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ABSTRACT 

DESIGN OF A HIGH-SPEED ARCHITECTURE 
FOR STABILIZATION OF VIDEO 

CAPTURED UNDER NON-UNIFORM LIGHTING CONDITIONS 

Ming Zhu Zhang 
Old Dominion University, 2008 
Director: Dr. Vijayan K. Asari 

Video captured in shaky conditions may lead to vibrations. A robust algorithm to 

immobilize the video by compensating for the vibrations from physical settings of the 

camera is presented in this dissertation. A very high performance hardware architecture 

on Field Programmable Gate Array (FPGA) technology is also developed for the 

implementation of the stabilization system. Stabilization of video sequences captured 

under non-uniform lighting conditions begins with a nonlinear enhancement process. 

This improves the visibility of the scene captured from physical sensing devices which 

have limited dynamic range. This physical limitation causes the saturated region of the 

image to shadow out the rest of the scene. It is therefore desirable to bring back a more 

uniform scene which eliminates the shadows to a certain extent. Stabilization of video 

requires the estimation of global motion parameters. By obtaining reliable background 

motion, the video can be spatially transformed to the reference sequence thereby 

eliminating the unintended motion of the camera. 

A reflectance-illuminance model for video enhancement is used in this research 

work to improve the visibility and quality of the scene. With fast color space conversion, 

the computational complexity is reduced to a minimum. The basic video stabilization 



model is formulated and configured for hardware implementation. Such a model involves 

evaluation of reliable features for tracking, motion estimation, and affine transformation 

to map the display coordinates of a stabilized sequence. The multiplications, divisions 

and exponentiations are replaced by simple arithmetic and logic operations using 

improved log-domain computations in the hardware modules. On Xilinx's Virtex II 

2V8000-5 FPGA platform, the prototype system consumes 59% logic slices, 30% flip-

flops, 34%o lookup tables, 35% embedded RAMs and two ZBT frame buffers. The system 

is capable of rendering 180.9 million pixels per second (mpps) and consumes 

approximately 30.6 watts of power at 1.5 volts. With a 1024x1024 frame, the throughput 

is equivalent to 172 frames per second (fps). 

Future work will optimize the performance-resource trade-off to meet the specific 

needs of the applications. It further extends the model for extraction and tracking of 

moving objects as our model inherently encapsulates the attributes of spatial distortion 

and motion prediction to reduce complexity. With these parameters to narrow down the 

processing range, it is possible to achieve a minimum of 20 fps on desktop computers 

with Intel Core 2 Duo or Quad Core CPUs and 2GB DDR2 memory without a dedicated 

hardware. 
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CHAPTER 1 

INTRODUCTION 

The theme of this dissertation focuses on reducing the complexity of certain 

calculations in video stabilization by decomposition and the structural representation of 

the dataset into smaller sub-features. This methodology enables us to overcome the 

drawback of conventional performance-resource trade-off in hardware designs by 

concentrating the computation on the most distinct sub-feature and sustaining a one-on-

one throughput rate. The main contributions of this dissertation are listed in section 1.3 

followed by the organization of this book in section 1.4. 

1.1 Motivation of the Research 

Video Stabilization is an essential part of the video processing technology for 

scenes captured under shaky conditions. From the perspective of an audience, extraction 

of information from such a video source can be distracting, thus making it very difficult 

to concentrate and exhausting to track the target of interest from the scenes. In extreme 

cases, it is impossible to identify the details from such a scene with large variations when 

the frames are averaged through our eyes' perception. However, the vibrative motion of 

the camera is not the only problem. Videos captured under non-uniform lighting 

conditions are mainly contributed from the limitation of physical sensing devices. Due to 

the limited dynamic range of the sampling circuitry, the brighter region of the image 

Format of this dissertation is IEEE Transactions on Computers 
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saturates the photo site of sensing elements, causing the device to compensate itself and 

shadow out slightly darker parts of the scene. While there are several image 

enhancement algorithms available, the method which is capable of simultaneous 

rendering of the luminance and contrast components of the color images is not currently 

available for efficient design of the architecture. 

The motivation of this dissertation is to find a robust algorithm to immobilize the 

video by compensating for the background motion of the camera. Another objective is to 

develop a high performance system architecture in FPGA technology for the stabilization 

of video sequences captured under non-uniform lighting conditions. In this research, we 

apply a reflectance-illuminant model for video enhancement to improve the visibility and 

quality of the scene. With fast color space conversion, the computational complexity is 

reduced to a minimum, further simplifying the hardware design. The basic video 

stabilization model is formulated and simplified for implementation. Such a model 

involves evaluation of reliable features to track, feature measure and tracking, motion 

estimation, and affine transformation to map the display coordinates of stabilized 

sequences. Novel architectures for performing these calculations are also proposed in this 

dissertation. With improved log-domain computation, all multiplications, divisions and 

exponentiations are replaced by simple arithmetic and logic operations. On a Xilinx's 

Virtex II 2V8000-5 FPGA platform, the prototype system consumes 59% logic slices, 

30% flip-flops, 34% lookup tables, 35% embedded RAMs and two ZBT frame buffers. 

The system is capable of rendering 180.9 million pixels per second (mpps) and consumes 
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approximately 30.6 watts of power at a 1.5 volt internal operating voltage. With a 

1024x 1024 maximum frame, the throughput is equivalent to 172 frames per second (fps). 

1.2 Proposed Theme of the Dissertation 

We often face the decision of performance-resource optimization due to hardware 

constraints and the performance needs of specific applications. The performance 

parameter usually has an inverse relationship with the amount of assisting hardware 

necessary to achieve certain calculations within a given time. To minimize the resource, 

conventional methods usually compute the partial results on a timeslot shared 

architecture and construct a set of distributed queues to hold the partial results which are 

accumulatively combined to produce a more complete output. This concept can readily 

be illustrated in Fig la. A dataset is first uniformly divided into n subsets, where n is the 

reduction factor of computing elements, \ln is the throughput parameter. The subsets are 

fetched into the support architecture in a timely manner. Only one subset may occupy the 

data path to the support architecture at a clock cycle. The partial results are properly 

saved to the distributed queues to be accumulated in subsequent cycles. It requires n 

clock cycles to complete the evaluation of an entire dataset. 

To sustain the peak performance of a system while reducing hardware complexity, 

we propose to represent the dataset by sub-features in a structured constellation as shown 

in Fig lb. The full dataset is first decomposed into a primary sub-feature, Pi, and a set of 

secondary sub-features, S2..n. The criteria of evaluating the sub-features are application 

dependent; however, the general rule is to extract the most distinctive characteristics for 



the primary sub-feature and select sub-optimal regions to be secondary sub-features. With 

the coordinates of the sub-features obtained from the process of feature decomposition, 

these sub-features form the distance and angle relationships with the primary sub-feature 

in a structure which identifies the complete dataset. The support architecture for partial 

evaluation is similar to the time-multiplexed architecture in Fig la. Nonetheless, only Pi 

is being evaluated at all time with respect to the region of interest. With the successful 

evaluation of the primary sub-feature, subsequent measure of secondary sub-features is 

enabled at the proper spatial locality predetermined by the structure representing the 

dataset. The secondary sub-features, S2..11, are evaluated only once for every valid 

measure of Pi. A successful measure of all sub-features contributes to a correct 

Dataset 

Dataseti 

Dataset2 H 

Datasetn 

Input 
Data 

Time-MUXed 
Support Arch(1/n) 

Result 

(a) Time-multiplexed evaluation of a complete dataset. 

Input 
Data S2---Sn £ 

PiK3 

J&L. 
Support 

Arch(1/n). 

Result 
> 

(b) Distinctive characteristics oriented partial evaluation with sub-feature 
representation. 

Figure 1: Decomposition and structural representation of the dataset. 



evaluation of the dataset. This method allows us to evaluate a larger dataset on a 

dedicated hardware with limited computing elements and at the same time provides 

roughly a one-on-one system performance. 

1.3 Main Contributions 

The main contributions of this dissertation can be summarized as follows: 

1. Model of feature representation by constellation. The sub-feature methodology 

decomposes a feature into sub-features based on the criteria of distinctive 

characteristics (textural optimality in our case) of the dataset. A region with the 

most distinctive characteristics is assigned as primary sub-feature along with a set 

of non-overlapped secondary sub-features having sub-optimal regions. A brute 

force evaluation of the complete feature is eliminated with the computational 

power concentrated on the primary sub-feature. For every successful measure of 

the primary sub-feature, the secondary sub-features are evaluated to confirm the 

existence of such structure which represents the complete feature. By representing 

the full feature in primary sub-feature and a set of secondary sub-features, the 

amount of necessary calculations can be dramatically reduced. For hardware 

design, it is not necessary to build a huge architecture to evaluate the complete 

feature; instead, one only needs to implement a support system for the sub-feature 

dimension. The model also encapsulates the spatial deformation or distortion of 

the full feature through the angle and distance relationships among the sub-

features within the constellation. With further extension, this idea can be readily 

applied for adaptive tracking of rigid objects. 
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Design of various subsystems for video stabilization, namely, the potential feature 

selection, feature measure and tracking, and the angle calculation for inlier motion 

estimation. The single most important component, however, is the feature 

measure which involves the computation of 2D normalized cross correlation 

(NCC). The first step to reduce complexity is to perform a partial measure of 

NCC on primary sub-features. Another important aspect of NCC architecture is 

its ability to sustain the peak performance without the performance-resource 

trade-off. With the assistance of sub-feature measures, the representation of the 

full feature served as confirmation of primary sub-features; the NCC architecture 

virtually appears to handle much larger feature templates. It is interesting to note 

that such a design is the direct extension of our previous research based on the 

generic architecture of 2D convolution. 

Design of low complexity architecture for video enhancement. While we already 

have several implementations of various algorithms, the architecture presented in 

this dissertation has the lowest complexity of all previous approaches. The idea of 

generalized 2D convolution with quadrant symmetry property from master thesis 

has also proven to be very flexible in deploying the concept to various image 

enhancement architectures. Virtually all image processing algorithms involve 

some kind of filtering operations that often has quadrant symmetric kernels. 

Design of improved logarithmic modules. A simple bit-level error correction is 

introduced to increase the precision of Log2 and iLog2 modules with improved 

pipelining. The hardware complexity for 32-bit numbers is also further reduced 

while maintaining only 8-bit fixed point for the fractions. The research done from 



the master thesis, "A multiplier-less architecture for high speed computation of 

multi-dimensional convolution", has proven log-domain computation to be very 

useful for reducing the complexity in hardware designs. 

5. Global motion evaluation with triangular order of search. By calculating the 

angles between the vectors alone, we can quickly estimate the background motion. 

It is accomplished by searching, without any redundant calculation, for the most 

outstanding element within a collection of motions. The outstanding element can 

be applied to further narrow down the motions of subsequent video frames, hence, 

forming a star constellation based on the stability of the outstanding element in 

relation to other nodes within itself. 

6. Basic model of feature evaluation based on different types of textures. Due to 

hardware related issues, only a single layer of texture already available from the 

literature has been selected. The uniqueness of the features proved to be least 

useful as the required processing bandwidth can become highly non-uniform 

which is not very suitable for hardware implementation. 

7. Application of fast color space conversion to speed up the video enhancement on 

desktop computers to 30 fps with 3.2GHz Intel P4H processor and 1.5GB DDR1 

memory. 

Future work should not focus on further improving the performance of hardware 

system since the throughput is already excessively high; however, it should optimize the 

performance and the resource to meet the specifics based on the nature of the applications. 
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Future development should also extend the great potential of the model into finer grains 

for extraction and adaptive tracking of moving objects as our model inherently 

encapsulates the attributes of spatial distortion and motion prediction to reduce 

complexity. With these parameters to narrow down the processing range, it is possible to 

achieve a minimum of 20 fps on desktop computers with Intel Core 2 Duo or Quad Core 

CPUs and 2GB DDR2 memory without dedicated hardware. 

1.4 Organization of Forthcoming Chapters 

The remainder of this dissertation is organized as the following. A brief survey of 

image enhancement, feature evaluation and motion estimation is discussed in chapter 2 

regarding the fundamental problems involved with the stabilization. Chapter 3 introduces 

the issues of complexity of certain operations commonly applied in image processing. 

Chapter 4 addresses the theoretical model formulation and the simplification toward 

designing hardware efficient high-speed architecture. The design of different subsystem 

modules is illustrated in-depth in chapter 5. The simulation results and error analysis 

along with the parameters of performance and resource allocation are given in chapter 6. 

The conclusion and the comments regarding future development of the video stabilization 

system are presented in chapter 7. 
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CHAPTER 2 

ALGORITHMIC BACKGROUND 

In this chapter, we briefly describe the fundamental issues involved with the task 

of stabilizing the video sequence. One of the issues is video enhancement for which one 

must compensate the visual quality of the scenes captured from cameras with limited 

dynamic range. The second issue requires the detection of reliable features to establish 

the correspondence between the video frames. Various approaches for estimation of 

background motion are addressed for derivation of parameters necessary for stabilization. 

2.1 Necessity of Image and Video Enhancement 

Physical limitations exist in the sensor arrays of imaging devices, such as CCD and 

CMOS cameras. Often the videos captured by these devices cannot properly represent 

scenes that have both very bright and dark regions. The sensor cells are commonly 

compensated with the amount of saturation from bright regions fading out the details in 

the darker regions. Image enhancement algorithms [1], [2], [3], [4] provide good rendering 

to bring out the details hidden due to dynamic range compression of the physical sensing 

devices. For applications in color images these algorithms may fail to preserve the color 

relationship among RGB channels which result in distortion of color information after 

enhancement. Thus, there is still room for improvement. The recent development of a fast 

converging neural network based learning algorithm called Ratio Rule [5], [6] provides an 

excellent solution for natural color restoration of the image after gray-level image 

enhancement. Hardware implementation of such algorithms is absolutely essential to 
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parallelize the computation and deliver real time throughputs for color images or video 

processing containing extensive transformations and a large volume of pixels. 

Implementation of window related operations such as convolution, summation, and matrix 

dot products which are common in enhancement architectures demands enormous amount 

of hardware resources [7], [8]. Often a large number of multiplications/divisions is needed 

[9]. Some designs compromise this issue by effectively adapting the architectures to very 

specific forms [7], [8], [10] and cannot operate on different sets of properties related to the 

operation without the aid of dynamic reconfiguration in an FPGA based environment. We 

proposed the concept of log-domain computation in [11] to solve the problem of 

multiplication and division in the enhancement system to significantly reduce the 

hardware requirement while providing a high throughput rate. 

Algorithms developed under the reflectance-illuminance category of the image 

processing models are not unique. The theorization of such a model for visual 

representation originated in the early 1970's [12] with stochastic image processing in [13] 

to reduce the salt-and-pepper noise (black and white dots imposed from poor quality 

sensing device available at the time). In classical approaches, homomorphic processing 

operates exclusively on the grayscale images. Recently the concept has become popular 

for adapting the model to color image representation. Although the concepts for a number 

of exotic approaches are generalized by Kimmel et al [14], dedicated architectures for 

such algorithms are generally unavailable; thus, comparison is limited to existing designs 

relevant to the subject. One of the few well explored and adapted techniques (in both 

hardware and software) in this category is Multi-Scale Retinex (MSR) related model 
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developed by Jobson's research team [2], [3], [15]. By the nature of the algorithmic 

procedure, MSR is suitable for DSP based implementation discussed in [16] where the 

fast Fourier transform (FFT) and inverse FFT (IFFT) may be readily plugged in from the 

DSP library [17], [18]. Further improvement on MSR can be made for better color 

consistency to minimize the influence from background color. Within the same category, 

we presented a hardware-efficient architecture in [19] for enhancement of the digital 

color images with non-uniform darkness using a Ratio learning algorithm [5] [6] for color 

distortion correction. We also proposed the nonlinear enhancement architecture in [20] 

based on [21] which results with similar quality on the output images. As far as efficiency 

is concerned, tweaking of the enhancement processes needs to be further exploited for 

potential speed up and hardware reduction. 

2.2 Evaluation of Good Tracking Features 

Modeling of artificial neural networks (ANN) to solve real-world problems is 

inspired by biological neural systems. Such systems are simplified for ANN where the 

neurons are characterized solely by the biologic machinery but the ability to adapt, learn, 

and generalize in response to given types of information within the network architectures 

are governed by certain learning rules. The successors of such models mimic the 

biological functionality of the systems quite well. Virtually all forms of modification of 

the synaptic weights between neurons are in some ways variations of Hebbian or Delta 

rule in ANN whether the networks are feed-forward or recurrent [22]. 
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While feed-forward architectures such as perceptron and adaline [23] [24] [25] 

have strict limitation where no feed-back or back-propagation exists for error correction, 

recurrent networks significantly increase the dynamics of the network. One of those 

earliest recurrent networks was introduced by Anderson and Kohonen in [26] [27] and 

generalized by Hopfield in 1982 [28] with primary applications for associative memory 

which remembers the patterns and pattern recognition. Examples of applications include 

optimization in power systems [29]. For classification, the unsupervised Fuzzy Adaptive 

Resonance Theory, Fuzzy-ART, neural network, introduced in 1976 by biological 

phenomena [30] can be useful. Fuzzy-ART is capable of clustering documents with the 

ability to mine data and discover knowledge dynamically by a wide variety of techniques 

[31]. It can also be applied for rapid stable learning to categorize and recognize the 

patterns [32]. The supervised Fuzzy-ART called Fuzzy ARTMAP can learn incrementally 

for category recognition with new minima learning rule [33]. 

Inspired by the concepts of adaptive resonance theory based neural networks and 

Hopfield recurrent network, a new neural architecture is desirable to fuse different 

characteristics [34] for automatic extraction and selection of a set of unique features from 

a video stream. The same network should also be able to track the features to maintain 

the correspondence between video frames and minimize iterative error measures. Such 

features would be useful for estimation of motion parameters. While the ANN has the 

capacity to support pattern related classes of applications, the iterative nature of the 

process itself imposes the bottleneck of non-constant bandwidth access of the storage 

components in dedicated high performance system architectures. Nonetheless, the 
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specific textures can be considered reliable for tracking. In general, good features are 

characterized by the distinctiveness of different types of textures. 

Scale invariant feature templates (SIFT) can be very helpful for object detection 

[34][74]. To identify the correspondent coordinates of a feature in another picture, the 

image must be re-sampled into different resolutions to construct a pyramid of images. 

Within each resolution, feature selection is performed based on certain criteria. The most 

consistent features of the pyramid are extracted as the scale invariant templates for 

subsequent processing. In conjunction with rotation invariant features through affine 

normalization, the multi-resolution feature extraction has proven to be vital for the 

construction of image descriptors and the accumulation of its database for autonomous 

object detection [75]. Our main focus, however, is to identify reliable features with 

respect to a current video frame under the legitimate assumption that variation of scale 

and rotation are gradual within a video sequence. Hence, it is not necessary to represent 

the features according to image descriptors with scale and histogram orientation of 

certain key points. 

2.3 Evaluation of Motion Parameters 

Evaluation of the features alone may seem insignificant; however, such a step is 

crucial when combined with a variety of motion analysis and estimation. Motion 

estimation (ME) is a process of evaluating the relationship between the frames such that 

the contents of the frames are approximately stationary with respect to the reference 

frame through transformation of motion parameters. Global motion estimation (GME) is 
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an instance of ME which involves the monitoring of background or dominant motion. 

ME has a very broad applications in video processing technology. In video compression, 

the ability to accurately estimate the motions, not necessarily global motion alone, 

determines the compression ratio, resulting in smaller video files [35]. In segmentation, 

motion information helps in distinguishing between moving objects from the background 

[36]. In registration and mosaicing applications, motion vectors contribute to the key 

components in identifying orientation for stitching the frames into a more complete scene 

[37]. 

ME search algorithms can be divided into three categories based on their 

complexity. The full search algorithms (FSA) contribute to the most optimal match yet 

impractical with overwhelmed complexity O(n), where n is the search range. The cost for 

block search is 0(n/m), where m is the block range, and may be as low as 0(log(«)) with 

logarithmic search [38]. In video compression the blocks are usually divided into macro-

blocks to further reduce the search range with a trade off of increasing the distortion and 

the assumption of block-wise uniform motion [39]. The hybrid search serves to balance 

the complexity and accuracy [40]. 

The class of gradient/differential based ME algorithms is commonly modeled by 

(2.1), where It(x) is the current frame with coordinate vector x=[x,y]T, 7t-i is previous 

frame or reference, G function is the affine transformation by motion vector M, and err(x) 

is the error. The coefficients a, and £>, are the rotation and scale of affine parameters while 

dx and dy are the displacement or translational motion between the frames. Two well 
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known cost functions for error measure defined in (2.2) are mean absolute error (MAE) 

and mean square error (MSE) [41] for which M has the solution of least squares 

regression. 

The error minimization has a first order Taylor expansion of (2.3). The resolution 

pyramid is often constructed to iteratively estimate the motion parameter for convergence 

from course to fine resolutions. Such differential techniques assume that the intensity of 

the images is conserved reducing its reliability to subtle change by noise and illumination. 

Higher orders of Taylor expansion further assumes that the subsequent gradients be 

conserved which implies the ill-posed problems to rotation, scaling as well as sources of 

noise [42]. The approach essentially becomes less stable as the constraint is overly 

specified. A more troublesome part of the gradient descending ME is that the search 

algorithm fails when trapped into local minima [43]. Lucas introduced weighting to error 

measure defined in (2.4) to give more influence to centre pixel under the window [44], 

This concept can be extended to increase the reliability of selected regions for motion 

measure. Such confidence factor can be modeled with Bayesian statistics through 

observation over time to enhance regions with low noise and small aperture problems or 

suppressing otherwise [45]. Multi-frame buffering and frame sub-sampling are usually 

required for ME with differential techniques. They translate to greater memory usage 

with added complexity to buffer flow in hardware realization. The potential of measuring 

global motion can be explored through consistency of motions to avoid iterative error 

measure and minimize frame buffering. Once the motion parameters are sustained and 

compensated by intended motion, standard affine transforms may be performed to 
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minimize shakiness of the scene, hence, stabilizing the video. While the motion 

parameters may be estimated through measure of residues with respect to the reference 

frame, we should examine the basic properties of calculating the coherence of different 

motions. 

7,(x) = 7M(G(x,M)) + err(x) 

~d, 
G(x,M) = 

h b2 d„ or 

x y 1 0 0 0" 

0 0 0 x y 1 

= C(x)xM 

x[o, a2 dx bx b2 dy~\ 

errix) = argminM {E(\I,(X)- 7M (G(x,M))|) 

err(x) = argminM{/i(/ ((x)-/M(G(x,M)))2 

Z1 6 n» rW2[v /(x»0-M + /((x,r)]2 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

2.4 Summary 

In this chapter, we discussed the fundamental limitation of physical sensing 

devices for which the cameras had narrow dynamic range. Saturation in part of the image 

tended to shadow out the details in other regions of the scene. Different image 

enhancement algorithms often required several separate operations for contrast 

improvement, luminance enhancement, color correction and color restoration. We found 

it necessary to apply a simpler model and at the same time eliminate color correction and 
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restoration. Such a model should minimize the number of multiplications to reduce 

complexity while produced reasonable image quality to improve the visibility of the 

scene. Moreover, we intended to design an enhancement subsystem capable of fine-

tuning certain parameters to meet the need. In computer vision, most feature evaluation 

concepts available in the literature often model the scale, rotation and orientation as part 

of the efforts to recognize certain invariant features. It required a significant degree of 

computation frequently too difficult to implement in hardware. The processing nature of 

certain calculations would be highly non-linear, therefore, extremely difficult to 

implement. Our interest would be to only evaluate reliable features with respect to current 

conditions within the scene. It is desirable to derive a simple model for feature evaluation 

which has low complexity with minimum storage space. Hence the evaluation technique 

has to support feature extraction on the fly. A class of gradient based motion evaluation 

techniques was also evaluated in this chapter. These approaches are iterative nature in the 

process of obtaining motion parameters. The assumption of conservative image intensity 

further poses the ill nature in the presence of noise. Similar to the feature evaluation these 

techniques often require the storage of entire video frames for which certain prediction 

must be iteratively measured by means of residual errors. In theory, if the feature 

evaluation works well, it is not mandatory to extract motion parameters from the entire 

frames. In the forthcoming chapters, a simpler mean of video enhancement, feature 

evaluation and motion estimation suitable for hardware realization are analyzed for the 

stabilization of video sequence. 
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CHAPTER 3 

COMPUTATIONAL COMPLEXITY REDUCTION 

In advance to in-depth discussion of the theory behind the algorithm, let us begin 

by a briefing on the fundamental problems of the complexity itself regarding most 

commonly used operators such as division, multiplication, exponentiation and some form 

of summation equivalent to window/kernel based operations such as matrix 

multiplication. 

3.1 Redundancy of the Operator 

As introduced in chapter 2, window based operations are very common in video 

processing technology such as generalized 2D convolution. Often, coefficients associated 

with these kernels are non-arbitrary and exhibit interesting properties. It is a waste of the 

computational power and resource allocation from hardware designers' perspective to not 

take advantage of certain symmetries within the kernels. Such symmetries are very 

common in the design of digital filters. In particular, we utilize the quadrant symmetry 

(QS) of the kernels to support convolution operations (digital filtering). This 

preprocessing ideally saves close to 75% of the multiplications in addition to the 

replacement of the hardware multipliers discussed in [46]. Such optimization results with 

the architecture that is neither too specific nor generic while focusing the essential 

computation to a single quadrant. It maintains the flexibility of redefining the filter 

characteristics at run-time (soft upgrade) without recompiling and dynamically 

reconfiguring the architecture (hard upgrade) by external systems. Examples of the filters 
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qualified for QS property include both separable [47] and non-separable kernels. QS also 

encapsulates circularly symmetric kernels such as Gaussians and Laplacian of Gaussians 

used for smoothing and edge detection, respectively. In summary, one can minimize the 

computational power by simply exploiting the redundant properties of certain operators. 

The reliance on redundancy alone, however, is insufficient for hardware implementation 

of the dedicated architectures which demand relatively complex calculations. 

3.2 Concept of Logarithmic Domain Computation 

This section describes the basics of logarithmic approximation. A common 

technique which relies on piecewise straight lines for error correction to various 

precisions is also illustrated in the subsections. We propose bit-level curve fitting as a 

mean to generate the correcting coefficients and achieve similar precision compared to 

other approaches. 

3.2.1 Simplicity of Approximation and Its Benefits 

Multiplications and divisions become additions and subtractions with logarithmic 

transformations logically defined by (3.1) which require significantly less computational 

power. A number to the power n becomes a matter of arithmetic shift operation achievable 

within single clock cycle for n equals to power of two, or multiplication operation for any 

finite n in general. Eq. (3.1) states that the log2 scale of V can be calculated by 

concatenating the index Iv of leading l's in Fwith the fractions (remaining bits after Iv
th 

bit). The reversed process holds true as well, except the leading 1 's and fractions, Lf, are 

shifted to the left by L, (integer of L) bits as shown in (3.1). This definition is generalized 



20 

to integer values as well as fraction numbers. For example, log2(0000.0110) binary 

becomes -1.5 or (-2 + 0.5) in decimal since the position of Iv is -2 (two places after 

decimal point) with fraction 0.10 in binary. The correct value should be -1.415 which 

results with 6% error from the approximation for worst case scenario. Application of this 

concept eliminates most costly components just described for hardware designs. Thus, it is 

crucial to implement efficient logarithmic estimation modules in such a way that is very 

compact in its design, reduces large amount of hardware resource, and provides very high 

throughput rate [11] [19]. Designs based on the concept presented in [48] which 

employees unrolled pipeline architectures such as [20], [49] and [50] may not be efficient 

for replacement of multiplications and divisions in window related architectures for FPGA 

based implementation. Particularly in filters, such architectures usually require a large 

number of multiplications and the amount of hardware resource allocated for the unrolled 

pipeline stages usually can come close to the cost of the multipliers on FPGA technology. 

Our implementation of the estimation modules packs the resolution-dependent unrolled 

pipeline style design into a few stages regardless of its resolution and at the same time 

optimizes the component count, power and speed. It is about 10 times reduction in the 

resource and 170% performance boost in FPGA environment. We generalized the 

modules to support both integer and fraction numbers without introducing hardware 

complexity. These modules are also insensitive to the bit-resolution that exists in hardware 

multipliers in which the performance is inversely proportional to the number of bits in the 

multipliers. We have demonstrated the use of log domain computations in [19], [46] for 

image processing applications with a figure of 60% hardware reduction in addition to the 



21 

applicable QS based architecture. The error correction to enhance such approximation is 

discussed in next section. 

log2(V) = {lv} + {(V-Iv)»Iv}^\og>(L) = {\«Li} + {Lf«Ll} (3.1) 

3.2.2 Improvement of Precision with Piecewise Straight Lines 

Mitchell's logarithmic converter proposed in [48] was derived based on binary 

representation of a number N in 

7V = 2>2 ; 

l'J (3.2) 

as a summation of binary coefficients, bj with respect to the placement, 2\ The k is an 

index (aka characteristic of log2N) for which the most significant bit (MSB) of N in binary 

equals to 1 's. Given bk=l, the term 2 can be factored out to simplify (3.2) by 

* = 2*(l + /> , ( 3 3 ) 

where f is the fraction of the remaining terms of (3.2). The log2 scale of (3.3) is defined by 

log27V-A: + log2(l + / ) ( 3 4 ) 

and can be approximated by 

\og2N' = k + f^ ( 3 5 ) 

with the slop of line equal to one between consecutive points of exactly power of two. A 

different perspective to the approximation using power series can eventually reach the 

same conclusion for fix-point N in addition to strictly integer values [46]. The error is 

measured by the difference between exact log2N and approximated log2N': 

Err(N) = \og2N-\og2N< ( 3 6 ) 
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Eq (3.5) only requires arithmetic addition and may be implemented completely free of any 

multiplication. Mitchell demonstrated the design with counter and shift register in serial 

form which requires minimum hardware resources at the expense of the largest number of 

clock cycles necessary. The result of Mitchell's approximation is shown in Fig 2a along 

with the difference error in Fig 2b, which is quite symmetrical with x-axis in log2 scale. 

The periodic nature of the difference error makes it possible for bit-level error correction 

as an alternative to piece-wise linear approaches [49][50][51][52][53]. 

Figure 2: Mitchell's log2 approximation (a) and the difference error (b). 

In general, piecewise linearly corrected logarithmic converters maintain the 

following form: 

\og2N' = k + f + (fx^cR+J^dR) 
(3.7) 

where CR is the single-bit slop in power of two to eliminate real multiplications and 

minimize error, and R denotes the divided regions for such linearization. The number of 

binary coefficients in ^ R is determined to be fewest possible for realization of low 
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complexity circuitry. In 1999, SanGregory proposed the two-region piecewise linear 

correcting factor [52]. The single-bit coefficient was selected by minimizing root-mean-

square error. His correction algorithm can be summarized as follows: 

'2~2UsB, M0<f<\/2 

(3.8) 

where J * 1-f, or the descending part of the error curve in Fig 2b. The difference error 

with ~* is approximately symmetrical around the midway in linear scale. 

SanGregory chose to only incorporate 4 MSBs of the fraction to generate a three bits 

correcting factor to improve accuracy yet maintain very low hardware overhead. Dated 

back to 1965, Combet also improved Mitchell's algorithm with a four region error 

correction in serial architecture with increased circuit complexity [51]. His algorithm was 

based on trial and error in selecting the straight lines and can be defined as: 

log2iV' = A: + / + 

(2~2+2-4)/, for0<f<\/4 

2"4+2"6, for 1/4 < / < 2/4 

2"3 / + 2"6 + 2"7, for 2/4 <f < 3/4 

2" 2 / , / w 3 / 4 < / < 4 / 4 
(3.9) 

Hall also adapted Combet's idea with more coefficients for better accuracy yet seemed to 

defeat the desire for solutions with a simple hardware requirement [54]. In 2003, Abed 

refined the work done in [52] and extended the piecewise straight line approach to offer 

two, three, and six region error correction algorithms for 32-bit integer numbers. His 

formulation for the implementation presented in [53] can be summarized as follows with 

two, three, and six-bit correcting factors, respectively: 

{2-flus„ / » H / 2 < / < 2 / 2 j { 3 1 0 a ) 
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log2iV' = A: + / + ^ 

r2f4MSB, for0<f<\/4 

2-4+2"6, / o r l / 4 < / < 3 / 4 

T2ZMSR,for3/4<f<4/4 

\og2N' = k + f + 

T1 f 
^ J 6MSB •> 

for0<f<\/\6 

^2feMSB+2-\ forl/\6<f<4/\6 

2~4 + 2~7 + 2~8, for4/\6<f<6/\6 

2'4 +2"6 +2"7, for6/16< / < 10/16 

2"4+2"7, /or l0 /16</<12/16 

{^2f6MSB, for\2/\6<f<l6/\6 

(3.10b) 

(3.10c) 

In general, increasing the number of regions results with smaller approximation 

error defined in (3.6) at the cost of additional logic gates and adder cells. In the case of 

six-region method, two cascaded adder arrays are needed which can reduce the overall 

performance of the logarithmic converters. We now present the idea of bit-level curve 

fitting to generate a three-bit correcting factor. Furthermore, we apply it beyond integer 

values to include fixed-point representation, given consideration of the precision. 

3.2.3 Bit-level Curve Fitting 

The process of calculating inverse-log2 is to undo the log2 conversion which has 

the following relationship: 

log2(iV) = {^} + {(iV-2^)»A; / v}olog2
l(I) = {(l + Zfrac)«Zint} 

where »and ^ denote the opposite data bus shifting operation. Note that neither (3.5) 

nor (3.11) restricted us from defining negative index, ^ < 0 ; however, only the integer 

portion (assuming non-negative k) has been exploited in the literature to our best 

knowledge. For a fixed-point decimal of 8/8 (8-bit integer and 8-bit fraction), the same 



25 

rule holds true. We need to find a mechanism to express the k in two's complement. By 

using the standard priority encoder, we found that the single bit-inversion of the MSB at 

the output of the encoder does the trick. A single bit of inverter logic generalizes the 

architecture to accept both integer and decimal values. By including fraction values, it 

may seem to complicate the problem that shifting operation of (3.11) can go either way 

depending on the sign of k; the logic shift remains unidirectional in the implementation. 

To avoid real computation and minimize delay in realizing high speed parallel 

architectures, one is often left with very few choices. Besides the linear methods of (3.8) 

to (3.10), curve fitting at the logic level can also achieve a high degree of precision 

without introducing complex circuits. 

Rather than applying piecewise straight lines, we examined the dataset of the 

difference error shown in Fig 2b to determine a close fit for generating such correcting 

factor. At the same time, the correction should not be dependent on all fraction bits to 

minimize circuit complexity. Examples of binary logarithmic conversion are shown in 

Table I for 5-bit integers with index value k = 4. On the rightmost column is the error 

pattern without the correcting factor. Given a finite set of data points and the coherent 

near-symmetric error bits, one can utilize a large ROM table to correct the error to its best 

precision. Although not entirely impractical, such an approach does not work well in its 

scalability as the size of ROM storage exponentiates with the increasing resolution of 

input integers. It is therefore wise to focus solely on the bits which contribute to the largest 

magnitudes of error. Based on the simulation analysis at higher precision with 

consideration of rounding, it was determined that the last five bits of fraction coefficients 



26 

can provide sufficient improvement for 8-bit fixed-point representation. Furthermore, 

optimization on highlighted bits of the error coefficients, EC, (on last column of Table I) 

shows best trading of higher precision with a reasonably small set of logic gates. Unlike 

piecewise straight line methods discussed in previous section, bit-level curve fitting needs 

to be optimized at a much higher resolution for more accurate representation by logic 

gates. 

Table 1: Example of log2 converter with 5-bit integers and the index k = 4. 

Input 
10000 
10001 
10010 
10011 
10100 
10101 
10110 
10111 
11000 
11001 
11010 
11011 
11100 
11101 
11110 
11111 

bin Log2 dec 
4 
4.0875 
4.1699 
4.2479 
4.3219 
4.3923 
4.4594 
4.5236 
4.585 
4.6439 
4.7004 
4.7549 
4.8074 
4.858 
4.9069 
4.9542 

Log2 bin 
100.00000000 
100.00010110 
100.00101011 
100.00111111 
100.01010010 
100.01100100 
100.01110101 
100.10000110 
100.10010101 
100.10100100 
100.10110011 
100.11000001 
100.11001110 
100.11011011 
100.11101000 
100.11110100 

Loglappx bin 
100.00000000 
100.00010000 
100.00100000 
100.00110000 
100.01000000 
100.01010000 
100.01100000 
100.01110000 
100.10000000 
100.10010000 
100.10100000 
100.10110000 
100.11000000 
100.11010000 
100.11100000 
100.11110000 

Log2 - appx 
0.00000000 
0.00000110 
0.00001011 
0.00001111 
0.00010010 
0.00010100 
0.00010101 
0.00010110 
0.00010101 
0.00010100 
0.00010011 
0.00010001 
0.00001110 
0.00001011 
0.00001000 
0.00000100 

The binary logic fitting analysis of precision-circuit trading pinpoints to the 

generation of ECU to EC.6 depending on the fraction bits f i to f 5 and the potential 

rounding of EC itself. Based on the results, it was concluded that the following simple 

logic equations reduce the average magnitude of error to approximately one tenth of 

Mitchell's estimation: 
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E C ^ ( / ) = ( / . 1 V / . 2 ) A ( / . 1 V / _ 2 V / 4 ) A ( / _ 1 V / _ 2 V / _ 3 ) 

EC.5(/) = (7.3VZ4)A(7.1V/_2)A(7_2V/_I)A(7_1V7_,VZ5) 

A ( / - 2 V / . J V / J 

E C _ 6 ( / ) = (/_, v /_2 v /_4) A (/_2 v 7_3 v 7_4) A (7 , v 7_2 v 7 4 v 7s) 

A ( / _ I V / _ 3 V / ^ V / _ S ) A ( 7 1 V 7 2 V 7 3 V / ^ V / _ S ) _ ( 3 1 2 ) 

—2 5 f <Err <3 5 f The range of error is expected to be ' y-8 ' 7~8 for 8-bit integers comparing to 

double precision log2 values. Since the meaningful precision is limited to 8-bit fixed-point 

for the fraction, it is also subjected to additional bit of error from rounding for N with 

greater bit resolution. The analysis also shows that the precision-circuit optimized logic 

equations reduced the range of approximation error to [-0.0096, 0.0128] with an average 

error 11.8 times smaller than Mitchell's for 8-bit integers. 

Given eight-bit fixed point fraction, f„i to f_8, it is obvious that appending any 

fraction beyond an eighth bit contributes very little to improve the precision with 

dominant source of error in higher significant bits. Hence, the log2 converter can be 

simplified further to reduce hardware components. Instead of the full one-to-one mapping 

from input to the output, one only needs to construct the data paths relevant to eight output 

nodes, whether it be 8, 16 or 32-bit resolution. The same concept applies to inverse-log2 

converter. In summary, we replace the portion of piecewise lines with three-bit 

coefficients to improve the precision with eight bits fraction while in logarithmic scale: 

\og2N' = k*+fSMSB+EC ( 3 D a ) 

log? L'= 2k* (\ +fmsB-EC')^ 
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where k* is specific to the input of either integer or fixed-point decimal(2's complemented 

k). In next chapter, we discuss the theoretical model for video stabilization and illustrate 

how redundancy and log-domain computation help reduce complexity of the design. 
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CHAPTER 4 

THEORETICAL MODEL 

Improvement of visibility, evaluation of reliable features and estimation of motion 

parameters are inseparable integral of the effort to formulate the model for stabilization 

of video sequence captured under non-uniform lighting conditions. The theory 

underneath these three subjects are discussed to the fullest extend in this chapter. At the 

end of each topic, the relevant part of the model should be simplified to the point that is 

reasonably achievable for realization of such hardware architecture. 

4.1 Low Complexity Video Enhancement 

The main objective of improving the quality of visibility includes enhancing the 

contrast and luminance components of the image for a more uniform appearance of the 

scene. Ideally, noise reduction should be part of the effort to correct noise induced from 

capturing devices. However, we do not deal with this issue as the magnitude of noise 

source is acceptable. In this section, we discuss and evaluate a more effective approach as 

an alternative to the methods introduced in chapter 2.1 to significantly reduce hardware 

requirement while achieving similar fidelity in the enhanced image/video. The new 

architecture should be capable of improving the brightness and contrast simultaneously to 

minimize shadow regions of the image. It processes the images and streaming video in 

HSV-domain with the homomorphic filter (Homomorphic model is a developed concept 

in computer science field mostly for grayscale image processing and cannot be applied 

directly for color images) and converts the results back to RGB representation with fast 
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conversion factor [55] instead of full transformation [56]. The following sections discuss 

on the reflectance-illuminance enhancement model and the simplification for boosting the 

performance. 

4.1.1 Homomorphic Processing in HSV-Domain 

Color distortion correction can be avoided for color image enhancement in HSV-

domain where the color (H), intensity (V) and saturation/color density (S) components can 

be rendered separately without introducing the distortion. HSV is a conical representation 

of the color as opposed to cubical representation in RGB space. To remove the shadows in 

the image, only the V component in HSV needs to be enhanced instead of boosting 

separate RGB channels which results with loss of color consistency without correction. 

Extraction of the V component is defined by 

V{x, y) = max(R(x, y),G{x, y), B(x, y)) (4.1.1) 

where the R, G, and B are the original color components of the input image. The V-

component is enhanced by a homomorphic filter defined as 

Venh(x, y) = exp In ~- *h(x,y) 
V V 2 J 

i ° g 2 | ' ^ z l N ^ ) 

*D or (4.1.2a) 

Venh{x,y) = 2K K 2 J JxD (4.1.2b) 

for logarithmic based two expression where the * denotes convolution operation, h(x, y) 

is the time-domain filter coefficients from a high-boosting transfer function, P is the 

resolution of the pixels, D is the de-normalizing factor, and Venh{x, y) is enhanced 
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intensity value of the image. This enhancement model assumes that the detail (reflectance 

components) in the image is logarithmically separable [13], [3], [55]. Hence the model 

belongs to reflectance-illuminance category. The convolution or digital filter operation 

can be defined by 

a a 

Venhi(x,y)= YJ YJ
Vnl{x~m'y~~n)xh(m,ri), (4.1.3) 

m--a n=~a 

where a = {K-1)/ 2 for KxK filter kernel, V„i is the normalized logarithmic scaled version 

of V(x, y) and Venhi is the result from performing 2D convolution. The quadrant symmetry 

property of the homomorphic filter operation defined in (4.1.2a) and (4.1.2b) allows us to 

optimize (4.1.3) to reduce the number of multiplications approximately by 75% as 

summarized in section 3.1. The folded version of (4.1.3) can be expressed as 

V^i(x,y)=^ Y.vAx±m + — ,y±n + — )xh(m,n) + V»i(x,y)xh( —,— J (4 .1 .4a ) 

2 2 

Ver,u(x,y)= £ ]T 7 , I K , K , 1 7/ ( K K 1 
Vni\ x + m + \,y + n + 1 +K>/ x-m + — ,y + n + 1 , 

1 2 ^ 2 ) { 2 ' 2 J (4.1.4b) 
7/1 * i X ^ 7 / ( K K 

+ Vni\ x + m + \,y-n + — +Vni x-m + —- ,y-n + — y.h(m,n) 

for odd and even size kernels respectively. The enhanced image can now be transformed 

back to RGB representation by mapping the following set according to the value of/: 

{R'G'B'}„={{e,p,t},{n,e,t},{t,e,p},{t,n,e},{p,t,e},{e,t,n}} for / in {{0},...{5}}, (4 .1 .5 ) 

where t = 1 - S, n = 1 - Sxf, p = 1 - Sx (1 -f), e = 1, and {/?'G'5'}„ is the normalized 

enhanced RGB components. The / and/are the integer and fraction portions of H which 

is the angular representation of color component in HSV-domain defined by (4.1.6). The 

S component in HSV domain is defined to be (4.1.7). The final output, {/?'G'5'}, can be 
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calculated as (4.1.8) with the denominator approximately equal to one for non-uniform 

scenes or images which contain bright parts, where Ven/, = 2VenhlxD. Equations (4.1.1)-

(4.1.8) provide basic framework for the design of HSV-domain enhancement system. 

H = 

0 + (G-B)/(V-mm(RGB)), if V = R 

2 + (B-R)/(V-min(RGB)), ifV = G (4.1.6) 

4 + (R-G)/(V-mm(RGB)), ifV = B 

s_V-mm(RGB) ( 4 1 ? ) 

{R'G'B'}-*'™'^* (4.1.8) 
max({R'G'B'}n) 

4.1.2 HSV-Domain Enhancement with Fast Color Space Conversion 

We have shown the concept of enhancing color images in HSV-domain in a 

previous section. It reduces the processing bandwidth needed in hardware design to focus 

on one channel (V-component) rather than concurrently processing on all RGB channels 

followed by color distortion correction. This approximately cuts the hardware resource by 

2/3 compared to the machine learning approach discussed in [19]. As Li Tao et al 

demonstrated in the color image enhancement algorithms [21], [55], the color restoration 

process can be further simplified. She showed that if H and S components in HSV space 

remain constant, the equations (4.1.5)-(4.1.8) needed for inverse transformation can be 

replaced by (4.1.11). This approach should moreover reduce the hardware complexity 

since full implementation of the transformations between HSV and RGB representations 

is not mandatory. 

{R'G'B'} = ¥^-xVe„H (4.1.11) 
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4.1.3 Comparison of Visual Quality with Relevant Algorithms 

The results from algorithmic simulation are shown in Fig 3 for visual judgment. 

The original image is illustrated in Fig 3a. This type of non-uniform image is typically the 

consequence of saturating the bright parts of the scene (Low lighting condition intensifies 

the effect in this case). We enhanced the image with the algorithm discussed in the last 

section. The more uniform result is shown in Fig 3b. It is trivial that most shadow regions 

with reasonable darkness (e.g. not completely dark) are removed while the bright parts 

maintain the fidelity. It should be noted that the discoloring in the dark regions of the 

enhanced image is natural since the color information is very weak with V component 

close to the tip of the HSV cone shown in Fig 3c. 

Figure 3: Algorithm simulation: (a) original, (b) enhanced (c) conical representation of 
HSV color space. No useful color information can be obtained with V component too 

close to the tip of the cone. Hence the excessively dark regions appear pale in the 
enhanced image. 

While discussion of the other enhancement algorithms is outside the scope of this 

research, it is important to illustrate the results since we will compare the hardware 

utilization and the performance for the available implementation of the algorithms. The 



34 

original test image is shown in Fig 4a. After enhancing the image on separate RGB 

channels, more details are revealed as shown in Fig 4b; however, the image appears pale 

due to loss of the color relationship between the channels. The result of enhancement by 

Multi-Scale Retinex with Color Restoration (MSRCR) [15], which is based on human 

perception, is illustrated in Fig 4c. This approach corrects the color distortion but still 

appears grayish in certain areas depending on the background color and lighting 

condition. In this case the background has a mild influence on the image. Thus further 

improvement can be made. The hardware implementation of this algorithm can be done, 

but the large scale kernel of the filters makes it impractical to achieve in time domain. 

Shown in Fig 4d is the output of the Luminance Dependent Nonlinear Image 

Enhancement (LDNE) algorithm presented in [21] which we implemented the hardware 

system in [20]. It is clear that the color is consistent which is obvious on the color of the 

hair of the man shown in the figure. Fig 4e is the output of correcting Fig 4b with Ratio 

Rule which is a machine learning algorithm [5], [6]. We also implemented it in [19]. The 

output for the design to be implemented is illustrated in Fig 4f. It has similar 

characteristics with Fig 4d and 3e and is somewhere between the two. With carefully 

chosen homomorphic transfer function, it can be hard to distinguish by human eyes. 

Nonetheless, the difference between these designs in terms of the performance and 

hardware utilization is quite dramatic. Design of this simplified system architecture is 

discussed in next chapter where we show the architectural realization of the equations 

(4.1.1), (4.1.2b), and (4.1.11) in the color image enhancement system. 
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Figure 4: Algorithm Comparison: (a) original image taken from [15], (b) enhanced 
Separate RGB channels without color correction, (c) enhanced by MSR with color 

correction [15], (d) enhanced with LDNE [20] [21], (e) enhanced with RR [5] [6] [19], (f) 
enhanced with the approach we proposed. 

4.2 Feature Selection and Tracking 

The basic concept of feature evaluation framework is described in this section. 

The overview of the structure, the formulation of different components needed to 

evaluate texturally optimal features, and the preliminary simulation results are discussed 
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in details to reveal the drawback of the framework. Simplifications are provided to reduce 

the complexity and make the calculations feasible for hardware realization. 

4.2.1 Overview of the Framework 

The new framework comprises mainly three functional levels. An overview of the 

network is illustrated in Fig 5 for image data represented by red, green blue color bands. 

The RGB color components are connected to level 1, //, of the neural network where p 

layers of textures are extracted based on desired criteria such as edges, lines, and corners 

[57] in feed-forward configuration [23]. The p layers of textures are then weighted 

through distance dependent modular network [58] and merged into single layer feature at 

h. The feature selection of this fused texture layer is considered in the descending order 

from the most optimal regions. The regional feature measure is performed and extracted 

to evaluate the periodicity of the potential candidates. The data involved with the measure 

can be from //. If the feature is indeed unique at h, we say that the network converges 

with good feature to track by different aspects of the textures and its distinctness within 

its region. Otherwise the weight memory of /? is modified similarly to Kohonen's 

learning rule [59] to suppress the regions resembling to the disqualified candidates. In 

latter case, the network converges if it determines a good feature or that the weight 

memory of h converges to zero which implies that there is no reliable or traceable feature 

for tracking. 
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Figure 5: Block diagram of the framework for automatic feature selection for tracking. 

4.2.2 Model Formulation 

This section presents the calculation for different layers of textures and is a means 

to obtain the unique features. The basic process requires the extraction of different types 

of textures, the fusion of the textures, and the potential feature evaluation based on the 

uniqueness criteria. 

4.2.2.1 Extraction of p Layers of Textures 

The type of desired texture is strongly impacted by the nature of the problem. In 

image processing domain, edges, lines, and corners are the common textures. They can 

be considered as separate texture layers for the neurons defined by 

Ci(x,y) = Hi{l(x,y)} for\<i<p, (4.2.1) 
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where I(x,y) denotes the input data (the RGB color components in this case), Ht is a form 

of transformation response to specific type of textures, and Ci{x,y) is the Ith texture layer 

or the activation values in /? layer extraction. We utilize the reflectance component [15] 

[55], ratio-relationship [5], and color variation to be the three distinct layers of textures in 

a priori feed-forward network at // in Fig 5. One can often assume that the image is 

composed of the logarithmically separable reflectance (details) and illuminance (lighting 

sources) components under a reflectance-illuminance model. The model is especially 

helpful for image enhancement where these components can be enhanced for more 

uniform visual quality as demonstrated earlier. Hence, the variation of the reflectance 

component is illumination independent and can be a good source of texture which is 

defined by 

C](x,y) = Vref(x,y)*KD(m,n), (4.2.2) 

where Vrej(x,y) is the reflectance of the intensity of the color image, Ko(m,ri) is the 

derivative function, and * is the filter operation. The exponentially separated details can 

be defined by 

Vref(x,y) = Qxp(Vnl(x,y)*kh(m,n))xD, (4.2.3) 

where Vni(x,y) is the normalized logarithmically scaled image intensity, Kh(m,ri) is the 

high-pass filter, and D is the de-normalizing factor. This component can be obtained as 

the intermediate component from the part responsible for video enhancement. Another 

type of texture which is inspired by ratio learning algorithm can be useful by maximizing 

the neighborhood dependent ratio relationship. Instead of preserving the relationship 

between RGB components in fully connected network as discussed in [5] [60], we 

maximize the magnitude of the ratio among the neighbors within the intensity of the 
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image defined by 

c 2 ( ^ ) = - L y Y ™HKnh(x,ylvenh(x-™,y-n)) ( 4 2 4 ) 
MN^m^" mm(Venh(x,y),Venh(x-m,y-n)) 

where Venh{x,y) is the enhanced intensity similar to (3.3.3) but boosted by filter Kb{x,y), 

and M xN is the grid dimension of the inputs. The maximized ratio texture is rotation-

invariant and considers the contribution of illuminance. The third layer of textures is 

dedicated for color variations within the RGB components and between the channels 

defined by 

C3(x,j/) = DRGB {DR(x,y),DG(x,y),DB(x,y)}, (4.2.5) 

where Dx denotes the derivative operator. Cs(x,y) maximizes the regions where a 

sufficient variety of color information is available. The activation function of each neuron 

of// is defined same as the activation values within 0 to 255 for 8-bit image but saturates 

outside the range. We simply refer to (4.2.1) to be the activation function. 

4.2.2.2 Weight Matrix for Fusing p Layers of Textures 

The structure of interconnects at h is similar to modular architecture discussed in 

[58] as shown in Fig 6 with weights initialized to l's. The weights of neighboring 

neurons, wf", are connected to the central neuron through distance-based weighting 

described by (4.2.6) with («x«)x/? neurons connected from // layer. The resultant nodes 

of p layers of textures are combined to produce fused data with the weights which 

emphasizes the global significance of each type of textures. We treat the activation 

function of this layer to be the activation values. The update model of the weight memory 

is to be discussed in /?. This feature space is utilized for initial optimal feature selection. 
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Figure 6: Architecture of interconnects for fusing p layers of textures. 

Fj~(*,y)= I * r c , M (4.2.6) 

4.2.2.3 Feature Selection 

The initial coordinates of optimal features which maximize the textures in feature 

space can be described as 

FJR[] = <x%m^jR{Ffused{x,y)}for\<j<J, (4.2.7) 

for J features in the regions of interest where FjR [.] contains the coordinates of texturally 

maximal features. Local maxima in each region of interest become candidates in the 

descending order by magnitude subject to further examination for uniqueness. The initial 

features are defined by 

Fj(m,n) = TJ{l(FjR [.])}, (4.2.8) 

where 7} defines the desired transformations of input data l(FjR [.]) at the coordinates of 

the candidates and Fj{m,n) is the/ h M *N feature centered at FjR [.]. The FJR(x,y) refers to 

Tj transformed domain for feature 7 at the region R. The result of 7} may be a combination 

of the outputs from /;. For simplicity, we defined the 7} to contribute the intensity of the 
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4.2.2.4 Feature Measure 

The measure for uniqueness and potentially growing pattern (signatures) of the 

feature candidates in relation to the neighbors can be computed with normalized 

correlation defined by 

£ [[FJR (x + m,y + n)- FjR (x, y)] x [>, (m, n)-Fj]] 

</>jR{x,y)^~^ ^ 

X [FjR(x + m,y + n)- FjR(x, y)J £ [>, (m, n) - Fj J 
m,n m,n 

where FjR{x,y) and F, are the expected values at (x,y) under (m,n) range for the region of 

interest and feature candidates, respectively, and <fiJR(x,y) is the similarity space. Lewis 

pointed out in [61] that despite a variety of template matching methods are available for 

feature measure, normalized cross correlation (NCC) remains the default choice. The 

covariance may be computed instead of NCC with the draw-back that the result is not 

normalized; hence the level of confidence may be questionable. 

4.2.2.5 Verification and Update of Weight Memory of h 

Useful information can be extracted from (4.2.9) to verify the uniqueness and 

analyze the potential signatures of the feature candidates with respect to its neighbors in 

FjR. Suppose there exists a function defined by 

Vj* (x, y) = r,JR {d) <t>]R (x, > 0 | ( D , ^ 0 ^ <oHM<a), (4.2.10) 

where 7]jR(d) is the distance dependent weight function which emphasizes the importance 

of the most dominant candidates. Let us assume r}JR(d)-l, where the measure of the 
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candidates appeared in i//.R{x,y) is treated equally. The D]JJR,D2JJR are the first and second 

order directional derivatives of (4.2.9) in a . The D[JJR denotes the first order directional 

derivative orthogonal to a with the magnitude bounded by a . This positive scalar 

defines the range for which the rate of the change along ~a[ is considered desirable for the 

signatures associated with the candidates. Graphical visualization of (4.2.10), which 

contributes to the growing pattern of the candidates with respect to the neighbors, is 

essentially a directed concave function of (4.2.9). The D[JJR = o condition, subject to 

D±atjR < ° > suffices the uniqueness test where the local maxima indicate the periodicity of 

the candidate. Eq (4.2.10) can be threshold to binary form defined by 

\\JorDxwiR =0,£>V,« <0,«/;7? >Z, 
SJR(x,y) = \ YjR TjR *JR ViR , (4.2.11) 

[0, otherwise 

where SJR=\ for all the local maxima that satisfy threshold value r defined by the 

global maxima in the region of interest. The uniqueness can be determined by minimizing 

the distances between non-zero samples in (4.2.11) or by frequency of occurrence defined 

in (4.2.12). For a distinct feature, o should be equal to one. 

^ = Z , A (4-2.12) 

The update of the weight memory in l2 is defined as 

w^(t + \)^-wr(t)x^-G(SlR,c7)), (4.2.13) 

where G(«) is the Gaussian function characterized by (4.2.11), and standard deviation, <J , 

for neighborhood dependent iterative modification similar to [59]. The rate of the 

convergence of w™'" for specific feature is approximately inversely proportional to 
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periodicity of the features. 

4.2.2.6 Convergence of the Network 

The process is terminated if o=\ is found or that the weight memory converges to 

zero. The latter case implies that different measures of the textures resulted with either a 

completely periodic feature or empty set. In the rare worst case scenario, the network 

converges at approximately kttl iteration where 

2 > . = R * . (4-2.14) 

and MJR is the dimension of the region of interest. Usually, a couple of iterations are 

sufficient for the convergence. 

4.2.3 Preliminary Simulation 

Preliminary results from software simulation for automatic feature selection and 

tracking are presented in this section to demonstrate how the periodicity of certain 

features affects the reliability of tracking. 

4.2.3.1 Automatic Feature Selection 

The input data and the relevant outputs of the architecture are illustrated in Fig 

7(a)-(i). The image is fed into the network where C/.3(x,y) are computed with the results 

shown in Fig 7(b)-(d), respectively. The fused data after passing through the weight 

memory is illustrated in Fig 7e along with the dominant feature candidates in Fig 7f 

where the textures are strong enough. The result of feature measure for currently best 

candidate (marked with square box) at selected region of interest (We only demonstrate 

on one region for simplicity.) is illustrated in Fig 7g with unique local maxima shown in 
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Fig 7h. In this case, the optimal feature is found in single iteration as boxed with the blue 

square in Fig 7i along with the optimal points by corner criteria [62] in pink dots. An 

example of the input with complete periodic textures is illustrated in Fig 8a with well 

distributed dominant feature candidates shown in Fig 8b. It is obvious with numerous 

local maxima plotted in Fig 8d that the potential candidates are not reliable for tracking 

unless additional distinguishable geometry is incorporated from (4.2.10) with U^J<« 

condition where the signatures associated with the features exist. 

(a): IRGB(x,y) (b): Cfay) 

(c): C2(x,y) (d): C3(x,y) 
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(e): Ffused(x,y) (f): dominant feature candidates 

(g): K(x,y) (h): 5iR(x,y) (i) Selected feature in blue box 

Figure 7: Input color image and the outputs of the network at different stages are 
illustrated in (a)-(i). White dot in (f) shows initial dominate candidate with uniqueness 
test (v=l according to (4.2.12)) shown in (h). Pink dots are important corner features 

evaluated by [62]. 

(a): lRGB(x,y) of periodic textures (b): dominant feature candidates 
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(c): 0jH(x;y) (d): SjR(x,y) 

Figure 8: An example of input data with periodic textures where no feature is reliable for 
tracking confirmed by large v computed from (d). 

4.2.3.2 Feature Tracking 

The automatic feature selection is performed by the framework discussed in 

section 4.2.2 on frame 1 of a 360 x 240 video sequence. Once the optimal feature (optimal 

according to its uniqueness with respect to p layers of textures) is selected, subsequent 

frames can be passed directly to the entry of 'Feature Measure' shown in Fig 5 with 

proper transformations, 7}, of the input data as discussed in section 4.2.2.3. Since the 

feature is unique at the time it is selected, the regional global maxima may be treated as 

new coordinate of the feature from previous frames while it remains relatively unique. 

Snapshots at frames 1, 56, 78, 102, 135, 161, 180, 220, and 237 are illustrated in Fig 9. 

After about 20 seconds, it slowly drifts away from the targeted feature because the 

network at U does not compensate the temporal deformation with insufficient information 

represented by (4.2.11). The drift becomes obvious after frame 135 where the intended 

feature is severely rotated out of plane. We consider extending the framework in the 

future to accommodate the deformation utilizing the distinguishable geometry of the 

signatures related to the features represented by (4.2.10). 
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Figure 9: Results from feature tracking after automatic feature selection scheme. Shown 
from top-left to bottom-right are snapshots at frames 1, 56, 78, 102, 135, 161, 180, 220, 

and 237. 

4.2.4 Potential Extension of the Framework 

We presented a new framework of recurrent neural network for automatic feature 

selection by textures and uniqueness for tracking. Preliminary simulation showed that 

different types of textures could be extracted and fused, that feature measure played a 

distance-based learning rule for convergence of the network to unique and texturally 

maximized features. Feature tracking was also demonstrated by the network with a small 

tweak. The tracking results indicated that the framework is acceptable to in-plane 

rotation, scale change to certain extend. Research can be extended to make it more 

adaptive to out-of-plane temporal deformation. One may also fully explore the signatures 

associated with the neighbors of selected features to adapt the network to deformable 
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circumstances and minimize the drift effect for more accurate feature tracking. Those 

signatures may also be used to estimate the numeric point spread function for motion 

deblur subject to further evaluation of the scene [63]. 

4.2.5 Simplification 

The intension of selecting unique features overly constraints the problem for 

which one has to seek in descending fashion over the potential set of features. By the 

iterative nature of the framework, this implies that one has to buffer the search space for 

each region associated with the feature. Hence the bottleneck of non-constant memory 

access will compromise its performance. To not sacrifice our objective of designing a 

high performance system, we must remove the need for uniqueness of the features from 

the framework. This section serves to simplify the structure to the point feasible for 

hardware realization. 

4.2.5.1 Single Trivial Layer of Texture 

Rather than fusing a set of texture layers to obtain more optimal features, only a 

single trivial layer is selected to reduce computation. The corner-ness criteria seem to 

suffice our need according to earlier work by Harris in [64], Given a point in the image, 

the auto-correlation of V component with adjacent pixels is defined by 

ac(x,y)= £ Wxy(V(x+AX,y+Ay)-V(AX,Ay)f . (4.2.15) 

With small (Ax,Ay), the Taylor expansion of first order simplifies (4.2.15) to 
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ac(x,y)= ^ Wxy(V(x+AX,y+Ay)-V(AX,Ay)) , 

V(x +AX, y +Ay) *V + [VxVy][*x,Ayf 

w 

' y v2 y v v 
y w y v2 

/Law x y i—iW y 

(4.2.16) 

= \AX,Ay\ 

= [±x,Ay] 

[A^,A^] 

A C 
C B 

where W(.) is the window function chosen to be summation of 3x3 neighbors to avoid 

multipliers, Vx and Vy are the first order derivatives, and M matrix encapsulates the shape 

structure characterizing the point. The corner-ness response is defined by 

R = Det(M)-kxTr(M)2, 

Det(M) = AxB-C2 , (4.2.17) 

Tr(M) = A + B 

where Det(.) and Tr(.) are the determinant and trace of M, and k is the empirical constant. 

The best response with respect to particular region of the image is simply the maximum 

of R in the range. 

4.2.5.2 Sub-feature Representation 

The feature measure of (4.2.9) with broader search ranges in the region of interest 

can be quite expensive for large feature templates. With a bigger set of features, the 

required computational power for searching and tracking becomes problematic. Equation 

(4.2.9) therefore does not scale well and can consume excessive amounts of resources in 

hardware implementation. To cut back the amount of calculations per feature template 

without compromising its performance, each feature is divided into sub-feature regions 

similar Stefano's [65]. 
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Sub-feature Detection: The concept of sub-feature measure in a nutshell is to evaluate 

the likelihood of the resemblance significant enough to provoke a full measure of the 

complete template. The two sub-feature based measure of [65] seems to hold promise of 

minimizing the number of calculations for exhaustive template matching; however, the 

search itself (even if the range of search remains regional) has its own setback in that the 

threshold of first sub-feature must be determined from the template in advance. The 

bigger drawback is not the threshold of first sub-feature; rather, it is the significance of 

that sub-feature. Supposed the first sub-feature is not sufficiently texturally specific or 

optimal, it may generate an overwhelming number of responses to initiate full measures; 

hence, it has the tendency of approaching the complexity in the context of full a search. 

To overcome this obstacle, we introduce a constellation to link between the primary sub-

feature and a set of secondary sub-features. In addition to minimizing the number of 

calculations with smaller sub-feature space, the scores of secondary sub-features serves 

the purpose of confidentiality in supporting the primary sub-feature. 

Feature Representation by Constellation: To reduce the number of calculations with 

feasibility of such hardware realization in mind, the complete template is first 

decomposed into sub-features with the primary sub-feature containing the most complex 

texture. As shown in Fig 10a, the locality of remaining sub-feature set is determined by 

its sub-optimal textures and directly connected with primary sub-feature to form a star 

constellation. With such structure constructed, we may ignore the rest of that complete 

feature template. To search for the feature in an image with relatively static spatial 
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locality around the region, the local maxima of primary sub-feature is first calculated in 

(4.2.11). 

The secondary sub-features are evaluated if and only if the primary sub-feature 

and the already estimated secondary sub-features scored sufficiently high. In other words, 

the star constellation that represents the full feature template has a cascaded search 

sequence for which any failed score will terminate subsequent search on the maxima of 

primary sub-feature. In this manner, the exhaustive search in the region of interest is only 

needed on any primary sub-feature. The test for secondary sub-features is not really a 

search; it only exists to verify the spatial relationship of the constellation specific to the 

full feature remains legitimate. This concept can readily be applied to the tracking of 

rigid objects since the spatial deformation of such objects is also encapsulated in the 

constellation. In fact, the process of evaluating secondary sub-features generates the 

byproduct of attributes related to spatial distortion. Let us not be lost in this very 

promising model; the only piece of information necessary to solve part of our problem is 

really the coordinate of primary sub-feature. What that means is the precise locality of 

sub-feature set is not crucial. The score of (4.2.9) in image processing is often gradual for 

which the match around the maxima is relatively sub-optimal to conclude the existence of 

a particular sub-feature. Hence the representation is also tolerable to spatial deform to 

certain extend. 

While such star constellation can be effortlessly constructed on desktop 

computers, the structure itself unfortunately poses the demand for buffering of full 
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feature and bookkeeping of sub-features. To bypass such a tedious process on low level 

hardware implementation, a single path straight line constellation is selected with the 

primary sub-feature on the top, ignoring the sub-optimal-ness of the textures in the sub-

feature set as shown in Fig 10b. 

full feature 

S1 

S3 

S2 

/ 
P1 

/ 
S4 

full feature 

P1 
vb 

S1 

I 
1 
1 
1 

(a) (b) 

Figure 10: Representation of full feature by texturally optimal sub-features in a 
constellation, (a) A start constellation constructed to encapsulate the spatial relationship 

of sub-features, (b) A straight line structure to simplify hardware realization. 

4.3 Estimation of Motion by Consistency of Motion Parameters 

In this chapter, we propose ME by measuring the consistency of motion present in 

selected features. A minimum of two frame buffers is necessary to extract motion 

parameters. By reducing frame buffering, system delay is also minimized. GME 

calculates the camera or scene motion which can be modeled in 2D or 3D spatial 

coordinates. We concentrate on 2D which is accurate for 6-parameter camera motion: 

rotation, translation and scaling. To incorporate off-axes zooming and change of 

viewpoint, the 3D spatial model is far more precise. In [66], Huang used corner detection 

for GME to improve the edge detection based approach presented in [67]. The author 

calculates the motion parameter by detecting the corresponding cross-points which are 

iteratively grouped into inlier or outliers based on their velocities and residual error. If the 
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resultant inlier group contributes to prediction error below a certain threshold, then 

parameters calculated within that inlier represents the global motion. The approach has a 

couple drawbacks. GME by Edge or cross-point is not very robust to motion blurness(or 

appeture problem) and sources of noise. It also depends on the quality of edge/corner 

detectors; however, the cornerness may be solved with a large ratio of eigenvalues in x-y 

directions which was the primary reason that we chose corner-ness for texture layer in 

section 4.2.5 [64]. Given corresponding feature points, an alternative mean of grouping 

inlier and outliers can be determined based on preserved properties of affinity through 

angle and distance relation to other features. The affined model to compensate translation 

before rotation and scaling matrix can be defined as: 

G(x,M) = a 
cos(0) -sin(0)" 

sin(6>) cos(6>) y-y0 

(4.3.1) 

4.3.1 Estimation of Inlier Motion 

Affine transformations distort the distance, angle, as well as area or volume; 

however, they preserve three important geometric properties. One is the collinearity for 

which the sample points laying on a line remain on the line after the transformation since 

translation, rotation, and scaling are affine subspaces. The second property is the 

parallelism where the lines parallel to each other remain parallel. Lastly, the ratios 

between the sample points on a line are preserved constant. Supposed that we have 

derived a set of feature points, £,_,, uniformly distributed in frame /,_,, and another set 

St in It. By collinearity, each line between two points in St-j maps to St and can be 

grouped into an element in a set of K motions: 
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S^=Mk's
J
t,i*j,i,jeS, (4.3.2) 

for which we define the element in K with most sample points to be the inlier motion. In 

this approach the outcome represents the global motion given sufficient uniformly 

distributed samples. For a limited set of points, the inlier does not guarantee finding of 

global motion. 

Despite that the angle relationship is distorted by affinity, the consistency of the 

angles between vectors S,_, and S, remains coherent given two conditions: 

1. At least one element in K contains multiple vectors. 

2. Each element satisfying 1 possesses constant angle between the samples 

within the element iff the locality among the samples remain relatively 

stationary. 

The second condition implicates the existence of rigid regions or static background 

within the video. And the most dominant element in K strongly correlates to global 

motion. The angular argument and the direction of rotation of (4.3.2) can be evaluated by 

(4.3.3). It is not necessary to explicitly calculate cosine term since the intension is to 

check the consistency and group the rotational motions. With 2D motion model, the sign 

of cross product also suffices the direction of rotation. 

cos(£) = A ^ , ^ = ^ ( S M X S , ) (4.3.3) 
Pi-urn 

The consistency in rotational motion provides good insight in estimating 

dominant rigid regions; however, the integrity of the constant ratio must be sustained 
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since the error along the exact axis of the line is undetected. The rejection mechanism for 

each element in K can be defined by (4.3.4) for which the samples outside the threshold 

are discarded from the group based on absolute difference from expected value. The Td 

constant is fixed to tolerate a source of error such as distortion from camera lens. Once 

the inlier is estimated, linear regression can be applied to calculate motion matrix. An 

alternative is to assign the angle found in (4.3.3) and the accumulated scale change 

as (FT Ek\/Ek(t0) in (4.3.4) to rotation matrix and scalar value (assume uniform 

zooming) of (4.3.2), respectively. 

IS,. 
K Ek 

P/-UI 't-U 

Is ',' 
>Td, iekeK (4.3.4) 

4.3.2 Estimation of Intended Motion 

In addition to estimation of inlier motion in section 4.3.1, it is also necessary to 

evaluate the scene of interest for which the intended camera motion can be incorporated. 

Without compensating the intended motion, the scene is fixed as an absolute coordinate 

in space. Once the camera is deviated outside the range, there is nothing else but blank 

screen. Given the signed progressive angle 0 of inlier calculated by (4.3.3), the 

accumulated rotation can be defined by (4.3.5) subject to the window of rotation defined 

in (4.3.6). The Te is a constant that separates the range of vibrative (unintended) camera 

rotation with respect to desired movement. Likewise, the window of translation is 

defined. The accumulated angle and translation are particularly useful for non-static 

camera setting. 

Oacc{t) = Oacc{t-l)^0(t) (4.3.5) 
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e^)-\e'J,)- r | 6 U ' ) | < ? ; (4.3.6) 
\sign{6acc(t))Te, otherwise 

4.3.3 Simplification by Order of Search 

While grouping of a set of k elements of motions in (4.3.2) implicates a full 

measure of all possible combination of nodes (selected features), one can avoid such fully 

connected topology by eliminating certain redundant connectivity to the nodes. For 

example, the affine attributes obtained from node a to b is the same as b to a. It is, 

therefore, pointless to group both motion of ab and ba under particular element in K. 

Neither are we interested in obtaining a complete collection of k motions. We propose a 

triangular search scheme to reduce the number of calculations to minimum. Although 

such a search scheme is not quite computationally intensive or time sensitive and is 

considered negligible comparing to the complexity of feature measures in section 4.2, this 

modification is essential for the design of simpler architecture. The concept of estimating 

inlier motion can easily be illustrated in Fig 11. Given a set of feature coordinates Fi,..„ 

obtained from 8jR of (4.2.11), one can calculate the angle with (4.3.3) between two 

vectors, SM and S,, from two pairs of points/nodes. At the bottom of the triangle, the 

leftmost point-pair is used to calculate the angular relationship to other point-pairs in the 

list. If the majority of such angles are non-constant, we may assume the test point-pair 

belongs to any outliers and reject it from the list. In this fashion, the point-pairs of 

outliers are being progressively eliminated until the outstanding element dominates and 

terminates the search. Notice that there is absolutely no redundant calculations from the 
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Direction of search 

Figure 11: Triangular order of search to minimize the number of calculations and to 
identify the inlier and reject the outliers. 

bottom level up within the triangle. And that the search terminates as soon as the 

outstanding element is discovered. The very first point in the point-pair within that 

outstanding element also has inherently the most stable spatial locality relating to other 

points within the element. In other words, if we were going to maintain such a list of 

known and reliable background features, the leftmost point on the dominant element 

naturally forms a star constellation by the same concept that we learned in section 4.2.5.2. 

That means we can readily use the most stable point(s) to calculate subsequent incoming 

video frames to better estimate any new stationary features as well as narrowing down the 

search range of (4.2.9) to a greater extent. For the sake of simplicity, we ignore such 

efforts and concentrate solely on sorting out the inlier motion parameters. Furthermore, 

the measure of constant ratio of (4.3.4) between new and reference frames is ignored 

since the order of search also inherently rejects non-constant distant ratios. We also found 

there is no need to implement the zooming factor of (4.3.1) and rejection mechanism of 
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(4.3.4) at this point until further development of the algorithm. In the next section, the 

preliminary results of the algorithmic simulation of motion evaluation are combined with 

the material from sections 4.1 to 4.2 to illustrate the working prototype closely resembles 

what we would expect from hardware simulation. 

4.3.4 Algorithmic Simulation of the Stabilization Prototype 

The snapshots from stabilization of scene with non-uniform lighting conditions 

are illustrated in this section to briefly demonstrate the outcome of the prototype. Fig 12a 

shows the very first frame of the video. On the top left corner is the original image. The 

feature selection and tracking results are circled in the top right frame. The bottom left 

frame illustrates the moving object other than the background motion (separated by 

several frames). It also reveals the influence of motion blurness and lens distortion on a 

wide-angle camera. The frame on the bottom right corner shows the result of a stabilized 

sequence. Notice that the first frame immediately selects texturally optimal potential 

features (thin blue circles) in different regions of the image. All of the features with static 

background motion have been detected in the second frame of Fig 12b (thick green 

circles). Also notice the initial feature on the left most person in the image is already 

rejected in Fig 12b as his motion is significant enough to deviate away from background 

motion; however, features #9 and #11 perceived by our eyes as moving objects are not 

immediately rejected due to the fact that both remain relatively stationary between the 

frames. In frame #236 of Fig 12c, the cameraman already shifted the scene to the left and 

is now detected as intended motion since the accumulated velocity/translation runs 
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(a) Frame #1: Potential features are been selected. 

(b) Frame #2: Features are been tracked and marked as static. 
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(c) Frame # 236: Stabilized sequence compensates the intended motion. 

(d): Frame #1018: The scenario where feature measure fails to detect due to severe 
motion blurness. 

Figure 12: Snapshots of enhanced video and stabilized sequence to show different stages 
of the event. 
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outside the window of monitor. The scene is therefore compensated to gradually 

transition as directed by the cameraman. The scenario where the feature measure fails to 

detect and track due to severe motion blurness is also illustrated in Fig 12d. The new 

potential features are selected but remained untraceable as well in frame #1019. 

4.4 Summary 

The subjects of complexity of commonly used operators and the formulation of a 

simple model necessary for stabilization of the video sequence were analyzed in this 

chapter to reduce complexity and establish a series of steps feasible to implement in 

hardware. Exploitation of redundancy properties inherent in the operators helped us to 

focus on the essential computational power and eliminate unnecessary calculations. The 

logarithmic domain computation further lowered the complexity of multiplication, 

division and exponentiation related operators for realization of multiplier-less 

architectures. The basic concept of video enhancement with fast color space conversion 

was also illustrated; however, it should be noted the homomorphic processing was a well 

established concept in literature. The basic model of feature selection and tracking was 

presented with in-depth analysis of its drawbacks. A more hardware-friendly solution was 

exploited to minimize the amount of calculations involved with feature evaluation and 

measure. The advancement was to select a known reliable texture to accompany the 

representation of the full feature into a constellation of sub-features. While we did not 

explore the more complete characteristics of the model, the framework posed the 

potential for future expansion to finer grains capable of analyzing certain spatial 

properties. In section 4.3, we further proposed a simple technique to evaluate the inlier 
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motion by a triangular order of search. This method progressively rejected the outliers to 

discover the most outstanding element which is equivalent to the background motion. 

And finally the snapshots from algorithmic simulation were provided to illustrate certain 

steps along the stabilization of the sequence. The case in which the model failed to 

stabilize under extreme motion-blurness was also presented. In chapter 5, hardware 

realization of different components necessary for the calculations introduced in this 

chapter is discussed. 
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CHAPTER 5 

DESIGN OF HIGH PERFORMANCE ARCHITECTURE 

Various aspects of the design are introduced in this chapter which covers the 

overview of system architecture and the realization of different subsystems. The main 

portions of the chapter focus on the design of logarithmic modules with correction, the 

video enhancement module, the feature selection, the feature measure and 

correspondence management, the motion evaluation and the affine transformation. 

Further modifications are introduced as necessary to simplify the architectures. 

5.1 Overview 

The overall block diagram of the system architecture is shown in Fig 13. The 

"Stream Line Buffers" consists of eight line buffers to support buffering of nine video 

lines streamed in from "Stream Vin". This component creates the internal parallel bus for 

concurrent processing of other core engines. The data on the parallel bus are 

simultaneously fed into the blocks of "Single-layer Feature Selection", "Partial NCC" 

and "Video Enh" as well as the storage blocks. While these blocks operate in parallel 

paths, their coordinate system is just slightly off each other due to the difference in 

pipeline latencies. The "Frame Coord. States" block serves to generate the coordinate 

states suitable to other blocks. It is basically composed of counters and some registered 

adders to accommodate the offsets. The "Video Enh" engine basically enhances the RGB 

components of incoming stream and sends the result into one of the two pipelined storage 

PvAMs for full video frame buffering through the "Frame Switch" block. The switch 
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block consists of multiplexers to alternate the write/read paths between the frames. The 

core engine for feature selection evaluates texturally optimal features by corner-ness 

criteria and saves the feature into its storage space. At the same time, the partial normal 

correlation is being computed. Under normal scan mode, the "Partial NCC" block only 

evaluates on primary sub-features. It gives higher priority only if the coordinate of 

secondary sub-features coming into the testing range. Similar the "Potential Feature 

Storage", the partial NCC storage takes snapshots of the sub-features with each pass of 

better correlation score. Once the entire feature set has been evaluated, the "Motion 

Evaluation" block takes over the list of feature coordinates and begins the process of 

inlier estimation in a stack fashion which mimics the triangular order of search. With the 

obtained global motion parameters, the "Affine Transform" block generates the memory 

address of stabilized video sequence and grabs the data for display. 
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Figure 13: Block diagram of the system architecture. 
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5.2 Logarithmic Domain Computation 

This section covers the design of logarithmic modules. It mainly illustrates the 

realization of approximation modules and the placement of error correcting coefficients 

on a functional level; however, more efficient circuitry at the transistor level is currently 

not available. 

5.2.1 Architecture of Log2 Module 

The log2 architecture consists mainly of the iV-bit standard priority encoder and a 

modified barrel shifter (MBS). The general architectural design for log2 is shown in Fig 

14. The priority encoder provides the index output based on the logic ' 1' of the highest 

bit in the input value. As indicated in Fig 14a where N equals 16, the input of priority 

encoder is capable of encoding any 16-bit real number. If the input value is strictly a 

positive integer, the index output maps directly to the integer portion of log2 scale, binary 

0000 to 1111 in this example. The infinity is bounded to index 0 as it is the logical 

function of priority encoder, and there is no need of defining log2(0) = -oo for our 

application. If the input value has both integer and fractional parts, the MSB of the index 

on the output of priority encoder is inverted to determine the actual integer part of log2 

scale. For example, the index value is now mapped to [7, -8] instead of [15, 0] integer 

input value. Index 0 now corresponds to -8 in 2's complement. For the same reason, 

log(0) = -oo is bounded to -8. 
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Figure 14: (a) Architecture of log2, (b) Mapping of multiplexers in MBS. 

The fractional bits are extracted with a modified barrel shifter. It is composed of 

N-l N-to-l multiplexers at the most where JVis the number of bits to be shifted according 

to the given index. The logical functional view for mapping the set of multiplexers is that 

given the index, it always shifts the bit stream at the index position to be the first bit at its 

output. In standard barrel shifter, the output can be linearly or circularly shifted by n 

positions from index 0 or N-l; however, the modified barrel shifters in both log2 and 

inverse-log2 exhibit the reverse mapping. The mapping of N-l multiplexers is indicated 

in Fig 14b. The index value along the vertical axis represents the index that specifies n 

shifts. It is directly connected to the select lines of multiplexers. So for the binary 

combination of n shifts, the corresponding input n is enabled. The outputs of 

multiplexers are one-to-one mapping to the N-l bit output bus. The index on the 

horizontal axis represents the bit value of the input at the corresponding bit location. The 

values within the horizontal and vertical grid specify the multiplexer numbers where the 
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corresponding bit values of the input are mapped to. For example, with the index value 

of three, bit values at locations 0 to JV-1 of the input are mapped to the third set of inputs 

of the multiplexer numbered N-A to 0. The third set of inputs (marked as '0' in the grid) 

of the multiplexers outside the mapping bit range of the input is padded with zeros for 

simplicity. The net number of inputs of the multiplexers can be reduced by half when the 

architecture of MBS is optimized, eliminating the zero-padded inputs. The fraction on 

the output of MBS occupies 7V-log2(-/V) bits with the fixed point log2(JV) bits down from 

the MSB. Note that the whole fraction up to N-l bits can be preserved as needed. 

The maximum propagation delay of the log2 architecture is computed based on 

the critical path of the combinational network in priority encoder and modified barrel 

shifter where the modified barrel shifter depends on the index from priority encoder to 

perform n shifts. Note that the arrangement of multiplexers is completely in parallel such 

that the overall latency comprises a single multiplexer. The depth of propagation delay is 

significantly less compared to non-pipelined conventional multipliers. It implies the 

architecture can provide very high speed operations. 

5.2.2 Architecture of iLog2 Module 

Structural mapping of inverse-log2 is the reverse of log2, as illustrated in Fig 15b. 

The inverse-log2 architecture is simpler than log2 architecture since it is not necessary to 

have the decoder to undo the priority encoding where the integer serves as n shifts to the 

reverse of the modified barrel shifter (RMBS). The inverter is not needed for the inverse-

log2 architecture shown in Fig 15a if the inputs are unsigned positive numbers. Note that 
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negative values of log2 scale indicate the inverse-log2 result in linear scale should be a 

fraction. 
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Figure 15: (a) Architecture of inverse-log2, (b) Mapping of multiplexers in RMBS. 

For applications where such small numbers are insignificant, the hardware resource can 

be reduced by half for the conversion of signed inverse-log2 scale to linear scale. Another 

important point is the fraction bits fed to the reverse of the modified barrel shifter should 

be padded with logic ' 1 ' at the MSB such that the magnitude of index can be restored in 

binary. It is the equivalence to performing the OR operation between the decoded bit and 

the unpadded fraction bits if the decoder was included in the architecture to reverse the 

operation of log2 architecture. The operating frequency of inverse-log2 architecture is 

estimated to be twice that of the log2 architecture as the propagation delay of the critical 

path is reduced to half. 
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5.2.3 Error Correction 

The error correction factor has the form of (3.12) and can readily be combined 

with the fraction bits of (3.13): 

{log2NXna=k:s^sb.v..KU---Ls+0....0.000EC^EC_5EC_ (5.2.1) 

Likewise the inverse-log2 is just the reverse of this process. The simple correction circuit 

that improves the precision is shown in Fig 16. It only requires a total of 16 logic gates to 

generate the correction factor and two bits full adder (FA) and four bits half adders for 

addition of (5.2.1). The placement of correction circuitry is shown in Fig 17 with the 

logarithmic modules fully optimized. A few more pipeline stage is introduced to each 

module as a result of incorporating the EC factor. Although not shown in Fig 17, we 

managed to eliminate the padding shown in Figs 14 and 15. The number of mux/demux 

necessary for mapping is reduced to eight sets. The advantage of these modules will 

become clear once we apply it in the following sections. 

\ 3 \ 2 } \ f 0 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-

i 4 4 i 4 4 1 1 1 1 1 4 
2's complement or non-negative log2(A/), 4/8 fixed-point dec 

Figure 16: Error Correction Circuitry. 
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Figure 17: Fully optimized architectures of Log2 and iLog2 with error correction factor. 

5.3 Video Enhancement Module 

One of the main tasks in the stabilization system is the video enhancement which 

compensates the physical limitation of image sensing devices. This section discuses the 

design of various components which contribute to a tightly coupled system architecture 

capable of sustaining a very high throughput rate. 

5.3.1 Overview of Computational Sequence 

A brief overview of the enhancement system with full color space transformations 

is shown in Fig 18a along with its interface signals which are connected to the supporting 

circuitry (the 'Synch' block) synchronous to an off-shell video input chip. The input 

source can be from a video decoder, assuming progressive scan mode for which odd and 

even video fields are not interlaced, or from VGA source digitized by analog-to-digital 

converters (ADCs). The output is achieved likewise with video encoder or digital-to-
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analog converters (DACs), one for each color component. The core architecture features 

RGB streaming input with the options of specifying the image width on 'Imsize' bus, and 

reloading of the kernel coefficients through 'KernBus' for the convolution operation. The 

output buses include the enhanced RGB components. The computational sequence takes 

place as follows. The input pixels are buffered just enough to create an internal parallel 

data bus (PDB) to maximize the fine grained parallelism for massive parallel processing. 

This bus is also common to other core engines to be discussed in later sections. RGB to 

HSV color space transformation is calculated and followed with enhancement of V 

component. Finally, HSV to RGB conversion is performed with enhanced V before being 

sent to video output circuitry for testing and storing in the frame buffer for video 

stabilization. While the video I/Os are fixed by off-shell components, the complexity of 

the enhancement core can be simplified as discussed in section 4.1. The V component can 

be directly extracted for enhancement and normalizing original RGB components as 

shown in Fig 18b. The final output is computed by simply merging the enhanced V and 

normalized RGB. Hence one division and multiplication approximates the full two-way 

color transformation in the computational sequence. 
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(a): Computational sequence of video enhancement system with full color space 
transformations. 
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(b): Simplified core computing sequence. 

Figure 18: Block diagram illustrates the overall sequence of computation alone with 
simplification. 

5.3.2 Tightly Coupled System Architecture 

The tightly coupled system architecture is illustrated in Fig 19. It mainly consists 

of three units, the data buffer unit (DBU), the homomorphic filter unit (HFU), and the fast 

HSV to RGB conversion (HRC) arithmetic for which H and S components are never 

calculated. The integration of these units contributes to consistent and highly parallel-

pipelined design to maximize hardware utilization and deliver very high peak performance 

which might be degraded in a loosely coupled or unevenly pipelined system. The design 

of these units is discussed in greater detail, keeping in mind the computational sequence, 

in the following sub-sections along with notations introduced as they appear. 
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Figure 19: System architecture illustrates the coupling of three main units to achieve very 
high performance with simplicity in the design. 



73 

5.3.3 Data Buffer Unit 

The DBU is implemented with the dual port RAMs (DPRAMs) as shown in Fig 

20. One set of DPRAMs is utilized to form line buffers (LBs) and store just enough lines 

of image in the LBs to create massive internal parallelism for concurrent processing. The 

pixels are fetched into the DBU in raster-scan fashion which requires unity bandwidth for 

the input data. The DPRAM based implementation has the advantage of significantly 

simplifying the address generator compared to commonly known first-in-first-out (FIFO) 

based approach. The address generator with the DPRAMs based implementation makes 

scalability of DBU consistent and simple. It consists of two counters to automatically 

keep track of the memory locations to insert and read the data to internal PDB for 

extraction of V-component. Data bus A (DBA) of (£-1) xPRGB bits wide, which is 

formed with just enough number of DPRAMs in parallel, is used to insert pixel values 

through write-back paths to the memory location designated by address bus A (ABA). For 

eight-bit pixel resolution, PRGB is 24 bits. The data bus B (DBB) is used to read the pixel 
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Figure 20: Detail architecture of the DBU shown in Fig 19. The data bus of (K-l) xPRGB 

bits wide is grouped into a number of 24-bit paths to form effective LBs for 8-bit pixel 
resolution. 
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values onto internal PDB and write to the write-back paths. Only one address generator is 

necessary in DBU. 

5.3.4 Extraction of V-component 

The V-component is extracted by a max filter. The concept was simplified from 

the architecture for separable filters suitable 2D uniform filters [19]. For ID max filter, 

which is what we need in this design, a pipelined adder tree (PAT) style can be utilized. A 

generalized ID max filter architecture for N nodes is shown in Fig 21. The design utilizes 

the signs from subtractions in the PAT structure to successively filter and merge until a 

maximum value is found at the end of last pipeline stage. An array of K 3-to-l max filters 

is necessary as illustrated in MAX(RGB) Array block of Fig 19. This architecture works 

for min finder as well by swapping the inputs fed to 2-to-l multiplexers. 

N input 
data nodes 

Register 

s Max value 
output 

Figure 21: Elementary architecture of the max filter is used to extract the V-component. 
K elements of 3-to-l max filters are needed in the MAX(RGB) Array as shown in Fig 19. 

5.3.5 Architecture of Homomorphic Filter 

The HFU coupled with an array of the log2 scaled version of extracted V-

component is illustrated in Fig. 19. The quadrant symmetry property of the 2D 

convolution operation indicated by (4.1.4a) and (4.1.4b) allows the computation to 
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concentrate on one quarter of the kernel through folding. The vertical folding of data is 

accomplished by linearly folding the data from the last stage of internal PDB (the log2 

scaled version of V component array) with adders. This halves the processing bandwidth. 

To normalize a value v (log2(v/2N) = hg2(v)-N), which is negative, given the fact that 

image pixels are positive and log2 of negative number is undefined, the absolute value can 

be logically approximated by taking the inverted output (Q~N-log2(v) = hg2(v)) of the 

registered result from vertical folding. This procedure inherently utilizes the V-fold 

pipeline stage rather than introducing an additional stage and resource to compute the 

absolute value of the normalized v. To reduce the processing bandwidth by another half, 

the horizontal folding defined by (4.1.4a) and (4.1.4b) is translated to (5.3.1a) and (5.3.1b) 

and performed with respect to even and odd dimension kernels, taking account of the 

inherent delay in the systolic architecture. The H-fold denotes the results from horizontal 

folding, and HQ is a set of horizontal shift registers for vertically folded data. The 

registered results of the H-fold stage are sent to arrays of processing elements (PEs) for 

successive filtering. The partial results from the PE arrays (PEAs) are combined together 

by a pipelined adder tree (PAT). The overall output of the homomorphic filter is kept in 

the log2 scale for the fast color space conversion in the HRC architecture as shown in Fig 

19. 

« f w n JHQ[0] + HQ[2£ + 1], f o r o d d « * 0 
H-fold(£) = < (5.3.1a) v ' [HQ[0], for odd £•,£=() 

H-fold (£) = HQ[0] + HQ[2£], foreven£,V£ (5.3.1b) 



76 

The design of the PE in the homomorphic filter utilizes the log-domain 

computation to eliminate the need of hardware multipliers. The data from the H-fold 

register is pre-normalized without extra logics by shifting the bus. It is then converted to 

log2 scale as shown in Fig 22 and added with log2 scaled kernel coefficients (LKC) in 

LKC register set which is initialized through chained bus with 'LKCin' and 'LKCout' 

signals. The result from last stage is converted back to linear scale with range check (RC). 

If the overflow or underflow occurs given the desire range, the holding register of this 

pipeline stage is set or clear, respectively. Setting and clearing contribute the max and min 

values representable to iV-bit register. The output of this stage is de-normalized, likewise 

by bus shifting, before it is successively accumulated along the accumulation line. 

• From H-fold Reg. 
<fC Pipelined PE 

Figure 22: Architecture of the PE in the homomorphic filter. 

5.3.6 Fast HSV to RGB Color Space Conversion 

The HRC unit inverse transforms the enhanced image in HSV color space back to 

RGB representation without computing the H and S components. As illustrated in Fig 19, 

the center-tapped RGB components from DBU pass through synchronization register set 

to compensate the latencies associated with HFU. The synchronized RGB components 
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are converted to log2 scale. Furthermore, the V-component at this node is also determined 

with the architecture shown in Fig 21. The Venhi output is first de-normalized by adding 

constant 8 for 8-bit pixel resolution in log-domain which is equivalent to multiplication 

of de-normalizing factor D = 28. The division in (4.1.11) is calculated by subtraction in 

log-domain as illustrated in Fig 19. The final output of the enhanced RGB components is 

computed by taking the inverse-log2 of the sum of the resultant subtraction and Venhi- This 

completes the discussion on the design of image enhancement system. 

5.4 Single Layer Feature Selection 

The design of architecture for computing the corner-ness response is covered in 

this section. Furthermore, the memory layout and the conditions which trigger the events 

of capturing and flushing of potential features are also described with respect to the score 

of the texture. 

5.4.1 Overview of Feature Selection & Storage 

Feature selection involves evaluation of the score from its texture. The block 

diagram of this subsystem is shown in Fig 23. It basically has two main components: 

calculation of feature score and the storage memory. Given the new score, R, the 

coordinate and the feature in the memory is updated if a better score is observed, thereof, 

overwriting any preexisting sub-optimal potential features. The most important part of the 

design for this subsystem is the calculation of texture score. 
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Figure 23: Block diagram of feature selection and storage subsystem. 

5.4.2 Components of Auto-correlation Matrix 

The task to obtaining the texture score is to compute the auto-correlation matrix, 

M, of (4.2.16) on the first step. Only then can the response, R, be calculated from (4.2.17). 

The detail diagram for the design of the architecture is shown in Fig 24. A 3x3 kernel is 

utilized for the calculation of the derivatives, Dx and Dy, from the grayscale image. The 

kernel mask equivalent to differentiation of discrete samples has the coefficients of 

Dx = 

-1 0 1 

-2 0 2 

-1 0 1 

Dy = DxT. (5.4.1) 

Since all coefficients are exactly power of two, no real multiplication takes place. Due to 

2D summation of a 3x3 kernel, we must utilize three separate derivatives to concurrently 

calculate the A, B, and C components of M matrix. For the Dx shown in Fig 24, vertical 

folding is applied to merge and reduce computing nodes into one by summing the 

adjacent lines on LBs and the left shifted (multiplied by two) version of the LB in the 

middle. This result is then subtracted with the delayed/earlier version of the partial results. 

By the same token of folding within the architecture as of Fig 19, only three adds/subtract 
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are needed. Likewise the Dyt to Dy3 are calculated with minor difference. Instead of 

folding three nodes vertically, the folding is done horizontally. Although not exactly as 

depicted in Fig 24, the adder node with left shifted data is actually added from the last 

delay, Z, component due to pipeline delay of the three-node adder. The fact that we 

utilize logarithmic modules forces us to extract the signs of Dxis and Dyi.3. This is not 

necessarily undesirable as one must compute the squares of Dx and Dy. Once the log2 

scale values are obtained the buses are wired to the left for effect of squaring the numbers 

for A and B components of M matrix. The summation of ilog2 values does the job of 

combining the results. The C component is calculated slightly different in that the signs 

of Dx XORing Dy are recombined to form signed numbers for a 3x3 summation. Since 

the real computing bandwidth mandatory is the moving video lines, a full 2D summation 

is a bit of exaggeration for what the bandwidth really demands. Although the dimension 

is rather small in this case for the requirement of hardware resource to be negligible, we 

should see in a moment that 2D integral summation is the most efficient implementation 

in such a scenario. With the folding style of Fig 19 alone, it can easily be accomplished 

by folding vertically and then horizontally through its own delay lines as shown on the 

right side of Fig 24. For the same reason of pipeline timing effect, addition of the middle 

node of horizontal delay registers is really the value of the rightmost register for 

computing the final results. As far as programming is concerned, the compiler will 

generally simplify it to eliminate unnecessary registers. 
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Figure 24: Architecture for calculation of A, B, and C components of M matrix. 

5.4.3 Logarithmic Corner-ness Response 

Given the A, B, and C components from the previous section, the computation of 

corner-ness response seems effortless. To obtain the components of AxB, C , and 

k(A+B), we simply calculate the log2 version and manipulate the buses with adders and 

subtracters as needed. The results converted back to linear scale may then be merged to 

form the final score, as illustrated in Fig 25. Due to excessive word length of the scalar 

score, the response, R, is converted back to log2 scale, RL, which occupies only 13 bits 

for storage memory. A 13-bit scalar that represents the magnitude of 32-bit number is 

R=A*B-C2- k(A+B)2 

Figure 25: Architecture for calculation of the response in log2 scale to reduce word 
length. 
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efficient enough for our purpose. The storage layout and the condition for capturing and 

flushing the potential features are discussed in next section. 

5.4.4 Storage of Potential Features 

The timing which initiates the copy state to capture or flush the potential features 

depends on the coordinate XY values of its subsystem. The copy state for the capturing of 

potential features is triggered by the textural score which improves the preexisting 

features. The condition stated in Fig 26 is as follows. The existing score output from 

memory 'Scro' is subtracted from RL. The sign bit indicates one instance to initiate the 

copy state, given the potential feature module is currently active, 'pfActive'. This copy 

state captures the primary sub-feature of the potential feature as shown on the top circuit 

of Fig 26. Due to the pipeline latency of dual port RAM for our primary storage, values 

written to the BRAM are not immediately available, and the delayed version of this new 

score, RL(1) is also used to trigger the copy state which first terminates the copy state 

machine previously executed. The second condition of initiating copy state becomes 

active when the calculated XY coordinate is exactly at the center of secondary sub-

features of the potential features. The 'SC1..2XY' constants are used to compensate the 

pipeline delay of the subsystem. Due to the layout of storage ram, the copy state is really 

just the assertion of the write signal to the BRAMs for a certain number of circles 

determined by the counter. Flushing of the potential features from the BRAM is 

accomplished in a similar manner. 
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Ctrl Reset 

pfActive 

pfCSWRA 
pfCS<= (pfi XY, RL(2)) 
pfCSAdr[1..0]<=pfSubf 

pfLoadAdrs 
pfLoadCopy Length 

Copy 
Loop <r 

pfRamWR 
pfCapture<=Corr2Tap 
pfAdrCnt<=pfAdrCnt+1 
pfLength<=pfLength-1 

Figure 26: Conditions of initiating copy state. 

The storage layout of feature selection subsystem mainly comprises the BRAMs 

in single port mode and the XY coordinate with score in a separate BRAM operated in 

dual port mode to share storage of two components related to energy calculations. As 

illustrated in Fig 27, a sufficient number of BRAMs must be stacked together to form the 

required number of bits for each column within the sub-feature. Since we already know 

the bandwidth of moving video lines, one does not need to take the snapshot of the 

feature in a single clock cycle. This essentially implies the minimum use of FPGA 

resource solely allocated for the routing of the bus. The 'pf capture' input bus comes 

from part of the NCC architecture for which a single column can be captured into the pf 

storage at proper timing. Likewise, 'pf flush' pumps out the pf features column by 

column for the NCC storage circuit to capture into its own storage. To the left of Fig 27, 

the XY coordinates and the scores are constantly updated on BankO of the BRAM. The 
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Bankl is dedicated to capturing and flushing of energy components of the NCC 

calculation. Due to slight pipeline differences the 'Sync Regs' are introduced with more 

delays to synchronize inputs/outputs with late-read/write policy. As far as addressing the 

BRAMs is concerned, five bits are dedicated to store maximum of 32 columns per sub-

feature, another five bits are assigned directly as the index of the complete feature, and 

finally two bits are used to select sub-feature index. In this fashion no real address to 

feature index translation is required as in fully utilized memory locations. It is also the 

reason to configure BRAMs with 12 bit address lines. The cost of such convenience 

comes with a quarter waste of the total storage space under current design with total of 

three sub-features. In the next section, it should become clear on how the process of 

capture and flush takes place. 

! Port B 
!Bank 1 

pf2corr2 j 

Coor2ldx Cntr 
i 

JJ Rst/Cnt 

a MUX 
A-adr 

B*-adr' 

pfSfr 

pfEt^_ 
Sync Regs 

Port A 
Bank 0 j ldx2Adrs 

Single Port j 
BRAM 

j — $ AdrsCntr ^— Load/Cnt 

Coord 
Score 
BRAM 

*| (P«S) 
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H 4Kx4BRAM1 

Scri/RL(1) 

Scro v 
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pf flush 
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Figure 27: Storage layout of feature selection subsystem. 

5.5 Feature Measure & Tracking with Improved NCC Architecture 

The design of feature measure and tracking subsystem addresses the issues of 

efficient realization of NCC architecture which include the partial calculation of NCC 
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score, the 2D summation and correlation, and the essential layout of the memory to meet 

the bandwidth requirement for feature storage and retrieval. 

5.5.1 Overview of Shared NCC Architecture 

The overview of a shared NCC architecture is illustrated in Fig 28. Given the 

input column array, the NCC score can be evaluated by pumping the data through 'Partial 

NCC block. This block must be tightly coupled with the feature storage shown on the 

right side of the figure. The close coupling is absolutely necessary due to the extreme 

processing bandwidth and the minimum waste cycles within the 'Partial NCC block. 

Similar to the feature selection subsystem, the NCC has another copy state to capture or 

release the data to NCC storage memory. The ownership of 'Partial NCC block depends 

on the score of current results. The 'Corresp. Maint.' regulates the dataflow and updating 

between the storage and 'Partial NCC blocks. 

fi array 
Partial NCC 

Eti denominator 
Sum(f)/ in numerator 

. ti array into Corr2 

Potential ^ 
Feature 
Storage 

Ctrl 

Score. Corresp 
Maint 

Score 
£—| Coord 

Storage 

fi & comps 
writeback. 

Featl 

Feat2 

Figure 28: Block diagram of NCC and storage subsystems. 
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5.5.2 Partial NCC as Parallel Filters 

The earlier implementation of NCC architecture we presented in [68] which 

computes (4.2.9) directly has a very high performance yet with extremely inefficient 

utilization of hardware resource. This inferior design which allocates an excessive 

amount of resource also has no flexibility on potential scalability regarding the dimension 

of the feature template. Although the demand on resource may be cut back with 

performance trade-off as in [69], the response time with respect to dynamic mobility of 

the templates is still unacceptable. The reason is trivial while the change of templates 

executes, the correlation scores being calculated are virtually meaningless as they are 

direct resultants of blending the templates. This creates large blind spots if one must 

simultaneously scan several features. While the simplification of section 4.2.5.2 may 

significantly cut back the number of necessary calculations, hardware implementation of 

partial NCC may still be achievable to sustain unity search bandwidth for the measure 

over several features simultaneously. To get around with the problem without 

compromising its performance for the gain of resource, we adhere to the assumption of 

the observation of sub-optimal scores around the search targets. The blind spot must be 

minimal by avoiding a timeslot multiplexed resource-performance trade-off. 

The earlier NCC architecture was implemented as cascaded filters with 

component evaluation of (4.2.9) followed by average filters. The serial nature of 

calculation sequence imposes data dependency which requires a set buffer space to hold 

the partial results. It is, therefore, wise to realize the design as parallel filters with the 

following simplification: 
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The correlation, C, may now be computed in parallel with components of energy 

normalization. The sum off, Sf, and the square of the sum/ Sj can be treated as a single 

component while the sum of squared f, S 2 may also be calculated in parallel. Equation 

(5.5.1) also makes the design easier in that all partial results are non-negative. 

5.5.2.1 Architecture of Normalizing Factors 

The architecture of feature measure is illustrated in Fig 29 with the detailed 

portion dedicated for energy normalization of the correlation results. When the data of 

moving video lines pump through entry nodes, fUiV, from common PDB (internal parallel 

data bus discussed in section 5.3) of the system, the square of/ is calculated with bus 
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shift of readily available log2 scale version of 'f,fi. At the output node, the column array of 

f is merged to compute the 2D summation by integral sum. Concurrently, the sum of/is 

been computed and then also converted to logarithmic domain for division with UV 

factor which is the constant of UxV sub-feature dimension. Since the pipeline latency 

of S2
f I UV stage is one more than the S 2 stage, a register is included to synchronize the 

partial results for subtraction operation to once again merge the nodes and obtain a more 

complete partial result. The output of log2 scale Ef is then added with Et to form the 

denominator portion of (4.2.9). While this part of the architecture performs the 

calculation of denominator, the factor StSfl UV is also being computed in a parallel data 

path. The earlier node which has the result of Sf in log2 scale is also being merged 

(through synchronizing registers) with the addition (linear scale multiplication) of St 

component and subtraction (linear scale division) of UV constant. Before converting to 

log2 scale for the final energy normalization sequence, the result of StS// UV is combined 

with the output from 'Corr2' correlation block which has the most expensive computing 

power of the entire NCC architecture. The nodes in red color labels are used to capture or 

flush the current state of the sub-features between NCC subsystem and the pf subsystem. 

The blue nodes have the same function but are interfaced with local storage for cycling 

between current and previous video frames. The final scores of NCC output are tagged 

with a specific feature index for further processing. Note the calculation of energy 

components is quite hardware resource friendly. The real burden of the design is in the 

Corr2 block along with its storage. 
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Figure 29: Architecture of feature measure by NCC. 

5.5.2.2 2D Integral Summation 

One of the most efficient components includes the design of 2D integral 

summation. Although integral sum is widely used in computer vision to reduce the 

complexity of certain calculations on the desktop computer, the same functionality 

conventionally implemented in hardware is really accomplished by either fully pipelined 

adder tree (PAT) structure or modularized processing elements (PEs). The average cost is 

one adder per node/PE which requires UxV nodes given such dimension of the sub-

features. With 2D integral sum, the cost exclusively depends on the number of moving 

rows or video lines. For the example of nine elements in a column array, as illustrated in 

Fig 30, the PAT structure is needed to reduce processing power to a single node. This 

partial result then flows through the 27 registers to be applied for summation under of a 



89 

9 x 27 window. While the PAT result is been registered through a series of registers, it is 

also sent for the accumulation of preexisting values. On the other hand, the output of 27 

tap registers at node B is applied to deccumulate the accumulated result from node A in 

Fig 30. The final output of a 9 x 27 summation can simply be obtained from partial results 

on registers A and B. Nodes A and B are essentially a single node which performs an 

add-and-subtract operation but are decomposed to reduce the delay path between the 

registers. The 2D summation in this example only requires ten adders and one subtractor 

as opposed to 242 adders of a full scale architecture. 

(A 
Q. 

2 
l -

Integral sum 27 taps 

*©Vr*§ 
d 

Sum2D 

£H+ 
Figure 30: Architecture of 2D integral summation. 

5.5.2.3 2D Correlation 

While the simplicity of integral sum is fascinating, one would wish to copy such 

idea and paste it into the design of the summation in Corr2 block. The true processing 

power of the Corr2, however, is not one column array per clock. Rather, it requires 27 

column arrays per cycle in our example. It is, therefore, inevitable to implement a full 

scale PAT to merge all partial results and produce the final output on cycle basis. The 

architecture of Corr2 is shown in Fig 31 along with the PE. Each PE basically calculates 

the multiplication of/and t before the PAT structure. Although log-domain computation 

simplifies the burden to a certain extent, a 9 x 27 Corr2 architecture still demands 243 8-
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bit adders, 243 16-bit iLog2 modules and 242 16-bit pipeline stage expanded adders. The 

Corr2 module consumes a majority of the resource in our video stabilization system; 

however, it should also be noted that a 9 x 27 dimension sub-feature in our design 

represents virtually a limited number of full features. When the sub-features are 

combined, the processing power is virtually a multiple of base dimensions. For the 

example of a primary sub-feature accompanied by two (or more) secondary sub-features, 

the virtual computational complexity becomes 27 x 27 at the expanse of the base 

dimension. That is something infeasible in the earlier design regardless of resource 

optimization. 
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Figure 31: Architecture of Corr2 module. 

5.5.3 Storage Layout 

The storage layout of the NCC module demands the highest bandwidth for which 

the snapshots of the new sub-features may be captured on cycle basis. To cope with such 

bandwidth, the queues are localized to distribute the storage of sub-features with respect 

to the kernel nodes of the NCC architecture. As shown in Fig 32, the dual port BRAMs 

are layout in a way that the input and output nodes of PortA and PortB are completed 
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attached to NCC block with one-to-one connectivity. This configuration makes the 

capturing of sub-features possible within a single clock cycle. Due to the available layout 

of the embedded BRAM itself on the FPGA, the nine-bit address lines are reduced to 

eight bits in dual port setting to minimize memory waste and cut back the required 

number of BRAMs by half. Similar to the pf storage in section 5.4.4, total of eight-bit 

address lines are needed: five-bit for feature index, two bits for sub-features, and one bit 

for toggling between previous and current feature sets. Given such a memory layout, 

there is no real index to address translator as shown in the address field of Fig 32. 

•Datapath: potential , 
freature storage * I Storage: feat 32 sets 

27x8bits in 3 BRAMs Dual Port 

~1~ 
Datapath: 
line buffers 

_L 
27x8bits in 3 BRAMs Dual Port 

1̂  t_| 
1 MvO« Idx2adrs 

Translator 

Figure 32: Storage layout of the NCC architecture. 

5.6 Correspondence Management 

The 'Correspondence Maintenance' subsystem of Fig 13 serves to manage the 

results between the NCC module and coordinate of the features as illustrated in Fig 33. 

The BRAM memory block stores the XY coordinate and the score of each feature similar 

to the layout of pf storage block. When running into the leftmost coordinate of each 

moving video line, the Y coordinate of previous feature, fxp, is read out to check if the 
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search range should be active in the 'Range Check' block. Given the 'A-adres' (5-bit 

feature index) and the in-range flag, 'InRng', the XY coordinate is written to one of 8 

index register table, 'IdxRegArr' which serves as small cache for fast target scanning. 

The actual write to a particular register is enabled by the 'Rotate' signal which contains 

the one logic ' 1' bit with in the eight-bit serial ring. The purpose of such a cache is to 

eliminate waste cycles. Given 32 feature sets, one would be required to read these 

features in 32 clock cycles, regardless of its range. This mechanism very passively 

creates undesirable blind spots for computing the NCC scores. The cache solves the 

problem by retreating the searchable coordinates in advance to the actual feature measure, 

making it more scalable to larger set of features. The '#RngFlg' generated by each 

register in the table is calculated by the distance of range and the current X coordinate of 

the subsystem. This flag is used as a feature read signal, 'featRD', propagated to the 

'PNCC & Storage' block to activate the loading of sub-feature into kernel registers. Prior 

to reaching the PNCC subsystem, however, the address is used to retreat the score, 

'fcScr', on port B. The 'fcScr calculates whether the scan should be performed on 

primary or secondary sub-features based on the logic specified in Fig 33. If the fcScr is 

below 0.5 constant, the scan mode is designated for primary sub-feature (sfOO). On the 

other hand if the score of the primary target is sufficiently high, the secondary sub-

features are determined by both the XY ranges and assigned two-bit sub-feature address 

as sfOl or sflO. In this manner, the future expansion of additional sub-features can be 

readily incorporated into the design. When the feedback scores, 'Scr' become available 

with valid 'ScrTag' from the 'PNCC subsystem, the address portion is sent back to port 

A to retreat the 'fcScr' values for comparison with current results. If any score signals a 
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better match of primary sub-feature from the sign bit, 'sp', new XY coordinate is updated 

along with the 'Scr' and the 'sfxx' tag. For the passing score, 'ss', of secondary sub-

features, the original information remains with only the 'sfxx' tags updated to enable the 

search of the next sub-features. In the case of sub-optimal scores of the primary sub-

feature, a lock bit generated from 'IdxRegArr' becomes active when current XY 

coordinate comes into short range, inhibiting the scanning of other coordinates within the 

table. This concludes the basic design of correspondence management subsystem. 
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Figure 33: NCC correspondence management subsystem. 

5.7 Motion Evaluation Module 

Due to the order of search introduced in section 4.3.3, the evaluation of inlier 

motion boils down to the search of coherent angles between feature coordinates stored in 

the stack ram of Fig 33. The architecture of inlier estimation illustrated in Fig 34 
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calculates the angles of rotation. Given 'A-adrs Cntr' and 'B-adrs Cntr' of Fig 33, one 

can incrementally simulate the order of search by utilizing 'A-adrs Cntr' as the base node 

and 'B-adrs Cntr' as the search node. If the 'B-adrs Cntr' reaches the last feature 

coordinate for example, the 'A-adrs Cntr' would increment by one to initiate and move 

upward in the triangular order. With the data fetched from the dual port BRAM, the 

vectors V and Vo can be calculated by subtraction. The next pipeline stage extracts the 

sign bits since log2 modules are limited only to positive numbers. To compute the angle 

given in (4.3.3), the following components must be calculated: 

cos(0) = X ' X ° 2
+ W

 1/2 (5.7.1) 
(2 2 \ 1 / 2 / 2 2 \ 1 / 2 

The signed extracted vectors are first converted to log2 scale. The squares and the square 

roots in the denominator are calculated with bus shifts with proper logarithmic 

conversions. The numerator can be computed slightly different in that xxxQ is inverted at 

the output of iLog2 module, approximating the 2's complement format. This value is then 

either added or subtracted from yxyQ, depending on its own sign, syi XOR syo. The 

calculation of angle along is relatively simple. A more interesting part comes for the 

direction of rotation in which the complete evaluation is unnecessary. The direction of 

(4.3.3) can be simplified by separating out the sign bits as follows 

Sa x |x, x y01 - Sb x |_y, x x01 < 0: clockwise 
Sd=siSn(\xl+y0\L-\y]+x0\L) 

Sb(+):Sa<\x,xy0\-\yixx0\)<0, Sb(+):Sa®Sd , (5.7.2) 

S^-y.S.faxy^xxJpX}, Sb(-):~(Sa®Sd) 

S0=(SaASb ASd)v(SaASb ASd)v(Sa ASb ASd)v(Sa ASb ASd) 
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where the sa and Sb are the signs of XORing previously extracted signs of xl x y0 and 

yxxx0, the sa bit is another sign bit from subtraction of xlxy0-y1xx0 directly in log2 

scale and s0 is the direction of rotation. With log2 version of input components readily 

available, it only took two adders, one subtractor and five gates to determine the direction 

of rotation. In doing so we eliminated two iLog2 modules at the cost of two adders and 

five gates. At the output of (4.3.3) shown in Fig 34, the incoming angles and directions 

are compared against designated values for coherence with respect to the reference. If the 

boundary error is within expected range, the index tag is saved to the queue for which its 

size determines the vote for inlier motion. 

B-data 

V(x1,y1) x12+y1^ 

A-data 

Figure 34: Architecture of inlier motion evaluation subsystem. 

5.8 Affine Transformation 

With given inlier motion, the final step is to generate the coordinate address of the 

stabilized video. From the display perspective of the output video, the XY counters 

generate the orderly coordinates of the expected display. Another coordinate to memory 
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address translation is ignored in our design. The complete architecture is capable of 

rendering 1024x 1024 frame size, thus, eliminating the need for such address translation 

given the XY coordinates are both perfect 10-bit numbers. The CORDIC rotated XY 

coordinates, therefore, are directly applicable to the address lines of the frame buffers as 

illustrated in Fig 35. The multiplication of K gain factor is needed although we 

implemented it with adders to a limited number of non-zero coefficients in K. With 10-bit 

address space, the precision of our logarithmic modules is currently not accurate enough 

to replace multiplication in this particular case. With the computed coordinate related to 

current frame, the RGB components can now be retrieved from the buffer for display. 

This concludes the mapping of display coordinate. 

Affine Tran Adrs Gen 

Y Video In 
Adrs Gen 

XY 
Cntrs 

Ang 
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> 
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' Std 
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Rotation -

>nst * 

XY 
Adrs 

Trs 

Video Enh >r 
Data In 

RD/WR 
Ctrl Affine Tran 

Data Out 4> 

Figure 35: Affine transformation to map the display coordinates. 

5.9 Summary 

The design of various modules for video stabilization system was presented in this 

chapter along with appropriate discussion of further modifications to simplify the 

architectures. A thorough description and illustration of the logarithmic modules was 
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provided along with the error correction to demonstrate how these modules could be 

applied to reduce the complexity of the design in other subsystems. A tentative discussion 

of video enhancement subsystem was also presented in section 5.3 to reveal necessary 

steps for generating the scenes with more uniform lighting. The design of single layer 

feature selection was also proposed with a modification which stored the corner-ness 

response in logarithmic scale to compress the word length and reduce storage space. The 

idea of designing NCC architecture as parallel filters was also illustrated along with the 

efficient design of the subcomponents such as energy normalizing factors, 2D integral 

sum and correlation. The architecture for correspondence management was also 

presented which served to regulate the dataflow between the computing module and its 

storage device. The module designed to evaluate the inlier motion was also discussed in 

which its main function was to calculate the angles between the vectors and save the 

coordinates with consistent motion. And finally, the subsystem for affine transformation 

was presented for which its main function was to generate the display coordinate through 

standard CORDIC rotation. This concludes the design of different subsystems. The 

subjects of simulation and performance related characteristics are discussed in chapter 6. 
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CHAPTER 6 

RESULTS AND ANALYSIS 

The chapter covers basic timing of various events which happen within each 

video frame to illustrate how different subsystems are synchronized to perform the tasks. 

Simulation results and error analysis are also discussed in detail for logarithmic modules, 

the video enhancement and stabilization subsystems along with the performance variables 

and the resource allocation. The power consumption of various resources is also 

presented based on Xilinx's XPower Estimator [76]. 

6.1 Timing Overview 

Due to excessive duration of timing involved with the simulation, the sequence of 

events can be better illustrated in the following steps in the perspective of video frames as 

shown in Fig 36. The initial latency of the system is 4 video lines to fill up the LBs. 

When the XY frame coordinate becomes (0,0), the 2video enhancement subsystem starts 

kicking in to render the RGB components. Since the buffering on LBs is circular by 

design, the padding around the bothers contributes no useful information regarding the 

potential features and the feature measure . However, the idle time of the boundary on 

the left is not necessarily a waste4. During these cycles, the search coordinates are fetched 

into the search table , thereof, freeing up the port access. At the bottom of the searchable 

range, 26 video lines are used for a couple events. A short duration of this period is used 

for evaluating the inlier motion6. Because the pf subsystem was design to capture sub-

features column by column, most of the cycles are occupied to flush (pfFlush) the 
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potential features into the NCC storage7. Near the end of the frame, the Affine 

transformation is performed by generating the stabilized coordinate and fetching the RGB 

components located in that memory location8. When the XY coordinate reaches the very 

last pixel of the frame, the above event flags are reset for cycling the states in next frame9. 

At the same time the frame toggle bit is performed to swap the current and previous state 

of the frame buffers and related storages9. In this manner, the absolute minimum frame 

buffers are required while still achieving reasonable stability in the stabilized video 

sequence. 

1: Initial system latency 

1 
2: Video Enh 

K 

26 lines 

3: Inactive time for feature 
selection & measure 

4: Potential feature 
module activated 

\ 
5: NCC search 
coordinate cache filled 

6: motion evaluation 

7: pf Flush 8:Aff.Tran. 

<h 
3: standby 
range 

Active 
range 

9: Frame bit 
toggle 

Figure 36: Timing events within the video frame. 

6.2 Simulation And Error Analysis 

The results from simulation are discussed in this section along with the error 

analysis. The magnitude of error is measured based on the difference or the percentage 

deviated from the expected values of double precision. 
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6.2.1 Logarithmic Approximation 

The fact that we heavily rely on the logarithmic modules to reduce complexity 

deserves a closer examination of the errors from such approximation and error correction. 

The double precision log2, uncorrected and corrected log2 approximations are plotted in 

Fig 37a for eight-bit fixed point decimal (8 bits integer and 8 bits fraction). The 

Corrected Fixed 8-pt LSKJJ 

150 
input 

(a) 
Perc Err, Ave: 0.088567% 

300 

(b) 

Figure 37: Plot of double precision, uncorrected and corrected log2 calculations are 
shown in (a) with the percentage error in (b) for 8-bit fixed point decimals. 
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architecture with error correction produces log2 values very close to the double precision. 

The average percentage error over the entire range is 0.0886% (corresponds to average 

magnitude of difference error 0.0053) compared to 0.936% without correction as shown 

in Fig 37b. The measure of such error on a percentile basis is not very helpful although it 

may appear to increase the precision. A more meaningful illustration is to take only the 

difference error since the error cycle is periodic with constant peak around the mid-points 

of integer digits as illustrated in Fig 2 of chapter 3. 

The comparison of difference errors on 16-bit integers is shown in Fig 38 with 

five other implementations. Michell's difference error serves as the reference for measure 

of improvement. SanGregory improved Mitchell's by dividing the error curve into two 

regions and used straight lines for correction which reduce the magnitude of error to 0.02 

as oppose to 0.86. Abed's approach utilizes the same method for two, three, and six 

region corrections, however, minimizes the non-zero coefficients as the slope of the lines. 

Clearly, dividing the error curve into more linear regions has the trade-off of further 

complicating the correction mechanism. So there is a limit to the number of piecewise 

lines that bridges between simplicity and accuracy. Abed's six-region method seems 

more optimal with two adder arrays to reduce peak error to 0.013. On the other hand, 

both Combet's and Hall's achieve greater accuracy yet require complex circuits which 

defy the goal of approximation. The difference error of bit-level fitting is also shown in 

Fig 38. Our method generates a correction factor from 16 logic gates and reduces the 

error to 0.0177 with the majority in the range of -0.005 to 0.01. This mechanism is far 

more accurate than the two and three region methods and comparable to six region 
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approach as shown in the last plot of Fig 38. In summary, Table 2 shows the number of 

bits involved for deriving the correction factor and its complexity. The last two columns 

summarize the range of error and the average magnitude of error for 16-bit integers. 

Clearly the bit-level curve fitting has the average error between three and six linear 

regions. 
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Figure 38: Comparison of difference errors with 5 other designs. 

Abed's six-region method has superior average error at the cost of two adder arrays and a 

small number of logic gates for error correction. On the smaller scale for the actual usage 

of the logarithmic modules, his design has the advantage of providing more accurate 

results. For the implementations on larger scale such Corr2 architecture inside the NCC 
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or the filter of the video enhancement, even the slightest improvement multiplies to 

minimize the resource. Given Abed's method it would require additional 243 8-bit adders 

with the correction logics for a 9 x 27 Corr2 kernel. 

Table 2: Comparison of the error range and average magnitude with other designs. 

Methods 

Mitchell [48] 
SanGregory[52] 

Abed[53] 
Abed[53] 

Combet[51] 
Hall[54] 
Abed[53] 
Bit-level 

Rgns 

1 
2 
2 
3 
4 
4 
6 

N/A 

Correction 
factor 

none 
3 bits 
2 bits 
3 bits 

all bits 
all bits 
6 bits 
3 bits 

Corr. 
circuit 

none 
simple 
simple 
simple 

complex 
very complex 

simple 
simple 

Error bound 

0<Err< 0.0861 
-0.0280 < Err < 0.0293 
-0.0183 <Err< 0.0449 
-0.0208 < Err < 0.0293 
-0.0062 < Err < 0.0080 
-0.0082 < Err < 0.0044 
-0.0130 <Err< 0.0132 
-0.0102 <Err< 0.0177 

Ave. 
mag. 

of error 
0.0573 
0.0127 
0.0158 
0.0096 
0.0036 
0.0024 
0.0033 
0.0061 

While the comparison of error for iLog2 is not available in literature, it is a good 

practice to roughly sneak a peak over its range. Fig 39a illustrates the corrected iLog2 has 

similar accuracy with Fig 37a for 8-bit signed numbers (4-bit integer and 8-bit fraction in 

2's complement). It is more appropriate to grasp the magnitude of error in percentile for 

iLog2 as the difference error exponentiates with the number itself. As shown in Fig 39b, 

the peak magnitude is bounded to 1.56% with 0.437% average magnitude of error. 

Apparently, the average error escalates by roughly five times due to the exponentiation. It 

should be noted that we use the same coefficient from log2 correction. The range and the 

average magnitude of errors may be further reduced. 
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Figure 39: Plot of 8-bit fixed point (4-bit integer and 8-bit fraction in 2's complement) 
iLog2 (a) and its percentage error (b). 

6.2.2 Video Enhancement 

The images are sent to the architecture pixel by pixel in raster scan fashion which 

is common for video streaming in progressive scanning mode. After the transient state, as 

indicated in Fig 36, the output becomes available and is collected for error analysis. The 

overall output of the enhancement architecture is recorded to give a graphic view of the 
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enhanced image for quick evaluation of the visual quality. Typical test images are shown 

in Fig. 40 (1st row) where the shadow regions exist as the consequence of the saturation in 

bright regions. The outputs of the system produced by software and hardware simulations 

are illustrated on 2nd and 3rd rows, respectively. As one can see the majority of the details 

hidden in the dark regions are brought out while the natural color is preserved. The 

enhanced images produced by the hardware are slightly brighter than the ideal results. The 

difference is contributed by both logarithmic approximation and the limited bits 

representation in the architecture. Overall, the visual quality, in terms of brightness and 

contrast, is very satisfied with fewer shadow regions. 

The error introduced from replacing equations (4.1.5)-(4.1.8) by (4.1.9) is shown 

in 1st row of Fig. 41 scaled by 50 times. The simplification induces a negligible magnitude 

of error at extremely dark regions of the images. Typical histograms of the error between 

ideal and hardware outputs from Fig. 40 (2nd and 3rd rows) are illustrated in 2nd row. The 

average errors of the system are 2.97, 2.61, and 3.79 pixel intensities with respect to the 

test images. Simulation with a large set of images shows a majority of the errors in this 

system is below 10 with the average error around 3.5, While the hardware simulation 

shows very attractive results, the efficiency of hardware utilization and its performance is 

also very important. This subject along with its performance on a desktop computer will 

be discussed in section 6.3.2. It may become trivial that there is no need for such 

architecture for small video frames. 
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Figure 40: Images shown on 1st row are the test color images with non-uniform darkness. 
Results from software and hardware simulations are illustrated on 2nd and 3rd rows, 

respectively. 
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Figure 41: Error characteristics: The errors introduced for utilizing fast conversion factor 
are illustrated on the 1st row (50x). Error histograms are graphed on the 2nd row with 

average errors of 2.97,2.61, and 3.79 pixel intensities. 
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6.2.2.1 Fine-tuning Transfer Function 

While the design is very hardware efficient with decent performance as we should 

discuss in a moment, the biggest advantage, however, is not solely the impression of its 

colorful and uniform output of the images. Rather, it is the ability to fine-tune the filter 

coefficients suitable for different transfer functions so long as the functions have quadrant 

a symmetry property. More examples of output images are illustrated in Fig 42 with fine-

tune on the luminance component alone, causing the scenes to be brighter than those in 

Fig 40. 
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Figure 42: Examples showing the flexibility of fine-tuning the transfer function for 
visually more clear view of the scenes. 

Contrast 

100 200 300 400 500 600 700 

Figure 43: The kernel registers of the architecture can also be fine-tuned to enhance the 
contrast (sharpness) component of the image as illustrated. 

6.2.3 Video Stabilization 

Due to a tremendous amount of time involved with the simulation and debugging, 

only three initial frames were simulated in the process of obtaining the final results. 
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These frames are shown in Fig 44. Illustrated on the left column are the expected outputs 

from the algorithm. The results from hardware simulation are shown in the second 

column. The dark squares in the figure indicate the outcome from feature tracking with 

update from selection of potential features. The exact coordinates of potential features, 

however, is different from expectation. Due to the rounding from overflows of the 

architecture shown in Fig 24 and 25, more optimal choices were trimmed to the limited 

range. For this reason more features were selected and included for further processing. A 

majority of the stable features being measure, however, agreed with the results produced 

on C++ version of the algorithm. Notice the slight difference shown (last row of Fig 44) 

in the stabilized sequence from hardware simulation. The black strip was off by a few 

pixels compared to the expected image on the left column. The error is common since the 

coordinate of memory address generated by affine transformation was truncated to 

integers, resembling the effect of standard nearest neighbor interpolation. Although this 

distortion is not visually trivial from the test frames, it is expected to increase the severity 

directly proportional to the angle of rotation from reference frame. A better method is to 

apply bilinear or bicubic interpolation to minimize the distortion. The average errors of a 

potential feature selection and the feature measure are shown in Table 3. The measure of 

error was performed with respect to the resulting coordinates from the simulation. For an 

example of the feature selection, a direct comparison from the coordinate chosen by the 

algorithm does not help due to the limitation within the architecture itself. These sources 

of error can be tolerable as the outcome of the stabilized video mainly depends on the 

video enhancement and the precision of affine transform. 
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Figure 44: A short sequence of stabilized frames from the algorithm (1st column) and the 
hardware simulation (2nd column). 

Table 3: Average errors of feature selection and measure subsystems. 

Frame Error 
#1 
#2 
#3 

Feature Selection 
-0.4% 
-0.5% 
-0.6% 

Feature Measure 
— 

3.1% 
1.1% 
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Ideally, a more concise magnitude of error should be compared between the 

improved NCC architecture and the design proposed in [68]. Unfortunately there was a 

design error in the earlier publication. The block diagram of the earlier design shown in 

Fig 45a contains an error in which the input 8-bit data, / was subtracted from average 

/ b u t excessively delayed through another set of internal LBs in block 3. This creates the 

impact of a moving average / for every set of/ values within the 2D window (kernel). 

The correct implementation, as illustrated in Fig 45b, should have been the fixed / for 

every set of/values under the kernel without any LBs in block 3. And the subtraction 

should be performed inside block 3 right before the Corr2 operation. The implication 

with reference to the current design (Ux V=9x27 kernel dimension), is that another set of 

243 Log2 and iLog2 modules are necessary, due to data dependency, to operate in full 2D 

processing bandwidth for correct calculation. The correct implementation may increase 

the resource by 60%. Although the 8.7% average error seemed reasonable for logarithmic 

modules without correction, the peak error could be as high as 62% of the expected score. 

The architecture in Fig 45a still produced the correct coordinates. But it does not mean 

that the NCC score is exactly right, aside from approximation error of logarithmic 

modules. The implementation is clearly equivalent to (6.1) rather than the true normal 

correlation of (4.2.9). The reason that an earlier design still produces correct coordinates 

is that moving average tends to change relatively slow. 

0(x,y)- u,v 

YJ[_f{x + u,y + v)-fuv{x + u,y + v)\ X [?0 ,v ) - ^ v ] 
2 . 

(6.1) 
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Figure 45: Design error in earlier implementation of NCC architecture. 

6.3 Performance Analysis and Resource Utilization 

The performance and resource allocation of various subsystems are presented in 

this section along with discussion. The performance and the hardware resource 

parameters are mainly characterized on Xilinx's Virtex IIFPGA technology. 

6.3.1 Log2/iLog2 Modules 

The performance of logarithmic modules improves with one additional pipeline 

stage compared to earlier implementations. On Xilinx's Virtex II2V2000FF896-4 FPGA, 

the performance of error corrected fully pipelined log2 and iLog2 modules can produce 

the throughput of 203.6 and 304.6 million outputs per second (MOPS) for 8-bit format, 

respectively. For the 32-bit numbers, both modules are able to sustain above 200 MOPS 

data rate as shown in Tables 4 and 5. The performance of log2 doubles (203.6 vs. 100 

MOPS) for 32-bit format at the expense of 31 bits register. The modules with improved 

precision utilize a greater number of logic slices (LSs) and lockup tables (LUTs) than the 

designs without correction. The simultaneous reduction in resource and precision gain 
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become obvious in 32-bit numbers. A better figure of such resource reduction may be 

obtained at transistor (VLSI) level of implementation. 

Table 4: Performance and resource utilization for Log2 module. 

Description 

Logic Slices 

LUTs 

Fmax(MHz) 

Resolution 
(Correction/No Correction) 

8 

22/11 

32/19 

203.6/205 

16 

48/43 

74/76 

203.6/121.5 

32 

94/166 

161/289 

203.6/100 

Table 5: Performance and resource utilization for iLog2 module. 

Description 

CLB Slices 

LUTs 

Fmax(MHz) 

Resolution 
(Correction/No Correction) 

8 

19/12 

30/19 

304.6/305.6 

16 

57/44 

71/70 

234.5/235.4 

32 

155/164 

151/268 

212.2/212.2 

6.3.2 Comparison of Video Enhancement Architectures 

Due to the comparison made to earlier designs, the hardware resource utilization is 

characterized based on the Xilinx's multimedia platform with Virtex II XC2V2000-4ff896 

FPGA and the Integrated Software Environment (ISE) [70], [71]. The particular FPGA 

chip we targeted has 10,752 logic slices, 21,504 flip-flops (FFs), 21,504 lookup tables (4-

input LUTs), 56 block RAMs (BRAMs), and 56 embedded 18-bit signed multipliers in 

hardware; however, we do not utilize the built-in multipliers. The resource allocation for 

various sizes of the kernels in homomorphic filter is shown in Table 6. For 9x 9 kernels in 
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homomorphic filter, the computational power is approximately 81 multipliers which is 

significantly less compare to [19] with similar setting where 243 multipliers and 150 

dividers are needed if a conventional approach is taken. With the alternative approach 

introduced in this design and the concept of log-domain computation, the amount of 

hardware resource necessary for the implementation is tremendously reduced. The 

maximum windows can be utilized on target FPGA consumes 85% of the logic slices (4 

slices is equivalent to 1 configurable logic block), 51% of the FFs, 49% of LUTs and 22 

BRAMs. Larger kernels are not necessary in practice. Testing conducted in section 6.2.2 

shows that a 5 x 5 filter kernel is sufficient to remove most shadows of reasonable 

darkness. Only 13% of the logic slices is needed in this case. The proposed design uses 

approximately 71.7% and 73.6% (does not include embedded multipliers used in [20]) less 

logic slices with a great performance boost compared to the architectures presented in [19] 

and [20] (1024x 1024 frame size), respectively. 

Table 6: Hardware resource utilization for various sizes of the kernels with corresponding 
throughput rate. 

Kernel 
Size 
5x5 
9x9 

13x13 
17x17 

Logic 
Slices 
13% 
30% 
53% 
85% 

Slice 
FFs 
8% 
18% 
32% 
51% 

LUTs 

7% 
17% 
31% 
49% 

BRAMs 

6 
11 
16 
22 

Perf 
(MOPS) 
182.65 
182.65 
182.65 
182.65 

The critical timing analysis of Xilinx's ISE shows that 182.65 MOPS is the most 

optimal throughput achievable with the maximum clock frequency of 182.65 MHz on 

Xilinx's Virtex II technology. Further evaluation of pipelining the critical path suggests 

that increasing the level of pipeline does not gain significant throughput rate. This 
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directly indicates the impact of the design with tightly coupled and well pipelined system. 

Given 1024x 1024 image frame, it can process over 174.2 frames per second at its peak 

performance without frame buffering, which is very suitable for video streaming 

applications. This tremendous gain in the performance while consuming significantly less 

hardware resources would have been extremely difficult to achieve without the 

algorithmic simplification, efficient filter design and log-domain computation. The 

additional benefit is that the filter coefficients are not hardwired, which gives the highest 

flexibility in reloading the coefficients without the need of dynamic reconfiguration for 

different characteristics of the transfer functions. The performance of the proposed 

approach increases to 124% and 273% when compared to the designs we presented in [19] 

and [20] (1024x 1024 frame size), respectively. Due to massive parallelism, it is also far 

superior to those DSP based approaches discussed in [16], [20], [72] which utilize a 

limited number of functional units. A comparison of the proposed work with other 

implementations most relevant to the model is listed in Table 7. While the throughput of 

the FPGA based architectures significantly out performs those of DSP processors (by 

more than 80 times), it should be pointed out that the DSP processors are largely 

constraint to the available functional units with associated resource. For instance, the 

FFT/IFFT operations are accomplished through reuse of the fixed N (N samples are 

padded to power of two prerequisite to use the FFT/IFFT) points FFT/IFFT blocks where 

the fully parallel-pipelined architectures could consume more than two high-end highly 

dense FPGAs such as Xilinx's Virtex II Pro 70 with 33,088 logic slices and an enormous 

number of embedded RAMs and multipliers [73]. So the full level parallelism cannot be 

exploited. For this reason, the processors usually operate at higher clock frequency to 
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achieve minimum real-time criteria with limited video resolution. The operating 

frequency to throughput ratio can be more than two orders of magnitudes (i.e. 100 

clocks/pixel). For standard NTSC (720x480 at 30 fps) video with the algorithms fully 

exploited, the DSP processors need to operate at GHz scale where the memory access of 

the systems becomes the bottleneck without the assistance of improved memory 

Table 7: Comparison of the proposed work with other implementations most relevant to 
refiectance-illuminace model. Note that 256 x 256 frame size (should be power of 2) is 
employed so the performance is not penalized for [16] and [72] to utilize FFT and IFFT. 

Hardware 
Platforms 

FPGA'[20]: 
XC2V2000 

FPGA'[19]: 
XC2V2000 

DSP2[16]: 
C6711 

DSP2[16]: 
C6713 

DSP2[72]: 
DM642 

F p G A l , l l , 1 2 . 

XC2V2000 

Operating 
Frequency 

67MHz 

147.3MHz 

150MHz 

225MHz 

600MHz 

182.65MHz 

Nature of 
Design 
Systolic-
parallel 

Systolic-
parallel 

VLIW 
(256-bit) 

VLIW 
(256-bit) 
VLIW 

(256-bit) 

Systolic-
parallel 

Resource 
Utilization 
49.3% logic 

slices8 

46% logic 
slices9 

DSP+DSK3 

support 

DSP+DSK3 

support 

DSP+EVM4 

support 

13% logic 
slices9'10 

Frame 
Buffers 

Ext. 133MHz 
ZBTRAMs 

None 

Ext. 100MHz 
SDRAMs 

Ext. 90MHz 
SDRAMs 

Ext. 133MHz 
SDRAMs 

None 

Throughput 
Rate 
lppc5 

67mpps6 

lppc5 

147mpps6 

0.009ppc5 

1.36mpps6 

0.008ppc5 

1.84mppss 

0.004ppc5 

2.24mpps6 

lppc5 

182mpps6 

Frame 
Rate 

1022 
fps7 

2248 
fps7 

20.7 
fps7 

28 fps7 

34.1 
fps7 

2787 
fps7 

Notes: 'Xilinx's Virtex II XC2V2000-4ff896 FPGA on multimedia platform [70], [71]. 
2Texas Instruments' DSPs in TMS320 family with appropriate platforms and 2 levels cache support. 
3SDK: TFs platform supporting C6711 and C6713 DSP chips [16]. 
4EVM: TFs platform supporting DM642 DSP chip [72]. 
5Ppc is unit for pixels per processor clock. 
6Mpps is unit for million pixels per second, equivalent to MOPS. 
7Fps is unit for frames per second. 
8Use of all embedded multipliers not included. 
'Architecture is multiplier-less. 
10If multiplier-less architecture (also utilizes logarithmic modules) for color space conversions (RGB to 
HSV, and HSV to RGB [47]) is fully implemented in the design, it consumes additional 108 logic slices and 
430 LUTs. 

Proposed work in this paper utilizes same technology as [19] and [20]. 
12The C++ executable version can sustain 29.85 fps (with the frame size of 360 x 240 or quarter NTSC) on 
the laptop with Intel CPU P4H@3.2GHz, 1.5GB DDR1 memory, IEEE1943 firewire, and 38% CPU load as 
opposed to 26 fps with 98% CPU load when fast color space conversion in (4.1.11) is not incorporated. The 
design is also at least 70 times faster than the software version. 
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management [72]. Despite the drawback, DSP based implementations are still well 

adapted for lower end applications (low pixel volume) where the performance of the 

systems is not critical. The performance of [20] was limited to uneven pipelining 

(Unregistered arithmetic operations are followed by high precision multipliers.) and the 

setup of external Zero Bus Turnaround (ZBT) RAMs which are coupled with the core 

module. This bottleneck does not impose on the proposed architecture since the 

throughput is sufficient to enhance the video on the fly at the constant rate as the 

streamed video in progressive scanning mode. Overall, the new design achieved similar 

output quality with reduced hardware resource while boosting the performance. 

6.3.3 Video Stabilization Subsystems 

Xilinx's Virtex II 2V2000 series platform has insufficient resource for our system. 

The hardware resource and the performance parameters were recorded based on 2V8000 

chip with a speed grade -5C which is slightly faster than the platform discussed in section 

6.3.2. The resource allocation to different subsystems is listed in Table 8. As expected the 

feature measure 'NCC9x27' consumes a majority of the available CLB slices (44%), 

flip-flops (22%, LUTs (24%) and BRAMs (16%). Even though such architecture is 

resource friendly, the tremendous number of adders given a 9 x 27 sub-feature dimension 

demands extremely high volume of logic elements. The remainder of subsystems utilizes 

only 6% of the LUTs and 10% LSs. 

A number of performance parameters of subsystems is also listed in Table 8. 

These components have a very high throughput rate, too excessive for conventional video 
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applications. The overall system performance depends on the slowest modules in Table 8. 

It is interesting to note the performance of each module is mainly affected by the number 

of bits in the adders and subtractors. The feature selection subsystem has a throughput 

rate of 180.9 MOPS with its internal 28 bit arithmetic logic units. We should also point 

out the performance gain of a video enhancement subsystem is not the result of further 

improvement in pipelining; rather, it is the technology of selected FPGA (speed grade 4 

vs. 5). Thus, one should not mistakenly treat the technological parameter with the 

advancing of architecture itself. With the simplification to memory address translation, 

the system was really designed for 1024x 1024 video frames. At the peak performance 

(one output per cycle), the processing power is equivalent to 172 fps. There is no need for 

such bandwidth in current applications. The resource and excessive bandwidth should be 

traded for future improvements to suit the design according to the nature of specific 

applications [69]. 

Table 8: Resource allocation and the performance of subsystems. 

Components 

Line Buffers 

Video Enh. 

Feat. Sel. 

NCC9x27 

Corr. Mgmt 

Mot. Eval 

Aff. Trans. 

System1: 

Resource 

Slices 

0% 

3% 

5% 

44% 

0% 

2% 

0% 

59% 

Flip-Flops 

0% 

2% 

2% 

22% 

0% 

0% 

0% 

30% 

LUTs 

0% 

2% 

3% 

24% 

0% 

1% 

0% 

34% 

BRAMs 

6% 

0% 

11% 

16% 

0% 

0% 

0% 

35% 

Performance 
(MHz) 

267.2 

210.1 

180.9 

199.8 

260.4 

212.9 

192.6 

180.9 

Notes: 'Two frame buffers with ZBT RAMs not included. 
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6.4 Scalability of the System 

The system produces constant throughput of one output per clock cycle. 

Decomposition of full features into the constellation makes the one-on-one data rate 

possible without the classic method of trading the performance for reduction of hardware 

resource in the NCC subsystem. The feature measure is also flexible in terms of 

scalability of the sub-features since the measure of secondary sub-features is only 

activated at the fixed spatial locality with successful detection of primary sub-feature. 

Interestingly, the parameters of performance on clock basis and resource utilization have 

the least to do with the dimension of the frame in our subsystems since the criterion to 

operate the system is dependant on the parallel data provided by the LBs. For the system 

to operate on a larger video frame, only the length of LBs needs to be increased along 

with the sufficient frame buffers; however, the frame rate will be reduced. Depending on 

the layout of frame buffers, it may become necessary to construct the coordinate to 

memory address translators. Future development over ultra high frame resolution should 

consider down-sampling the image to reduce search range and map the coordinate back 

to the original image (short range course to fine search mechanism). It does not 

necessarily require frame buffers for the down-sampled images. 

6.4.1 Feature Measure 

As we know the feature measure does not scale well with conventional 

implementation. To put the performance-resource trade-off into perspective, Table 9 

illustrates certain requirements for the calculation over a single 128 x 128 feature. A 

common technique of trading the performance has an inverse relationship for reduction of 
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hardware resource. Given a 64x128 time-multiplexed support architecture, it requires 

two clock cycles (64 x 128x2 cycles^ 128 x 128) to produce one complete output with the 

gain of reducing the computing elements by half (8192). To further reduce the resource 

by eight, a 16 x 128 support architecture is needed with the throughput rate of one output 

per eight clock cycles. To sustain the performance while utilizing minimum resources, 

the design eventually becomes technology dependent in the sense that the core engine has 

to run at a much higher frequency. The sub-feature representation on the other hand, has 

the advantage of reducing the number of calculations at the same time without 

compromising its performance. A 128 x 128 feature represented by 8 16 x 128 sub-

features requires the same amount of computing elements as a 16 x 128 time-multiplexed 

architecture. However, the throughput rate remains one per clock cycle. The 16 x 128 

support architecture computes on a 16x 128 primary sub-feature which contains the most 

Table 9: Comparison of conventional method and sub-feature representation. 

Feature 
Size 

128x128 
Time-MUXed 

128x128 
Time-MUXed 

128x128 
Time-MUXed 

128x128 
Sub-features 
sf(8): 16x128 

128x128 
Sub-features 
sf(8):9x27 

Perf. 
Per Cycle 

1/2 

1/4 

1/8 

1 

1 

Support 
Arch. 

64x128 

32x128 

16x128 

16x128 

9x27 

Processing 
Elements 

8192 

4096 

2048 

2048 

243 

Storage 
Capacity 

16384 

16384 

16384 

16384 

1944 

Resource 
Req. 

16384 adders 
8192iLog2s 

8192 adders 
4096 iLog2s 

4096 adders 
2048 iLog2s 

4096 adders 
2048 iLog2s 

486 adders 
243 iLog2s 
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distinct characteristics of all other sub-features. With the known structure of the 

constellation, the success of primary sub-feature enables the measure of a set of 

secondary sub-features with predetermined spatial locality. In this fashion, the computing 

power is dramatically minimized over the sub-features. With the structure formed by the 

sub-features, it is not necessary to allocate the storage for the complete feature. 

6.4.2 Frame Size and Rate 

The frame rate and dimension essentially translate to the pixel rate. To achieve the 

same frame rate given a different frame size, the support architecture must compensate its 

performance by either increasing or reducing the pixel rate on clock basis. With NVIDIA 

SLI graphics technology, the larger frame can be divided into upper and lower sub-

frames. This mechanism allows rendering of graphic contents at the same pixel rate with 

two graphic cards operating in parallel. The end result is a system which sustains a 

relatively steady frame rate at twice the frame size. This method assumes the concurrent 

input video stream is available. The direct application of NVIDIA SLI technology to our 

n-sub-frame architecture of Fig 46a can achieve a similar goal for upscale of the frame 

size; however, it would require a half-frame buffer space to create two concurrent streams. 

Although the horizontal frame division solves the problem of scaling the y-dimension in 

our design, the system cannot compensate the change in x-dimension since the pixel rate 

remains constant. This argument brings out the scalability of current design for adapting 

the performance to different pixel rates. 
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(a) NVIDIA SLI approach with full frame divided into even blocks. 
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(b): Frame size downscale: Time-multiplex rendering with input/output pixel rate at 1/n 
of internal operating clock. 
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(c) Frame size upscale: Increase in the dimension of video frame requires higher pixel 
rate to sustain same frame rate. 

Figure 46: Scalability of frame size and rate: (a) NVIDIA method to increase the size 
with constant rate, (b) reduced size or rate with multiplexed architecture to cut back 

resource, (c) larger size or higher rate with de-multiplexed support to obtain proper data 
rate from the stream video and sustain same frame performance (c). 
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Suppose we have a stream video with smaller frame size (number of pixel 

elements decreased by a factor of 1/n) with respect to our system, the pixel rate will drop 

to 1/n given a constant frame rate. While the system clock may be slowed down to 

minimize power dissipation and match the pixel rate, the conventional method of time-

multiplexing can be applied for performance-resource optimization as illustrated in Fig 

46b. The main advantage of time-multiplexed architecture over the current design can 

reduce the number of processing elements and the adders of Corr2 architecture shown in 

Fig 31 by 1/n. 

While the system clock may be adjusted accordingly with reduced frame size (or 

rate), the design modification for supporting larger frames is a bit different. The 

scalability of the current system can be illustrated by Fig 46c to support a higher pixel 

rate (bigger frame size at constant frame rate or vise versa). In order to produce a higher 

pixel rate with multiple support units operating at lower frequency, the input sample rate 

must be converted to the internal frequency of the support architecture. The conversion 

can be accomplished by capturing the data (propagated through LBin(.) at n/n sample rate) 

into a dual port BRAMs at specific cycles. Suppose that a single line of video is buffered 

in the LBin storage space at the input/output video rate, the capture cycle activates at only 

1/n of the cycles per video line. The conversion allows a higher rate to be de-multiplexed 

into a lower frequency which cannot be achieved by manipulating the video lines in 

NVIDIA SLI scheme (constant pixel rate). As a result, the entire frame is divided into a 

number of vertical blocks with the BRAMs' 'PortA' operating at n/n sample rate and 

'PortB' at 1/n internal speed. In order to convert the outputs back to n/n data rate, the 
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results must be pre-assembled into the video line in its entirety. Unlike the data rate 

conversion from the frontend, the outputs cannot keep up with the moving video line at 

n/n rate as doing so will discard (n-l)/n of the entire line of pixels with duplicates of 

adjacent values. A video line switch with two LBs can be incorporated to solve the 

problem with a difference in data rates. While one LB assembles the results from 

multiple support units, another LB is free to stream out the previous video line. The 

affine transformation subsystem should be capable of operating at n/n rate with two 

frame buffers to produce display coordinates. If technology does not permit such 

performance for coordinate transformation, the same concept can be applied to convert 

the data rates and merge the results. The hardware overhead to operate multiple support 

units in parallel is the additional buffer space of four video lines. 

6.4.3 Technological Advancement 

The advancement in technology results with devices which improve the attributes 

of silicon area, performance and power. We focus on performance parameter of the 

support platform. With FPGAs (such as Xilinx's Virtex-5 family) capable of operating at 

a higher frequency, the immediate benefit is a large increase of pixel rate given the same 

system. This gain directly translates to a higher frame rate with constant frame size, or 

larger frame size with fixed frame rate. While technological improvement, frame rate and 

dimension appear to be separate subjects of scalability, they can be characterized by a 

single parameter of pixel rate on clock basis. Given the specific constraints of 

technology, frame size, and frame rate with respect to the nature of applications, the 

system can be optimized by time-multiplexing to reduce hardware resource for smaller 
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frame size or rate with better technology. Conversely, multiple units can be deployed to 

operate in parallel proportional to a larger frame size or higher frame rate with technical 

limitation as illustrated in Fig 46. The ability to support a higher performance system 

with low speed design depends on the conversion of sample rates between the 

input/output interface and its internal frequency of the computing cores. Hence, the 

scalability of the system with respect to the technology is also linear. For the 

implementation on VLSI level, it is likely to enhance the system's performance since the 

routing overhead can be independent of specific FPGA technology and multiple nodes 

(i.e. in adder tree) can be pumped through within a pipeline stage. 

6.5 Power Consumption 

The power consumption of the subsystems is listed in Table 10 based on Xilinx's 

toolbox XPower Estimator [76]. Given the attributes of different types of resource 

utilization in Table 8 and the switch rate, the toolbox generates the power estimation 

according to the technology of particular FPGA. It turns out the embedded BRAM drains 

on the average of 27mW with 100% read and 1% write rates at 180.9MHz operating 

frequency. The majority of the power dissipation, however, stretches on the NCC 

subsystem which utilizes the most logic slices (20,424mW) and BRAMs (756mW) at 

1,5V internal operating voltage. Currently the typical power estimation for ZBT RAMs is 

not available from manufactures' datasheets (both Samsung and Cypress). 



126 

Table 10: Power consumption of subsystems at 180.9 MHz system clock. 

Components 

Power 
(mW) 

Line 
Buffers 

473 

Video 
Enh 

1923 

Feat 
Sel 

3049 

NCC 
9x27 

21180 

Corr 
Mgmt 

597 

Mot. 
Eval 

1365 

Aff 
Trans 

507 

ZBT 
RAM 

— 

Power dissipation characterized by resources is shown in Table 11 as a whole 

system. It includes the internal quiescent drain power at 1.5V and the auxiliary power at 

3.3V. Likewise, the CLB logics consume roughly 90% of the total power since the 

system utilizes 59% of the logic slices. The input/output pads drain about l,034mW with 

12mA LVTTL standard drivers also operating at 180.9MHz, according to Xilinx's design 

reference [77]. The actual current may vary depending on the capacity load of the 

external device and track impendence of the printed circuit board (PCB). The 

stabilization system currently requires 30.6W or 20A at 1.5V to operate, excluding the 

external storage device. The power utilization is approximately 0.17W per MHz 

operating frequency. 

Table 11: Power consumption of the system by FPGA resources. 

Source Name 
Vccint Quiescent 

Vccaux 
CLB Logics 

BRAMs 
Multipliers 

Digital Clock Mgmt 
Input/Output Pads 

Total 

Power (mW) 
90 
330 

27643 
1451 

0 
8 

1034 
30622(~19918mA@1.5V) 

mailto:19918mA@1.5V


127 

6.6 Summary 

The basic timing of events in the perspective of video frame was illustrated in this 

chapter. Results from simulation and error analysis of the logarithmic modules, video 

enhancement and stabilization subsystems were presented along with the characteristics 

of performance, resource utilization and power consumption of different subsystems. The 

simulation indicated the improved Log2 and iLog2 modules had an average error of 

0.09% and 0.44% compared to double precision for 16-bit numbers, respectively. The 

results also indicated the average error of three pixel intensities for the video 

enhancement subsystem. Upon closer examination, the uniform scenes appeared slightly 

brighter than the expected outputs. The result of video stabilization subsystem also 

indicated a small error of -0.5% and 2.2% for feature selection and measure introduced 

by the logarithmic modules and the rounding limitation of the architecture. As a result the 

texturally optimal regions might not be selected. It was also expected that a greater 

degree of error from feature measure subsystem did not alter the outcome of the 

coordinates of the features. The performance of various subsystems was one-on-one on a 

clock cycle basis with the slowest feature selection subsystem limited by the resolution of 

adders. With a 9x27 sub-feature dimension, the NCC subsystem consumed the most 

CLB slices (44%) and BRAMs (16%) as well as the power supply (21.2 watts). 
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CHAPTER 7 

CONCLUSION & FUTURE WORK 

Stabilization of video sequence captured under non-uniform lighting conditions 

requires analysis of several components. These include the video enhancement which 

improves the quality and visibility of the image in a scene with uniform lighting. The 

second component of the stabilization process is to evaluate reliable features for feature 

measurement and tracking in the third step. The fourth task is to estimate the global 

motion parameter of a given scene. This motion parameter can then be applied to 

generate the display coordinates of stabilized video frames to produce the final sequence. 

We have established a simplified model in this research for the video 

enhancement and stabilization. The algorithm was constructed to reduce complexity and 

make feasible for implementation with the Xilinx's FPGA technology. A number of 

concepts were developed along the design process. This included the log-domain 

computation to reduce hardware complexity, the generalized 2D convolution architecture 

with quadrant symmetry property for video enhancement, the generic 2D NCC 

architecture for the support of feature measure, the feature representation by a set of sub-

features in the constellation that captured the spatial relationships, and a fast search 

mechanism for estimation of background motion of the camera. 

The goals of this dissertation were to develop a simple video stabilization 

algorithm reasonable to implement on FGPA technology. We applied the homomorphic 

filtering with fast color space conversion in the video enhancement subsystem to 
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eliminate two complete color space converters between the RGB and HSV color spaces. 

With the folding in the architecture to eliminate redundant calculations, only 9 processing 

elements were needed to realize a 5 x 5 kernel of the boosting transfer functions for the 

enhancement application. Unlike most existing designs, it allowed us to fine-tune the 

luminance and contrast components within the architecture without any modification to 

the structure. A model for extraction of features based on textural optimality and the 

argument of uniqueness was constructed; however, the complexity and the drawback of 

non-uniform processing bandwidth forced us to concentrate on a single texture layer 

already available in the literature and remove the uniqueness criterion. Moreover, the full 

feature was decomposed into a primary sub-feature and a set of secondary sub-features 

based on textural optimality of sub-features. A star constellation was constructed to 

represent the full feature with the distance and angle relationships among the sub-features. 

In doing so we minimized the trigger for the measurement of secondary sub-features. For 

the detection of every local maxima of the primary sub-feature, the secondary sub-

features served to confirm the existence of proper structure in the constellation. Due to 

hardware limitation, a straight line constellation was chosen to reduce buffering of video 

lines. In this fashion, the number of calculations involved was considerably reduced since 

the measure of a complete feature was never performed. With a 2D model of the scene 

captured by the camera, we also constructed a very efficient search mechanism to quickly 

estimate the inlier motion from a set of corresponding points of the adjacent video frames. 

The search technique progressively rejected the outlier motions and terminated with the 

discovery of an outstanding element equivalent to the background motion. The approach 

only required the calculation of angles between the vectors of point-pairs from the feature 
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coordinates. The novel architectures for the computation of logarithmic corner-ness 

response, and the angle calculation between the point-pair vectors were important. The 

most important portion of the subsystems, however, was the design of NCC architecture 

as it consumed a majority of the hardware resource. The process of energy normalization 

was simplified to tolerate the bandwidth of moving video lines rather than demanding full 

2D processing power. By computing the summation relatively independent of the 2D 

correlation and energy components, the architecture for calculation of the 2D integral 

sum was applied which only utilized 11 adders instead of the 243 adders in full 

bandwidth for a 9x27 kernel. The concept of sub-features further reduced the complexity 

of NCC design. Rather than computing with a 27 x 27 kernel or larger, only partial NCC 

was implemented. The conventional concept of time multiplexing to trade the 

performance for the gain of resources had the drawback of reducing the throughput rate 

inversely proportional to reusability of the functional units. The very idea of our sub-

feature representation also demanded a similar need for the processing power; however, it 

completely focused on the primary sub-feature, eliminating the full calculation of partial 

results otherwise wasted in the event of a failed measure. The decomposition of features 

and the modification to the data dependency of the NCC calculation made the entire 

system possible to sustain the performance of a one-on-one throughput rate without 

compromise. In addition to the aforementioned results, the improved version of 

logarithmic modules was employed to remove the need of embedded hardware 

multipliers, dividers and exponent related operations. 
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The log2 module had better fixed point precision with the average magnitude of 

error around 0.09% (equivalent to a difference error of 0.0053) which is an order of 

magnitude lower than the uncorrected module. The iLog2 module had a 0.44% average 

error. Both modules were more precise than the two or three region correction methods 

compared to other implementations that relied on piecewise lines to generate error 

coefficients. The accuracy of the bit-level curve fitting technique also came between the 

three and six region methods with relatively fewer resources. The video enhancement 

subsystem had the average error of three pixel intensities which is barely noticeable to 

human eyes. Upon close examination, however, the results produced by hardware were 

slightly brighter than the expected image computed with double precision. If desirable, 

this effect could be compensated by fine-tuning the luminance component of the transfer 

function. The range of errors from the test sequence for feature selection and measure 

subsystems was around -0.5% and 2.2%, respectively. Because of the rounding limitation 

within the architecture, the feature selection subsystem did not necessarily select the most 

optimal regions as we would expect on the software; however, the majority of the 

potential features were consistent. While comparison of the feature measure subsystem 

with previous implementation might not be completely available, it should be clear the 

new approach was superior in the aspects of accuracy, performance, and resource 

utilization. 

The precision of the current stabilization system mainly depends on the video 

enhancement and the affine transformation. The quality of the video is expected to 

degrade with the increase in angle of rotation. The system is expected to sustain 180.9 
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MOPS or equivalently 172 fps with a 1024 x 1024 frame size on Xilinx's Virtex II 

2V8000-5 FPGA technology. It consumes 59% logic slices, 35% embedded rams and two 

external ZBT frame buffers and dissipates roughly 30.6 watts of power at 1.5 volts supply 

with 3.3V auxiliary power. 

Future work will concentrate on extending the great potential of such a model into 

finer grains for extraction and adaptive tracking of moving objects since our model 

encapsulates these attributes with lower computational complexity in the aspect of both 

algorithmic and hardware development. From these attributes, the angle and distant 

relationships within the constellation become useful for analysis of spatial 

distortion/deformation. The obvious benefit is its ability to determine the 3D structures of 

the objects to a certain extent from the 2D video frames. This concept should be exploited 

to a greater extent in the near future. With these parameters to narrow down the 

processing range, the bandwidth demand becomes highly non-linear and concentrated 

which makes it possible to achieve 20 fps or greater on desktop computers with Intel 

Core 2 Duo or Quad Core CPUs and 2GB DDR2 memory without the demand of 

dedicated hardware for video frames of conventional size. 
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