2,090 research outputs found

    ADEPOS: Anomaly Detection based Power Saving for Predictive Maintenance using Edge Computing

    Full text link
    In industry 4.0, predictive maintenance(PM) is one of the most important applications pertaining to the Internet of Things(IoT). Machine learning is used to predict the possible failure of a machine before the actual event occurs. However, the main challenges in PM are (a) lack of enough data from failing machines, and (b) paucity of power and bandwidth to transmit sensor data to cloud throughout the lifetime of the machine. Alternatively, edge computing approaches reduce data transmission and consume low energy. In this paper, we propose Anomaly Detection based Power Saving(ADEPOS) scheme using approximate computing through the lifetime of the machine. In the beginning of the machines life, low accuracy computations are used when the machine is healthy. However, on the detection of anomalies, as time progresses, the system is switched to higher accuracy modes. We show using the NASA bearing dataset that using ADEPOS, we need 8.8X less neurons on average and based on post-layout results, the resultant energy savings are 6.4 to 6.65XComment: Submitted to ASP-DAC 2019, Japa

    Condition Monitoring of Rotary Machinery Using Industrial IOT Framework: Step to Smart Maintenance

    Get PDF
    Modern maintenance strategies, such as predictive and prescriptive maintenance, which derived from the concept of Industry and Maintenance 4.0, involve the application of the Industrial Internet of Things (IIoT) to connect maintenance objects enabling data collection and analysis that can help make better decisions on maintenance activities. Data collection is the initial step and the foundation of any modern Predictive or Prescriptive maintenance strategy because it collects data that can then be analysed to provide useful information about the state of maintenance objects. Condition monitoring of rotary equipment is one of the most popular maintenance methods because it can distinguish machine state between multiple fault types. The topic of this paper is the presentation of an automated system for data collection, processing and interpretation of rotary equipment state that is based on IIoT framework consisting of an IIoT accelerometer, edge and fog devices, web API and database. Additionally, ISO 10816-1 guidance has been followed to develop module for evaluation of vibration severity. The collected data is also visualized in a dashboard in a near-real time and shown to maintenance engineering, which is crucial for pattern monitoring. The developed system was launched in laboratory conditions using rotating equipment failure simulator to test the logic of data collection and processing. A proposed system has shown that it is capable of automated periodic data collection and processing from remote places which is achieved using Node RED programming environment and MQTT communication protocol that enables reliable, lightweight, and secure data transmission

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Preventive maintenance of taper bearing using Arduino in the application of industry 4.0

    Get PDF
    The maintenance of industrial tools is very important to support production. Therefore, many companies apply preventive maintenance. A national industrialization agenda discussed that it is crucial especially in the manufacturing industry. The battery-powered IoT sensing device is capable of thorough monitoring of industrial machinery enabling the development of sophisticated predictive maintenance applications under set scenarios. In this paper, we applied the concept of the Internet of Thing (IoT) system using LabVIEW via Arduino. The research method used in this study was similar to Susanto et al. (2019) namely Frequency Response Function (FRF) test to investigate the dynamic characteristics of a mechanic structure to identifying damages on X, Y, and Z axes of tapered bearing using harmonic vibration from handphones. Results of FRF and Labview via Ardunio were then compared to identify the results of measurement using LabView via Arduino. It was found much noise in the measurement occupying Labview Via Ardunio because its system does not use a filter like the one in FFT Analyser. However, in general, LabVIEW via Ardunia can predict damages in taper bearing. It is because, under broken condition, there was a two-time movement of natural frequencies from good condition

    A Smart Modular Wireless System for Condition Monitoring Data Acquisition

    Get PDF
    Smart sensors, big data, the cloud and distributed data processing are some of the most interning changes in the way we collect, manage and treat data in recent years. These changes have not significantly influenced the common practices in condition monitoring for shipping. In part this is due to the reduced trust in data security, data ownership issues, lack of technological integration and obscurity of direct benefit. This paper presents a method of incorporating smart sensor techniques and distributed processing in data acquisition for condition monitoring to assist decision support for maintenance actions addressing these inhibitors

    Artificial Intelligence for Predictive Maintenance of Armoured Fighting Vehicles Engine

    Get PDF
    Armoured Fighting Vehicles (AFVs) also called as Tanks play a critical role in modern warfare, providing mobility, protection and firepower on the battlefield. However, maintaining these complex machines and ensuring their operational readiness is a significant challenge for military organizations. Traditional maintenance practices are often reactive, resulting in unexpected failures, increased downtime, and operational inefficiencies. This paper focuses on the application of Artificial Intelligence (AI) for predictive maintenance of Armoured Fighting Vehicles. By harnessing the power of AI algorithms and advanced data analytics, predictive maintenance aims to anticipate and address potential equipment failures before they occur. This proactive approach enables military organizations to optimize resource allocation, improve operational planning and extend the lifespan of AFVs. The integration of AI in predictive maintenance involves collecting and analysing data from various sensors installed on the AFV engine. These sensors monitor key parameters, such as engine performance, temperature, vibration and fluid levels to detect anomalies and deviations from normal operating conditions. AI algorithms process this data, utilizing machine learning techniques to identify patterns, correlations, and potential failure indicators. The benefits of AI-based predictive maintenance for AFVs are multifaceted. Firstly, it enhances equipment readiness by reducing unexpected failures and maximizing operational availability. Secondly, it enables optimized resource allocation, ensuring that maintenance activities are scheduled efficiently, minimizing downtime, and improving overall operational efficiency. Thirdly, the predictive capabilities of AI help military planners in better decision-making allowing for improved mission planning and execution. However, the successful implementation of AI for predictive maintenance of AFV engine requires overcoming several challenges. These include data collection and integration from diverse sensors, ensuring data accuracy and quality, establishing robust communication infrastructure, and addressing cyber security concerns to protect sensitive vehicle data. This paper underscores the growing importance of AI in revolutionizing maintenance practices for Armoured Fighting Vehicles. By shifting from reactive maintenance to predictive strategies, military organizations can enhance their operational capabilities, reduce costs, and ensure the optimal performance and longevity of their AFV fleet.Lattice Science Publication (LSP) © Copyright: All rights reserved
    corecore