478 research outputs found

    A binary particle swarm optimization algorithm for ship routing and scheduling of liquefied natural gas transportation

    Get PDF
    With the increasing global demands for energy, fuel supply management is a challenging task of today’s industries in order to decrease the cost of energy and diminish its adverse environmental impacts. To have a more environmentally friendly fuel supply network, Liquefied Natural Gas (LNG) is suggested as one of the best choices for manufacturers. As the consumption rate of LNG is increasing dramatically in the world, many companies try to carry this product all around the world by themselves or outsource it to third-party companies. However, the challenge is that the transportation of LNG requires specific vessels and there are many clauses in related LNG transportation contracts which may reduce the revenue of these companies, it seems essential to find the best option for them. The aim of this paper is to propose a meta-heuristic Binary Particle Swarm Optimization (BPSO) algorithm to come with an optimized solution for ship routing and scheduling of LNG transportation. The application demonstrates what sellers need to do to reduce their costs and increase their profits by considering or removing some obligations

    An integrated shipment planning and storage capacity decision under uncertainty: a simulation study

    Get PDF
    Purpose – In transportation and distribution systems, the shipment decisions, fleet capacity, and storage capacity are interrelated in a complex way, especially when the authors take into account uncertainty of the demand rate and shipment lead time. While shipment planning is tactical or operational in nature, increasing storage capacity often requires top management’s authority. The purpose of this paper is to present a new method to integrate both operational and strategic decision parameters, namely shipment planning and storage capacity decision under uncertainty. The ultimate goal is to provide a near optimal solution that leads to a striking balance between the total logistics costs and product availability, critical in maritime logistics of bulk shipment of commodity items. Design/methodology/approach – The authors use simulation as research method. The authors develop a simulation model to investigate the effects of various factors on costs and service levels of a distribution system. The model mimics the transportation and distribution problems of bulk cement in a major cement company in Indonesia consisting of a silo at the port of origin, two silos at two ports of destination, and a number of ships that transport the bulk cement. The authors develop a number of “what-if” scenarios by varying the storage capacity at the port of origin as well as at the ports of destinations, number of ships operated, operating hours of ports, and dispatching rules for the ships. Each scenario is evaluated in terms of costs and service level. A full factorial experiment has been conducted and analysis of variance has been used to analyze the results. Findings – The results suggest that the number of ships deployed, silo capacity, working hours of ports, and the dispatching rules of ships significantly affect both total costs and service level. Interestingly, operating fewer ships enables the company to achieve almost the same service level and gaining substantial cost savings if constraints in other part of the system are alleviated, i.e., storage capacities and working hours of ports are extended. Practical implications – Cost is a competitive factor for bulk items like cement, and thus the proposed scenarios could be implemented by the company to substantially reduce the transportation and distribution costs. Alleviating storage capacity constraint is obviously an idea that needs to be considered when optimizing shipment planning alone could not give significant improvements. Originality/value – Existing research has so far focussed on the optimization of shipment planning/scheduling, and considers shipment planning/scheduling as the objective function while treating the storage capacity as constraints. The simulation model enables “what-if” analyses to be performed and has overcome the difficulties and impracticalities of analytical methods especially when the system incorporates stochastic variables exhibited in the case example. The use of efficient frontier analysis for analyzing the simulation results is a novel idea which has been proven to be effective in screening non-dominated solutions. This has provided the authors with near optimal solutions to trade-off logistics costs and service levels (availability), with minimal experimentation times

    An operational model for liquefied natural gas spot and arbitrage sales

    Get PDF
    As more buyers become interested in the spot purchase of liquefied natural gas (LNG), the share of spot trade in LNG business increases. This means that the cash flowing into the upstream of LNG projects is a combination of that generated by deliveries to long-term contract (LTC) customers and uncommitted product and arbitrage spot sales. LTC cash flows are more predictable while uncommitted product and arbitrage cash flows, affected by the dynamics of supply and demand, are more volatile and therefore less predictable. In this research, we formulate an inventory routing problem (IRP) which maximizes the profit of an LNG producer with respect to uncommitted product and arbitrage spot sales, and also LTC deliveries at an operational level. Using the model, the importance of arbitrage, interest rates and compounding frequency in profit maximization, and also the significance of interest rates and fluctuation in spot prices in decision-making for spot sales of uncommitted product are studied. It is proven that writing traditional LTCs with relaxed destination clauses which assist in arbitrage is beneficial to the LNG producer. However, in contrast to what was predicted neither the interest rate nor the compounding frequency has any importance in profit maximization when no change of selling strategy is observed. Apart from these, it is shown that there is a trade-off between the expectation of higher spot prices and the inventory and shipping costs in decision-making for spot sales of uncommitted product in the LNG industry. Finally, it is observed that the interest rate can affect the set of decisions on spot sales of uncommitted product, although the importance of such changes in profit remains to be further explored

    Techno‑economic analysis of natural gas distribution using a small‑scale liquefied natural gas carrier

    Get PDF
    The design of the gas distribution for small-demand power plants located on remote islands is logistically challenging. The use of small-scale liquefied natural gas (LNG) vessels can be an option for these logistic problems. This paper aims to conduct a techno-economic analysis of using small-scale LNG vessels for gas distribution to the power plants that are spread across different islands. Route optimisation has been conducted using the capacitated vehicle routing problem method. The ship’s principal dimensions were determined using the aspect ratio from a linear regression of existing small-scale LNG vessels. As a case study, the gas demands for a gas power plant in eastern Indonesia were analysed into four distribution clusters. The results of the techno-economic analysis showed that the four distribution clusters have different characteristics regarding the LNG requirements, location characteristics and ship specifications. The capacity of small-scale LNG vessels feasible in terms of technical aspects varies from 2500, 5000, to > 10,000 m3 with variations in the ship speed depending on the location of the power plants. The amount of cargo requested and the shipping distance was affected to the cost of LNG transportation. The economic assessment proposes that the feasible investment by considering small-scale LNG cargo distribution, from the case study shows that with a ship capacity of 5000 m3 feasible margin rate is ≥ 3 USD/metric million British thermal units with an internal rate of return of 10% and estimated payback period is less than 15 years

    A maritime inventory routing problem with stochastic sailing and port times

    Get PDF
    This paper describes a stochastic short sea shipping problem where a company is responsible for both the distribution of oil products between islands and the inventory management of those products at consumption storage tanks located at ports. In general, ship routing and scheduling is associated with uncertainty in weather conditions and unpredictable waiting times at ports. In this work, both sailing times and port times are considered to be stochastic parameters. A two-stage stochastic programming model with recourse is presented where the first stage consists of routing, loading and unloading decisions, and the second stage consists of scheduling and inventory decisions. The model is solved using a decomposition approach similar to an L-shaped algorithm where optimality cuts are added dynamically, and this solution process is embedded within the sample average approximation method. A computational study based on real-world instances is presented

    Scheduling of unloading, inventory and delivery operations at an LNG receiving terminal

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Towards the IMO’s GHG goals: a critical overview of the perspectives and challenges of the main options for decarbonizing international shipping

    Get PDF
    The Initial Strategy on reduction of greenhouse gas (GHG) emissions from ships adopted by the International Maritime Organization (IMO) in 2018 commits the IMO to reduce total GHG emissions of shipping by at least 50% by 2050. Though the direction of the Strategy is clear, the path to implementation remains uncertain. The ambitious IMO’s target calls for widespread uptake of lower and zero-carbon fuels, in addition to other energy eciency measures, including operational and market ones. Using a triangulated research approach, this paper provides a critical overview of the main measures and initiatives the shipping industry can adopt to try to cope with the new IMO’s requirements. The pros and cons of the most popular emission reduction options are investigated along with the main challenges and barriers to implementation and the potential facilitators that could foster a wider application. The framework that is outlined is complex and not without controversy. Research can play a key role as a facilitator of shipping’s decarbonization by providing its contribution to overcoming the existing controversies on various decarbonization options and by developing a wealth of knowledge that can encourage the implementation of low-carbon initiatives

    Ship routing and scheduling for the assembly of a LNG plant in the arctic: a decision support system

    Get PDF
    The construction of a Liquid Natural Gas plant in Yamal, Russia, required the assembly of modules transported from yards in Asia. In early stages of such projects, the feasibility of on-time shipping plans is a critical area of risk assessment, in particular in the arctic where accessibility is limited by ice and vessel supply. By describing the modelling and implementation of a Decision Support System designed to create optimal shipping plans, this paper contributes to show the relevance of the Northern Sea Route for industrial projects in the arctic and to illustrate the role of risk mitigation tools
    corecore