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1. Introduction 
The surrounding physical environment involves extensive information perceived by the human vision 

and processed by the brain to effortlessly recognize objects and localize individuals when moving within 

an unfamiliar physical space. However, achieving the same robotic technologies capabilities is relatively 

challenging due to combining different innovations, including probabilistic localization, object detection, 

and object recognition, in computer vision and machine learning [1], [2]. Object recognition identifies 

a certain class of objects in an image, while object detection identifies an object's class and location in an 

image. However, numerous robotic grasping and manipulation approaches assume objects are known 

because recognition and detection are not real-time [3], [4]. Thus, unknown objects require enhanced 

analysis of the three-dimension structure and physical properties to infer a proper grasp. In this regard, 

realistic applications need to enhance the capability to deal with systematic and repeatable errors from 

inaccurate kinematic models and random errors from sensor noise or limited repeatability of the motors 

[3]. Reliable robotic systems require high optimization to work beyond open-loop execution in real-

time with enhanced accuracy.  
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 The concept is highly critical for robotic technologies that rely on visual 

feedback. In this context, robot systems tend to be unresponsive due to 

reliance on pre-programmed trajectory and path, meaning the occurrence 

of a change in the environment or the absence of an object. This review 

paper aims to provide comprehensive studies on the recent application of 

visual servoing and DNN. PBVS and Mobilenet-SSD were chosen 

algorithms for alignment control of the film handler mechanism of the 

portable x-ray system. It also discussed the theoretical framework features 

extraction and description, visual servoing, and Mobilenet-SSD. Likewise, 

the latest applications of visual servoing and DNN was summarized, 

including the comparison of Mobilenet-SSD with other sophisticated 

models.  As a result of a previous study presented, visual servoing and 

MobileNet-SSD provide reliable tools and models for manipulating 

robotics systems, including where occlusion is present. Furthermore, 

effective alignment control relies significantly on visual servoing and deep 

neural reliability, shaped by different parameters such as the type of visual 

servoing, feature extraction and description, and DNNs used to construct 

a robust state estimator. Therefore, visual servoing and MobileNet-SSD are 

parameterized concepts that require enhanced optimization to achieve a 

specific purpose with distinct tools.  
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A comprehensive understanding of images requires a precise estimate of locations and concepts 

besides classification. This object detection process entails finding an object of interest and knowing its 

prior position in an image [2], [5]. The task involves skeleton, pedestrian, and face detection, which 

provide valuable information in autonomous driving, face recognition, human behavior analysis, and 

image classification [6], [7]. These Deep Neural Networks (DNNs) have been the powerful machine 

learning model constituting object detection, which precisely localizes objects rather than focusing only 

on image classification. However, object detection has inherent and significant limitations due to reliance 

on a pre-programmed trajectory and path, meaning the change in the environment or absence of an 

object makes the robot system unresponsive. Also, there is a relative lack of algorithms to ensure accurate 

object detection and alignment in the event of an occlusion. The integration of visual perception provides 

visual feedback, which constitutes a visual servoing responsible for vision-based control. The design of 

film handler alignment control for a portable x-ray system presents in this research and a review of 

merging visual servoing control with a deep neural network algorithm. The goal of this review paper was 

to illustrate and discuss a model design of film handler mechanism alignment control that combined 

vision and visual servoing. Likewise, presents the concept of visual servoing, feature extraction, and 

description, comparing position-based visual servoing and image-based visual servoing and the concept 

of the deep neural network specifically Mobilenet-SSD. This article aims to serve as a literature review 

of the current research and application of visual servoing and deep neural networks. 

2. Method 
In this section, alignment control will discuss using the design of a three (3) degrees of freedom 

(DOF) film handler alignment of a portable x-ray system as a sample model and a reference of discussion 

on the concept of visual servoing and deep neural network specifically MobileNet-Single Shot Detector 

(MobileNet-SSD). Likewise, it will discuss the step-by-step development of the film handler 

mechanism, focusing on the vision system and alignment controller. Also, the theoretical concept of 

feature extraction and description, visual servoing, and MobileNet-SSD. In a separate section, research 

studies related to the applications of visual servoing and DNN from year 2017- 2021 was summarized 

and presented MobileNet-SSD with other latest DNN networks. The development of X-ray film handler 

consists of several processes: (1) design using 3D CAD software, (2) procurement of parts and 

manufacture of film handler assembly, (3) integration of electronics hardware and actuators, and (4) 

evaluation for final mechanical adjustments [8]. The film handler of X-ray system with 3 DOF is shown 

in Fig. 1. 

 

Fig. 1.  (a) 3D CAD model of the X-ray film handler mechanism and (b) dimensions of the film handler frame 

[8] 
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Two perpendicular sliding mechanisms are used to achieve two-dimensional motion, which is 

operated by two stepper motors [8]. As indicated in Fig. 2 (a), one stepper motor will move the frame 

along the X-axis, while the other will move the frame along with the Y-axis Fig. 2 (b). 

 
Fig. 2.  Depiction of frame movement in two dimensions: (a) Frame displacement along X-axis and (b) frame 

displacement along Y-axis 

A second stepper motor is mounted beneath the frame to adjust the total frame's pitch angle to the 

mobile platform. This allows the frame to be fastened between transports to prevent wind resistance 

from destroying the x-ray film. The alignment mechanism will first deploy the frame in a vertical position 

perpendicular to the direction of the X-ray source as the mobile platform approaches the suspicious 

object. Fig. 3 (a) shows the completely deployed film handler frame, and Fig. 3. (b) shows the partially 

deployed film handler frame. 

 

Fig. 3.  Depiction of frame pitch angle: (a) fully deployed film handler frame and (b) partially deployed film 

handler frame 
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After the development of the x-ray film handler mechanism with adjustments being made to its 

mechanical structure, the development of the actuation control follows. Part of the alignment control 

development is properly attaching the motors, positioning sensors or limit switches, vision hardware, 

electrical wirings, and miscellaneous electronics hardware along with the frame structure. The challenge 

of this task is to properly place the components and electrical wiring so that the expected movement of 

the frame is not impeded. The drivers and controllers will be placed inside the mobile platform; thus, 

all wires will be re-routed underneath the frame to ensure that the electronics are well secured. Once 

the electronics hardware is in place, the microcontroller codes will be developed to interface with the 

stepper motor drivers, position encoders, and the main computer board. A simplified electronics 

schematic block diagram for the connection of these components is shown in Fig. 4. 

 

Fig. 4.  Electronics schematic block diagram for the film handler alignment system 

 

Fig. 5.  Block diagram for x-ray film handler alignment system control 

In designing the control for the three-stepper motors, a good understanding of feedback and control 

theory will be necessary. Fig. 5 shows the initial design of block diagram for the proposed control system. 
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The block diagram will also serve as a template for developing the required microcontroller code. 

Together with the sensors and actuators, the microcontroller system forms the inner control loop of the 

automated handler alignment system. Initially, the control system uses a proportional-integral-derivative 

(PID) controller to maintain the desired frame displacement. A series of independent motor tests will 

determine the PID parameters for each motor. With this system set up, its operation can stand alone, 

and thus, the output of the vision system needs to be a trajectory controller for this system. The setup 

helps simplify and isolate the problems, but it also eliminates the complexity associated with the 

interdependency of developing the system with machine vision. However, the possibility of 

interdependency will still be considered for this study when it would lead to further control optimization.  

Fig. 6 shows the components of the vision system and the electronic interconnections between them. 

The Intel Realsense camera communicates directly with Jetson TX2. The advantage of the Intel 

Realsense camera is to offset the computation load from the main computer as it calculates the depth 

data internally and is sent to the main computer for further processing. This allows for faster 

development of target object reconstruction and focuses on developing the model needed for target 

detection and tracking. The illustration also shows how the camera is involved in a feedback loop since 

the camera is mounted on top of the frame mechanism, which is actuated by the stepper motors. The 

stepper motors are indirectly moved by the outcome of the vision system process. 

 

Fig. 6.  Overview of the components of a vision system and their interconnections 

Moreover, Fig. 7 shows the process flowchart of the vision system. The RGB+D visual data from the 

D415 camera will contain 4 separate layers per frame: red, green, blue, and depth components. The 

MobileNet neural network architecture will serve as a base model for object detection because it provides 

speed up through depth-wise convolutions. Another reason for selecting the said architecture is that the 

system developed by this study has limited processing power. The object detection model will be trained 

to detect the portable x-ray source on several environmental conditions. The feature extraction model 

will be used to track important features from the object and will use the same network architecture as a 

base network. The output of the object detection model will be a binarized mask of the portable x-ray 

source, while the feature extraction model will generate global feature vectors. The camera's pose to the 

portable x-ray is computed by combining the depth data with the extracted mask and features. Together 

with the trajectory generation process, the pose estimation process block will form a 3D space 

reconstruction that will identify the position of the portable x-ray source in the 3D Cartesian space used 

for the alignment control.  

The trajectory generation process will also track the portable x-ray source from frame to frame. The 

occlusion prediction process will take care of occlusions, and it will work hand-in-hand with the 

trajectory generation process to produce an output coordinate for the alignment control. Thus, the study 

will determine the algorithms for the pose estimation, occlusion prediction, and trajectory generation 

processes. The film handler mechanism alignment system development is a combination of a vision 

system and alignment controller, which develop independently. Once the alignment system is fine-tuned 

for optimal response and the vision system has reached satisfactory accuracy for object detection and 

tracking, the development of the required visual servoing algorithm proceeds. 
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Fig. 7.  Block diagram and process flowchart of the vision system 

   The sample in Fig. 8 shows the Position-Based Visual Servoing (PBVS) algorithm with the vision 

system as an external trajectory controller will be implemented. Evaluations will be taken, serving as a 

benchmark for the next model adjustments. The aim is to develop a model that will achieve better 

accuracy than the common externally-controlled-PBVS algorithm. This could mean that the PID 

controller could be modified to enhance the response further or that the vision system feedback will 

become part of the internal feedback required to drive the motors.  

 

Fig. 8.  Externally-controlled PBVS scheme for the film handler alignment system 

 

Fig. 9.  Simplified process flowchart for the integrated alignment and vision control system 
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The camera has to get a frame or snapshot of its environment and attempt to detect the portable x-

ray source and lock onto it as the mobile platform moves. The coordinates of the tracked features will 

be used to reconstruct the target's pose relative to the camera. Appropriate coordinate transformations 

must be performed to develop the metrics to be measured. Coordinate transformation involves 

transforming from the camera frame to the portable x-ray source frame or the center of an x-ray film 

frame. The errors will then be calculated and shall be used to calculate the required motion of the stepper 

motors to bring the x-ray film center in alignment with the portable x-ray aperture axis and ensure that 

the x-ray film is also perpendicular to the aperture axis. The process is iterated until the alignment error 

is less than the threshold value, as shown in Fig. 9. 

3. Theoretical Framework 

3.1. Feature Extraction and Description 
A static and dynamic scene description is a crucial aspect of computer vision [9]. Thus, feature 

detection and description are essential in robotic system control to identify interest points for describing 

image content, such as blobs, ridges, corners, and edges [10]. The concept's primary goal is to describe 

the semantics of actions and behavior through object detection, analysis, and tracking [11]. In this 

regard, novel, robust, and automated features detection and description algorithms with high accuracy 

and performance are emerging to manage access control, perform statistical analysis, detect suspicious 

actions, track vehicles, and identify military targets [10], [12]. However, service robots are significantly 

unreliable in non-controlled and highly dynamic scenes due to enhanced demand for motion close to 

the object intended for manipulation, planning, and execution that drive the arm and refine the previous 

stage's final position relative to the correct position [13]. 

Consequently, feature extraction and detection need to include a servoing scheme, either image-

based or pose-based, for handling uncertainties. The continued enhancement of robotic technology aims 

at attaining feature extraction and description with advanced human-robot communication. In this 

context, Human-Robot-Interaction (HRI) becomes highly intuitive with a high level of natural 

modality, whereby robotic systems understand and execute human orders, such as skeleton motions, 

facial expressions, eye-gaze, or hand gestures, in the absence of direct touch sensors [14]. However, 

enhanced HRI requires motion sensors to differentiate object movements and those caused by the 

sensors themselves to effectively articulate background modeling to create an appropriate background 

for each frame [15]. Moreover, trajectory classification is highly essential for computing feature points 

that differentiate trajectories belonging to the same objects from the background. In this context, small 

objects lack appearance information for differentiating them from the background or similar categories, 

creating numerous possibilities and an enhanced need for accurate localization [16]. Therefore, feature 

detection and description are relatively complex due to the need to consider extensive dynamism, despite 

improving algorithms and approaches. 

3.2. Visual Servoing 
Robotic manipulators are highly popular industrial processes due to the enhanced demand for 

autonomy. Autonomous object manipulation involves vision-based sensory systems for repetitive pick-

and-place in dynamic environments, such as kitting, bin-picking, product packaging, path planning, and 

trash detection [17], [18]. Meanwhile, the integration of visual servoing in robotic systems improved 

flexibility by providing enhanced adaptation capabilities of neural networks and continuous feedback to 

the learning [19]. Thus, visual servoing is responsible for predicting image coordinates' trajectories and 

fostering the movement of sensors during manipulation. The concept eliminates the need for geometry 

information and allows robotic arms to reach for moving targets by following a trajectory without 

stopping at the specified intermediate points [19]. Hence, visual servoing is gaining popularity in 

unstructured environments to offer diverse services to people while interacting and exploring their 

environments rather than following a predefined path. Robotic systems with eye-to-hand or one or two 

eye-in-hand configurations utilize either position-based visual servoing (PBVS) or image-based visual 

servoing (IBVS). PBVS computation of three dimensions (3D) Cartesian errors, meaning that the model 
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requires perfect calibration and eye-in-hand modeling to generate a strong sensitivity to noise 

perturbations [20]. In contrast, IBVS involves feature points on an image plane for regulating the robotic 

pose, while underlying mapping is conducted to describe differences in end-effector velocities and visual 

features in a Cartesian space, as shown in Fig. 10. Although the model does not require 3D target 

restructuring, the accurate calculation of a mapping matrix is essential for successful implementation 

[21]. PBVS and IBVS utilize two feedback loops: an outer loop for controlling the error vector between 

the feature vectors and an internal loop for controlling the sensor's speed [21]. However, some 

manipulators have hybrid control systems that minimize the IBVS feature error in image space and 

PBVS' log depth ratio. Therefore, visual servoing provides definite models of handling uncertainties of 

the single-shot detector (SSD).  

 
Fig. 10. Typical Block Diagram used in Image-Based Control [20] 

In PBVS, 𝐶𝐶𝐶𝐶𝑇𝑇 is estimated and is defined by the target's pose relative to the camera. Pose estimation 

needs a good estimate of the geometry of the target, intrinsic parameters of the camera, and the features 

of the observed image plane. The desired relative pose relative to the target is designated as 

C*𝐶𝐶𝛵𝛵 and the 

motion required to move the camera from its initial 𝐶𝐶𝐶𝐶  to 𝐶𝐶∗c pose is designated to be 𝐶𝐶Δ with an actual 

pose of the unknown target 𝐶𝐶𝑇𝑇 shown in Fig. 11. Therefore, the pose network can be written according 

to [22] is; 

𝐶𝐶Δ ⊕ Χ∗𝐶𝐶𝛵𝛵  = Χ∗𝐶𝐶𝑇𝑇�           (1) 

where 

CξT�  is the estimated pose of the target relative to the camera and can be re-arranged as 

𝐶𝐶Δ = Χ𝐶𝐶𝑇𝑇 ⊖ Χ∗ξT�                          (2) 

which is the camera motion required to achieve the desired relative pose. 

 
Fig. 11. Position-based visual servo [23] 
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Computer vision is highly effective in enabling PBVS to identify a manipulated object's pose relative 

to a robot's pose. However, the model is not effective in the differentiation of distinct components. In 

this context, effective alignment control requires iterative closest point (ICP) for constraining Euclidean 

distance between the closest source points and target clouds, planar segmentation for removing scene 

noise from point clouds, and principal component analysis for identifying the lower order linear 

subspaces located in the high dimensional datasets [22], [23]. The model also involves contour searching 

to describe an object's topological structure and cross-correlation for measuring the vector displacement 

of one object relative to another. Nonetheless, the high efficiency of PBVS requires enhanced design 

space exploration using genetic algorithms, randomized search, simulated annealing, and Bayesian 

optimization to identify DNN architecture that delivers high accuracy [24]. DNN improves the system's 

robustness against dynamic noises and constructs a robust state estimator with high precision [25]. 

Therefore, effective utilization of PBVS requires enhanced optimization to achieve the desired result and 

improved reliability. IBVS utilizes a combination of image processing methods to achieve accuracy in 

feature extraction. The model's primary goal is to utilize the eye-in-hand robotics system to move the 

robot end-effector to the desired pose from the current pose [26]. The approach utilizes numerous image 

processing methods, including the HOG-based method, SIFT-based method, contour-based method, 

and RGB-based method, which rely on characteristic aspects of an image to ensure the sensor image is 

equivalent to the target object [20]. IBVS allows observation of depth and its integration into visual 

servoing for enhanced accuracy. In this context, different methods describe shape information using 

height, width, rotation angle, arc length, and parameter equations but fail to consider slight shape 

changes, making visual servoing incomplete [27]. 

Consequently, IBVS integrates triangular surface mesh, piecewise model, active growing neural gas 

network, or adaptive contour feature to provide shape information during visual detection and tracking.  

The model is adaptive to translational dynamics and parameter uncertainty by effectively integrating 

thrust constant, desired feature depth, and mass [28]. Thus, IBVS provides enhanced visual servoing by 

considering an object's contours or depth, generating 3D feature extraction and description. 

3.3.  MobileNet 
MobileNets are lightweight DNNs characterized by low-power and low-latency models that meet 

the demand of resource-constrained use cases. Debnath et al. consider the concept as an efficient CNN 

architecture used in mobile vision and embedded applications due to their lightweight [29]. MobileNets 

(Fig. 12) is founded on streamlined architecture, utilizing pointwise and depth-wise convolutions [29].  

 
Fig. 12. Sample of MobileNet and MobileNet-SSD Architecture [29] 
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The main difference between streamlined architecture and MobileNets is the convolution operation, 

where MobileNets involve filtering and combining inputs and outputs as two steps rather than one step. 

Nonetheless, the network is relatively fast due to the reduced numbers of parameters, whereby 3x3 

depth-wise separable convolutions reduce computations by nine times despite a fractional reduction 

inaccuracy. MobileNets reduce computation in the first few layers by embracing depthwise separable 

convolutions and inception models. The embedded pointwise convolution factorizes standard 

convolution into a 1×1 convolution and depth-wise convolution, which reduces computation and model 

size [30]. Therefore, MobileNets institute autonomous behavior into systems to reduce execution and 

cognitive burden on users by facilitating remote inspection and package delivery, besides effectively 

surveying hostile environments. 

3.4. MobileNet-SSD 
In recent literature, interest was growing in building small and efficient neural networks for mobile 

vision applications using modern deep learning models to perform visual servoing such as object 

detection. The SSD approach is based on a convolutional feed-forward network that produces a fixed-

size collection of bounding boxes and scores for the presence of object class instances in those boxes, 

followed by a non-maximum detection step to produce the final detections [31], [32]. In a recent study 

of W. Liu et al, the SSD algorithm is faster than YOLO and significantly more accurate than, in fact, 

slower techniques that perform explicit region proposals and pooling, such as Faster R-CNN [33]. Fig. 

8 shows the comparison between SSD and YOLO.  The SSD model adds several feature layers to the 

end of a base network, which predicts the offsets to default boxes of different scales and aspect ratios 

and their associated confidences. SSD with a 300 × 300 input size significantly outperforms its 448 × 448 

YOLO counterpart inaccuracy on the VOC2007 test while improving the speed, as shown in Fig. 13.  

 

Fig. 13. A comparison between two single-shot detection models: SSD and YOLO [41] 

MobileNet CNN model was created specifically for embedded vision applications, such as 

autonomous driving, face categorization, and object identification [34]. In comparison to ordinary 

convolutions, MobileNET used depthwise separable convolutions to lower the calculation cost to around 

one-eight [35]–[38]. Recently there have been several developments in MobileNET, such as MobileNET 

V2 [35], Enhanced Hybrid MobileNET [36], and ShuffleNet [38]. MobileNet V2  is an enhanced 

architecture as compared to MobileNet V1  in terms of model size. The architecture uses linear 

bottleneck blocks [36], [39] in the standard convolutional layers. The usage of successive layers is 

significant in preventing too much data from being destroyed. It largely reduces the model size but 

decreases the accuracy compared to baseline MobileNet [35]. The Enhanced Hybrid MobileNet [36] is 

a new architecture proposed to improve further the performance of the MobileNet V1 [40] model. A 

new hyperparameter called depth multiplier [36] was introduced, and the average pool layer was replaced 

by the Max pooling layer with stride two or Fractional max-pooling [36], [39] with stride 1.4. Various 
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combinations of the width multiplier [35], [39], [40] and the depth multiplier  [35] were tried out with 

Max pool (stride=2) or Fractional max pool (stride=1.4). Some models have higher accuracy, while some 

have a smaller size compared to the baseline MobileNet. Lastly, the ShuffleNet [38] is a unique 

architecture based on MobileNet V1, which utilizes 1 × 1 pointwise group convolutions and the channel 

shuffle method. 

Furthermore, A Younis et al. developed a solution that combines MobileNET and the SSD 

framework, as shown in Fig. 14. For Single Shot Multi-Box Detector (SSD), the MobileNET was 

employed as a deep learning pre-trained model. The method developed demonstrated good object 

detection accuracy at a processing speed of 14 frames per second, making it suitable for all cameras that 

can only process at 6 frames per second [41]. Similarly, X. Hu et al. employed MobileNET-SSD 

MicroScope to increase license plate detection accuracy, increase anti-interference capability, and deploy 

real-time on the RK3399 mobile device [42]. S. Zhao et al. developed MobileNET-SSD for real-time 

data capture of target recognition of a suggested signal-switching model based on deep learning for 

dynamic regulation of pedestrian traffic. The proposed algorithm model consists of the Long and short 

term memory model (LSTM), the object detection model, the MobileNET-SSD, and the decision 

model. Likewise, Dembys et al. [43] developed an approach for recognizing and estimating 3D poses of 

objects using deep learning that runs on embedded hardware. The MobileNET SSD is used to recognize 

and track objects of interest in the scene. 

 

Fig. 14. MobileNET-SSD Model [41] 

In contrast, in the pose estimation phase, the algorithm uses stereo correspondences to 3D 

reconstruct the spatial coordinates of multiple Oriented FAST and Rotated BRIEF (ORB) features in 

the recognized object's bounding box. M. Razavi et al. [44] used MobileNet-SSD for a real-time object 

detection system in an enclosed environment on the Jetson TK1, which improves performance by 

changing the networks' convoys and dividing tasks between the central and the graphic processor. Also, 

Rahul and Nair successfully utilized MobileNET SSD and stereo vision camera system to detect and 

identify objects and estimate their distances from the camera.  
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4. Results and Discussion 
Research on robot vision servo technology has emerged significantly in real-time position and precise 

monitoring of static and moving targets. Different robot cameras are mounted to identify target features, 

process feature information, and provide visual input to manipulate the robot.  A visual servo system is 

a complex, non-linear system that includes vision and controls. It also includes work on image processing 

(detection and recognition), robot kinematics and dynamics, and various control algorithms [45]. In 

1979, Hill and Park implemented visual servoing based on the literature to differentiate it from the 

previous robot control algorithm. It typically adopts a static visual servo algorithm to collect the images 

and process them accordingly, and then the target position is determined by measurement [45]. Image 

servoing is used in various applications such as mobile navigation systems, auto-tracking, and object 

manipulation [46]. These general applications are object manipulation that involves either cooperative 

or non-cooperative object detection, image processing, segmentation, recognition, serving, alignment, 

or grasping for known objects. The usual visual servo function is to position and align the robot 

manipulator with the target. The usual task of this device is to track or maintain a constant distance or 

position between the robot and the moving target. For both instances, image information is used as a 

processing input to transfer the robot to its desired position. As above, it changes the robot's location 

in real-time and performs accurate tracking or positioning to complete the task. Other applications of 

visual servoing and deep neural networks are listed in Table 1. 

Table 1.  Previous Work and Application of Visual Servoing and DNN 
Application Method Advantage Disadvantage Ref. 

Autonomous robot with 

7 DOF robotic grasping 

in unstructured and 

dynamic environment 

 

Real-time application in 

autonomous robotic 

grasping using CNN for 

training dataset, Cornell 

Grasping Dataset (CGD) 

and Kinova Gen3 for 

robotic manipulator 

CNN is simple with small 

parameters but with more 

visual information using 

data augmentation 

Insufficiency in depth 

information for grasping 
[47] 

Visual servoing with 6 

DOF control of robotic 

manipulator with low 

data information 

Experiment on 6DOF 

Yaskawa Motoman MH5, 

visual servoing approach 

and CNN with Data 

Augmentation 

Simple and feasible to use 

VS, CNN with data 

augmentation 

Difficulty in mapping for 

from 2D image to the 

3D space 

[34] 

IBVS control approach 

with robust state 

estimation for robot 

manipulation 

Jacobian identification 

with  Kalman filtering 

techniques 

-The method compensates 

the state-estimation errors 

of Kalman filtering with 

NN.  

- The method does not 

require intrinsic and 

extrinsic parameters of the 

camera. 

-The hand-eye does not 

require calibration during 

robot manipulation. 

Robot control of motion 

and position relies on 

visual feedback. 

- The method avoids 

calibration errors rather 

than solving them. 

- The proposed system is 

unstable due to dynamic 

noise with change in a 

large region 

 

[20] 

Adaptive visual servoing 

for  describing shape 

information 

Bezier-curve-feature-

based method and 

NURBS-curve feature-

based method 

- The methods fit the 

contour of the object. 

- Effective for providing 

feedback on the shape 

information of the object to 

the eye-in-hand visual 

servoing system. 

- Allow representation of 

desired shape or angle. 

Cubic Bezier curve is not 

effective for representing 

complex curves due to 

the generation of a huge 

computational burden. 

- Bezier curves are not 

robust for regular and 

symmetric curves. 

- Bezier curves lack the 

ability of local shape 

modification. 

 

 

[51] 
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Table 1. (Cont.) 

Application Method Advantage Disadvantage Ref. 

Fuzzy neural network 

controller for a six-

degrees-of-freedom robot 

manipulator 

Simulation and   

Takagi–Sugeno fuzzy 

inference 

-The method provides time 

efficiency, accuracy, and fast 

stability. 

- Enhances accuracy of the 

image preprocesses. 

- The method does not 

require computation of the 

inverse interaction matrix 

Interference adversely 

affects the accuracy of the 

proposed system. 

- The method has a 

significant range of bias 

for the coordinates. 

- Features that are not 

within the camera's field 

of view increase 

instability. 

 

[27] 

Controlling a wheeled 

mobile robot equipped 

with a robotic 

manipulator 

Simulation of  feed-

forward 

neural network 

- Identifies a reliable image 

compression. 

- Reduces errors between 

original and reconstructed 

images used to  control a 

wheeled 

mobile robot 

- Provides  compressed 

images that can be used 

directly for segmentation 

purposes in visual servoing 

The feed-forward neural 

network model does not 

entirely eliminate errors. 

- The use of a single layer 

of NN reduces 

effectiveness and 

reliability compared to 

vector quantization NN, 

Hebbian learning rule, 

and back-propagation. 

 

 

[52] 

 

Kinematic control 

of a manipulator with an 

eye-in-hand camera 

Kinematic control 

of a manipulator with 

an eye-in-hand 

camera 

-The control of joint angle 

and velocity enhances the 

safety of the manipulator 

during the visual servoing 

process. 

- Provides real-time 

manipulability optimization of 

redundant manipulators. 

- The model remedies the 

position error accumulation in 

traditional recurrent NN 

approaches 

The simulation only 

involved PUMA 560 

robot manipulator. 

- The model did not 

evaluate moving objects 

or uncertainty in the 

image Jacobian. 

The model may become 

relatively expensive with 

the addition of robot 

manipulators to handle 

complex tasks and 

applications. 

 

[53] 

ImageNet classification Experiments on 

resource and accuracy 

tradeoff 

MobileNets show strong 

performance compared to 

other popular models on 

ImageNet classification. 

MobileNets are effective for a 

wide range of applications and 

use cases 

- Utilizes factorization that 

reduces computation and 

model size 

The models are suitable 

for building lightweight 

deep 

NNs. 

- MobileNet models were 

only trained in 

TensorFlow. 

- The models are subject 

to overfitting. 

 

 

 

[54] 

 

Visual servo control 

approach for the leader-

follower platooning 

system  based on 

homography 

Homography matrix 

and simulation 

-The method provides visual 

tracking by estimating the 

projective transformation. 

-The use of the entries of the 

homography matrix to 

estimate the velocity of the 

leading robot reduces 

computational cost. 
-The method involved control 

variables which increased 

the robustness of the 

platooning systems 

- The simulation and 

experimentation used a 

virtual robot generated 

according to the 

homography and leader 

robot. 

- The simulation is based 

on the assumption that 

mobile robots drive on 

flat roads. 

- The construction of 

virtual robots requires 

prior knowledge of 

desired distance. 

 

[55] 
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Table 1. (Cont.) 

Application Method Advantage Disadvantage Ref. 

IBVS for docking  

autonomous 

underwater vehicle 

IBVS and simulation 

using  Simulink

TM

 

-Present visual information as 

a reliable sensing mechanism 

in an underwater environment. 

- Enhances  single camera of 

pin-hole model by integrating 

image 

processing and vision guidance 

controller 

Pose estimation fails when 

features are out of the 

camera view or are missing 

due to malfunction or 

occlusion. 

- The success of the 

method relies on the proper 

projection of the target on 

the image 

IBVS relies on  the motion 

of features on image plane 

[56] 

Table 2 illustrates that visual servoing and a deep neural network were successfully implemented in a 

robotic manipulator with three degrees of freedom (DOF) to seven degrees of freedom (DOF). Visual 

servoing and DNN, for example, were effectively applied in a 7 DOF robotic manipulator real-time 

grasping by E. Godinho et al. The work used a modest number of DNN parameters with data 

augmentation and visual servoing to tackle the challenge of grasping moving objects and improve object 

detection accuracy. J. Liu et al. used visual servoing and DNN for a 6-DOF robotic manipulator to 

simplify picture feature extraction and non-linear estimate relationships between 2D space in traditional 

visual servoing. Table 2 shows on the other hand, indicates that Mobilenet-SSD outperformed other 

advanced models in the ImageNet classification challenge and when compared to a variety of factors. 

The MobileNet-SSD network requires less computation and has fewer parameters because the accuracy 

varies less. This feature makes it easy to deploy on mobile devices and allows it to perform target 

identification tasks locally without using networking functions such as cloud services, lowering the road 

network system's overall processing capacity. 

Table 2.  Selection of Eigenvector [57] 

Framework Resolution Model MAP Billion Mult-Adds Million Parameters 

SSD 300 

deeplab-VGG 21.2% 34.9 33.1 

Inception-V2 22.0% 3.8 13.3 

MobileNet 19.3% 1.2 6.8 

Faster-RCNN300 

VGG 22.9% 64.3 138.5 

Inception V2 15.4% 118.2 13.3 

MobileNet 16.4% 25.2 6.1 

Faster-RCNN600 

VGG 25.7% 149.6 138.5 

Inception V2 21.9% 129.6 13.3 

MobileNet 19.8% 30.5 6.1 

5. Conclusion 
The increased monitoring and surveying of dynamic environments increase the demand for robotic 

systems that can work in unstructured environments. As a result, the systems need to include SSD 

because the environment is continually changing or the sensors (cameras) are in motion. The use of 

visual servoing and mobilenet provide reliable tools and models for manipulating robotic systems, 

including instances where occlusion is present. In this context, effective alignment control significantly 

rely on the reliability of visual servoing and DNN, shaped by different parameters, such as IBVS and 

PBVS, used for feature extraction and description and DNNs used to construct a robust state estimator. 

Moreover, visual servoing and mobilenet are parameterized concepts that require enhanced optimization 

to achieve a specific purpose with distinct tools. This review paper presents the design of the film handler 

mechanism by integrating vision system and deep neural network. Also, it highlights the advantages of 

using visual servoing and DNN in robotic manipulation. Compared with other sophisticated models of 

object detection with little variation in accuracy, DNN such as Mobilenet-SSD requires less computation 

and has fewer parameters, increasing its efficiency. 
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