ reliability. Weather lore knowledge exists in different forms as identified by traditional communities; hence it needs to be tied together for comparison and validation. The development of a weather lore validation tool that can integrate a framework for acquiring weather data and methods of representing the weather lore in verifiable forms can be a significant step in the validation of weather lore against actual weather records using conventional weather-observing instruments. The success of validating weather lore could stimulate the opportunity for integrating acceptable weather lore with modern systems of weather prediction to improve actionable information for decision making that relies on seasonal weather prediction. In this study a hybrid method is developed that includes computer vision and fuzzy cognitive mapping techniques for verifying visual weather lore. The verification tool was designed with forecasting based on mimicking visual perception, and fuzzy thinking based on the cognitive knowledge of humans. The method provides meaning to humanly perceivable sky objects so that computers can understand, interpret, and approximate visual weather outcomes. Questionnaires were administered in two case study locations (KwaZulu-Natal province in South Africa, and Taita-Taveta County in Kenya), between the months of March and July 2015. The two case studies were conducted by interviewing respondents on how visual astronomical and meteorological weather concepts cause weather outcomes. The two case studies were used to identify causal effects of visual astronomical and meteorological objects to weather conditions. This was followed by finding variations and comparisons, between the visual weather lore knowledge in the two case studies. The results from the two case studies were aggregated in terms of seasonal knowledge. The causal links between visual weather concepts were investigated using these two case studies; results were compared and aggregated to build up common knowledge. The joint averages of the majority of responses from the case studies were determined for each set of interacting concepts. The modelling of the weather lore verification tool consists of input, processing components and output. The input data to the system are sky image scenes and actual weather observations from wireless weather sensors. The image recognition component performs three sub-tasks, including: detection of objects (concepts) from image scenes, extraction of detected objects, and approximation of the presence of the concepts by comparing extracted objects to ideal objects. The prediction process involves the use of approximated concepts generated in the recognition component to simulate scenarios using the knowledge represented in the fuzzy cognitive maps. The verification component evaluates the variation between the predictions and actual weather observations to determine prediction errors and accuracy. To evaluate the tool, daily system simulations were run to predict and record probabilities of weather outcomes (i.e. rain, heat index/hotness, dry, cold index). Weather observations were captured periodically using a wireless weather station. This process was repeated several times until there was sufficient data to use for the verification process. To match the range of the predicted weather outcomes, the actual weather observations (measurement) were transformed and normalized to a range [0, 1].In the verification process, comparisons were made between the actual observations and weather outcome prediction values by computing residuals (error values) from the observations. The error values and the squared error were used to compute the Mean Squared Error (MSE), and the Root Mean Squared Error (RMSE), for each predicted weather outcome. Finally, the validity of the visual weather lore verification model was assessed using data from a different geographical location. Actual data in the form of daily sky scenes and weather parameters were acquired from Voi, Kenya, from December 2015 to January 2016.The results on the use of hybrid techniques for verification of weather lore is expected to provide an incentive in integrating indigenous knowledge on weather with modern numerical weather prediction systems for accurate and downscaled weather forecasts

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Alignment control using visual servoing and mobilenet single-shot multi-box detection (SSD): a review

    Get PDF
    The concept is highly critical for robotic technologies that rely on visual feedback. In this context, robot systems tend to be unresponsive due to reliance on pre-programmed trajectory and path, meaning the occurrence of a change in the environment or the absence of an object. This review paper aims to provide comprehensive studies on the recent application of visual servoing and DNN. PBVS and Mobilenet-SSD were chosen algorithms for alignment control of the film handler mechanism of the portable x-ray system. It also discussed the theoretical framework features extraction and description, visual servoing, and Mobilenet-SSD. Likewise, the latest applications of visual servoing and DNN was summarized, including the comparison of Mobilenet-SSD with other sophisticated models. As a result of a previous study presented, visual servoing and MobileNet-SSD provide reliable tools and models for manipulating robotics systems, including where occlusion is present. Furthermore, effective alignment control relies significantly on visual servoing and deep neural reliability, shaped by different parameters such as the type of visual servoing, feature extraction and description, and DNNs used to construct a robust state estimator. Therefore, visual servoing and MobileNet-SSD are parameterized concepts that require enhanced optimization to achieve a specific purpose with distinct tools

    Automatic Fire Detection Using Computer Vision Techniques for UAV-based Forest Fire Surveillance

    Get PDF
    Due to their rapid response capability and maneuverability, extended operational range, and improved personnel safety, unmanned aerial vehicles (UAVs) with vision-based systems have great potentials for forest fire surveillance and detection. Over the last decade, it has shown an increasingly strong demand for UAV-based forest fire detection systems, as they can avoid many drawbacks of other forest fire detection systems based on satellites, manned aerial vehicles, and ground equipments. Despite this, the existing UAV-based forest fire detection systems still possess numerous practical issues for their use in operational conditions. In particular, the successful forest fire detection remains difficult, given highly complicated and non-structured environments of forest, smoke blocking the fire, motion of cameras mounted on UAVs, and analogues of flame characteristics. These adverse effects can seriously cause either false alarms or alarm failures. In order to successfully execute missions and meet their corresponding performance criteria and overcome these ever-increasing challenges, investigations on how to reduce false alarm rates, increase the probability of successful detection, and enhance adaptive capabilities to various circumstances are strongly demanded to improve the reliability and accuracy of forest fire detection system. According to the above-mentioned requirements, this thesis concentrates on the development of reliable and accurate forest fire detection algorithms which are applicable to UAVs. These algorithms provide a number of contributions, which include: (1) a two-layered forest fire detection method is designed considering both color and motion features of fire; it is expected to greatly improve the forest fire detection performance, while significantly reduce the motion of background caused by the movement of UAV; (2) a forest fire detection scheme is devised combining both visual and infrared images for increasing the accuracy and reliability of forest fire alarms; and (3) a learning-based fire detection approach is developed for distinguishing smoke (which is widely considered as an early signal of fire) from other analogues and achieving early stage fire detection

    Contributions to improve the technologies supporting unmanned aircraft operations

    Get PDF
    Mención Internacional en el título de doctorUnmanned Aerial Vehicles (UAVs), in their smaller versions known as drones, are becoming increasingly important in today's societies. The systems that make them up present a multitude of challenges, of which error can be considered the common denominator. The perception of the environment is measured by sensors that have errors, the models that interpret the information and/or define behaviors are approximations of the world and therefore also have errors. Explaining error allows extending the limits of deterministic models to address real-world problems. The performance of the technologies embedded in drones depends on our ability to understand, model, and control the error of the systems that integrate them, as well as new technologies that may emerge. Flight controllers integrate various subsystems that are generally dependent on other systems. One example is the guidance systems. These systems provide the engine's propulsion controller with the necessary information to accomplish a desired mission. For this purpose, the flight controller is made up of a control law for the guidance system that reacts to the information perceived by the perception and navigation systems. The error of any of the subsystems propagates through the ecosystem of the controller, so the study of each of them is essential. On the other hand, among the strategies for error control are state-space estimators, where the Kalman filter has been a great ally of engineers since its appearance in the 1960s. Kalman filters are at the heart of information fusion systems, minimizing the error covariance of the system and allowing the measured states to be filtered and estimated in the absence of observations. State Space Models (SSM) are developed based on a set of hypotheses for modeling the world. Among the assumptions are that the models of the world must be linear, Markovian, and that the error of their models must be Gaussian. In general, systems are not linear, so linearization are performed on models that are already approximations of the world. In other cases, the noise to be controlled is not Gaussian, but it is approximated to that distribution in order to be able to deal with it. On the other hand, many systems are not Markovian, i.e., their states do not depend only on the previous state, but there are other dependencies that state space models cannot handle. This thesis deals a collection of studies in which error is formulated and reduced. First, the error in a computer vision-based precision landing system is studied, then estimation and filtering problems from the deep learning approach are addressed. Finally, classification concepts with deep learning over trajectories are studied. The first case of the collection xviiistudies the consequences of error propagation in a machine vision-based precision landing system. This paper proposes a set of strategies to reduce the impact on the guidance system, and ultimately reduce the error. The next two studies approach the estimation and filtering problem from the deep learning approach, where error is a function to be minimized by learning. The last case of the collection deals with a trajectory classification problem with real data. This work completes the two main fields in deep learning, regression and classification, where the error is considered as a probability function of class membership.Los vehículos aéreos no tripulados (UAV) en sus versiones de pequeño tamaño conocidos como drones, van tomando protagonismo en las sociedades actuales. Los sistemas que los componen presentan multitud de retos entre los cuales el error se puede considerar como el denominador común. La percepción del entorno se mide mediante sensores que tienen error, los modelos que interpretan la información y/o definen comportamientos son aproximaciones del mundo y por consiguiente también presentan error. Explicar el error permite extender los límites de los modelos deterministas para abordar problemas del mundo real. El rendimiento de las tecnologías embarcadas en los drones, dependen de nuestra capacidad de comprender, modelar y controlar el error de los sistemas que los integran, así como de las nuevas tecnologías que puedan surgir. Los controladores de vuelo integran diferentes subsistemas los cuales generalmente son dependientes de otros sistemas. Un caso de esta situación son los sistemas de guiado. Estos sistemas son los encargados de proporcionar al controlador de los motores información necesaria para cumplir con una misión deseada. Para ello se componen de una ley de control de guiado que reacciona a la información percibida por los sistemas de percepción y navegación. El error de cualquiera de estos sistemas se propaga por el ecosistema del controlador siendo vital su estudio. Por otro lado, entre las estrategias para abordar el control del error se encuentran los estimadores en espacios de estados, donde el filtro de Kalman desde su aparición en los años 60, ha sido y continúa siendo un gran aliado para los ingenieros. Los filtros de Kalman son el corazón de los sistemas de fusión de información, los cuales minimizan la covarianza del error del sistema, permitiendo filtrar los estados medidos y estimarlos cuando no se tienen observaciones. Los modelos de espacios de estados se desarrollan en base a un conjunto de hipótesis para modelar el mundo. Entre las hipótesis se encuentra que los modelos del mundo han de ser lineales, markovianos y que el error de sus modelos ha de ser gaussiano. Generalmente los sistemas no son lineales por lo que se realizan linealizaciones sobre modelos que a su vez ya son aproximaciones del mundo. En otros casos el ruido que se desea controlar no es gaussiano, pero se aproxima a esta distribución para poder abordarlo. Por otro lado, multitud de sistemas no son markovianos, es decir, sus estados no solo dependen del estado anterior, sino que existen otras dependencias que los modelos de espacio de estados no son capaces de abordar. Esta tesis aborda un compendio de estudios sobre los que se formula y reduce el error. En primer lugar, se estudia el error en un sistema de aterrizaje de precisión basado en visión por computador. Después se plantean problemas de estimación y filtrado desde la aproximación del aprendizaje profundo. Por último, se estudian los conceptos de clasificación con aprendizaje profundo sobre trayectorias. El primer caso del compendio estudia las consecuencias de la propagación del error de un sistema de aterrizaje de precisión basado en visión artificial. En este trabajo se propone un conjunto de estrategias para reducir el impacto sobre el sistema de guiado, y en última instancia reducir el error. Los siguientes dos estudios abordan el problema de estimación y filtrado desde la perspectiva del aprendizaje profundo, donde el error es una función que minimizar mediante aprendizaje. El último caso del compendio aborda un problema de clasificación de trayectorias con datos reales. Con este trabajo se completan los dos campos principales en aprendizaje profundo, regresión y clasificación, donde se plantea el error como una función de probabilidad de pertenencia a una clase.I would like to thank the Ministry of Science and Innovation for granting me the funding with reference PRE2018-086793, associated to the project TEC2017-88048-C2-2-R, which provide me the opportunity to carry out all my PhD. activities, including completing an international research internship.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Antonio Berlanga de Jesús.- Secretario: Daniel Arias Medina.- Vocal: Alejandro Martínez Cav

    Dagstuhl News January - December 2000

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic
    corecore