
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Winter 2008

Design of a High-Speed Architecture for Stabilization of Video Design of a High-Speed Architecture for Stabilization of Video

Captured Under Non-Uniform Lighting Conditions Captured Under Non-Uniform Lighting Conditions

Ming Zhu Zhang
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Zhang, Ming Z.. "Design of a High-Speed Architecture for Stabilization of Video Captured Under Non-
Uniform Lighting Conditions" (2008). Doctor of Philosophy (PhD), Dissertation, Electrical & Computer
Engineering, Old Dominion University, DOI: 10.25777/ac8b-wr03
https://digitalcommons.odu.edu/ece_etds/192

This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU
Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations
by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/192?utm_source=digitalcommons.odu.edu%2Fece_etds%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

DESIGN OF A HIGH-SPEED ARCHITECTURE

FOR STABILIZATION OF VIDEO

CAPTURED UNDER NON-UNIFORM LIGHTING CONDITIONS

by

Ming Zhu Zhang
B.S. December 2004, Old Dominion University
M.S. August 2005, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

ELECTRICAL AND COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY
December 2008

Approved by:

. Viiavan K. Asari (Di Dr. Vijayan (Director)

r. James Leathrum, Jr. (Member)

Dr. Shunichi Toida (Member)

ABSTRACT

DESIGN OF A HIGH-SPEED ARCHITECTURE
FOR STABILIZATION OF VIDEO

CAPTURED UNDER NON-UNIFORM LIGHTING CONDITIONS

Ming Zhu Zhang
Old Dominion University, 2008
Director: Dr. Vijayan K. Asari

Video captured in shaky conditions may lead to vibrations. A robust algorithm to

immobilize the video by compensating for the vibrations from physical settings of the

camera is presented in this dissertation. A very high performance hardware architecture

on Field Programmable Gate Array (FPGA) technology is also developed for the

implementation of the stabilization system. Stabilization of video sequences captured

under non-uniform lighting conditions begins with a nonlinear enhancement process.

This improves the visibility of the scene captured from physical sensing devices which

have limited dynamic range. This physical limitation causes the saturated region of the

image to shadow out the rest of the scene. It is therefore desirable to bring back a more

uniform scene which eliminates the shadows to a certain extent. Stabilization of video

requires the estimation of global motion parameters. By obtaining reliable background

motion, the video can be spatially transformed to the reference sequence thereby

eliminating the unintended motion of the camera.

A reflectance-illuminance model for video enhancement is used in this research

work to improve the visibility and quality of the scene. With fast color space conversion,

the computational complexity is reduced to a minimum. The basic video stabilization

model is formulated and configured for hardware implementation. Such a model involves

evaluation of reliable features for tracking, motion estimation, and affine transformation

to map the display coordinates of a stabilized sequence. The multiplications, divisions

and exponentiations are replaced by simple arithmetic and logic operations using

improved log-domain computations in the hardware modules. On Xilinx's Virtex II

2V8000-5 FPGA platform, the prototype system consumes 59% logic slices, 30% flip-

flops, 34%o lookup tables, 35% embedded RAMs and two ZBT frame buffers. The system

is capable of rendering 180.9 million pixels per second (mpps) and consumes

approximately 30.6 watts of power at 1.5 volts. With a 1024x1024 frame, the throughput

is equivalent to 172 frames per second (fps).

Future work will optimize the performance-resource trade-off to meet the specific

needs of the applications. It further extends the model for extraction and tracking of

moving objects as our model inherently encapsulates the attributes of spatial distortion

and motion prediction to reduce complexity. With these parameters to narrow down the

processing range, it is possible to achieve a minimum of 20 fps on desktop computers

with Intel Core 2 Duo or Quad Core CPUs and 2GB DDR2 memory without a dedicated

hardware.

IV

© 2008 Ming Zhang. All Rights Reserved.

V

ACKNOWLEDGMENTS

First of all, I would like to thank Dr. K Vijayan Asari for his guidance and efforts

as my dissertation director. I am also very grateful for such an opportunity to explore on a

broader view of the chosen topic. I would also like to thank Dr. James Leafhrum, Jr, Dr.

Jiang Li, and Dr. Shunichi Toida for their invaluable time and consideration in serving on

my dissertation committee. I greatly appreciate their efforts. Finally, I would like to thank

my family and friends for all their support.

VI

TABLE OF CONTENTS

Page

List of Tables ix

List of Figures x

Chapter
1 INTRODUCTION 1

1.1 Motivation of the Research 1
1.2 Proposed Theme of the Dissertation 3
1.3 Main Contributions 5
1.4 Organization of Forthcoming Chapters 8

2 ALGORITHMIC BACKGROUND 9
2.1 Necessity of Image and Video Enhancement 9
2.2 Evaluation of Good Tracking Features 11
2.3 Evaluation of Motion Parameters 13
2.4 Summary 16

3 COMPUTATIONAL COMPLEXITY REDUCTION 18
3.1 Redundancy of the Operator 18
3.2 Concept of Logarithmic Domain Computation 19

3.2.1 Simplicity of Approximation and Its Benefits 19
3.2.2 Improvement of Precision with Piecewise Straight Lines 21
3.2.3 Bit-level Curve Fitting 24

4 THEORETICAL MODEL 29
4.1 Low Complexity Video Enhancement 29

4.1.1 Homomorphic Processing in HSV-Domain 30
4.1.2 HSV-Domain Enhancement with Fast Color Space Conversion... 32
4.1.3 Comparison of Visual Quality with Relevant Algorithms 33

4.2 Feature Selection and Tracking 35
4.2.1 Overview of the Framework 36
4.2.2 Model Formulation 37

4.2.2.1 Extraction of p Layers of Textures 37
4.2.2.2 Weight Matrix for Fusing p Layers of Textures 39
4.2.2.3 Feature Selection 40
4.2.2.4 Feature Measure 41
4.2.2.5 Verification and Update of Weight Memory of h 41
4.2.2.6 Convergence of the Network 43

4.2.3 Preliminary Simulation 43
4.2.3.1 Automatic Feature Selection 43
4.2.3.2 Feature Tracking 46

vii

4.2.4 Potential Extension of the Framework 47
4.2.5 Simplification 48

4.2.5.1 Single Trivial Layer of Texture 48
4.2.5.2 Sub-feature Representation 49

4.3 Estimation of Motion by Consistency of Motion Parameters 52
4.3.1 Estimation of Inker Motion 53
4.3.2 Estimation of Intended Motion 55
4.3.3 Simplification by Order of Search 56
4.3.4 Algorithmic Simulation of the Stabilization Prototype 58

4.4 Summary 61

5 DESIGN OF HIGH PERFORMANCE ARCHITECTURE 63
5.1 Overview 63
5.2 Logarithmic Domain Computation 65

5.2.1 Architecture of Log2 Module 65
5.2.2 Architecture of iLog2 Module 67
5.2.3 Error Correction 69

5.3 Video Enhancement Module 70
5.3.1 Overview of Computational Sequence 70
5.3.2 Tightly Coupled System Architecture 72
5.3.3 Data Buffer Unit 73
5.3.4 Extraction of V-component 74
5.3.5 Architecture of Homomorphic Filter 74
5.3.6 Fast HSV to RGB Color Space Conversion 76

5.4 Single Layer Feature Selection 77
5.4.1 Overview of Feature Selection & Storage 77
5.4.2 Components of Auto-correlation Matrix 78
5.4.3 Logarithmic Corner-ness Response 80
5.4.4 Storage of Potential Features 81

5.5 Feature Measure & Tracking with Improved NCC Architecture 83
5.5.1 Overview of Shared NCC Architecture 84
5.5.2 Partial NCC as Parallel Filters 85

5.5.2.1 Architecture of Normalizing Factors 86
5.5.2.2 2D Integral Summation 88
5.5.2.3 2D Correlation 89

5.5.3 Storage Layout 90
5.6 Correspondence Management 91
5.7 Motion Evaluation Module 93
5.8 Affine Transformation 95
5.9 Summary 96

6 RESULTS AND ANALYSIS 98
6.1 Timing Overview 98
6.2 Simulation And Error Analysis 99

6.2.1 Logarithmic Approximation 100
6.2.2 Video Enhancement 104

6.2.2.1 Fine-tuning Transfer Function 107

viii

6.2.3 Video Stabilization 108
6.3 Performance Analysis and Resource Utilization 112

6.3.1 Log2/iLog2 Modules 112
6.3.2 Comparison of Video Enhancement Architectures 113
6.3.3 Video Stabilization Subsystems 117

6.4 Scalability of the System 119
6.4.1 Feature Measure 119
6.4.2 Frame Size and Rate 121
6.4.3 Technological Advancement 124

6.5 Power Consumption 125
6.6 Summary 127

7 CONCLUSION & FUTURE WORK 128

REFERENCES 133

VITA 139

IX

List of Tables

Table Page

1: Example of log2 converter with 5-bit integers and the index k = 4 26

2: Comparison of the error range and average magnitude with other designs 103

3: Average errors of feature selection and measure subsystems 110

4: Performance and resource utilization for Log2 module 113

5: Performance and resource utilization for iLog2 module 113

6: Hardware resource utilization for various sizes of the kernels with
corresponding throughput rate 114

7: Comparison of the proposed work with other implementations most relevant
to reflectance-illuminace model. Note that 256 x 256 frame size (should be
power of 2) is employed so the performance is not penalized for [16] and
[72] to utilize FFT and IFFT 116

8: Resource allocation and the performance of subsystems 118

9: Comparison of conventional method and sub-feature representation 120

10: Power consumption of subsystems at 180.9 MHz system clock 126

11: Power consumption of the system by FPGA resources 126

X

List of Figures

Figure Page

1: Decomposition and structural representation of the dataset 4

2: Mitchell's log2 approximation (a) and the difference error (b) 22

3: Algorithm simulation: (a) original, (b) enhanced (c) conical representation
of HSV color space. No useful color information can be obtained with V
component too close to the tip of the cone. Hence the excessively dark
regions appear pale in the enhanced image 33

4: Algorithm Comparison: (a) original image taken from [15], (b) enhanced
Separate RGB channels without color correction, (c) enhanced by MSR
with color correction [15], (d) enhanced with LDNE [20] [21], (e)
enhanced with RR [5] [6] [19], (f) enhanced with the approach we
proposed 35

5: Block diagram of the framework for automatic feature selection for
tracking 37

6: Architecture of interconnects for fusing p layers of textures 40

7: Input color image and the outputs of the network at different stages are
illustrated in (a)-(i). White dot in (f) shows initial dominate candidate with
uniqueness test (u=l according to (4.2.12)) shown in (h). Pink dots are
important corner features evaluated by [62] 45

8: An example of input data with periodic textures where no feature is reliable
for tracking confirmed by large v computed from (d) 46

9: Results from feature tracking after automatic feature selection scheme.
Shown from top-left to bottom-right are snapshots at frames 1, 56, 78, 102,
135, 161, 180, 220, and 237 47

10: Representation of full feature by texturally optimal sub-features in a
constellation, (a) A start constellation constructed to encapsulate the
spatial relationship of sub-features, (b) A straight line structure to simplify
hardware realization 52

11: Triangular order of search to minimize the number of calculations and to
identify the inlier and reject the outliers 57

XI

12: Snapshots of enhanced video and stabilized sequence to show different

stages of the event 60

13: Block diagram of the system architecture 64

14: (a) Architecture of log2, (b) Mapping of multiplexers in MBS 66

15: (a) Architecture of inverse-log2, (b) Mapping of multiplexers in RMBS 68

16: Error Correction Circuitry 69

17: Fully optimized architectures of Log2 and iLog2 with error correction
factor 70

18: Block diagram illustrates the overall sequence of computation alone with
simplification 72

19: System architecture illustrates the coupling of three main units to achieve
very high performance with simplicity in the design 72

20: Detail architecture of the DBU shown in Fig 19. The data bus of (K-l)
x PRGB bits wide is grouped into a number of 24-bit paths to form effective
LBs for 8-bit pixel resolution 73

21: Elementary architecture of the max filter is used to extract the V-
component. K elements of 3-to-1 max filters are needed in the
MAX(RGB) Array as shown in Fig 19 74

22: Architecture of the PE in the homomorphic filter 76

23: Block diagram of feature selection and storage subsystem 78

24: Architecture for calculation of A, B, and C components of M matrix 80

25: Architecture for calculation of the response in log2 scale to reduce word

length 80

26: Conditions of initiating copy state 82

27: Storage layout of feature selection subsystem 83

28; Block diagram of NCC and storage subsystems 84

29: Architecture of feature measure by NCC 88

30: Architecture of 2D integral summation 89

31: Architecture of Corr2 module 90

Xll

32: Storage layout of the NCC architecture 91

33: NCC correspondence management subsystem 93

34: Architecture of inlier motion evaluation subsystem 95

35: Affine transformation to map the display coordinates 96

36: Timing events within the video frame 99

37: Plot of double precision, uncorrected and corrected log2 calculations are
shown in (a) with the percentage error in (b) for 8-bit fixed point decimals.... 100

38: Comparison of difference errors with 5 other designs 102

39: Plot of 8-bit fixed point (4-bit integer and 8-bit fraction in 2's complement)
iLog2 (a) and its percentage error (b) 104

40: Images shown on 1st row are the test color images with non-uniform
darkness. Results from software and hardware simulations are illustrated
on 2nd and 3rd rows, respectively 106

41: Error characteristics: The errors introduced for utilizing fast conversion
factor are illustrated on the 1st row (50x). Error histograms are graphed on
the 2nd row with average errors of 2.97, 2.61, and 3.79 pixel intensities 106

42: Examples showing the flexibility of fine-tuning the transfer function for
visually more clear view of the scenes 108

43: The kernel registers of the architecture can also be fine-tuned to enhance
the contrast (sharpness) component of the image as illustrated 108

44: A short sequence of stabilized frames from the algorithm (1st column) and
the hardware simulation (2nd column) 110

45: Design error in earlier implementation of NCC architecture 112

46: Scalability of frame size and rate: (a) NVIDIA method to increase the size
with constant rate, (b) reduced size or rate with multiplexed architecture to
cut back resource, (c) larger size or higher rate with de-multiplexed
support to obtain proper data rate from the stream video and sustain same
frame performance (c) 122

1

CHAPTER 1

INTRODUCTION

The theme of this dissertation focuses on reducing the complexity of certain

calculations in video stabilization by decomposition and the structural representation of

the dataset into smaller sub-features. This methodology enables us to overcome the

drawback of conventional performance-resource trade-off in hardware designs by

concentrating the computation on the most distinct sub-feature and sustaining a one-on-

one throughput rate. The main contributions of this dissertation are listed in section 1.3

followed by the organization of this book in section 1.4.

1.1 Motivation of the Research

Video Stabilization is an essential part of the video processing technology for

scenes captured under shaky conditions. From the perspective of an audience, extraction

of information from such a video source can be distracting, thus making it very difficult

to concentrate and exhausting to track the target of interest from the scenes. In extreme

cases, it is impossible to identify the details from such a scene with large variations when

the frames are averaged through our eyes' perception. However, the vibrative motion of

the camera is not the only problem. Videos captured under non-uniform lighting

conditions are mainly contributed from the limitation of physical sensing devices. Due to

the limited dynamic range of the sampling circuitry, the brighter region of the image

Format of this dissertation is IEEE Transactions on Computers

2

saturates the photo site of sensing elements, causing the device to compensate itself and

shadow out slightly darker parts of the scene. While there are several image

enhancement algorithms available, the method which is capable of simultaneous

rendering of the luminance and contrast components of the color images is not currently

available for efficient design of the architecture.

The motivation of this dissertation is to find a robust algorithm to immobilize the

video by compensating for the background motion of the camera. Another objective is to

develop a high performance system architecture in FPGA technology for the stabilization

of video sequences captured under non-uniform lighting conditions. In this research, we

apply a reflectance-illuminant model for video enhancement to improve the visibility and

quality of the scene. With fast color space conversion, the computational complexity is

reduced to a minimum, further simplifying the hardware design. The basic video

stabilization model is formulated and simplified for implementation. Such a model

involves evaluation of reliable features to track, feature measure and tracking, motion

estimation, and affine transformation to map the display coordinates of stabilized

sequences. Novel architectures for performing these calculations are also proposed in this

dissertation. With improved log-domain computation, all multiplications, divisions and

exponentiations are replaced by simple arithmetic and logic operations. On a Xilinx's

Virtex II 2V8000-5 FPGA platform, the prototype system consumes 59% logic slices,

30% flip-flops, 34% lookup tables, 35% embedded RAMs and two ZBT frame buffers.

The system is capable of rendering 180.9 million pixels per second (mpps) and consumes

3

approximately 30.6 watts of power at a 1.5 volt internal operating voltage. With a

1024x 1024 maximum frame, the throughput is equivalent to 172 frames per second (fps).

1.2 Proposed Theme of the Dissertation

We often face the decision of performance-resource optimization due to hardware

constraints and the performance needs of specific applications. The performance

parameter usually has an inverse relationship with the amount of assisting hardware

necessary to achieve certain calculations within a given time. To minimize the resource,

conventional methods usually compute the partial results on a timeslot shared

architecture and construct a set of distributed queues to hold the partial results which are

accumulatively combined to produce a more complete output. This concept can readily

be illustrated in Fig la. A dataset is first uniformly divided into n subsets, where n is the

reduction factor of computing elements, \ln is the throughput parameter. The subsets are

fetched into the support architecture in a timely manner. Only one subset may occupy the

data path to the support architecture at a clock cycle. The partial results are properly

saved to the distributed queues to be accumulated in subsequent cycles. It requires n

clock cycles to complete the evaluation of an entire dataset.

To sustain the peak performance of a system while reducing hardware complexity,

we propose to represent the dataset by sub-features in a structured constellation as shown

in Fig lb. The full dataset is first decomposed into a primary sub-feature, Pi, and a set of

secondary sub-features, S2..n. The criteria of evaluating the sub-features are application

dependent; however, the general rule is to extract the most distinctive characteristics for

the primary sub-feature and select sub-optimal regions to be secondary sub-features. With

the coordinates of the sub-features obtained from the process of feature decomposition,

these sub-features form the distance and angle relationships with the primary sub-feature

in a structure which identifies the complete dataset. The support architecture for partial

evaluation is similar to the time-multiplexed architecture in Fig la. Nonetheless, only Pi

is being evaluated at all time with respect to the region of interest. With the successful

evaluation of the primary sub-feature, subsequent measure of secondary sub-features is

enabled at the proper spatial locality predetermined by the structure representing the

dataset. The secondary sub-features, S2..11, are evaluated only once for every valid

measure of Pi. A successful measure of all sub-features contributes to a correct

Dataset

Dataseti

Dataset2 H

Datasetn

Input
Data

Time-MUXed
Support Arch(1/n)

Result

(a) Time-multiplexed evaluation of a complete dataset.

Input
Data S2---Sn £

PiK3

J&L.
Support

Arch(1/n).

Result
>

(b) Distinctive characteristics oriented partial evaluation with sub-feature
representation.

Figure 1: Decomposition and structural representation of the dataset.

evaluation of the dataset. This method allows us to evaluate a larger dataset on a

dedicated hardware with limited computing elements and at the same time provides

roughly a one-on-one system performance.

1.3 Main Contributions

The main contributions of this dissertation can be summarized as follows:

1. Model of feature representation by constellation. The sub-feature methodology

decomposes a feature into sub-features based on the criteria of distinctive

characteristics (textural optimality in our case) of the dataset. A region with the

most distinctive characteristics is assigned as primary sub-feature along with a set

of non-overlapped secondary sub-features having sub-optimal regions. A brute

force evaluation of the complete feature is eliminated with the computational

power concentrated on the primary sub-feature. For every successful measure of

the primary sub-feature, the secondary sub-features are evaluated to confirm the

existence of such structure which represents the complete feature. By representing

the full feature in primary sub-feature and a set of secondary sub-features, the

amount of necessary calculations can be dramatically reduced. For hardware

design, it is not necessary to build a huge architecture to evaluate the complete

feature; instead, one only needs to implement a support system for the sub-feature

dimension. The model also encapsulates the spatial deformation or distortion of

the full feature through the angle and distance relationships among the sub-

features within the constellation. With further extension, this idea can be readily

applied for adaptive tracking of rigid objects.

6

Design of various subsystems for video stabilization, namely, the potential feature

selection, feature measure and tracking, and the angle calculation for inlier motion

estimation. The single most important component, however, is the feature

measure which involves the computation of 2D normalized cross correlation

(NCC). The first step to reduce complexity is to perform a partial measure of

NCC on primary sub-features. Another important aspect of NCC architecture is

its ability to sustain the peak performance without the performance-resource

trade-off. With the assistance of sub-feature measures, the representation of the

full feature served as confirmation of primary sub-features; the NCC architecture

virtually appears to handle much larger feature templates. It is interesting to note

that such a design is the direct extension of our previous research based on the

generic architecture of 2D convolution.

Design of low complexity architecture for video enhancement. While we already

have several implementations of various algorithms, the architecture presented in

this dissertation has the lowest complexity of all previous approaches. The idea of

generalized 2D convolution with quadrant symmetry property from master thesis

has also proven to be very flexible in deploying the concept to various image

enhancement architectures. Virtually all image processing algorithms involve

some kind of filtering operations that often has quadrant symmetric kernels.

Design of improved logarithmic modules. A simple bit-level error correction is

introduced to increase the precision of Log2 and iLog2 modules with improved

pipelining. The hardware complexity for 32-bit numbers is also further reduced

while maintaining only 8-bit fixed point for the fractions. The research done from

the master thesis, "A multiplier-less architecture for high speed computation of

multi-dimensional convolution", has proven log-domain computation to be very

useful for reducing the complexity in hardware designs.

5. Global motion evaluation with triangular order of search. By calculating the

angles between the vectors alone, we can quickly estimate the background motion.

It is accomplished by searching, without any redundant calculation, for the most

outstanding element within a collection of motions. The outstanding element can

be applied to further narrow down the motions of subsequent video frames, hence,

forming a star constellation based on the stability of the outstanding element in

relation to other nodes within itself.

6. Basic model of feature evaluation based on different types of textures. Due to

hardware related issues, only a single layer of texture already available from the

literature has been selected. The uniqueness of the features proved to be least

useful as the required processing bandwidth can become highly non-uniform

which is not very suitable for hardware implementation.

7. Application of fast color space conversion to speed up the video enhancement on

desktop computers to 30 fps with 3.2GHz Intel P4H processor and 1.5GB DDR1

memory.

Future work should not focus on further improving the performance of hardware

system since the throughput is already excessively high; however, it should optimize the

performance and the resource to meet the specifics based on the nature of the applications.

8

Future development should also extend the great potential of the model into finer grains

for extraction and adaptive tracking of moving objects as our model inherently

encapsulates the attributes of spatial distortion and motion prediction to reduce

complexity. With these parameters to narrow down the processing range, it is possible to

achieve a minimum of 20 fps on desktop computers with Intel Core 2 Duo or Quad Core

CPUs and 2GB DDR2 memory without dedicated hardware.

1.4 Organization of Forthcoming Chapters

The remainder of this dissertation is organized as the following. A brief survey of

image enhancement, feature evaluation and motion estimation is discussed in chapter 2

regarding the fundamental problems involved with the stabilization. Chapter 3 introduces

the issues of complexity of certain operations commonly applied in image processing.

Chapter 4 addresses the theoretical model formulation and the simplification toward

designing hardware efficient high-speed architecture. The design of different subsystem

modules is illustrated in-depth in chapter 5. The simulation results and error analysis

along with the parameters of performance and resource allocation are given in chapter 6.

The conclusion and the comments regarding future development of the video stabilization

system are presented in chapter 7.

9

CHAPTER 2

ALGORITHMIC BACKGROUND

In this chapter, we briefly describe the fundamental issues involved with the task

of stabilizing the video sequence. One of the issues is video enhancement for which one

must compensate the visual quality of the scenes captured from cameras with limited

dynamic range. The second issue requires the detection of reliable features to establish

the correspondence between the video frames. Various approaches for estimation of

background motion are addressed for derivation of parameters necessary for stabilization.

2.1 Necessity of Image and Video Enhancement

Physical limitations exist in the sensor arrays of imaging devices, such as CCD and

CMOS cameras. Often the videos captured by these devices cannot properly represent

scenes that have both very bright and dark regions. The sensor cells are commonly

compensated with the amount of saturation from bright regions fading out the details in

the darker regions. Image enhancement algorithms [1], [2], [3], [4] provide good rendering

to bring out the details hidden due to dynamic range compression of the physical sensing

devices. For applications in color images these algorithms may fail to preserve the color

relationship among RGB channels which result in distortion of color information after

enhancement. Thus, there is still room for improvement. The recent development of a fast

converging neural network based learning algorithm called Ratio Rule [5], [6] provides an

excellent solution for natural color restoration of the image after gray-level image

enhancement. Hardware implementation of such algorithms is absolutely essential to

10

parallelize the computation and deliver real time throughputs for color images or video

processing containing extensive transformations and a large volume of pixels.

Implementation of window related operations such as convolution, summation, and matrix

dot products which are common in enhancement architectures demands enormous amount

of hardware resources [7], [8]. Often a large number of multiplications/divisions is needed

[9]. Some designs compromise this issue by effectively adapting the architectures to very

specific forms [7], [8], [10] and cannot operate on different sets of properties related to the

operation without the aid of dynamic reconfiguration in an FPGA based environment. We

proposed the concept of log-domain computation in [11] to solve the problem of

multiplication and division in the enhancement system to significantly reduce the

hardware requirement while providing a high throughput rate.

Algorithms developed under the reflectance-illuminance category of the image

processing models are not unique. The theorization of such a model for visual

representation originated in the early 1970's [12] with stochastic image processing in [13]

to reduce the salt-and-pepper noise (black and white dots imposed from poor quality

sensing device available at the time). In classical approaches, homomorphic processing

operates exclusively on the grayscale images. Recently the concept has become popular

for adapting the model to color image representation. Although the concepts for a number

of exotic approaches are generalized by Kimmel et al [14], dedicated architectures for

such algorithms are generally unavailable; thus, comparison is limited to existing designs

relevant to the subject. One of the few well explored and adapted techniques (in both

hardware and software) in this category is Multi-Scale Retinex (MSR) related model

11

developed by Jobson's research team [2], [3], [15]. By the nature of the algorithmic

procedure, MSR is suitable for DSP based implementation discussed in [16] where the

fast Fourier transform (FFT) and inverse FFT (IFFT) may be readily plugged in from the

DSP library [17], [18]. Further improvement on MSR can be made for better color

consistency to minimize the influence from background color. Within the same category,

we presented a hardware-efficient architecture in [19] for enhancement of the digital

color images with non-uniform darkness using a Ratio learning algorithm [5] [6] for color

distortion correction. We also proposed the nonlinear enhancement architecture in [20]

based on [21] which results with similar quality on the output images. As far as efficiency

is concerned, tweaking of the enhancement processes needs to be further exploited for

potential speed up and hardware reduction.

2.2 Evaluation of Good Tracking Features

Modeling of artificial neural networks (ANN) to solve real-world problems is

inspired by biological neural systems. Such systems are simplified for ANN where the

neurons are characterized solely by the biologic machinery but the ability to adapt, learn,

and generalize in response to given types of information within the network architectures

are governed by certain learning rules. The successors of such models mimic the

biological functionality of the systems quite well. Virtually all forms of modification of

the synaptic weights between neurons are in some ways variations of Hebbian or Delta

rule in ANN whether the networks are feed-forward or recurrent [22].

12

While feed-forward architectures such as perceptron and adaline [23] [24] [25]

have strict limitation where no feed-back or back-propagation exists for error correction,

recurrent networks significantly increase the dynamics of the network. One of those

earliest recurrent networks was introduced by Anderson and Kohonen in [26] [27] and

generalized by Hopfield in 1982 [28] with primary applications for associative memory

which remembers the patterns and pattern recognition. Examples of applications include

optimization in power systems [29]. For classification, the unsupervised Fuzzy Adaptive

Resonance Theory, Fuzzy-ART, neural network, introduced in 1976 by biological

phenomena [30] can be useful. Fuzzy-ART is capable of clustering documents with the

ability to mine data and discover knowledge dynamically by a wide variety of techniques

[31]. It can also be applied for rapid stable learning to categorize and recognize the

patterns [32]. The supervised Fuzzy-ART called Fuzzy ARTMAP can learn incrementally

for category recognition with new minima learning rule [33].

Inspired by the concepts of adaptive resonance theory based neural networks and

Hopfield recurrent network, a new neural architecture is desirable to fuse different

characteristics [34] for automatic extraction and selection of a set of unique features from

a video stream. The same network should also be able to track the features to maintain

the correspondence between video frames and minimize iterative error measures. Such

features would be useful for estimation of motion parameters. While the ANN has the

capacity to support pattern related classes of applications, the iterative nature of the

process itself imposes the bottleneck of non-constant bandwidth access of the storage

components in dedicated high performance system architectures. Nonetheless, the

13

specific textures can be considered reliable for tracking. In general, good features are

characterized by the distinctiveness of different types of textures.

Scale invariant feature templates (SIFT) can be very helpful for object detection

[34][74]. To identify the correspondent coordinates of a feature in another picture, the

image must be re-sampled into different resolutions to construct a pyramid of images.

Within each resolution, feature selection is performed based on certain criteria. The most

consistent features of the pyramid are extracted as the scale invariant templates for

subsequent processing. In conjunction with rotation invariant features through affine

normalization, the multi-resolution feature extraction has proven to be vital for the

construction of image descriptors and the accumulation of its database for autonomous

object detection [75]. Our main focus, however, is to identify reliable features with

respect to a current video frame under the legitimate assumption that variation of scale

and rotation are gradual within a video sequence. Hence, it is not necessary to represent

the features according to image descriptors with scale and histogram orientation of

certain key points.

2.3 Evaluation of Motion Parameters

Evaluation of the features alone may seem insignificant; however, such a step is

crucial when combined with a variety of motion analysis and estimation. Motion

estimation (ME) is a process of evaluating the relationship between the frames such that

the contents of the frames are approximately stationary with respect to the reference

frame through transformation of motion parameters. Global motion estimation (GME) is

14

an instance of ME which involves the monitoring of background or dominant motion.

ME has a very broad applications in video processing technology. In video compression,

the ability to accurately estimate the motions, not necessarily global motion alone,

determines the compression ratio, resulting in smaller video files [35]. In segmentation,

motion information helps in distinguishing between moving objects from the background

[36]. In registration and mosaicing applications, motion vectors contribute to the key

components in identifying orientation for stitching the frames into a more complete scene

[37].

ME search algorithms can be divided into three categories based on their

complexity. The full search algorithms (FSA) contribute to the most optimal match yet

impractical with overwhelmed complexity O(n), where n is the search range. The cost for

block search is 0(n/m), where m is the block range, and may be as low as 0(log(«)) with

logarithmic search [38]. In video compression the blocks are usually divided into macro-

blocks to further reduce the search range with a trade off of increasing the distortion and

the assumption of block-wise uniform motion [39]. The hybrid search serves to balance

the complexity and accuracy [40].

The class of gradient/differential based ME algorithms is commonly modeled by

(2.1), where It(x) is the current frame with coordinate vector x=[x,y]T, 7t-i is previous

frame or reference, G function is the affine transformation by motion vector M, and err(x)

is the error. The coefficients a, and £>, are the rotation and scale of affine parameters while

dx and dy are the displacement or translational motion between the frames. Two well

15

known cost functions for error measure defined in (2.2) are mean absolute error (MAE)

and mean square error (MSE) [41] for which M has the solution of least squares

regression.

The error minimization has a first order Taylor expansion of (2.3). The resolution

pyramid is often constructed to iteratively estimate the motion parameter for convergence

from course to fine resolutions. Such differential techniques assume that the intensity of

the images is conserved reducing its reliability to subtle change by noise and illumination.

Higher orders of Taylor expansion further assumes that the subsequent gradients be

conserved which implies the ill-posed problems to rotation, scaling as well as sources of

noise [42]. The approach essentially becomes less stable as the constraint is overly

specified. A more troublesome part of the gradient descending ME is that the search

algorithm fails when trapped into local minima [43]. Lucas introduced weighting to error

measure defined in (2.4) to give more influence to centre pixel under the window [44],

This concept can be extended to increase the reliability of selected regions for motion

measure. Such confidence factor can be modeled with Bayesian statistics through

observation over time to enhance regions with low noise and small aperture problems or

suppressing otherwise [45]. Multi-frame buffering and frame sub-sampling are usually

required for ME with differential techniques. They translate to greater memory usage

with added complexity to buffer flow in hardware realization. The potential of measuring

global motion can be explored through consistency of motions to avoid iterative error

measure and minimize frame buffering. Once the motion parameters are sustained and

compensated by intended motion, standard affine transforms may be performed to

16

minimize shakiness of the scene, hence, stabilizing the video. While the motion

parameters may be estimated through measure of residues with respect to the reference

frame, we should examine the basic properties of calculating the coherence of different

motions.

7,(x) = 7M(G(x,M)) + err(x)

~d,
G(x,M) =

h b2 d„ or

x y 1 0 0 0"

0 0 0 x y 1

= C(x)xM

x[o, a2 dx bx b2 dy~\

errix) = argminM {E(\I,(X)- 7M (G(x,M))|)

err(x) = argminM{/i(/ ((x)-/M(G(x,M)))2

Z1 6 n» rW2[v /(x»0-M + /((x,r)]2

(2.1)

(2.2)

(2.3)

(2.4)

2.4 Summary

In this chapter, we discussed the fundamental limitation of physical sensing

devices for which the cameras had narrow dynamic range. Saturation in part of the image

tended to shadow out the details in other regions of the scene. Different image

enhancement algorithms often required several separate operations for contrast

improvement, luminance enhancement, color correction and color restoration. We found

it necessary to apply a simpler model and at the same time eliminate color correction and

17

restoration. Such a model should minimize the number of multiplications to reduce

complexity while produced reasonable image quality to improve the visibility of the

scene. Moreover, we intended to design an enhancement subsystem capable of fine-

tuning certain parameters to meet the need. In computer vision, most feature evaluation

concepts available in the literature often model the scale, rotation and orientation as part

of the efforts to recognize certain invariant features. It required a significant degree of

computation frequently too difficult to implement in hardware. The processing nature of

certain calculations would be highly non-linear, therefore, extremely difficult to

implement. Our interest would be to only evaluate reliable features with respect to current

conditions within the scene. It is desirable to derive a simple model for feature evaluation

which has low complexity with minimum storage space. Hence the evaluation technique

has to support feature extraction on the fly. A class of gradient based motion evaluation

techniques was also evaluated in this chapter. These approaches are iterative nature in the

process of obtaining motion parameters. The assumption of conservative image intensity

further poses the ill nature in the presence of noise. Similar to the feature evaluation these

techniques often require the storage of entire video frames for which certain prediction

must be iteratively measured by means of residual errors. In theory, if the feature

evaluation works well, it is not mandatory to extract motion parameters from the entire

frames. In the forthcoming chapters, a simpler mean of video enhancement, feature

evaluation and motion estimation suitable for hardware realization are analyzed for the

stabilization of video sequence.

18

CHAPTER 3

COMPUTATIONAL COMPLEXITY REDUCTION

In advance to in-depth discussion of the theory behind the algorithm, let us begin

by a briefing on the fundamental problems of the complexity itself regarding most

commonly used operators such as division, multiplication, exponentiation and some form

of summation equivalent to window/kernel based operations such as matrix

multiplication.

3.1 Redundancy of the Operator

As introduced in chapter 2, window based operations are very common in video

processing technology such as generalized 2D convolution. Often, coefficients associated

with these kernels are non-arbitrary and exhibit interesting properties. It is a waste of the

computational power and resource allocation from hardware designers' perspective to not

take advantage of certain symmetries within the kernels. Such symmetries are very

common in the design of digital filters. In particular, we utilize the quadrant symmetry

(QS) of the kernels to support convolution operations (digital filtering). This

preprocessing ideally saves close to 75% of the multiplications in addition to the

replacement of the hardware multipliers discussed in [46]. Such optimization results with

the architecture that is neither too specific nor generic while focusing the essential

computation to a single quadrant. It maintains the flexibility of redefining the filter

characteristics at run-time (soft upgrade) without recompiling and dynamically

reconfiguring the architecture (hard upgrade) by external systems. Examples of the filters

19

qualified for QS property include both separable [47] and non-separable kernels. QS also

encapsulates circularly symmetric kernels such as Gaussians and Laplacian of Gaussians

used for smoothing and edge detection, respectively. In summary, one can minimize the

computational power by simply exploiting the redundant properties of certain operators.

The reliance on redundancy alone, however, is insufficient for hardware implementation

of the dedicated architectures which demand relatively complex calculations.

3.2 Concept of Logarithmic Domain Computation

This section describes the basics of logarithmic approximation. A common

technique which relies on piecewise straight lines for error correction to various

precisions is also illustrated in the subsections. We propose bit-level curve fitting as a

mean to generate the correcting coefficients and achieve similar precision compared to

other approaches.

3.2.1 Simplicity of Approximation and Its Benefits

Multiplications and divisions become additions and subtractions with logarithmic

transformations logically defined by (3.1) which require significantly less computational

power. A number to the power n becomes a matter of arithmetic shift operation achievable

within single clock cycle for n equals to power of two, or multiplication operation for any

finite n in general. Eq. (3.1) states that the log2 scale of V can be calculated by

concatenating the index Iv of leading l's in Fwith the fractions (remaining bits after Iv
th

bit). The reversed process holds true as well, except the leading 1 's and fractions, Lf, are

shifted to the left by L, (integer of L) bits as shown in (3.1). This definition is generalized

20

to integer values as well as fraction numbers. For example, log2(0000.0110) binary

becomes -1.5 or (-2 + 0.5) in decimal since the position of Iv is -2 (two places after

decimal point) with fraction 0.10 in binary. The correct value should be -1.415 which

results with 6% error from the approximation for worst case scenario. Application of this

concept eliminates most costly components just described for hardware designs. Thus, it is

crucial to implement efficient logarithmic estimation modules in such a way that is very

compact in its design, reduces large amount of hardware resource, and provides very high

throughput rate [11] [19]. Designs based on the concept presented in [48] which

employees unrolled pipeline architectures such as [20], [49] and [50] may not be efficient

for replacement of multiplications and divisions in window related architectures for FPGA

based implementation. Particularly in filters, such architectures usually require a large

number of multiplications and the amount of hardware resource allocated for the unrolled

pipeline stages usually can come close to the cost of the multipliers on FPGA technology.

Our implementation of the estimation modules packs the resolution-dependent unrolled

pipeline style design into a few stages regardless of its resolution and at the same time

optimizes the component count, power and speed. It is about 10 times reduction in the

resource and 170% performance boost in FPGA environment. We generalized the

modules to support both integer and fraction numbers without introducing hardware

complexity. These modules are also insensitive to the bit-resolution that exists in hardware

multipliers in which the performance is inversely proportional to the number of bits in the

multipliers. We have demonstrated the use of log domain computations in [19], [46] for

image processing applications with a figure of 60% hardware reduction in addition to the

21

applicable QS based architecture. The error correction to enhance such approximation is

discussed in next section.

log2(V) = {lv} + {(V-Iv)»Iv}^\og>(L) = {\«Li} + {Lf«Ll} (3.1)

3.2.2 Improvement of Precision with Piecewise Straight Lines

Mitchell's logarithmic converter proposed in [48] was derived based on binary

representation of a number N in

7V = 2>2 ;

l'J (3.2)

as a summation of binary coefficients, bj with respect to the placement, 2\ The k is an

index (aka characteristic of log2N) for which the most significant bit (MSB) of N in binary

equals to 1 's. Given bk=l, the term 2 can be factored out to simplify (3.2) by

* = 2*(l + /> , (3 3)

where f is the fraction of the remaining terms of (3.2). The log2 scale of (3.3) is defined by

log27V-A: + log2(l + /) (3 4)

and can be approximated by

\og2N' = k + f^ (3 5)

with the slop of line equal to one between consecutive points of exactly power of two. A

different perspective to the approximation using power series can eventually reach the

same conclusion for fix-point N in addition to strictly integer values [46]. The error is

measured by the difference between exact log2N and approximated log2N':

Err(N) = \og2N-\og2N< (3 6)

22

Eq (3.5) only requires arithmetic addition and may be implemented completely free of any

multiplication. Mitchell demonstrated the design with counter and shift register in serial

form which requires minimum hardware resources at the expense of the largest number of

clock cycles necessary. The result of Mitchell's approximation is shown in Fig 2a along

with the difference error in Fig 2b, which is quite symmetrical with x-axis in log2 scale.

The periodic nature of the difference error makes it possible for bit-level error correction

as an alternative to piece-wise linear approaches [49][50][51][52][53].

Figure 2: Mitchell's log2 approximation (a) and the difference error (b).

In general, piecewise linearly corrected logarithmic converters maintain the

following form:

\og2N' = k + f + (fx^cR+J^dR)
(3.7)

where CR is the single-bit slop in power of two to eliminate real multiplications and

minimize error, and R denotes the divided regions for such linearization. The number of

binary coefficients in ^ R is determined to be fewest possible for realization of low

log, iV'= £ + / + •, , _
U~2fMSB, for\/2<f <2/2

23

complexity circuitry. In 1999, SanGregory proposed the two-region piecewise linear

correcting factor [52]. The single-bit coefficient was selected by minimizing root-mean-

square error. His correction algorithm can be summarized as follows:

'2~2UsB, M0<f<\/2

(3.8)

where J * 1-f, or the descending part of the error curve in Fig 2b. The difference error

with ~* is approximately symmetrical around the midway in linear scale.

SanGregory chose to only incorporate 4 MSBs of the fraction to generate a three bits

correcting factor to improve accuracy yet maintain very low hardware overhead. Dated

back to 1965, Combet also improved Mitchell's algorithm with a four region error

correction in serial architecture with increased circuit complexity [51]. His algorithm was

based on trial and error in selecting the straight lines and can be defined as:

log2iV' = A: + / +

(2~2+2-4)/, for0<f<\/4

2"4+2"6, for 1/4 < / < 2/4

2"3 / + 2"6 + 2"7, for 2/4 <f < 3/4

2" 2 / , / w 3 / 4 < / < 4 / 4
(3.9)

Hall also adapted Combet's idea with more coefficients for better accuracy yet seemed to

defeat the desire for solutions with a simple hardware requirement [54]. In 2003, Abed

refined the work done in [52] and extended the piecewise straight line approach to offer

two, three, and six region error correction algorithms for 32-bit integer numbers. His

formulation for the implementation presented in [53] can be summarized as follows with

two, three, and six-bit correcting factors, respectively:

{2-flus„ / » H / 2 < / < 2 / 2 j { 3 1 0 a)

24

log2iV' = A: + / + ^

r2f4MSB, for0<f<\/4

2-4+2"6, / o r l / 4 < / < 3 / 4

T2ZMSR,for3/4<f<4/4

\og2N' = k + f +

T1 f
^ J 6MSB •>

for0<f<\/\6

^2feMSB+2-\ forl/\6<f<4/\6

2~4 + 2~7 + 2~8, for4/\6<f<6/\6

2'4 +2"6 +2"7, for6/16< / < 10/16

2"4+2"7, /or l0 /16</<12/16

{^2f6MSB, for\2/\6<f<l6/\6

(3.10b)

(3.10c)

In general, increasing the number of regions results with smaller approximation

error defined in (3.6) at the cost of additional logic gates and adder cells. In the case of

six-region method, two cascaded adder arrays are needed which can reduce the overall

performance of the logarithmic converters. We now present the idea of bit-level curve

fitting to generate a three-bit correcting factor. Furthermore, we apply it beyond integer

values to include fixed-point representation, given consideration of the precision.

3.2.3 Bit-level Curve Fitting

The process of calculating inverse-log2 is to undo the log2 conversion which has

the following relationship:

log2(iV) = {^} + {(iV-2^)»A; / v}olog2
l(I) = {(l + Zfrac)«Zint}

where »and ^ denote the opposite data bus shifting operation. Note that neither (3.5)

nor (3.11) restricted us from defining negative index, ^ < 0 ; however, only the integer

portion (assuming non-negative k) has been exploited in the literature to our best

knowledge. For a fixed-point decimal of 8/8 (8-bit integer and 8-bit fraction), the same

25

rule holds true. We need to find a mechanism to express the k in two's complement. By

using the standard priority encoder, we found that the single bit-inversion of the MSB at

the output of the encoder does the trick. A single bit of inverter logic generalizes the

architecture to accept both integer and decimal values. By including fraction values, it

may seem to complicate the problem that shifting operation of (3.11) can go either way

depending on the sign of k; the logic shift remains unidirectional in the implementation.

To avoid real computation and minimize delay in realizing high speed parallel

architectures, one is often left with very few choices. Besides the linear methods of (3.8)

to (3.10), curve fitting at the logic level can also achieve a high degree of precision

without introducing complex circuits.

Rather than applying piecewise straight lines, we examined the dataset of the

difference error shown in Fig 2b to determine a close fit for generating such correcting

factor. At the same time, the correction should not be dependent on all fraction bits to

minimize circuit complexity. Examples of binary logarithmic conversion are shown in

Table I for 5-bit integers with index value k = 4. On the rightmost column is the error

pattern without the correcting factor. Given a finite set of data points and the coherent

near-symmetric error bits, one can utilize a large ROM table to correct the error to its best

precision. Although not entirely impractical, such an approach does not work well in its

scalability as the size of ROM storage exponentiates with the increasing resolution of

input integers. It is therefore wise to focus solely on the bits which contribute to the largest

magnitudes of error. Based on the simulation analysis at higher precision with

consideration of rounding, it was determined that the last five bits of fraction coefficients

26

can provide sufficient improvement for 8-bit fixed-point representation. Furthermore,

optimization on highlighted bits of the error coefficients, EC, (on last column of Table I)

shows best trading of higher precision with a reasonably small set of logic gates. Unlike

piecewise straight line methods discussed in previous section, bit-level curve fitting needs

to be optimized at a much higher resolution for more accurate representation by logic

gates.

Table 1: Example of log2 converter with 5-bit integers and the index k = 4.

Input
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

bin Log2 dec
4
4.0875
4.1699
4.2479
4.3219
4.3923
4.4594
4.5236
4.585
4.6439
4.7004
4.7549
4.8074
4.858
4.9069
4.9542

Log2 bin
100.00000000
100.00010110
100.00101011
100.00111111
100.01010010
100.01100100
100.01110101
100.10000110
100.10010101
100.10100100
100.10110011
100.11000001
100.11001110
100.11011011
100.11101000
100.11110100

Loglappx bin
100.00000000
100.00010000
100.00100000
100.00110000
100.01000000
100.01010000
100.01100000
100.01110000
100.10000000
100.10010000
100.10100000
100.10110000
100.11000000
100.11010000
100.11100000
100.11110000

Log2 - appx
0.00000000
0.00000110
0.00001011
0.00001111
0.00010010
0.00010100
0.00010101
0.00010110
0.00010101
0.00010100
0.00010011
0.00010001
0.00001110
0.00001011
0.00001000
0.00000100

The binary logic fitting analysis of precision-circuit trading pinpoints to the

generation of ECU to EC.6 depending on the fraction bits f i to f 5 and the potential

rounding of EC itself. Based on the results, it was concluded that the following simple

logic equations reduce the average magnitude of error to approximately one tenth of

Mitchell's estimation:

27

E C ^ (/) = (/ . 1 V / . 2) A (/ . 1 V / _ 2 V / 4) A (/ _ 1 V / _ 2 V / _ 3)

EC.5(/) = (7.3VZ4)A(7.1V/_2)A(7_2V/_I)A(7_1V7_,VZ5)

A (/ - 2 V / . J V / J

E C _ 6 (/) = (/_, v /_2 v /_4) A (/_2 v 7_3 v 7_4) A (7 , v 7_2 v 7 4 v 7s)

A (/ _ I V / _ 3 V / ^ V / _ S) A (7 1 V 7 2 V 7 3 V / ^ V / _ S) _ (3 1 2)

—2 5 f <Err <3 5 f The range of error is expected to be ' y-8 ' 7~8 for 8-bit integers comparing to

double precision log2 values. Since the meaningful precision is limited to 8-bit fixed-point

for the fraction, it is also subjected to additional bit of error from rounding for N with

greater bit resolution. The analysis also shows that the precision-circuit optimized logic

equations reduced the range of approximation error to [-0.0096, 0.0128] with an average

error 11.8 times smaller than Mitchell's for 8-bit integers.

Given eight-bit fixed point fraction, f„i to f_8, it is obvious that appending any

fraction beyond an eighth bit contributes very little to improve the precision with

dominant source of error in higher significant bits. Hence, the log2 converter can be

simplified further to reduce hardware components. Instead of the full one-to-one mapping

from input to the output, one only needs to construct the data paths relevant to eight output

nodes, whether it be 8, 16 or 32-bit resolution. The same concept applies to inverse-log2

converter. In summary, we replace the portion of piecewise lines with three-bit

coefficients to improve the precision with eight bits fraction while in logarithmic scale:

\og2N' = k*+fSMSB+EC (3 D a)

log? L'= 2k* (\ +fmsB-EC')^

28

where k* is specific to the input of either integer or fixed-point decimal(2's complemented

k). In next chapter, we discuss the theoretical model for video stabilization and illustrate

how redundancy and log-domain computation help reduce complexity of the design.

29

CHAPTER 4

THEORETICAL MODEL

Improvement of visibility, evaluation of reliable features and estimation of motion

parameters are inseparable integral of the effort to formulate the model for stabilization

of video sequence captured under non-uniform lighting conditions. The theory

underneath these three subjects are discussed to the fullest extend in this chapter. At the

end of each topic, the relevant part of the model should be simplified to the point that is

reasonably achievable for realization of such hardware architecture.

4.1 Low Complexity Video Enhancement

The main objective of improving the quality of visibility includes enhancing the

contrast and luminance components of the image for a more uniform appearance of the

scene. Ideally, noise reduction should be part of the effort to correct noise induced from

capturing devices. However, we do not deal with this issue as the magnitude of noise

source is acceptable. In this section, we discuss and evaluate a more effective approach as

an alternative to the methods introduced in chapter 2.1 to significantly reduce hardware

requirement while achieving similar fidelity in the enhanced image/video. The new

architecture should be capable of improving the brightness and contrast simultaneously to

minimize shadow regions of the image. It processes the images and streaming video in

HSV-domain with the homomorphic filter (Homomorphic model is a developed concept

in computer science field mostly for grayscale image processing and cannot be applied

directly for color images) and converts the results back to RGB representation with fast

30

conversion factor [55] instead of full transformation [56]. The following sections discuss

on the reflectance-illuminance enhancement model and the simplification for boosting the

performance.

4.1.1 Homomorphic Processing in HSV-Domain

Color distortion correction can be avoided for color image enhancement in HSV-

domain where the color (H), intensity (V) and saturation/color density (S) components can

be rendered separately without introducing the distortion. HSV is a conical representation

of the color as opposed to cubical representation in RGB space. To remove the shadows in

the image, only the V component in HSV needs to be enhanced instead of boosting

separate RGB channels which results with loss of color consistency without correction.

Extraction of the V component is defined by

V{x, y) = max(R(x, y),G{x, y), B(x, y)) (4.1.1)

where the R, G, and B are the original color components of the input image. The V-

component is enhanced by a homomorphic filter defined as

Venh(x, y) = exp In ~- *h(x,y)
V V 2 J

i ° g 2 | ' ^ z l N ^)

*D or (4.1.2a)

Venh{x,y) = 2K K 2 J JxD (4.1.2b)

for logarithmic based two expression where the * denotes convolution operation, h(x, y)

is the time-domain filter coefficients from a high-boosting transfer function, P is the

resolution of the pixels, D is the de-normalizing factor, and Venh{x, y) is enhanced

31

intensity value of the image. This enhancement model assumes that the detail (reflectance

components) in the image is logarithmically separable [13], [3], [55]. Hence the model

belongs to reflectance-illuminance category. The convolution or digital filter operation

can be defined by

a a

Venhi(x,y)= YJ YJ
Vnl{x~m'y~~n)xh(m,ri), (4.1.3)

m--a n=~a

where a = {K-1)/ 2 for KxK filter kernel, V„i is the normalized logarithmic scaled version

of V(x, y) and Venhi is the result from performing 2D convolution. The quadrant symmetry

property of the homomorphic filter operation defined in (4.1.2a) and (4.1.2b) allows us to

optimize (4.1.3) to reduce the number of multiplications approximately by 75% as

summarized in section 3.1. The folded version of (4.1.3) can be expressed as

V^i(x,y)=^ Y.vAx±m + — ,y±n + —)xh(m,n) + V»i(x,y)xh(—,— J (4 .1 .4a)

2 2

Ver,u(x,y)= £]T 7 , I K , K , 1 7/ (K K 1
Vni\ x + m + \,y + n + 1 +K>/ x-m + — ,y + n + 1 ,

1 2 ^ 2) { 2 ' 2 J (4.1.4b)
7/1 * i X ^ 7 / (K K

+ Vni\ x + m + \,y-n + — +Vni x-m + —- ,y-n + — y.h(m,n)

for odd and even size kernels respectively. The enhanced image can now be transformed

back to RGB representation by mapping the following set according to the value of/:

{R'G'B'}„={{e,p,t},{n,e,t},{t,e,p},{t,n,e},{p,t,e},{e,t,n}} for / in {{0},...{5}}, (4 .1 .5)

where t = 1 - S, n = 1 - Sxf, p = 1 - Sx (1 -f), e = 1, and {/?'G'5'}„ is the normalized

enhanced RGB components. The / and/are the integer and fraction portions of H which

is the angular representation of color component in HSV-domain defined by (4.1.6). The

S component in HSV domain is defined to be (4.1.7). The final output, {/?'G'5'}, can be

32

calculated as (4.1.8) with the denominator approximately equal to one for non-uniform

scenes or images which contain bright parts, where Ven/, = 2VenhlxD. Equations (4.1.1)-

(4.1.8) provide basic framework for the design of HSV-domain enhancement system.

H =

0 + (G-B)/(V-mm(RGB)), if V = R

2 + (B-R)/(V-min(RGB)), ifV = G (4.1.6)

4 + (R-G)/(V-mm(RGB)), ifV = B

s_V-mm(RGB) (4 1 ?)

{R'G'B'}-*'™'^* (4.1.8)
max({R'G'B'}n)

4.1.2 HSV-Domain Enhancement with Fast Color Space Conversion

We have shown the concept of enhancing color images in HSV-domain in a

previous section. It reduces the processing bandwidth needed in hardware design to focus

on one channel (V-component) rather than concurrently processing on all RGB channels

followed by color distortion correction. This approximately cuts the hardware resource by

2/3 compared to the machine learning approach discussed in [19]. As Li Tao et al

demonstrated in the color image enhancement algorithms [21], [55], the color restoration

process can be further simplified. She showed that if H and S components in HSV space

remain constant, the equations (4.1.5)-(4.1.8) needed for inverse transformation can be

replaced by (4.1.11). This approach should moreover reduce the hardware complexity

since full implementation of the transformations between HSV and RGB representations

is not mandatory.

{R'G'B'} = ¥^-xVe„H (4.1.11)

33

4.1.3 Comparison of Visual Quality with Relevant Algorithms

The results from algorithmic simulation are shown in Fig 3 for visual judgment.

The original image is illustrated in Fig 3a. This type of non-uniform image is typically the

consequence of saturating the bright parts of the scene (Low lighting condition intensifies

the effect in this case). We enhanced the image with the algorithm discussed in the last

section. The more uniform result is shown in Fig 3b. It is trivial that most shadow regions

with reasonable darkness (e.g. not completely dark) are removed while the bright parts

maintain the fidelity. It should be noted that the discoloring in the dark regions of the

enhanced image is natural since the color information is very weak with V component

close to the tip of the HSV cone shown in Fig 3c.

Figure 3: Algorithm simulation: (a) original, (b) enhanced (c) conical representation of
HSV color space. No useful color information can be obtained with V component too

close to the tip of the cone. Hence the excessively dark regions appear pale in the
enhanced image.

While discussion of the other enhancement algorithms is outside the scope of this

research, it is important to illustrate the results since we will compare the hardware

utilization and the performance for the available implementation of the algorithms. The

34

original test image is shown in Fig 4a. After enhancing the image on separate RGB

channels, more details are revealed as shown in Fig 4b; however, the image appears pale

due to loss of the color relationship between the channels. The result of enhancement by

Multi-Scale Retinex with Color Restoration (MSRCR) [15], which is based on human

perception, is illustrated in Fig 4c. This approach corrects the color distortion but still

appears grayish in certain areas depending on the background color and lighting

condition. In this case the background has a mild influence on the image. Thus further

improvement can be made. The hardware implementation of this algorithm can be done,

but the large scale kernel of the filters makes it impractical to achieve in time domain.

Shown in Fig 4d is the output of the Luminance Dependent Nonlinear Image

Enhancement (LDNE) algorithm presented in [21] which we implemented the hardware

system in [20]. It is clear that the color is consistent which is obvious on the color of the

hair of the man shown in the figure. Fig 4e is the output of correcting Fig 4b with Ratio

Rule which is a machine learning algorithm [5], [6]. We also implemented it in [19]. The

output for the design to be implemented is illustrated in Fig 4f. It has similar

characteristics with Fig 4d and 3e and is somewhere between the two. With carefully

chosen homomorphic transfer function, it can be hard to distinguish by human eyes.

Nonetheless, the difference between these designs in terms of the performance and

hardware utilization is quite dramatic. Design of this simplified system architecture is

discussed in next chapter where we show the architectural realization of the equations

(4.1.1), (4.1.2b), and (4.1.11) in the color image enhancement system.

35

Figure 4: Algorithm Comparison: (a) original image taken from [15], (b) enhanced
Separate RGB channels without color correction, (c) enhanced by MSR with color

correction [15], (d) enhanced with LDNE [20] [21], (e) enhanced with RR [5] [6] [19], (f)
enhanced with the approach we proposed.

4.2 Feature Selection and Tracking

The basic concept of feature evaluation framework is described in this section.

The overview of the structure, the formulation of different components needed to

evaluate texturally optimal features, and the preliminary simulation results are discussed

36

in details to reveal the drawback of the framework. Simplifications are provided to reduce

the complexity and make the calculations feasible for hardware realization.

4.2.1 Overview of the Framework

The new framework comprises mainly three functional levels. An overview of the

network is illustrated in Fig 5 for image data represented by red, green blue color bands.

The RGB color components are connected to level 1, //, of the neural network where p

layers of textures are extracted based on desired criteria such as edges, lines, and corners

[57] in feed-forward configuration [23]. The p layers of textures are then weighted

through distance dependent modular network [58] and merged into single layer feature at

h. The feature selection of this fused texture layer is considered in the descending order

from the most optimal regions. The regional feature measure is performed and extracted

to evaluate the periodicity of the potential candidates. The data involved with the measure

can be from //. If the feature is indeed unique at h, we say that the network converges

with good feature to track by different aspects of the textures and its distinctness within

its region. Otherwise the weight memory of /? is modified similarly to Kohonen's

learning rule [59] to suppress the regions resembling to the disqualified candidates. In

latter case, the network converges if it determines a good feature or that the weight

memory of h converges to zero which implies that there is no reliable or traceable feature

for tracking.

37

D r e f

|

| p • R U P

\b
Rvenh

1

p Layers
""•"•^^ of Textures

Dcoior

1
V V 1

Weights (Fusion of textures)

*
Feature

Selection

*
Feature
Measure

*
Verification
& Update

4
Unique

Features

/ t

h

h

L
>3

Figure 5: Block diagram of the framework for automatic feature selection for tracking.

4.2.2 Model Formulation

This section presents the calculation for different layers of textures and is a means

to obtain the unique features. The basic process requires the extraction of different types

of textures, the fusion of the textures, and the potential feature evaluation based on the

uniqueness criteria.

4.2.2.1 Extraction of p Layers of Textures

The type of desired texture is strongly impacted by the nature of the problem. In

image processing domain, edges, lines, and corners are the common textures. They can

be considered as separate texture layers for the neurons defined by

Ci(x,y) = Hi{l(x,y)} for\<i<p, (4.2.1)

38

where I(x,y) denotes the input data (the RGB color components in this case), Ht is a form

of transformation response to specific type of textures, and Ci{x,y) is the Ith texture layer

or the activation values in /? layer extraction. We utilize the reflectance component [15]

[55], ratio-relationship [5], and color variation to be the three distinct layers of textures in

a priori feed-forward network at // in Fig 5. One can often assume that the image is

composed of the logarithmically separable reflectance (details) and illuminance (lighting

sources) components under a reflectance-illuminance model. The model is especially

helpful for image enhancement where these components can be enhanced for more

uniform visual quality as demonstrated earlier. Hence, the variation of the reflectance

component is illumination independent and can be a good source of texture which is

defined by

C](x,y) = Vref(x,y)*KD(m,n), (4.2.2)

where Vrej(x,y) is the reflectance of the intensity of the color image, Ko(m,ri) is the

derivative function, and * is the filter operation. The exponentially separated details can

be defined by

Vref(x,y) = Qxp(Vnl(x,y)*kh(m,n))xD, (4.2.3)

where Vni(x,y) is the normalized logarithmically scaled image intensity, Kh(m,ri) is the

high-pass filter, and D is the de-normalizing factor. This component can be obtained as

the intermediate component from the part responsible for video enhancement. Another

type of texture which is inspired by ratio learning algorithm can be useful by maximizing

the neighborhood dependent ratio relationship. Instead of preserving the relationship

between RGB components in fully connected network as discussed in [5] [60], we

maximize the magnitude of the ratio among the neighbors within the intensity of the

39

image defined by

c 2 (^) = - L y Y ™HKnh(x,ylvenh(x-™,y-n)) (4 2 4)
MN^m^" mm(Venh(x,y),Venh(x-m,y-n))

where Venh{x,y) is the enhanced intensity similar to (3.3.3) but boosted by filter Kb{x,y),

and M xN is the grid dimension of the inputs. The maximized ratio texture is rotation-

invariant and considers the contribution of illuminance. The third layer of textures is

dedicated for color variations within the RGB components and between the channels

defined by

C3(x,j/) = DRGB {DR(x,y),DG(x,y),DB(x,y)}, (4.2.5)

where Dx denotes the derivative operator. Cs(x,y) maximizes the regions where a

sufficient variety of color information is available. The activation function of each neuron

of// is defined same as the activation values within 0 to 255 for 8-bit image but saturates

outside the range. We simply refer to (4.2.1) to be the activation function.

4.2.2.2 Weight Matrix for Fusing p Layers of Textures

The structure of interconnects at h is similar to modular architecture discussed in

[58] as shown in Fig 6 with weights initialized to l's. The weights of neighboring

neurons, wf", are connected to the central neuron through distance-based weighting

described by (4.2.6) with («x«)x/? neurons connected from // layer. The resultant nodes

of p layers of textures are combined to produce fused data with the weights which

emphasizes the global significance of each type of textures. We treat the activation

function of this layer to be the activation values. The update model of the weight memory

is to be discussed in /?. This feature space is utilized for initial optimal feature selection.

40

C,(x-1,y-1) dix.y-1) C,(x+1,y-1)

A^gf (& (?) ®
(3?)W34^^kW54^5?) • • • (^W34K^)^W54(5)

W4i/»

W64 VWAW84

W4,/?

Fused Data
V

Figure 6: Architecture of interconnects for fusing p layers of textures.

Fj~(*,y)= I * r c , M (4.2.6)

4.2.2.3 Feature Selection

The initial coordinates of optimal features which maximize the textures in feature

space can be described as

FJR[] = <x%m^jR{Ffused{x,y)}for\<j<J, (4.2.7)

for J features in the regions of interest where FjR [.] contains the coordinates of texturally

maximal features. Local maxima in each region of interest become candidates in the

descending order by magnitude subject to further examination for uniqueness. The initial

features are defined by

Fj(m,n) = TJ{l(FjR [.])}, (4.2.8)

where 7} defines the desired transformations of input data l(FjR [.]) at the coordinates of

the candidates and Fj{m,n) is the/ h M *N feature centered at FjR [.]. The FJR(x,y) refers to

Tj transformed domain for feature 7 at the region R. The result of 7} may be a combination

of the outputs from /;. For simplicity, we defined the 7} to contribute the intensity of the

color image.

41

4.2.2.4 Feature Measure

The measure for uniqueness and potentially growing pattern (signatures) of the

feature candidates in relation to the neighbors can be computed with normalized

correlation defined by

£ [[FJR (x + m,y + n)- FjR (x, y)] x [>, (m, n)-Fj]]

</>jR{x,y)^~^ ^

X [FjR(x + m,y + n)- FjR(x, y)J £ [>, (m, n) - Fj J
m,n m,n

where FjR{x,y) and F, are the expected values at (x,y) under (m,n) range for the region of

interest and feature candidates, respectively, and <fiJR(x,y) is the similarity space. Lewis

pointed out in [61] that despite a variety of template matching methods are available for

feature measure, normalized cross correlation (NCC) remains the default choice. The

covariance may be computed instead of NCC with the draw-back that the result is not

normalized; hence the level of confidence may be questionable.

4.2.2.5 Verification and Update of Weight Memory of h

Useful information can be extracted from (4.2.9) to verify the uniqueness and

analyze the potential signatures of the feature candidates with respect to its neighbors in

FjR. Suppose there exists a function defined by

Vj* (x, y) = r,JR {d) <t>]R (x, > 0 | (D , ^ 0 ^ <oHM<a), (4.2.10)

where 7]jR(d) is the distance dependent weight function which emphasizes the importance

of the most dominant candidates. Let us assume r}JR(d)-l, where the measure of the

42

candidates appeared in i//.R{x,y) is treated equally. The D]JJR,D2JJR are the first and second

order directional derivatives of (4.2.9) in a . The D[JJR denotes the first order directional

derivative orthogonal to a with the magnitude bounded by a . This positive scalar

defines the range for which the rate of the change along ~a[is considered desirable for the

signatures associated with the candidates. Graphical visualization of (4.2.10), which

contributes to the growing pattern of the candidates with respect to the neighbors, is

essentially a directed concave function of (4.2.9). The D[JJR = o condition, subject to

D±atjR < ° > suffices the uniqueness test where the local maxima indicate the periodicity of

the candidate. Eq (4.2.10) can be threshold to binary form defined by

\\JorDxwiR =0,£>V,« <0,«/;7? >Z,
SJR(x,y) = \ YjR TjR *JR ViR , (4.2.11)

[0, otherwise

where SJR=\ for all the local maxima that satisfy threshold value r defined by the

global maxima in the region of interest. The uniqueness can be determined by minimizing

the distances between non-zero samples in (4.2.11) or by frequency of occurrence defined

in (4.2.12). For a distinct feature, o should be equal to one.

^ = Z , A (4-2.12)

The update of the weight memory in l2 is defined as

w^(t + \)^-wr(t)x^-G(SlR,c7)), (4.2.13)

where G(«) is the Gaussian function characterized by (4.2.11), and standard deviation, <J ,

for neighborhood dependent iterative modification similar to [59]. The rate of the

convergence of w™'" for specific feature is approximately inversely proportional to

43

periodicity of the features.

4.2.2.6 Convergence of the Network

The process is terminated if o=\ is found or that the weight memory converges to

zero. The latter case implies that different measures of the textures resulted with either a

completely periodic feature or empty set. In the rare worst case scenario, the network

converges at approximately kttl iteration where

2 > . = R * . (4-2.14)

and MJR is the dimension of the region of interest. Usually, a couple of iterations are

sufficient for the convergence.

4.2.3 Preliminary Simulation

Preliminary results from software simulation for automatic feature selection and

tracking are presented in this section to demonstrate how the periodicity of certain

features affects the reliability of tracking.

4.2.3.1 Automatic Feature Selection

The input data and the relevant outputs of the architecture are illustrated in Fig

7(a)-(i). The image is fed into the network where C/.3(x,y) are computed with the results

shown in Fig 7(b)-(d), respectively. The fused data after passing through the weight

memory is illustrated in Fig 7e along with the dominant feature candidates in Fig 7f

where the textures are strong enough. The result of feature measure for currently best

candidate (marked with square box) at selected region of interest (We only demonstrate

on one region for simplicity.) is illustrated in Fig 7g with unique local maxima shown in

44

Fig 7h. In this case, the optimal feature is found in single iteration as boxed with the blue

square in Fig 7i along with the optimal points by corner criteria [62] in pink dots. An

example of the input with complete periodic textures is illustrated in Fig 8a with well

distributed dominant feature candidates shown in Fig 8b. It is obvious with numerous

local maxima plotted in Fig 8d that the potential candidates are not reliable for tracking

unless additional distinguishable geometry is incorporated from (4.2.10) with U^J<«

condition where the signatures associated with the features exist.

(a): IRGB(x,y) (b): Cfay)

(c): C2(x,y) (d): C3(x,y)

45

(e): Ffused(x,y) (f): dominant feature candidates

(g): K(x,y) (h): 5iR(x,y) (i) Selected feature in blue box

Figure 7: Input color image and the outputs of the network at different stages are
illustrated in (a)-(i). White dot in (f) shows initial dominate candidate with uniqueness
test (v=l according to (4.2.12)) shown in (h). Pink dots are important corner features

evaluated by [62].

(a): lRGB(x,y) of periodic textures (b): dominant feature candidates

46

(c): 0jH(x;y) (d): SjR(x,y)

Figure 8: An example of input data with periodic textures where no feature is reliable for
tracking confirmed by large v computed from (d).

4.2.3.2 Feature Tracking

The automatic feature selection is performed by the framework discussed in

section 4.2.2 on frame 1 of a 360 x 240 video sequence. Once the optimal feature (optimal

according to its uniqueness with respect to p layers of textures) is selected, subsequent

frames can be passed directly to the entry of 'Feature Measure' shown in Fig 5 with

proper transformations, 7}, of the input data as discussed in section 4.2.2.3. Since the

feature is unique at the time it is selected, the regional global maxima may be treated as

new coordinate of the feature from previous frames while it remains relatively unique.

Snapshots at frames 1, 56, 78, 102, 135, 161, 180, 220, and 237 are illustrated in Fig 9.

After about 20 seconds, it slowly drifts away from the targeted feature because the

network at U does not compensate the temporal deformation with insufficient information

represented by (4.2.11). The drift becomes obvious after frame 135 where the intended

feature is severely rotated out of plane. We consider extending the framework in the

future to accommodate the deformation utilizing the distinguishable geometry of the

signatures related to the features represented by (4.2.10).

47

Figure 9: Results from feature tracking after automatic feature selection scheme. Shown
from top-left to bottom-right are snapshots at frames 1, 56, 78, 102, 135, 161, 180, 220,

and 237.

4.2.4 Potential Extension of the Framework

We presented a new framework of recurrent neural network for automatic feature

selection by textures and uniqueness for tracking. Preliminary simulation showed that

different types of textures could be extracted and fused, that feature measure played a

distance-based learning rule for convergence of the network to unique and texturally

maximized features. Feature tracking was also demonstrated by the network with a small

tweak. The tracking results indicated that the framework is acceptable to in-plane

rotation, scale change to certain extend. Research can be extended to make it more

adaptive to out-of-plane temporal deformation. One may also fully explore the signatures

associated with the neighbors of selected features to adapt the network to deformable

48

circumstances and minimize the drift effect for more accurate feature tracking. Those

signatures may also be used to estimate the numeric point spread function for motion

deblur subject to further evaluation of the scene [63].

4.2.5 Simplification

The intension of selecting unique features overly constraints the problem for

which one has to seek in descending fashion over the potential set of features. By the

iterative nature of the framework, this implies that one has to buffer the search space for

each region associated with the feature. Hence the bottleneck of non-constant memory

access will compromise its performance. To not sacrifice our objective of designing a

high performance system, we must remove the need for uniqueness of the features from

the framework. This section serves to simplify the structure to the point feasible for

hardware realization.

4.2.5.1 Single Trivial Layer of Texture

Rather than fusing a set of texture layers to obtain more optimal features, only a

single trivial layer is selected to reduce computation. The corner-ness criteria seem to

suffice our need according to earlier work by Harris in [64], Given a point in the image,

the auto-correlation of V component with adjacent pixels is defined by

ac(x,y)= £ Wxy(V(x+AX,y+Ay)-V(AX,Ay)f . (4.2.15)

With small (Ax,Ay), the Taylor expansion of first order simplifies (4.2.15) to

49

ac(x,y)= ^ Wxy(V(x+AX,y+Ay)-V(AX,Ay)) ,

V(x +AX, y +Ay) *V + [VxVy][*x,Ayf

w

' y v2 y v v
y w y v2

/Law x y i—iW y

(4.2.16)

= \AX,Ay\

= [±x,Ay]

[A^,A^]

A C
C B

where W(.) is the window function chosen to be summation of 3x3 neighbors to avoid

multipliers, Vx and Vy are the first order derivatives, and M matrix encapsulates the shape

structure characterizing the point. The corner-ness response is defined by

R = Det(M)-kxTr(M)2,

Det(M) = AxB-C2 , (4.2.17)

Tr(M) = A + B

where Det(.) and Tr(.) are the determinant and trace of M, and k is the empirical constant.

The best response with respect to particular region of the image is simply the maximum

of R in the range.

4.2.5.2 Sub-feature Representation

The feature measure of (4.2.9) with broader search ranges in the region of interest

can be quite expensive for large feature templates. With a bigger set of features, the

required computational power for searching and tracking becomes problematic. Equation

(4.2.9) therefore does not scale well and can consume excessive amounts of resources in

hardware implementation. To cut back the amount of calculations per feature template

without compromising its performance, each feature is divided into sub-feature regions

similar Stefano's [65].

50

Sub-feature Detection: The concept of sub-feature measure in a nutshell is to evaluate

the likelihood of the resemblance significant enough to provoke a full measure of the

complete template. The two sub-feature based measure of [65] seems to hold promise of

minimizing the number of calculations for exhaustive template matching; however, the

search itself (even if the range of search remains regional) has its own setback in that the

threshold of first sub-feature must be determined from the template in advance. The

bigger drawback is not the threshold of first sub-feature; rather, it is the significance of

that sub-feature. Supposed the first sub-feature is not sufficiently texturally specific or

optimal, it may generate an overwhelming number of responses to initiate full measures;

hence, it has the tendency of approaching the complexity in the context of full a search.

To overcome this obstacle, we introduce a constellation to link between the primary sub-

feature and a set of secondary sub-features. In addition to minimizing the number of

calculations with smaller sub-feature space, the scores of secondary sub-features serves

the purpose of confidentiality in supporting the primary sub-feature.

Feature Representation by Constellation: To reduce the number of calculations with

feasibility of such hardware realization in mind, the complete template is first

decomposed into sub-features with the primary sub-feature containing the most complex

texture. As shown in Fig 10a, the locality of remaining sub-feature set is determined by

its sub-optimal textures and directly connected with primary sub-feature to form a star

constellation. With such structure constructed, we may ignore the rest of that complete

feature template. To search for the feature in an image with relatively static spatial

51

locality around the region, the local maxima of primary sub-feature is first calculated in

(4.2.11).

The secondary sub-features are evaluated if and only if the primary sub-feature

and the already estimated secondary sub-features scored sufficiently high. In other words,

the star constellation that represents the full feature template has a cascaded search

sequence for which any failed score will terminate subsequent search on the maxima of

primary sub-feature. In this manner, the exhaustive search in the region of interest is only

needed on any primary sub-feature. The test for secondary sub-features is not really a

search; it only exists to verify the spatial relationship of the constellation specific to the

full feature remains legitimate. This concept can readily be applied to the tracking of

rigid objects since the spatial deformation of such objects is also encapsulated in the

constellation. In fact, the process of evaluating secondary sub-features generates the

byproduct of attributes related to spatial distortion. Let us not be lost in this very

promising model; the only piece of information necessary to solve part of our problem is

really the coordinate of primary sub-feature. What that means is the precise locality of

sub-feature set is not crucial. The score of (4.2.9) in image processing is often gradual for

which the match around the maxima is relatively sub-optimal to conclude the existence of

a particular sub-feature. Hence the representation is also tolerable to spatial deform to

certain extend.

While such star constellation can be effortlessly constructed on desktop

computers, the structure itself unfortunately poses the demand for buffering of full

52

feature and bookkeeping of sub-features. To bypass such a tedious process on low level

hardware implementation, a single path straight line constellation is selected with the

primary sub-feature on the top, ignoring the sub-optimal-ness of the textures in the sub-

feature set as shown in Fig 10b.

full feature

S1

S3

S2

/
P1

/
S4

full feature

P1
vb

S1

I
1
1
1

(a) (b)

Figure 10: Representation of full feature by texturally optimal sub-features in a
constellation, (a) A start constellation constructed to encapsulate the spatial relationship

of sub-features, (b) A straight line structure to simplify hardware realization.

4.3 Estimation of Motion by Consistency of Motion Parameters

In this chapter, we propose ME by measuring the consistency of motion present in

selected features. A minimum of two frame buffers is necessary to extract motion

parameters. By reducing frame buffering, system delay is also minimized. GME

calculates the camera or scene motion which can be modeled in 2D or 3D spatial

coordinates. We concentrate on 2D which is accurate for 6-parameter camera motion:

rotation, translation and scaling. To incorporate off-axes zooming and change of

viewpoint, the 3D spatial model is far more precise. In [66], Huang used corner detection

for GME to improve the edge detection based approach presented in [67]. The author

calculates the motion parameter by detecting the corresponding cross-points which are

iteratively grouped into inlier or outliers based on their velocities and residual error. If the

53

resultant inlier group contributes to prediction error below a certain threshold, then

parameters calculated within that inlier represents the global motion. The approach has a

couple drawbacks. GME by Edge or cross-point is not very robust to motion blurness(or

appeture problem) and sources of noise. It also depends on the quality of edge/corner

detectors; however, the cornerness may be solved with a large ratio of eigenvalues in x-y

directions which was the primary reason that we chose corner-ness for texture layer in

section 4.2.5 [64]. Given corresponding feature points, an alternative mean of grouping

inlier and outliers can be determined based on preserved properties of affinity through

angle and distance relation to other features. The affined model to compensate translation

before rotation and scaling matrix can be defined as:

G(x,M) = a
cos(0) -sin(0)"

sin(6>) cos(6>) y-y0

(4.3.1)

4.3.1 Estimation of Inlier Motion

Affine transformations distort the distance, angle, as well as area or volume;

however, they preserve three important geometric properties. One is the collinearity for

which the sample points laying on a line remain on the line after the transformation since

translation, rotation, and scaling are affine subspaces. The second property is the

parallelism where the lines parallel to each other remain parallel. Lastly, the ratios

between the sample points on a line are preserved constant. Supposed that we have

derived a set of feature points, £,_,, uniformly distributed in frame /,_,, and another set

St in It. By collinearity, each line between two points in St-j maps to St and can be

grouped into an element in a set of K motions:

54

S^=Mk's
J
t,i*j,i,jeS, (4.3.2)

for which we define the element in K with most sample points to be the inlier motion. In

this approach the outcome represents the global motion given sufficient uniformly

distributed samples. For a limited set of points, the inlier does not guarantee finding of

global motion.

Despite that the angle relationship is distorted by affinity, the consistency of the

angles between vectors S,_, and S, remains coherent given two conditions:

1. At least one element in K contains multiple vectors.

2. Each element satisfying 1 possesses constant angle between the samples

within the element iff the locality among the samples remain relatively

stationary.

The second condition implicates the existence of rigid regions or static background

within the video. And the most dominant element in K strongly correlates to global

motion. The angular argument and the direction of rotation of (4.3.2) can be evaluated by

(4.3.3). It is not necessary to explicitly calculate cosine term since the intension is to

check the consistency and group the rotational motions. With 2D motion model, the sign

of cross product also suffices the direction of rotation.

cos(£) = A ^ , ^ = ^ (S M X S ,) (4.3.3)
Pi-urn

The consistency in rotational motion provides good insight in estimating

dominant rigid regions; however, the integrity of the constant ratio must be sustained

55

since the error along the exact axis of the line is undetected. The rejection mechanism for

each element in K can be defined by (4.3.4) for which the samples outside the threshold

are discarded from the group based on absolute difference from expected value. The Td

constant is fixed to tolerate a source of error such as distortion from camera lens. Once

the inlier is estimated, linear regression can be applied to calculate motion matrix. An

alternative is to assign the angle found in (4.3.3) and the accumulated scale change

as (FT Ek\/Ek(t0) in (4.3.4) to rotation matrix and scalar value (assume uniform

zooming) of (4.3.2), respectively.

IS,.
K Ek

P/-UI 't-U

Is ','
>Td, iekeK (4.3.4)

4.3.2 Estimation of Intended Motion

In addition to estimation of inlier motion in section 4.3.1, it is also necessary to

evaluate the scene of interest for which the intended camera motion can be incorporated.

Without compensating the intended motion, the scene is fixed as an absolute coordinate

in space. Once the camera is deviated outside the range, there is nothing else but blank

screen. Given the signed progressive angle 0 of inlier calculated by (4.3.3), the

accumulated rotation can be defined by (4.3.5) subject to the window of rotation defined

in (4.3.6). The Te is a constant that separates the range of vibrative (unintended) camera

rotation with respect to desired movement. Likewise, the window of translation is

defined. The accumulated angle and translation are particularly useful for non-static

camera setting.

Oacc{t) = Oacc{t-l)^0(t) (4.3.5)

56

e^)-\e'J,)- r | 6 U ') | < ? ; (4.3.6)
\sign{6acc(t))Te, otherwise

4.3.3 Simplification by Order of Search

While grouping of a set of k elements of motions in (4.3.2) implicates a full

measure of all possible combination of nodes (selected features), one can avoid such fully

connected topology by eliminating certain redundant connectivity to the nodes. For

example, the affine attributes obtained from node a to b is the same as b to a. It is,

therefore, pointless to group both motion of ab and ba under particular element in K.

Neither are we interested in obtaining a complete collection of k motions. We propose a

triangular search scheme to reduce the number of calculations to minimum. Although

such a search scheme is not quite computationally intensive or time sensitive and is

considered negligible comparing to the complexity of feature measures in section 4.2, this

modification is essential for the design of simpler architecture. The concept of estimating

inlier motion can easily be illustrated in Fig 11. Given a set of feature coordinates Fi,..„

obtained from 8jR of (4.2.11), one can calculate the angle with (4.3.3) between two

vectors, SM and S,, from two pairs of points/nodes. At the bottom of the triangle, the

leftmost point-pair is used to calculate the angular relationship to other point-pairs in the

list. If the majority of such angles are non-constant, we may assume the test point-pair

belongs to any outliers and reject it from the list. In this fashion, the point-pairs of

outliers are being progressively eliminated until the outstanding element dominates and

terminates the search. Notice that there is absolutely no redundant calculations from the

57

Direction of search

Figure 11: Triangular order of search to minimize the number of calculations and to
identify the inlier and reject the outliers.

bottom level up within the triangle. And that the search terminates as soon as the

outstanding element is discovered. The very first point in the point-pair within that

outstanding element also has inherently the most stable spatial locality relating to other

points within the element. In other words, if we were going to maintain such a list of

known and reliable background features, the leftmost point on the dominant element

naturally forms a star constellation by the same concept that we learned in section 4.2.5.2.

That means we can readily use the most stable point(s) to calculate subsequent incoming

video frames to better estimate any new stationary features as well as narrowing down the

search range of (4.2.9) to a greater extent. For the sake of simplicity, we ignore such

efforts and concentrate solely on sorting out the inlier motion parameters. Furthermore,

the measure of constant ratio of (4.3.4) between new and reference frames is ignored

since the order of search also inherently rejects non-constant distant ratios. We also found

there is no need to implement the zooming factor of (4.3.1) and rejection mechanism of

58

(4.3.4) at this point until further development of the algorithm. In the next section, the

preliminary results of the algorithmic simulation of motion evaluation are combined with

the material from sections 4.1 to 4.2 to illustrate the working prototype closely resembles

what we would expect from hardware simulation.

4.3.4 Algorithmic Simulation of the Stabilization Prototype

The snapshots from stabilization of scene with non-uniform lighting conditions

are illustrated in this section to briefly demonstrate the outcome of the prototype. Fig 12a

shows the very first frame of the video. On the top left corner is the original image. The

feature selection and tracking results are circled in the top right frame. The bottom left

frame illustrates the moving object other than the background motion (separated by

several frames). It also reveals the influence of motion blurness and lens distortion on a

wide-angle camera. The frame on the bottom right corner shows the result of a stabilized

sequence. Notice that the first frame immediately selects texturally optimal potential

features (thin blue circles) in different regions of the image. All of the features with static

background motion have been detected in the second frame of Fig 12b (thick green

circles). Also notice the initial feature on the left most person in the image is already

rejected in Fig 12b as his motion is significant enough to deviate away from background

motion; however, features #9 and #11 perceived by our eyes as moving objects are not

immediately rejected due to the fact that both remain relatively stationary between the

frames. In frame #236 of Fig 12c, the cameraman already shifted the scene to the left and

is now detected as intended motion since the accumulated velocity/translation runs

59

*

m^.,.mpm-&-

(a) Frame #1: Potential features are been selected.

(b) Frame #2: Features are been tracked and marked as static.

60

M M H I Y i

i>iwj
nm

(c) Frame # 236: Stabilized sequence compensates the intended motion.

(d): Frame #1018: The scenario where feature measure fails to detect due to severe
motion blurness.

Figure 12: Snapshots of enhanced video and stabilized sequence to show different stages
of the event.

61

outside the window of monitor. The scene is therefore compensated to gradually

transition as directed by the cameraman. The scenario where the feature measure fails to

detect and track due to severe motion blurness is also illustrated in Fig 12d. The new

potential features are selected but remained untraceable as well in frame #1019.

4.4 Summary

The subjects of complexity of commonly used operators and the formulation of a

simple model necessary for stabilization of the video sequence were analyzed in this

chapter to reduce complexity and establish a series of steps feasible to implement in

hardware. Exploitation of redundancy properties inherent in the operators helped us to

focus on the essential computational power and eliminate unnecessary calculations. The

logarithmic domain computation further lowered the complexity of multiplication,

division and exponentiation related operators for realization of multiplier-less

architectures. The basic concept of video enhancement with fast color space conversion

was also illustrated; however, it should be noted the homomorphic processing was a well

established concept in literature. The basic model of feature selection and tracking was

presented with in-depth analysis of its drawbacks. A more hardware-friendly solution was

exploited to minimize the amount of calculations involved with feature evaluation and

measure. The advancement was to select a known reliable texture to accompany the

representation of the full feature into a constellation of sub-features. While we did not

explore the more complete characteristics of the model, the framework posed the

potential for future expansion to finer grains capable of analyzing certain spatial

properties. In section 4.3, we further proposed a simple technique to evaluate the inlier

62

motion by a triangular order of search. This method progressively rejected the outliers to

discover the most outstanding element which is equivalent to the background motion.

And finally the snapshots from algorithmic simulation were provided to illustrate certain

steps along the stabilization of the sequence. The case in which the model failed to

stabilize under extreme motion-blurness was also presented. In chapter 5, hardware

realization of different components necessary for the calculations introduced in this

chapter is discussed.

63

CHAPTER 5

DESIGN OF HIGH PERFORMANCE ARCHITECTURE

Various aspects of the design are introduced in this chapter which covers the

overview of system architecture and the realization of different subsystems. The main

portions of the chapter focus on the design of logarithmic modules with correction, the

video enhancement module, the feature selection, the feature measure and

correspondence management, the motion evaluation and the affine transformation.

Further modifications are introduced as necessary to simplify the architectures.

5.1 Overview

The overall block diagram of the system architecture is shown in Fig 13. The

"Stream Line Buffers" consists of eight line buffers to support buffering of nine video

lines streamed in from "Stream Vin". This component creates the internal parallel bus for

concurrent processing of other core engines. The data on the parallel bus are

simultaneously fed into the blocks of "Single-layer Feature Selection", "Partial NCC"

and "Video Enh" as well as the storage blocks. While these blocks operate in parallel

paths, their coordinate system is just slightly off each other due to the difference in

pipeline latencies. The "Frame Coord. States" block serves to generate the coordinate

states suitable to other blocks. It is basically composed of counters and some registered

adders to accommodate the offsets. The "Video Enh" engine basically enhances the RGB

components of incoming stream and sends the result into one of the two pipelined storage

PvAMs for full video frame buffering through the "Frame Switch" block. The switch

64

block consists of multiplexers to alternate the write/read paths between the frames. The

core engine for feature selection evaluates texturally optimal features by corner-ness

criteria and saves the feature into its storage space. At the same time, the partial normal

correlation is being computed. Under normal scan mode, the "Partial NCC" block only

evaluates on primary sub-features. It gives higher priority only if the coordinate of

secondary sub-features coming into the testing range. Similar the "Potential Feature

Storage", the partial NCC storage takes snapshots of the sub-features with each pass of

better correlation score. Once the entire feature set has been evaluated, the "Motion

Evaluation" block takes over the list of feature coordinates and begins the process of

inlier estimation in a stack fashion which mimics the triangular order of search. With the

obtained global motion parameters, the "Affine Transform" block generates the memory

address of stabilized video sequence and grabs the data for display.

Stream
Vin v

Stream
Line

Buffers
(LBs)

Single-layer
Feature

Selection

Potential
Feature
Storage

U * Partial NCC ^

H Video Enh

Video
Frame
Buffers

(2)
Stream Va
Vout

^f Partial
NCC

Storage
7EZ

Corresp.
Maintenance

^— Frame
—£ Switch

Motion r*
Evaluation

tut
Affine Transform

(Display Coordinate Mapping)

Frame
Coord.
States

Figure 13: Block diagram of the system architecture.

65

5.2 Logarithmic Domain Computation

This section covers the design of logarithmic modules. It mainly illustrates the

realization of approximation modules and the placement of error correcting coefficients

on a functional level; however, more efficient circuitry at the transistor level is currently

not available.

5.2.1 Architecture of Log2 Module

The log2 architecture consists mainly of the iV-bit standard priority encoder and a

modified barrel shifter (MBS). The general architectural design for log2 is shown in Fig

14. The priority encoder provides the index output based on the logic ' 1' of the highest

bit in the input value. As indicated in Fig 14a where N equals 16, the input of priority

encoder is capable of encoding any 16-bit real number. If the input value is strictly a

positive integer, the index output maps directly to the integer portion of log2 scale, binary

0000 to 1111 in this example. The infinity is bounded to index 0 as it is the logical

function of priority encoder, and there is no need of defining log2(0) = -oo for our

application. If the input value has both integer and fractional parts, the MSB of the index

on the output of priority encoder is inverted to determine the actual integer part of log2

scale. For example, the index value is now mapped to [7, -8] instead of [15, 0] integer

input value. Index 0 now corresponds to -8 in 2's complement. For the same reason,

log(0) = -oo is bounded to -8.

66

Input Bus
-Interlace
Unsigned

r

Data ln[15-0]

i
1 5 . . . 0

*

Standard
Priority Encoder

1
lnt(3-0]

1-

15 bits[14-0]

f.
Modified

Barret Shifter

lnt[3J

V ln«2-0I

Output Bus * , n | (3]
- Interface - - J t - ^ - -

Log2

2's
Complement

Integer

Shift n
lntp-01

L..

MBSout
Frac[11-0J

12 bits
Fraction MBSout[N-2..0]

Y

Figure 14: (a) Architecture of log2, (b) Mapping of multiplexers in MBS.

The fractional bits are extracted with a modified barrel shifter. It is composed of

N-l N-to-l multiplexers at the most where JVis the number of bits to be shifted according

to the given index. The logical functional view for mapping the set of multiplexers is that

given the index, it always shifts the bit stream at the index position to be the first bit at its

output. In standard barrel shifter, the output can be linearly or circularly shifted by n

positions from index 0 or N-l; however, the modified barrel shifters in both log2 and

inverse-log2 exhibit the reverse mapping. The mapping of N-l multiplexers is indicated

in Fig 14b. The index value along the vertical axis represents the index that specifies n

shifts. It is directly connected to the select lines of multiplexers. So for the binary

combination of n shifts, the corresponding input n is enabled. The outputs of

multiplexers are one-to-one mapping to the N-l bit output bus. The index on the

horizontal axis represents the bit value of the input at the corresponding bit location. The

values within the horizontal and vertical grid specify the multiplexer numbers where the

67

corresponding bit values of the input are mapped to. For example, with the index value

of three, bit values at locations 0 to JV-1 of the input are mapped to the third set of inputs

of the multiplexer numbered N-A to 0. The third set of inputs (marked as '0' in the grid)

of the multiplexers outside the mapping bit range of the input is padded with zeros for

simplicity. The net number of inputs of the multiplexers can be reduced by half when the

architecture of MBS is optimized, eliminating the zero-padded inputs. The fraction on

the output of MBS occupies 7V-log2(-/V) bits with the fixed point log2(JV) bits down from

the MSB. Note that the whole fraction up to N-l bits can be preserved as needed.

The maximum propagation delay of the log2 architecture is computed based on

the critical path of the combinational network in priority encoder and modified barrel

shifter where the modified barrel shifter depends on the index from priority encoder to

perform n shifts. Note that the arrangement of multiplexers is completely in parallel such

that the overall latency comprises a single multiplexer. The depth of propagation delay is

significantly less compared to non-pipelined conventional multipliers. It implies the

architecture can provide very high speed operations.

5.2.2 Architecture of iLog2 Module

Structural mapping of inverse-log2 is the reverse of log2, as illustrated in Fig 15b.

The inverse-log2 architecture is simpler than log2 architecture since it is not necessary to

have the decoder to undo the priority encoding where the integer serves as n shifts to the

reverse of the modified barrel shifter (RMBS). The inverter is not needed for the inverse-

log2 architecture shown in Fig 15a if the inputs are unsigned positive numbers. Note that

68

negative values of log2 scale indicate the inverse-log2 result in linear scale should be a

fraction.

Int[3-01 Frac[1!-0]
Input Bus . ' -
-Interface - -

Log2
#lnt[3]-

lnt[2^0]

lnt[3]

lnt[3-0]
Shift n Reverse* of

Modified
Barrel Shifter

RMBS
rt t , „ Data Out[15-0]
Output Bus x

- Interface — ^
Inverse Log2

* Frac[11-0] is padded with'1'
at Frac[12] to form Frac[12-0]
to minimize component count.

Index
Value

DatalnBUf]
0 - - - - - - N - 3 N-2 N-1

RMBSout{N-1..0l

T
Figure 15: (a) Architecture of inverse-log2, (b) Mapping of multiplexers in RMBS.

For applications where such small numbers are insignificant, the hardware resource can

be reduced by half for the conversion of signed inverse-log2 scale to linear scale. Another

important point is the fraction bits fed to the reverse of the modified barrel shifter should

be padded with logic ' 1 ' at the MSB such that the magnitude of index can be restored in

binary. It is the equivalence to performing the OR operation between the decoded bit and

the unpadded fraction bits if the decoder was included in the architecture to reverse the

operation of log2 architecture. The operating frequency of inverse-log2 architecture is

estimated to be twice that of the log2 architecture as the propagation delay of the critical

path is reduced to half.

69

5.2.3 Error Correction

The error correction factor has the form of (3.12) and can readily be combined

with the fraction bits of (3.13):

{log2NXna=k:s^sb.v..KU---Ls+0....0.000EC^EC_5EC_ (5.2.1)

Likewise the inverse-log2 is just the reverse of this process. The simple correction circuit

that improves the precision is shown in Fig 16. It only requires a total of 16 logic gates to

generate the correction factor and two bits full adder (FA) and four bits half adders for

addition of (5.2.1). The placement of correction circuitry is shown in Fig 17 with the

logarithmic modules fully optimized. A few more pipeline stage is introduced to each

module as a result of incorporating the EC factor. Although not shown in Fig 17, we

managed to eliminate the padding shown in Figs 14 and 15. The number of mux/demux

necessary for mapping is reduced to eight sets. The advantage of these modules will

become clear once we apply it in the following sections.

\ 3 \ 2 } \ f 0 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-

i 4 4 i 4 4 1 1 1 1 1 4
2's complement or non-negative log2(A/), 4/8 fixed-point dec

Figure 16: Error Correction Circuitry.

70

Data ln[15-0]

-»tf- -I

Std Priority
Encoder

=̂ F pT

15bits[14-0]

Modified
Barrel Shifter

lnt[3-0] Shift n

1 J MBSout lnt[3]

lnt[2-0]

#lnt[3] nt[3] I

2's Compl
Integer

lnt[3-0] Frac[0..7]

#lnl[3Hf_#""T""

^ _?
Y lnt[2-0] - J

lnt[3]
lnt[3-0]
Shift n 5 g_

P2

Reverse* of
Modified

Barrel Shifter

1
RMBS

Data Out[15-0]

Figure 17: Fully optimized architectures of Log2 and iLog2 with error correction factor.

5.3 Video Enhancement Module

One of the main tasks in the stabilization system is the video enhancement which

compensates the physical limitation of image sensing devices. This section discuses the

design of various components which contribute to a tightly coupled system architecture

capable of sustaining a very high throughput rate.

5.3.1 Overview of Computational Sequence

A brief overview of the enhancement system with full color space transformations

is shown in Fig 18a along with its interface signals which are connected to the supporting

circuitry (the 'Synch' block) synchronous to an off-shell video input chip. The input

source can be from a video decoder, assuming progressive scan mode for which odd and

even video fields are not interlaced, or from VGA source digitized by analog-to-digital

converters (ADCs). The output is achieved likewise with video encoder or digital-to-

71

analog converters (DACs), one for each color component. The core architecture features

RGB streaming input with the options of specifying the image width on 'Imsize' bus, and

reloading of the kernel coefficients through 'KernBus' for the convolution operation. The

output buses include the enhanced RGB components. The computational sequence takes

place as follows. The input pixels are buffered just enough to create an internal parallel

data bus (PDB) to maximize the fine grained parallelism for massive parallel processing.

This bus is also common to other core engines to be discussed in later sections. RGB to

HSV color space transformation is calculated and followed with enhancement of V

component. Finally, HSV to RGB conversion is performed with enhanced V before being

sent to video output circuitry for testing and storing in the frame buffer for video

stabilization. While the video I/Os are fixed by off-shell components, the complexity of

the enhancement core can be simplified as discussed in section 4.1. The V component can

be directly extracted for enhancement and normalizing original RGB components as

shown in Fig 18b. The final output is computed by simply merging the enhanced V and

normalized RGB. Hence one division and multiplication approximates the full two-way

color transformation in the computational sequence.

Video Dec
Or ADC

Converters

RGBi<23:0>
lmsize<9:0>

Enable
Reset

Cik

Buffer
Data

Jr

• *
RGB to

HSV

HS

Vi
Boost V

Vo HSV to
RGB

t

RGBo<23:0>
RDY

i
Video Eric
OrDAC

Converters SynchH KernBus<19:0fc,
LoadKern

(a): Computational sequence of video enhancement system with full color space
transformations.

72

RGBi<23:0>
lmsize<9:0>

Enable
Reset

Glk
KemBus<19:0fc.

LoadKern

Buffer
Data

~r~
RGB

Stream In

Max
{RGB}

Vi
Boost V 0̂

{RGB}/Vt

RGBo<23:0>
RDY

(b): Simplified core computing sequence.

Figure 18: Block diagram illustrates the overall sequence of computation alone with
simplification.

5.3.2 Tightly Coupled System Architecture

The tightly coupled system architecture is illustrated in Fig 19. It mainly consists

of three units, the data buffer unit (DBU), the homomorphic filter unit (HFU), and the fast

HSV to RGB conversion (HRC) arithmetic for which H and S components are never

calculated. The integration of these units contributes to consistent and highly parallel-

pipelined design to maximize hardware utilization and deliver very high peak performance

which might be degraded in a loosely coupled or unevenly pipelined system. The design

of these units is discussed in greater detail, keeping in mind the computational sequence,

in the following sub-sections along with notations introduced as they appear.

Data Buffer Unit

RGBin

LB#K-1

Address
Generator

Homomorphic Filter Unit

r - |^Register . . Q ^ f e y ^)
HSV2RGB
Conversion

JO-

V-fold
VRGBL + H

H-fold & PEA
H-fold & PEA

irt^—*4,
H-fold +

PE }• -H PE r H

H-folding & PE
Interconnects
to Form PEA

{RGB},
Sync Reg Set

toenterjapped

Reg Set . I I r ~ l |

Figure 19: System architecture illustrates the coupling of three main units to achieve very
high performance with simplicity in the design.

73

5.3.3 Data Buffer Unit

The DBU is implemented with the dual port RAMs (DPRAMs) as shown in Fig

20. One set of DPRAMs is utilized to form line buffers (LBs) and store just enough lines

of image in the LBs to create massive internal parallelism for concurrent processing. The

pixels are fetched into the DBU in raster-scan fashion which requires unity bandwidth for

the input data. The DPRAM based implementation has the advantage of significantly

simplifying the address generator compared to commonly known first-in-first-out (FIFO)

based approach. The address generator with the DPRAMs based implementation makes

scalability of DBU consistent and simple. It consists of two counters to automatically

keep track of the memory locations to insert and read the data to internal PDB for

extraction of V-component. Data bus A (DBA) of (£-1) xPRGB bits wide, which is

formed with just enough number of DPRAMs in parallel, is used to insert pixel values

through write-back paths to the memory location designated by address bus A (ABA). For

eight-bit pixel resolution, PRGB is 24 bits. The data bus B (DBB) is used to read the pixel

Pixel In

PKOH

bits

;

^-Write-Back Path"
5*

A Set of Dual Port RAMs
(A'-1) XPROH Bits Wide Data Bus

DBA
Write Port!

f-CtrM

ABA ABB
I .. L

, lmsize^
^ Bus *

Up
Counter

ImSize
Reg.

Up
Counter

]+K —•*
Address

Generator
' • • ' • • '

\
DBB

Read Port

Figure 20: Detail architecture of the DBU shown in Fig 19. The data bus of (K-l) xPRGB

bits wide is grouped into a number of 24-bit paths to form effective LBs for 8-bit pixel
resolution.

74

values onto internal PDB and write to the write-back paths. Only one address generator is

necessary in DBU.

5.3.4 Extraction of V-component

The V-component is extracted by a max filter. The concept was simplified from

the architecture for separable filters suitable 2D uniform filters [19]. For ID max filter,

which is what we need in this design, a pipelined adder tree (PAT) style can be utilized. A

generalized ID max filter architecture for N nodes is shown in Fig 21. The design utilizes

the signs from subtractions in the PAT structure to successively filter and merge until a

maximum value is found at the end of last pipeline stage. An array of K 3-to-l max filters

is necessary as illustrated in MAX(RGB) Array block of Fig 19. This architecture works

for min finder as well by swapping the inputs fed to 2-to-l multiplexers.

N input
data nodes

Register

s Max value
output

Figure 21: Elementary architecture of the max filter is used to extract the V-component.
K elements of 3-to-l max filters are needed in the MAX(RGB) Array as shown in Fig 19.

5.3.5 Architecture of Homomorphic Filter

The HFU coupled with an array of the log2 scaled version of extracted V-

component is illustrated in Fig. 19. The quadrant symmetry property of the 2D

convolution operation indicated by (4.1.4a) and (4.1.4b) allows the computation to

75

concentrate on one quarter of the kernel through folding. The vertical folding of data is

accomplished by linearly folding the data from the last stage of internal PDB (the log2

scaled version of V component array) with adders. This halves the processing bandwidth.

To normalize a value v (log2(v/2N) = hg2(v)-N), which is negative, given the fact that

image pixels are positive and log2 of negative number is undefined, the absolute value can

be logically approximated by taking the inverted output (Q~N-log2(v) = hg2(v)) of the

registered result from vertical folding. This procedure inherently utilizes the V-fold

pipeline stage rather than introducing an additional stage and resource to compute the

absolute value of the normalized v. To reduce the processing bandwidth by another half,

the horizontal folding defined by (4.1.4a) and (4.1.4b) is translated to (5.3.1a) and (5.3.1b)

and performed with respect to even and odd dimension kernels, taking account of the

inherent delay in the systolic architecture. The H-fold denotes the results from horizontal

folding, and HQ is a set of horizontal shift registers for vertically folded data. The

registered results of the H-fold stage are sent to arrays of processing elements (PEs) for

successive filtering. The partial results from the PE arrays (PEAs) are combined together

by a pipelined adder tree (PAT). The overall output of the homomorphic filter is kept in

the log2 scale for the fast color space conversion in the HRC architecture as shown in Fig

19.

« f w n JHQ[0] + HQ[2£ + 1], f o r o d d « * 0
H-fold(£) = < (5.3.1a) v ' [HQ[0], for odd £•,£=()

H-fold (£) = HQ[0] + HQ[2£], foreven£,V£ (5.3.1b)

76

The design of the PE in the homomorphic filter utilizes the log-domain

computation to eliminate the need of hardware multipliers. The data from the H-fold

register is pre-normalized without extra logics by shifting the bus. It is then converted to

log2 scale as shown in Fig 22 and added with log2 scaled kernel coefficients (LKC) in

LKC register set which is initialized through chained bus with 'LKCin' and 'LKCout'

signals. The result from last stage is converted back to linear scale with range check (RC).

If the overflow or underflow occurs given the desire range, the holding register of this

pipeline stage is set or clear, respectively. Setting and clearing contribute the max and min

values representable to iV-bit register. The output of this stage is de-normalized, likewise

by bus shifting, before it is successively accumulated along the accumulation line.

• From H-fold Reg.
<fC Pipelined PE

Figure 22: Architecture of the PE in the homomorphic filter.

5.3.6 Fast HSV to RGB Color Space Conversion

The HRC unit inverse transforms the enhanced image in HSV color space back to

RGB representation without computing the H and S components. As illustrated in Fig 19,

the center-tapped RGB components from DBU pass through synchronization register set

to compensate the latencies associated with HFU. The synchronized RGB components

77

are converted to log2 scale. Furthermore, the V-component at this node is also determined

with the architecture shown in Fig 21. The Venhi output is first de-normalized by adding

constant 8 for 8-bit pixel resolution in log-domain which is equivalent to multiplication

of de-normalizing factor D = 28. The division in (4.1.11) is calculated by subtraction in

log-domain as illustrated in Fig 19. The final output of the enhanced RGB components is

computed by taking the inverse-log2 of the sum of the resultant subtraction and Venhi- This

completes the discussion on the design of image enhancement system.

5.4 Single Layer Feature Selection

The design of architecture for computing the corner-ness response is covered in

this section. Furthermore, the memory layout and the conditions which trigger the events

of capturing and flushing of potential features are also described with respect to the score

of the texture.

5.4.1 Overview of Feature Selection & Storage

Feature selection involves evaluation of the score from its texture. The block

diagram of this subsystem is shown in Fig 23. It basically has two main components:

calculation of feature score and the storage memory. Given the new score, R, the

coordinate and the feature in the memory is updated if a better score is observed, thereof,

overwriting any preexisting sub-optimal potential features. The most important part of the

design for this subsystem is the calculation of texture score.

78

llmgx

Figure 23: Block diagram of feature selection and storage subsystem.

5.4.2 Components of Auto-correlation Matrix

The task to obtaining the texture score is to compute the auto-correlation matrix,

M, of (4.2.16) on the first step. Only then can the response, R, be calculated from (4.2.17).

The detail diagram for the design of the architecture is shown in Fig 24. A 3x3 kernel is

utilized for the calculation of the derivatives, Dx and Dy, from the grayscale image. The

kernel mask equivalent to differentiation of discrete samples has the coefficients of

Dx =

-1 0 1

-2 0 2

-1 0 1

Dy = DxT. (5.4.1)

Since all coefficients are exactly power of two, no real multiplication takes place. Due to

2D summation of a 3x3 kernel, we must utilize three separate derivatives to concurrently

calculate the A, B, and C components of M matrix. For the Dx shown in Fig 24, vertical

folding is applied to merge and reduce computing nodes into one by summing the

adjacent lines on LBs and the left shifted (multiplied by two) version of the LB in the

middle. This result is then subtracted with the delayed/earlier version of the partial results.

By the same token of folding within the architecture as of Fig 19, only three adds/subtract

79

are needed. Likewise the Dyt to Dy3 are calculated with minor difference. Instead of

folding three nodes vertically, the folding is done horizontally. Although not exactly as

depicted in Fig 24, the adder node with left shifted data is actually added from the last

delay, Z, component due to pipeline delay of the three-node adder. The fact that we

utilize logarithmic modules forces us to extract the signs of Dxis and Dyi.3. This is not

necessarily undesirable as one must compute the squares of Dx and Dy. Once the log2

scale values are obtained the buses are wired to the left for effect of squaring the numbers

for A and B components of M matrix. The summation of ilog2 values does the job of

combining the results. The C component is calculated slightly different in that the signs

of Dx XORing Dy are recombined to form signed numbers for a 3x3 summation. Since

the real computing bandwidth mandatory is the moving video lines, a full 2D summation

is a bit of exaggeration for what the bandwidth really demands. Although the dimension

is rather small in this case for the requirement of hardware resource to be negligible, we

should see in a moment that 2D integral summation is the most efficient implementation

in such a scenario. With the folding style of Fig 19 alone, it can easily be accomplished

by folding vertically and then horizontally through its own delay lines as shown on the

right side of Fig 24. For the same reason of pipeline timing effect, addition of the middle

node of horizontal delay registers is really the value of the rightmost register for

computing the final results. As far as programming is concerned, the compiler will

generally simplify it to eliminate unnecessary registers.

80

H +U-: HCW B Dx:1

Dx:2

>

Dx:3

h * L2-L(

B
2-1-0 - « •

Dy:1

Dy:2
Dy:3

•5?
Ui

} w

xor +
§ H ^
£

Q (M

8* CM

+Sum
(3x3) fc
J.'.',

9 +Sum
(3x3) fe
X5
+Sum
(3x3) £>

Figure 24: Architecture for calculation of A, B, and C components of M matrix.

5.4.3 Logarithmic Corner-ness Response

Given the A, B, and C components from the previous section, the computation of

corner-ness response seems effortless. To obtain the components of AxB, C , and

k(A+B), we simply calculate the log2 version and manipulate the buses with adders and

subtracters as needed. The results converted back to linear scale may then be merged to

form the final score, as illustrated in Fig 25. Due to excessive word length of the scalar

score, the response, R, is converted back to log2 scale, RL, which occupies only 13 bits

for storage memory. A 13-bit scalar that represents the magnitude of 32-bit number is

R=A*B-C2- k(A+B)2

Figure 25: Architecture for calculation of the response in log2 scale to reduce word
length.

81

efficient enough for our purpose. The storage layout and the condition for capturing and

flushing the potential features are discussed in next section.

5.4.4 Storage of Potential Features

The timing which initiates the copy state to capture or flush the potential features

depends on the coordinate XY values of its subsystem. The copy state for the capturing of

potential features is triggered by the textural score which improves the preexisting

features. The condition stated in Fig 26 is as follows. The existing score output from

memory 'Scro' is subtracted from RL. The sign bit indicates one instance to initiate the

copy state, given the potential feature module is currently active, 'pfActive'. This copy

state captures the primary sub-feature of the potential feature as shown on the top circuit

of Fig 26. Due to the pipeline latency of dual port RAM for our primary storage, values

written to the BRAM are not immediately available, and the delayed version of this new

score, RL(1) is also used to trigger the copy state which first terminates the copy state

machine previously executed. The second condition of initiating copy state becomes

active when the calculated XY coordinate is exactly at the center of secondary sub-

features of the potential features. The 'SC1..2XY' constants are used to compensate the

pipeline delay of the subsystem. Due to the layout of storage ram, the copy state is really

just the assertion of the write signal to the BRAMs for a certain number of circles

determined by the counter. Flushing of the potential features from the BRAM is

accomplished in a similar manner.

82

Ctrl Reset

pfActive

pfCSWRA
pfCS<= (pfi XY, RL(2))
pfCSAdr[1..0]<=pfSubf

pfLoadAdrs
pfLoadCopy Length

Copy
Loop <r

pfRamWR
pfCapture<=Corr2Tap
pfAdrCnt<=pfAdrCnt+1
pfLength<=pfLength-1

Figure 26: Conditions of initiating copy state.

The storage layout of feature selection subsystem mainly comprises the BRAMs

in single port mode and the XY coordinate with score in a separate BRAM operated in

dual port mode to share storage of two components related to energy calculations. As

illustrated in Fig 27, a sufficient number of BRAMs must be stacked together to form the

required number of bits for each column within the sub-feature. Since we already know

the bandwidth of moving video lines, one does not need to take the snapshot of the

feature in a single clock cycle. This essentially implies the minimum use of FPGA

resource solely allocated for the routing of the bus. The 'pf capture' input bus comes

from part of the NCC architecture for which a single column can be captured into the pf

storage at proper timing. Likewise, 'pf flush' pumps out the pf features column by

column for the NCC storage circuit to capture into its own storage. To the left of Fig 27,

the XY coordinates and the scores are constantly updated on BankO of the BRAM. The

83

Bankl is dedicated to capturing and flushing of energy components of the NCC

calculation. Due to slight pipeline differences the 'Sync Regs' are introduced with more

delays to synchronize inputs/outputs with late-read/write policy. As far as addressing the

BRAMs is concerned, five bits are dedicated to store maximum of 32 columns per sub-

feature, another five bits are assigned directly as the index of the complete feature, and

finally two bits are used to select sub-feature index. In this fashion no real address to

feature index translation is required as in fully utilized memory locations. It is also the

reason to configure BRAMs with 12 bit address lines. The cost of such convenience

comes with a quarter waste of the total storage space under current design with total of

three sub-features. In the next section, it should become clear on how the process of

capture and flush takes place.

! Port B
!Bank 1

pf2corr2 j

Coor2ldx Cntr
i

JJ Rst/Cnt

a MUX
A-adr

B*-adr'

pfSfr

pfEt^_
Sync Regs

Port A
Bank 0 j ldx2Adrs

Single Port j
BRAM

j — $ AdrsCntr ^— Load/Cnt

Coord
Score
BRAM

*| (P«S)

pfiXY
H 4Kx4BRAM1

Scri/RL(1)

Scro v

H 4Kx4BRAM2 H

pfoXY e 4Kx4 BRAI M18 F

pf flush

pf capture

Figure 27: Storage layout of feature selection subsystem.

5.5 Feature Measure & Tracking with Improved NCC Architecture

The design of feature measure and tracking subsystem addresses the issues of

efficient realization of NCC architecture which include the partial calculation of NCC

84

score, the 2D summation and correlation, and the essential layout of the memory to meet

the bandwidth requirement for feature storage and retrieval.

5.5.1 Overview of Shared NCC Architecture

The overview of a shared NCC architecture is illustrated in Fig 28. Given the

input column array, the NCC score can be evaluated by pumping the data through 'Partial

NCC block. This block must be tightly coupled with the feature storage shown on the

right side of the figure. The close coupling is absolutely necessary due to the extreme

processing bandwidth and the minimum waste cycles within the 'Partial NCC block.

Similar to the feature selection subsystem, the NCC has another copy state to capture or

release the data to NCC storage memory. The ownership of 'Partial NCC block depends

on the score of current results. The 'Corresp. Maint.' regulates the dataflow and updating

between the storage and 'Partial NCC blocks.

fi array
Partial NCC

Eti denominator
Sum(f)/ in numerator

. ti array into Corr2

Potential ^
Feature
Storage

Ctrl

Score. Corresp
Maint

Score
£—| Coord

Storage

fi & comps
writeback.

Featl

Feat2

Figure 28: Block diagram of NCC and storage subsystems.

85

5.5.2 Partial NCC as Parallel Filters

The earlier implementation of NCC architecture we presented in [68] which

computes (4.2.9) directly has a very high performance yet with extremely inefficient

utilization of hardware resource. This inferior design which allocates an excessive

amount of resource also has no flexibility on potential scalability regarding the dimension

of the feature template. Although the demand on resource may be cut back with

performance trade-off as in [69], the response time with respect to dynamic mobility of

the templates is still unacceptable. The reason is trivial while the change of templates

executes, the correlation scores being calculated are virtually meaningless as they are

direct resultants of blending the templates. This creates large blind spots if one must

simultaneously scan several features. While the simplification of section 4.2.5.2 may

significantly cut back the number of necessary calculations, hardware implementation of

partial NCC may still be achievable to sustain unity search bandwidth for the measure

over several features simultaneously. To get around with the problem without

compromising its performance for the gain of resource, we adhere to the assumption of

the observation of sub-optimal scores around the search targets. The blind spot must be

minimal by avoiding a timeslot multiplexed resource-performance trade-off.

The earlier NCC architecture was implemented as cascaded filters with

component evaluation of (4.2.9) followed by average filters. The serial nature of

calculation sequence imposes data dependency which requires a set buffer space to hold

the partial results. It is, therefore, wise to realize the design as parallel filters with the

following simplification:

86

X [[/ (x + «,j; + v)-/U]V]x[;(w,v)-f„>v]]

0> y) = - — - • • :

X [/ (X + M,>- + V) - 7 „ V] 2 X [^ . V) - ^] 2

u,v u,v

£ [/ (.) x t(u, v) + /„/„, - fu,Au,v) - TUJ{)]
uy_

Z[/(-)2 +11 - 2fu,J(-)] X [/(«, v)2 + C - 2̂ >v/(«, v)]
1/2

Y,H?+UVfl-2UVflv £>(a,v)2 + UVt2
v-2UVt2

v

T[f(-)xt(u,v)]-UVfuJ^

Ytftf-uvfl Y,t(u,v)2-UVtu
2

v

w , UVf2
v=UVfuJuv =—I X/,.v

c s.s
uv t"f

sr,—
l—sl

f- uv
s, - — s f

nl/2 (5.5.1)

The correlation, C, may now be computed in parallel with components of energy

normalization. The sum off, Sf, and the square of the sum/ Sj can be treated as a single

component while the sum of squared f, S 2 may also be calculated in parallel. Equation

(5.5.1) also makes the design easier in that all partial results are non-negative.

5.5.2.1 Architecture of Normalizing Factors

The architecture of feature measure is illustrated in Fig 29 with the detailed

portion dedicated for energy normalization of the correlation results. When the data of

moving video lines pump through entry nodes, fUiV, from common PDB (internal parallel

data bus discussed in section 5.3) of the system, the square of/ is calculated with bus

87

shift of readily available log2 scale version of 'f,fi. At the output node, the column array of

f is merged to compute the 2D summation by integral sum. Concurrently, the sum of/is

been computed and then also converted to logarithmic domain for division with UV

factor which is the constant of UxV sub-feature dimension. Since the pipeline latency

of S2
f I UV stage is one more than the S 2 stage, a register is included to synchronize the

partial results for subtraction operation to once again merge the nodes and obtain a more

complete partial result. The output of log2 scale Ef is then added with Et to form the

denominator portion of (4.2.9). While this part of the architecture performs the

calculation of denominator, the factor StSfl UV is also being computed in a parallel data

path. The earlier node which has the result of Sf in log2 scale is also being merged

(through synchronizing registers) with the addition (linear scale multiplication) of St

component and subtraction (linear scale division) of UV constant. Before converting to

log2 scale for the final energy normalization sequence, the result of StS// UV is combined

with the output from 'Corr2' correlation block which has the most expensive computing

power of the entire NCC architecture. The nodes in red color labels are used to capture or

flush the current state of the sub-features between NCC subsystem and the pf subsystem.

The blue nodes have the same function but are interfaced with local storage for cycling

between current and previous video frames. The final scores of NCC output are tagged

with a specific feature index for further processing. Note the calculation of energy

components is quite hardware resource friendly. The real burden of the design is in the

Corr2 block along with its storage.

88

>%
TO
i_
<
O

"S
o _J

fl «

fl

>.
5" i-
<
"o*

1
q
=!

f 72
<->4

55
_^ pf EfL out
V pf EfL in

pf Sf, out ^

p fF lush.J

pfCapture RD/WR/ADRS

Figure 29: Architecture of feature measure by NCC.

5.5.2.2 2D Integral Summation

One of the most efficient components includes the design of 2D integral

summation. Although integral sum is widely used in computer vision to reduce the

complexity of certain calculations on the desktop computer, the same functionality

conventionally implemented in hardware is really accomplished by either fully pipelined

adder tree (PAT) structure or modularized processing elements (PEs). The average cost is

one adder per node/PE which requires UxV nodes given such dimension of the sub-

features. With 2D integral sum, the cost exclusively depends on the number of moving

rows or video lines. For the example of nine elements in a column array, as illustrated in

Fig 30, the PAT structure is needed to reduce processing power to a single node. This

partial result then flows through the 27 registers to be applied for summation under of a

89

9 x 27 window. While the PAT result is been registered through a series of registers, it is

also sent for the accumulation of preexisting values. On the other hand, the output of 27

tap registers at node B is applied to deccumulate the accumulated result from node A in

Fig 30. The final output of a 9 x 27 summation can simply be obtained from partial results

on registers A and B. Nodes A and B are essentially a single node which performs an

add-and-subtract operation but are decomposed to reduce the delay path between the

registers. The 2D summation in this example only requires ten adders and one subtractor

as opposed to 242 adders of a full scale architecture.

(A
Q.

2
l -

Integral sum 27 taps

©Vr§
d

Sum2D

£H+
Figure 30: Architecture of 2D integral summation.

5.5.2.3 2D Correlation

While the simplicity of integral sum is fascinating, one would wish to copy such

idea and paste it into the design of the summation in Corr2 block. The true processing

power of the Corr2, however, is not one column array per clock. Rather, it requires 27

column arrays per cycle in our example. It is, therefore, inevitable to implement a full

scale PAT to merge all partial results and produce the final output on cycle basis. The

architecture of Corr2 is shown in Fig 31 along with the PE. Each PE basically calculates

the multiplication of/and t before the PAT structure. Although log-domain computation

simplifies the burden to a certain extent, a 9 x 27 Corr2 architecture still demands 243 8-

90

bit adders, 243 16-bit iLog2 modules and 242 16-bit pipeline stage expanded adders. The

Corr2 module consumes a majority of the resource in our video stabilization system;

however, it should also be noted that a 9 x 27 dimension sub-feature in our design

represents virtually a limited number of full features. When the sub-features are

combined, the processing power is virtually a multiple of base dimensions. For the

example of a primary sub-feature accompanied by two (or more) secondary sub-features,

the virtual computational complexity becomes 27 x 27 at the expanse of the base

dimension. That is something infeasible in the earlier design regardless of resource

optimization.

h

-*

-)

- *

- *

- *

PE
1,U

PE
2,U

PE
3,U

I
I

• I

1

PE
v,u

PE
1,3

PE
2,3

PE
3,3

PE
1,2

PE
2,2

PE
3,2

PE
1,1

PE
2,1

PE
3,1

I

PE
V,3

PE
V,2

PE
V,1

A
D
D
E

T
R
E
E

3

*

R H>

Corr2

PE !

f x t i

Figure 31: Architecture of Corr2 module.

5.5.3 Storage Layout

The storage layout of the NCC module demands the highest bandwidth for which

the snapshots of the new sub-features may be captured on cycle basis. To cope with such

bandwidth, the queues are localized to distribute the storage of sub-features with respect

to the kernel nodes of the NCC architecture. As shown in Fig 32, the dual port BRAMs

are layout in a way that the input and output nodes of PortA and PortB are completed

91

attached to NCC block with one-to-one connectivity. This configuration makes the

capturing of sub-features possible within a single clock cycle. Due to the available layout

of the embedded BRAM itself on the FPGA, the nine-bit address lines are reduced to

eight bits in dual port setting to minimize memory waste and cut back the required

number of BRAMs by half. Similar to the pf storage in section 5.4.4, total of eight-bit

address lines are needed: five-bit for feature index, two bits for sub-features, and one bit

for toggling between previous and current feature sets. Given such a memory layout,

there is no real index to address translator as shown in the address field of Fig 32.

•Datapath: potential ,
freature storage * I Storage: feat 32 sets

27x8bits in 3 BRAMs Dual Port

~1~
Datapath:
line buffers

_L
27x8bits in 3 BRAMs Dual Port

1̂ t_|
1 MvO« Idx2adrs

Translator

Figure 32: Storage layout of the NCC architecture.

5.6 Correspondence Management

The 'Correspondence Maintenance' subsystem of Fig 13 serves to manage the

results between the NCC module and coordinate of the features as illustrated in Fig 33.

The BRAM memory block stores the XY coordinate and the score of each feature similar

to the layout of pf storage block. When running into the leftmost coordinate of each

moving video line, the Y coordinate of previous feature, fxp, is read out to check if the

92

search range should be active in the 'Range Check' block. Given the 'A-adres' (5-bit

feature index) and the in-range flag, 'InRng', the XY coordinate is written to one of 8

index register table, 'IdxRegArr' which serves as small cache for fast target scanning.

The actual write to a particular register is enabled by the 'Rotate' signal which contains

the one logic ' 1' bit with in the eight-bit serial ring. The purpose of such a cache is to

eliminate waste cycles. Given 32 feature sets, one would be required to read these

features in 32 clock cycles, regardless of its range. This mechanism very passively

creates undesirable blind spots for computing the NCC scores. The cache solves the

problem by retreating the searchable coordinates in advance to the actual feature measure,

making it more scalable to larger set of features. The '#RngFlg' generated by each

register in the table is calculated by the distance of range and the current X coordinate of

the subsystem. This flag is used as a feature read signal, 'featRD', propagated to the

'PNCC & Storage' block to activate the loading of sub-feature into kernel registers. Prior

to reaching the PNCC subsystem, however, the address is used to retreat the score,

'fcScr', on port B. The 'fcScr calculates whether the scan should be performed on

primary or secondary sub-features based on the logic specified in Fig 33. If the fcScr is

below 0.5 constant, the scan mode is designated for primary sub-feature (sfOO). On the

other hand if the score of the primary target is sufficiently high, the secondary sub-

features are determined by both the XY ranges and assigned two-bit sub-feature address

as sfOl or sflO. In this manner, the future expansion of additional sub-features can be

readily incorporated into the design. When the feedback scores, 'Scr' become available

with valid 'ScrTag' from the 'PNCC subsystem, the address portion is sent back to port

A to retreat the 'fcScr' values for comparison with current results. If any score signals a

93

better match of primary sub-feature from the sign bit, 'sp', new XY coordinate is updated

along with the 'Scr' and the 'sfxx' tag. For the passing score, 'ss', of secondary sub-

features, the original information remains with only the 'sfxx' tags updated to enable the

search of the next sub-features. In the case of sub-optimal scores of the primary sub-

feature, a lock bit generated from 'IdxRegArr' becomes active when current XY

coordinate comes into short range, inhibiting the scanning of other coordinates within the

table. This concludes the basic design of correspondence management subsystem.

Read PortA

Ld/Clr/Cnt A-adrs
% Cntr

A-adrs
=

X,Y ±L

l a
**

Range Check:
-dist<fpY-Y<dist

i InRng

a _JZ

fpXY

A-data

m
IdxRegArr:
1) A-adrs
2) RC: #RngFlg

WEN0..3/7

Rotate/Reset WenRing
Reg

BRAM
Coord.
Stack

f1p f1c
f2p f2c
f3p f3c
f4p f4c

WRa

B-data K— fcXY.. ScrTag

NewXY..
1 Scr/Tag(sfxx)

WRb

B-data

B-adr

MUX

il[

Inhibit

fpldx

I
#RngFlg
(featRD)

Scan
Cntr

B-adrs
Cntr

fcXYo.fcScr s f x x l

a: fcScr>0.5
b :fcYo+9=Y?
c :fcYo+18=Y?

d: -8<fcXo-X<8?

sf1=abdsf00 r 1

sf2= a c d sf01

0 . 5 ^

tsp

fcScr Scr

CD

o
CL

PNCC&
Storage

ScrTag

Figure 33: NCC correspondence management subsystem.

5.7 Motion Evaluation Module

Due to the order of search introduced in section 4.3.3, the evaluation of inlier

motion boils down to the search of coherent angles between feature coordinates stored in

the stack ram of Fig 33. The architecture of inlier estimation illustrated in Fig 34

94

calculates the angles of rotation. Given 'A-adrs Cntr' and 'B-adrs Cntr' of Fig 33, one

can incrementally simulate the order of search by utilizing 'A-adrs Cntr' as the base node

and 'B-adrs Cntr' as the search node. If the 'B-adrs Cntr' reaches the last feature

coordinate for example, the 'A-adrs Cntr' would increment by one to initiate and move

upward in the triangular order. With the data fetched from the dual port BRAM, the

vectors V and Vo can be calculated by subtraction. The next pipeline stage extracts the

sign bits since log2 modules are limited only to positive numbers. To compute the angle

given in (4.3.3), the following components must be calculated:

cos(0) = X ' X ° 2
+ W

 1/2 (5.7.1)
(2 2 \ 1 / 2 / 2 2 \ 1 / 2

The signed extracted vectors are first converted to log2 scale. The squares and the square

roots in the denominator are calculated with bus shifts with proper logarithmic

conversions. The numerator can be computed slightly different in that xxxQ is inverted at

the output of iLog2 module, approximating the 2's complement format. This value is then

either added or subtracted from yxyQ, depending on its own sign, syi XOR syo. The

calculation of angle along is relatively simple. A more interesting part comes for the

direction of rotation in which the complete evaluation is unnecessary. The direction of

(4.3.3) can be simplified by separating out the sign bits as follows

Sa x |x, x y01 - Sb x |_y, x x01 < 0: clockwise
Sd=siSn(\xl+y0\L-\y]+x0\L)

Sb(+):Sa<\x,xy0\-\yixx0\)<0, Sb(+):Sa®Sd , (5.7.2)

S^-y.S.faxy^xxJpX}, Sb(-):~(Sa®Sd)

S0=(SaASb ASd)v(SaASb ASd)v(Sa ASb ASd)v(Sa ASb ASd)

95

where the sa and Sb are the signs of XORing previously extracted signs of xl x y0 and

yxxx0, the sa bit is another sign bit from subtraction of xlxy0-y1xx0 directly in log2

scale and s0 is the direction of rotation. With log2 version of input components readily

available, it only took two adders, one subtractor and five gates to determine the direction

of rotation. In doing so we eliminated two iLog2 modules at the cost of two adders and

five gates. At the output of (4.3.3) shown in Fig 34, the incoming angles and directions

are compared against designated values for coherence with respect to the reference. If the

boundary error is within expected range, the index tag is saved to the queue for which its

size determines the vote for inlier motion.

B-data

V(x1,y1) x12+y1^

A-data

Figure 34: Architecture of inlier motion evaluation subsystem.

5.8 Affine Transformation

With given inlier motion, the final step is to generate the coordinate address of the

stabilized video. From the display perspective of the output video, the XY counters

generate the orderly coordinates of the expected display. Another coordinate to memory

96

address translation is ignored in our design. The complete architecture is capable of

rendering 1024x 1024 frame size, thus, eliminating the need for such address translation

given the XY coordinates are both perfect 10-bit numbers. The CORDIC rotated XY

coordinates, therefore, are directly applicable to the address lines of the frame buffers as

illustrated in Fig 35. The multiplication of K gain factor is needed although we

implemented it with adders to a limited number of non-zero coefficients in K. With 10-bit

address space, the precision of our logarithmic modules is currently not accurate enough

to replace multiplication in this particular case. With the computed coordinate related to

current frame, the RGB components can now be retrieved from the buffer for display.

This concludes the mapping of display coordinate.

Affine Tran Adrs Gen

Y Video In
Adrs Gen

XY
Cntrs

Ang

-3

>
>

Kcc

' Std
CORDIC
Rotation -

>nst *

XY
Adrs

Trs

Video Enh >r
Data In

RD/WR
Ctrl Affine Tran

Data Out 4>

Figure 35: Affine transformation to map the display coordinates.

5.9 Summary

The design of various modules for video stabilization system was presented in this

chapter along with appropriate discussion of further modifications to simplify the

architectures. A thorough description and illustration of the logarithmic modules was

97

provided along with the error correction to demonstrate how these modules could be

applied to reduce the complexity of the design in other subsystems. A tentative discussion

of video enhancement subsystem was also presented in section 5.3 to reveal necessary

steps for generating the scenes with more uniform lighting. The design of single layer

feature selection was also proposed with a modification which stored the corner-ness

response in logarithmic scale to compress the word length and reduce storage space. The

idea of designing NCC architecture as parallel filters was also illustrated along with the

efficient design of the subcomponents such as energy normalizing factors, 2D integral

sum and correlation. The architecture for correspondence management was also

presented which served to regulate the dataflow between the computing module and its

storage device. The module designed to evaluate the inlier motion was also discussed in

which its main function was to calculate the angles between the vectors and save the

coordinates with consistent motion. And finally, the subsystem for affine transformation

was presented for which its main function was to generate the display coordinate through

standard CORDIC rotation. This concludes the design of different subsystems. The

subjects of simulation and performance related characteristics are discussed in chapter 6.

98

CHAPTER 6

RESULTS AND ANALYSIS

The chapter covers basic timing of various events which happen within each

video frame to illustrate how different subsystems are synchronized to perform the tasks.

Simulation results and error analysis are also discussed in detail for logarithmic modules,

the video enhancement and stabilization subsystems along with the performance variables

and the resource allocation. The power consumption of various resources is also

presented based on Xilinx's XPower Estimator [76].

6.1 Timing Overview

Due to excessive duration of timing involved with the simulation, the sequence of

events can be better illustrated in the following steps in the perspective of video frames as

shown in Fig 36. The initial latency of the system is 4 video lines to fill up the LBs.

When the XY frame coordinate becomes (0,0), the 2video enhancement subsystem starts

kicking in to render the RGB components. Since the buffering on LBs is circular by

design, the padding around the bothers contributes no useful information regarding the

potential features and the feature measure . However, the idle time of the boundary on

the left is not necessarily a waste4. During these cycles, the search coordinates are fetched

into the search table , thereof, freeing up the port access. At the bottom of the searchable

range, 26 video lines are used for a couple events. A short duration of this period is used

for evaluating the inlier motion6. Because the pf subsystem was design to capture sub-

features column by column, most of the cycles are occupied to flush (pfFlush) the

99

potential features into the NCC storage7. Near the end of the frame, the Affine

transformation is performed by generating the stabilized coordinate and fetching the RGB

components located in that memory location8. When the XY coordinate reaches the very

last pixel of the frame, the above event flags are reset for cycling the states in next frame9.

At the same time the frame toggle bit is performed to swap the current and previous state

of the frame buffers and related storages9. In this manner, the absolute minimum frame

buffers are required while still achieving reasonable stability in the stabilized video

sequence.

1: Initial system latency

1
2: Video Enh

K

26 lines

3: Inactive time for feature
selection & measure

4: Potential feature
module activated

\
5: NCC search
coordinate cache filled

6: motion evaluation

7: pf Flush 8:Aff.Tran.

<h
3: standby
range

Active
range

9: Frame bit
toggle

Figure 36: Timing events within the video frame.

6.2 Simulation And Error Analysis

The results from simulation are discussed in this section along with the error

analysis. The magnitude of error is measured based on the difference or the percentage

deviated from the expected values of double precision.

100

6.2.1 Logarithmic Approximation

The fact that we heavily rely on the logarithmic modules to reduce complexity

deserves a closer examination of the errors from such approximation and error correction.

The double precision log2, uncorrected and corrected log2 approximations are plotted in

Fig 37a for eight-bit fixed point decimal (8 bits integer and 8 bits fraction). The

Corrected Fixed 8-pt LSKJJ

150
input

(a)
Perc Err, Ave: 0.088567%

300

(b)

Figure 37: Plot of double precision, uncorrected and corrected log2 calculations are
shown in (a) with the percentage error in (b) for 8-bit fixed point decimals.

101

architecture with error correction produces log2 values very close to the double precision.

The average percentage error over the entire range is 0.0886% (corresponds to average

magnitude of difference error 0.0053) compared to 0.936% without correction as shown

in Fig 37b. The measure of such error on a percentile basis is not very helpful although it

may appear to increase the precision. A more meaningful illustration is to take only the

difference error since the error cycle is periodic with constant peak around the mid-points

of integer digits as illustrated in Fig 2 of chapter 3.

The comparison of difference errors on 16-bit integers is shown in Fig 38 with

five other implementations. Michell's difference error serves as the reference for measure

of improvement. SanGregory improved Mitchell's by dividing the error curve into two

regions and used straight lines for correction which reduce the magnitude of error to 0.02

as oppose to 0.86. Abed's approach utilizes the same method for two, three, and six

region corrections, however, minimizes the non-zero coefficients as the slope of the lines.

Clearly, dividing the error curve into more linear regions has the trade-off of further

complicating the correction mechanism. So there is a limit to the number of piecewise

lines that bridges between simplicity and accuracy. Abed's six-region method seems

more optimal with two adder arrays to reduce peak error to 0.013. On the other hand,

both Combet's and Hall's achieve greater accuracy yet require complex circuits which

defy the goal of approximation. The difference error of bit-level fitting is also shown in

Fig 38. Our method generates a correction factor from 16 logic gates and reduces the

error to 0.0177 with the majority in the range of -0.005 to 0.01. This mechanism is far

more accurate than the two and three region methods and comparable to six region

102

approach as shown in the last plot of Fig 38. In summary, Table 2 shows the number of

bits involved for deriving the correction factor and its complexity. The last two columns

summarize the range of error and the average magnitude of error for 16-bit integers.

Clearly the bit-level curve fitting has the average error between three and six linear

regions.

0.02

001

i o
b

-0.01

-0 02

Mitchell, 1 SanGregory. 2

5 10 15 20
Log2(N)

Abed .3

5 10 15 20
Log2(N)

Abed, 6

jWM
5 10 15 20

Log2(N)

0.02

001

0

-001

-0.02

Abed, 2

5 10 15 20
Logz(N)

Combet, 4

5 10 15 20
Logz(N)

Hall, 4

_., _

5 10 15 20
Log2(N)

Bit-level

58

0 5 10 15 20
Logz(N)

0.01

0.005

0

-0.005

-0.01
i

0.06

0.04

0.02

0

5 10 15 20
Log2(N)

Average Errors

il
Bit-level

i kJ.
2 4 6 8

Regions

Figure 38: Comparison of difference errors with 5 other designs.

Abed's six-region method has superior average error at the cost of two adder arrays and a

small number of logic gates for error correction. On the smaller scale for the actual usage

of the logarithmic modules, his design has the advantage of providing more accurate

results. For the implementations on larger scale such Corr2 architecture inside the NCC

103

or the filter of the video enhancement, even the slightest improvement multiplies to

minimize the resource. Given Abed's method it would require additional 243 8-bit adders

with the correction logics for a 9 x 27 Corr2 kernel.

Table 2: Comparison of the error range and average magnitude with other designs.

Methods

Mitchell [48]
SanGregory[52]

Abed[53]
Abed[53]

Combet[51]
Hall[54]
Abed[53]
Bit-level

Rgns

1
2
2
3
4
4
6

N/A

Correction
factor

none
3 bits
2 bits
3 bits

all bits
all bits
6 bits
3 bits

Corr.
circuit

none
simple
simple
simple

complex
very complex

simple
simple

Error bound

0<Err< 0.0861
-0.0280 < Err < 0.0293
-0.0183 <Err< 0.0449
-0.0208 < Err < 0.0293
-0.0062 < Err < 0.0080
-0.0082 < Err < 0.0044
-0.0130 <Err< 0.0132
-0.0102 <Err< 0.0177

Ave.
mag.

of error
0.0573
0.0127
0.0158
0.0096
0.0036
0.0024
0.0033
0.0061

While the comparison of error for iLog2 is not available in literature, it is a good

practice to roughly sneak a peak over its range. Fig 39a illustrates the corrected iLog2 has

similar accuracy with Fig 37a for 8-bit signed numbers (4-bit integer and 8-bit fraction in

2's complement). It is more appropriate to grasp the magnitude of error in percentile for

iLog2 as the difference error exponentiates with the number itself. As shown in Fig 39b,

the peak magnitude is bounded to 1.56% with 0.437% average magnitude of error.

Apparently, the average error escalates by roughly five times due to the exponentiation. It

should be noted that we use the same coefficient from log2 correction. The range and the

average magnitude of errors may be further reduced.

104

Figure 39: Plot of 8-bit fixed point (4-bit integer and 8-bit fraction in 2's complement)
iLog2 (a) and its percentage error (b).

6.2.2 Video Enhancement

The images are sent to the architecture pixel by pixel in raster scan fashion which

is common for video streaming in progressive scanning mode. After the transient state, as

indicated in Fig 36, the output becomes available and is collected for error analysis. The

overall output of the enhancement architecture is recorded to give a graphic view of the

105

enhanced image for quick evaluation of the visual quality. Typical test images are shown

in Fig. 40 (1st row) where the shadow regions exist as the consequence of the saturation in

bright regions. The outputs of the system produced by software and hardware simulations

are illustrated on 2nd and 3rd rows, respectively. As one can see the majority of the details

hidden in the dark regions are brought out while the natural color is preserved. The

enhanced images produced by the hardware are slightly brighter than the ideal results. The

difference is contributed by both logarithmic approximation and the limited bits

representation in the architecture. Overall, the visual quality, in terms of brightness and

contrast, is very satisfied with fewer shadow regions.

The error introduced from replacing equations (4.1.5)-(4.1.8) by (4.1.9) is shown

in 1st row of Fig. 41 scaled by 50 times. The simplification induces a negligible magnitude

of error at extremely dark regions of the images. Typical histograms of the error between

ideal and hardware outputs from Fig. 40 (2nd and 3rd rows) are illustrated in 2nd row. The

average errors of the system are 2.97, 2.61, and 3.79 pixel intensities with respect to the

test images. Simulation with a large set of images shows a majority of the errors in this

system is below 10 with the average error around 3.5, While the hardware simulation

shows very attractive results, the efficiency of hardware utilization and its performance is

also very important. This subject along with its performance on a desktop computer will

be discussed in section 6.3.2. It may become trivial that there is no need for such

architecture for small video frames.

106

Figure 40: Images shown on 1st row are the test color images with non-uniform darkness.
Results from software and hardware simulations are illustrated on 2nd and 3rd rows,

respectively.

GRMttJEMSr

o s w
RaesS inteRSftf error

. x to EaH« :€A2« EnKatEA379

6 10
Rieefl intensity etrror

Figure 41: Error characteristics: The errors introduced for utilizing fast conversion factor
are illustrated on the 1st row (50x). Error histograms are graphed on the 2nd row with

average errors of 2.97,2.61, and 3.79 pixel intensities.

107

6.2.2.1 Fine-tuning Transfer Function

While the design is very hardware efficient with decent performance as we should

discuss in a moment, the biggest advantage, however, is not solely the impression of its

colorful and uniform output of the images. Rather, it is the ability to fine-tune the filter

coefficients suitable for different transfer functions so long as the functions have quadrant

a symmetry property. More examples of output images are illustrated in Fig 42 with fine-

tune on the luminance component alone, causing the scenes to be brighter than those in

Fig 40.

108

Figure 42: Examples showing the flexibility of fine-tuning the transfer function for
visually more clear view of the scenes.

Contrast

100 200 300 400 500 600 700

Figure 43: The kernel registers of the architecture can also be fine-tuned to enhance the
contrast (sharpness) component of the image as illustrated.

6.2.3 Video Stabilization

Due to a tremendous amount of time involved with the simulation and debugging,

only three initial frames were simulated in the process of obtaining the final results.

109

These frames are shown in Fig 44. Illustrated on the left column are the expected outputs

from the algorithm. The results from hardware simulation are shown in the second

column. The dark squares in the figure indicate the outcome from feature tracking with

update from selection of potential features. The exact coordinates of potential features,

however, is different from expectation. Due to the rounding from overflows of the

architecture shown in Fig 24 and 25, more optimal choices were trimmed to the limited

range. For this reason more features were selected and included for further processing. A

majority of the stable features being measure, however, agreed with the results produced

on C++ version of the algorithm. Notice the slight difference shown (last row of Fig 44)

in the stabilized sequence from hardware simulation. The black strip was off by a few

pixels compared to the expected image on the left column. The error is common since the

coordinate of memory address generated by affine transformation was truncated to

integers, resembling the effect of standard nearest neighbor interpolation. Although this

distortion is not visually trivial from the test frames, it is expected to increase the severity

directly proportional to the angle of rotation from reference frame. A better method is to

apply bilinear or bicubic interpolation to minimize the distortion. The average errors of a

potential feature selection and the feature measure are shown in Table 3. The measure of

error was performed with respect to the resulting coordinates from the simulation. For an

example of the feature selection, a direct comparison from the coordinate chosen by the

algorithm does not help due to the limitation within the architecture itself. These sources

of error can be tolerable as the outcome of the stabilized video mainly depends on the

video enhancement and the precision of affine transform.

110

Figure 44: A short sequence of stabilized frames from the algorithm (1st column) and the
hardware simulation (2nd column).

Table 3: Average errors of feature selection and measure subsystems.

Frame Error
#1
#2
#3

Feature Selection
-0.4%
-0.5%
-0.6%

Feature Measure
—

3.1%
1.1%

I l l

Ideally, a more concise magnitude of error should be compared between the

improved NCC architecture and the design proposed in [68]. Unfortunately there was a

design error in the earlier publication. The block diagram of the earlier design shown in

Fig 45a contains an error in which the input 8-bit data, / was subtracted from average

/ b u t excessively delayed through another set of internal LBs in block 3. This creates the

impact of a moving average / for every set of/ values within the 2D window (kernel).

The correct implementation, as illustrated in Fig 45b, should have been the fixed / for

every set of/values under the kernel without any LBs in block 3. And the subtraction

should be performed inside block 3 right before the Corr2 operation. The implication

with reference to the current design (Ux V=9x27 kernel dimension), is that another set of

243 Log2 and iLog2 modules are necessary, due to data dependency, to operate in full 2D

processing bandwidth for correct calculation. The correct implementation may increase

the resource by 60%. Although the 8.7% average error seemed reasonable for logarithmic

modules without correction, the peak error could be as high as 62% of the expected score.

The architecture in Fig 45a still produced the correct coordinates. But it does not mean

that the NCC score is exactly right, aside from approximation error of logarithmic

modules. The implementation is clearly equivalent to (6.1) rather than the true normal

correlation of (4.2.9). The reason that an earlier design still produces correct coordinates

is that moving average tends to change relatively slow.

0(x,y)- u,v

YJ[_f{x + u,y + v)-fuv{x + u,y + v)\ X [?0 ,v) - ^ v]
2 .

(6.1)

112

—Datal,v-JC o m-?u t e

/ +
Log^abtif))

|/i'+stejt

3
Compute

f*tX-x,-y)
£<%(•)

4
Compute

lift
• £ « & (•)

TV . , .
ttog2(«)—NCCout-*

|+j Compute*
{£(/•)+£(<•)}, » 1

iLog1(»)\—NCCoul+

Krf
C ° 7 " ? W I ^ w W impute'

{£(/•)+£((')},»!

(a) (b)

Figure 45: Design error in earlier implementation of NCC architecture.

6.3 Performance Analysis and Resource Utilization

The performance and resource allocation of various subsystems are presented in

this section along with discussion. The performance and the hardware resource

parameters are mainly characterized on Xilinx's Virtex IIFPGA technology.

6.3.1 Log2/iLog2 Modules

The performance of logarithmic modules improves with one additional pipeline

stage compared to earlier implementations. On Xilinx's Virtex II2V2000FF896-4 FPGA,

the performance of error corrected fully pipelined log2 and iLog2 modules can produce

the throughput of 203.6 and 304.6 million outputs per second (MOPS) for 8-bit format,

respectively. For the 32-bit numbers, both modules are able to sustain above 200 MOPS

data rate as shown in Tables 4 and 5. The performance of log2 doubles (203.6 vs. 100

MOPS) for 32-bit format at the expense of 31 bits register. The modules with improved

precision utilize a greater number of logic slices (LSs) and lockup tables (LUTs) than the

designs without correction. The simultaneous reduction in resource and precision gain

113

become obvious in 32-bit numbers. A better figure of such resource reduction may be

obtained at transistor (VLSI) level of implementation.

Table 4: Performance and resource utilization for Log2 module.

Description

Logic Slices

LUTs

Fmax(MHz)

Resolution
(Correction/No Correction)

8

22/11

32/19

203.6/205

16

48/43

74/76

203.6/121.5

32

94/166

161/289

203.6/100

Table 5: Performance and resource utilization for iLog2 module.

Description

CLB Slices

LUTs

Fmax(MHz)

Resolution
(Correction/No Correction)

8

19/12

30/19

304.6/305.6

16

57/44

71/70

234.5/235.4

32

155/164

151/268

212.2/212.2

6.3.2 Comparison of Video Enhancement Architectures

Due to the comparison made to earlier designs, the hardware resource utilization is

characterized based on the Xilinx's multimedia platform with Virtex II XC2V2000-4ff896

FPGA and the Integrated Software Environment (ISE) [70], [71]. The particular FPGA

chip we targeted has 10,752 logic slices, 21,504 flip-flops (FFs), 21,504 lookup tables (4-

input LUTs), 56 block RAMs (BRAMs), and 56 embedded 18-bit signed multipliers in

hardware; however, we do not utilize the built-in multipliers. The resource allocation for

various sizes of the kernels in homomorphic filter is shown in Table 6. For 9x 9 kernels in

114

homomorphic filter, the computational power is approximately 81 multipliers which is

significantly less compare to [19] with similar setting where 243 multipliers and 150

dividers are needed if a conventional approach is taken. With the alternative approach

introduced in this design and the concept of log-domain computation, the amount of

hardware resource necessary for the implementation is tremendously reduced. The

maximum windows can be utilized on target FPGA consumes 85% of the logic slices (4

slices is equivalent to 1 configurable logic block), 51% of the FFs, 49% of LUTs and 22

BRAMs. Larger kernels are not necessary in practice. Testing conducted in section 6.2.2

shows that a 5 x 5 filter kernel is sufficient to remove most shadows of reasonable

darkness. Only 13% of the logic slices is needed in this case. The proposed design uses

approximately 71.7% and 73.6% (does not include embedded multipliers used in [20]) less

logic slices with a great performance boost compared to the architectures presented in [19]

and [20] (1024x 1024 frame size), respectively.

Table 6: Hardware resource utilization for various sizes of the kernels with corresponding
throughput rate.

Kernel
Size
5x5
9x9

13x13
17x17

Logic
Slices
13%
30%
53%
85%

Slice
FFs
8%
18%
32%
51%

LUTs

7%
17%
31%
49%

BRAMs

6
11
16
22

Perf
(MOPS)
182.65
182.65
182.65
182.65

The critical timing analysis of Xilinx's ISE shows that 182.65 MOPS is the most

optimal throughput achievable with the maximum clock frequency of 182.65 MHz on

Xilinx's Virtex II technology. Further evaluation of pipelining the critical path suggests

that increasing the level of pipeline does not gain significant throughput rate. This

115

directly indicates the impact of the design with tightly coupled and well pipelined system.

Given 1024x 1024 image frame, it can process over 174.2 frames per second at its peak

performance without frame buffering, which is very suitable for video streaming

applications. This tremendous gain in the performance while consuming significantly less

hardware resources would have been extremely difficult to achieve without the

algorithmic simplification, efficient filter design and log-domain computation. The

additional benefit is that the filter coefficients are not hardwired, which gives the highest

flexibility in reloading the coefficients without the need of dynamic reconfiguration for

different characteristics of the transfer functions. The performance of the proposed

approach increases to 124% and 273% when compared to the designs we presented in [19]

and [20] (1024x 1024 frame size), respectively. Due to massive parallelism, it is also far

superior to those DSP based approaches discussed in [16], [20], [72] which utilize a

limited number of functional units. A comparison of the proposed work with other

implementations most relevant to the model is listed in Table 7. While the throughput of

the FPGA based architectures significantly out performs those of DSP processors (by

more than 80 times), it should be pointed out that the DSP processors are largely

constraint to the available functional units with associated resource. For instance, the

FFT/IFFT operations are accomplished through reuse of the fixed N (N samples are

padded to power of two prerequisite to use the FFT/IFFT) points FFT/IFFT blocks where

the fully parallel-pipelined architectures could consume more than two high-end highly

dense FPGAs such as Xilinx's Virtex II Pro 70 with 33,088 logic slices and an enormous

number of embedded RAMs and multipliers [73]. So the full level parallelism cannot be

exploited. For this reason, the processors usually operate at higher clock frequency to

116

achieve minimum real-time criteria with limited video resolution. The operating

frequency to throughput ratio can be more than two orders of magnitudes (i.e. 100

clocks/pixel). For standard NTSC (720x480 at 30 fps) video with the algorithms fully

exploited, the DSP processors need to operate at GHz scale where the memory access of

the systems becomes the bottleneck without the assistance of improved memory

Table 7: Comparison of the proposed work with other implementations most relevant to
refiectance-illuminace model. Note that 256 x 256 frame size (should be power of 2) is
employed so the performance is not penalized for [16] and [72] to utilize FFT and IFFT.

Hardware
Platforms

FPGA'[20]:
XC2V2000

FPGA'[19]:
XC2V2000

DSP2[16]:
C6711

DSP2[16]:
C6713

DSP2[72]:
DM642

F p G A l , l l , 1 2 .

XC2V2000

Operating
Frequency

67MHz

147.3MHz

150MHz

225MHz

600MHz

182.65MHz

Nature of
Design
Systolic-
parallel

Systolic-
parallel

VLIW
(256-bit)

VLIW
(256-bit)
VLIW

(256-bit)

Systolic-
parallel

Resource
Utilization
49.3% logic

slices8

46% logic
slices9

DSP+DSK3

support

DSP+DSK3

support

DSP+EVM4

support

13% logic
slices9'10

Frame
Buffers

Ext. 133MHz
ZBTRAMs

None

Ext. 100MHz
SDRAMs

Ext. 90MHz
SDRAMs

Ext. 133MHz
SDRAMs

None

Throughput
Rate
lppc5

67mpps6

lppc5

147mpps6

0.009ppc5

1.36mpps6

0.008ppc5

1.84mppss

0.004ppc5

2.24mpps6

lppc5

182mpps6

Frame
Rate

1022
fps7

2248
fps7

20.7
fps7

28 fps7

34.1
fps7

2787
fps7

Notes: 'Xilinx's Virtex II XC2V2000-4ff896 FPGA on multimedia platform [70], [71].
2Texas Instruments' DSPs in TMS320 family with appropriate platforms and 2 levels cache support.
3SDK: TFs platform supporting C6711 and C6713 DSP chips [16].
4EVM: TFs platform supporting DM642 DSP chip [72].
5Ppc is unit for pixels per processor clock.
6Mpps is unit for million pixels per second, equivalent to MOPS.
7Fps is unit for frames per second.
8Use of all embedded multipliers not included.
'Architecture is multiplier-less.
10If multiplier-less architecture (also utilizes logarithmic modules) for color space conversions (RGB to
HSV, and HSV to RGB [47]) is fully implemented in the design, it consumes additional 108 logic slices and
430 LUTs.

Proposed work in this paper utilizes same technology as [19] and [20].
12The C++ executable version can sustain 29.85 fps (with the frame size of 360 x 240 or quarter NTSC) on
the laptop with Intel CPU P4H@3.2GHz, 1.5GB DDR1 memory, IEEE1943 firewire, and 38% CPU load as
opposed to 26 fps with 98% CPU load when fast color space conversion in (4.1.11) is not incorporated. The
design is also at least 70 times faster than the software version.

117

management [72]. Despite the drawback, DSP based implementations are still well

adapted for lower end applications (low pixel volume) where the performance of the

systems is not critical. The performance of [20] was limited to uneven pipelining

(Unregistered arithmetic operations are followed by high precision multipliers.) and the

setup of external Zero Bus Turnaround (ZBT) RAMs which are coupled with the core

module. This bottleneck does not impose on the proposed architecture since the

throughput is sufficient to enhance the video on the fly at the constant rate as the

streamed video in progressive scanning mode. Overall, the new design achieved similar

output quality with reduced hardware resource while boosting the performance.

6.3.3 Video Stabilization Subsystems

Xilinx's Virtex II 2V2000 series platform has insufficient resource for our system.

The hardware resource and the performance parameters were recorded based on 2V8000

chip with a speed grade -5C which is slightly faster than the platform discussed in section

6.3.2. The resource allocation to different subsystems is listed in Table 8. As expected the

feature measure 'NCC9x27' consumes a majority of the available CLB slices (44%),

flip-flops (22%, LUTs (24%) and BRAMs (16%). Even though such architecture is

resource friendly, the tremendous number of adders given a 9 x 27 sub-feature dimension

demands extremely high volume of logic elements. The remainder of subsystems utilizes

only 6% of the LUTs and 10% LSs.

A number of performance parameters of subsystems is also listed in Table 8.

These components have a very high throughput rate, too excessive for conventional video

118

applications. The overall system performance depends on the slowest modules in Table 8.

It is interesting to note the performance of each module is mainly affected by the number

of bits in the adders and subtractors. The feature selection subsystem has a throughput

rate of 180.9 MOPS with its internal 28 bit arithmetic logic units. We should also point

out the performance gain of a video enhancement subsystem is not the result of further

improvement in pipelining; rather, it is the technology of selected FPGA (speed grade 4

vs. 5). Thus, one should not mistakenly treat the technological parameter with the

advancing of architecture itself. With the simplification to memory address translation,

the system was really designed for 1024x 1024 video frames. At the peak performance

(one output per cycle), the processing power is equivalent to 172 fps. There is no need for

such bandwidth in current applications. The resource and excessive bandwidth should be

traded for future improvements to suit the design according to the nature of specific

applications [69].

Table 8: Resource allocation and the performance of subsystems.

Components

Line Buffers

Video Enh.

Feat. Sel.

NCC9x27

Corr. Mgmt

Mot. Eval

Aff. Trans.

System1:

Resource

Slices

0%

3%

5%

44%

0%

2%

0%

59%

Flip-Flops

0%

2%

2%

22%

0%

0%

0%

30%

LUTs

0%

2%

3%

24%

0%

1%

0%

34%

BRAMs

6%

0%

11%

16%

0%

0%

0%

35%

Performance
(MHz)

267.2

210.1

180.9

199.8

260.4

212.9

192.6

180.9

Notes: 'Two frame buffers with ZBT RAMs not included.

119

6.4 Scalability of the System

The system produces constant throughput of one output per clock cycle.

Decomposition of full features into the constellation makes the one-on-one data rate

possible without the classic method of trading the performance for reduction of hardware

resource in the NCC subsystem. The feature measure is also flexible in terms of

scalability of the sub-features since the measure of secondary sub-features is only

activated at the fixed spatial locality with successful detection of primary sub-feature.

Interestingly, the parameters of performance on clock basis and resource utilization have

the least to do with the dimension of the frame in our subsystems since the criterion to

operate the system is dependant on the parallel data provided by the LBs. For the system

to operate on a larger video frame, only the length of LBs needs to be increased along

with the sufficient frame buffers; however, the frame rate will be reduced. Depending on

the layout of frame buffers, it may become necessary to construct the coordinate to

memory address translators. Future development over ultra high frame resolution should

consider down-sampling the image to reduce search range and map the coordinate back

to the original image (short range course to fine search mechanism). It does not

necessarily require frame buffers for the down-sampled images.

6.4.1 Feature Measure

As we know the feature measure does not scale well with conventional

implementation. To put the performance-resource trade-off into perspective, Table 9

illustrates certain requirements for the calculation over a single 128 x 128 feature. A

common technique of trading the performance has an inverse relationship for reduction of

120

hardware resource. Given a 64x128 time-multiplexed support architecture, it requires

two clock cycles (64 x 128x2 cycles^ 128 x 128) to produce one complete output with the

gain of reducing the computing elements by half (8192). To further reduce the resource

by eight, a 16 x 128 support architecture is needed with the throughput rate of one output

per eight clock cycles. To sustain the performance while utilizing minimum resources,

the design eventually becomes technology dependent in the sense that the core engine has

to run at a much higher frequency. The sub-feature representation on the other hand, has

the advantage of reducing the number of calculations at the same time without

compromising its performance. A 128 x 128 feature represented by 8 16 x 128 sub-

features requires the same amount of computing elements as a 16 x 128 time-multiplexed

architecture. However, the throughput rate remains one per clock cycle. The 16 x 128

support architecture computes on a 16x 128 primary sub-feature which contains the most

Table 9: Comparison of conventional method and sub-feature representation.

Feature
Size

128x128
Time-MUXed

128x128
Time-MUXed

128x128
Time-MUXed

128x128
Sub-features
sf(8): 16x128

128x128
Sub-features
sf(8):9x27

Perf.
Per Cycle

1/2

1/4

1/8

1

1

Support
Arch.

64x128

32x128

16x128

16x128

9x27

Processing
Elements

8192

4096

2048

2048

243

Storage
Capacity

16384

16384

16384

16384

1944

Resource
Req.

16384 adders
8192iLog2s

8192 adders
4096 iLog2s

4096 adders
2048 iLog2s

4096 adders
2048 iLog2s

486 adders
243 iLog2s

121

distinct characteristics of all other sub-features. With the known structure of the

constellation, the success of primary sub-feature enables the measure of a set of

secondary sub-features with predetermined spatial locality. In this fashion, the computing

power is dramatically minimized over the sub-features. With the structure formed by the

sub-features, it is not necessary to allocate the storage for the complete feature.

6.4.2 Frame Size and Rate

The frame rate and dimension essentially translate to the pixel rate. To achieve the

same frame rate given a different frame size, the support architecture must compensate its

performance by either increasing or reducing the pixel rate on clock basis. With NVIDIA

SLI graphics technology, the larger frame can be divided into upper and lower sub-

frames. This mechanism allows rendering of graphic contents at the same pixel rate with

two graphic cards operating in parallel. The end result is a system which sustains a

relatively steady frame rate at twice the frame size. This method assumes the concurrent

input video stream is available. The direct application of NVIDIA SLI technology to our

n-sub-frame architecture of Fig 46a can achieve a similar goal for upscale of the frame

size; however, it would require a half-frame buffer space to create two concurrent streams.

Although the horizontal frame division solves the problem of scaling the y-dimension in

our design, the system cannot compensate the change in x-dimension since the pixel rate

remains constant. This argument brings out the scalability of current design for adapting

the performance to different pixel rates.

122

/

NVIDIA SLI method

1/n Frame

n/n Frame

7>

^

Support Arch

Support Arch

\
?

?

V
id

eo
 R

A
M

(a) NVIDIA SLI approach with full frame divided into even blocks.

Data Rate 1/n
Time-multiplexed

IBs
(width of video line)

M Support Arch
time-multiplexed to 1/n

Frame
Buffer

Data Rate 1/n

(b): Frame size downscale: Time-multiplex rendering with input/output pixel rate at 1/n
of internal operating clock.

Input n/n Data Rate

LBin(1/n)

PortA n/n
Data Rate

L 4 BRAM

PortB 1/n
Data Rate

U BRAM

^k
Support

Arch

I Video
I Line
I Switch

- ¥

r> LBin(n/n)

BRAM

Support

Data Rate
Conversion

ty BRAM

ch H J Arch | T " I ,

I BRAM I J BRAM I —•

Support
Arch

^ U _

j s k
Support

\rch pi J Arch |*|ve

BRAM

^ >J7

Venh

BRAM Frame
^ Buffer

Common Storage
Affine
Trans.

k
Output n/n Data Rate t.

(c) Frame size upscale: Increase in the dimension of video frame requires higher pixel
rate to sustain same frame rate.

Figure 46: Scalability of frame size and rate: (a) NVIDIA method to increase the size
with constant rate, (b) reduced size or rate with multiplexed architecture to cut back

resource, (c) larger size or higher rate with de-multiplexed support to obtain proper data
rate from the stream video and sustain same frame performance (c).

123

Suppose we have a stream video with smaller frame size (number of pixel

elements decreased by a factor of 1/n) with respect to our system, the pixel rate will drop

to 1/n given a constant frame rate. While the system clock may be slowed down to

minimize power dissipation and match the pixel rate, the conventional method of time-

multiplexing can be applied for performance-resource optimization as illustrated in Fig

46b. The main advantage of time-multiplexed architecture over the current design can

reduce the number of processing elements and the adders of Corr2 architecture shown in

Fig 31 by 1/n.

While the system clock may be adjusted accordingly with reduced frame size (or

rate), the design modification for supporting larger frames is a bit different. The

scalability of the current system can be illustrated by Fig 46c to support a higher pixel

rate (bigger frame size at constant frame rate or vise versa). In order to produce a higher

pixel rate with multiple support units operating at lower frequency, the input sample rate

must be converted to the internal frequency of the support architecture. The conversion

can be accomplished by capturing the data (propagated through LBin(.) at n/n sample rate)

into a dual port BRAMs at specific cycles. Suppose that a single line of video is buffered

in the LBin storage space at the input/output video rate, the capture cycle activates at only

1/n of the cycles per video line. The conversion allows a higher rate to be de-multiplexed

into a lower frequency which cannot be achieved by manipulating the video lines in

NVIDIA SLI scheme (constant pixel rate). As a result, the entire frame is divided into a

number of vertical blocks with the BRAMs' 'PortA' operating at n/n sample rate and

'PortB' at 1/n internal speed. In order to convert the outputs back to n/n data rate, the

124

results must be pre-assembled into the video line in its entirety. Unlike the data rate

conversion from the frontend, the outputs cannot keep up with the moving video line at

n/n rate as doing so will discard (n-l)/n of the entire line of pixels with duplicates of

adjacent values. A video line switch with two LBs can be incorporated to solve the

problem with a difference in data rates. While one LB assembles the results from

multiple support units, another LB is free to stream out the previous video line. The

affine transformation subsystem should be capable of operating at n/n rate with two

frame buffers to produce display coordinates. If technology does not permit such

performance for coordinate transformation, the same concept can be applied to convert

the data rates and merge the results. The hardware overhead to operate multiple support

units in parallel is the additional buffer space of four video lines.

6.4.3 Technological Advancement

The advancement in technology results with devices which improve the attributes

of silicon area, performance and power. We focus on performance parameter of the

support platform. With FPGAs (such as Xilinx's Virtex-5 family) capable of operating at

a higher frequency, the immediate benefit is a large increase of pixel rate given the same

system. This gain directly translates to a higher frame rate with constant frame size, or

larger frame size with fixed frame rate. While technological improvement, frame rate and

dimension appear to be separate subjects of scalability, they can be characterized by a

single parameter of pixel rate on clock basis. Given the specific constraints of

technology, frame size, and frame rate with respect to the nature of applications, the

system can be optimized by time-multiplexing to reduce hardware resource for smaller

125

frame size or rate with better technology. Conversely, multiple units can be deployed to

operate in parallel proportional to a larger frame size or higher frame rate with technical

limitation as illustrated in Fig 46. The ability to support a higher performance system

with low speed design depends on the conversion of sample rates between the

input/output interface and its internal frequency of the computing cores. Hence, the

scalability of the system with respect to the technology is also linear. For the

implementation on VLSI level, it is likely to enhance the system's performance since the

routing overhead can be independent of specific FPGA technology and multiple nodes

(i.e. in adder tree) can be pumped through within a pipeline stage.

6.5 Power Consumption

The power consumption of the subsystems is listed in Table 10 based on Xilinx's

toolbox XPower Estimator [76]. Given the attributes of different types of resource

utilization in Table 8 and the switch rate, the toolbox generates the power estimation

according to the technology of particular FPGA. It turns out the embedded BRAM drains

on the average of 27mW with 100% read and 1% write rates at 180.9MHz operating

frequency. The majority of the power dissipation, however, stretches on the NCC

subsystem which utilizes the most logic slices (20,424mW) and BRAMs (756mW) at

1,5V internal operating voltage. Currently the typical power estimation for ZBT RAMs is

not available from manufactures' datasheets (both Samsung and Cypress).

126

Table 10: Power consumption of subsystems at 180.9 MHz system clock.

Components

Power
(mW)

Line
Buffers

473

Video
Enh

1923

Feat
Sel

3049

NCC
9x27

21180

Corr
Mgmt

597

Mot.
Eval

1365

Aff
Trans

507

ZBT
RAM

—

Power dissipation characterized by resources is shown in Table 11 as a whole

system. It includes the internal quiescent drain power at 1.5V and the auxiliary power at

3.3V. Likewise, the CLB logics consume roughly 90% of the total power since the

system utilizes 59% of the logic slices. The input/output pads drain about l,034mW with

12mA LVTTL standard drivers also operating at 180.9MHz, according to Xilinx's design

reference [77]. The actual current may vary depending on the capacity load of the

external device and track impendence of the printed circuit board (PCB). The

stabilization system currently requires 30.6W or 20A at 1.5V to operate, excluding the

external storage device. The power utilization is approximately 0.17W per MHz

operating frequency.

Table 11: Power consumption of the system by FPGA resources.

Source Name
Vccint Quiescent

Vccaux
CLB Logics

BRAMs
Multipliers

Digital Clock Mgmt
Input/Output Pads

Total

Power (mW)
90
330

27643
1451

0
8

1034
30622(~19918mA@1.5V)

mailto:19918mA@1.5V

127

6.6 Summary

The basic timing of events in the perspective of video frame was illustrated in this

chapter. Results from simulation and error analysis of the logarithmic modules, video

enhancement and stabilization subsystems were presented along with the characteristics

of performance, resource utilization and power consumption of different subsystems. The

simulation indicated the improved Log2 and iLog2 modules had an average error of

0.09% and 0.44% compared to double precision for 16-bit numbers, respectively. The

results also indicated the average error of three pixel intensities for the video

enhancement subsystem. Upon closer examination, the uniform scenes appeared slightly

brighter than the expected outputs. The result of video stabilization subsystem also

indicated a small error of -0.5% and 2.2% for feature selection and measure introduced

by the logarithmic modules and the rounding limitation of the architecture. As a result the

texturally optimal regions might not be selected. It was also expected that a greater

degree of error from feature measure subsystem did not alter the outcome of the

coordinates of the features. The performance of various subsystems was one-on-one on a

clock cycle basis with the slowest feature selection subsystem limited by the resolution of

adders. With a 9x27 sub-feature dimension, the NCC subsystem consumed the most

CLB slices (44%) and BRAMs (16%) as well as the power supply (21.2 watts).

128

CHAPTER 7

CONCLUSION & FUTURE WORK

Stabilization of video sequence captured under non-uniform lighting conditions

requires analysis of several components. These include the video enhancement which

improves the quality and visibility of the image in a scene with uniform lighting. The

second component of the stabilization process is to evaluate reliable features for feature

measurement and tracking in the third step. The fourth task is to estimate the global

motion parameter of a given scene. This motion parameter can then be applied to

generate the display coordinates of stabilized video frames to produce the final sequence.

We have established a simplified model in this research for the video

enhancement and stabilization. The algorithm was constructed to reduce complexity and

make feasible for implementation with the Xilinx's FPGA technology. A number of

concepts were developed along the design process. This included the log-domain

computation to reduce hardware complexity, the generalized 2D convolution architecture

with quadrant symmetry property for video enhancement, the generic 2D NCC

architecture for the support of feature measure, the feature representation by a set of sub-

features in the constellation that captured the spatial relationships, and a fast search

mechanism for estimation of background motion of the camera.

The goals of this dissertation were to develop a simple video stabilization

algorithm reasonable to implement on FGPA technology. We applied the homomorphic

filtering with fast color space conversion in the video enhancement subsystem to

129

eliminate two complete color space converters between the RGB and HSV color spaces.

With the folding in the architecture to eliminate redundant calculations, only 9 processing

elements were needed to realize a 5 x 5 kernel of the boosting transfer functions for the

enhancement application. Unlike most existing designs, it allowed us to fine-tune the

luminance and contrast components within the architecture without any modification to

the structure. A model for extraction of features based on textural optimality and the

argument of uniqueness was constructed; however, the complexity and the drawback of

non-uniform processing bandwidth forced us to concentrate on a single texture layer

already available in the literature and remove the uniqueness criterion. Moreover, the full

feature was decomposed into a primary sub-feature and a set of secondary sub-features

based on textural optimality of sub-features. A star constellation was constructed to

represent the full feature with the distance and angle relationships among the sub-features.

In doing so we minimized the trigger for the measurement of secondary sub-features. For

the detection of every local maxima of the primary sub-feature, the secondary sub-

features served to confirm the existence of proper structure in the constellation. Due to

hardware limitation, a straight line constellation was chosen to reduce buffering of video

lines. In this fashion, the number of calculations involved was considerably reduced since

the measure of a complete feature was never performed. With a 2D model of the scene

captured by the camera, we also constructed a very efficient search mechanism to quickly

estimate the inlier motion from a set of corresponding points of the adjacent video frames.

The search technique progressively rejected the outlier motions and terminated with the

discovery of an outstanding element equivalent to the background motion. The approach

only required the calculation of angles between the vectors of point-pairs from the feature

130

coordinates. The novel architectures for the computation of logarithmic corner-ness

response, and the angle calculation between the point-pair vectors were important. The

most important portion of the subsystems, however, was the design of NCC architecture

as it consumed a majority of the hardware resource. The process of energy normalization

was simplified to tolerate the bandwidth of moving video lines rather than demanding full

2D processing power. By computing the summation relatively independent of the 2D

correlation and energy components, the architecture for calculation of the 2D integral

sum was applied which only utilized 11 adders instead of the 243 adders in full

bandwidth for a 9x27 kernel. The concept of sub-features further reduced the complexity

of NCC design. Rather than computing with a 27 x 27 kernel or larger, only partial NCC

was implemented. The conventional concept of time multiplexing to trade the

performance for the gain of resources had the drawback of reducing the throughput rate

inversely proportional to reusability of the functional units. The very idea of our sub-

feature representation also demanded a similar need for the processing power; however, it

completely focused on the primary sub-feature, eliminating the full calculation of partial

results otherwise wasted in the event of a failed measure. The decomposition of features

and the modification to the data dependency of the NCC calculation made the entire

system possible to sustain the performance of a one-on-one throughput rate without

compromise. In addition to the aforementioned results, the improved version of

logarithmic modules was employed to remove the need of embedded hardware

multipliers, dividers and exponent related operations.

131

The log2 module had better fixed point precision with the average magnitude of

error around 0.09% (equivalent to a difference error of 0.0053) which is an order of

magnitude lower than the uncorrected module. The iLog2 module had a 0.44% average

error. Both modules were more precise than the two or three region correction methods

compared to other implementations that relied on piecewise lines to generate error

coefficients. The accuracy of the bit-level curve fitting technique also came between the

three and six region methods with relatively fewer resources. The video enhancement

subsystem had the average error of three pixel intensities which is barely noticeable to

human eyes. Upon close examination, however, the results produced by hardware were

slightly brighter than the expected image computed with double precision. If desirable,

this effect could be compensated by fine-tuning the luminance component of the transfer

function. The range of errors from the test sequence for feature selection and measure

subsystems was around -0.5% and 2.2%, respectively. Because of the rounding limitation

within the architecture, the feature selection subsystem did not necessarily select the most

optimal regions as we would expect on the software; however, the majority of the

potential features were consistent. While comparison of the feature measure subsystem

with previous implementation might not be completely available, it should be clear the

new approach was superior in the aspects of accuracy, performance, and resource

utilization.

The precision of the current stabilization system mainly depends on the video

enhancement and the affine transformation. The quality of the video is expected to

degrade with the increase in angle of rotation. The system is expected to sustain 180.9

132

MOPS or equivalently 172 fps with a 1024 x 1024 frame size on Xilinx's Virtex II

2V8000-5 FPGA technology. It consumes 59% logic slices, 35% embedded rams and two

external ZBT frame buffers and dissipates roughly 30.6 watts of power at 1.5 volts supply

with 3.3V auxiliary power.

Future work will concentrate on extending the great potential of such a model into

finer grains for extraction and adaptive tracking of moving objects since our model

encapsulates these attributes with lower computational complexity in the aspect of both

algorithmic and hardware development. From these attributes, the angle and distant

relationships within the constellation become useful for analysis of spatial

distortion/deformation. The obvious benefit is its ability to determine the 3D structures of

the objects to a certain extent from the 2D video frames. This concept should be exploited

to a greater extent in the near future. With these parameters to narrow down the

processing range, the bandwidth demand becomes highly non-linear and concentrated

which makes it possible to achieve 20 fps or greater on desktop computers with Intel

Core 2 Duo or Quad Core CPUs and 2GB DDR2 memory without the demand of

dedicated hardware for video frames of conventional size.

133

REFERENCES

[I] V. Caselles, J.L. Lisani, J.M. Morel, and G. Sapiro, "Shape preserving local
histogram modification," IEEE Trans. Image Process, vol. 8, no. 2, pp. 220-230,
1999.

[2] D.J. Jobson, Z. Rahman, and G.A. Woodell, "A multi-scale retinex for bridging the
gap between color images and the human observation of scenes," IEEE Trans.
Image Process, vol. 6, no. 7, pp. 965-976, 1997.

[3] E. H. Land and J. J. McCann, "Lightness and retinex theory," Journal of the Optical
Society of America, vol. 61, no. 1, pp. 1-11, 1971.

[4] R. Mekle, A.F. Laine, and S.J. Smith, "Evaluation of a Multi-Scale Enhancement
Protocol for Digital Mammography," Image-Processing Techniques For Tumor
Detection, R. N. Strickland, Ed., Marcel Dekker, New York, NY, pp. 155-186,
2001.

[5] M.J. Seow, and V.K. Asari, "Ratio rule and homomorphic filter for enhancement of
digital color image," Journal of Neurocomputing, vol. 69, no. 7-9, pp. 954-958,
2006.

[6] M.J. Seow, and V.K. Asari, "Associative memory using Ratio rule for multi-valued
pattern association," Proceedings of the IEEE International Joint Conference on
Neural Networks, Portland, Oregon, pp. 2518-2522, 2003.

[7] A.F. Breitzman, "Automatic derivation and implementation of fast convolution
algorithms," PhD Dissertation, Drexel University, 2003.

[8] E. Jamro, "Parameterised automated generation of convolvers implemented in
FPGAs," PhD Dissertation, University of Mining and Mentallurgy, 2001.

[9] A. Wong, "A new scalable systolic array processor architecture for discrete
convolution," MS Thesis, University of Kentucky, 2003.

[10] J. Yli-kaakinen, and T. Saramaki, "A systematic algorithm for the design of
multiplierless FIR filters," Proceedings of the IEEE International Symposium
Circuits and Systems, Sydney, Australia, vol. 2, pp. 185-188, 2001.

[II] M. Z. Zhang, H. T. Ngo, and K. V. Asari, "Multiplier-less VLSI architecture for
real-time computation of multi-dimensional convolution," Journal of
Microprocessors and Microsystems, vol. 31, pp. 25-37, 2007.

[12] T. G. Stockham Jr., "Image processing in the context of a visual model,"
Proceedings of IEEE, vol. 60, pp. 828-842, July, 1972.

134

[13] R.W. Fries, and J.W. Modestino "Image enhancement by stochastic homomorphic
filtering," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.
ASSP-27, no. 6, pp. 625-37, 1979.

[14] R. Kimmel, M. Elad, D. Shaked, R. Keshet (Kresch), and I. Sobel, "A variational
framework for retinex," the International Journal on Computer Vision, vol. 52, no.
1, pp. 7-23, April 2003.

[15] Z. Rahman, D. J. Jobson, and G. A. Woodell, "Retinex processing for automatic
image enhancement," J. Electronic Imaging, vol 13, pp. 100-110, 2004.

[16] G. D. Hines, Z. Rahman, D. J. Jobson, and G. A. Woodell, "DSP implementation of
the retinex image enhancement algorithm," Visual Information Processing XIII,
Proc. of SPIE 5438, pp. 13-24, 2004.

[17] C. Chung, and O. Sohm, "Signal Processing Examples Using TMS320C64x Digital
Signal Processing Library (DSPLIB)", Texas Instruments, September 2003.

[18] S. Qureshi, "Embedded Image Processing on the TMS320C6000™ DSP: Examples
in Code Composer Studio and Matlab," Springer, 2005.

[19] M.Z. Zhang, M.J. Seow, and V.K. Asari, "A high performance architecture for
color image enhancement using a machine learning approach," International Journal
of Computational Intelligence Research - Special Issue on Advances in Neural
Networks, vol. 2, no. 1, pp. 40-47, 2006.

[20] H. T Ngo, M. Z. Zhang, L. Tao, and V. K. Asari, "Design of a high performance
architecture for real-time enhancement of video stream captured in extremely Low
lighting environment," International Journal of Embedded Systems: Special Issue
on Media and Stream Processing (accepted for publication), 2008.

[21] L. Tao and V. K. Asari, "Modified luminance based MSR for fast and efficient
image enhancement," IEEE International Workshop on Applied Imagery and
Pattern Recognition, AIPR - 2003, Washington DC, USA, pp. 174-179, 2003.

[22] B. Krose, and P. van der Smagt: "An introduction to neural networks," University
of Amsterdam, 1996.

[23] F. Rosenblatt, "Principles of Neurodynamics," Spartan, New York 1959.

[24] M. Minsky and S. Papert, "Perceptrons: An Introduction to Computational
Geometry," The MIT Press, 1969.

[25] B. Widrow, and M.E. Hoff Jr., "Adaptive switching circuits," IRE WESCON
Convention Record, pt. 4, pp. 96-104, 1960.

[26] J.A. Anderson, "Neural models with cognitive implications - Basic processes in
reading perception and comprehensive models," Hillsdale, NJ, pp. 27-90, 1977.

135

[27] T. Kohonen, Associative Memory: A System Theoretic Approach, Springer, Berlin,
1977.

[28] J.J. Hopfield, "Neural networks and physical systems with emergent collective
computational abilities," Proceedings of the National Academy of Sciences of the
USA, vol 79, pp. 2554-2558, 1982.

[29] R. S. hartati and M. E. El-Hawary, "A summary of applications of Hopfield neural
network to economic load dispatch, 2000.

[30] S. Grossberg, "Adaptive pattern classication and universal recoding II: Feedback,
expectation, olfaction and illusions," Biological Cybernetics, vol 23: pp. 187-202,
1976.

[31] A.K. Jain, M.N. Murty and P.J. Flynn, "Data Clustering: A review," ACM
Computing Surveys, vol 31, no. 3: pp. 264-323, 1999.

[32] G. A. Carpenter, S. Grossberg, and D. B. Rosen, "Fuzzy-ART: Fast stable learning
and categorisation of analog patterns by an adaptive resonance system," Neural
Networks, vol 4, no. 6, pp. 759-771, 1991.

[33] G. A. Capenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D.B. Rosen,
"Fuzzy ARTMAP: A neural network architecture for incremental supervised
learning of analog multidisional maps," IEEE Transactions On Neural Networks,
vol. 3, no. 5, pp. 9, 1992.

[34] D. G. Lowe, "Distinctive Image Features for Scale-Invariant Keypoints,"
International Journal of Computer Vision, vol 60, no. 2, pp. 91-110, 2004.

[35] B. Furht, J. Greenberg, and R. Westwater, "Motion estimation algorithms for video
compression," Kluwer Academic Publishers, 1997.

[36] D. Toth, T. Aach, and V. Metzler, "Illumination-Invariant Change Detection,"
Proceedings of the 4th IEEE Southwest Symposium on Image Analysis and
Interpretation, pp. 3, 2000.

[37] A. Smolic and J. Ohm, "Robust global motion estimation using a simplified M-
estimator approach," In Proc. IEEE International Conference on Image Processing,
vol 1, pp. 868-871,2000.

[38] J. R. Jain and A. K. Jain, "Displacement measure and its application in interframe
image coding," IEEE Trans. Commun., vol 29, pp. 1799-1806, 1981.

[39] H. H. Nagel, "Displacement vectors derived from second-order intensity variations
in image sequences," Comput. Vision, Graphics, Image Processing, vol. 21, no. 1,
pp.85-117, 1983.

136

[40] C. K. Cheung and L. M. Po, ""A hybrid adaptive search algorithm for fast block
motion estimation," IEEE International Symp. Signal Proc. and its Appl., vol. 1, pp.
365-368, 1996.

[41] R. Dahyot, and A. Kokaram, "Comparison of two algorithms for robust m-
estimation of global motion parameters," in Proc. Irish Machine Vision and Image
Processing, pp. 224-231, 2004.

[42] J. L. Barron, D.J. Fleet, Beauchemin, S., and Burkitt, "Performance of optical flow
techniques," IEEE Conference on Computer Vision and Pattern Recognition,
Champaign, pp. 236-242, 1992.

[43] W. Qi, H. J. Zhang, and Y. Zhong, "New robust global motion estimation approach
used in mpeg-4," Journal of Tsinghua University Science and Technology, 2001.

[44] B. D. Lucas "Generalized Image Matching by the Method of Differences," PhD
Dissertation, Dept. of Computer Science, Carnegie-Mellon University, 1984.

[45] E. P. Simoncelli, E. H. Adelson and D. J. Heeger, "Probability distributions of
optical flow," IEEE Proceddings of CVPR, Maui, pp. 310-315, 1991.

[46] M. Z. Zhang and K. V. Asari, "An efficient multiplier-less architecture for 2-D
convolution with quadrant symmetric kernels," Integration, the VLSI Journal, vol.
40, no. 4, pp. 490-502, 2007.

[47] V. Lakshmanan, "A Separable Filter for Directional Smoothing," IEEE Transaction
on Geoscience and Remote Sensing Letters, vol. 1, no. 3 pp. 192-195, 2004.

[48] J. N. Mitchell, "Computer Multiplication and Division Using Binary Logarithms,"
IRE Transactions on Electronic Computers, pp. 512-517, 1962.

[49] K. H. Abed, and R. Siferd, "CMOS VLSI Implementation of 16-bit logarithm and
anti-logarithm converters", IEEE Midwest Symposium on Circuits and Systems,
vol. 2, pp. 776-779, 2000.

[50] D.J.Mclaren, "Improved Mitchell-based logarithmic multiplier for low-power DSP
applications," SOC Conference, 2003. Proceedings. IEEE International [Systems-
on-Chip] , pp. 53- 56, 2003.

[51] M. Combet, H. Zonneveld, and L. Verbeek, "Computation of the Base Two
Logarithm of Binary Numbers," IEEE Trans. Electronic Computers, vol. 14, pp.
863-867, 1965.

[52] S.L. SanGregory, C. Brothers, D. Gallagher, and R. Siferd, "A Fast, Low-Power
Logarithm Approximation with CMOS VLSI Implementation", Proceedings of the
IEEE Midwest Symposium on Circuits and Systems, vol. 1, pp. 388-391, 1999.

137

[53] K. H. Abed, and R. E. Siferd, "CMOS VLSI Implementation of a Low-Power
Logarithmic Converter," IEEE TRANSACTIONS ON COMPUTERS, vol. 52, no.
11, pp. 1421-1433,2003.

[54] E.L. Hall, D. Lynch, and J. Dwyer III, "Generation of Products and Quotients Using
Approximate Binary Logarithms for Digital Filtering Applications," IEEETrans.
Computers, vol. 19, pp.97-105, 1970.

[55] L. Tao and K. V. Asari, "An efficient illuminance-reflectance nonlinear video
stream enhancement model," Proceedings of the IS&T/SPIE Symposium on
Electronic Imaging: Real-Time Image Processing III, San Jose, CA, vol. 6063, pp.
606301-1-12,2006.

[56] Color Space Conversions: http://www.cs.rit.edu/~ncs/color/t_convert.html

[57] J. Shi and C. Tomasi, "Good Features to Track," Procedding IEEE Conference on
Computer Vision and Pattern Recognition, pp. 593-600, 1994.

[58] M.J. Seow and V.K. Asari, "Learning using distance based training algorithm for
pattern recognition," Pattern Recognition Letters, vol. 25, no. 2, pp. 189-196, 2004.

[59] T. Kohonen, K. Makisara, K. Saramaki, "Phonotopic maps - insightful
representation of phonological features for speech recognition," Proceedings IEEE
7l International Conference on Pattern Recognition, pp. 182-185, 1984.

[60] M.Z. Zhang, M.J. Seow and K.V. Asari, "A hardware architecture for color image
enhancement using a machine learning approach with adaptive parameterization,"
Proceedings of the IEEE International Joint Conference on Neural Networks -
IJCNN 2006,Vancouver, BC, Canada, pp. 35-40, 2006.

[61] J.P. Lewis, "Fast normalized cross-correlation," Industrial Light & Magic, 2003.
(http://www.idiom.com/~zilla/Work/nvisionInterface/nip.pdf)

[62] OpenCV: GoodFeaturesToTrack function.

[63] T. F. Chan and J. Shen, "Theory and computation of variational image deblurring,"
IMS Lecture Notes, 2006.
(http://www.math.umn.edu/~jhshen/Mars/ChanShenIMS.pdf)

[64] C. G. Harris and M. Stephens, "A combined corner and edge detector," In Proc. 4th
Alvey Vision Conf., Manchester, pp. 147-151, 1988.

[65] L.D. Stefano, S. Mattoccia, and M. Mola, "An efficient algorithm for exhaustive
template matching based on normalized cross correlation," Proceedings of the 12th

International Conference on Image Analysis and Processing, pp. 322, 2003.

[66] J.C. Huang and W.S. Hsieh, "Automatic feature-based global motion estimation in
video sequences," IEEE Trans Consum Electron, vol. 50, no. 3, pp. 911-915, 2004.

http://www.cs.rit.edu/~ncs/color/t_convert.html
http://www.idiom.com/~zilla/Work/nvisionInterface/nip.pdf
http://www.math.umn.edu/~jhshen/Mars/ChanShenIMS.pdf

138

[67] B. Ahmad and T.S. Choi, "Edge detection-based block motion estimation," IEE
Electronics Letters, vol. 37, no. 1, pp. 17-18, 2001.

[68] M. Z. Zhang and V. K. Asari, "A hardware-efficient high performance digital
architecture for run-time computation of normalized cross correlation," WSEAS
Transactions on Circuits and Systems, vol. 5, no. 9, pp. 1416-1423, 2006.

[69] M. Z. Zhang and V. K. Asari, "A design methodology for performance-resource
optimization of a generalized 2D convolution architecture with quadrant symmetric
kernels," Lecture Notes in Computer Science, Advances in Computer Systems
Architecture, Proceedings of the Twelfth Asia-Pacific Computer Systems
Architecture Conference - ACSAC 2007, vol. 4697/2007, pp. 220-234, 2007.

[70] Xilinx Inc.: Virtex II Characteristics:
http://direct.xilinx.com/bvdocs/publications/ds031 .pdf

[71] Xilinx's FPGA board: http://www.xilinx.com/bvdocs/userguides/ug020.pdf

[72] G. D. Hines, Z. Rahman, D. J. Jobson, and G. A. Woodell. "Single-scale retinex
using digital signal processors," in Global Signal Processing Conference, pp. 1-6,
2004.

[73] B. Stuber, and D. Zardet: "Ultra-high-speed spectral analysis in Xilinx FPGAs: A
32k-point FFT with 2-GSPS data throughput in a single FPGA establishes a new
level of performance," Xcell Journal, pp. 56-59, 2007.

[74] K. Mikolajczykand, and C.Schmid: "Indexing based on scale invariant interest
points," In ICCV, pp. 525-531, 2001.

[75] J.Matas, P. Bilek, and O. Chum: "Rotational invariants for wide-baseline stereo,"
Proceddings of ICPR, vol. 4, pp. 363-366, 2002

[76] Xilinx's XPower Estimator:
http://www.xilinx.com/cgi-bin/power_tool/power_Virtex2

[77] S. Bapat: Synthesizable 200 MHz ZBT SRAM interface, XAPP136, 2000.

http://direct.xilinx.com/bvdocs/publications/ds03
http://www.xilinx.com/bvdocs/userguides/ug020.pdf
http://www.xilinx.com/cgi-bin/power_tool/power_Virtex2

139

VITA
Ming Zhu Zhang

Education:

Doctor of Philosophy in Electrical & Computer Engineering, Old Dominion
University, Norfolk, Virginia, December 2008.

Masters of Science in Computer Engineering, Old Dominion University, Norfolk,
Virginia, August 2005

Bachelor of Science in Computer Engineering, Old Dominion University, Norfolk,
Virginia, December 2004

Bachelor of Science in Electrical Engineering, Old Dominion University, Norfolk,
Virginia, December 2004

Associate in Science Degree in Engineering, Thomas Nelson Community College,
Hampton, Virginia, August 2002

Associate in Applied Science Degree in Electronics Technology, Thomas Nelson
Community College, Hampton, Virginia, August 2002

PhD Level Courses:

ECE 783: Digital Image Processing, A, Spring 2004.
ECE 882: Digital Signal Processing II, A, Spring 2005.
ECE 795: VLSI Array Processor Design (Ind.), A, Summer 2005.
ECE 847: High Performance Computer Architecture, A, Fall 2005.
ECE 897: VLSI for Signal Processing Systems (Ind.), A, Fall 2005.
ECE 651: Statistical Analysis and Simulation, A, Spring 2006.
ECE 848: Distributed Computer Simulation, C+, Spring 2006.
ECE 897: Adv. Topics in Computer Vision (Ind.), A, Spring 2006.

Candidacy Examination:

1. Dengwei Fu, and Alan N. Willson, "A Two-Stage Angle-Rotation Architecture
and Its Error Analysis for Efficient Digital Mixer Implementation," IEEE
Transactions on Circuits and Systems -I: Regular Papers, Volume 53, Number 3,
March 2006.

2. Chao Cheng, and Keshab K. Parhi, "High-Speed Parallel CRC Implementation
Based on Unfolding, Pipelining, and Retiming," IEEE Transactions on Circuits
and Systems -II: Express Briefs, Volume 53, Number 10, October 2006.

140

Scholarships and Honors:

Best Ph.D. Researcher 2008
GAANN fellowship 2007
ETA KAPPA NU 2005
Tau Beta Pi, 2003
Phi Kappa Phi, 2003
Staurt Russell Scholarship, 2003
Kovner Scholarship, 2003
Golden Key, 2002
National Dean's List, 2002/2003
Hastings Award (TNCC), 2002

Research Publications:

Journals:

1. Ming Z. Zhang, Ming-Jung Seow, Li Tao, and K. Vijayan Asari, "A tunable high-
performance architecture for enhancement of stream video captured under
nonuniform lighting conditions," Journal of Microprocessors and Microsystems,
vol. 32, no. 7, pp. 386-393, October 2008..

2. Hau T. Ngo, K. Vijayan Asari, Ming Z. Zhang, and Li Tao, "Design of a systolic-
pipelined architecture for real-time enhancement of color video stream based on
an illuminance-reflectance model," Integration, the VLSI Journal, vol. 41, no. 4,
pp. 474-488, July 2008.

3. Ming Z. Zhang, Hau T. Ngo, Adam R. Livingston, and K. Vijayan Asari, "A high
performance architecture for implementation of 2-D convolution with quadrant
symmetric kernels," International Journal of Computers and Applications (in
print).

4. Hau T. Ngo, Ming Z. Zhang, Li Tao, and K. Vijayan Asari, "Design of a high
performance architecture for real-time enhancement of video stream captured in
extremely low lighting environment," International Journal of Embedded Systems:
Special Issue on Media and Stream Processing (in print).

5. Ming Z. Zhang and K. Vijayan Asari, "An efficient multiplier-less architecture for
2-D convolution with quadrant symmetric kernels," Integration, the VLSI Journal,
vol. 40, no. 4, pp. 490-502, July 2007.

6. Ming Z. Zhang, Hau T. Ngo, and K. Vijayan Asari, "Multiplier-less VLSI
architecture for real-time computation of multi-dimensional convolution," Journal
of Microprocessors and Microsystems, vol. 31, pp. 25-37, February 2007.

7. Ming Z. Zhang and K. Vijayan Asari, "A hardware-efficient high performance
digital architecture for run-time computation of normalized cross correlation,"

141

WSEAS Transactions on Circuits and Systems, vol. 5, no. 9, pp. 1416-1423,
September 2006.

8. Ming Z. Zhang, Ming-Jung Seow and K. Vijayan Asari, "A high performance
architecture for color image enhancement using a machine learning approach,"
International Journal of Computational Intelligence Research - Special Issue on
Neurocomputing and Applications, vol. 2, no. 1, pp. 41-48, 2006.

Book Chapters:

1. Ming Z. Zhang and K. Vijayan Asari, "A design methodology for performance-
resource optimization of a generalized 2D convolution architecture with quadrant
symmetric kernels," Lecture Notes in Computer Science, Published by Springer-
Verlag Berlin/Heidelberg (ISSN: 0302-9743), Advances in Computer Systems
Architecture, Proceedings of the Twelfth Asia-Pacific Computer Systems
Architecture Conference - ACSAC 2007: (ISBN: 978-3-540-74308-8), vol.
4697/2007, pp. 220-234, August 23-25, 2007.

2. Ming Z. Zhang, Li Tao, Ming-Jung Seow, and K. Vijayan Asari, "Design of an
efficient flexible architecture for color image enhancement," Lecture Notes in
Computer Science, Published by Springer-Verlag Berlin/Heidelberg (ISSN: 0302-
9743), Advances in Computer Systems Architecture, Edited by C. Jesshope and C.
Egan: Proceedings of the Eleventh Asia-Pacific Computer Systems Architecture
Conference - ACSAC 2006: (ISBN: 3-540-29643-3), vol. 4186/2006, pp. 323-336,
July 2006.

3. Ming Z. Zhang, Hau T. Ngo, and K. Vijayan Asari, "Design of an efficient
multiplier-less architecture for multi-dimensional convolution," Lecture Notes in
Computer Science, Published by Springer-Verlag Berlin/Heidelberg (ISSN: 0302-
9743), Advances in Computer Systems Architecture, Edited by T. Srikanthan, J.
Xue and C. H. Chang: Proceedings of the Tenth Asia-Pacific Computer Systems
Architecture Conference - ACSAC 2005: (ISBN: 3-540-29643-3), vol. 3740/2005,
pp. 65-78, October 2005.

Conference Proceedings:

1. Ming Z. Zhang and K. Vijayan Asari, "A new framework for automatic feature
selection for tracking," Proceedings of the Twentieth International Joint
Conference on Neural Networks - IJCNN 2007, Orlando, Florida, pp. pp. 3104-
3109, August 12-17, 2007.

2. Ming Z. Zhang, Ming-Jung Seow, Li Tao and K. Vijayan Asari, "Design of an
efficient architecture for enhancement of stream video captured in non-uniform
lighting conditions," Proceedings of the International Symposium on Signals
Circuits and Systems - ISSCS 2007, Romania, vol. 2, pp. 1-4, July 13-14, 2007.

142

3. Ming Z. Zhang and K. Vijayan Asari, "A fully pipelined multiplierless
architecture for 2D convolution with quadrant symmetric kernels," Proceedings of
the IEEE Asia Pacific Conference on Circuits and Systems - APCCAS 2006,
Singapore, pp. 1561-1564, December 4-7, 2006.

4. Hau T. Ngo, Ming Z. Zhang, Li Tao and K. Vijayan Asari, "Design of a digital
architecture for real-time video enhancement based on illuminance-reflectance
model," Proceedings of the 49th IEEE International Midwest Symposium on
Circuits and Systems - MWSCAS 2006, Puerto Rico, pp. 3179-1-5, August 6-9,
2006.

5. Ming Z. Zhang, Ming-Jung Seow and K. Vijayan Asari, "A hardware architecture
for color image enhancement using a machine learning approach with adaptive
parameterization," Proceedings of the IEEE International Joint Conference on
Neural Networks - IJCNN 2006,Vancouver, BC, Canada, pp. 35-40, July 16-21,
2006.

6. Ming-Jung Seow, Ming Z. Zhang and K. Vijayan Asari, "Natural color
representation using Ratio learning algorithm for enhancement of digital color
images," IS&T Proceedings of the 30th International Congress of Imaging
Science - ICIS'06, Rochester, New York, pp. 625-628, May 7-11,2006.

7. Li Tao, Hau T. Ngo, Ming Z. Zhang, Adam Livingston, and K. Vijayan Asari,
"Multi-sensor image fusion and enhancement system for assisting drivers in poor
lighting conditions," IEEE Computer Society Proceedings of the International
Workshop on Applied Imagery and Pattern Recognition, AIPR - 2005,
Washington DC, pp. 106-113, October 19 - 21, 2005.

8. Hau Ngo, Li Tao, Adam Livingston, Ming Z. Zhang, and K. Vijayan Asari, "A
visibility improvement system for low vision drivers by nonlinear enhancement of
fused visible and infrared video," IEEE 1st Workshop on Computer Vision
Applications for the Visually Impaired - CVAVI 2005: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition - CVPR 2005, San
Diego, CA, pp. 25, June 20 - 25, 2005.

9. Ming Z. Zhang, Hau T. Ngo, Adam Livingston, and K. Vijayan Asari, "An
efficient VLSI architecture for 2-D convolution with quadrant symmetric
kernels," IEEE Computer Society Proceedings of the International Symposium on
VLSI - ISVLSI2005, Tampa, Florida, pp. 303-304, May 11-12, 2005.

10. Adam Livingston, Hau T. Ngo, Ming Z. Zhang, Li Tao, and K. Vijayan Asari,
"Design of a real time system for nonlinear enhancement of video streams by an
integrated neighborhood dependent approach," IEEE Computer Society
Proceedings of the International Symposium on VLSI - ISVLSI 2005, Tampa,
Florida, pp. 301-302, May 11-12, 2005.

143

Published Abstracts:

1. Ming Z. Zhang and K. Vijayan Asari, "A robust algorithm for real-time
stabilization of shaky video captured under low lighting conditions," ODU-NSU-
EVMS-VTC Research Exposition Day: Research Expo 2007 - 400 Years of
Discovery, Ted Constant Hall, Norfolk, VA, (Poster), p. 43, April 05, 2007.

2. Li Tao, Ming Z. Zhang, and K. Vijayan Asari, "Image fusion for visibility
improvement of digital color images," ODU-NSU-EVMS Research Exposition
Day: Research Expo 2006 - Global Challenges and Local Solutions, Ted Constant
Hall, Norfolk, VA,(Poster), p. 34, April 05, 2006.

3. Hau T. Ngo, Li Tao, Ming Z. Zhang, Adam Livingston, and K. Vijayan Asari,
"Driver's assistant for visibility improvement," ODU-NSU Research Exposition
Day: Research Expo 2005, Ted Constant Hall, Norfolk, VA, (Poster) April 06,
2005.

	Design of a High-Speed Architecture for Stabilization of Video Captured Under Non-Uniform Lighting Conditions
	Recommended Citation

	ProQuest Dissertations

