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Abstract

Automatic Fire Detection Using Computer Vision Techniques for UAV-based Forest Fire
Surveillance

Chi Yuan, Ph.D.

Concordia University, 2017

Due to their rapid response capability and maneuverability, extended operational range, and

improved personnel safety, unmanned aerial vehicles (UAVs) with vision-based systems have great

potentials for forest fire surveillance and detection. Over the last decade, it has shown an in-

creasingly strong demand for UAV-based forest fire detection systems, as they can avoid many

drawbacks of other forest fire detection systems based on satellites, manned aerial vehicles, and

ground equipments. Despite this, the existing UAV-based forest fire detection systems still pos-

sess numerous practical issues for their use in operational conditions. In particular, the successful

forest fire detection remains difficult, given highly complicated and non-structured environments

of forest, smoke blocking the fire, motion of cameras mounted on UAVs, and analogues of flame

characteristics. These adverse effects can seriously cause either false alarms or alarm failures.

In order to successfully execute missions and meet their corresponding performance criteria

and overcome these ever-increasing challenges, investigations on how to reduce false alarm rates,

increase the probability of successful detection, and enhance adaptive capabilities to various cir-

cumstances are strongly demanded to improve the reliability and accuracy of forest fire detection

system. According to the above-mentioned requirements, this thesis concentrates on the develop-

ment of reliable and accurate forest fire detection algorithms which are applicable to UAVs. These

algorithms provide a number of contributions, which include: (1) a two-layered forest fire detec-

tion method is designed considering both color and motion features of fire; it is expected to greatly
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improve the forest fire detection performance, while significantly reduce the motion of background

caused by the movement of UAV; (2) a forest fire detection scheme is devised combining both vi-

sual and infrared images for increasing the accuracy and reliability of forest fire alarms; and (3)

a learning-based fire detection approach is developed for distinguishing smoke (which is widely

considered as an early signal of fire) from other analogues and achieving early stage fire detection.
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Chapter 1

Introduction

1.1 Motivation

Forests play numerous vital roles in nature. They can fertilize and stabilize the soil, cycle

nutrients, moderate climate, purify water and air, store carbon, supply habitats for wildlife and

nurture environments rich in biological diversity. In addition, forest products industry offers a vast

number of jobs and contributes billions of dollars to a country’s economic wealth. Unfortunately,

every year millions of hectares of forest are damaged by fires and a great deal of personnels,

facilities and money are expended to extinguish these fires [4]. Forest fires have become a severe

natural danger which threatens ecological systems, economic properties, infrastructure, and human

lives [5]. Take Canada as an example, Canada’s forests cover a vast area of land which is more

than 10% of the world’s forests. How Canada manages its forests is, therefore, a global concern.

Unfortunately, more than half of the world’s natural forests have been destroyed over the past 50

years due to forest fires and poor management of forests. As reported by the Insurance Bureau

of Canada, the estimated total cost reaches $3.58 billion [6] by the forest fire occurred at Fort

McMurray, Alberta in May 2016 (as shown in Fig. 1.1). This disaster is considered as the most

expensive for insurers in the country’s history. Currently, almost all forests are in danger from such

natural, human-made, and environmental risks, as well as global warming and extreme climate
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change. Fighting forest fires is thereby seen as one of the most important issues in the natural

resources protection and preservation [5]. In particular, because the fast convection propagation

and long combustion period of forest fires, early detection of forest fires is considered to be a

prominent way of minimizing the destruction that fires may cause [1, 7].

Figure 1.1: Forest fire occurred in Alberta, Canada in May 2016.

Massive efforts (see Fig. 1.2) have been devoted to the detection of forest fires before they

develop into uncontrollable. Traditional forest fire surveillance and detection methods employing

watchtowers and human observers to monitor the surroundings usually require extensive labour

forces, are subject to the spatio-temporal limitations, and potentially threaten personnel safety.

Along with the new development of technologies, in the past decades, monitoring of forests and

detection of forest fires primarily rely on ground fire surveillance systems, manned aircraft, and

satellites. However, different technological and practical problems exist in each of these systems.

Ground surveillance system is normally fixed in a specific place and may suffer from limited

surveillance ranges. Manned aircraft is usually large and expensive; meanwhile, the hazardous

environments, harsh weather, and operator fatigue can potentially threaten the life of the pilot.

Satellite systems are typically expensive for launching and less flexible for deployment and tech-

nology updates; moreover, their spatio-temporal resolutions sometimes may be difficult to meet

the requirement of detailed data capture and operational forest fire detection [1, 8–10].

There is an urgent need for developing new tools for a better decision making and management

of forests through fast and low-cost data acquisition, measuring and monitoring of forests fires and

inventories. As a promising substitution of traditional and current forest fire detection approaches,

the integration of unmanned aerial vehicles (UAVs) with remote sensing techniques serving as a

2



Figure 1.2: The existing forest fire surveillance and detection methods: satellite (left), watchtower

(middle), and manned aircraft (right).

powerful tool for operational forest fire detection applications has attracted worldwide increasing

attention [1, 11, 12]. The deployment of UAVs offers tremendous benefits:

(1) cover wide areas, in all kinds of weather;

(2) work at day time, night, with long duration;

(3) will not disturb animals during the flight;

(4) easily recoverable and relatively cost-effective compared to other methods;

(5) in the case of electric UAV, is also a benefit to the environment;

(6) carry large and different payloads for different missions even within one flight benefited from

the space and weight saving comparing with manned vehicles since there is no need for pilot

related life-guard equipment and devices;

(7) be able to cover larger and specific target area efficiently.

UAVs with computer vision based remote sensing systems onboard have been an increasingly

realistic choice by providing low-cost, safe, rapid, and mobile characteristics for forest fire surveil-

lance and detection. They are capable of meeting the crucial spatio-temporal and spectral reso-

lution requirements [12]. They can also enable the execution of long-term, dull, and repetitive

missions beyond human capabilities. In addition, vision-based detection technique can capture

and deliver intuitive and highly real-time information as well as cover a wide viewing range con-

veniently with reduced development cost. Conventional point-sensors are very useful for indoor
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fire detection by detecting heat or smoke particles. However, they are not suitable in large open

spaces, such as in forests. Rapid development in electronics, computer science and digital camera

technologies have made computer-vision-based systems a promising technique for fire monitoring

and detection [8]. Vision-based system has become an essential component in the UAVs based for-

est fire detection system [13]. Accordingly, a great number of research activities, in recent years,

have been carried out for UAV-based forest fire monitoring and detection applications [4, 14–32].

1.2 Background and Literature Review

1.2.1 Background: General System Design Architecture and Requirements

The basic components of a general UAV-based forest fire surveillance system can be described

in Fig. 1.3, which fulfills the tasks of monitoring (searching a potential fire), detection (triggering

an alarm to firefighting staffs or initializing further diagnosis and prognosis), diagnosis (localizing

the fire and tracking its evolution), and prognosis (predicting the evolution of the fire with the

real-time information of wind and firefighting conditions) [1]. These tasks can be carried out using

either a single UAV or a team of UAVs (with different kinds of sensors) as well as a central ground

station. The goals are to use UAVs to provide real-time information to human firefighters and/or to

send alarm and aid firefighting.

In order to achieve the successful applications, UAV-based forest fire surveillance system typi-

cally contains the following components:

• UAV frames (fixed-wing and rotary-wing types) carrying the necessary payloads (remote

sensing sensors for day-time, night-time, all weather conditions) for fire surveillance and

detection. A variety of sensors, including global positioning system (GPS) receivers, inertial

measurement units (IMUs), and cameras (visual and infrared cameras), all of which aid in

fire surveillance and detection;

• Remote sensing technologies for fires monitoring and detection;
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Figure 1.3: Illustration of UAV-based forest fire surveillance system [1].

• Sensors fusion and image processing techniques for rapid and accurate fire detection, decision-

making, and localization;

• Guidance, navigation, control (GNC) algorithms of both single and multiple UAV fleets for

monitoring, tracking and prediction of fire development, and fire extinguishing operation;

• Cooperative localization, deployment, and control strategies of UAVs for optimal coverage

of fire areas for precise and rapid fire tracking, prediction, and assistance/guidance of fire-

fighting. Such systems are based on the real-time data supplied by the onboard sensors and

their related signal processing algorithms;

• Autonomous and reliable path planning and re-planning strategies before and after fire being

detected based on fire development situations;

• Ground station for ground computation, image processing, visualization for fire detection,

tracking, and prediction with automatic fire alarm and for safe and efficient operation of the
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UAVs system during the mission.

Forest fire monitoring and detection mission can generally be broken down into one of three

stages: fire search, fire confirmation, and fire observation [33].

In the fire search stage, the ground control station assigns the task to each UAV according to the

characteristics of terrain, and functions of individual UAVs including their onboard payloads. After

that, either a single UAV or a fleet of homogeneous/heterogeneous (fixed-wing and rotary-wing)

UAVs [34, 35] is/are commanded to patrol the surveillance region along respective pre-planned

paths for searching the potential fire.

The fire confirmation stage starts when a fire is detected. The ground control station sends the

UAV which has detected the fire to hover near the detected fire spot with a safe distance, while

other UAVs are also commanded to fly to the fire spot for the further fire confirmation based on

their individual detection results.

The fire observation stage begins if the fire is determined to be true; otherwise the fire search

stage is resumed. In the fire observation stage, UAVs are designated to synchronously collect

images and data about the fire from different perspectives. These gathered information are finally

delivered to operators at ground station or firefighting managers, and deploy service UAVs to assist

firefighting operations.

1.2.2 Review on UAV Based Forest Fire Monitoring and Detection Systems

Recent decades have seen many advances in the field of UAV-based automatic firefighting tech-

nologies. A majority of research has been conducted in the North America and Europe. Table 1.1

provides a brief summary of existing UAV-based forest fire surveillance systems [1].

The earliest application of UAVs for collecting data on forest fires can be dated back to 1961

by the United States Forest Services (USFS) Forest Fire Laboratory [36]. In 1996, a Firebird 2001

UAV with a camera based imaging system was adopted for gathering forest fire images in Missoula,

Montana [29]. Later on, during the period of 2003 to 2010, a Wildfire Research and Applications
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Partnership (WRAP) project was carried out by the USFS and National Aeronautics and Space Ad-

ministration (NASA), with the purpose of increasing under-served forest fire applications [26,37].

In 2006, the NASA Altair and the Ikhana (Predator-B) UAVs accomplished their near-real-time

wild fire imaging assignments in the western United States [26]. In 2011, with the collabora-

tion of the West Virginia Department of Forestry (WVDF) and NASA, a research group from the

University of Cincinnati utilized the Marcus Zephyr UAV to test the performance of its designed

forest fire detection scheme [38]. Furthermore, a First Response Experiment (FiRE) project [39]

demonstrated the effectiveness of using Unmanned Aerial System (UAS) for real-time wild fire in-

formation collection. The total processing time of data collection, telemetry, geo-processing, and

delivery was within fifteen minutes by using this system. Instead of a single powerful UAV with so-

phisticated sensors used by the FiRE project, another project undertaken in Europe applied a team

of low-cost UAVs with onboard visual and infrared cameras as local sensors for collecting im-

ages and data within close ranges. Experiments adopting multiple UAVs for patrolling, detection,

localization, and propagation prediction of forest fires have also been conducted [19, 31, 40, 41].

Additionally, in 2004, the first regulated utilization of a UAV in fire service was developed in

Hungary to test the systems function of forest fires detection [42]. Pastor et al. demonstrated

a Sky-Eye UAV system to detect forest fires in Spain [43]. In 2011, two UAVs with visual and

infrared cameras were designed to validate their abilities of fire detection and localization in the

Netherlands [44].

Except for the practical use of UAVs, there has also been some simulated researches on UAV-

based forest fire surveillance and detection. Casbeer et al. [45, 46] verified the efficacy of using

several low altitude, low endurance UAVs for cooperative surveillance and tracking of large for-

est fires propagation. A numerical propagation model for forest fire detection was validated in

simulation environment with a six degree-of-freedom dynamic UAV model. Yuan et al. [14–17]

conducted experiments using an unmanned quadrotor helicopter (UQH) for searching and detect-

ing a fire simulator in lab environment so that verify the efficacy of their proposed UAV based

forest fire detection methods.
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Although current research demonstrates the feasibility of using UAVs to detect forest fires, the

development of automatic forest-fire detection systems, including relevant hardware and software,

is still minimal. Further researches on suitable system platforms, remote sensing payloads/sensors,

as well as algorithms for GNC and remote sensing are demanded. It is this urgent need that

motivates further research and development in this important field.

Table 1.1: Features of reviewed UAV-based forest fire surveillance systems [1].

Test Types References UAV Class Onboard Cameras
(Resolution)

Engine
Power

Payload
Capacity

Near operational [47] 1 fixed-wing 1 thermal (720× 640) Fuel 340kg
Operational [26] 1 fixed-wing 4 mid-IR (720× 640) Fuel > 1088kg

Near operational [48]
2 rotary-wing;

1 airship

1 visual (320× 240); 1 IR

(160× 120)
Fuel; Electric 3.5kg

Operational [44]
1 fixed-wing; 1

rotary-wing
1 visual; 1 IR Fuel —

Near operational [37] 1 fixed-wing 1 visual; 1 IR Fuel < 34kg
Near operational [29] 2 fixed-wing 1 visual; 1 IR; 1 visual

(1920× 1080)

Fuel 25kg;

250kg

Near operational [49] 2 fixed-wing
1 thermal (160×120); 1 NIR

(752×582); 1 VNIR (128×
128)

Electric < 2.6kg

Near operational [50, 51] 1 fixed-wing 1 visual (720× 480) Gas 0.68kg

Near operational [43] 1 rotary-wing
2 visual (4000 × 2656;

2048 × 1536); 1 thermal

(320× 240)

Fuel 907kg

Near operational [42] 1 fixed-wing 1 visual Electric —

Near operational [38] 1 fixed-wing 1 visual (656× 492) Electric 5.5kg

Note: (-) not mentioned; IR: Infrared; NIR: Near IR; VNIR: Visible-NIR.

1.2.3 Review on Vision Based Automatic Forest Fire Detection Techniques

The advantages of vision-based techniques have made them a major research topic in the

field of forest fire monitoring and detection [13]. As outlined in Table 1.2, a sequence of near-

operational field tests have been carried out in the past decade using vision-based UAV systems for

forest fire detection, though practical firefighting tests are still rare.

Moreover, there are many research works using other platforms and offline videos to monitor

and detect fires, as shown in Tables 1.3 and 1.4. Although these approaches are not originally

designed for UAV application, they still can supply some inspiring insights into UAV-based forest
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Table 1.2: UAV-based forest fire detection methods in near-operational field [1].
Detection Method Spectral

Bands Resolution Used Fea-
tures FD SD GL PP IS References

Georeferenced un-

certainty mosaic
IR 320× 240 Color

√ × √ √ √
[28]

Statistical data fu-

sion

Visual

Mid-IR

752 × 582
256× 256

Color
√ × √ √ √

[27]

Training method IR 160× 120 Color
√ × × × √

[52]

Training method
Visual

Far-IR

320 × 240
—

Color
√ × √ × √

[53, 54]

Training method
Visual

Far-IR

320 × 240
—

Color
√ × √ √ √

[19, 33]

—
Visual

IR

720 × 640
—

Color
√ × √ × — [39, 47]

Genetic algorithm IR 320× 240 Color
√ × × × × [55]

Training method
Visual

IR

752 × 582
160× 120

Color
√ × √ × — [48, 56]

Training method
Visual

IR
— — Color

√ × √ × — [40, 57]

Note: (
√

) considered; (×) not considered; (FD) Flame Detection; (SD) Smoke Detection; (GL) Geolocation;

(PP) Propagation Prediction; (IS) Image Stabilization.

fire detection systems due to their common properties utilizing vision-based technologies in fire

detection. For the purpose of saving the cost of devices development and personnel employment,

as well as experimental time, the validity of various fire detection methodologies are usually tested

and verified on forest fire videos in advance.

Over the last decade, a variety of vision-based techniques primarily focus on image/video pro-

cessing algorithms. According to the spectral range of the camera used, vision-based fire detection

technologies can generally be classified into either visual fire detection or IR fire detection sys-

tems [58]. Most of all, the color and motion of fire form the two dominant characteristic features

for vision-based fire detection [59].

1.2.3.1 Fire Detection with Visual Images

In Tables 1.3 and 1.4, the color and motion features of the detected fire are usually utilized in

the present studies, while discriminative properties in color spaces are commonly employed as a

pre-processing step in the segmentation of fire regions in the images [60, 61]. In addition, most

of researchers prefer to combine the color and motion features to offer more reliable fire detection
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results, rather than only use color feature. As illustrated in Table 1.3, major efforts have been

devoted into the investigation of offline video-based fire detection. Chen et al. [62] make use of

color and motion features in a red, green, and blue (RGB) model to identify real fire and smoke in

video sequences. The disordered characteristic of flame is as well dynamically analyzed to con-

firm the fire occurrence. Töreyin et al. [63] design a real-time scheme combining motion and color

clues with fire flicker analysis on wavelet domain to do video fire detection. In [64], a common

chromatic model based on RGB color model, motion information, and Markov process-enhanced

fire flicker analysis are merged to build a whole fire detection system. Subsequently, the same

fire detection approach is also adopted to distinguish potential smoke pixels in video samples for

early fire alarm [65]. In [66], a rule-based generic color model for flame pixel classification is

described, with test results demonstrating great improvement in detection performance. In [67], a

method comprising four sub-algorithms for wildfire detection at night is presented and an adaptive

active fusion approach is utilized to linearly form decisions from sub-algorithms. Continuing with

previous work, Gunay et al. [68] design and apply an entropy-functional-based online adaptive de-

cision fusion frame to discover the wildfires in video. A real-time fire detection approach utilizing

an adaptive background subtraction algorithm is devised in [69] in order to distinguish foreground

information; a statistical fire color model is then applied to check the occurrence of fires. In [70],

a color-lookup table is employed with a great number of training images to identify the existence

of suspicious fire regions and a temporal variation is also used to differentiate fires from fire color

analogous objects. A support vector machine (SVM) based fire detection approach, which adopts

a luminance map to eliminate non-fire pixels regions, is introduced in [71]. Moreover, a two-class

SVM classifier with a radial basis function kernel is devised for the verification of fire presence

in [71]; but it is difficult to make this classifier in real-time because of its excessive demand for

computation time. Yuan et al. [14–16] address methods intended to successfully extract fire-pixels

by taking the advantages of Lab color model capable of revealing fire color feature obviously,

while in [14, 16] optical flow method is used to conduct motion detection and motion analysis

for fire pixels confirmation; experimental results verify that the designed method can effectively
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identify forest fire pixels. In [72], a benchmarking of state of the art color-based fire segmentation

algorithm is proposed using a newly introduced fire dataset. According to the principal color of

the fire, the luminosity, and the presence of smoke in the fire area, all images are characterized

to determine the efficiency of algorithms on different kind of images. [73] presents a novel fire

detection methods based on machine learning techniques and using all the rules as features; this

method provides a very interesting tool for the future development of fire detection methods for

unstructured environments.

Majority of the researches detect forest fires by flame, whereas smoke is also a prominent

characteristic used in alarming the presence of forest fires. Tables 1.3 and 1.4 present some in-

vestigations that revolve around smoke detection. Chen et al. [74] combine a color-based static

decision rule and a diffusion-based dynamic characteristic decision rule to extract smoke pixels.

Experimental results validate that this method can offer an robust and cost-efficient solution for

smoke classification. In [75], a real-time smoke detection method making use of texture analysis is

investigated, while a back-propagation neural network is used as a distinguishing model. Experi-

ments have verified that the devised algorithm is able to differentiate smoke and non-smoke images

with a quick and low rate of false fire alarm. [76] proposes a smoke detection strategy adopting an

accumulative motion model on whole images by smoke motion orientation estimation. Since the

estimation accuracy can influence subsequent critical decisions, smoke orientation is accumulated

over time as compensation for inaccuracy so that false alarm rate is reduced. [77] develops a real-

time fire alarm system employing spectral, spatial, and temporal features of smoke, and utilizing

fuzzy logic for extracting smoke. Experimental validations indicate that smoke can be successfully

discriminated in different circumstances. However, further development to integrate such findings

with existing surveillance systems and implement them in actual operations is still demanded. A

scheme taking advantage of static and dynamic characteristic analysis for forest fire smoke detec-

tion is presented in [78]. Zhang et al. [79] use an Otsu-based strategy to segment both fire and

smoke together. Yu et al. [80] adopt both color-based decision rules and optical flow technique to

extract the color and motion features of smoke. Experiments prove that video detection accuracy
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has been significantly improved. Although a variety of forest fire detection techniques have been

developed experimentally, currently only several studies have been conducted in near operational

environments (as shown in Table 1.2). Most of these research have been carried out by a research

group from the University of Seville in Spain. These tests utilize multiple UAVs and make use of

color feature to detect forest fires.

In recent years, intelligent methods have been widely adopted to lower false alarm rates. As

presented in Table 1.3, the commonly used algorithms [69,77,80,81] are artificial neural networks

(ANNs), fuzzy logic, and fuzzy neural networks. Experimental validations indicate that these

methods can effectively detect fires, but most of them have not been evaluated on UAVs or in

practical forest fire scenarios.

1.2.3.2 Fire Detection with Infrared Images

Since infrared (IR) images can be captured in either weak or no light situations while smoke is

transparent in IR images, it is therefore applicative and practical to detect fires in both daytime and

nighttime. Tables 1.2 and 1.4 list fire detection studies done by IR cameras. [48,53] take advantage

of a training-based threshold selection method [52] to obtain binary images containing fire pixels

from IR images. The false alarm rates are significantly reduced, since the appearance of fire is

a high intensity region in IR images. Bosch et al. [30] detect the occurrence of forest fires in IR

images by using decision fusion. Various useful information for the fire detection can be acquired

by this method. Pastor et al. [82] use linear transformations to precisely calculate the rate of spread

(ROS) of forest fires in IR images, while a threshold-value-searching criterion is applied to locate

the flame front position. Ononye et al. [83] illustrate a multi-spectral IR image processing method

which is capable of automatically obtaining the forest fire perimeter, active fire line, and fire propa-

gation tendency. The proposed method is developed based on a sequence of image processing tools

and a dynamic data-driven application system (DDDAS) concept. Huseynov et al. [84] devise a

multiple ANNs model for distinguishing flame in IR images. The experimental results show that

the proposed approach can reduce training time and improve the success rate of classification.
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One issue related to processing images collected by IR cameras is that miniaturized cameras

still have low sensitivity [48]. This phenomenon demands an augment in detector exposure periods

to produce higher-quality images. In addition, the high frequency of vibration of UAV can lead to

blurring images, which remains a major difficulty in their development.

1.2.3.3 Fusion of Visual and Infrared Images

At present, it is confirmed that visual and IR images can be fused together to improve the

accuracy, reliability, and robustness of fire detection algorithms, while reducing the rate of false

alarms. These improvements are achieved by making use of fuzzy logic, intelligent, probabilistic,

and statistical methods (as described in Tables 1.2 and 1.4).

Arrue et al. [85] develop a system comprised of IR image processing, ANNs, and fuzzy logic

to decrease the false alarm rate. In their research, matching the information excessiveness of visual

and IR images is used to confirm forest fires. [56] adopts both IR and visual cameras for fire front

parameter estimation through visual and IR image processing techniques, whereas experimental

tests are only carried out in a laboratory. After that, Martinez-de Dios et al. [4] illustrate a forest fire

perception system using computer vision techniques. Visual and IR images are fused to compute a

three-dimensional fire perception model so that the fire evolution can be visualized through remote

computer systems.

Although various image fusion approaches have been proposed in the existing research, how

to optimize the number of features that are used in fire detection remains a challenging problem.

Solving this problem can not only decrease the computation burden of onboard computers, but also

lower both the cost of hardware and the rate of false alarms.
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Table 1.3: Offline video fire detection methodologies using visual cameras [1].
Detection Method Resolution Color Motion Geometry FD SD References

Statistic method
320 × 240
400× 255

√ × × √ × [86]

Fuzzy logic 256× 256
√ × × √ × [59]

SVM —
√ √ √ √ × [87]

Fuzzy logic 320× 240
√ √ √ × √

[77]

Wavelet analysis 320× 240
√ √ √ √ × [64]

Computer-vision 320× 240
√ √ × √ × [88]

Wavelet analysis 320× 240
√ √ × √ × [63]

Rule-based video processing —
√ √ × √ √

[62]

Fourier transform —
√ √ × √ × [89]

Bayes and fuzzy c-means —
√ √ × √ × [90]

Adaptable updating target ex-

traction
—

√ √ × √ × [91]

Histogram based method —
√ √ × √ × [92]

Fuzzy-neural network —
√ √ × √ × [93]

Statistical method 176× 144
√ × × √ × [69]

Fuzzy finite automata —
√ √ × √ × [81]

Gaussian mixture model 320× 240
√ √ × √ × [94]

Histogram back projection —
√ × × √ × [95]

Wavelet analysis —
√ √ × × √

[65]

Adaptive decision fusion —
√ √ × × √

[68]

Accumulative motion model — × √ × × √
[76]

Image processing method —
√ √ × × √

[78]

Neural network 320× 240
√ √ × × √

[80]

Note: (
√

) considered; (×) not considered; (—) not mentioned; (FD) Flame Detection; (SD) Smoke Detection.

1.3 Problem Formulation

Many techniques have been used for forest fire detection. However, the existing approaches

still have various practical issues for their use in operational conditions. Using UAV-based sys-

tems to detect forest fire can provide rapid and low-cost way to satisfy the critical requirements of

forest fire fighting, as they can avoid the drawbacks of systems based on satellites, manned aerial

vehicles and ground equipments. Although the existing research demonstrates the possibility and

potential benefits of using UAVs to detect forest fires, development of such systems, including re-

lated hardware, software and application strategies, is still minimal in the previous limited number

of research works. Further investigation is demanded on all aspects of their use, including suitable

system platforms, remote sensing payloads/sensors, and algorithms for GNC, as well as remote

sensing techniques. Moreover, the combination of UAV and remote sensing techniques is also

particularly challenging.
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Table 1.4: Fire detection methodologies using visual and IR cameras [1].
Detection
Method

Spectral
Bands Resolution OV IV OLVCF MF GF FD SD PP GL References

Training

method

Visual

Mid-IR

752 × 582
256× 256

× √ × √ × × √ × √ √
[56]

Training

method

Visual

Mid-IR

—

—

√ × × √ × × √ × √ √
[4]

Images

matching

Visual

IR

—

—

√ × × √ √ √ × √ × √
[22, 85]

Data fusion
Visual

IR

—

—
× √ × √

— —
√ √ × × [30]

Neural net-

works
IR — × √ × √ √ √ × × × × [84]

Dynamic

data-driven

Multi-

spectral

IR

— × × √ √ × √ √ × √ × [83]

Note: (
√

) considered; (×) not considered; (—) not mentioned; (OV) Outdoor validation; (IV) Indoor validation;

(OLV) Offline validation; (CF) Color feature; (MF) Motion feature; (GF) Geometry feature; (FD) Flame Detection;

(SD) Smoke Detection; (GL) Geolocation; (PP) Propagation Prediction; (IS) Image Stabilization.

In addition, UAV-based forest fire detection remains difficult, given highly complex, non-

structured environments of forest, the chance of smoke blocking the images of the fire, or the

chance for analogues of flame characteristics, such as sunlight, vegetation, and animals, or the

vibration and motion of cameras mounted on UAVs, either false alarms or alarm failures are often

caused. How to reduce false alarm rates, increase high detection probability, and enhance adaptive

capabilities in various kinds of environmental conditions to improve the reliability and robustness

of forest fire detection are all worth further investigation.

Although the few existing researches have verified that the fusion of IR and visual images can

contribute to the accuracy of forest fire detection with high detection probability, how to decrease

false alarm rates and improve adaptability in a variety of environmental circumstances are still

challenging issues which need to be further studied, in particular for the situation with application

to UAV systems.

In general, the developed vision-based fire detection methods are applied with stationary cam-

eras by separating fires from the static backgrounds. However, the techniques using/involving

motion features of fire for fire detection may fail to perform as expected when cameras are at-

tached to UAVs which are moving during the entire operation period. Under this circumstance,
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objects (including the interested objects and background) in the captured images are all moving,

which is the primary cause of the failure in fire detection.

1.4 Objectives of This Thesis

In order to achieve the goals of automatic forest fire detection using UAVs, this thesis aims to

design and develop novel vision-based forest fire detection schemes that are capable of effectively

detecting and alarming forest fires with application to UAV-based forest fire surveillance systems.

In particular, this thesis is organized for the following research objectives:

• Design and develop effective forest fire detection techniques based on visual images.

• Design and develop effective forest fire detection techniques based on IR images.

• Investigate information fusion (including visual and IR images) schemes/strategies to im-

prove the reliability and accuracy of fire detection so as to significantly reduce the rate of

false fire alarm.

• Design and develop smoke detection schemes to achieve earlier fire detection so as to fur-

ther improve the reliability and robustness of fire detection as well as save more time for

firefighting and reduce property losses.

To sum up, this thesis (as shown in Fig. 1.3) is primarily intended to propose advanced fire

monitoring and detection techniques which in turn can guarantee the reliable and satisfactory per-

formance of forest fire detection at both visual and IR levels with application to UAV-based forest

fire surveillance system. The schemes and strategies developed in this thesis are verified by a series

of aerial images/videos in the presence of forest fire scenarios and indoor simulation with a real

UAV system.
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1.5 Contributions of This Thesis

Although a variety of fire detection methodologies have been developed and proposed, only

several research studies have considered forest fire scenarios and few relative experiments have

been conducted for detecting forest fires using UAVs. The merits of this research can be reflected

by significant contributions to the realization of a new concept and technology of UAV-based forest

fire surveillance. The main contributions of this thesis can be categorized into the following major

aspects:

(1) Reliable fire detection using visual images with application to UAV system

(a) Design of a fire detection scheme using fire color feature in visual images.

(b) Design of a fire detection scheme using fire motion feature in visual images.

(c) Design of a fire detection scheme using both color and motion features in visual images.

(2) Reliable fire detection using IR images with application to UAV system

(a) Design of a fire detection scheme using fire brightness feature in IR images.

(b) Design of a fire detection scheme using fire motion feature in IR images.

(c) Design of a fire detection scheme using both brightness and motion features in IR

images.

(3) Reliable smoke detection using visual images with application to UAV system

(4) Fusion of visual and IR images: Using common information in the segmented visual and IR

images to improve the detection performance.

(5) UAV experimental platform development: Development and system integration of UAV and

computer vision system.

In addition, the knowledge and experience gained in this thesis can be not only used in for-

est fire detection for UAV-based fire surveillance, but also transferable towards other firefight-

ing applicaiton such as fire suveilliance of oil fields, pipelines, electric power lines and nuclear
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power plants, and public area which significantly contribute to infrastructure and public safety.

Although the tasks and objectives of this thesis are targeted mainly for UAV-based forest fires

detection, the developed technologies and techniques can be straightforwardly adopted for other

manned/unmanned mobile forest fire detection platforms. To sum up, the outcome of this thesis

in the long-term is expected to evolve into innovative inventions enhancing natural resources and

environmental sustainability and protection, safety and security of society, reduce the economic

losses, and save more lives from forest fires.

1.6 Organization of This Thesis

The remainder of this thesis is organized as follows:

• Chapter 2 provides an overview of some preliminary knowledges which will facilitate the

reading of this thesis.

• Chapter 3 addresses a novel method of UAV-based forest fire detection in visible range im-

ages. In order to improve the accuracy of fire detection, both color and motion features are

adopted to process images captured from a camera installed on a UAV which is moving dur-

ing the entire mission period. First, a color-based detection rule is designed for isolating fire-

colored pixels by using fire chromatic characteristics in the so-called Lab color model. Then

two types of optical flow algorithms are combined to further analyse the isolated fire-colored

regions from color-based detection, one is a classic artificial optical flow for estimating the

motion of camera, while the other one is based on the optimal mass transport theory for fire

detection.

• Chapter 4 introduces the proposed fire detection algorithm dealing with IR images, this

algorithm takes advantages of both brightness and motion features of fire for achieving good

detection performance. In addition, the data fusion technique combining information from

both visual and IR cameras is illustrated as well.
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• Chapter 5 presents a new learning-based fuzzy smoke detection methodology using color

feature of smoke and an extended Kalman filter for training the fuzzy smoke detection rule,

an effective early fire detection is expected.

• Chapter 6 presents conclusions of the conducted research works, and summarizes several

predominant ideas for the future developments of the thesis’s outcomes.

1.7 Publications During the Thesis Work

• Journal Papers

(1) Chi Yuan, Youmin Zhang, & Zhixiang Liu (2015). A survey on computer vision based

technologies for automatic forest fire detection using UAVs and remote sensing tech-

niques. Canadian Journal of Forest Research, 45(7): 783-792. DOI: 10.1139/cjfr-
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Chapter 2

Preliminaries

Vision-based fire detection mainly depends on the image segmentation techniques by making

use of fire characteristics shown in the images captured from cameras. Color and motion features,

which are the primary features of fire, have been widely used in image segmentation. The main

objective of image segmentation is to differentiate fire pixels from background pixels. The tech-

niques that are commonly applied for image segmentation can be chosen according to the type of

image: visual or infrared (Figs. 2.1 and 2.2 show visual and infrared images taken by a UAV and

its corresponding segmented images).

Figure 2.1: Segmentation of visual image: original (left) and segmented (right) images [2].
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Figure 2.2: Segmentation of infrared image: original (left) and segmented (right) images [2].

2.1 Color Models

As a dominant feature of fire, color is the earliest and most popularly used feature in the devel-

opment of detection techniques adopted in the vision-based forest fire detection applications [58].

The color information is usually used as a pre-processing step in the detection of potential fire. A

variety of algorithms taking advantage of the discriminative properties in color space are developed

to obtain fire regions in the image. Generally, the decision rules are built in specified color space

to represent fire colors in the image and then thresholding technique is used to segment fire regions

based on such rules.

A color space (also called color model), which is a specification of a coordinate system, aims

to establish the specification of colors in a standard and commonly accepted way [3]. In the field

of digital image processing, RGB color model, hue, saturation and intensity (HSI) color model,

hue, saturation and value (HSV) color model, and Lab color model are the predominant models

for image processing. They have been widely adopted to represent images in corresponding color

spaces. Figs. 2.3 and 2.4 display fire in each channels of different color models.

2.1.1 RGB Color Model

The RGB color model is an additive color model in which three spectral components (red,

green and blue) are mixed together in various means to reform a broad array of colors. The prime

function of the RGB color model is for the perception, representation, and display of images in

electronic systems, such as computers, televisions, and mobile phones.
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Figure 2.3: Forest fires display in different color channels (Scenario 1).

Figure 2.4: Forest fires display in different color channels (Scenario 2).
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Figure 2.5: Illustration of RGB color model [3].

The RGB color model is built upon a Cartesian coordinate system as shown in the cube of

Fig. 2.5. In this cubic model, the values of R,G, and B are coordinate axes and the range of

values is assumed to be normalized within [0, 1]; each color can be described as a point in or on

the cube by the coordinates of three components R,G, and B; the primary colors red, green, and

blue are at three corners (1, 0, 0), (0, 1, 0), (0, 0, 1); three other corners (0, 1, 1), (1, 0, 1), (1, 1, 0)

denote secondary colors cyan, magenta, and yellow, respectively; black is at the origin (0, 0, 0),

while white is at the corner (1, 1, 1); the gray scale which are points of equal R,G,B values spread

from black to white along the line jointing the origin and the corner farthest from the origin.
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Figure 2.6: Illustration of HSI color model [3].

2.1.2 HSI Color Model

The HSI color model is a very important and attractive model for developing image processing

algorithms due to the fact that the color definitions in HSI color model are intuitive, natural, and

ideal to human. When human observe a color object, hue, saturation, and brightness are used to

describe it. Similar to the way of human interpretation, the HSI color model defines every color

with three elements: hue, saturation, and intensity. Fig. 2.6 illustrates the representation of colors

in HSI color model.

The hue component H illustrates the chrominance itself in the form of an angle ranging from

0◦ to 360◦. The primary colors (red, green, and blue) are divided by 120◦ and the secondary colors

cyan, magenta, and yellow are 60◦ from primary colors, respectively. In other words, 0◦, 120◦, and

240◦ denote red, green, and blue while 60◦, 180◦, and 300◦ denote cyan, magenta, and yellow. The

saturation component S represents how much the color is mixed with white color. The range of the

S component is normalized in [0, 1]. The intensity component I also ranges during [0, 1]. Value 0

28



means black and value 1 signals white.

Since digital cameras are typical RGB input devices, images obtained from cameras are usually

represented by RGB format. Given an image in RGB format, it can be converted to HSI space by

the following equation [3]:

H =

⎧⎪⎪⎨
⎪⎪⎩
Θ, if (B � G)

360−Θ, if (B > G)

I =
R +G+ B

3

S = 1 − 3

(R +G+ B)
min(R,G,B)

Θ = cos−1

(
1
2
((R−G) + (R− B))

[(R−G)2 + (R− B)(G− B)]
1
2

)
(1)

where R, G, and B are the values of red, green, and blue in RGB color model, respectively.

2.1.3 HSV Color Model

Hue, saturation, and value (HSV) color model is one of the most common cylindrical-coordinate

representations of points in an RGB color space. HSV stands for its three components: hue, satu-

ration, and value. Similar to HSI color space, it rearranges the geometry of RGB to become more

intuitive and perceptual than the Cartesian (cube) representation.

In the cylinder (as shown in Fig. 2.7), hue, saturation, and value are represented by the angle

around the central vertical axis, the distance from the axis, and the distance along the axis respec-

tively. In this cylindrical geometry, hue starts at the red primary at 0◦, wrapping through the green

primary at 120◦ and the blue primary at 240◦. The central vertical axis is consisted of the neutral,

achromatic, or gray colors, ranging from the bottom (black at value 0) to the top (white at value 1).

As aforementioned, most cameras output RGB images, there is also a necessity to covert RGB
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Figure 2.7: Illustration of HSV color model.

color model to HSV color model. The conversion principle can be formulated as follows:

V =max(R,G,B)

S =

⎧⎪⎪⎨
⎪⎪⎩
0, if (max(R,G,B) = 0)

max(R,G,B)−min(R,G,B)
max(R,G,B)

, otherwise

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

undefined, if (S = 0)

60× G−B
max(R,G,B)−min(R,G,B)

, if (max(R,G,B) = R)&(G � B)

60× G−B
max(R,G,B)−min(R,G,B)

+ 360, if (max(R,G,B) = R)&(G < B)

60× B−R
max(R,G,B)−min(R,G,B)

+ 120, if (max(R,G,B) = G)

60× R−G
max(R,G,B)−min(R,G,B)

+ 240, if (max(R,G,B) = B)

(2)

2.1.4 Lab Color Model

The Lab color model is designed to approximate all perceivable colors of human vision, which

means its gamut outweighs those of the RGB and HSI color models as well. Unlike the RGB and

HSI color models, Lab color model is an absolute color space which does not depend on devices

such as cameras, monitors and printers. The merit of device independence is that Lab color model
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Figure 2.8: Illustration of Lab color model.

can define colors accurately without the influence of their nature of creation or the device they are

displayed on.

As presented in Fig. 2.8, the Lab color model comprises three portions: the luminance L, the

chrominance a, and the chrominance b. Luminance L represents the intensity ranges from the

darkest black to the brightest white. The scaling of L values run in the range from 0 to 100.

Chrominance a denotes that the color varies from red to green, with red at positive a value and

green at negative a value. Chrominance b indicates the color changes from yellow to blue, with

yellow at positive b value and blue at negative b value. The scale of a and b values are normally

confined in [−128, 127].

In order to covert RGB color model to Lab color model, the following rules can be used:

L =116× (0.299R + 0.587G+ 0.114B)1/3 − 16,

a =500× [1.006× (0.607R + 0.174G+ 0.201B)1/3 − (0.299R + 0.587G

+ 0.114B)1/3],

b =200× [(0.299R + 0.587G+ 0.114B)1/3 − 0.846× (0.066G+ 1.117B)1/3].

(3)
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2.2 Moving Object Segmentation

The first step of automatic vision-based surveillance is to segment interesting objects in the field

of view of the camera. The interesting objects are defined as potential targets of detection which

are context dependent. For a general detection system, the moving zones of the video sequence,

such as people and vehicles, are mostly treated as the interesting areas. Segmentation of interesting

areas is an essential and crucial assignment, as faults made at this step are difficult to correct in

subsequent processing including object tracking and classification [96]. In other words, accurate

segmentation can produce more precise results of detection.

Many motion detection methods have been extensively investigated. At present, most of the ex-

isting motion segmentation methods adopt either temporal or spatial video information and can be

summarized into four major categories: temporal differencing, background subtraction, statistical

analysis, and optical flow [96].

2.2.1 Temporal Differencing

Temporal differencing is a direct motion detection method by making use of temporal differ-

ence of consecutive frames in video sequence. The absolute difference of each pixel between two

or three consecutive frames can be computed and a threshold is utilized to obtain the motion object,

such as a three-frame-difference algorithm used in [97].

Temporal differencing is simple to implement and highly adaptive to dynamic environments,

but it is not so effective to extract the whole region or the complete shapes of the moving objects,

especially does poor job in segmenting the inner part of the moving object.

2.2.2 Background Subtraction

Background subtraction is a frequently used approach for motion segmentation, particularly

in the situation when the background is relatively static. In this method, stationary pixels in the

image are defined as the background since the background can be seen as temporally static part
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of the image. If the background scene is observed for a period, then pixels constituting the whole

background can be calculated and modelled. For instance, the background can be estimated by

averaging consecutive initialization frames, because moving regions and objects occupy only some

parts of the background scene in the image and their effect is counteracted over time by averaging.

After the background model is known, the moving pixels are determined if the pixel-by-pixel

difference between previous and current frames exceeds a threshold.

Although background subtraction techniques are good at isolating the relevant pixels of moving

regions in most cases, they become vulnerable when the scene is more complex, for example there

are dynamic changes, such as moving leaves or sudden illumination changes. Since it is assumed

that the camera is stationary, background model cannot represent the background very well if the

background is changing as well.

2.2.3 Statistical Based Methods

Statistical based methods utilizing the statistical characteristics of individual pixels have been

investigated to improve the basic background subtraction with more reliability in complex scenes

that contain noises, illumination changes and shadow. Inspired by the background subtraction

methods, advanced statistical approaches gather and dynamically update statistics of the pixels

that belong to the background so that achieving the goals of overcoming the weakness of back-

ground subtraction methods. Foreground pixels (moving pixels in the images) are distinguished by

matching each pixel’s statistics with that of the improved background model.

Because the statistical methods are based on the principle of background subtraction, they

perform well in the situation that the surveillance camera is static.

2.2.4 Optical Flow

Optical flow is described as the two-dimensional distribution of apparent motion velocities of

brightness patterns in an image plane. This feature can be applied to estimate local image pixel’s

movement and specify the velocity of each image pixel between adjacent images. Each pixel in
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the image corresponds to one velocity vector, and these velocity vectors compose an optical flow

field. In brief, optical flow is capable of converting image information into estimated motion fields

for a more advanced analysis.

The key idea of this technique is based on a brightness constancy conception. If the movement

is comparatively small and illumination of the circumstance remains uniform in space and steady

during a period, it is presumed that the brightness of a particular point maintains constant in time

of the movement. The brightness consistency assumption is mathematically represented by the

following equation:

d

dt
I =

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= Ixu+ Iyv + It = 0, (4)

where I(x, y, t) is a function of image intensity of spatial coordinates (x, y) and time t. The flow

vector (u, v) = (xt, yt) directs to the motion direction of pixel (x, y).

Obviously, only one equation is not sufficient to compute the two unknowns in (u, v), which is

known as the “aperture problem”, additional constraints are demanded. Various optical flow tech-

niques have been proposed to solve the aperture problem, such as matching, differential, energy-

based methods. Horn and Schunck algorithm [98] and Lucas and Kanade algorithm [99] are two

classical calculation methods which are widely used in motion detection.

2.2.4.1 Horn and Schunck Optical Flow

Horn and Schunck algorithm [98] hypothesizes that the optical flow is smooth over the entire

image and adds an additional constraint with (4) to compute the velocity (u, v) by minimizing:

∫ ∫
(Ixu+ Iyv + It)

2dxdy + α(||∇u||22 + ||∇v||22)dxdy, (5)
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where the constant α regularizes the smoothness term, ∇u and ∇v denote the Laplacians of u and

v, respectively, which are defined as follows:

∇2u =
∂2u

∂2x
+

∂2u

∂2y
and ∇2v =

∂2v

∂2x
+

∂2v

∂2y
. (6)

Then (u, v) can be obtained by minimizing (5) and solving the following two iterative equa-

tions:

un+1
x,y = ūn

x,y −
Ix[Ixū

n
x,y + Iyv̄

n
x,y + It]

α2 + I2x + I2y
,

vn+1
x,y = v̄nx,y −

Iy[Ixū
n
x,y + Iyv̄

n
x,y + It]

α2 + I2x + I2y
,

(7)

where n denotes the iteration integer, [un
x,y, v

n
x,y] denotes the velocity estimates for the pixel at

(x, y) and for n = 0, the initial velocity is zero, and [ūn
x,y, v̄

n
x,y] is the neighbourhood average of

[un
x,y, v

n
x,y].

2.2.4.2 Lucas-Kanade Optical Flow

In terms of the principles introduced by Lucas and Kanade [99], an additional constraint is

combined with the classical optical flow (4) for estimating velocities of optical flow. This constraint

supposes that the flow (u, v) is locally constant in a small neighborhood Ω. Within this region, the

following term can be minimized:

∑
(x,y)∈Ω

W 2(x)(Ixu+ Iyv + It)
2, (8)

where W (x) is a window function that favors the center section of Ω.
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The solution to (8) then gives:

⎡
⎢⎣

∑
W 2I2x

∑
W 2IxIy∑

W 2IyIx
∑

W 2I2y

⎤
⎥⎦
⎡
⎢⎣u
v

⎤
⎥⎦ = −

⎡
⎢⎣
∑

W 2IxIt∑
W 2IyIt

⎤
⎥⎦ . (9)

Although optical flow method is computationally complex, it is capable of fulfilling successful

motion detection with the presence of camera motion or background changing. It can detect the

motion precisely even without knowing the background [96].

2.3 Object Classification

Typically, the scenes captured by a camera comprise various objects such as animals, plants,

vehicles and fires. To further track target objects and analyze their behavior, it is required to

exactly differentiate them from other objects. Thus object classification which categorizes the type

of detected objects from the segmentation step is appeared to achieve this task.

Currently, a variety of approaches towards object classification have been proposed and they

can be generally classified into three types: training-based classification, statistical-based classifi-

cation, and rule-based classification.

Take fire detection for example, training-based methods such as SVM, fuzzy logic, and neural

networks are the most popularly adopted methods for fire classification. In addition, statistical-

based classification (like Bayesian classifiers [100,101], Markov models [102,103]) and rule-based

classification are also applied.

2.4 Data Fusion of Multiple Cameras

The fusion of information from multiple cameras is an indispensable techniques for a more

advanced detection system. Although many missions of object detection can be carried out by

adopting a single camera, multiple cameras can offer an effective solution to overcome a variety
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of difficulties with respect to improving the accuracy, reliability and robustness of detection. In

addition, systems with multiple cameras can expand the entire range of view, handle the presence

of occlusions and enable three-dimensional (3D) localization of objects via observation of different

perspectives or diverse images (when using different types of cameras) [96]. However, multiple

camera systems also have to confront with lots of practical and technical problems produced by

the growing costs and complexity related to the development of hardware and software.

According to the camera configurations, multi-camera systems are classified into two cate-

gories: multi-view camera system and multi-modal camera system [96].

2.4.1 Multi-View Camera System

The multi-view camera system combines different detection results from multiple viewpoints

to improve results of object detection and localization. It can be grouped into two types, one is sys-

tem with spatially non-overlapping camera views, while the other one is system with overlapping

camera views [104]. The non-overlapping type performs well for covering wide range of views.

On the contrast, overlapping type makes use of the redundant information obtained simultaneously

from different cameras observing the same scene to increase the accuracy in the object detection

and the computation of the object’s position and size [105]. In the application of UAVs-based

fire detection, multi-view methods are widely adopted for cooperative detection, confirmation and

positioning of fire with multiple UAVs.

2.4.2 Multi-Modal Camera System

The multi-modal camera system intelligently fuses different types of imagery sensors such as

visual and IR cameras to supply enriched information of monitored scene so that the detection

performance and behavior analysis can be improved. Compared with multi-view detection, multi-

modal detection mainly concentrates on the simultaneous analysis of different kinds of images

in which sight lines are near to each other. By employing images produced by various imaging

sensors, multi-modal camera system can successfully detect and analyze activity in the scenario
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with lower faults, because fusion of these kinds of imagery is capable of providing informative

details of the scene. Moreover, as each type of sensor can overcome other type sensors’ technical

limitations, errors caused by one sensor can be modified by the other sensors. Owing to these

advantages, the fusion of multiple sensor data is considered as a well-known solution to be used

for enhancing the reliability and robustness of fire detection.
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Chapter 3

Forest Fire Detection Using Visible Range

Images

Although numerous researches of fire detection have been conducted, only minority of them

have considered forest fire scenes and few relevant experiments have been carried out for moni-

toring and detecting forest fires using UAVs [4, 14–17, 19, 22–29, 31, 32]. Generally, the existing

vision-based fire detection methodologies are developed with stationary cameras through isolat-

ing fires from the static backgrounds. However, the techniques taking advantage of fire motion

features for fire detection may fail to accomplish tasks as expected when cameras are installed on

UAVs which are moving in the whole operation process. Under this condition, objects (including

the interested objects and background) in the captured images are all moving, which is the main

reason leading to false alarms of forest fire [106].

To overcome this barrier, several techniques are developed by researchers. In [107], a back-

ground subtraction algorithm is employed with integration of intensity thresholding, motion com-

pensation, and pattern classification. [108] describes an accumulative frame differencing approach

for extracting the moving pixels and integrating the homogeneous areas of these pixels in the

frame after the step of image segmentation. As one of the most important and promising motion

39



analysis techniques, optical flow is widely adopted in the computer vision based detection stud-

ies [109, 110]. In spite of this, the motion of camera is usually presumed to be a priori known in

these studies. More superior online motion estimation strategies are urgently needed.

For the purpose of solving the problems stated above, the research in this thesis investigates

a novel vision-based forest fire detection method using UAVs. In order to improve the accuracy

of fire detection, both color and motion features are employed to process images gathered from

the camera mounted on a UAV which is moving during the entire mission period. The proposed

method comprises a two-layered system architecture. In the first layer, a color-based fire detection

algorithm with light computational requirement is designed to segment fire-colored pixels as candi-

date fire regions for further analysis by making use of chromatic feature of fire. As the changeable

pose and low-frequency vibrations of UAV make all objects and background in the images are

moving, it is difficult to distinguish fires depending on a single motion based method. In the sec-

ond layer, the motion-based fire detection algorithm utilizing two types of optical flow is designed

to further analyse and segment the candidate fire regions. Consequently, fires are anticipated to be

identified from other fire analogues based on their motion features.

This design philosophy aims to greatly reduce the computation burden without decreasing the

accuracy of forest fire detection. The good performance is expected to significantly improve the

reliability of forest fire detection and reduce false alarm rates without increasing much computation

efforts. The overall process procedure of this research can be described as follows: 1) for the color-

based detection approach, chromatic characteristics in the so-called Lab color model is employed

for isolating fire-colored pixels and removing non-fire colored pixels; 2) regarding the motion-

based detection method, two types of optical flow algorithms are combined to further analyse

the isolated fire-colored regions from the color-based detection, one is a classic artificial optical

flow [98] for calculating the motion vectors (both orientation and velocity) of camera; the other

optical flow is based on a newly investigated technique taking advantage of optimal mass transport

theory in [110] for fire detection; 3) at last, the fire pixel candidates are further classified through a

relatively empirical discrimination rule. Once the fire pixels are verified, the binary feature images

40



can be obtained via thresholding and performing morphological operations on the motion vectors.

A blob counter method is then adopted to track the fire regions in each binary feature image.

Experimental validations on aerial video sequences of forest fires and indoor tests with charge-

coupled device (CCD) camera onboard UAV are both conducted to verify the effectiveness of the

proposed forest fire detection method.

The rest of this chapter is organized as follows. Section 3.1 provides descriptions of the pro-

posed forest fire detection method in twofold steps: 1) color-based candidate forest fire pixels

extraction method using chromatic features in Lab color model, and 2) the motion-based forest fire

detection algorithm with two types of optical flow techniques. Section 3.2 illustrates the control

strategies that are designed to assign the UAV for the tasks of fire search and detection. At last,

Section 3.3 presents the scenarios illustration and results discussion of the conducted experiments.

3.1 Vision Based Forest Fire Detection

The proposed forest fire detection methodology, which combines both color and motion fea-

tures of fire, is intended to greatly improve the accuracy and reliability of forest fire detection.

Color-based decision making rules are used to extract color features, while motion features are

analyzed by optical flow which is an important technique for motion estimation in computer vision

applications. The flowchart of the proposed forest fire detection technique is shown in Fig. 3.1,

which comprises three steps: color detection, motion detection, and fire classification.

Figure 3.1: Illustration of the proposed forest fire detection architecture.
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Specifically, Fig. 3.1 can also be introduced as follows:

(1) The captured RGB images are first transformed into Lab color model, a subsequent image

processing technique is utilized to segment the potential fire regions.

(2) A motion-based fire detection approach is then applied to perform a further confirmation of

these segmented pixels.

(3) Finally, the confirmed fire regions are to be tracked by a blob counter scheme and fire alarms

along with potential fire images are transmitted to the ground station and firefighters for

succeeding operations; otherwise, the onboard camera continues to capture new images for

processing.

3.1.1 Color Based Forest Fire Detection

Color detection is one of the first detection techniques used in vision-based fire detection and is

still popular by far in almost all detection methods [58]. It is obvious that color cannot be used by

itself to detect fire because lots of false alarms will be caused by the similar color objects. However,

the color information can be used as a part of a more sophisticated system. In this research,

the color-based image processing algorithms applied for automatic forest fire detection contain

image collection, image preprocessing (including image enhancement, color model conversion),

and threshold segmentation. The organization of these algorithms can be summarized in Fig. 3.2.

An instance of the proposed color-based fire detection results is also presented in Fig. 3.3 for

offering readers a clearer picture.

3.1.1.1 Fire Color Features

In the point of general fires [111], the fire usually shows reddish color. In addition, fire color

will vary with the temperature. If the fire temperature is low, the color ranges from red to yellow,

and it may become white if the temperature gets higher. This indicates that low-temperature fires
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Further 
Processing

Figure 3.2: Flowchart of color based detection algorithms.

Figure 3.3: Color-based fire segmentation.

present high saturation colors while high-temperature fires display low-saturation colors. More-

over, the color of fires in the daytime or with the extra light source has a heavier saturation than

that of no light source [62].

Usually, fire flames show reddish colors, which varied from red to yellow in the burning pro-

cess [62]. Therefore, the variation of fire color can be represented as discrete values between red

and yellow in color models. Generally, different segmentation results can be obtained using dif-

ferent color models. Based on this phenomenon, most of the existing color-based fire detection

approaches utilize RGB color model or combine it with HSI model as well [62, 68, 88, 94]. RGB

model is popularly used mainly because that almost all visible range cameras output video in RGB

format. It is reported in [112] that RGB values of fire pixels in red-yellow color range indicate the
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rule (R > G > B), while the red to yellow range colors in HSI color model can be represented as

follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Condition 1: 0o ≤ H ≤ 60o;

Condition 2: Brighter environment: 30 ≤ S ≤ 100,

Darker environment: 20 ≤ S ≤ 100;

Condition 3: 127 ≤ I ≤ 255,

(10)

where H , S, and I are the hue, saturation and intensity values of a specific pixel, respectively.

An option of using the color-based fire detection rules is proposed in this thesis by using the

Lab color model to determine the zones of candidate fire pixels. This is owe to the fact that,

according to the findings and experiences of the author, the fires in Lab model are more visible

than that in other color models (it can also be observed from Figs. 2.3 and 2.4).

3.1.1.2 Flame Color Based Decision Rules

In this research, the color-based decision rules are designed in Lab model to determine candi-

date fire regions. There are three components (luminance “L”, chrominance “a”, and chrominance

“b”) which constitute the Lab color model. As described in Fig. 2.8, the model reveals that the

higher value of each component, the more they are close to brightest white, red and yellow respec-

tively. Since fire color usually owns features that are close to red and yellow, and possesses high

luminance, it is reasonable to assume that the values of fire pixels in each channel of Lab color

model should be larger than that of other non-fire color pixels. Fig. 3.4 provides an example of fire

appearance in each component of Lab model which reveals this phenomenon as well. On the basis

of this assumption, the color decision making rules in Lab color model then can be established in

the following sequence.
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Figure 3.4: Flame appearance in each component of Lab model.

In each frame, the average value ĀI of pixels is computed as follows:

ĀI =
1

N

∑
(x,y)∈I

PΦ(x, y), (11)

where PΦ(x, y) is the pixel value at position (x, y) for three components (L, a, b) in the image

plane I , N represents the total number of pixels in the image.

Finally, the decision making rules (PFC) for the fire-colored pixels are formulated as follows:

PFC =

⎧⎪⎪⎨
⎪⎪⎩
1, if (PΦ(x, y) > ĀI),

0, otherwise,

ĀI =
1

N

∑
(x,y)∈I

PΦ(x, y).

(12)

It is worth-mentioning that the pixel is treated as a fire-colored pixel if PΦ(x, y) exceeds the

threshold ĀI , and meanwhile PFC is set to be 1, which means that the pixel is preserved as the

candidate fire pixel for further processing by motion detection approach. Otherwise, the pixel is

set to be 0 which indicates that the pixel is rejected for further analysis.
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3.1.2 Motion Based Forest Fire Detection

Generally, the detection approaches solely paying attention to objects displaying flame color

are considered as unreliable and tending to raise false alarm rates, additional fire characteristics

analysis and more effective techniques are thereby highly demanded to achieve more accurate and

reliable detection systems. Fires show dynamic features with changeable shapes since the airflow

produced by wind can result in dramatic oscillation and sudden movement of the fire [62]. These

dynamic features make the motion detection techniques being widely applied in fire detection for

isolating the moving objects, while discarding the stationary non-fire pixels from images. Some

early studies simply consider fire-colored moving objects as fire but this method causes lots of false

alarms, because fire-colored moving objects such as waving leaves in autumn or reddish/yellowish

animals, may all be wrongly identified as fire. To judge whether the motion is induced by fire or a

non-fire moving object, further analysis of moving regions in video sequence is essential.

Therefore, optical flow is adopted in this thesis due to its advantages in fulfilling motion detec-

tion tasks with further dynamic analysis of moving regions so that non-fire moving objects can be

eliminated. Particularly, the camera utilized for capturing images is installed on the UAV, which

has movement during the whole assignment. This special condition can severely degrade the per-

formance of fire detection, since all objects in the field of view of the camera are moving. In order

to solve this challenging and practical problem, this research proposes a new solution to distinguish

the variations in the images caused by the motion of the UAV from those caused by fire.

The main idea of the proposed method is the estimation of the discrepancies between an arti-

ficial optical flow and an optimal mass transport (OMT) optical flow [110], and extraction of the

fire pixels from the estimated discrepancies. The design architecture of the proposed approach is

presented in Fig. 3.5.

3.1.2.1 Optimal Mass Transport Optical Flow

Classical optical flow models are insufficient to represent the external of fire because they

highly depend on the brightness constancy ( d
dt
I = 0). This problem is induced by two reasons
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Figure 3.5: Design architecture of the motion-based fire identification methodology.

[110]:

• Because of the fast pressure and heat dynamics, rapid variation of intensity exists in the

combustion process, therefore the hypothesis of intensity constancy in Eq. (4) cannot be

applied.

• Chaotic motion (non-smooth motion field) produced by air turbulence may make smoothness

regularization counter-productive to the calculation of fire motion.

Taking the above-mentioned situations into consideration, the OMT optical flow tends to be a

suitable option for the fire detection applications. In OMT, the optical flow problem is regarded as

a generalized mass (which stands for image intensity I in this research) transport problem, where

a mass conservation is performed by the data term. The conservation law can be formulated as

below [110]:

It +∇· (
uI) = 0, (13)

where 
u = (u, v)T . The intensity I is substituted by mass density.

Similar to the classical optical flow, the OMT optical flow model solves the aperture problem

by minimizing the total energy according to:

min
�u

1

2

∫
Ω

∫ T

0

(It +∇· (I
u))2 + α||
u||22Idtdxdy, (14)
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and subjects to the boundary conditions I(x, y, 0) = I0(x, y) and I(x, y, 1) = I1(x, y), where I0

and I1 are given gray-scale frames. The transport energy ||
u||22I , which is the operation demanded

to transfer mass from one location at t = 0 to another at t = 1, denotes the regularization term in

Eq. (14). The solution to this minimization problem can be acquired via discretizing Eq. (14):

min
�u

α

2
(
uT Î
u) +

1

2
(It + [DxIDyI]
u)

T (It + [DxIDyI]
u), (15)

where 
u is a column vector composed of u and v, and Î is a matrix including the mean intensity

values (I0 + I1)/2 on its diagonal. The derivatives are discretized by It = I1 − I0 and the central-

difference sparse-matrix derivative operators Dx and Dy.

Eq. (15) can be rewritten as:

min
�u

α

2
(
uT Î
u) +

1

2
(A
u− b)T (A
u− b), (16)

where A = [DxI DyI] and b = −It.

Then the solution of Eq. (16) is obtained as [110]:


u = (αÎ + ATA)−1(AT b). (17)

Additionally, the generalized mass of a pixel can be described by its similarity to a center flame

color in the HSV color model (H,S, V ∈ [0, 1]). The center flame color can be properly selected

as Hc = 0.083, Sc = Vc = 1 [110], which represents a fully color-saturated and bright orange.

Then, the generalized mass can be calculated as:

I = f(min{|Hc −H|, 1− |Hc −H|})·S·V, (18)

where f can be written into the logistic function as below:

f(x) = 1− (1 + exp(−a· (x− b)))−1, (19)

48



where a = 100 and b = 0.11.

3.1.2.2 OMT Optical Flow Feature Extraction

As this work mainly concentrates on the pixels in movement, thus these essential pixels (Ωe ⊂
Ω) are defined as:

Ωe = {(x, y) ∈ Ω : ||
u(x, y)||2 > c·max
Ω

||
u||2}, (20)

where 0 ≤ c < 1 is selected so that adequate number of pixels can be reserved, Ω ⊂ 
2 represents

an image region.

In this study, two features fi : 
u �→ 
, i = 1, 2 defining the two dimensional feature vector

F = (f1, f2)
T are selected to carry out feature extraction. More specifically, the feature of magni-

tude f1 measures mean magnitude, while the directional feature f2 is used for analysis of motion

directionality.

Consequently, given the image region Ω and the OMT optical flow field in this region, the

magnitude and directional characteristics are chosen through the following procedures [110].

(1) OMT Transport Energy:

f1 = Mean
Ωe

(
I

2

||uOMT ||22

)
, (21)

this feature is to estimate the mean OMT transport energy per pixel in a subregion.

(2) OMT Source Matching: For rigid movement, the flow field tends to be composed of parallel

vectors implying rigid translation of mass. This feature is devised to quantify how well an

ideal source flow template matches the estimated OMT flow field, which is formulated as:


uT (x, y) =

⎡
⎢⎣uT (x, y)

vT (x, y)

⎤
⎥⎦ = exp

(
−
√

x2 + y2
)⎡
⎢⎣x
y

⎤
⎥⎦ . (22)
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Figure 3.6: Illustration of the fire pixels identification.

Then, the best match can be computed by:

f2 = max
Ω

∣∣∣∣(uT ∗ uOMT

||
uOMT ||2 ) + (vT ∗ vOMT

||
uOMT ||2 )
∣∣∣∣ , (23)

where ∗ means convolution.

3.1.2.3 Motion Errors Calculation

After computing two optical flows (one is artificial optical flow for calculating the movements

of camera and the other one is OMT optical flow for estimating the motion of pixels in the whole

image), a succeeding step is to compare these two achieved optical flows and figure out their

differences.

As illustrated in Fig. 3.6, the artificial optical flow evaluates the identical moving direction of
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the view in the image, meanwhile the OMT optical flow estimates the motion of each pixel in the

image. Afterwards, two optical flows are incorporated together in the same image. Since there is a

presence of fire in this scene, the OMT optical flow shows some obvious distinctions of movements

among pixels. This circumstance is generated by the intrinsic properties of fire, such as oscillation

and sudden movements with irregular shapes and velocities.

3.1.2.4 Motion Based Fire Regions Classification and Tracking

To classify fire pixels from background, or other uninterested moving objects in the image, the

following detailed fire identification procedure is needed:

(1) On the basis of the estimated moving orientation of each pixel (fOMT ) utilizing the OMT

optical flow and the calculated moving orientation of the camera (fα) using the artificial

optical flow, the residual between them can be acquired by Δf = |fα − fOMT |. It is worth-

mentioning that fα is chosen as the average value of orientations of total pixels in the image

so as to decrease the disturbance of noises and some unexpected errors.

(2) This thesis suggests a feasible but relatively simple approach of identifying fire pixels, which

is to compare the angle deviations of each pixel with a properly chosen threshold. A pre-

defined decision making rule is accordingly made for filtering the background and isolating

the candidate fire pixels. This rule is designed as follows:

PFM =

⎧⎪⎪⎨
⎪⎪⎩
1, if Δf > f̄ ,

0, otherwise,

(24)

where PFM is the binarized values of pixels obtained by applying the fire moving pixels

decision making rule. If Δf outweighs the threshold f̄ , the pixel is classified as fire pixel

and is set to 1, otherwise the pixel is set to 0. The threshold value can be settled on the basis

of the practical condition or by using advanced artificial intelligent methods, such as SVM,

neural network, and fuzzy logic.
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In order to get rid of the existing small unconcerned objects after the aforementioned proce-

dures and enhance the ultimate fire detection performance, this research suggests to make use of

the morphological operations to remove the small irrelative objects in the thresholding images.

Morphological operations, which can perform well at eliminating small uninterested objects

in the thresholding images, cover a sequence of operators, such as dilation, erosion, opening, and

closing. This thesis employs the dilation operation after erosion operation. The erosion operation

E can wipe off pixels on the object boundaries, while the dilation operation D can add pixels on

the contrary. These two operations can be described as follows:

E =I ⊗ C = {(i, j)|Cij ⊆ I}

D =I ⊕ C = {(i, j)|[(Ĉ)ij ∩ I] �= Φ},
(25)

where symbols ⊗ and ⊕ represent the erosion operator and dilation operator, respectively. (i, j)

denotes the coordinates of pixel, I is image set, and C is morphological element.

Blob counter approach is adopted in this study for fire tracking owing to its merit of simplicity

and effectiveness in image processing applications. Taking advantages of blob counter can track

the number and direction of blobs passing through a specific passage/entrance per unit time, the

general working principle is illustrated as follows:

• Images are transformed to binary images after the fire is eventually identified and segmented

from the background.

• Subsequently, the objects are to be identified based on the pixel connectivity. After that, a

specific region of interest is produced for each object which is labelled and assigned with a

set of coordinates.

• At last, the tracked objects are distinguished from the image, their number and position

information are all achievable, and the fire areas are effectively tracked and located in images

[113].
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3.2 Control Rules Design for Unmanned Aerial Vehicle

In order to search potential forest fires in a specific terrain and capture the aerial images by the

onboard camera(s), the UAV is required to be deployed for accomplishing these tasks. Thus a well

devised control deployment is also demanded for the operation of UAV. In this work, an integration

of sliding mode control (SMC) and linear quadratic regulator (LQR) is proposed for the control

of UAV. The designed UAV’s control architecture can be separated into two loops, the inner-loop

and outer-loop. The LQR is utilized in the outer-loop to control the positions of UAV, while the

sliding mode control, which is in charge of the attitude stabilization, is used in the inner-loop. In

addition, as a category of nonlinear controller, the utilization of SMC combining with the UAV’s

nonlinear dynamics is aimed to improve the system accuracy and robustness. A brief introduction

of the control system is presented in Fig. 3.7.

Figure 3.7: Block diagram of the employed UAV control system.

3.2.1 Modelling of Unmanned Quadrotor Helicopter

Fig. 3.8 illustrates a typical unmanned quadrotor helicopter (UQH), which is cooperatively

operated via four direct current (DC) motor-driven propellers fixed at the front, rear, left, and right

corners, respectively. Thrusts u1, u2, u3, and u4 are produced by these four propellers. The front

and rear propellers spin clockwise, while the right and left propellers rotate counter-clockwise.
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Figure 3.8: Schematic diagram of a general UQH.

The entirely created thrusts point upward along the zB−direction all the time. Consequently, the

vertical translation is accomplished by straightforwardly distributing same amount of control signal

to each motor, while the horizontal translation is performed by allocating a distinctive amount of

control signals to the opposite motors, so that the UQH is capable of rolling/pitching towards the

slowest motor, the lateral/forward movement can be enforced afterwards [20].

As introduced in [20], a representative UQH dynamic model in relation to the earth-fixed co-

ordinate system can be described as:

ẍ =
(sinψsinφ+ cosψsinθcosφ)uz(t)−K1ẋ

m

ÿ =
(sinψsinθcosφ− cosψsinφ)uz(t)−K2ẏ

m

z̈ =
(cosθcosφ)uz(t)−K3ż

m
− g

φ̈ =
uφ(t)−K4φ̇

Ix

θ̈ =
uθ(t)−K5θ̇

Iy

ψ̈ =
uψ(t)−K6ψ̇

Iz
.

(26)
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Table 3.1: Nomenclature (earth-fixed coordinate system).

Symbols Explanation
x, y, z Coordinates of UQH at center of mass

θ Pitch angle

φ Roll angle

ψ Yaw angle

uz(t) Total lift force

uθ(t) The applied torque in θ direction

uφ(t) The applied torque in φ direction

uψ(t) The applied torque in ψ direction

Kn (n = 1, 2, ..., 6) Drag coefficients

ui(t) (i = 1, 2, 3, 4) Thrust of each rotor

L
Center distance between the gravity of

UQH and each propeller

Cm Thrust-to-moment scaling factor

g Acceleration of gravity

m UQH mass

Ix Moment of inertia along x direction

Iy Moment of inertia along y direction

Iz Moment of inertia along z direction

ωm Actuator bandwidth

Km A positive gain

uci(t) (i = 1, 2, 3, 4) PWM signals distributed to each rotor

Besides, the relationship between accelerations and lift/torques is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

uz(t)

uθ(t)

uφ(t)

uψ(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

L −L 0 0

0 0 L −L

Cm Cm −Cm −Cm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1(t)

u2(t)

u3(t)

u4(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (27)

The relationship between the force and its corresponding pulse width modulation (PWM) signal

is described as following:

ui(t) = Km
ωm

s+ ωm

uci(t). (28)

The definitions of all the above-mentioned symbols are listed in Table 3.1.
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3.2.2 Control Schemes Design

In general, making use of nonlinear systems and controllers tends to greatly increase the com-

putation burden; meanwhile, the inherent property of SMC may likewise result in chattering ef-

fects to the system. The suggested method, which is intended to decrease the adverse effects of the

above-mentioned issues and dramatically make improvement of system performance, combines

the linear controller such as LQR with SMC.

In this work, the quadrotor dynamic model [20] is grouped into two subgroups as a result of its

nonholonomic characteristics, which can be rewritten as follows:

⎡
⎢⎣ z̈

ψ̈

⎤
⎥⎦ =

⎡
⎢⎣uz(t)

m
cos θ cosφ− g

uψ(t)

Iz

⎤
⎥⎦ , (29)

and an under-actuated subsystem is defined as:

⎡
⎢⎣ẍ
ÿ

⎤
⎥⎦ =

uz(t)

m

⎡
⎢⎣cosψ sinψ

sinψ − cosψ

⎤
⎥⎦
⎡
⎢⎣sin θ cosφ

sinφ

⎤
⎥⎦ ,

⎡
⎢⎣φ̈
θ̈

⎤
⎥⎦ =

⎡
⎢⎣uφ(t)

Ix

uθ(t)
Iy

⎤
⎥⎦ .

(30)

The target of the fully-actuated subsystem controller is to obtain the minimization of the alti-

tude and yaw angle errors ez and eψ respectively. The SMC applied in this study is expected to

complete this objective. The following conditions need to be satisfied:

lim
t→∞

‖ez‖ = ‖zr − z‖ = 0

lim
t→∞

‖eψ‖ = ‖ψr − ψ‖ = 0,

(31)

where zr and ψr represent the desired altitude and yaw angle respectively. The control laws for the
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altitude and yaw angle can be derived upon classical SMC principle [114]:

ûz(t) =
( m

cos θ cosφ

)
(g + z̈r − λz ėz) (32)

ûθ(t) = Iz(ψ̈ − λψėψ), (33)

where λz and λψ denote control gains with λz > 0 and λψ > 0. A discontinuous term is appended

across the surface s = 0 to meet the sliding condition such that:

U = Û − ksgn(s), (34)

where

sgn(s) =

⎧⎪⎪⎨
⎪⎪⎩
+1 if s > 0

−1 if s < 0.

(35)

For the purpose of facilitating the control design procedure, a further simplified model is usu-

ally demanded other than the nonlinear model (26). Before performing the model simplification,

the following assumptions are essential:

Assumption 1 It is supposed that the UQH is in hovering situation in the overall flight period [20],

which implies uz(t) ≈ mg. The deflections of pitch and roll motions are so small that sinφ ≈ φ

and sinθ ≈ θ. There is no yaw movement such that ψ = 0. UQH moves with low velocity so that

the influences from the drag coefficients are unimportant.
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On the basis of Assumption 1, nonlinear model (26) can be reduced into:

ẍ = θg

ÿ = −φg

z̈ = uz(t)/m− g

Ixθ̈ = uθ(t)

Iyφ̈ = uφ(t)

Izψ̈ = uψ(t).

(36)

Due to the time constant of DC motor is much smaller than that of UQH [115], (28) can be

further simplified as follows:

Km
ωm

s+ ωm

≈ Km. (37)

Hence, combining with (37), (27) can be rewritten as below:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

uz(t)

uθ(t)

uφ(t)

uψ(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Km Km Km Km

KmL −KmL 0 0

0 0 KmL −KmL

KmCm KmCm −KmCm −KmCm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
Uc, (38)

where Uc = [uc1(t), uc2(t), uc3(t), uc4(t)]
T .

The goal of the outer-loop controller is to compute the desired position in x and y axes. This

is fulfilled by employing a LQR to the following quadrotor linear dynamic model based upon

Assumption 1:

ÿ = −φg

ẍ = θg.

(39)

Written into state-space representation, the combination of (38) and (39) comes into:

ẋ(t) = Ax(t) +Bu(t), (40)
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where x(t) = [ẋ, ẏ]T ∈ 
n is the state vector, u(t) = [θ, φ]T ∈ 
m denotes the control input, and

A =

⎡
⎢⎣0 0

0 0

⎤
⎥⎦ and B =

⎡
⎢⎣ g

−g

⎤
⎥⎦.

The objective of this controller is to search the feedback control gain K of the optimal control

input u such that u(t) = −Kx(t), for the purpose of minimizing the following quadratic cost

function:

J =

∫ ∞

0

(xTQx+ uTRu)dt, (41)

where Q and R denote the weighting matrices with Q > 0 and R > 0, respectively. K is obtained

by solving the Ricatti equation.

Moreover, SMC is adopted in the design of inner-loop control which is intended to produce the

control inputs uφ(t) and uθ(t) to fulfill the requirements of precise quadrotor attitude stabilization.

This controller’s mission is to converge the actual values of Euler angles φ and θ to their desired

values φr and θr, which are acquired from the outer-loop controller. The corresponding control

laws can be derived as:

ûφ(t) = Ix(φ̈− λφėφ) (42)

ûθ(t) = Iy(θ̈ − λθėθ), (43)

where λθ and λφ are control gains with λθ > 0 and λφ > 0. eφ and eθ express the errors in roll

and pitch angles, eφ = φr − φ and eθ = θr − θ. φr and θr signify the desired roll and pitch angles

respectively. To meet the sliding conditions, (34) should be put into use.

3.3 Experimental Results

This study selects two groups of videos to verify the effectiveness of the proposed forest fire de-

tection method: one is a recorded aerial forest fire video, and the other one is a real-time fire video
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Table 3.2: Specification of adopted camera.

Parameter Description
Image device 1/3-inch Sony color CCD

Resolution 752× 582
Auto backlight compensation On/off switchable

Minimum illumination 0.1Lux/F1.2
S/N ratio Greater than 48dB
White balance Auto tracking

Power supply 12V/150mA
Lens 3.6− 6mm

obtained through a UAV in the lab. Both of the experiments are performed in Matlab/Simulink en-

vironment. A desktop with Windows 7 operating system, Intel core i7 processor and 8GB memory

is used to conduct image processing and data display.

3.3.1 Scenarios Description

For the purpose of achieving an effective and clear assessment of the developed algorithm, the

following scenarios are chosen:

(1) Scenario 1: An aerial video recorded with real forest fire scene downloaded from the website

(https://www.youtube.com/watch?v=up3kuTwBpsw) is employed for the demonstration of

the proposed fire detection method. The resolution of the video is 640× 360.

(2) Scenario 2: For verifying the validity of the proposed UAV-based forest fire detection method

in practical situations, a UAV-based forest fire detection system is designed for the indoor

experimental test. The conceptual architecture of the designed single UAV based framework

is illustrated in Fig. 3.10. The concept is to use a ground station command a single UAV

with different kinds of onboard sensors for searching and observing suspicious forest fires.

Once the fire is detected and confirmed, a fire alarm with potential fire images will be sent

to both the ground station and mobile devices for firefighters to further check whether fire

happens or not.
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(a) (b)

(c) (d)

Figure 3.9: Experimental equipments: (a) fire simulator, (b) wireless transmission system, (c)

installed camera, and (d) Qball-X4 UAV.

As addressed in Fig. 3.9, several elements are contained in the experimental system:

• For the reason that there is no GPS signal available indoor, a network of cameras system

is served as the GPS to supply 3D position information of the UAV.

• A UQH is assigned to carry payload (visual camera) for fire search and detection.

• A visual camera and a wireless communication system (contains a 5.8GHz 200mW

transmitter and a 5.8GHz AV receiver) are configured at the bottom of the UQH to

obtain and send real-time images to the ground station. Table 3.2 illustrates the speci-

fication of the employed camera.

• The simulative fire is seen as the target fire, which is created by a fire simulator.

• A ground station is established to plan and deploy tasks for UQH to implement, as well

as display and process real-time images captured from onboard camera.
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Figure 3.10: General concept of the UAV-based forest fire detection system.

In addition, Fig. 3.11 gives an overview of the used experimental platform and environment.

In this experimental test, a single UAV is commanded to patrol a 4m × 4m square field for

the purpose of seeking fire spots. As shown in Fig. 3.12, this UAV first begins its mission

from the corner of the field; following this, it covers the assigned surveillance area along a

predefined trajectory (each trajectory is 1m away from its neighbors); a sequence of hovering

actions around the possible fire spot (each action lasts 6s) are to be executed once a potential

fire is detected, so as to conduct a further confirmation; the data gathered by the UAV is to

be transmitted to the ground station for processing. If the fire is confirmed, a fire alarm is to

be triggered, otherwise the fire search mission resumes.

3.3.2 Results of Scenario 1

Figs. 3.13, 3.14, and 3.15 present the results of the proposed fire detection method which is

used to process a video captured from a real forest fire scene. Figs. 3.13(a), 3.14(a), and 3.15(a)

list the original images; color segmented results are shown in Figs. 3.13(b), 3.14(b), and 3.15(b);
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Figure 3.11: Layout of the used UAV-based forest fire search and detection system.

optical flow analysis and morphological operation results are indicated in Figs. 3.13(c), 3.14(c),

and 3.15(c); while the final results of fire tracking using the blob counter approach are shown in

Figs. 3.13(d), 3.14(d), and 3.15(d), respectively.

From Figs. 3.13(b), 3.14(b), and 3.15(b), it reveals that the majority of non-fire objects are

removed such as trees and smoke, while the remainder pixels that have passed through the color-

based decision making rule are deemed as candidate fire pixels for further analysis by motion-based

detection algorithm adopting optical flow approaches. Figs. 3.13(c), 3.14(c), and 3.15(c) indicate

that, after further dealing with the segmentation results using optical flow analysis and morpho-

logical operations, the moving/static fire colored analogues such as smoke, houses, and paths in

the forest can be eliminated by the moving regions detection rule. At last, fires are successfully

tracked by red rectangles through using blob counter, these results can be found in Figs. 3.13(d),

3.14(d), and 3.15(d).
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Figure 3.12: General illustration of the conducted fire search and detection experiment.

3.3.3 Results of Scenario 2

Fig. 3.16 presents a scene of conducting the experiment in indoor environment. The real trajec-

tory tracking result of the deployed UAV in 3D is illustrated in Fig. 3.17. The planned trajectory

is eventually tracked with satisfactory performance through adopting the designed control method.

In order to describe the fire search procedure in a clearer style, Fig. 3.18 and 3.19 are utilized as

well. Particularly, Fig. 3.18 reveals that the UAV hovers at three locations during the whole mission

period at 62th, 68th, and 74th second, respectively; and every hovering action sustains 6 seconds.

As a matter of fact, these three hovering operations are intentional, which exactly illustrate the

potential fire detection and further confirmation by commanding UAV to hover at different places

to observe the fire from different perspective of views.

Figs. 3.20, 3.21, 3.22, and 3.23 present images captured from UAV and fire detection results

of the designed method. Four frames obtained by the UAV at different sites as well as their cor-

responding image processing results are displayed in Figs. 3.20, 3.21, 3.22, and 3.23. Similar to

the layout in Figs. 3.13, 3.14, and 3.15, the original images are shown in Figs. 3.20(a), 3.21(a),

3.22(a) and 3.23(a); Figs. 3.20(b), 3.21(b), 3.22(b) and 3.23(b) list the results of color detection;

Figs. 3.20(c), 3.21(c), 3.22(c) and 3.23(c) indicate the optical flow analysis and morphological

operation results; final results of fire tracking are presented in Figs. 3.20(d), 3.21(d), 3.22(d) and
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(a) Original image (b) Color detected result

(c) Motion detected result (d) Tracking result

Figure 3.13: Experimental results of sample frame 1.

(a) Original image (b) Color detected result

(c) Motion detected result (d) Tracking result

Figure 3.14: Experimental results of sample frame 2.
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(a) Original image (b) Color detected result

(c) Motion detected result (d) Tracking result

Figure 3.15: Experimental results of sample frame 3.

3.23(d).

From Figs. 3.20(b), 3.21(b), 3.22(b) and 3.23(b), it can be clearly seen that the fire-colored

regions have been effectively segmented and extracted, whereas some non-fire regions with sim-

ilar color of fire, such as the lights and metal parts of the fire simulator which reflect the fire

color are also wrongly extracted. The motion-based decision making rules for judging the true fire

regions are thereby required to enhance the performance of fire detection. The optical flow fea-

tures in this study are employed for further analyzing the incorrectly extracted areas. Comparing

with Figs. 3.20(b), 3.22(b) and 3.23(b), it obviously indicates that non-fire areas are successfully

removed in Figs. 3.20(c), 3.22(c) and 3.23(c).
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Figure 3.16: Experimental scenario description in practice.
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Figure 3.17: Trajectory tracking performance of the UAV displayed in 3D.
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Figure 3.18: Trajectory tracking performance of the UAV along X coordinate.

0 20 40 60 80 100
Time (s)

-2.5

-2

-1.5

-1

-0.5

0

Y
 D

ire
ct

io
n 

(m
)

Desired Position
Real Position

Figure 3.19: Trajectory tracking performance of the UAV along Y coordinate.
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(a) Original image (b) Color detected result

(c) Motion detected result (d) Tracking result

Figure 3.20: Experimental results of sample frame 1.

(a) Original image (b) Color detected result

(c) Motion detected result (d) Tracking result

Figure 3.21: Experimental results of sample frame 2.

69



(a) Original image (b) Color detected result

(c) Motion detected result (d) Tracking result

Figure 3.22: Experimental results of sample frame 3.

(a) Original image (b) Color detected result

(c) Motion detected result (d) Tracking result

Figure 3.23: Experimental results of sample frame 4.
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Chapter 4

Forest Fire Detection Using Visual and

Infrared Cameras

In addition to CCD cameras, IR cameras are also frequently mounted on UAVs for forest fire

surveillance and detection. Massive efforts have been dedicated to the development of more ef-

fective IR images based processing schemes for fire detection. The color and motion features in

visual images captured by CCD cameras have been utilized for fire detection. However, the usage

of CCD cameras is normally considered as not robust and reliable enough in some outdoor appli-

cations. Given highly sophisticated, non-structured environments of forest, the chance of smoke

blocking the fire, or the situation for analogues of fire including reddish leaves swaying in the wind

and reflections of lights, false fire alarm rate often tends to be considerably high. Due to the fact

that IR images can be obtained in either weak or no light conditions, and smoke can be seen as

transparent in IR images, IR cameras are thereby widely applied to capture monochrome images in

both daytime and nighttime, even though IR cameras are more expensive than CCD cameras. By

employing this additional powerful solution in the forest fire detection system design, it is expected

to significantly reduce false fire alarm rate and enhance the adaptive capabilities of the forest fire

detection system in various environments.

Although many fire detection approaches have been developed for processing IR images [30,
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48, 82–84], only a few applicable to UAV platforms are designed, and rare application scenarios

have been considered forest fire. This chapter first presents a fast fire detection algorithm in IR im-

ages, then a fusion detection method combining both IR and visual images together is developed

for reducing the false fire detection rate. By taking advantages of both visual and IR based fire

detection methodologies, this proposed method is expected to achieve a significant performance

improvement of forest fire detection in reducing false fire alarm rate and failure of fire detection.

The remainder of this chapter is organized as follows: Section 4.1 introduces the proposed fire

detection algorithms dealing with the IR images. Section 4.2 addresses the fusion technique com-

bining information from both CCD camera and IR camera for the application of UAV-based forest

fire detection. Experimental results are illustrated and discussed in the last section.

4.1 Fire Detection Using Infrared Images

This section presents a fast fire detection algorithm for the purpose of automatically detecting

forest fire in IR images. The proposed fire detection method in this thesis utilizes both brightness

and motion features of fire appearance in IR images. The combination of these two characteristics

aims to greatly increase the reliability of forest fire detection. Histogram-based segmentation is

first adopted to extract hot targets, and optical flow technique is then used to estimate motion

features of fire. The purpose of adopting brightness feature is first to distinguish any fire analogues

from the background, while the objective of using optical flow is to further confirm the candidate

fire from those fire analogues employing the motion feature of fire. The general concept of the

proposed method can be briefly illustrated in Fig. 4.1.

To be more specific, the proposed fire detection approach can be further described as follows:

• Hot objects are first detected as candidate fire regions using histogram-based segmentation

method, so as to remove the non-fire background.

• The classical optical flow method is then applied to detect moving objects for eliminating

stationary non-fire objects in the candidate fire regions.
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Figure 4.1: Flowchart of fire detection algorithms.

• Next, the motion vectors calculated by optical flow are further analyzed to reduce false fire

alarm rates caused by hot moving objects.

• After that, the intersected candidate fire regions of visual and IR images are segmented, the

ultimate fire confirmation is based on these pixels in the intersection regions.

• Finally, once the fire regions are confirmed, fire zones are tracked by blob counter scheme.

4.1.1 Hot Object Detection

Most IR cameras measure the heat distribution in the scene and produce single channel images.

In IR images, hot objects are represented as bright areas, while cold objects are displayed as dark

regions. Therefore, fire pixels appear as high intensity regions, and local maxima of brightness is

a dominant clue for fire pixel classification in IR images.

In this study, the histogram-based segmentation method is utilized to extract the hot objects
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which represent possible fires in the IR image by distinguishing the high brightness objects from

the less brightened objects. Only these hot objects are further analyzed by optical flow using the

motion features.

The segmentation step takes advantage of Otsu method [116] which is adopted to automatically

threshold histogram-based dynamic images. This thresholding method can be generally described

in the following. It assumes that the images to be processed contain two types of pixels: foreground

pixels and background pixels. The optimum threshold t discriminating those two classes is itera-

tively computed so that their combined spread (intra-class variance) is minimum, or equivalently,

for the purpose of maximizing their inter-class variance.

In order to find the threshold that minimizes the intra-class variance (the variance within each

class), it defines in Otsu method that intra-class variance as a weighted sum of variances of fore-

ground pixels and background pixels:

σ2
w(t) = ω0(t)σ

2
0(t) + ω1(t)σ

2
1(t), (44)

where weights ω0 and ω1 are the probabilities of the two classes (foreground pixels and background

pixels) distinguished by a threshold value t, σ2
0 and σ2

1 are variances of these two classes.

The class probabilities ω0(t) and ω1(t) are calculated through the L histograms:

ω0(t) =
t−1∑
i=0

p(i),

ω1(t) =
L−1∑
i=t

p(i).

(45)

Otsu minimizes the intra-class variance to maximize inter-class variance:

σ2
b (t) = σ2 − σ2

w(t) = ω0(μ0 − μT )
2 + ω1(μ1 − μT )

2

= ω0(t)ω1(t) [μ0(t)− μ1(t)]
2 ,

(46)
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where μ represents the class mean, while the class means μ0(t), μ1(t) and μT are defined by:

μ0(t) =
t−1∑
i=0

i
p(i)

ω0

μ1(t) =
L−1∑
i=t

i
p(i)

ω1

μT =
L−1∑
i=0

ip(i).

(47)

The following equations can be obtained:

ω0μ0 + ω1μ1 = μT

ω0 + ω1 = 1.

(48)

By iteratively computing the class probabilities and class means, the threshold t can be achieved.

Let A signify the original image, the isolated binary image α from A can then be represented

as follows:

α(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
1, if (A(x, y) > T ),

0, otherwise,

(49)

where T is the threshold value obtained by Otsu method, and (x, y) is the pixel position in the

image plane A. The pixel values of image A are set to 1 if the pixel value outweighs T ; otherwise,

the pixel values are set to 0.

In order to separate hot object image β from A, the following description is also utilized:

β(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
A(x, y), if (α(x, y) = 1),

0, if (α(x, y) = 0).

(50)

Through the above steps, image β is composed of hot object pixels (potential fire pixels) with-

out background, and this image is selected to be further analyzed by motion estimation.
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4.1.2 Moving Regions Detection Using Optical Flow

As airflow makes fire moving, in order to improve the fire detection performance, so the motion

feature of fire is likewise used in vision-based fire detection methods. Usually, a bright moving

region is marked as a potential fire region in the scene captured by the IR camera. Despite this, it

may still cause high false fire alarm rates based solely on the clues of brightness. This phenomenon

is due to the fact that hot objects other than fire, such as vehicles, animals, and people, may

also appear as bright regions. Therefore, in the proposed approach, in addition to the brightness-

based detection methods, the motion features of fire are further analyzed in optical flow field to

distinguish fires from other moving hot objects.

Compared with ordinary moving objects, fire movement is random, and the shape of fire

changes irregularly. This feature can be used to reduce the false alarm rates which may be caused

by other ordinary moving hot objects by conducting optical flow analysis.

Through Lucas-Kanade method [99], the computation results of optical flow can be presented

as {fi|fi = [fxi, fyi]
T , i = 0, 1, ..., k}, and k is the total number of potential fire pixels which are

selected by hot objects detection. The variation of optical flow vectors is utilized to further analyze

whether the motion is caused by a fire.

The variation of optical flow vector direction can be written as follows:

b̄k =
1

k − 1

k∑
i=1

(di − āk)
2,

āk =
1

k

k∑
i=1

di,

(51)

where āk is the average directional angles of velocity and b̄k denotes the velocity variation, while
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di is defined by:

di =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan(
fyi
fxi

), for fxi > 0, fyi > 0

π − arctan(
fyi
fxi

), for fxi < 0, fyi > 0

π + arctan(
fyi
fxi

), for fxi < 0, fyi < 0

2π − arctan(
fyi
fxi

), for fxi > 0, fyi < 0.

(52)

The variation of optical flow vector velocity can be represented as:

ēk =
1

k − 1

k−1∑
i=1

(
√
f 2
xi + f 2

yi − c̄k)
2,

c̄k =
1

k

k∑
i=1

√
f 2
xi + f 2

yi,

(53)

where c̄k is the average velocity of flow vector and ēk denotes the variation of velocity magnitude.

Since fire oscillates and moves irregularly with a variety of shapes, boundaries, and velocities,

it is assumed that the movement of pixel produced by fire outweighs the variation of velocity

vector. Fire pixels (Fp) are judged by the following rule:

Fp =

⎧⎪⎪⎨
⎪⎪⎩
1, if (bi > b̄k)&(ei > ēk),

0, otherwise,

bi =(di − āk)
2,

ei =(
√

f 2
xi + f 2

yi − c̄k)
2.

(54)

If bi exceeds the threshold b̄k and ei is over the threshold ēk, then this pixel is classified as the

candidate fire pixel and its value is set to be 1, otherwise the pixel value is set to be 0.
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4.2 Fire Detection Using Both Infrared and Visual Images

Fire detection systems with single camera suffer from numerous problems in real-world scenes.

A number of these practical difficulties are triggered by limitations of the type of camera utilized.

In most cases, the specific limitations can be compensated by using different types of cameras.

Therefore, instead of managing ever more complicated single-camera fire detection algorithms, in-

vestigations of fusing multi-camera information from the different types of cameras are demanded

in applications of fire detection.

Developing an accurate fire detection system that solely depends on one type of camera is very

challenging. For instance, a visual camera can fail to capture images with satisfactory quality due

to noises, illumination changes, shadows, and other visual disturbances, while an infrared camera

can be disturbed by reflections or emissivity of non-fire objects. Although several techniques have

been proposed to solve these problems using a single camera, most of them cannot be effective

under all circumstances. For the purpose of achieving high accuracy system, the combination of

multi-type cameras has been a strong demand for many researchers. The combined detection in

the IR and visual spectral ranges is very actively used in many applications. In the domain of fire

detection, the fusion of visual and IR images has already been conducted as an important way to

improve the detection performance.

Regarding the studies on multi-modal forest fire detection, they just started from recent decades

and are still with limited number of research works. The majority of existing studies are from

Arrue et al. [85] and Martinez-de Dios et al. [4, 27, 48], where both visual and IR information are

used to improve forest fire detection results. Arrue et al. [85] propose an IR-visual false alarm

rate reduction system which decreases false alarm rates by evaluating the ratio between the alarm

regions in visual and infrared images collected by a watching tower. Martinez-de Dios et al.

[4,27,48] make use of the information redundancy from visual and infrared cameras to reduce the

false alarms of UAVs-based forest fire detection system. This is also the idea borrowed for the

multi-modal fire detection proposed in this chapter. However, compared to the work of Arrue et

al., this study does not take advantage of extra data from meteorological sensors or a geographical
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information database. Similar to the method of Martinez-de Dios et al. [48], this thesis introduces

how potential fire alarms from both IR and visual images can be fused to provide more reliable fire

detection performance.

4.2.1 Registration of Infrared and Visual Images

In order to fuse the data from multi-modal cameras, the corresponding objects in the view are

required to be registered. Therefore, an important step before fusing detection results of different

types of cameras is image registration which is used to align the corresponding objects in the scene.

The function of registration is to set up geometric correspondence between the multi-type images

so that they may be transformed, compared, and analyzed in a uniform reference frame [117].

The registration methods can be divided into automatic and manual registration. Since manual

registration is labor intensive and it is required to repeat when the background changes or the

camera has movement, automatic registration is thus preferred by the researchers.

As for automatic registration methods, it can be divided into region, line and point feature-

based methods [118]. It is usually required to adopt features that are stable with respect to the

sensors. For the registration of the multi-modal images, Martinez-de Dios et al. [48] take advantage

of a homography based method to estimate the transformation parameters by using a calibration

grid. This thesis borrows their registration approach using the same technique.

Assume that both cameras configured in the system share the centre of projection and the

geometry of this configuration is shown in Fig. 4.2.

Let qIR = [x y 1]T and qV is = [x
′
y

′
1]T denote the images at the same moment of a point

X in homogeneous pixel coordinates of the infrared and visual images, respectively. Assume the

centres of projection of both cameras are coincident at point P , the rigid transformation relation

between the two type images is illustrated as follows:

sqIR = HqV is, (55)
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Figure 4.2: Geometry of cameras configuration.

where H represents the homography which is a 3× 3 matrix and s is a scale factor.

As described in [119], H can be obtained by:

H ∼= WIRRWV is
−1, (56)

where WIR and WV is denote the internal calibration matrices of both IR and visual cameras, re-

spectively. R represents the rotation matrix associated with the camera centered coordinate sys-

tems. Therefore, H can be calculated if the cameras are calibrated and their related frame transfor-

mation is known. In addition, H can be computed by at least four known correspondences among

lines or points in both images as well.

There are various techniques have been developed to compute H though it is more challenging

to cope with images captured by different type of sensors. For the works presented in [48], the

calibration is conducted by making use of a known and visible pattern on both types of cameras;

while [120] proposes another approach estimating H on the image plane without requirement of

calibration when both cameras are fixed closely together and are moved jointly in space. After H

is calculated out, the two type images can be aligned, which means that the detected suspicious

fires in the visual image can be transformed into the IR image plane.
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4.2.2 Information Fusion

The primary advantage of fusing multi-modal image information is that unreliably extracted

regions from one camera might be reliably extracted from the other type camera. The fusion

of imageries in visible and IR ranges produces informative data about the scene, such as color,

motion, and thermal detail. Using such information to successfully detect and analyze fire activity

in the scene with lower false alarm rates has become popular to improve the performance of fire

detection. The majority of existing researches in multi-modal video fire detection focus on the

fusion of infrared and visual images, and it has been demonstrated that combining these two types

of images would be beneficial for better detection in different environments.

Similarly to the existing multi-modal techniques, this thesis focuses on the combined analysis

of IR and visual flame features. Because corresponding objects in different type images may have

different properties such as size, shape, position and intensity, an appropriate image representation

is needed to display the common information between the two type of images, while suppress the

non-common data [121].

This study proposes a simple way of segmenting the common fire analogous regions of IR and

visual images which have been individually processed. After that, the intersected pixels from two

images are segmented. Thus, the mathematic morphological operations are further employed for

removing the unconnected and irrelevant pixels/regions, while preserving the consecutive regions.

Ultimately, the blob counter method is used to track the segmented fire regions.

4.3 Experimental Results

The proposed fire detection algorithms are developed in MATLAB environment. A desk-

top with Windows 7 operating system, Intel Core i7 processor and 8GB memory is adopted

for image display and processing. In this work, a database from the website (http://cfdb.univ-

corse.fr/index.php?menu=1) is used for verifying the effectiveness of the proposed fire detec-

tion approach. The images are captured by near infrared (NIR) camera and their resolutions are
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1024× 768.

4.3.1 Infrared Images Segmentation Results

Figs. 4.3, 4.4, 4.5 and 4.6 present the experimental results of the proposed method that is tested

on video sequences of the database. Figs. 4.3(a), 4.4(a), 4.5(a) and 4.6(a) list the raw IR images;

Figs. 4.3(b), 4.4(b), 4.5(b) and 4.6(b) are the segmentation results of hot object; Figs. 4.3(c), 4.4(c),

4.5(c) and 4.6(c) show the motion detection results processed by the optical flow analysis.

In Figs. 4.3(b), 4.4(b), 4.5(b) and 4.6(b), it can be clearly seen that high intensity regions

which represent hot objects have been effectively extracted from the image background by using

the Otsu method, but some non-fire hot regions with motion are also wrongly extracted (as shown

in Fig. 4.5(b)). This phenomenon is caused by the heat radiation and light reflection of fires or

lights. Therefore, in order to improve the accuracy of fire detection, the motion feature analy-

sis utilizing optical flow for finding accurate fire regions is also employed to further check the

extracted candidate areas.

Figs. 4.3(c), 4.4(c), 4.5(c) and 4.6(c) show the thresholding results after the further image

processing using optical flow. From these figures, one can obviously observe that the non-fire hot

regions are all removed.

The experimental results demonstrate that the proposed method is capable of detecting the fires

with satisfactory performance, while the false alarms potentially caused by the fire analogues in IR

images are significantly reduced as well.

4.3.2 Infrared and Visual Images Matching Results

Figs. 4.7(a), 4.8(a), 4.9(a) and 4.10(a) list the original visual images; Figs. 4.7(b), 4.8(b),

4.9(b) and 4.10(b) display the segmentation results in visual images; Figs. 4.7(c), 4.8(c), 4.9(c)

and 4.10(c) show the motion detection results processed by the optical flow analysis in IR im-

ages; and Figs. 4.7(d), 4.8(d), 4.9(d) and 4.10(d) are the images (segmented visual and IR images)

matching results after intersection and morphological operations.
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(a) Original IR image (b) Otsu segmentation

(c) Motion detected result

Figure 4.3: Experimental results of sample frame 1.

(a) Original IR image (b) Otsu segmentation

(c) Motion detected result

Figure 4.4: Experimental results of sample frame 2.
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(a) Original IR image (b) Otsu segmentation

(c) Motion detected result

Figure 4.5: Experimental results of sample frame 3.

(a) Original IR image (b) Otsu segmentation

(c) Motion detected result

Figure 4.6: Experimental results of sample frame 4.
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(a) Original visual image (b) Detection result in visual image

(c) Motion detected result in IR image (d) IR and visual images fusion result

Figure 4.7: Experimental results of sample 1.

From Figs. 4.7(d), 4.8(d), 4.9(d) and 4.10(d), one can observe that the candidate fire regions

segmented in IR and visual images are matched, the intersected regions with higher possibility of

fire are further segmented by using the proposed method. Then the intersected regions are tracked

by blob counter in the images, as shown in Fig. 4.11. This fusion processing procedure provides a

drastically reduced number of false detection rates, which results in a significant improvement of

fire detection performance.
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(a) Original visual image (b) Detection result in visual image

(c) Motion detected result in IR image (d) IR and visual images fusion result

Figure 4.8: Experimental results of sample 2.

(a) Original visual image (b) Detection result in visual image

(c) Motion detected result in IR image (d) IR and visual images fusion result

Figure 4.9: Experimental results of sample 3.
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(a) Original visual image (b) Detection result in visual image

(c) Motion detected result in IR image (d) IR and visual images fusion result

Figure 4.10: Experimental results of sample 4.

(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure 4.11: Experimental results of fire tracking.
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Chapter 5

Learning Based Smoke Detection for UAV

Based Forest Fire Surveillance

The existing forest fire detection approaches based on the characteristics of fire (including color

and motion) have demonstrated their efficacy. However, to detect forest fire effectively based solely

on the information of fire flame is not always enough, or to some extent, not early enough for fire-

fighting. Normally, forest fire includes the following six phases of development: 1) incipient, 2)

growth (pre-flashover), 3) flashover, 4) fully developed (post-flashover), 5) decay, and 6) extinction

[122]. The incipient period (see Fig. 5.1), which is the very early stage of forest fire development,

is dependent on a variety of factors, such as the quantity of available oxygen, the effect of wind,

temperature, as well as the chemical component and humidity of trees. Early fire detection at this

stage can prevent the fire developing into uncontrollable and avoid significant losses by following

a timely response from qualified fire-fighting professionals.

Forest fire can be easily covered by smoke, especially in its early period, this phenomenon can

seriously degrade the performance of flame-based fire detection approaches. Furthermore, smoke

can be identified earlier than fire, and the area of smoke can also be much larger than that of fire

flames. Therefore, as an important early sign of fires, smoke, which is compounded with hydrogen,

carbon, and oxygen, has been seen as a critical forecasting symbol of fire [123]. Normally, it is
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Figure 5.1: Duration of the incipient period of forest fire.

difficult to identify the visual pattern of smoke, and the density of smoke also varies with the

surroundings. But smoke from the fire can be easily observed even if the flames are invisible,

so that the fire can be detected earlier before it develops into uncontrollable. Thus, it is highly

attractive to apply smoke detection in forest fire detection applications.

Traditional smoke detection methods mainly rely on the particle sampling. This requires close

proximity to the source of smoke. Fire alarm is raised only when the particles reach and activate

smoke detecting sensors. Moreover, the traditional smoke detection methods are difficult to de-

tect smoke in open/large spaces and provide additional descriptive information of smoke including

its location, size, orientation, and process of burning. In addition, smoke detection with signif-

icantly low false alarm rate remains a challenging issue for the application in open/large spaces

with disturbances (own analogous features to smoke including color, motion or texture) from envi-

ronment, such as specific species of the tree, special ground features, lighting variations caused by

the changes from climate, weather, and time of the day. Meanwhile, comparing with fire flame, the

visual characteristics of smoke including color and texture are less trenchancy. These phenomena

make it rather difficult and more complicated to extract smoke from disturbances and background.

To solve the above-mentioned problems and achieve an effective detection performance, re-

cently, visual-based (using camera) smoke detection techniques have been paid much attention due
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to their effectiveness for open and large spaces, and low cost in development. Since the features

of smoke including color, motion, motion orientation and texture, based on human’s experience,

are important to distinguish between smoke and non-smoke regions; investigation of these charac-

teristics thereby plays a critical role in the development of visual-based smoke detection systems.

The color of smoke changes from bluish-white to white with low temperature, while ranges from

greyish-black to black along with the rise of temperature, then a fire ignites when the tempera-

ture reaches a specific level. When fire happens, the smoke usually rises from that site, diffusing

upwards, may also spread to other directions when winds act on it. The smoke regions generally

vary in area, size and number from one frame after another with rough and coarse surface and

boundary [124].

Numerous smoke detection methods have been developed. They can be generally classified

into four groups based on the ways adopted for the detection: 1) histogram-based methods, 2)

temporal-analysis-based approaches, 3) rule-based techniques, and 4) a combination of techniques.

In [125], two decision rules are used for smoke detection, one is the chromatic decision rule for an-

alyzing the color of smoke, while the other one is the diffusion-based dynamic decision rule based

on the spreading attributes of smoke. A fast and accumulative motion model is proposed in [76]

for video-based smoke detection. This model employs both chrominance and motion orientation

features of smoke for achieving effective detection results, but lack of precision presents when the

smoke is affected by winds. A target-tracking-based smoke detection method is presented in [126],

in addition to the combination of temporal and spatial features of smoke, both static and dynamic

visual characteristics of smoke are also adopted, while the brightness consistency of smoke is well

assessed. In [127], a visual-based smoke detection method is developed using the SVM. Several

features of smoke including the changing unevenness of the density distribution and irregulari-

ties of the contour are utilized. After the extraction of these features, SVM is then employed to

distinguish between smoke and non-smoke regions. But the color feature is overlooked as a distin-

guishing feature of smoke in this research. An efficient smoke detection algorithm using wavelets

method and a SVM classifier is designed in [128]. In [129], the feature of partial transparency of
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smoke is used for the development of smoke detection approach, which is then implemented using

the wavelet theory to extract the edge blurring values of background object. After that, the system

devised in [129] is then enhanced in [65] by employing the contour characteristics of smoke. A

single stage wavelet energy and a back-propagation neural network are selected in [130], these two

algorithms are then used on a small data set for smoke detection. In [80], the background estimation

and color-based decision rules are adopted, combining with optical flow method for calculating the

candidate smoke regions. [131] presents a clustered motion based smoke detection method. [132]

proposes an approach considering both smoke and flame as turbulent phenomena, then using the

dimensionless edge/area or surface/volume measure to characterize the shape complexity of these

turbulent phenomena. The tree-structured wavelet transform and gray level co-occurrence matrices

are combined in [133] for the analysis of the texture feature of smoke. But this method requires

a high computational cost for processing, which is not available for the generally used surveil-

lance systems with CCD cameras. In general, the developed algorithms can be classified into the

following three aspects: 1) combine the rules associated to smoke features; 2) utilize color-based

techniques for extracting smoke color attributes; and 3) extract smoke from moving objects.

In order to achieve an effective performance of smoke detection, this thesis proposes a new

learning-based fuzzy smoke detection algorithm considering color feature of smoke. All images

are captured from visual cameras which are mounted on the bottom of UAV and orientate to the

anterior inferior direction with a specified pitch angle. The benefit of this configuration is capable

of concentrating on the information of forests and greatly reducing the adverse effects from cloud

(which, to some extent, shares the similar features with smoke in color and shape) in the sky. The

design procedure of the proposed method can be addressed as follows: 1) first, the visual images

are captured by the camera installed on the bottom of UAV; 2) then, a fuzzy smoke detection rule

is designed, selecting the RGB difference and intensity as the inputs and smoke likelihood as the

output; 3) next, an extended Kalman filter (EKF) is designed based on both the inputs and output

of fuzzy smoke detection rule to provide it with additional regulating flexibility by reshaping its

fuzzy membership functions and rules on-line; and since it may produce nonconnected (nonconvex
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or concave) segments which are distorted by noises and textures after image processing, the mor-

phological operation is then adopted to remove these imperfections; 4) eventually, the smoke can

be effectively segmented from the background by the reconfigured smoke detection law regardless

of the variation of environmental conditions.

According to the grayscale of segmented area, the fuzzy rules will be changed by EKF. Then the

grayscale of smoke also changes. Therefore, the proposed method can offer the following benefits

to smoke detection: 1) due to its simplicity, light-computational requirements, and adaptability to

system variations, fuzzy logic method is employed for making the smoke segmentation rules; 2)

without rich experience of smoke detection skills, an effective smoke detection rule is achievable

after training the fuzzy logic based smoke detection scheme by using EKF owing to its system

variation learning capabilities; 3) it is time-efficient to obtain an effective smoke detection rule by

using the EKF to train the smoke detection scheme; and 4) the proposed method is adaptive to the

variations in weather conditions, time of the day, features of forest, etc.. It is worth-mentioning

that it is also helpful to establish a database in advance based on the environmental variations,

then choose the specific detection rule for the corresponding condition to accelerate the learning

procedure.

5.1 Fundamental Information of Smoke Detection

Similar to the fire flame detection, smoke pixels can also be modelled. However, the smoke

does not display chrominance characteristics as fire flame. At the start, the smoke is expected to

show color from white-bluish to white when the temperature of smoke is relatively low; while the

temperature of smoke increases and its color changes from black-grayish to black when it reaches

the boundary of the start of fire flame [62].

Meanwhile, the burning with different combustible materials can produce different quantities

and color of smoke. In general, most of the smoke display grayish colors, which can be classified

into the following two grayish color regions: light gray and dark gray. Furthermore, based on the
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features of smoke, it can imply that the three components R, G and B of smoke are almost equal

or with a small difference. In order words, the R, G and B components of smoke are very close to

each other. This phenomenon implies that the absolute difference of the maximum and minimum

values among these three components should be constrained within a specific threshold. Thus, the

first smoke detection rule can be established as follows:

Ts = max(Ts1, T s2, T s3) ≤ Tmax, (57)

where ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|R(x, y)−G(x, y)| = Ts1,

|G(x, y)− B(x, y)| = Ts2,

|R(x, y)− B(x, y)| = Ts3,

(58)

Ts1, Ts2, and Ts3 are calculated as the difference between each two channels. Ts is the maximum

absolute difference among the three components of the RGB model, Tmax ∈ [TsL, T sH ] denotes

a predetermined global threshold determining the intensity similarity of each RGB color channel,

TsL and TsH are the lower and higher boundaries of thresholding values, respectively.

Since the primary color of smoke is grayish, in order to describe smoke in an effective manner,

the HSI model is also employed, especially the intensity component of HSI model is used for

describing the light and dark gray regions in [IL1, IL2] and [ID1, ID2], respectively. Therefore, the

following second smoke detection rule can be formulated:

⎧⎪⎪⎨
⎪⎪⎩
IL1 ≤ I ≤ IL2, For light grayish color,

ID1 ≤ I ≤ ID2, For dark grayish color,

(59)

where I is the intensity value of each pixel in the current frame, the selection of IL1, IL2, ID1, and

ID2 depends on the statistical data of experiments.

Ultimately, the two conditions Eqs. (57) and (59) can be chosen in the design of decision
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making functions for smoke recognition, in the case of considering chromatic analyses for smoke

detection.

UAV

Fuzzy Smoke 
Detection Rule

Extended 
Kalman Filter

Intensity
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RGB
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Preprocessing

RGB

Figure 5.2: Illustration of the proposed learning-based smoke detection scheme.

5.2 Learning Based Smoke Detection Rule Design

As illustrated in Fig. 5.2, the main idea of the proposed method is to design a supervisory fuzzy

logic based smoke detection method, which is capable of not only effectively segmenting smoke

from background, but also adjusting the parameters of the fuzzy smoke detection rule adapting to

environmental variations including different lighting conditions and background colors, so that the

proposed learning-based fuzzy smoke detection approach is expected to successfully detect smoke

with significant reduction of false fire alarm rate.

The learning-based fuzzy smoke detection methodology consists of an EKF and a fuzzy logic

rule, which are synthesized as follows:

(1) First, the visual images are captured by the cameras installed on the bottom of UAV.

(2) Then, a fuzzy smoke detection rule is designed by selecting the RGB difference and intensity
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as the inputs and smoke likelihood as the output.

(3) Next, an EKF is designed based on both the inputs and output of fuzzy smoke detection

rule to provide it with additional regulating flexibility by reshaping its fuzzy membership

functions and rules on-line.

(4) Eventually, the smoke can be effectively segmented from the background by the reconfigured

smoke detection law regardless of the variation of environmental conditions.

What is worth mentioning is that the main concept of this scheme is to combine the advantages

of the learning capability of EKF, and the ability of fuzzy logic method on dealing with automatic

thresholding and segmentation with environmental uncertainties, to achieve a satisfactory perfor-

mance of smoke detection without consuming much time of developer for tuning the fuzzy smoke

detection rule in the absence of relative experienced technical personnels. The design details are

introduced in the following subsections.

Intensity
Defuzzification

Fuzzification

Smoke 
Likelihood

Fuzzy 
Rule 
Base

RGB
Difference

Fuzzy Smoke Detection Rule

Figure 5.3: Illustration of the proposed fuzzy smoke detection scheme.

5.2.1 Fuzzy Smoke Detection Rule Design

Fuzzy logic method has been considered as an excellent choice for a variety of applications

which come along with the requirements of real-time, high nonlinearity, and sophisticated compu-

tation [134].
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In general, the triangle membership function is employed for each input, and it can be mathe-

matically written into the following form:

fij(zj) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + (zj − cij)/b
−
ij if − b−ij ≤ (zj − cij) ≤ 0,

1− (zj − cij)/b
+
ij if 0 ≤ (zj − cij) ≤ b+ij,

0 otherwise,

(60)

where i and j denote the number of inputs and triangle membership functions, respectively. zj is

the jth input, cij is the ith centroid, while b−ij and b+ij represent the lower and upper half-widths of

the ith triangle membership function, respectively.

Moreover, as one of the most popularly applied defuzzification techniques, the max-min ag-

gregation and centroid defuzzification method is employed in this thesis to compute the value of

output. In this study, only one output is defined in the fuzzy smoke detection system. Similar to

the inputs design, the defuzzification rule for output is constructed as follows:

mj(y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + (y − γj)/β
−
j if − β−

j ≤ (y − γj) ≤ 0,

1− (y − γj)/β
+
j if 0 ≤ (y − γj) ≤ β+

j ,

0 otherwise,

(61)

where mj(y), γj , and y denote the jth fuzzy output, modal point, and crisp number, respectively.

β−
j and β+

j are the lower and upper half-widths of the jth output rule, respectively.

Supposing that the jth rule is the result of z1 ∈ fuzzy set i and z2 ∈ fuzzy set k, the activation

level of the consequence of the jth rule can be represented by wj , this activation level can then be

expressed as:

wj = min[fi1(z1), fk2(z2)]. (62)
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Therefore, the corresponding fuzzy output can be obtained by the following representation:

m̄j(y) = wjmj(y), (63)

where the fuzzy output m(y) is calculated by:

m(y) =
M∑
j=1

m̄j(y). (64)

Apply the selected centroid defuzzification scheme, it is possible to map the fuzzy output to a

crisp number ŷ as follows:

ŷ =

∑M
j=1 wjCjSj∑M
j=1 wjSj

, (65)

where Cj and Sj are the centroid and region of the jth fuzzy membership function of output,

respectively. In addition to that, the centroid Cj can be defined as follows:

Cj =

∫
ymj(y)dy∫
mj(y)dy

. (66)

5.2.2 Extended Kalman Filter

As a rather mature and well-known technique, EKF has been widely employed by engineers for

a variety of engineering and industrial applications [135]. To take advantages of the online learn-

ing capabilities with relative low computational consumption and the massive number of existing

application examples of using EKF, which is also employed in this study for training the proposed

fuzzy smoke detection system in real time.

The system and measurement models [136] in discrete-time representation are first established

as follows: ⎧⎪⎨
⎪⎩

xi = f(xi−1) + ωi−1,

di = h(xi) + νi,
(67)

where xi is the stochastic variable when the system state is at time ti. ωi−1 and νi denote the noises
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from process and measurement, respectively. f(·) and h(·) represent the vector functions of the

states which are nonlinear.

After that, the target of designing EKF is to find an estimate x̂i of xi considering di(0, ..., j).

Considering the nonlinearities of system (67) are sufficiently smooth, and using Taylor series

method, this system can then be expanded around the state estimate x̂i in the following form:

⎧⎪⎨
⎪⎩

f(xi) = f(x̂i) + Fi × (xi − x̂i) + higher order terms,

h(xi) = h(x̂i) +HT
i × (xi − x̂i) + higher order terms,

(68)

where

Fi =
∂f(x)

∂x
|x=x̂i ,

HT
i =

∂h(x)

∂x
|x=x̂i .

After neglecting the higher order terms in Eq. (68), Eq. (67) can be approximated by the fol-

lowing equations: ⎧⎪⎨
⎪⎩

xi = Fi−1xi−1 + ωi−1 + φi−1,

di = HT
i xi + νi + ϕi−1,

(69)

where

φi−1 = f(x̂i−1)− Fi−1x̂i−1,

ϕi−1 = h(x̂i−1)−HT
i−1x̂i−1.

Ultimately, the desired estimate x̂i is achievable by employing the following general EKF re-

cursive equations [136]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fi−1 = ∂f(x)
∂x

∣∣∣
x=x̂i−1|i−1

,

Hi = ∂h(x)
∂x

∣∣∣
x=x̂i|i−1

,

Ki = Pi|i−1H
T
i (Ri +HiPi|i−1H

T
i )

−1,

x̂i|i = f(x̂i−1|i−1) +Ki[di − h(x̂i|i−1)],

Pi|i = Fi−1(Pi−1|i−1 −KiHiPi−1|i−1)F
T
i−1 +Qi−1,

(70)
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where di, Ki, and Pi denote the Kalman gain, observation vector, and covariance matrix of state

estimation error, respectively. The estimated state x̂i|i represents the optimal solution that tends to

approach the conditional mean value E[xi|(d0, d1, . . . , di)].

5.2.3 Synthesis of Learning Based Fuzzy Smoke Detection Methodology

In this work, the two inputs are selected as the intensity I and the maximum absolute difference

Ts among the three components of RGB model, respectively. Regarding the selection of I , as this

study is intended to achieve an early forest fire detection, while the smoke normally shows light

gray color in the early stage of forest fire. Meanwhile, due to the specific characteristic of trees,

the smoke of trees, in general, also displays the light gray color. Thus, the intensity I ∈ [IL1, IL2]

is chosen as one of the inputs in this study. Regarding the maximum absolute difference among

the three components of RGB model, Eq. (59) is first used to calculate the differences between

each two components of the three components of RGB model; then the one with maximum value

is chosen as the other input of the overall two inputs.

In order to synthesize the proposed learning-based fuzzy smoke detection methodology, the

following critical design process is required: the optimization of fuzzy membership functions and

rules adopting the recursive calculation capabilities of EKF.

Optimizing the membership functions of fuzzy system using EKF can be considered as a

weighted least-squares minimization problem. Two inputs and one output are selected for the

design of fuzzy system in this study. The intensity I and maximum absolute difference Ts among

the three components of RGB model are selected as the two inputs, while the likelihood of forest

fire are chosen as the output. In addition, n fuzzy sets are assigned to the first input, and m fuzzy

sets are distributed to the second input, while the output is allocated with k fuzzy sets.

The synthesis procedure can be illustrated in the following steps:

• First, choose a state vector x which includes b−ij , b
+
ij , and cij of inputs in Eq. (60), and β−

ij ,
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β+
ij , and γi of output in Eq. (61) as the state of the nonlinear system Eq. (67):

x = [b−11 b
+
11 c11 . . . b−n1 b

+
n1 cn1

b−12 b
+
12 c12 . . . b−m2 b

+
m2 cm2

β−
1 β+

1 γ1 . . . β−
k β+

k γk]
T .

(71)

• Then, apply the Kalman recursion in Eq. (70), where di and f(·) are assigned as the target

output of the fuzzy system and identity mapping, respectively. h(x̂i) is chosen as the fuzzy

system’s actual output which provides the current membership function parameters, Fi is set

as an identity matrix. Hi is selected as the partial derivative of the fuzzy output in regard to

the membership function parameters.

• Next, after conducting the Kalman recursion, it is expected to obtain the estimate x̂i that

includes the new fuzzy membership function parameters for adjusting the fuzzy rules to

segment the smoke candidate from background.

• Finally, the morphological operation is also employed to remove the imperfections and non-

connected (nonconvex or concave) segments distorted by noises and textures after image

processing.

5.3 Experimental Results

Table 5.1: The fuzzy rule base for the proposed smoke detection method.

I
ZE PS PM PB PVB

ZE Z Z Z M B

PS Z Z S M B

Ts PM S S M B VB

PB M M M B VB

PVB M M M B VB
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As displayed in Table 5.1, a fuzzy rule base with five membership functions for each of the

two inputs and one output is designed, where “ZE” = “zero”, “PS” = “positive small”, “PM” =

“positive medium”, “PB” = “positive big”, and “PVB” = “positive very big” are chosen to express

the size of fuzzy values for the inputs; meanwhile, “Z” = “zero”, “S” = “small”, “M” = “medium”,

“B” = “big”, and “VB” = “very big” are selected to express the size of fuzzy values for the output.

1LI

ZE PS PM PB PVB

2LI1I 2I 3I

(a)

ZE PS PM PB PVB

(b)

Z S M B VB

(c)

Figure 5.4: Initial membership functions of first input (a), second input (b), and output (c).

Fig. 5.4 illustrates the initial membership functions of intensity I and the maximum absolute

difference Ts among the three components of RGB model for inputs, and the likelihood of forest

fire for output, respectively. At the start of experiments, the first input, the intensity I is limited in
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the range from IL1 = 150 to IL2 = 255, the second input, the maximum absolute difference Ts is

constrained by Ts ≤ Tmax = 30, while the fuzzy sets width of each output is allocated in [0, 1].

ΔI = IL2 − IL1, I1 = IL1 + 0.25ΔI , I2 = IL1 + 0.5ΔI , and I3 = IL1 + 0.75ΔI .

It is worth-mentioning that the initial ranges selection for inputs and output are obtained from

the experiences, while the optimal ranges will be achieved by the recursive regulation of EKF. Re-

garding the selection of membership functions for partitioning the ranges of inputs, generally, the

more membership functions are chosen, the more complicated system will be, and the higher com-

putational consumptions are required as well. Therefore, to balance the system performance and

complication, five triangle membership functions are devised in this work. This selection strategy

is designed based on the design experience obtained from the author’s previous research works and

the existing publications on fuzzy logic design for the consecutive and effective coverage of sys-

tem states, while only acceptable computational efforts are demanded for the real-time applications

with satisfactory performance.

5.3.1 Scenarios Description

The classic Otsu segmentation method is employed as the comparison to validate the proposed

approach in a clearer manner. In addition to that, in order to demonstrate the effectiveness of

the proposed smoke detection method with great robustness to environmental disturbances, three

scenarios are selected, the corresponding descriptions are listed as follows:

(1) In the first scenario, the smoke with somewhat bright background in images are captured

from a moving aircraft.

(2) In the second scenario, comparing with the first scenario, the smoke with relatively darker

background in images are captured from a moving aircraft.

(3) The background in the above two scenarios is comparatively simple. In order to further tes-

tify the robustness of the proposed method, the third scenario covers a more complicated

situation comparing with the previous two scenarios, a small size of light smoke with some
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analogues similar in color from the background in images are captured from a moving air-

craft.

5.3.2 Results of Scenario 1

As shown in Fig. 5.5, the left column lists the original images captured from a real moving

aircraft, the middle column covers the images processed after Otsu segmentation approach, and

the right column lists the images segmented after the proposed smoke detection method.

Although both of the compared two methods can successfully segment the smoke from back-

ground, less uninterested/non-smoke areas and noises are included by the proposed method com-

paring with the Otsu approach.

In addition, compared with Fig. 5.4, Fig. 5.6 clearly shows that both inputs and output functions

are all adjusted by EKF. As observed in Figs. 5.6(a) and 5.6(b), either the first input function related

to the intensity or second input function related to the absolute differences of RGB channels tends

to the higher values of their corresponding segmentation levels. This phenomenon is due to the fact

that the intensity and color contrast of images are higher than that of the initial setting. Fig. 5.6(c)

displays that the membership functions of output moves towards the lower value than that of the

initial state. This phenomenon indicates the likelihood of forest fire decreases with the initial

setting.

5.3.3 Results of Scenario 2

From Fig. 5.7, same to Scenario 1, the left column includes the original images captured from

a real moving aircraft, the middle column contains the images processed after Otsu segmentation

approach, and the right column lists the images segmented after the proposed smoke detection

method.

Similar to Scenario 1, more uninterested/non-smoke areas and noises are removed by the pro-

posed method comparing with the Otsu approach, while the smoke regions are successfully seg-

mented.
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Figure 5.5: Performance of smoke segmentation: original images (left), results of Otsu method

(middle), and results of proposed method (right).
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Figure 5.6: Reconfigured membership functions of first input (a), second input (b), and output (c).

Furthermore, compared with Fig. 5.4, both inputs and output functions are also adjusted by

EKF as shown in Fig. 5.8. From Figs. 5.8(a) and 5.8(b), either the first input function related to

the intensity or second input function related to the absolute differences of RGB channels tends

to the higher values of their corresponding segmentation levels, but less value than that in the

first scenario. This phenomenon is due to the fact that the intensity and color contrast of images

are higher than that of the initial setting, but a little bit less value than that in the first scenario.

Fig. 5.8(c) shows that the membership functions of output moves towards the higher value than

that of the initial state. This phenomenon indicates the likelihood of forest fire increases with the

105



Original Otsu Method Proposed Method

Original Otsu Method Proposed Method

Original Otsu Method Proposed Method

Original Otsu Method Proposed Method

Original Otsu Method Proposed Method

Figure 5.7: Performance of smoke segmentation: original images (left), results of Otsu method

(middle), and results of proposed method (right).
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Figure 5.8: Reconfigured membership functions of first input (a), second input (b), and output (c).

5.3.4 Results of Scenario 3

As displayed in Fig. 5.9, the same as the previous two scenarios, the left column includes

the original images captured from a real moving aircraft, the middle column contains the images

processed after Otsu segmentation approach, and the right column lists the images segmented after

the proposed smoke detection method.
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In this more sophisticated scenario, there are some analogues including trees and ground in

white or close-white color in the background. These analogues have caused a significant perfor-

mance degradation in the compared method, numerous uninterested/non-smoke areas and noises

are included, this phenomenon seriously affects the results of smoke detection. Thanks to the learn-

ing ability of EKF (which can automatically regulate the fuzzy scheme according to the lighting

conditions of scenario), whereas, the proposed method can effectively distinguish the smoke from

other analogues.

Similar to the previous two scenarios, both inputs and output functions are also adjusted by

EKF as shown in Fig. 5.10 comparing with Fig. 5.4. From Figs. 5.10(a) and 5.10(b), either the

first input function related to the intensity or second input function related to the absolute differ-

ences of RGB channels tends to the lower values of their corresponding segmentation levels. This

phenomenon is induced by the fact that the intensity and color contrast of images are lower than

that of the initial setting. As shown in Fig. 5.10(c), the membership functions of output moves

towards the lower value than that of the initial state. This situation reveals the likelihood of forest

fire decreases with the initial setting.
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Figure 5.9: Performance of smoke segmentation: original images (left), results of Otsu method

(middle), and results of proposed method (right).
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Figure 5.10: Reconfigured membership functions of first input (a), second input (b), and output

(c).
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this thesis, current research progress related to forest fire detection are well investigated.

Besides, several reliable and accurate UAV-based forest fire detection methodologies are also de-

veloped, these include:

• A comprehensive literature review on the existing UAV-based forest fire detection systems

as well as vision-based forest fire detection techniques are provided.

• A method of vision-based forest fire detection in visible range images, which makes use

of both color and motion analyses, is developed for the UAV-based surveillance application.

The proposed method takes advantage of decision making rules established upon fire chroma

and motion features to greatly reduce false alarm rates of fire detection. A color-based fire

detection approach with light computation requirement is first designed to effectively extract

the suspicious fire regions with high accuracy. Although there exists the motion of other

objects and background in images caused by the movement of UAV, the proposed motion-

based fire detection method can further identify and track fires effectively from background

and other moving analogues of fire. Experimental verifications are conducted in two scenar-

ios, one is a real forest fire video gathered by an aircraft and the other is a real-time video
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collected by a UAV in an indoor environment. Experimental results have demonstrated that

the designed forest fire detection approach is able to achieve satisfactory performance with

greatly improved reliability and accuracy in forest fire detection applications.

• An IR images based forest fire detection method is also developed for the application of

UAV-based forest fire surveillance. This approach employs both brightness and motion

characteristics of fire in IR images to enhance the reliability and accuracy of fire detec-

tion. It can differentiate fires from background as well as non-fire hot moving objects by

using histogram-based segmentation and optical flow analysis. Experimental validations are

conducted in IR fire video sequences, good experimental results are obtained with greatly

improved reliability.

• The fusion technique fusing information from both CCD camera and IR camera for the

application of UAV-based forest fire detection is studied. Through image registration and

data fusion, good performance has been achieved with low miss-detection rates.

• In order to achieve an effective early forest fire detection, a new learning-based fuzzy smoke

detection algorithm considering color feature of smoke is developed. The visual images

captured by the camera configured at the bottom of UAV are processed by a fuzzy smoke

detection rule. The RGB difference and intensity are considered as the inputs while the

smoke likelihood is treated as the output. Besides, an extended Kalman filter (EKF) is de-

vised based upon the inputs and output of the fuzzy rule to offer it with additional regulating

flexibility by training and reshaping its fuzzy membership functions and rules on-line. The

effectiveness of the proposed methodology is verified and the experimental results indicate

that smoke can be successfully segmented from the background regardless of the variation

of environmental conditions.
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6.2 Future Works

Based on the investigations of current research in this thesis, the following future directions are

outlined:

• As vision-based detectors still suffer from a significant amount of missed detections and false

alarms due to the variations of environmental conditions and the target characteristics, thus

the combination of different fire features (flame and smoke) is worth further investigation.

• In order to improve the forest fire detection accuracy, how to correctly classify the different

extracted features and effectively determine the probability of forest fire is an important

future direction that needs further development.

• Although most of the developed schemes are verified in videos, more field tests are still

needed.

• The rate of spread (ROS) is one of the most significant parameters for describing the forest

fire behavior and predicting the moving direction of forest fire. It is necessary to develop

a simple and practical method for computing the ROS of flame front from a sequence of

images recorded by cameras.

• Because forests are highly complex and non-structured environments, the utilization of mul-

tiple sources of information at different locations is critical. The related research topic of

using vision sensors and GPS systems to determine fire location is worth investigating.
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