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ABSTRACT

DESIGN OF A HIGH-SPEED ARCHITECTURE
FOR STABILIZATION OF VIDEO
CAPTURED UNDER NON-UNIFORM LIGHTING CONDITIONS

Ming Zhu Zhang

Old Dominion University, 2008
Director: Dr. Vijayan K. Asari

Video captured in shaky conditions may lead to vibrations. A robust algorithm to
immobilize the video by compensating for the vibrations from physical settings of the
camera is presented in this dissertation. A very high performance hardware architecture
on Field Programmable Gate Array (FPGA) technology is also developed for the
implementation of the stabilization system. Stabilization of video sequences captured
under non-uniform lighting conditions begins with a nonlinear enhancement process.
This improves the visibility of the scene captured from physical sensing devices which
have limited dynamic range. This physical limitation causes the saturated region of the
image to shadow out the rest of the scene. It is therefore desirable to bring back a more
uniform scene which eliminates the shadows to a certain extent. Stabilization of video
requires the estimation of global motion parameters. By obtaining reliable background
motion, the video can be spatially transformed to the reference sequence thereby

eliminating the unintended motion of the camera.

A reflectance-illuminance model for video enhancement is used in this research
work to improve the visibility and quality of the scene. With fast color space conversion,

the computational complexity is reduced to a minimum. The basic video stabilization



model is formulated and configured for hardware implementation. Such a model involves
evaluation of reliable features for tracking, motion estimation, and affine transformation
to map the display coordinates of a stabilized sequence. The multiplications, divisions
and exponentiations are replaced by simple arithmetic and logic operations using
improved log-domain computations in the hardware modules. On Xilinx’s Virtex II
2V8000-5 FPGA platform, the prototype system consumes 59% logic slices, 30% flip-
flops, 34% lookup tables, 35% embedded RAMs and two ZBT frame buffers. The system
is capable of rendering 180.9 million pixels per second (mpps) and consumes
approximately 30.6 watts of power at 1.5 volts. With a 1024x1024 frame, the throughput

is equivalent to 172 frames per second (fps).

Future work will optimize the performance-resource trade-off to meet the specific
needs of the applications. It further extends the model for extraction and tracking of
moving objects as our model inherently encapsulates the attributes of spatial distortion
and motion prediction to reduce complexity. With these parameters to narrow down the
processing range, it is possible to achieve a minimum of 20 fps on desktop computers
with Intel Core 2 Duo or Quad Core CPUs and 2GB DDR2 memory without a dedicated

hardware.
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CHAPTER 1
INTRODUCTION

The theme of this dissertation focuses on reducing the complexity of certain
cglculations in video stabilization by decomposition and the structural representation of
the dataset into smaller sub-features. This methodology enables us to overcome the
drawback of conventional performance-resource trade-off in hardware designs by
concentrating the computation on the most distinct sub-feature and sustaining a one-on-
one throughput rate. The main contributions of this dissertation are listed in section 1.3

followed by the organization of this book in section 1.4.

1.1 Motivation of the Research

Video Stabilization is an essential part of the video processing technology for
scenes captured under shaky conditions. From the perspective of an audience, extraction
of information from such a video source can be distracting, thus making it very difficult
to concentrate and exhausting to track the target of interest from the scenes. In extreme
cases, it is impossible to identify the details from such a scene with large variations when
the frames are averaged through our eyes’ perception. However, the vibrative motion of
the camera is not the only problem. Videos captured under non-uniform lighting
conditions are mainly contributed from the limitation of physical sensing devices. Due to

the limited dynamic range of the sampling circuitry, the brighter region of the image

Format of this dissertation is /EEE Transactions on Computers



saturates the photo site of sensing elements, causing the device to compensate itself and
shadow out slightly darker parts of the scene. While there are several image
enhancement algorithms available, the method which is capable of simultaneous
rendering of the luminance and contrast components of the color images is not currently

available for efficient design of the architecture.

The motivation of this dissertation is to find a robust algorithm to immobilize the
video by compensating for the background motion of the camera. Another objective is to
develop a high performance system architecture in FPGA technology for the stabilization
of video sequences captured under non-uniform lighting conditions. In this research, we
apply a reflectance-illuminant model for video enhancement to improve the visibility and
quality of the scene. With fast color space conversion, the computational complexity is
reduced to a minimum, further simplifying the hardware design. The basic video
stabilization model is formulated and simplified for implementation. Such a model
involves evaluation of reliable features to track, feature measure and tracking, motion
estimation, and affine transformation to map the display coordinates of stabilized
sequences. Novel architectures for performing these calculations are also proposed in this
dissertation. With improved log-domain computation, all multiplications, divisions and
exponentiations are replaced by simple arithmetic and logic operations. On a Xilinx’s
Virtex II 2V8000-5 FPGA platform, the prototype system consumes 59% logic slices,
30% flip-flops, 34% lookup tables, 35% embedded RAMs and two ZBT frame buffers.

The system is capable of rendering 180.9 million pixels per second (mpps) and consumes



approximately 30.6 watts of power at a 1.5 volt internal operating voltage. With a

1024 x 1024 maximum frame, the throughput is equivalent to 172 frames per second (fps).

1.2 Proposed Theme of the Dissertation

We often face the decision of performance-resource optimization due to hardware
constraints and the performance needs of specific applications. The performance
parameter usually has an inverse relationship with the amount of assisting hardware
necessary to achieve certain calculations within a given time. To minimize the resource,
conventional methods usually compute the partial results on a timeslot shared
architecture and construct a set of distributed queues to hold the partial results which are
accumulatively combined to produce a more complete output. This concept can readily
be illustrated in Fig la. A dataset is first uniformly divided into n subsets, where »'is the
reduction factor of computing elements, 1/# is the throughput parameter. The subsets are
fetched into the support architecture in a timely manner. Only one subset may occupy the
data path to the support architecture at a clock cycle. The partial results are properly
saved to the distributed queues to be accumulated in subsequent cycles. It requires n

clock cycles to complete the evaluation of an entire dataset.

To sustain the peak performance of a system while reducing hardware complexity,
we propose to represent the dataset by sub-features in a structured constellation as shown
in Fig 1b. The full dataset is first decomposed into a primary sub-feature, P}, and a set of
secondary sub-features, S; ,. The criteria of evaluating the sub-features are application

dependent; however, the general rule is to extract the most distinctive characteristics for



the primary sub-feature and select sub-optimal regions to be secondary sub-features. With
the coordinates of the sub-features obtained from the process of feature decomposition,
these sub-features form the distance and angle relationships with the primary sub-feature
in a structure which identifies the complete dataset. The support architecture for partial
evaluation is similar to the time-multiplexed architecture in Fig 1a. Nonetheless, only P,
is being evaluated at all time with respect to the region of interest. With the successful
evaluation of the primary sub-feature, subsequent measure of secondary sub-features is
enabled at the proper spatial locality predetermined by the structure representing the
dataset. The secondary sub-features, S, are evaluated only once for every valid

measure of P;. A successful measure of all sub-features contributes to a correct

! {Input
| | Datasety :Data
Dataset ' Datasct, i
' Time-MUXed | Re;sult
Dataset, |i..% Support Arch(1/n)

Result
Support | 5
Arch(1/n).

(b) Distinctive characteristics oriented partial evaluation with sub-feature
representation.

Figure 1: Decomposition and structural representation of the dataset.



evaluation of the dataset. This method allows us to evaluate a larger dataset on a

dedicated hardware with limited computing elements and at the same time provides

roughly a one-on-one system performance.

1.3

Main Contributions

The main contributions of this dissertation can be summarized as follows:

1.

Model of feature representation by constellation. The sub-feature methodology
decomposes a feature into sub-features based on the criteria of distinctive
characteristics (textural optimality in our case) of the dataset. A region with the
most distinctive characteristics is assigned as primary sub-feature along with a set
of non-overlapped secondary sub-features having sub-optimal regions. A brute
force evaluation of the complete feature is eliminated with the computational
power concentrated on the primary sub-feature. For every successful measure of
the primary sub-feature, the secondary sub-features are evaluated to confirm the
existence of such structure which represents the complete feature. By representing
the full feature in primary sub-feature and a set of secondary sub-features, the
amount of necessary calculations can be dramatically reduced. For hardware
design, it is not necessary to build a huge architecture to evaluate the complete
feature; instead, one only needs to implement a support system for the sub-feature
dimension. The model also encapsulates the spatial deformation or distortion of
the full feature through the angle and distance relationships among the sub-
features within the constellation. With further extension, this idea can be readily

applied for adaptive tracking of rigid objects.



2. Design of various subsystems for video stabilization, namely, the potential feature
selection, feature measure and tracking, and the angle calculation for inlier motion
estimation. The single most important component, however, is the feature
measure which involves the computation of 2D normalized cross correlation
(NCC). The first step to reduce complexity is to perform a partial measure of
NCC on primary sub-features. Another important aspect of NCC architecture is
its ability to sustain the peak performance without the performance-resource
trade-off. With the assistance of sub-feature measures, the representation of the
full feature served as confirmation of primary sub-features; the NCC architecture
virtually appears to handle much larger feature templates. It is interesting to note
that such a design is the direct extension of our previous research based on the
generic architecture of 2D convolution.

3. Design of low complexity architecture for video enhancement. While we already
have several implementations of various algorithms, the architecture presented in
this dissertation has the lowest complexity of all previous approaches. The idea of
generalized 2D convolution with quadrant symmetry property from master thesis
has also proven to be very flexible in deploying the concept to various image
enhancement architectures. Virtually all image processing algorithms involve
some kind of filtering operations that often has quadrant symmetric kernels.

4. Design of improved logarithmic modules. A simple Bit—level error correction is
introduced to increase the precision of Log, and iLog, modules with improved
pipelining. The hardware complexity for 32-bit numbers is also further reduced

while maintaining only 8-bit fixed point for the fractions. The research done from



the master thesis, “A multiplier-less architecture for high speed computation of
multi-dimensional convolution”, has proven log-domain computation to be very
useful for reducing the complexity in hardware designs.

5. Global motion evaluation with triangular order of search. By calculating the
angles between the vectors alone, we can quickly estimate the background motion.
It is accomplished by searching, without any redundant calculation, for the most
outstanding element within a collection of motions. The outstanding element can
be applied to further narrow down the motions of subsequent video frames, hence,
forming a star constellation based on the stability of the outstanding element in
relation to other nodes within itself.

6. Basic model of feature evaluation based on different types of textures. Due to
hardware related issues, only a single layer of texture already available from the
literature has been selected. The uniqueness of the features proved to be least
useful as the required processing bandwidth can become highly non-uniform
which is not very suitable for hardware implementation.

7. Application of fast color space conversion to speed up the video enhancement on
desktop computers to 30 fps with 3.2GHZ Intel P4H processor and 1.5GB DDR1

memory.

Future work should not focus on further improving the performance of hardware
system since the throughput is already excessively high; however, it should optimize the

performance and the resource to meet the specifics based on the nature of the applications.



Future development should also extend the great potential of the model into finer grains
for extraction and adaptive tracking of moving objects as our model inherently
encapsulates the attributes of spatial distortion and motion prediction to reduce
complexity. With these parameters to narrow down the processing range, it is possible to
achieve a minimum of 20 fps on desktop computers with Intel Core 2 Duo or Quad Core

CPUs and 2GB DDR2 memory without dedicated hardware.

1.4 Organization of Forthcoming Chapters

The remainder of this dissertation is organized as the following. A brief survey of
image enhancement, feature evaluation and motion estimation is discussed in chapter 2
regarding the fundamental problems involved with the stabilization. Chapter 3 introduces
the issues of complexity of certain operations commonly applied in image processing.
Chapter 4 addresses the theoretical model formulation and the simplification toward
designing hardware efficient high-speed architecture. The design of different subsystem
modules is illustrated in-depth in chapter 5. The simulation results and error analysis
along with the parameters of performance and resource allocation are given in chapter 6.
The conclusion and the comments regarding future development of the video stabilization

system are presented in chapter 7.



CHAPTER 2

ALGORITHMIC BACKGROUND

In this chapter, we briefly describe the fundamental issues involved with the task
of stabilizing the video sequence. One of the issues is video enhancement for which one
must compensate the visual quality of the scenes captured from cameras with limited
dynamic range. The second issue requires the detection of reliable features to establish
the correspondence between the video frames. Various approaches for estimation of

background motion are addressed for derivation of parameters necessary for stabilization.

2.1 Necessity of Image and Video Enhancement

Physical limitations exist in the sensor arrays of imaging devices, such as CCD and
CMOS cameras. Often the videos captured by these devices cannot properly represent
scenes that have both very bright and dark regions. The sensor cells are commonly
compensated with the amount of saturation from bright regions fading out the details in
the darker regions. Image enhancement algorithms [1], [2], [3], [4] provide good rendering
to bring out the details hidden due to dynamic range compression of the physical sensing
devices. For applications in color images these algorithms may fail to preserve the color
relationship among RGB channels which result in distortion of color information after
enhancement. Thus, there is still room for improvement. The recent development of a fast
converging neural network based learning algorithm called Ratio Rule [5], [6] provides an
excellent solution for natural color restoration of the image after gray-level image

enhancement. Hardware implementation of such algorithms is absolutely essential to
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parallelize the computation and deliver real time throughputs for color images or video
processing containing extensive transformations and a large volume of pixels.
Implementation of window related operations such as convolution, summation, and matrix
dot products which are common in enhancement architectures demands enormous amount
of hardware resources [7], [8]. Often a large number of multiplications/divisions is needed
[9]. Some designs compromise this issue by effectively adapting the architectures to very
specific forms [7], [8], [10] and cannot operate on different sets of properties related to the
operation without the aid of dynamic reconfiguration in an FPGA based environment. We
proposed the concept of log-domain computation in [11] to solve the problem of
multiplication and division in the enhancement system to significantly reduce the

hardware requirement while providing a high throughput rate.

Algorithms developed under the reflectance-illuminance category of the image
processing models are not unique. The theorization of such a model for visual
representation originated in the early 1970’s [12] with stochastic image processing in [13]
to reduce the salt-and-pepper noise (black and white dots imposed from poor quality
sensing device available at the time). In classical approaches, homomorphic processing
operates exclusively on the grayscale images. Recently the concept has become popular
for adapting the model to color image representation. Although the concepts for a number
of exotic approaches are generalized by Kimmel et a/ [14], dedicated architectures for
such algorithms are generally unavailable; thus, comparison is limited to existing designs
relevant to the subject. One of the few well explored and adapted techniques (in both

hardware and software) in this category is Multi-Scale Retinex (MSR) related model
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developed by Jobson’s research team [2], [3], [15]. By the nature of the algorithmic
procedure, MSR is suitable for DSP based implementation discussed in [16] where the
fast Fourier transform (FFT) and inverse FFT (IFFT) may be readily plugged in from the
DSP library [17], [18]. Further improvement on MSR can be made for better color
consistency to minimize the influence from background color. Within the same category,
we presented a hardware-efficient architecture in [19] for enhancement of the digital
color images with non-uniform darkness using a Ratio learning algorithm [5] [6] for color
distortion correction. We also proposed the nonlinear enhancement architecture in [20]
based on [21] which results with similar quality on the output images. As far as efficiency
is concerned, tweaking of the enhancement processes needs to be further exploited for

potential speed up and hardware reduction.

2.2 Evaluation of Good Tracking Features

Modeling of artificial neural networks (ANN) to solve real-world problems is
inspired by biological neural systems. Such systems are simplified for ANN where the
neurons are characterized solely by the biologic machinery but the ability to adapt, learn,
and generalize in response to given types of information within the network architectures
are governed by certain learning rules. The successors of such models mimic the
biological functionality of the systems quite well. Virtually all forms of modification of
the synaptic weights between neurons are in some ways variations of Hebbian or Delta

rule in ANN whether the networks are feed-forward or recurrent [22].
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While feed-forward architectures such as perceptron and adaline [23] [24] [25]
have strict limitation where no feed-back or back-propagation exists for error correction,
recurrent networks significantly increase the dynafnics of the network. One of those
earliest recurrent networks was introduced by Anderson and Kohonen in [26] [27] and
generalized by Hopfield in 1982 [28] with primary applications for associative memory
which remembers the patterns and pattern recognition. Examples of applications include
optimization in power systems [29]. For classification, the unsupervised Fuzzy Adaptive
Resonance Theory, Fuzzy-ART, neural network, introduced in 1976 by biological
phenomena [30] can be useful. Fuzzy-ART is capable of clustering documents with the
ability to mine data and discover knowledge dynamically by a wide variety of techniques
[31]. It can also be applied for rapid stable learning to categorize and recognize the
patterns [32]. The supervised Fuzzy-ART called Fuzzy ARTMAP can learn incrementally

for category recognition with new minima learning rule [33].

Inspired by the concepts of adaptive resonance theory based neural networks and
Hopfield recurrent network, a new neural architecture is desirable to fuse different
characteristics [34] for automatic extraction and selection of a set of unique features from
a video stream. The same network should also be able to track the features to maintain
the correspondence between video frames and minimize iterative error measures. Such
features would be useful for estimation of motion parameters. While the ANN has the
capacity to support pattern related classes of applications, the iterative nature of the
process itself imposes the bottleneck of non-constant bandwidth access of the storage

components in dedicated high performance system architectures. Nonetheless, the
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specific textures can be considered reliable for tracking. In general, good features are

characterized by the distinctiveness of different types of textures.

Scale invariant feature templates (SIFT) can be very helpful for object detection
[34][74]. To identify the correspondent coordinates of a feature in another picture, the
image must be re-sampled into different resolutions to construct a pyramid of images.
Within each resolution, feature selection is performed based on certain criteria. The most
consistent features of the pyramid are extracted as the scale invariant templates for
subsequent processing. In conjunction with rotation invariant features through affine
normalization, the multi-resolution feature extraction has proven to be vital for the
construction of image descriptors and the accumulation of its database for autonomous
object detection [75]. Our main focus, however, is to identify reliable features with
respect to a current video frame under the legitimate assumption that variation of scale
and rotation are gradual within a video sequence. Hence, it is not necessary to represent
the features according to image descriptors with scale and histogram orientation of

certain key points.

2.3 Evaluation of Motion Parameters

Evaluation of the features alone may seem insignificant; however, such a step is
crucial when combined with a variety of motion analysis and estimation. Motion
estimation (ME) is a process of evaluating the relationship between the frames such that
the contents of the frames are approximately stationary with respect to the reference

frame through transformation of motion parameters. Global motion estimation (GME) is



14

an instance of ME which involves the monitoring of background or dominant motion.
ME has a very broad applications in video processing technology. In video compression,
the ability to accurately estimate the motions, not necessarily global motion alone,
determines the compression ratio, resulting in smaller video files [35]. In segmentation,
motion information helps in distinguishing between moving objects from the background
[36]. In registration and mosaicing applications, motion vectors contribute to the key
components in identifying orientation for stitching the frames into a more complete scene

[37].

ME search algorithms can be divided into three categories based on their
complexity. The full search algorithms (FSA) contribute to the most optimal match yet
impractical with overwhelmed complexity O(n), where n is the search range. The cost for
block search is O(n/m), where m is the block range, and may be as low as O(log(n)) with
logarithmic search [38]. In video compression the blocks are usually divided into macro-
blocks to further reduce the search range with a trade off of increasing the distortion and
the assumption of block-wise uniform motion [39]. The hybrid search serves to balance

the complexity and accuracy [40].

The class of gradient/differential based ME algorithms is commonly modeled by
(2.1), where I(x) is the current frame with coordinate vector x=[x,y]", ., is previous
frame or reference, G function is the affine transformation by motion vector M, and err(x)
is the error. The coefficients a; and b; are the rotation and scale of affine parameters while

d, and d, are the displacement or translational motion between the frames. Two well
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known cost functions for error measure defined in (2.2) are mean absolute error (MAE)
and mean square error (MSE) [41] for which M has the solution of least squares

regression.

The error minimization has a first order Taylor expansion of (2.3). The resolution
pyramid is often constructed to iteratively estimate the motion parameter for convergence
from course to fine resolutions. Such differential techniques assume that the intensity of
the images is conserved reducing its reliability to subtle change by noise and illumination.
Higher orders of Taylor expansion further assumes that the subsequent gradients be
conserved which implies the ill-posed problems to rotation, scaling as well as sources of
noise [42]. The approach essentially becomes less stable as the constraint is overly
specified. A more troublesome part of the gradient descending ME is that the search
algorithm fails when trapped into local minima [43]. Lucas introduced weighting to error
measure defined in (2.4) to give more influence to centre pixel under the window [44].
This concept can be extended to increase the reliability of selected regions for motion
measure. Such confidence factor can be modeled with Bayesian statistics through
observation over time to enhance regions with low noise and small aperture problems or
suppressing otherwise [45]. Multi-frame buffering and frame sub-sampling are usually
required for ME with differential techniques. They translate to greater memory usage
with added complexity to buffer flow in hardware realization. The potential of measuring
global motion can be explored through consistency of motions to avoid iterative error
measure and minimize frame buffering. Once the motion parameters are sustained and

compensated by intended motion, standard affine transforms may be performed to
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minimize shakiness of the scene, hence, stabilizing the video. While the motion
parameters may be estimated through measure of residues with respect to the reference
frame, we should examine the basic properties of calculating the coherence of different

motions.

I(x)=1_ (G(X,M)) + err(X)
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2.4 Summary

In this chapter, we discussed the fundamental limitation of physical sensing
devices for which the cameras had narrow dynamic range. Saturation in part of the image
tended to shadow out the details in other regions of the scene. Different image
enhancement algorithms often required several separate operations for contrast
improvement, luminance enhancement, color correction and color restoration. We found

it necessary to apply a simpler model and at the same time eliminate color correction and
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restoration. Such a model should minimize the number of multiplications to reduce
complexity while produced reasonable image quality to improve the visibility of the
scene. Moreover, we intended to design an enhancement subsystem capable of fine-
tuning certain parameters to meet the need. In computer vision, most feature evaluation
concepts available in the literature often model the scale, rotation and orientation as part
of the efforts to recognize certain invariant features. It required a significant degree of
computation frequently too difficult to implement in hardware. The processing nature of
certain calculations would be highly non-linear, therefore, extremely difficult to
implement. Our interest would be to only evaluate reliable features with respect to current
conditions within the scene. It is desirable to derive a simple model for feature evaluation
which has low complexity with minimum storage space. Hence the evaluation technique
has to support feature extraction on the fly. A class of gradient based motion evaluation
techniques was also evaluated in this chapter. These approaches are iterative nature in the
process of obtaining motion parameters. The assumption of conservative image intensity
further poses the ill nature in the presence of noise. Similar to the feature evaluation these
techniques often require the storage of entire video frames for which certain prediction
must be iteratively measured by means of residual errors. In theory, if the feature
evaluation works well, it is not mandatory to extract motion parameters from the entire
frames. In the forthcoming chapters, a simpler mean of video enhancement, feature
evaluation and motion estimation suitable for hardware realization are analyzed for the

stabilization of video sequence.
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CHAPTER 3

COMPUTATIONAL COMPLEXITY REDUCTION

In advance to in-depth discussion of the theory behind the algorithm, let us begin
by a briefing on the fundamental problems of the complexity itself regarding most
commonly used operators such as division, multiplication, exponentiation and some form
of summation equivalent to window/kemel based operations such as matrix

multiplication.

3.1 Redundancy of the Operator

As introduced in chapter 2, window based operations are very common in video
processing technology such as generalized 2D convolution. Often, coefficients associated
with these kernels are non-arbitrary and exhibit interesting properties. It is a waste of the
computational power and resource allocation from hardware designers’ perspective to not
take advantage of certain symmetries within the kernels. Such symmetries are very
common in the design of digital filters. In particular, we utilize the quadrant symmetry
(QS) of the kemels to support convolution operations (digital filtering). This
preprocessing ideally saves close to 75% of the multiplications in addition to the
replacement of the hardware multipliers discussed in [46]. Such optimization results with
the architecture that is neither too specific nor generic while focusing the essential
computation to a single quadrant. It maintains the flexibility of redefining the filter
characteristics at run-time (soft upgrade) without recompiling and dynamically

reconfiguring the architecture (hard upgrade) by external systems. Examples of the filters
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qualified for QS property include both separable [47] and non-separable kernels. QS also
encapsulates circularly symmetric kernels such as Gaussians and Laplacian of Gaussians
used for smoothing and edge detection, respectively. In summary, one can minimize the
computational power by simply exploiting the redundant properties of certain operators.
The reliance on redundancy alone, however, is insufficient for hardware implementation

of the dedicated architectures which demand relatively complex calculations.

3.2 Concept of Logarithmic Domain Computation

This section describes the basics of logarithmic approximation. A common
technique which relies on piecewise straight lines for error correction to various
precisions is also illustrated in the subsections. We propose bit-level curve fitting as a
mean to generafe the correcting coefficients and achieve similar precision compared to

other approaches.

3.2.1 Simplicity of Approximation and Its Benefits

Multiplications and divisions become additions and subtractions with logarithmic
transformations logically defined by (3.1) which require significantly less computational
power. A number to the power n becomes a matter of arithmetic shift operation achievable
within single clock cycle for n equals to power of two, or multiplication operation for any
finite n in general. Eq. (3.1) states that the log, scale of V' can be calculated by
concatenating the index /[, of leading 1°s in V" with the fractions (remaining bits after / o
bit). The reversed process holds true as well, except the leading 1°s and fractions, L, are

shifted to the left by L; (integer of L) bits as shown in (3.1). This definition is generalized
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to integer values as well as fraction numbers. For example, 10g,(0000.0110) binary
becomes -1.5 or (-2 + 0.5) in decimal since the position of 7, is -2 (two places after
decimal point) with fraction 0.10 in binary. The correct value should be -1.415 which
results with 6% error from the approximation for worst case scenario. Application of this
concept eliminates most costly components just described for hardware designs. Thus, it is
crucial to implement efficient logarithmic estimation modules in such a way that is very
compact in its design, reduces large amount of hardware resource, and provides very high
throughput rate [11] [19]. Designs based on the concept presented in [48] which
employees unrolled pipeline architectures such as [20], [49] and [50] may not be efficient
for replacement of multiplications and divisions in window related architectures for FPGA
based implementation. Particularly in filters, such architectures usually require a large
number of multiplications and the amount of hardware resource allocated for the unrolled
pipeline stages usually can come close to the cost of the multipliers on FPGA technology.
Our implementation of the estimation modules packs the resolution-dependent unrolled
pipeline style design into a few stages regardless of its resolution and at the same time
optimizes the component count, power and speed. It is about 10 times reduction in the
resource and 170% performance boost in FPGA environment. We generalized the
modules to support both integer and fraction numbers without introducing hardware
complexity. These modules are also insensitive to the bit-resolution that exists in hardware
multipliers in which the performance is inversely proportional to the number of bits in the
multipliers. We have demonstrated the use of log domain computations in [19], [46] for

image processing applications with a figure of 60% hardware reduction in addition to the
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applicable QS based architecture. The error correction to enhance such approximation is

discussed in next section,

log,(") = {I,}+{(V -1,)> I,} = log; (L) ={1< L} +{L, < L} (3.1)

3.2.2 Improvement of Precision with Piecewise Straight Lines

Mitchell’s logarithmic converter proposed in [48] was derived based on binary

representation of a number N in
k N
N=>5p2
=/ (3.2)
as a summation of binary coefficients, b; with respect to the placement, 2°: The k is an
index (aka characteristic of log,N) for which the most significant bit (MSB) of N in binary

equals to 1°s. Given by=1, the term 2* can be factored out to simplify (3.2) by
N=2'(1+f) (3.3)

where f'is the fraction of the remaining terms of (3.2). The log;, scale of (3.3) is defined by

log, N=k+log,(1+ f) (.4)

and can be approximated by

logzN'=k+f7 3.5)

with the slop of line equal to one between consecutive points of exactly power of two. A
different perspective to the approximation using power series can eventually reach the
same conclusion for fix-point N in addition to strictly integer values [46]. The error is

measured by the difference between exact log;N and approximated log;N’:

Err(N)=log, N -log, N' (3.6)
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Eq (3.5) only requires arithmetic addition and may be implemented completely free of any
multiplication. Mitchell demonstrated the design with counter and shift register in serial
form which requires minimum hardware resources at the expense of the largest number of
clock cycles necessary. The result of Mitchell’s approximation is shown in Fig 2a along
with the difference error in Fig 2b, which is quite symmetrical with x-axis in log, scale.
The periodic nature of the difference error makes it possible for bit-level error correction

as an alternative to piece-wise linear approaches [49][50][51][52][53].

— Exact
IF - Mitchell's

(2) (b)

Figure 2: Mitchell’s log, approximation (a) and the difference error (b).

In general, piecewise linearly corrected logarithmic converters maintain the

following form:

log, N'=k+f+(fxD ca+ D dy) (3.7)

>

where cgr is the single-bit slop in power of two to eliminate real multiplications and

minimize error, and R denotes the divided regions for such linearization. The number of

binary coefficients in ZCR is determined to be fewest possible for realization of low
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complexity circuitry. In 1999, SanGregory proposed the two-region piecewise linear
correcting factor [52]. The single-bit coefficient was selected by minimizing root-mean-

square error. His correction algorithm can be summarized as follows:

27 fousss  Jor0< f<1/2

logzN'=k+f+{2—zﬁMSB, Jorl/2< f<2/2 (3.8)

where / = 1-f, or the descending part of the error curve in Fig 2b. The difference error

with 05/ <1 approximately symmetrical around the midway in linear scale.
SanGregory chose to only incorporate 4 MSBs of the fraction to generate a three bits
correcting factor to improve accuracy yet maintain very low hardware overhead. Dated
back to 1965, Combet also improved Mitchell’s algorithm with a four region error
correction in serial architecture with increased circuit complexity [51]. His algorithm was

based on trial and error in selecting the straight lines and can be defined as:

Q27 +27Yf, for0< f<1/4

274427 1/4< £ <2/4
log, N'=k+f+4- 27 forlfas< f <2
273 F+275427, for2/4< f <3/4
277, for3j/a< f<4/4 (3.9)

Hall also adapted Combet’s idea with more coefficients for better accuracy yet seemed to
defeat the desire for solutions with a simple hardware requirement [54]. In 2003, Abed
refined the work done in [52] and extended the piecewise straight line approach to offer
two, three, and six region error correction algorithms for 32-bit integer numbers. His
formulation for the implementation presented in [53] can be summarized as follows with

two, three, and six-bit correcting factors, respectively:

272 fosss  SJor0< f<1/2

log N'=k+f+{ =
’ 27 frussns f0r1/2Sf<2/2’ (3.10a)
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2”2f4MSB, Jor0< f<1/4
log, N'=k+ f+427+27°, forl/4< f <3/4
27 fousns Jor3/4< f<4/4 (3.10b)
27 forisns for0< f<1/16
27 fouss 27, forl16< f <4/16
2744274278 4/16 < £ <6/16
log, N'=k+ f +3 4+ 6+ 7’ Jor 4f < /
27 4+27% 427, for6/16< f <10/16
274427, for10/16 < f <12/16
27 fr s for12/l6sf<16/16, (3.100)

In general, increasing the number of regions results with smaller approximation
error defined in (3.6) at the cost of additional logic gates and adder cells. In the case of
six-region method, two cascaded adder arrays are needed which can reduce the overall
performance of the logarithmic converters. We now present the idea of bit-level curve
fitting to generate a three-bit correcting factor. Furthermore, we apply it beyond integer

values to include fixed-point representation, given consideration of the precision.

3.2.3 Bit-level Curve Fitting

The process of calculating inverse-log, is to undo the log, conversion which has

the following relationship:

frac) < Lim }

logy (V) = {ky} +{(N =2" )k, f = log (1) = {(1+ , (3.11)

where 2> and < denote the opposite data bus shifting operation. Note that neither (3.5)
nor (3.11) restricted us from defining negative index, k<0 however, only the integer

portion (assuming non-negative k) has been exploited in the literature to our best

knowledge. For a fixed-point decimal of 8/8 (8-bit integer and 8-bit fraction), the same
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rule holds true. We need to find a mechanism to express the k in two’s complement. By
using the standard priority encoder, we found that the single bit-inversion of the MSB at
the output of the encoder does the trick. A single bit of inverter logic generalizes the
architecture to accept both integer and decimal values. By including fraction values, it
may seem to complicate the problem that shifting operation of (3.11) can go either way
depending on the sign of k; the logic shift remains unidirectional in the implementation.
To avoid real computation and minimize delay in realizing high speed parallel
architectures, one is often left with very few choices. Besides the linear methods of (3.8)
to (3.10), curve fitting at the logic level can also achieve a high degree of precision

without introducing complex circuits.

Rather than applying piecewise straight lines, we examined the dataset of the
difference error shown in Fig 2b to determine a close fit for generating such correcting
factor. At the same time, the correction should not be dependent on all fraction bits to
minimize circuit complexity. Examples of binary logarithmic conversion are shown in
Table I for 5-bit integers with index value k = 4. On the rightmost column is the error
pattern without the correcting factor. Given a finite set of data points and the coherent
near-symmetric error bits, one can utilize a large ROM table to correct the error to its best
precision. Although not entirely impractical, such an approach does not work well in its
scalability as the size of ROM storage exponentiates with the increasing resolution of
input integers. It is therefore wise to focus solely on the bits which contribute to the largest
magnitudes of error. Based on the simulation analysis at higher precision with

consideration of rounding, it was determined that the last five bits of fraction coefficients



26

can provide sufficient improvement for 8-bit fixed-point representation. Furthermore,
optimization on highlighted bits of the error coefficients, EC, (on last column of Table I)
shows best trading of higher precision with a reasonably small set of logic gates. Unlike
piecewise straight line methods discussed in previous section, bit-level curve fitting needs
to be optimized at a much higher resolution for more accurate representation by logic

gates.

Table 1: Example of log, converter with 5-bit integers and the index & = 4.

Input_bin Log2 dec Log2 bin Log2appx_bin Log2 - appx
10000: 4 100.00000000  100.00000000 0.00000000
10001: 4.0875 100.00010110  100.00010000 0.00000110
10010: 4.1699 100.00101011  100.00100000 0.00001011
10011: 4.2479 100.00111111  100.00110000 0.00001111
10100: 4.3219 100.01010010  100.01000000 0.00010010
10101; 4.3923 100.01100100  100. 01010000 0.00010100
10110; 4.4594 100.01110101  100.01100000 0.00010101
10111; 4.5236 100.10000110  100. 1 1 0000 0.00010110
11000: 4.585 100.10010101  100.10000000 0.00010101
11001: 4.6439 100.10100100  100.10010000 0.00010100
11010: 4.7004 100.10110011  100. 1 1 0000 0.00010011
11011; 47549 100.11000001  100.1 11 000 0.00010001
11100: 4.8074 100.11001110  100.11000000 0.00001110
11101; 4.858 100.11011011 1001 10000 0.00001011
11110: 4.9069 100.11101000  100.11100000 0.00001000
11111: 4.9542 100.11110100  100. 11110000 0.00000100

The binary logic fitting analysis of precision-circuit trading pinpoints to the
generation of EC4 to EC.¢ depending on the fraction bits f; to fs and the potential
rounding of EC itself. Based on the results, it was concluded that the following simple
logic equations reduce the average magnitude of error to approximately one tenth of

Mitchell’s estimation:
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EC-4(f):(J7.1 sz)/\(f.x A Vf_4)/\(f_1 Vf—z Vf_3)
EC () =(f3V LINTLV LD ATLV LAY [V fs)

A(ﬁzvf_svﬁ4)
EC—s(f)=(f_1Vf_2Vf7—4)A(ﬁ2V7—3VZ4)A(21V22V7—4V7—5)
NIV AN SV IININ Fav IV Vv ) 32

—25f <Err <35/ for 8 pit integers comparing to

The range of error is expected to be
double precision log, values. Since the meaningful precision is limited to 8-bit fixed-point
for the fraction, it is also subjected to additional bit of error from rounding for N with
greater bit resolution. The analysis also shows that the precision-circuit optimized logic

equations reduced the range of approximation error to [-0.0096, 0.0128] with an average

error 11.8 times smaller than Mitchell’s for 8-bit integers.

Given eight-bit fixed point fraction, f; to fs, it is obvious that appending any
fraction beyond an eighth bit contributes very little to improve the precision with
dominant source of error in higher significant bits. Hence, the log, converter can be
simplified further to reduce hardware components. Instead of the full one-to-one mapping
from input to the output, one only needs to construct the data paths relevant to eight output
nodes, whether it be 8, 16 or 32-bit resolution. The same concept applies to inverse-log;
converter. In summary, we replace the portion of piecewise lines with three-bit
coefficients to improve the precision with eight bits fraction while in logarithmic scale:

log, N'=k*+f;,. + EC (3.13a)

log,' L'=2" (1+ fopss — EC) (3.13b)
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where k* is specific to the input of either integer or fixed-point decimal(2’s complemented
k). In next chapter, we discuss the theoretical model for video stabilization and illustrate

how redundancy and log-domain computation help reduce complexity of the design.
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CHAPTER 4
THEORETICAL MODEL

Improvement of visibility, evaluation of reliable features and estimation of motion
parameters are inseparable integral of the effort to formulate the model for stabilization
of video sequence captured under non-uniform lighting conditions. The theory
underneath these three subjects are discussed to the fullest extend in this chapter. At the
end of each topic, the relevant part of the model should be simplified to the point that is

reasonably achievable for realization of such hardware architecture.

4.1 Low Complexity Video Enhancement

The main objective of improving the quality of visibility includes enhancing the
contrast and luminance components of the image for a more uniform appearance of the
scene. Ideally, noise reduction should be part of the effort to correct noise induced from
capturing devices. However, we do not deal with this issue as the magnitude of noise
source is acceptable. In this section, we discuss and evaluate a more effective approach as
an alternative to the methods introduced in chapter 2.1 to significantly reduce hardware
requirement while achieving similar fidelity in the enhanced image/video. The new
architecture should be capable of improving the brightness and contrast simultaneously to
minimize shadow regions of the image. It processes the images and streaming video in
HSV-domain with the homomorphic filter (Homomorphic model is a developed concept
in computer science field mostly for grayscale image processing and cannot be applied

directly for color images) and converts the results back to RGB representation with fast
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conversion factor [55] instead of full transformation [56]. The following sections discuss
on the reflectance-illuminance enhancement model and the simplification for boosting the

performance.

4.1.1 Homomorphic Processing in HSV-Domain

Color distortion correction can be avoided for color image enhancement in HSV-
domain where the color (H), intensity (V) and saturation/color density (S) components can
be rendered separately without introducing the distortion. HSV is a conical representation
of the color as opposed to cubical representation in RGB space. To remove the shadows in
the image, only the V component in HSV needs to be enhanced instead of boosting
separate RGB channels which results with loss of color consistency without correction.

Extraction of the V component is defined by
V(x,y) = max(R(x, y),G(x, ), B(x, y)) (4.1.1)

where the R, G, and B are the original color components of the input image. The V-

component is enhanced by a homomorphic filter defined as

Vi,
Vor(, ) = exp(ln(—-(—zf,;—yl}* h(x,y)j <D o (4120)
(Ing [KQ{F,XJJ*”(L)’)]
Venn(x,y) =2 z xD (4.1.2b)

for logarithmic based two expression where the * denotes convolution operation, A(x, y)
is the time-domain filter coefficients from a high-boosting transfer function, P is the

resolution of the pixels, D is the de-normalizing factor, and V,.(x, y) is enhanced
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intensity value of the image. This enhancement model assumes that the detail (reflectance
components) in the image is logarithmically separable [13], [3], [55]. Hence the model
belongs to reflectance-illuminance category. The convolution or digital filter operation

can be defined by

Venni(x, y) = i i Vnz(x -m,y- n)>< h(m,n), 4.1.3)

m=—q n=~a

where a = (K -1)/2for Kx K filter kernel, V,,; is the normalized logarithmic scaled version
of V(x, y) and ¥, is the result from performing 2D convolution. The quadrant symmetry
property of the homomorphic filter operation defined in (4.1.2a) and (4.1.2b) allows us to
optimize (4.1.3) to reduce the number of multiplications approximately by 75% as

summarized in section 3.1. The folded version of (4.1.3) can be expressed as

el

MN
t

Vennit( x, y) = Vn/(xim+§,yin+§)xh(m,n)+ Vn/(x,y)xh(%{-,g) (4-1.43)

n=0

E
]
o

~

-1

K-1
& & K K K K
Venni(%, ) = Vn/[x+m———+1, +n———-+1)+Vn/[x—m+——, +n——+1)
n=2 Z[ 2 T 27" (4.1.4b)

+Vnz[x+m—§+l,y—n+§)+Vn/[x—m+—§—,y—n+§ﬂxh(m,n)

for odd and even size kemels respectively. The enhanced image can now be transformed

back to RGB representation by mapping the following set according to the value of i:

{R'G'B"}, ={{e, p.1},{n.e,t}.{t,e, p}.{t.n,e} ,{p.t,e} {e,t,n}} foriin {{0},..{5}}, 4.1.5)

wheret=1-S,n=1-Sxf,p=1-Sx(1 -f),e=1,and {R’G’B’}, is the normalized
enhanced RGB components. The i and f are the integer and fraction portions of H which
is the angular representation of color component in HSV-domain defined by (4.1.6). The

S component in HSV domain is defined to be (4.1.7). The final output, {R’G’B’}, can be
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calculated as (4.1.8) with the denominator approximately equal to one for non-uniform
scenes or images which contain bright parts, where V., = 2""*'x D. Equations (4.1.1)-

(4.1.8) provide basic framework for the design of HSV-domain enhancement system.

0+(G-B)/(V -min(RGB)), if ¥ =R
H ={2+(B-R)/(V -min(RGB)), if V =G (4.1.6)
4+(R-G)/(V - min(RGB)), if ¥ = B

_V -min(RGB) (4.1.7)
= g

S

{R'G’B'}" X Venn

max ({R'G'B'},) 4.18)

{R'G'B"} =

4.1.2 HSV-Domain Enhancement with Fast Color Space Conversion

We have shown the concept of enhancing color images in HSV-domain in a
previous section. It reduces the processing bandwidth needed in hardware design to focus
on one channel (V-component) rather than concurrently processing on all RGB channels
followed by color distortion correction. This approximately cuts the hardware resource by
2/3 compared to the machine learning approach discussed in [19]. As Li Tao ef al
demonstrated in the color image enhancement algorithms [21], [55], the color restoration
process can be further simplified. She showed that if H and S components in HSV space
remain constant, the equations (4.1.5)-(4.1.8) needed for inverse transformation can be
replaced by (4.1.11). This approach should moreover reduce the hardware complexity
since full implementation of the transformations between HSV and RGB representations

is not mandatory.

{(R'G'B"} =

iﬁ;;_B}_me 4.1.11)
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4.1.3 Comparison of Visual Quality with Relevant Algorithms

The results from algorithmic simulation are shown in Fig 3 for visual judgment.
The original image is illustrated in Fig 3a. This type of non-uniform image is typically the
consequence of saturating the bright parts of the scene (Low lighting condition intensifies
the effect in this case). We enhanced the image with the algorithm discussed in the last
section. The more uniform result is shown in Fig 3b. It is trivial that most shadow regions
with reasonable darkness (e.g. not completely dark) are removed while the bright parts
maintain the fidelity. It should be noted that the discoloring in the dark regions of the
enhanced image is natural since the color information is very weak with V component

close to the tip of the HSV cone shown in Fig 3c.

Figure 3: Algorithm simulation: (a) original, (b) enhanced (c) conical representation of
HSYV color space. No useful color information can be obtained with V component too
close to the tip of the cone. Hence the excessively dark regions appear pale in the
enhanced image.

While discussion of the other enhancement algorithms is outside the scope of this
research, it is important to illustrate the results since we will compare the hardware

utilization and the performance for the available implementation of the algorithms. The
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original test image is shown in Fig 4a. After enhancing the image on separate RGB
channels, more details are revealed as shown in Fig 4b; however, the image appears pale
due to loss of the color relationship between the channels. The result of enhancement by
Multi-Scale Retinex with Color Restoration (MSRCR) [15], which is based on human
perception, is illustrated in Fig 4c. This approach corrects the color distortion but still
appears grayish in certain areas depending on the background color and lighting
condition. In this case the background has a mild influence on the image. Thus further
improvement can be made. The hardware implementation of this algorithm can be done,
but the large scale kernel of the filters makes it impractical to achieve in time domain.
Shown in Fig 4d is the output of the Luminance Dependent Nonlinear Image
Enhancement (LDNE) algorithm presented in [21] which we implemented the hardware
system in [20]. It is clear that the color is consistent which is obvious on the color of the
hair of the man shown in the figure. Fig 4e is the output of correcting Fig 4b with Ratio
Rule which is a machine learning algorithm [5], [6]. We also implemented it in [19]. The
output for the design to be implemented is illustrated in Fig 4f. It has similar
characteristics with Fig 4d and 3e and is somewhere between the two. With carefully
chosen homomorphic transfer function, it can be hard to distinguish by human eyes.
Nonetheless, the difference between these designs in terms of the performance and
hardware utilization is quite dramatic. Design of this simplified system architecture is
discussed in next chapter where we show the architectural realization of the equations

(4.1.1), (4.1.2b), and (4.1.11) in the color image enhancement system.
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Figure 4: Algorithm Comparison: (a) original image taken from [15], (b) enhanced
Separate RGB channels without color correction, (c) enhanced by MSR with color
correction [15], (d) enhanced with LDNE [20] [21], (¢) enhanced with RR [5] [6] [19], (f)
enhanced with the approach we proposed.

4.2 Feature Selection and Tracking
The basic concept of feature evaluation framework is described in this section.
The overview of the structure, the formulation of different components needed to

evaluate texturally optimal features, and the preliminary simulation results are discussed
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in details to reveal the drawback of the framework. Simplifications are provided to reduce

the complexity and make the calculations feasible for hardware realization.

4.2.1 Overview of the Framework

The new framework comprises mainly three functional levels. An overview of the
network is illustrated in Fig 5 for image data represented by red, green blue color bands.
The RGB color components are connected to level 1, /;, of the neural network where g
layers of textures are extracted based on desired criteria such as edges, lines, and corners

[57] in feed-forward configuration [23]. The B layers of textures are then weighted

through distance dependent modular network [58] and merged into single layer feature at
[;. The feature selection of this fused texture layer is considered in the descending order
from the most optimal regions. The regional feature measure is performed and extracted
to evaluate the periodicity of the potential candidates. The data involved with the measure
can be from /. If the feature is indeed unique at /;, we say that the network converges
with good feature to track by different aspects of the textures and its distinctness within
its region. Otherwise the weight memory of /; is modified similarly to Kohonen’s
learning rule [59] to suppress the regions resembling to the disqualified candidates. In
latter case, the network converges if it determines a good feature or that the weight
memory of /; converges to zero which implies that there is no reliable or traceable feature

for tracking.
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Figure 5: Block diagram of the framework for automatic feature selection for tracking.

4.2.2 Model Formulation

This section presents the calculation for different layers of textures and is a means
to obtain the unique features. The basic process requires the extraction of different types
of textures, the fusion of the textures, and the potential feature evaluation based on the

uniqueness criteria.

4.2.2.1 Extraction of g Layers of Textures
The type of desired texture is strongly impacted by the nature of the problem. In
image processing domain, edges, lines, and corners are the common textures. They can

be considered as separate texture layers for the neurons defined by

C(x,y)=H,{I(x,y)} forl<i<p, 4.2.1)
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where I(x,y) denotes the input data (the RGB color components in this case), H; is a form
of transformation response to specific type of textures, and Ci(x,y) is the ™ texture layer
or the activation values in 8 layer extraction. We utilize the reflectance component [15]
[55], ratio-relationship [5], and color variation to be the three distinct layers of textures in
a priori feed-forward network at /; in Fig 5. One can often assume that the image is
composed of the logarithmically separable reflectance (details) and illuminance (lighting
sources) components under a reflectance-illuminance model. The model is especially
helpful for image enhancement where these components can be enhanced for more
uniform visual quality as demonstrated earlier. Hence, the variation of the reflectance
component is illumination independent and can be a good source of texture which is
defined by

Cl(x’y)’_'Vrej‘(xsy)*KD(man): (422)

where VeAx,y) is the reflectance of the intensity of the color image, Kp(m,n) is the
derivative function, and = is the filter operation. The exponentially separated details can

be defined by

V,ef(x,y)=exp(V,,,(x,y)*kh(m,n))><D, (423)

where V,(x,y) is the normalized logarithmically scaled image intensity, K(m,n) is the
high-pass filter, and D is the de-normalizing factor. This component can be obtained as
the intermediate component from the part responsible for video enhancement. Another
type of texture which is inspired by ratio learning algorithm can be useful by maximizing
the neighborhood dependent ratio relationship. Instead of preserving the relationship
between RGB components in fully connected network as discussed in [5] [60], we

maximize the magnitude of the ratio among the neighbors within the intensity of the
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image defined by

max (¥, (x,»),V,,,(x—m,y —n))
min(I/enh(x’y)’I/enh(xmm’.y—n))

Cy(x,») =MLNZmZn (4.2.4)

where V,,(x,y) is the enhanced intensity similar to (3.3.3) but boosted by filter Kx(x,y),
and M x N is the grid dimension of the inputs. The maximized ratio texture is rotation-
invariant and considers the contribution of illuminance. The third layer of textures is
dedicated for color variations within the RGB components and between the channels
defined by

Cy(%, ¥) = Dy { D (%, ), Dy (%, 1), Dy (%, 1)} , (4.2.5)
where D, denotes the derivative operator. Cj(x,y) maximizes the regions where a
sufficient variety of color information is available. The activation function of each neuron

of /; is defined same as the activation values within 0 to 255 for 8-bit image but saturates

outside the range. We simply refer to (4.2.1) to be the activation function.

4.2.2.2 Weight Matrix for Fusing g Layers of Textures

The structure of interconnects at [, is similar to modular architecture discussed in
[58] as shown in Fig 6 with weights initialized to 1’s. The weights of neighboring

neurons, w™", are connected to the central neuron through distance-based weighting

described by (4.2.6) with (mxn)x g neurons connected from /; layer. The resultant nodes
of g layers of textures are combined to produce fused data with the weights which

emphasizes the global significance of each type of textures. We treat the activation
function of this layer to be the activation values. The update model of the weight memory

is to be discussed in /5. This feature space is utilized for initial optimal feature selection.
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Figure 6: Architecture of interconnects for fusing g layers of textures.

e (,7) = {Z w"C, (x,y)} (4.2.6)

4.2,2.3 Feature Selection
The initial coordinates of optimal features which maximize the textures in feature

space can be described as
Fyp[]=argmax , {Ffused (x,y)} forl<j<J, (4.2.7)
for J features in the regions of interest where F,[.] contains the coordinates of texturally

maximal features. Local maxima in each region of interest become candidates in the
descending order by magnitude subject to further examination for uniqueness. The initial

features are defined by
Fy(m,n)=T,{I(F,[ D}, (4.2.8)
where T; defines the desired transformations of input data 1(F,[.]) at the coordinates of

the candidates and Fy(m,n) is the ™ M x N feature centered at Fr|]- The Fy(x,y) refers to

T; transformed domain for feature j at the region R. The result of 7; may be a combination

of the outputs from /;. For simplicity, we defined the 7} to contribute the intensity of the
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color image.

4.2.2.4 Feature Measure
The measure for uniqueness and potentially growing pattern (signatures) of the
feature candidates in relation to the neighbors can be computed with normalized

correlation defined by

H:F}R(x—i-m’y+n)—F}R(X,y):|X[F}(m’n)_F}:|:!
¢1R(x=y): e

2>
{Z[F}R(x+m,y+n)—17jR(x,y):|2 Z[F}(m,n)—ﬁj:lzjl

(4.2.9)

where F,(x,y) and F, are the expected values at (x,y) under (m,n) range for the region of
interest and feature candidates, respectively, and ¢,.(x,») is the similarity space. Lewis

pointed out in [61] that despite a variety of template matching methods are available for
feature measure, normalized cross correlation (NCC) remains the default choice. The
covariance may be computed instead of NCC with the draw-back that the result is not

normalized; hence the level of confidence may be questionable.

4.2.2.5 Verification and Update of Weight Memory of /;
Useful information can be extracted from (4.2.9) to verify the uniqueness and
analyze the potential signatures of the feature candidates with respect to its neighbors in

Fjz. Suppose there exists a function defined by

V1 (5:2) =1, () (53] (4.2.10)

Dhe=0,D26, <0,

Dla¢/.ky<a) ’
where 77, (d) is the distance dependent weight function which emphasizes the importance

of the most dominant candidates. Let us assume 7, (d) =1, where the measure of the
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candidates appeared in y ,(x,y) is treated equally. The p,4,,0.¢, are the first and second
order directional derivatives of (4.2.9) in 4. The b4, denotes the first order directional
derivative orthogonal to a« with the magnitude bounded by « . This positive scalar
defines the range for which the rate of the change along a, is considered desirable for the
signatures associated with the candidates. Graphical visualization of (4.2.10), which
contributes to the growing pattern of the candidates with respect to the neighbors, is
essentially a directed concave function of (4.2.9). The Dla¢jR =0 condition, subject to
D;,¢, <0, suffices the uniqueness test where the local maxima indicate the periodicity of

the candidate. Eq (4.2.10) can be threshold to binary form defined by

1, for D'y, =0,D’w , <0, >T
5jR(x,y)={ Jor DV i Vin STV e 4.2.11)

0, otherwise
where 6,, =1 for all the local maxima that satisfy threshold value T defined by the
global maxima in the region of interest. The uniqueness can be determined by minimizing

the distances between non-zero samples in (4.2.11) or by frequency of occurrence defined

in (4.2.12). For a distinct feature, v should be equal to one.
Uzsz i (4.2.12)
The update of the weight memory in /, is defined as
W (1 +1) = %w{"’” x(1-G (6 4,0)), (4.2.13)
where G(+) is the Gaussian function characterized by (4.2.11), and standard deviation, o,

for neighborhood dependent iterative modification similar to [59]. The rate of the

convergence of w™" for specific feature is approximately inversely proportional to
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periodicity of the features.

4.2.2.6 Convergence of the Network

The process is terminated if v=1 is found or that the weight memory converges to
zero. The latter case implies that different measures of the textures resulted with either a
completely periodic feature or empty set. In the rare worst case scenario, the network

converges at approximately k™ iteration where

Y v, =RF, (4.2.14)

and R’ is the dimension of the region of interest. Usually, a couple of iterations are

sufficient for the convergence.

4.2.3 Preliminary Simulation
Preliminary results from software simulation for automatic feature selection and
tracking are presented in this section to demonstrate how the periodicity of certain

features affects the reliability of tracking.

4.2.3.1 Automatic Feature Selection

The input data and the relevant outputs of the architecture are illustrated in Fig
7(a)-(1). The image is fed into the network where C;.;(x,y) are computed with the results
shown in Fig 7(b)-(d), respectively. The fused data after passing through the weight
memory is illustrated in Fig 7e along with the dominant feature candidates in Fig 7f
where the textures are strong enough. The result of feature measure for currently best
candidate (marked with square box) at selected region of interest (We only demonstrate

on one region for simplicity.) is illustrated in Fig 7g with unique local maxima shown in
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Fig 7h. In this case, the optimal feature is found in single iteration as boxed with the blue
square in Fig 7i along with the optimal points by corner criteria [62] in pink dots. An
example of the input with complete periodic textures is illustrated in Fig 8a with well
distributed dominant feature candidates shown in Fig 8b. It is obvious with numerous

local maxima plotted in Fig 8d that the potential candidates are not reliable for tracking

unless additional distinguishable geometry is incorporated from (4.2.10) with

1
Dbl <a

condition where the signatures associated with the features exist.

(a): Irga(x,y) (b): Ci(x,y)

(©): Calx,y) (d): Cs(xy)
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(©): Fpusea(x,y) (f): dominant feature candidates

(8): #;a(x,») (h): 5 ,(x,») (i) Selected fete in blue box

Figure 7: Input color image and the outputs of the network at different stages are
illustrated in (a)-(i). White dot in (f) shows initial dominate candidate with uniqueness
test (v =1 according to (4.2.12)) shown in (h). Pink dots are important corner features

evaluated by [62].

(a: Irga(x,y) of periodic texes (b): dominant feature candidates
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T ©) ) (@ 84(x,7)

Figure 8: An example of input data with periodic textures where no feature is reliable for
tracking confirmed by large v computed from (d).

4.2.3.2 Feature Tracking
The automatic feature selection is performed by the framework discussed in
section 4.2.2 on frame 1 of a 360 x 240 video sequence. Once the optimal feature (optimal

according to its uniqueness with respect to g layers of textures) is selected, subsequent

frames can be passed directly to the entry of ‘Feature Measure’ shown in Fig 5 with
proper transformations, 7, of the input data as discussed in section 4.2.2.3. Since the
feature is unique at the time it is selected, the regional global maxima may be treated as
new coordinate of the feature from previous frames while it remains relatively unique.
Snapshots at frames 1, 56, 78, 102, 135, 161, 180, 220, and 237 are illustrated in Fig 9.
After about 20 seconds, it slowly drifts away from the targeted feature because the
network at /; does not compensate the temporal deformation with insufficient information
represented by (4.2.11). The drift becomes obvious after frame 135 where the intended
feature is severely rotated out of plane. We consider extending the framework in the
future to accommodate the deformation utilizing the distinguishable geometry of the

signatures related to the features represented by (4.2.10).



Figure 9: Results from feature tracking after automatic feature selection scheme. Shown
from top-left to bottom-right are snapshots at frames 1, 56, 78, 102, 135, 161, 180, 220,
and 237.

4.2.4 Potential Extension of the Framework

We presented a new framework of recurrent neural network for automatic feature
selection by textures and uniqueness for tracking. Preliminary simulation showed that
different types of textures could be extracted and fused, that feature measure played a
distance-based learning rule for convergence of the network to unique and texturally
maximized features. Feature tracking was also demonstrated by the network with a small
tweak. The tracking results indicated that the framework is acceptable to in-plane
rotation, scale change to certain extend. Research can be extended to make it more
adaptive to out-of-plane temporal deformation. One may also fully explore the signatures

associated with the neighbors of selected features to adapt the network to deformable
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circumstances and minimize the drift effect for more accurate feature tracking. Those
signatures may also be used to estimate the numeric point spread function for motion

deblur subject to further evaluation of the scene [63].

4.2.5 Simplification

The intension of selecting unique features overly constraints the problem for
which one has to seck in descending fashion over the potential set of features. By the
iterative nature of the framework, this implies that one has to buffer the search space for
each region associated with the feature. Hence the bottleneck of non-constant memory
access will compromise its performance. To not sacrifice our objective of designing a
high performance system, we must remove the need for uniqueness of the features from
the framework. This section serves to simplify the structure to the point feasible for

hardware realization.

4.2.5.1 Single Trivial Layer of Texture

Rather than fusing a set of texture layers to obtain more optimal features, only a
single trivial layer is selected to reduce computation. The corner-ness criteria seem to
suffice our need according to earlier work by Harris in [64]. Given a point in the image,

the auto-correlation of V component with adjacent pixels is defined by

ac(x,y)= > W, (V(x+ax,y +ay)—V(sx,ap)) . (4.2.15)

axX,8y

With small (ax,ay) , the Taylor expansion of first order simplifies (4.2.15) to
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ac(x,y)= Y W, ,(V(x+ax,y+ay)- V(Ax,Ay))z,
AX,AY
V(x+ax,y+ay) =V +[V,V,|[axay]
2
=N (v ’
> (rh el ) , (4.2.16)
{ DIANDINAL J[” o]
ZW V:V Vy ZW Vyz

where W(.) is the window function chosen to be summation of 3x3 neighbors to avoid
multipliers, Vx and V are the first order derivatives, and M matrix encapsulates the shape

structure characterizing the point. The corner-ness response is defined by

R =Det(M)—-kxTr(M)*,
Det(M)=AxB-C?, (4.2.17)
Tr(M)=A+B

where Det(.) and Tr(.) are the determinant and trace of M, and k is the empirical constant.
The best response with respect to particular region of the image is simply the maximum

of R in the range.

4.2.5.2 Sub-feature Representation

The feature measure of (4.2.9) with broader search ranges in the region of interest
can be quite expensive for large feature templates. With a bigger set of features, the
required computational power for searching and tracking becomes problematic. Equation
(4.2.9) therefore does not scale well and can consume excessive amounts of resources in
hardware implementation. To cut back the amount of calculations per feature template
without compromising its performance, each feature is divided into sub-feature regions

similar Stefano’s [65].
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Sub-feature Detection: The concept of sub-feature measure in a nutshell is to evaluate
the likelihood of the resemblance significant enough to provoke a full measure of the
complete template. The two sub-feature based measure of [65] seems to hold promise of
minimizing the number of calculations for exhaustive template matching; however, the
search itself (even if the range of search remains regional) has its own setback in that the
threshold of first sub-feature must be determined from the template in advance. The
bigger drawback is not the threshold of first sub-feature; rather, it is the significance of
that sub-feature. Supposed the first sub-feature is not sufficiently texturally specific or
optimal, it may generate an overwhelming number of responses to initiate full measures;
hence, it has the tendency of approaching the complexity in the context of full a search.
To overcome this obstacle, we introduce a constellation to link between the primary sub-
feature and a set of secondary sub-features. In addition to minimizing the number of
calculations with smaller sub-feature space, the scores of secondary sub-features serves

the purpose of confidentiality in supporting the primary sub-feature.

Feature Representation by Constellation: To reduce the number of calculations with
feasibility of such hardware realization in mind, the complete template is first
decomposed into sub-features with the primary sub-feature containing the most complex
texture. As shown in Fig 10a, the locality of remaining sub-feature set is determined by
its sub-optimal textures and directly connected with primary sub-feature to form a star
constellation. With such structure constructed, we may ignore the rest of that complete

feature template. To search for the feature in an image with relatively static spatial



51

locality around the region, the local maxima of primary sub-feature is first calculated in

(4.2.11).

The secondary sub-features are evaluated if and only if the primary sub-feature
and the already estimated secondary sub-features scored sufficiently high. In other words,
the star constellation that represents the full feature template has a cascaded search
sequence for which any failed score will terminate subsequent search on the maxima of
primary sub-feature. In this manner, the exhaustive search in the region of interest is only
needed on any primary sub-feature. The test for secondary sub-features is not really a
search; it only exists to verify the spatial relationship of the constellation specific to the
full feature remains legitimate. This concept can readily be applied to the tracking of
rigid objects since the spatial deformation of such objects is also encapsulated in the
constellation. In fact, the process of evaluating secondary sub-features generates the
byproduct of attributes related to spatial distortion. Let us not be lost in this very
promising model; the only piece of information necessary to solve part of our problem is
really the coordinate of primary sub-feature. What that means is the precise locality of
sub-feature set is not crucial. The score of (4.2.9) in image processing is often gradual for
which the match around the maxima is relatively sub-optimal to conclude the existence of
a particular sub-feature. Hence the representation is also tolerable to spatial deform to

certain extend.

While such star constellation can be effortlessly constructed on desktop

computers, the structure itself unfortunately poses the demand for buffering of full
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feature and bookkeeping of sub-features. To bypass such a tedious process on low level
hardware implementation, a single path straight line constellation is selected with the
primary sub-feature on the top, ignoring the sub-optimal-ness of the textures in the sub-

feature set as shown in Fig 10b.

full feature full feature
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Figure 10: Representation of full feature by texturally optimal sub-features in a
constellation. (a) A start constellation constructed to encapsulate the spatial relationship
of sub-features. (b) A straight line structure to simplify hardware realization.

4.3 Estimation of Motion by Consistency of Motion Parameters

In this chapter, we propose ME by measuring the consistency of motion present in
selected features. A minimum of two frame buffers is necessary to extract motion
parameters. By reducing frame buffering, system delay is also minimized. GME
calculates the camera or scene motion which can be modeled in 2D or 3D spatial
coordinates. We concentrate on 2D which is accurate for 6-parameter camera motion:
rotation, translation and scaling. To incorporate off-axes zooming and change of
viewpoint, the 3D spatial model is far more precise. In [66], Huang used corner detection
for GME to improve the edge detection based approach presented in [67]. The author
calculates the motion parameter by detecting the corresponding cross-points which are

iteratively grouped into inlier or outliers based on their velocities and residual error. If the
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resultant inlier group contributes to prediction error below a certain threshold, then
parameters calculated within that inlier represents the global motion. The approach has a
couple drawbacks. GME by Edge or cross-point is not véry robust to motion blurness(or
appeture problem) and sources of noise. It also depends on the quality of edge/corner
detectors; however, the cornerness may be solved with a large ratio of eigenvalues in x-y
directions which was the primary reason that we chose corner-ness for texture layer in
section 4.2.5 [64]. Given corresponding feature points, an alternative mean of grouping
inlier and outliers can be determined based on preserved properties of affinity through
angle and distance relation to other features. The affined model to compensate translation

before rotation and scaling matrix can be defined as:

(4.3.1)

GO M) = a[cos(@) —sin(9)}|:x ~ X, } |

sin(@) cos(@) || y—y,

4.3.1 Estimation of Inlier Motion

Affine transformations distort the distance, angle, as well as area or volume;
however, they preserve three important geometric properties. One is the collinearity for
which the sample points laying on a line remain on the line after the transformation since
translation, rotation, and scaling are affine subspaces. The second property is the
parallelism where the lines parallel to each other remain parallel. Lastly, the ratios
between the sample points on a line are preserved constant. Supposed that we have

derived a set of feature points, .S

1, uniformly distributed in frame /,_,, and another set

S,in I,. By collinearity, each line between two points in S,.; maps to S; and can be

grouped into an element in a set of K motions:
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for which we define the elem