33 research outputs found

    Verifying a sliding window protocol in mCRL

    Get PDF
    We prove the correctness of a sliding window protocol with an arbitrary finite window size n and sequence numbers modulo 2n. The correctness consists of showing that the sliding window protocol is branching bisimilar to a queue of capacity 2n. The proof is given entirely on the basis of an axiomatic theory

    Verification of a sliding window protocol in ĀµCRL

    Get PDF
    We prove the correctness of a sliding window protocol with an arbitrary finite window size n and sequence numbers modulo 2n. The correctness consists of showing that the sliding window protocol is branching bisimilar to a queue of capacity 2n. The proof is given entirely on the basis of an axiomatic theory, and has been checked in the theorem prover PVS

    A Multi-Core Solver for Parity Games

    Get PDF
    We describe a parallel algorithm for solving parity games,\ud with applications in, e.g., modal mu-calculus model\ud checking with arbitrary alternations, and (branching) bisimulation\ud checking. The algorithm is based on Jurdzinski's Small Progress\ud Measures. Actually, this is a class of algorithms, depending on\ud a selection heuristics.\ud \ud Our algorithm operates lock-free, and mostly wait-free (except for\ud infrequent termination detection), and thus allows maximum\ud parallelism. Additionally, we conserve memory by avoiding storage\ud of predecessor edges for the parity graph through strictly\ud forward-looking heuristics.\ud \ud We evaluate our multi-core implementation's behaviour on parity games\ud obtained from mu-calculus model checking problems for a set of\ud communication protocols, randomly generated problem instances, and\ud parametric problem instances from the literature.\ud \u

    Formal Verification of Distributed Systems

    Get PDF
    Fokkink, W.J. [Promotor

    08332 Abstracts Collection -- Distributed Verification and Grid Computing

    Get PDF
    From 08/10/2008 to 08/14/2008 the Dagstuhl Seminar 08332 ``Distributed Verification and Grid Computing\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Mechanical Verification of a Two-Way Sliding Window Protocol (Full version including proofs)

    Get PDF
    We prove the correctness of a two-way sliding window protocol with piggybacking, where the acknowledgments of the latest received data are attached to the next data transmitted back into the channel. The window size of both parties are considered to be finite, though they can be of different sizes. We show that this protocol is equivalent (branching bisimilar) to a pair of FIFO queues of finite capacities. The protocol is first modeled and manually proved for its correctness in the process algebraic language of muCRL. We use the theorem prover PVS to formalize and to mechanically prove the correctness. This implies both safety and liveness (under the assumption of fairness)

    Analysis of an industrial system

    Get PDF
    Abstract. Studying industrial systems by simulation enables the designer to study their dynamic behaviour and to determine characteristics of the system. Unfortunately, simulation also has some disadvantages. These can be overcome by using formal methods. Formal methods allow a thorough analysis of the possible behaviours of a system, parameterised system analysis and a modular approach to the analysis of systems. We present a case study in which a model of an industrial system is studied in a formal way. For this purpose, the model is first specified and simulated using the CSP-based executable specification language Ļ‡ . The model is translated into a model in the process algebra ĀµCRL. This enables us to give a correctness proof of the parameterised model and to study the model in isolation

    Formal verification of a leader election protocol in process algebra

    Get PDF
    AbstractIn 1982 Dolev, et al. [10] presented an O(nlogn) unidirectional distributed algorithm for the circular extrema-finding (or leader-election) problem. At the same time Peterson came up with a nearly identical solution. In this paper, we bring the correctness of this algorithm to a completely formal level. This relatively small protocol, which can be described on half a page, requires a rather involved proof for guaranteeing that it behaves well in all possible circumstances. To our knowledge, this is one of the more advanced case-studies in formal verification based on process algebra

    Compositional Verification of a Communication Protocol for a Remotely Operated Vehicle

    Get PDF
    This paper presents the specification and verification in the Prototype Verification System (PVS) of a protocol intended to facilitate communication in an experimental remotely operated vehicle used by NASA researchers. The protocol is defined as a stack-layered com- position of simpler protocols. It can be seen as the vertical composition of protocol layers, where each layer performs input and output message processing, and the horizontal composition of different processes concurrently inhabiting the same layer, where each process satisfies a distinct requirement. It is formally proven that the protocol components satisfy certain delivery guarantees. Compositional techniques are used to prove these guarantees also hold in the composed system. Although the protocol itself is not novel, the methodology employed in its verification extends existing techniques by automating the tedious and usually cumbersome part of the proof, thereby making the iterative design process of protocols feasible

    Specification, analysis and verification of an automated parking garage

    Get PDF
    corecore