
VRIJE UNIVERSITEIT

Formal Verification

of Distributed Systems

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. T. Sminia,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen
op dinsdag 26 oktober 2004 om 10.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Jun Pang

geboren te Jiangsu, China

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

promotor: prof.dr. W.J. Fokkink

Formal Verification

of Distributed Systems

Jun Pang

August, 2004

c© Jun Pang, Amsterdam 2004
Printed by Ponsen & Looijen B.V.
ISBN 90-6464-865-4

This research has been supported by PROGRESS, the embedded systems re-
search program of the Dutch organisation for Scientific Research (NWO), the
Dutch Ministry of Economic Affairs and the Technology Foundation (STW),
within the scope of the project CES.5008 “Improving the Quality of Embedded
Systems using Formal Design and Systematic Testing”. It has been carried out
under the auspices of the Institute for Programming Research and Algorithmics
(IPA), at the Centrum voor Wiskunde en Informatica (CWI) in Amsterdam.

Contents

Preface 1

1 Introduction 3
1.1 The Title . 3
1.2 The Project . 5
1.3 The Results . 6
1.4 The Structure . 9

2 Preliminaries 11
2.1 µCRL . 11
2.2 Labeled Transition Systems and Behavioral Equivalences 13
2.3 Linear Process Equations . 14
2.4 Regular Alternation-free µ-calculus 15
2.5 Construction and Analysis of Distributed Processes Toolbox . . . 17

I Theorem Proving 19

3 Cones and Foci: A Mechanical Proof Framework 21
3.1 Introduction . 21
3.2 Cones and Foci . 24

3.2.1 The general theorem . 25
3.2.2 Proof rules for reachability 26

3.3 A Mechanical Proof Framework 27
3.3.1 LTSs and branching bisimulation 28
3.3.2 Representing LPEs and invariants 30
3.3.3 Formalizing the cones and foci method 31
3.3.4 The symbolic reachability criterion 33

3.4 Application to the CABP . 34
3.4.1 Informal description . 35
3.4.2 µCRL specification . 36
3.4.3 Verification using cones and foci 39
3.4.4 Illustration of the proof framework 44

3.5 Conclusions . 48

i

ii Contents

4 Verifying a Sliding Window Protocol in µCRL 51
4.1 Introduction . 51
4.2 Related Work . 53
4.3 Proof Techniques . 54
4.4 Data Types . 55

4.4.1 Booleans . 55
4.4.2 If-then-else and equality 55
4.4.3 Natural numbers . 56
4.4.4 Modulo arithmetic . 56
4.4.5 Buffers . 56
4.4.6 Mediums . 58
4.4.7 Lists . 59

4.5 Sliding Window Protocol . 59
4.5.1 Specification of a sliding window protocol 59
4.5.2 External behavior . 62

4.6 Transformations of the Specification 62
4.6.1 Linearization . 62
4.6.2 Eliminating arguments of communication actions 64
4.6.3 Getting rid of modulo arithmetic 64

4.7 Properties of Data . 65
4.7.1 Basic properties . 65
4.7.2 Invariants . 79

4.8 Correctness of Nmod . 92
4.8.1 Equality of Nmod and Nnonmod 92
4.8.2 Correctness of Nnonmod 96
4.8.3 Correctness of the sliding window protocol 102

4.9 Conclusions . 102

5 A Note on K-state Self-Stabilization in a Ring with K = N 103
5.1 Introduction . 103
5.2 Proof of Self-Stabilization . 105
5.3 Mechanical Verification in PVS 107
5.4 K = N is Sharp . 109
5.5 Conclusions . 110

II Model Checking 111

6 Analysis of a Distributed System for Lifting Trucks 113
6.1 Introduction . 113
6.2 Description of the Lift System . 114

6.2.1 Layout of the lift system 114
6.2.2 Control of lift movement 116

6.3 Requirements . 119
6.4 µCRL Model of the Original Design 119

6.4.1 Data types . 120

Contents iii

6.4.2 Processes . 122
6.5 Analysis the Original Design . 126

6.5.1 Problem 1 . 126
6.5.2 Problem 2 . 127
6.5.3 Problem 3 . 128
6.5.4 Problem 4 . 129

6.6 Verification with CADP . 130
6.6.1 Expressing the requirements 130
6.6.2 Verifying the modified specification 132

6.7 UPPAAL Model of the Redesign 132
6.7.1 Transforming the µCRL model 133
6.7.2 Adding the solutions . 135
6.7.3 Adding timing information 139

6.8 Analysis of the Redesign . 141
6.8.1 Expressing the requirements 141
6.8.2 Problems . 143

6.9 A New Solution . 144
6.10 Conclusions . 145

7 Model Checking a Cache Coherence Protocol for Jackal 147
7.1 Introduction . 147
7.2 Related Work . 148
7.3 Java Memory Model . 149
7.4 Jackal DSM System . 150

7.4.1 Address space management 151
7.4.2 Access check . 151
7.4.3 Synchronization . 151
7.4.4 Automatic home node migration 152
7.4.5 Other features . 152

7.5 Specification and Analysis in µCRL 153
7.5.1 Specification of the protocol 153
7.5.2 Requirements . 163
7.5.3 Validation of the requirements 163
7.5.4 Verification results . 166

7.6 Conclusions . 167

8 Simplifying Itai-Rodeh Leader Election for Anonymous Rings 169
8.1 Introduction . 169
8.2 Related Work . 171
8.3 Itai-Rodeh Leader Election . 172

8.3.1 The Itai-Rodeh algorithm 172
8.3.2 Round numbers are needed 174

8.4 Leader Election without Round Numbers 175
8.4.1 Automated verification with PRISM 176

8.5 Leader Election without Bits . 181
8.5.1 Automated verification with PRISM 182

iv Contents

8.5.2 The correctness proof . 183
8.6 Performance Analysis . 188
8.7 Leader Election with Two Identities 188
8.8 Conclusions . 192

9 Conclusions 193

A µCRL Code of the Cache Coherence Protocol 197

Summary 227

Nederlandse Samenvatting 229

Preface

This is the ending point of my journey of being an onderzoeker in opleiding at
CWI. I am indebted to everybody who made it possible for me to write this
thesis!

First of all, I would like to thank my supervisor and promotor Wan Fokkink,
who directed my research in the last four years. Wan gave me many inspiring
and valuable ideas. The door of his office at CWI was always open to me. No
matter how busy he was, he would discuss any problem I encountered, and read
all my drafts very carefully. I really owe much to him!

I am very grateful to all my co-authors for their pleasant cooperation. Apart
from Wan, they are Bahareh Badban, Jan Friso Groote, Rutger Hofman, Jaap-
Henk Hoepman, Bart Karstens, Jaco van de Pol, Miguel Valero Espada, Ronald
Veldema and Arno Wouters.

I also thank my CWI roommate Simona Orzan for many pleasant conversa-
tions. Many thanks to all my former colleagues at CWI, in particular Bahareh
Badban, Stefan Blom, Wan Fokkink, Izak van Langevelde, Bert Lisser, Natalia
Ioustinova, Vincent van Oostrom, Jaco van de Pol, Yaroslav Usenko, Miguel
Valero Espada, Anton Wijs and Yinwei Zhan. I am grateful to Wan Fokkink,
Judi Romijn and Anton Wijs, who prepared the Dutch summary for me. Jos
van der Werf designed the cover of this thesis, which I appreciated a lot. I also
wish to extend my gratitude to the PAM speakers and participants during the
last four years for their nice talks, discussions and comments.

I am grateful to the members of the reading committee, Maarten Boasson,
Hubert Garavel, Jan Friso Groote, Jan Willem Klop and Jaco van de Pol for
reviewing the manuscript and for their constructive criticism. I want to thank
Gerard Tel for his insightful comments on the leader election algorithms in
Chaper 8.

I thank the members of the user committee of my research project, Maarten
Boasson, Frank Karelse, Ernst Kesseler, Anton Klip, Wim Pelt, Jan Tretmans
and Berto Wanschers for their comments on my work and providing many ideas
on how to organize this thesis.

I am grateful to Catuscia Palamidessi for helping me to find a new job at
INRIA Futurs, which means a lot to me.

Many thanks to all my friends who always cheer me up and share many sides
of life with me.

My family in China, especially my mother Zhenshan Ge, deserve my endless

1

2 Contents

thanks for their unconditional love and support.
I reserve my greatest thanks to Qin for her love, encouragement, support,

patience, and many other things.

Jun Pang
Paris, August 2004

Chapter 1

Introduction

The last several decades have seen a rapid growth of information technology.
Computer based systems, e.g., traffic control system for airlines, transaction
systems for international banks, are used world-wide in our daily life. Clearly,
the correctness of such systems is of crucial importance. Failures of those sys-
tems can be potentially disastrous and cause the loss of human life and a huge
amount of money. However, the design and implementation of computer based
systems, including both hardware and software systems, are error-prone and
becoming extremely complex.

Mathematics can provide solid foundations for methods to describe and an-
alyze systems. Formal methods are of this kind. Their mathematical underpin-
ning allows formal methods to specify systems more precisely, more consistently
and in a non-ambiguous way. Moreover, formal analysis techniques can be used
to verify whether a system has desired properties. The research in this thesis is
motivated by the conviction that the proper use of formal methods will lead to
more reliable, dependable, and secure systems in the future.

This thesis concerns the application of formal verification to distributed sys-
tems, including industrial products, communication protocols, and distributed
algorithms. The aim of this chapter is to give a broad view of the main topics
studied (without being exhaustive) and results obtained in the embedded sys-
tems research program (PROGRESS) of the Dutch organization for Scientific
Research (NWO), the Dutch Ministry of Economic Affairs and the Technol-
ogy Foundation (STW) supported project CES.5008 – Improving the Quality
of Embedded Systems by Formal Design and Systematic Testing.

1.1 The Title

First things first. According to the textbook [36] of Coulouris, Dollimore and
Kindberg, distributed systems are defined as systems consisting of a collection
of autonomous computers linked by a computer network and equipped with dis-
tributed system software. Computer networks provide the necessary means for
communication between the components of a distributed systems. Distributed

3

4 Chapter 1 Introduction

systems have to combine desirable characteristics, such as resource sharing,
openness, concurrency, scalability, fault tolerance, and transparency. This the-
sis focuses on the assurance of the correctness of distributed systems, with an
emphasis on concurrency and fault tolerance.

Formal methods refer to a collection of notations and techniques for describ-
ing and analyzing systems. They can be used to improve the quality of (dis-
tributed) systems. A formal method generally consists of a formalism to model a
system, a specification language to express the desired properties of the system,
a formal semantics to interpret both the system and the properties, and verifi-
cation techniques to check whether the properties are satisfied by the system.
This thesis concentrates on the process of applying such verification techniques,
which is called formal verification. The URL http://vl.fmnet.info/ collects
information on formal methods, available around the world on the World Wide
Web (WWW).

There is a wide range of verification techniques to establish the correctness
of a system, i.e. asserting that a system has desired properties and only those.
Process algebra, such as ACP, CCS, CSP, and LOTOS, is defined as an alge-
braic approach to model the behavior of distributed systems. Their axiomatic
theories provide an elegant way for the study of elementary behavioral proper-
ties of such systems. Both a system and its desired external behavior can be
expressed in a process algebraic specification. Correctness of the system can
be verified by proving that these two specifications are equivalent in terms of a
chosen bisimulation relation, which respects the branching structure of systems
and is a standard equivalence relation for a setting with concurrency. Verifica-
tion techniques based on the axiomatic theories, such as methods for proving
bisimulation, have been developed for process algebras.

A manual proof is only feasible for formal models of small systems, as the
complexity of a system can make manual mathematical proofs infeasible. Com-
puter support is necessary for the verification of most real-life systems. An
alternative to manual proof is automatic or mechanical verification. Proof check-
ing assumes the presence of a proof checker implemented on a computer. Both
the manual proof and a set of proof rules are fed to the proof checker, which
then automatically decides whether the proof contains flaws. A theorem prover
provides automated support to aid the creation of proofs. Proofs are generated
along strict lines, but this process requires human-computer interactions. The
aim of proof checkers and theorem provers is obviously to increase the reliability
of the correctness of the proofs. The problem with this approach is that it is
highly time consuming and can be rather non-trivial.

Unlike theorem proving, model checking is usually restricted to finite-state
systems. It first builds a finite state space of a formal model of a system, and
then verifies a property, written in some temporal logic, through an explicit
state space search. Due to the finiteness of the state space, the search always
terminates. Model checking is largely automatic. It can produce an answer
in a few minutes or even seconds for many models. A counter-example can be
generated when the checked property fails to hold. This information can be used
for debugging the model. Techniques such as partial order reduction, symmetry

1.2 The Project 5

reduction, abstract interpretation, have been developed to deal with the state
explosion problem and enhance the scalability of model checking. Recently,
attention in this area has been devoted to model checking infinite-state systems.
Other challenges are probabilistic systems, timed systems, and so on.

The combination of manual proof, theorem proving and model checking is
widely used nowadays in verification tasks. Note that both theorem proving
and model checking require a formal model of the verified system. The model
is achieved by abstracting away irrelevant information or ignoring some imple-
mentation details. This means that we verify distributed systems at a rather
abstract level. Systems which have passed the verification can thus still con-
tain errors in their real implementation. Thus, other techniques to check the
correctness of systems, e.g. testing, remain necessary.

The strengths of formal methods are that they 1) force to reason at the
conceptually clear level of a formal model, 2) can detect errors in the design, 3)
are able to prove correctness of a system, and 4) are supported by automated
techniques.

1.2 The Project

The research in this thesis is carried out within the PROGRESS supported
project CES.5008 – Improving the Quality of Embedded Systems using Formal
Design and Systematic Testing. It was co-proposed by the Embedded Systems
Group at the Centrum voor Wiskunde en Informatica (CWI) and the Dutch
company Weidmüller, later Add-Controls. Add-Controls builds embedded con-
trollers for a large range of applications, such as a distributed system for lifting
trucks and a steam unit used for steam baths and saunas. Add-Controls of
course wants to deliver fault-free products, but experienced that this is almost
unattainable with software. It happens too often that finalized software still
contains bugs. Therefore, Add-Controls set up a project to automatically ana-
lyze the software in a rigorous manner, and to make this analysis reproducible.

The proposal of the project is intended to go beyond the ambitions of the
company by making formal verification techniques applicable in the design pro-
cess of embedded systems. The general goal of the project is:

“to establish whether it is possible to achieve reliable quality of soft-
ware for medium size embedded systems, and to better utilize formal
methods in industry.”

Formal methods have already proved their usefulness for several years, although
mainly from an academic perspective. The project also proposed a major ques-
tion:

“whether the current technology developed in the past by the for-
mal methods research community can indeed become an effective
practical tool within a development environment.”

6 Chapter 1 Introduction

There have been numerous case studies which suggest that this is the case.
However, most of these case studies were quite remote from the actual product
design process and generally only dealt with fractions of a total system.

I was recruited as a PhD student to work on this project for the duration of
four years. According to the proposal, the first year was planned on describing
and analyzing an existing system to get acquainted with formal techniques and
the software development method used in Add-Controls. The second and the
third year were used to completely and formally design a number of embedded
systems, before implementation took place. In parallel with the design of these
embedded systems, I was supposed to develop tools to facilitate the connection
between the formal descriptions and the development environment used at Add-
Controls. The fourth year was devoted to writing a thesis.

1.3 The Results

In this section, I give the list of case studies and the results that were achieved
within the project.

A mechanical framework for protocol verification

Together with Wan Fokkink and Jaco van de Pol, I defined a cones and foci proof
method [54], which rephrases the question whether two system specifications
are branching bisimilar in terms of proof obligations on relations between data
objects. Compared to the original cones and foci method from Groote and
Springintveld [79], this method is more generally applicable, and does not require
a preprocessing step to eliminate internal loops. We proved soundness of our
approach. Furthermore, we designed a set of rules to support the reachability
analysis of so-called focus points. We formalized the method and proved its
correctness using the theorem prover PVS, and thus established a framework
for mechanical protocol verification.

More recently, together with Wan Fokkink, I extended this cones and foci
method for timed systems verification [55]. This work is not included in the
current thesis.

A sliding window protocol

Together with Bahareh Badban, Wan Fokkink, Jan Friso Groote, and Jaco van
de Pol, I applied the cones and foci method and the mechanical framework in
PVS to the verification of one of the most complex sliding window protocols
presented in Tanenbaum’s Computer Networks textbook [165]. We proved the
correctness of this sliding window protocol with an arbitrary finite window size
n and sequence numbers modulo 2n. We showed that the external behavior
of this protocol is equivalent to a FIFO queue of capacity 2n. This proof is
entirely based on the axiomatic theory underlying µCRL and the axioms char-
acterizing the data types. It implies both safety and liveness of the protocol.

1.3 The Results 7

Sliding window protocols have attracted much attention from the process alge-
bra community, which has led to significant developments in the realm of process
algebraic proof techniques for protocol verification. We therefore consider this
work as a true milestone in process algebraic verification.

A distributed system for lifting trucks

A main product of Add-Controls is a distributed system for lifting heavy vehicles
(e.g. trucks, railway carriages and buses). The system consists of a number of
lifts; each lift supports one wheel of the truck that is being lifted and has its
own micro controller. The controls of the different lifts are connected by means
of a network. A special purpose protocol has been developed to let the lifts
operate synchronously.

When testing the implementation the developers found problems. They
solved these problems by trial and error, partly because the causes of problems
were unclear. Together with Jan Friso Groote and Arno Wouters, I applied
the process algebraic language µCRL in combination with the model checker
CADP to the verification of this lift system [73]. The analysis in µCRL revealed
the reasons for the problems. Another new problem was found in the model,
which was indeed present in the implementation of the system. Solutions were
proposed and included in the µCRL specification, and we showed by model
checking that the problems were solved indeed.

The developers tried to solve the problems independently. They made a
redesign of the lift system based on their own solutions, which Bart Karstens,
Wan Fokkink and I checked using the real-time model checker UPPAAL [135].
We showed that the solutions of the developers do not solve the problems com-
pletely, while a refined version of our solutions contained in the µCRL specifi-
cation does. Currently, the lift system is under revision, and our solutions to
the problems are being implemented.

Together with Jaco van de Pol and Miguel Valero Espada, I developed a
general framework for abstracting uniform parallel processes with data, and
applied it to the verification of a simplified lift system [136]. This work is not
included in the current thesis.

A cache coherence protocol for a Java DSM implementation

Jackal (developed at the Vrije Universiteit Amsterdam) is a fine-grained, dis-
tributed shared memory implementation of Java. Its goal is to run unmodified
concurrent Java programs efficiently on a cluster of workstations. It is based
upon a self-invalidation based, multiple-writer cache coherence protocol. To-
gether with Wan Fokkink, Rutger Hofman, and Ronald Veldema, I developed
a formal specification of this protocol in µCRL [134]. Three requirements were
formulated for the protocol: deadlock freedom, relaxed cache coherency, and
liveness of writing and flushing regions. The verification allowed the discovery
of two errors in the design of the cache coherence protocol. Also, a large num-
ber of inconsistencies and misunderstandings were found, mostly caused by the

8 Chapter 1 Introduction

evolution of the implementation simultaneously with the formal analysis pro-
cess. This case study benefited a lot from the µCRL distributed state space
generation tool, and also pushed forward its development.

Distributed algorithms: self-stabilization and leader election

Together with Wan Fokkink and Jaap-Henk Hoepman, I showed that, contrary
to common belief, Dijkstra’s K-state mutual exclusion algorithm on a ring also
stabilizes when the number K of states per process is one less than the number
N+1 of processes in the ring [52]. We formalized the algorithm and verified the
proof in the theorem prover PVS, based on Qadeer and Shankar’s work [144].

Furthermore, together with Wan Fokkink, I designed two probabilistic leader
election algorithms for anonymous unidirectional rings with FIFO channels [56],
based on an algorithm from Itai and Rodeh. In contrast to the Itai-Rodeh al-
gorithm, our algorithms are finite-state, so they can be analyzed using explicit
state space exploration. We used the probabilistic model checker PRISM to ver-
ify that eventually a unique leader is elected with probability one. Furthermore,
we gave a manual correctness proof for each algorithm, for arbitrary ring size.

Needham-Schroeder public key authentication protocol

I described the Needham-Schroeder public key authentication protocol in µCRL
as a configuration containing an initiator, a responder, and an intruder [133].
It showed that the capabilities of the language (especially the data types) are
well-adapted for describing this kind of protocols. This work is not included in
the current thesis.

Two abandoned case studies

A small control system of Add-Controls, being a converter which measures the
displacement of a hydraulic cylinder, was also studied. Some customer reported
an error of the system. We made a start to analyze the system using the TorX
tool. Due to the fact that only one of the 150 systems that had been sold so far
exhibited an error, and the error could not even be reproduced with a simulator,
the developers of TorX pointed out that it was very unlikely that this formal
analysis would produce a useful result. It was therefore decided to abandon this
case study.

Another challenging embedded system was proposed by Add-Controls. It
concerns an embedded controller for a lift system for a staircase, including
a SmartCard with minimal information on the topology of the staircase for
which it is used. Adapting the speed and keeping the chair horizontal is the
responsibility of the SmartCard, using information on the actual speed and
position of the lift. Interestingly, the topology of the staircase lying ahead of
the lift is taken into account when keeping the chair horizontal. Thus it is a
truly hybrid system. But later on, Add-Controls lost the bidding to develop the
system, and no more detailed design information could be given. We stopped
this case study after building an experimental model using hybrid automata.

1.4 The Structure 9

1.4 The Structure

The thesis is organized as follows. This chapter contains a short introduction to
formal verification, the project and its scope, and the achieved results. Chapter 2
presents some preliminaries for this thesis.

Part I of this thesis is concerned with theorem proving. Chapter 3 presents
the generalized cones and foci method for protocol verification. It is an extension
of [54] with a formalization of the cones and foci method in the theorem prover
PVS (mainly done by Jaco van de Pol). The verification of the sliding window
protocol is presented in Chapter 4. It extends [51] by allowing the mediums
of the sliding window protocol to have unbounded capacity. Chapter 5 reports
the formal verification of a distributed algorithm for self-stabilization. It was
previously published as a CWI technical report [52].

Part II presents applications of model checking. Chapter 6 presents the
analysis of the distributed lift system of Add-Controls. It is a revised version
of [73] and [135]. The cache coherence protocol for concurrent Java programs
on a distributed shared memory implementation is analyzed in Chapter 7. It is
a revised version of [134]. Chapter 8 presents two probabilistic leader election
algorithms for anonymous rings and their verification results. It was previously
published as a CWI technical report [56]. Chapter 9 contains the conclusions,
from the perspective of the entire project.

10 Chapter 1 Introduction

Chapter 2

Preliminaries

2.1 µCRL

Process algebra, such as ACP [16, 9, 50], CCS [126, 128] and CSP [89, 90], is
defined as an algebraic approach to model the behavior of distributed systems.
The axiomatic theories of process algebra provide an elegant way for the study
of elementary behavioral properties of such systems. However, when it comes to
the study of more realistic systems, these languages turn out to lack the ability
to handle data adequately. In order to solve this problem, formalisms such as
LOTOS [46] and µCRL [75] were developed by enhancing process algebras with
data types. They are suitable to describe realistic, interacting systems. µCRL
is the main formalism used in this thesis. We briefly give an introduction to
this language. The syntax and semantics of µCRL are given in [75].

µCRL is a language for specifying distributed systems and protocols in an
algebraic style. This language combines the process algebra ACP with equa-
tional abstract data types [115]. In a µCRL specification, one part specifies the
data types, while a second part specifies the process behavior. Each data type is
declared using the keyword sort. Elements of a data type are declared by using
the keywords func and map. Using func one can declare constructors with as
target sort the data type in question; these constructors define the structure of
the data type. E.g. by

sort Bool
func T, F: →Bool

one declares that T (true) and F (false) are the only elements of sort Bool .
We say that T and F are the constructors of sort Bool . The keyword map is
used to declare additional functions for a data type that are not constructors.
Their meanings are defined by means of equations, which consist of a variable
declaration (starting with the keyword var) followed by an equation section
(starting with the keyword rew). For instance, conjunction (∧) and negation
(¬) on booleans are defined as follows:

map and: Bool×Bool→Bool

11

12 Chapter 2 Preliminaries

not: Bool→Bool
var b: Bool
rew and(T,b)=b

and(F,b)=F
not(T)=F
not(F)=T

Since booleans are used in the conditional construct of process descriptions (see
below), the sort Bool must be included in every µCRL specification. Besides
the declaration of the sort Bool , it is also obligatory that T and F are declared
in every specification and that T 6= F. To reflect equality between terms, one
needs to specify an equality function eq : D×D → Bool , such that eq(s, t) = T
if and only if s = t. Actually, such an equality function is only needed for data
types that are used as parameters of actions that occur in a communication (see
below). For data types in this thesis, the specification of the equality function
eq is mostly omitted, for the sake of presentation.

The specification of a process is constructed from actions, recursion variables
and process algebraic operators (processes are declared by the keyword proc).
Actions and recursion variables carry zero or more data parameters (actions
are declared by means of the keyword act). Intuitively, an action can execute
itself, after which it terminates successfully. There are two predefined processes
in µCRL: δ represents deadlock, and τ a hidden action. These two processes
never carry data parameters. p·q denotes sequential composition and p + q
non-deterministic choice, where p and q are processes. Summation

∑
d:D p(d)

provides the possibly infinite choice over a data type D, and the conditional
construct p � b � q with b a data term of sort Bool behaves as p if b = T
and as q if b = F. Parallel composition p ‖ q interleaves the actions of p and q;
moreover, actions from p and q may also synchronize to a communication action,
when this is explicitly allowed by a predefined communication function using
the keyword comm. Two actions can only synchronize if their data parameters
are semantically the same, which means that communication can be used to
represent data transfer from one system component to another. Encapsulation
∂H(p), which renames all occurrences in p of actions from the set H into δ, can
be used to force actions into communication. Finally, hiding τI(p) renames all
occurrences in p of actions from the set I into τ . The initial behavior of the
system can be specified with the keyword init.

Example 2.1.1 A data buffer with size n can be modeled in µCRL as follows:

Buffer(λ:List) =
∑

d:Data receive(d).Buffer(append(d, λ)) � length(λ)<n � δ

+ send(top(λ)).Buffer(tail(λ)) � length(λ)>0 � δ

This says whenever the list is not full (length(λ)<n), the buffer can receive
any datum d (modeled by action receive(d)) and append it to the end of the
list (append (d, λ)); the buffer can also take the datum at the top of the list
and send it outside (modeled by action send(top(λ))) if the list is not empty

2.2 Labeled Transition Systems and Behavioral Equivalences 13

(length(λ)>0). In this case only the tail of the list (tail (λ)) remains. Initially,
the list contains no data (λ=〈〉), which can be expressed as follows:

init Buffer(〈〉)

2.2 Labeled Transition Systems and Behavioral Equiva-

lences

Labeled transition systems (LTSs) [102] can capture the state space of dis-

tributed systems. An LTS consists of transitions s
a
→ s′, denoting that the

state s can evolve into the state s′ by the execution of action a.

Definition 2.2.1 (Labeled transition system) A labeled transition system
is a tuple (S,Lab,→, s0), where S is a set of states, Lab a set of transition labels,
→⊆ S × Lab × S a transition relation, and s0 the initial state. A transition

(s, `, s′) is denoted by s
`
→ s′.

To each µCRL specification there belongs an LTS, defined by the structural
operational semantics for µCRL in [75], in which the states S consist of process
terms and the edges Lab consist of actions from Act ∪ {τ} parametrized by
data. We define strong bisimilarity [12, 127, 137] and branching bisimilarity
[64] between states in LTSs. Both are an equivalence relation (for branching
bisimulation, see [13]).

Definition 2.2.2 (Strong bisimulation) Assume an LTS. A strong bisimu-
lation relation B is a symmetric binary relation on states such that if sB t and

s
`
→ s′, then for some t′, t

`
→ t′ with s′ B t′.

Two states s and t are strongly bisimilar, denoted by s ↔ t, if there is a
strong bisimulation relation B such that sB t.

Definition 2.2.3 (Branching bisimulation) Assume an LTS. A branching
bisimulation relation B is a symmetric binary relation on states such that if

sB t and s
`
→ s′, then

- either ` = τ and s′ B t;

- or there is a sequence of (zero or more) τ -transitions t
τ
→ · · ·

τ
→ t0 such

that sB t0 and t0
`
→ t′ with s′ B t′ for some t′.

Two states s and t are branching bisimilar, denoted by s ↔b t, if there is a
branching bisimulation relation B such that sB t.

We defined bisimilarity of states in the same LTS. States of different LTSs
are said to be strong/branching bisimilar, if they are strong/branching bisimilar
in the disjoint union of the LTSs, which can be defined straightforwardly.

14 Chapter 2 Preliminaries

If the LTS belonging to a µCRL specification consists of finitely many states,
then the µCRL tool set [21] can be used to support the generation of this LTS,1

together with reduction modulo strong and branching bisimulation equivalence.
More information on the µCRL tool set can be obtained at http://www.cwi.

nl/~mcrl/.

2.3 Linear Process Equations

A linear process equation (LPE) [20] is a µCRL specification consisting of one re-
cursion variable, actions, summations, sequential compositions and conditional
constructs. In particular, an LPE does not contain any parallel operators, encap-
sulations or hidings. In essence an LPE is a vector of data parameters together
with a list of condition, action and effect triples, describing when an action may
happen and what is its effect on the vector of data parameters. Each µCRL
specification that does not include successful termination can be transformed
into an LPE [170].2

Definition 2.3.1 (Linear process equation) A linear process equation is a
µCRL specification of the form

X(d:D) =
∑

a∈Act∪{τ}

∑

e:Ea

a(fa(d, e))·X(ga(d, e)) � ha(d, e) � δ

where fa : D × Ea → Di, ga : D × Ea → D, ha : D × Ea → Bool for each
a ∈ Act ∪ {τ}, and a is an action label with data parameters of type Di.

The LPE in Definition 2.3.1 has exactly one LTS as its solution (modulo strong
bisimulation).3 In this LTS, the states are data elements d:D (whereD may be a
Cartesian product of n data types, meaning that d is a tuple (d1, ..., dn)) and the
transition labels are actions parametrized with data. The LPE expresses that
state d can perform a(fa(d, e)) to end up in state ga(d, e), under the condition
that ha(d, e) is true. The data types Ea give LPEs a more general form, as not
only the data parameter d:D but also the data parameter e:Ea can influence
the parameter of action a, the condition ha and the resulting state ga.

Definition 2.3.2 (Invariant) A mapping I : D → Bool is an invariant for an
LPE, written as in Definition 2.3.1, if for all a ∈ Act ∪ {τ}, d:D and e:E,

I(d) ∧ ha(d, e) ⇒ I(ga(d, e)).

Intuitively, an invariant approximates the set of reachable states of an LPE.
That is, if I(d), and if one can evolve from state d to state d′ in zero or more

1Sometimes the finite LTS cannot be generated by the µCRL tool set, as it is too large.
2To cover µCRL specifications with successful termination, LPEs should include a sum-

mand
P

a∈Act∪{τ}

P

e:Ea
a(fa(d, e)) � ha(d, e) � δ.

3LPEs exclude “unguarded” recursive specifications such as X = X, which have multiple
solutions.

2.4 Regular Alternation-free µ-calculus 15

transitions, then I(d′). Namely, if I holds in state d and it is possible to execute
a(fa(d, e)) in this state (meaning that ha(d, e)), then it is ensured that I holds
in the resulting state ga(d, e). Invariants tend to play a crucial role in algebraic
verifications of system correctness that involve data.

2.4 Regular Alternation-free µ-calculus

Model checking [35] is an automatic technique to determine which states in an
LTS satisfy certain requirements. In order to check whether a certain require-
ment holds, it should be expressed as a temporal logic formula first.

A variety of so-called modal logics [94] have been developed to express prop-
erties of LTSs, such as Hennessy-Milner logic (HML) [85], linear temporal logic
(LTL) [139], computation tree logic (CTL) [47] and µ-calculus [104]. We proceed
to present a brief description of the µ-calculus, and then the regular alternation-
free µ-calculus [122], which is the input language for the model checker Eval-
uator in the Construction and Analysis of Distributed Processes toolbox (see
Section 2.5).

The µ-calculus is based on fixpoint computations [166]. Let D be a finite set
with a partial ordering ≤ with a least and a greatest element. Given a mapping
ϕ : D → D, an element d of D is a fixpoint of ϕ if ϕ(d) = d. Moreover, d is a least
fixpoint or greatest fixpoint if d ≤ e or e ≤ d, respectively, for all fixpoints e of ϕ.
The least and the greatest fixpoint of ϕ (if they exist) are denoted by µY.ϕ(Y)
and νY.ϕ(Y), respectively. The mapping ϕ : D → D is called monotonic if
d ≤ e implies ϕ(d) ≤ ϕ(e). If ϕ is monotonic, and D has a least element d0 and
a greatest element e0 (i.e., d0 ≤ d and d ≤ e0 for all d ∈ D), then ϕ has a least
and a greatest fixpoint.

The formulas of µ-calculus, which express properties of states, are defined
by the following BNF grammar:

ϕ ::= F | T | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 〈a〉ϕ | [a]ϕ | Y | µY.ϕ | νY.ϕ

where a ranges over Act ∪ {τ} and Y ranges over some collection of recursion
variables. We restrict to closed µ-calculus formulas, meaning that each occur-
rence of a recursion variable Y is within the scope of a minimal fixpoint µY or
a maximal fixpoint νY .

The intuitive meaning of the formula 〈a〉ϕ is “it is possible to make a-
transition to a state where ϕ holds.” Likewise, [a]ϕ means that “ϕ holds in
all states reachable by making a a-transition.” The boolean operators have the
usual meaning: a state of an LTS always satisfies T; it never satisfies F; it sat-
isfies ¬ϕ if and only if it does not satisfy ϕ; it satisfies ϕ1 ∨ ϕ2 if and only
if it satisfies ϕ1 or it satisfies ϕ2; it satisfies ϕ1 ∧ ϕ2 if and only if it satisfies
both ϕ1 and ϕ2. The formulas µY.ϕ and νY.ϕ represent minimal and maximal
fixpoints, respectively. Here, ϕ represents a mapping from sets of states to sets
of states: a set S of states is mapped to those states where ϕ holds, under the
assumption that the recursion variable Y evaluates to T for states in S and to
F for states outside S. As partial ordering on sets of states we take set inclusion

16 Chapter 2 Preliminaries

(so the least and the greatest element are the empty set and the set of all states,
respectively.). The mapping ϕ is monotonic, so µY.ϕ and νY.ϕ are well-defined.

The alternation-free µ-calculus [48] consists of µ-calculus formulas with no
alternation between least and greatest fixpoint operators, which makes a good
compromise between expressiveness and efficiency of model checking.

The regular µ-calculus [122] is an extension of the µ-calculus with action
predicates and regular expressions over action sequences. One is allowed to use
expressions 〈β〉ϕ and [β]ϕ where β is a so-called regular expression, which is
defined by the following BNF grammar:

α ::= T | a | ¬α | α1 ∧ α2

β ::= α | β1·β2 | β1|β2 | β∗

Action formulas α represent a set of actions: T denotes the set of all actions, a
the set {a}, ¬α the complement of α, and α1∧α2 the intersection of α1 and α2.
Regular expressions β represent a set of traces: β1·β2 denotes the traces that
can be obtained by concatenating a trace from β1 and a trace from β2, β1|β2 the
union of β1 and β2, and β∗ the traces that can be obtained by concatenating
finitely many traces from β.

〈β〉φ means that φ holds after some trace from β, and [β]φ means that φ
holds after all traces from β.

The regular alternation-free µ-calculus allows a simple, compact specifica-
tion of safety and liveness properties [108], where safety properties require that
“nothing bad ever happens” and liveness properties require that “something
good will eventually happen”.

Example 2.4.1 A safety property describing the absence of some error action
is defined as follows:

[T∗·error] F

Example 2.4.2 A safety property detecting the absence of τ -cycles is defined
as follows:

[T∗] µY.[τ] Y

Example 2.4.3 A liveness property stating that there exists a path leading to
some move action after performing zero or more transitions is defined as follows:

〈T∗·move〉 T

Fairness properties are similar to liveness properties, except that they ex-
press reachability of actions by considering only fair execution sequences. The
notion of fairness encoded in the regular alternation-free µ-calculus is the “fair
reachability of predicates” [145]: a sequence is fair if and only if it does not in-
finitely often enables the reachability of a certain state without infinitely often
reaching it.

2.5 Construction and Analysis of Distributed Processes Toolbox 17

Example 2.4.4 A fairness property expressing that after sending a message
(action send) all fair execution sequences will lead to the reception of the message
(action receive) is defined as follows:

[T∗·send·(¬receive)∗] 〈(¬receive)∗·receive〉 T

2.5 Construction and Analysis of Distributed Processes

Toolbox

The µCRL tool set, in combination with the Construction and Analysis of Dis-
tributed Processes toolbox (CADP) [49, 63], formerly known as Cæsar Aldébaran
Development Package, which acts as a back-end for the µCRL tool set, features
visualization, simulation, state space generation, model checking, theorem prov-
ing and state bit hashing capabilities. This approach has been used to analyze
a wide range of protocols and distributed systems (e.g., [6, 53, 93, 142]).

CADP is a tool set to support protocol engineering. CADP was jointly
developed by the VASY team at INRIA Rhône-Alpes and the Verimag labora-
tory in France. It has a set of tools for compiling high-level protocol descrip-
tions written in LOTOS [46], simulation, state space generation, minimization,
comparison and model checking properties on LTSs, and testing. Cæsar is a
compiler that translates a LOTOS specification into an LTS. Aldébaran allows
the minimization of an LTS modulo for instance strong and branching bisimu-
lation and compares LTSs. It has diagnosis capabilities that provide the user
with explanations when two LTSs are found to be not equivalent. In the pack-
age, Evaluator [122] is an on-the-fly model checker for regular alternation-free
µ-calculus formulas on LTSs. It is equipped with diagnostic generation algo-
rithms, which construct both examples and counter-examples, i.e., portions of
an LTS explaining why a formula is true or false. More information on CADP
can be obtained at http://www.inrialpes.fr/vasy/cadp/.

18 Chapter 2 Preliminaries

Part I

Theorem Proving

19

Chapter 3

Cones and Foci: A Mechanical Proof

Framework

3.1 Introduction

Protocol verification with the help of a theorem prover is often rather ad hoc,
in the sense that one has to develop the entire proof structure from scratch.
Inventing such a structure takes a lot of effort, and makes that in general such
a proof cannot be readily adapted to other protocols. Groote and Springintveld
[79] proposed a general proof framework for protocol verification, which they
named the cones and foci method. In this chapter we introduce some significant
improvements for this framework. Furthermore, we have cast the framework in
the interactive theorem prover PVS [131].

For finite labeled transition systems, checking whether two states are branch-
ing bisimilar can be performed efficiently [80]. The µCRL tool set [21] supports
the generation of labeled transition systems, together with reduction modulo
branching bisimulation equivalence, and allows model checking of temporal logic
formulas [35] via a back-end to the CADP tool set [49]. This approach to verify
system correctness has three important drawbacks. First, the labeled transition
systems of the µCRL specifications involved must be generated; often the la-
beled transition system of the implementation of a system cannot be generated,
as it is too large, or even infinite. Second, this generation usually requires a spe-
cific choice for one network or data domain; in other words, only the correctness
of an instantiation of the system is proved. Third, support from and rigorous
formalization by theorem provers and proof checkers is not readily available.

In this chapter we focus on analyzing protocols and distributed systems on
the level of their symbolic specifications. Linear process equations [20] (also
see Definition 2.3.1) constitute a restricted class of µCRL specifications in a
so-called linear format. Algorithms have been developed to transform µCRL
specifications into this linear format [76, 81, 170]. In a linear process equation,
the states of the associated labeled transition system are data objects.

The cones and foci method from [79] rephrases the question whether two
linear process equations are branching bisimilar in terms of proof obligations on

21

22 Chapter 3 Cones and Foci: A Mechanical Proof Framework

relations between data objects. These proof obligations can be derived by means
of algebraic calculations, in general with the help of invariants (i.e., properties
of the reachable states) that are proved separately. This method was used in the
verification of a considerable number of real-life protocols (e.g., [60, 72, 157]),
often with the support of a theorem prover or proof checker.

The main idea of the cones and foci method is that quite often in the imple-
mentation of a system, τ -transitions progress inertly towards a state in which
no τ can be executed; such a state is declared to be a focus point. The cone of
a focus point consists of the states that can reach this focus point by a string
of τ -transitions. In the absence of infinite sequences of τ -transitions, each state
belongs to some cone. This core idea is depicted below. Note that the external
actions at the edge of the depicted cone can also be executed in the ultimate
focus point F ; this is essential for soundness of the cones and foci method, as
otherwise τ -transitions in the cone would not be inert.

External actions

F

Internal actions

c
d

c
d

d

d

a
b

a

b
b

b

c

a

The starting point of the cones and foci method are two linear process equa-
tions, expressing the implementation and the desired external behavior of a sys-
tem. A state mapping φ relates each state of the implementation to a state of the
desired external behavior. Groote and Springintveld [79] formulated matching
criteria, consisting of relations between data objects, which ensure that states
s and φ(s) are branching bisimilar.

If an implementation, with all internal activity hidden, gives rise to infinite
sequences of τ -actions, then Groote and Springintveld [79] distinguish between
progressing and non-progressing τ ’s, where the latter are treated in the same way
as external actions. They require that there is no infinite sequence of progressing
τ ’s, and define focus points as the states that cannot perform progressing τ ’s.
A pre-abstraction function divides occurrences of τ in the implementation into
progressing and non-progressing ones; in many cases it is far from trivial to

3.1 Introduction 23

define the proper pre-abstraction. Finally, a special fair abstraction rule [8] can
be used to try and eliminate the remaining (non-progressing) τ ’s.

In this chapter, we propose an adaptation of the cones and foci method,
in which the cumbersome treatment of infinite sequences of τ -transitions is no
longer necessary. This improvement of the cones and foci method was conceived
during the verification of a sliding window protocol [51] (also see Chapter 4),
where the adaptation simplified matters considerably. As before, the method
deals with linear process equations, requires the definition of a state mapping,
and generates the same matching criteria. However, we allow the user to freely
assign which states are focus points (instead of prescribing that they are the
states in which no progressing τ -actions can be performed), as long as each
state is in the cone of some focus point. We do allow infinite sequences of
τ -transitions. No distinction between progressing and non-progressing τ ’s is
needed, and τ -loops are eliminated without having to resort explicitly to a
fair abstraction rule. We prove that our method is sound modulo branching
bisimulation equivalence.

Compared to the original cones and foci method [79], our method is more
generally applicable. As expected, some extra price may have to be paid for
this generalization. Groote and Springintveld must prove strong termination of
progressing τ -transitions. They use a standard approach to prove strong termi-
nation: provide a well-founded ordering on states such that for each progressing
τ -transition s

τ
→ s′ one has s>s′. Here we must prove that each state can reach

a focus point by a series of τ -transitions. This means that in principle we have
a weaker proof obligation, but for a larger class of τ -transitions. We develop
a set of rules to prove the reachability of focus points. These rules have been
formalized and proved in PVS.

We formalize the cones and foci method in PVS. The intent is to provide a
common framework for mechanical verification of protocols using our approach.
PVS theories are developed to represent basic notions like labeled transition
systems, branching bisimulation, linear process equations, and then the cones
and foci method itself. The proof of soundness for the method has been mechan-
ically checked by PVS within this framework. Once we had the linear process
equations, the state mapping and the focus condition encoded in PVS, the PVS
theorem prover and its type-checking condition system were then used to gener-
ate and verify all correctness conditions to ensure that the implementation and
the external behavior of a system are branching bisimilar.

We apply our mechanical proof framework to the Concurrent Alternating
Bit Protocol [105], which served as the main example in [79]. Our aims are to
compare our method with the one from [79], and to illustrate our mechanical
proof framework and our approach to the reachability analysis of focus points.
While the old cones and foci method required a typical cumbersome treatment of
τ -loops, here we can take these τ -loops in our stride. Thanks to the mechanical
proof framework we detected a bug in one of the invariants of our original manual
proof. The reachability analysis of focus points is quite crisp.

24 Chapter 3 Cones and Foci: A Mechanical Proof Framework

Related Work. In compiler correctness, advances have been made to validate
programs at a symbolic level with respect to an underlying simulation notion
(e.g., [34, 66, 129]). The methodology surrounding cones and foci incorporates
well-known and useful concepts such as the precondition/effect notation [97,
117], invariants and simulations. Linear process equations resemble the UNITY
format [31] and recursive applicative program schemes [37]; state mappings are
comparable to refinement mappings [118, 140] and simulation [57]. Van der
Zwaag [180] gave an adaptation of the cones and foci method from [79] to a
timed setting, modulo timed branching bisimulation equivalence.

Outline of the chapter. This chapter is organized as follows. In Section
3.2, we present the main theorem and prove that our method is sound modulo
branching bisimulation equivalence. A proof theory for reachability of focus
points is also presented. In Section 3.3, the cones and foci method is formalized
in PVS, and a mechanical proof framework is set up. In Section 3.4, we illus-
trate the method by verifying the Concurrent Alternating Bit Protocol. Part of
the verification within the mechanical proof framework in PVS is presented in
Section 3.4.4. We draw some conclusions in Section 3.5.

3.2 Cones and Foci

In this section, we present our version of the cones and foci method from [79] in
the setting of µCRL. We do not describe the treatment of data types in µCRL
in detail. For our purpose it is sufficient that processes can be parametrized
with data. We assume the data sort of booleans Bool with constant T and F,
and the usual connectives ∧, ∨, ¬ and ⇒. For a boolean b, we abbreviate b = T
to b and b = F to ¬b.

Suppose that we have an LPE X(d:D) specifying the implementation of a
system, and an LPE Y (d′:D′) (without occurrences of τ) specifying the desired
external behavior of this system. We want to prove that the implementation
exhibits the desired external behavior.

We assume the presence of an invariant I : D → Bool for X . In the cones
and foci method, a state mapping φ : D → D′ relates each state of the imple-
mentation X to a state of the desired external behavior Y . Furthermore, some
states in D are designated to be focus points. In contrast with the approach of
[79], we allow to freely designate focus points, as long as each state d:D of X
with I(d) can reach a focus point by a sequence of τ -transitions. If a number
of matching criteria for d:D are fulfilled, consisting of relations between data
objects, and if I(d), then the states d and φ(d) are guaranteed to be branching
bisimilar. These matching criteria require that (A) all τ -transitions at d are
inert, (B) each external transition of d can be mimicked by φ(d), and (C) if d
is a focus point, then vice versa each transition of φ(d) can be mimicked by d.

In Section 3.2.1, we present the general theorem underlying our method.
Then we introduce proof rules for the reachability of focus points in Section
3.2.2.

3.2 Cones and Foci 25

3.2.1 The general theorem

Let the LPE X be of the form

X(d:D) =
∑

a∈Act∪{τ}

∑

e:Ea

a(fa(d, e))·X(ga(d, e)) � ha(d, e) � δ.

Furthermore, let the LPE Y be of the form

Y (d′:D′) =
∑

a∈Act

∑

e:Ea

a(f ′
a(d′, e))·Y (g′a(d′, e)) � h′a(d′, e) � δ.

Note that Y is not allowed to have τ -steps. We start with defining the predicate
FC, designating the focus points of X in D. Next we define the state mapping
together with its matching criteria.

Definition 3.2.1 (Focus point) A focus condition is a mapping FC : D →
Bool . If FC (d), then d is called a focus point.

Definition 3.2.2 (State mapping) A state mapping is of the form φ : D →
D′.

Definition 3.2.3 (Matching criteria) A state mapping φ : D → D′ satisfies
the matching criteria for d:D if for all a ∈ Act :

I ∀e:Ea (hτ (d, e) ⇒ φ(d) = φ(gτ (d, e)));

II ∀e:Ea (ha(d, e) ⇒ h′a(φ(d), e));

III FC (d) ⇒ ∀e:Ea (h′a(φ(d), e) ⇒ ha(d, e));

IV ∀e:Ea (ha(d, e) ⇒ fa(d, e) = f ′
a(φ(d), e));

V ∀e:Ea (ha(d, e) ⇒ φ(ga(d, e)) = g′a(φ(d), e)).

Matching criterion I requires that the τ -transitions at d are inert, meaning that
d and gτ (d, e) are branching bisimilar. Criteria II, IV and V express that each
external transition of d can be simulated by φ(d). Finally, criterion III expresses
that if d is a focus point, then each external transition of φ(d) can be simulated
by d.

Theorem 3.2.4 Assume LPEs X(d:D) and Y (d′:D′) written as before (Defi-
nition 2.3.1). Let I : D → Bool be an invariant for X . Suppose that for all d:D
with I(d),

1. φ : D → D′ satisfies the matching criteria for d, and

2. there is a d̂:D such that FC (d̂) and d
τ
→ · · ·

τ
→ d̂ in the LTS for X .

Then for all d:D with I(d),

X(d) ↔b Y (φ(d)).

26 Chapter 3 Cones and Foci: A Mechanical Proof Framework

Proof. We assume without loss of generality that D and D′ are disjoint. Define
B ⊆ D ∪ D′ × D ∪ D′ as the smallest relation such that whenever I(d) for a
d:D then dB φ(d) and φ(d)B d. Clearly, B is symmetric. We show that B is a
branching bisimulation relation.

Let sB t and s
`
→ s′. First consider that case where φ(s) = t. By definition

of B we have I(s).

• If ` = τ , then hτ (s, e) and s′ = gτ (s, e) for some e:E. By matching
criterion I, φ(gτ (s, e)) = t. Moreover, I(s) and hτ (s, e) together imply
I(gτ (s, e)). Hence, gτ (s, e)B t.

• If ` 6= τ , then ha(s, e), s′ = ga(s, e) and ` = a(fa(s, e)) for some a ∈
Act and e:E. By matching criteria II and IV, h′a(t, e) and fa(s, e) =

f ′
a(t, e). Hence, t

a(fa(s,e))
→ g′a(t, e). Moreover, I(s) and ha(s, e) together

imply I(ga(s, e)), and matching criterion V yields φ(ga(s, e)) = g′a(t, e),
so ga(s, e)B g′a(t, e).

Next consider the case where s = φ(t). Since s
`
→ s′, for some a ∈ Act and e:E,

h′a(s, e), s′ = g′a(s, e) and ` = a(f ′
a(s, e)). By definition of B we have I(t). By

assumption 2 of the Theorem, there is a t̂:D with FC (t̂) such that t
τ
→ ...

τ
→ t̂ in

the LTS for X . Invariant I, so also the matching criteria, hold for all states on
this τ -path. Repeatedly applying matching criterion I we get φ(t̂) = φ(t) = s. So
matching criterion III together with h′a(s, e) yields ha(t̂, e). Then by matching

criterion IV, fa(t̂, e) = f ′
a(s, e), so t

τ
→ ...

τ
→ t̂

a(f ′

a(s,e))
→ ga(t̂, e). Moreover,

I(t̂) and ha(t̂, e) together imply I(ga(t̂, e)), and matching criterion V yields
φ(ga(t̂, e)) = g′a(s, e), so sB t̂ and g′a(s, e)B ga(t̂, e).

Concluding, B is a branching bisimulation relation. �

We note that Groote and Springintveld [79] proved for their version of the cones
and foci method that it can be derived from the axioms of µCRL, which implies
that their method is sound modulo branching bisimulation equivalence.

3.2.2 Proof rules for reachability

The cones and foci method requires as input a state mapping and a focus con-
dition. It generates two kinds of proof obligations: matching criteria, and a
reachability criterion. The latter states that from all reachable states, a state
satisfying the focus condition must be reachable. Note that it suffices to prove
that from any state satisfying a given set of invariants, a state satisfying the
focus conditions is reachable. In this section we develop proof rules, in order to
establish this condition. First we introduce some notation.

Definition 3.2.5 (τ-Reachability) Given an LTS (S,Lab,→, s0) and φ, ψ ⊆
S. ψ is τ -reachable from φ, written as φ � ψ, if and only if for all x ∈ φ there
exists a y ∈ ψ such that x

τ
→ · · ·

τ
→ y.

3.3 A Mechanical Proof Framework 27

The above mentioned reachability criterion can now be expressed as Inv �

FC, where Inv denotes a set of invariants, and FC denotes the focus condition.
Here and in the sequel, we use predicates with variables from the state vector
to denote sets of states.

Definition 3.2.6 (Reachability in one τ-step) Let X(d:D) be an LPE (see
Definition 3.2.1). The set of states PreX(ψ), that can reach the set of states ψ
in one τ -step, is defined as:

PreX(ψ)(d) = ∃e:E(hτ (d, e) ∧ ψ(gτ (d, e)))

Lemma 3.2.7 (Proof rules for reachability) A list of rules for proving �

with respect to an LPE X are given as follows:

• (precondition) PreX(φ) � φ

• (implication) If φ ⇒ ψ then φ � ψ.

• (transitivity) If φ � ψ and ψ � χ then φ � χ.

• (disjunction) If φ � χ and ψ � χ, then {φ ∨ ψ} � χ.

• (invariant) If φ � ψ and I is an invariant, then {φ ∧ I} � {ψ ∧ I}.

• (induction) If for all n > 0, {φ ∧ (t = n)} � {φ ∧ (t < n)}, then φ �

{φ ∧ (t = 0)}, where t is any term containing state variables from D.

Proof. These rules can be easily proved. In the precondition rule we obtain a
one step reduction from the semantics of LPEs. The implication rule is obtained
by an empty reduction sequence; for transitivity we can concatenate the reduc-
tion sequences. The disjunction rule can be proved by case distinction. For the
invariant rule, assume that φ(d) and I(d) hold. By the assumption φ � ψ, we

obtain a sequence d
τ
→ · · ·

τ
→ d′, such that ψ(d′). Because I is an invariant, we

have I(d′) (by induction on the length of that reduction). So indeed {ψ∧I}(d′).
Finally, for the induction rule we first prove with well-founded induction over
n and using the transitivity rule that ∀n.{φ ∧ (t = n)} � {φ ∧ (t = 0)}. Then
observe that φ⇒ {φ∧ (t = t)}, and use the implication and transitivity rule to
conclude that φ � {φ ∧ (t = 0)}. �

The proof rules for reachability were proved correct in PVS, and they were used
in the verification of the reachability criterion for the CABP in PVS, which we
will present in Section 3.4.4.

3.3 A Mechanical Proof Framework

In this section, our method is formalized in the language of the interactive
theorem prover PVS [131]. This formalism enables computer aided protocol
verification using the cones and foci method. PVS is chosen for the following

28 Chapter 3 Cones and Foci: A Mechanical Proof Framework

main reasons. First, the specification language of PVS is based on simply typed
higher-order logics. PVS provides a rich set of types and the ability to define
subtypes and dependent types. Second, PVS constitutes a powerful, extensible
system for verifying obligations. It has a tool set consisting of a type checker,
an interactive theorem prover, and a model checker. Third, PVS includes high
level proof strategies and decision procedures that take care of many of the low
level details associated with computer aided theorem proving. In addition, PVS
has useful proof management facilities, such as a graphical display of the proof
tree, and proof stepping and editing.

The type system of PVS contains basic types such as boolean, natural, in-
teger, real, et al. and type constructors such as set, tuple, record, and func-
tion. Tuple, record, and type constructors are extensively used in the following
sections to formalize the cones and foci method. Tuple types have the form
[T1,...,Tn], where the Ti are type expressions. A record is a finite list of
fields of the form R:TYPE=[# E1:T1, ...,En:Tn #], where the Ei are record
accessor functions. Associated with every tuple type or record is a set of pro-
jection functions: ‘1,‘2,..., (or proj 1,proj 2,...). A function construc-
tor has the form F:TYPE=[T1,...,Tn->R], where F is a function with domain
T1×T2×...×Tn and range R.

A PVS specification can be structured through a hierarchy of theories. Each
theory consists of a signature for the type names, constants introduced in the
theory, axioms, definitions, and theorems associated with the signature. A PVS
theory can be parametric in certain specified types and values, which are placed
between [] after the theory name. A theory can build on other theories. To
import a theory, PVS uses the notation IMPORTING followed by the theory name.
For example, we can give part of the theory of abstract reduction systems [7] in
PVS as follows:

ARS[A:TYPE]: THEORY BEGIN

x,y,z:VAR A n:VAR nat R:VAR pred[[A,A]]

iterate(R,n)(x,y):RECURSIVE bool=

IF n=0 THEN x=y

ELSE EXISTS z:iterate(R,n-1)(x,z) AND R(z,y)

ENDIF MEASURE n

star(R)(x,y):bool= EXISTS n:iterate(R,n)(x,y)

...

END ARS

Theory ARS contains the basic notations, like transitive closure of a relation,
and theorems for abstract reduction systems. The rest of this section gives the
main part of the PVS formalism of our approach. We will explain PVS notation
throughout this section, when necessary.

3.3.1 LTSs and branching bisimulation

We formalize basic notions like labeled transition systems, branching bisimu-
lation, linear process equations from Chapter 2 in PVS. An LTS (see Defini-

3.3 A Mechanical Proof Framework 29

tion 2.2.1) is parameterized by a set of states D, a set of actions Act and a
special action tau. The type LTS is then defined as a record containing an ini-
tial state, and a ternary step relation. The relation step 01 extends step with
the reflexive closure of the tau-steps. We also abbreviate the reflexive transitive
closure of tau-steps tau star. Finally, the set reachable of states reachable
from the initial state can be easily characterized using an inductive definition.

LTS[D,Act:TYPE,tau:Act]: THEORY BEGIN

IMPORTING ARS[D]

LTS: TYPE = [# init:D, step:[D,Act,D->bool] #]

x,y:VAR D a:VAR Act lts:VAR LTS

step(lts,a)(x,y):bool= lts‘step(x,a,y)

step 01(lts)(x,a,y):bool= lts‘step(x,a,y) OR (a=tau AND x=y)

tau star(lts)(x,y):bool= star(step(lts,tau))(x,y)

reachable(lts)(x):INDUCTIVE bool=

x=lts‘init OR EXISTS y,a:

reachable(lts)(y) AND lts‘step(y,a,x)

END LTS

To define a branching bisimulation relation (see Definition 2.2.3) between
two labeled transition systems in PVS, we first introduce a formalization of a
branching simulation relation in PVS. A relation is a branching bisimulation if
and only if both itself and its inverse are a branching simulation relation.

BRANCHING SIMULATION [D,E,Act:TYPE,tau:Act]: THEORY BEGIN

IMPORTING LTS[D,Act,tau], LTS[E,Act,tau]

x1,y1,z1:VAR D x2,y2,z2:VAR E

lts1:VAR LTS[D,Act,tau] lts2:VAR LTS[E,Act,tau]

a:VAR Act R:VAR [D,E->bool]

brsim(lts1,lts2)(R):bool=

FORALL x1,a,z1,x2:lts1‘step(x1,a,z1) AND R(x1,x2) IMPLIES

EXISTS y2,z2:tau star(lts2)(x2,y2) AND

step 01(lts2)(y2,a,z2) AND R(x1,y2) AND R(z1,z2)

END BRANCHING SIMULATION

BRANCHING BISIMULATION [D,E,Act:TYPE,tau:Act]: THEORY BEGIN

IMPORTING BRANCHING SIMULATION[D,E,Act,tau],

BRANCHING SIMULATION[E,D,Act,tau]

x1:VAR D x2:VAR E

lts1:VAR LTS[D,Act,tau] lts2:VAR LTS[E,Act,tau]

a:VAR Act R:VAR [D,E->bool]

brbisim(lts1,lts2)(R):bool=

brsim(lts1,lts2)(R) AND brsim(lts2,lts1)(converse(R))

brbisimilar(lts1,lts2)(x1,x2):bool=

EXISTS R:brbisim(lts1,lts2)(R) AND R(x1,x2)

brbisimilar(lts1,lts2):bool=

brbisimilar(lts1,lts2)(lts1‘init,lts2‘init)

END BRANCHING BISIMULATION

30 Chapter 3 Cones and Foci: A Mechanical Proof Framework

In our actual PVS theory of branching bisimulation, we also defined a semi-
branching bisimulation relation [64]. In [13], this notion was used to show that
branching bisimilarity is an equivalence. Basten showed that the relation compo-
sition of two branching bisimulation relations is not necessarily again a branch-
ing bisimulation relation, while the relation composition of two semi-branching
bisimulation relations is again a semi-branching bisimulation relation. It is
easy to see that semi-branching bisimilarity is reflexive and symmetric. Hence,
semi-branching bisimilarity is an equivalence relation. Basten also proved that
semi-branching bisimilarity and branching bisimilarity coincide, that means two
states in an LTS are related by a branching bisimulation relation if and only
if they are related by a semi-branching bisimulation relation. Thus, he proved
that branching bisimilarity is an equivalence relation. We have checked these
facts in PVS.

3.3.2 Representing LPEs and invariants

We now show how an LPE (see Definition 2.3.1) can be represented in PVS.
The formal definitions will slightly deviate from the mathematical presentation
before. A first decision was to represent µCRL abstract data types directly
by PVS types. This enables one to reuse the PVS library for definitions and
theorems of “standard” data types, and to focus on the behavioral part.

A second distinction will be that we assumed so far that LPEs are clustered.
This means that each action name occurs in at most one summand, so that the
set of summands can be indexed by the set of action names Act. This is no real
limitation, because any LPE can be transformed into clustered form, basically
by replacing + by

∑
over finite types. Clustered LPEs enable a notationally

smoother presentation of the theory. However, when working with concrete
LPEs this restriction is not convenient, so we avoid it in the PVS framework:
an arbitrarily sized index set {0, . . . , n − 1} will be used, represented by the
PVS type below(n). A third deviation is that we will assume from now on that
every summand has the same set E of local variables (instead of Ea before).
Again this is no limitation, because void summations can always be added (i.e.:
p =

∑
e:E p, when e doesn’t occur in p). This restriction is needed to avoid the

use of polymorphism, which doesn’t exist in PVS. A fourth deviation is that we
do not distinguish action names from action data parameters. We simply work
with one type Act of expressions for actions. Note that this is a real extension.
Namely, in our PVS formalization, each LPE summand is a function from D×E
(with D the set of states) to Act×Bool×D, so one summand may now generate
steps with various action names, possibly visible as well as invisible.

So an LPE is parameterized by a set of actions (Act), a global parameter
(State) and a local variable (Local), and by the size of its index set (n) and
the special action τ (tau). Note that the guard, action and next-state of a
summand depend on the global parameter d:State and on the local variable
e:Local. This dependency is represented in the definition SUMMAND by a PVS
function type. An LPE consists of an initial state and a list of summands indexed
by below(n). Finally, the function lpe2lts provides the LTS semantics of an

3.3 A Mechanical Proof Framework 31

LPE, Step(L,a) provides the corresponding binary relation on states, and the
set of Reachable states is lifted from LTS to LPE level.

LPE[Act,State,Local:TYPE,n:nat,tau:Act]: THEORY BEGIN

IMPORTING LTS[State,Act,tau]

SUMMAND:TYPE= [State,Local->[#act:Act,guard:bool,next:State#]]

LPE:TYPE= [#init:State,sums:[below(n)->SUMMAND]#]

L:VAR LPE i:VAR below(n) d,d1,d2:VAR State

a:VAR Act e:VAR Local s:VAR SUMMAND

step(s)(d1,a,d2):bool=

EXISTS e:s(d1,e)‘guard AND a=s(d1,e)‘act

AND d2=s(d1,e)‘next

lpe2lts(L):LTS= (#init:= init(L),

step:= LAMBDA d1,a,d2: EXISTS i:step(L‘sums(i))(d1,a,d2)#)

Step(L,a)(d1,d2):bool= step(lpe2lts(L),a)(d1,d2)

Reachable(L)(d):bool= reachable(lpe2lts(L))(d)

END LPE

We define an invariant (see Definition 2.3.2) of an LPE in PVS by a theory
INVARIANT as follows, where p is a predicate over states. p is an invariant of
an LPE if and only if it holds initially and it is preserved by the execution of
every summand. Note that we only require preservation for reachable states.
This allows that previously proved invariants can be used in proving that p is
invariant, which occurs frequently in practice. The abstract notion of reacha-
bility can itself be proved to be the strongest invariant (reachable inv1 and
reachable inv2).

INVARIANT[Act,State,Local:TYPE,n:nat,tau:Act]: THEORY BEGIN

IMPORTING LPE[Act,State,Local,n,tau]

L:VAR LPE p:VAR [State->bool]

d:VAR State a:VAR Act e:VAR Local i:VAR below(n)

preserves(L,i)(p):bool=

FORALL d,e:Reachable(L)(d) AND p(d) AND L‘sums(i)(d,e)‘guard

IMPLIES p(L‘sums(i)(d,e)‘next)

invariant(L)(p):bool= p(L‘init) AND FORALL i:preserves(L,i)(p)

reachable inv1: LEMMA invariant(L)(Reachable(L))

reachable inv2: LEMMA invariant(L)(p)

IMPLIES subset?(Reachable(L),p)

END INVARIANT

3.3.3 Formalizing the cones and foci method

In this section, we give the PVS development of the cones and foci method.
Compared to the mathematical definitions in Section 3.2 we make two adapta-
tions. First, we use the abstract reachability predicate instead of invariants; by
the previous lemmas we can always switch back to invariants. Second, we have
to reformulate the matching criteria in the setting of our slightly extended notion

32 Chapter 3 Cones and Foci: A Mechanical Proof Framework

of LPEs, allowing arbitrary index sets, and more action names per summand.
We start with two LPEs, for the implementation and the desired external

behavior of a system, X:LPE[Act,D,L,m,tau] and Y:LPE[Act,E,L,n,tau] re-
spectively. Both LPE X and LPE Y have the same set of actions and the same
set of local variables. However, the type of global parameters (D and E, respec-
tively) and the number of summands (m and n, respectively) may be different.
Note that here we do not exclude the presence of tau in the LPE Y. For the
correctness proof this restriction is not needed, and by lifting this restriction we
avoid the use of subtypes in PVS. However it does not really extend the method,
because the matching criteria enforce that all tau-steps in Y are tau-loops.

The next ingredients are the state mapping function h:[D->E] and a fo-
cus condition fc:pred[D]. But, as summands are no longer indexed by action
names, we also need a mapping of the summands k:[below(m)->below(n)].
The idea is that summand i:below(m) of LPE X is mapped to summand
k(i):below(n) of LPE Y. Having these ingredients, we can subsequently de-
fine the matching criteria (MC) and the reachability criterion (RC). The indi-
vidual matching criteria (MC1–MC5) are displayed separately. The theorem
CONESFOCI was proved in PVS along the lines of Section 3.2.

CONESFOCI METHOD [D,E,L,Act:TYPE,tau:Act,m,n:nat]: THEORY BEGIN

IMPORTING BRANCHING BISIMULATION [D,E,Act,tau],

LPE[Act,D,L,m,tau], LPE [Act,E,L,n,tau]

X:VAR LPE[Act,D,L,m,tau] Y:VAR LPE[Act,E,L,n,tau]

h:VAR [D->E] fc:VAR pred[D] k:VAR [below(m)->below(n)]

d,d1:VAR D

% The matching criteria: MC1-MC5.

...

MC(X,Y,k,h,fc)(d):bool=

MC1(X,h)(d) AND MC2(X,Y,k,h)(d) AND MC3(X,Y,k,h,fc)(d)

AND MC4(X,Y,k,h)(d) AND MC5(X,Y,k,h)(d)

% The reachability criterion of focus points.

RC(X,fc)(d):bool=

EXISTS d1:fc(d1) AND tau star(lpe2lts(X))(d,d1)

% The main theorem.

CONESFOCI: THEOREM

h(X‘init)=Y‘init AND (FORALL d:Reachable(X)(d)

IMPLIES MC(X,Y,k,h,fc)(d) AND RC(X,fc)(d))

IMPLIES brbisimilar(lpe2lts(X),lpe2lts(Y))

END CONESFOCI METHOD

3.3 A Mechanical Proof Framework 33

x:VAR L i:VAR [below(m)] j:VAR [below(n)]

MC1(X,h)(d):bool= FORALL i: FORALL x:

X‘sums(i)(d,x)‘act=tau AND X‘sums(i)(d,x)‘guard

IMPLIES h(d)=h(X‘sums(i)(d,x)‘next)

MC2(X,Y,k,h)(d):bool= FORALL i: FORALL x:

NOT X‘sums(i)(d,x)‘act=tau AND X‘sums(i)(d,x)‘guard

IMPLIES Y‘sums(k(i))(h(d),x)‘guard

MC3(X,Y,k,h,fc)(d):bool= FORALL j: FORALL x:

fc(d) AND Y‘sums(j)(h(d),x)‘guard

IMPLIES EXISTS i:

k(i)=j AND X‘sums(i)(d,x)‘guard AND NOT X‘sums(i)(d,x)‘act=tau

MC4(X,Y,k,h)(d):bool= FORALL i: FORALL x:

NOT X‘sums(i)(d,x)‘act=tau AND X‘sums(i)(d,x)‘guard

IMPLIES X‘sums(i)(d,x)‘act = Y‘sums(k(i))(h(d),x)‘act

MC5(X,Y,k,h)(d):bool= FORALL i: FORALL x:

NOT X‘sums(i)(d,x)‘act=tau AND X‘sums(i)(d,x)‘guard

IMPLIES h(X‘sums(i)(d,x)‘next) = Y‘sums(k(i))(h(d),x)‘next

3.3.4 The symbolic reachability criterion

The last part of the formalization of the framework in PVS is on the proof rules
for the reachability criterion. We start on the level of abstract reduction systems
(ARS[S]), which talks about binary relations, formalized in PVS as pred[S,S].
First, we have to lift conjunction (AND) and disjunction (OR) to predicates on
S (overloading is allowed in PVS). We use Reach to denote �. Next, several
proof rules can be expressed and proved in PVS. Here we only show the rules for
disjunction and induction; the latter depends on a measure function f:[S->nat]

(this rule is not used in the verification of Concurrent Alternating Bit Protocol
later, but it was essential in the verification of the Sliding Window Protocol (see
Chapter 4)).

REACH CONDITION [S:TYPE]: THEORY BEGIN

IMPORTING ARS[S]

X,Y,Z:VAR pred[S] x,y:VAR S R:VAR pred[[S,S]]

AND(X,Y)(x):bool= X(x) AND Y(x) ;

OR(X,Y)(x) :bool= X(x) OR Y(x) ;

Reach(R)(X,Y):bool= FORALL x:X(x)

IMPLIES EXISTS y:Y(y) AND star(R)(x,y)

reach disjunction: LEMMA % Disjunction rule

Reach(R)(X,Z) AND Reach(R)(Y,Z) IMPLIES Reach(R)(X OR Y,Z)

f:VAR [S->nat] n:VAR nat

reach induction: LEMMA % Induction rule

(FORALL n:n>0 IMPLIES

Reach(R)(X AND LAMBDA x:f(x)=n, X AND LAMBDA x:f(x)<n))

IMPLIES Reach(R)(X, X AND LAMBDA x:f(x)=0)

END REACH CONDITION

34 Chapter 3 Cones and Foci: A Mechanical Proof Framework

Finally, the precondition and invariant rules depend on the LPE under
scrutiny, so we define them in a separate theory:

PRECONDITION [Act,State,Local:TYPE,n:nat,tau:Act]: THEORY BEGIN

IMPORTING INVARIANT[Act,State,Local,n,tau],

REACH CONDITION[State]

L:VAR LPE X,Y:VAR pred[State] i:VAR below(n)

d:VAR State e:VAR Local I:VAR [State->bool]

precondition(L,X)(d):bool=

EXISTS i: EXISTS e:L‘sums(i)(d,e)‘act=tau

AND L‘sums(i)(d,e)‘guard AND X(L‘sums(i)(d,e)‘next)

reach precondition: LEMMA % Precondition rule

Reach(Step(L,tau))(precondition(L,X),X)

reach invariant: LEMMA % Invariant rule

Reach(Step(L,tau))(X,Y) AND invariant(L)(I)

IMPLIES Reach(Step(L,tau))(X AND I, Y AND I)

END PRECONDITION

To connect the proof rules on the Reach predicate with the reachability
condition of the previous section, we proved the following theorem in PVS:

reachability[D,E,L,Act:TYPE, tau:Act, m,n:nat]: THEORY BEGIN

IMPORTING CONESFOCI METHOD[D,E,L,Act,tau,m,n],

PRECONDITION[Act,D,L,m,tau]

I,fc: VAR [D->bool] X: VAR LPE[Act,D,L,m,tau] d: VAR D

REACH CRIT: LEMMA invariant(L)(I) AND Reach(Step(L,tau))(I,fc)

IMPLIES (FORALL d:Reachable(L)(d) IMPLIES RC(L,fc)(d))

END reachability

This finishes the formalization of the cones and foci method in PVS. We
view this as an important step. First of all, this part is protocol independent,
so it can be reused in different protocol verifications. Second, it provides a rigor-
ous formalization of the meta-theory. For a concrete protocol specification and
implementation, and given invariants, mapping functions and focus condition,
all proof obligations can be generated automatically and proved with relatively
little effort. The theorem CONESFOCI in Section 3.3.3 states that this is suffi-
cient to prove that the implementation is correct w.r.t. the specification modulo
branching bisimulation. No additional axioms are used besides the standard
PVS library. The files of the PVS formalization of the cones and foci method
can be found at http://www.cwi.nl/~vdpol/conesfoci/.

3.4 Application to the CABP

Groote and Springintveld [79] proved correctness of the Concurrent Alternating
Bit Protocol (CABP) [105] as an application of their cones and foci method.
Here we redo their correctness proof using our version of the cones and foci
method, where in contrast to [79] we can take τ -loops in our stride. We also

3.4 Application to the CABP 35

illustrate our mechanical proof framework and our approach to the reachability
analysis of focus points by this case study.

3.4.1 Informal description

In the CABP, data elements d1, d2, . . . are communicated from a data transmit-
ter S to a data receiver R via a lossy channel, so that a message can be corrupted
or lost. Therefore, acknowledgments are sent from R to S via a lossy channel.
In the CABP, sending and receiving of acknowledgments is decoupled from R
and S, in the form of separate components AS and AR, respectively, where AS
autonomously sends acknowledgments to AR.

S attaches a bit 0 to data elements d2k−1 and a bit 1 to data elements
d2k , and AS sends back the attached bit to acknowledge reception. S keeps on
sending a pair (di, b) until AR receives the bit b and succeeds in sending the
message ac to S; then S starts sending the next pair (di+1, 1 − b). Alternation
of the attached bit enables R to determine whether a received datum is really
new, and alternation of the acknowledging bit enables AR to determine which
datum is being acknowledged.

The CABP contains unbounded internal behavior, which occurs when a
channel eternally corrupts or loses the same datum or acknowledgment. The
fair abstraction paradigm [8], which underlies branching bisimulation, says that
such infinite sequences of faulty behavior do not exist in reality, because the
chance of a channel failing infinitely often is zero. Groote and Springintveld [79]
defined a pre-abstraction function to hide all τ ’s except those that are executed
in focus points, and used Koomen’s fair abstraction rule [8] to eliminate the
remaining τ -loops. In our adaptation of the cones and foci method, neither
pre-abstraction nor Koomen’s fair abstraction rule are needed.

The structure of the CABP is shown in Figure 3.1. The CABP system is
built from six components.

S is a data transmitter, which reads a datum from port 1 and transmits such
a datum repeatedly via channel K, until an acknowledgment ac regarding
this datum is received from AR.

K is a lossy data transmission channel, which transfers data from S to R.
Either it delivers the datum correctly, or it can make two sorts of mistakes:
lose the datum or change it into a checksum error ce.

R is a data receiver, which receives data from K, sends freshly received data
into port 2, and sends an acknowledgment to AS via port 5.

AS is an acknowledgment transmitter, which receives an acknowledgment from
R and repeatedly transmits it via L to AR.

L is a lossy acknowledgment transmission channel, which transfers acknowl-
edgments from AS to AR. Either it delivers the acknowledgment correctly,
or it can make two sorts of mistakes: lose the acknowledgment or change
it into an acknowledgment error ae.

36 Chapter 3 Cones and Foci: A Mechanical Proof Framework

RS K1 2

58

3 4

AR ASL 67

Figure 3.1: The structure of the CABP

AR is an acknowledgment receiver, which receives acknowledgments from L
and passes them on to S.

The components can perform read rn(...) and send sn(...) actions to trans-
port data through port n. A read and a send action over the same port n can
synchronize into a communication action cn(...).

3.4.2 µCRL specification

We give descriptions of the data types and each component’s specification in
µCRL, which were originally presented in [79]. For convenience of notation, in
each summand of the µCRL specifications below, we only present the parameters
whose values are changed, e.g. d/ds denotes that the new value of the parameter
ds is d.

We use the sort Nat of natural numbers, and the sort Bit with elements b0
and b1 with an inversion function inv : Bit → Bit to model the alternating bit.
The sortD contains the data elements to be transferred. The sort Frame consists
of pairs 〈d, b〉 with d:D and b:Bit. Frame also contains two error messages, ce for
checksum error and ae for acknowledgment error. eq : S × S → Bool coincides
with the equality relation between elements of the sort S.

The data transmitter S reads a datum at port 1 and repeatedly transmits
the datum with a bit bs attached at port 3 until it receives an acknowledgment
ac through port 8; after that, the bit-to-be-attached is inverted. The parameter
is is used to model the state of the data transmitter.

Definition 3.4.1 (Data transmitter)

S(ds:D, bs:Bit, is:Nat)

=
∑

d:D r1(d)·S(d/ds, 2/is) � eq(is, 1) � δ

+ (s3(〈ds, bs〉)·S() + r8(ac)·S(inv(bs)/bs, 1/is)) � eq(is, 2) � δ

3.4 Application to the CABP 37

The data transmission channel K reads a datum at port 3. It can do one of
three things: it can deliver the datum correctly via port 4, lose the datum, or
corrupt the datum by changing it into ce. The non-deterministic choice between
the three options is modeled by the action j. bk is the attached alternating bit
for K. And its state is modeled by the parameter ik.

Definition 3.4.2 (Data transmission channel)

K(dk:D, bk:Bit, ik:Nat)

=
∑

d:D

∑
b:Bit r3(〈d, b〉)·K(d/dk, b/bk, 2/ik) � eq(ik, 1) � δ

+ (j·K(1/ik) + j·K(3/ik) + j·K(4/ik)) � eq(ik, 2) � δ

+ s4(〈dk , bk〉)·K(1/ik) � eq(ik, 3) � δ

+ s4(ce)·K(1/ik) � eq(ik, 4) � δ

The data receiver R reads a datum at port 4. If the datum is not a checksum ce
and if the bit attached is the expected bit, it sends the received datum into port
2, sends an acknowledgment ac via port 5, and inverts the bit-to-be-expected
is inverted. If the datum is ce or the bit attached is not the expected one, the
datum is simply ignored. The parameter ir is used to model the state of the
data receiver.

Definition 3.4.3 (Data receiver)

R(dr:D, br:Bit, ir:Nat)

=
∑

d:D r4(〈d, br〉)·R(d/dr, 2/ir) � eq(ir, 1) � δ

+ (r4(ce) +
∑

d:D r4(〈d, inv(br)〉))·R() � eq(ir, 1) � δ

+ s2(dr)·R(3/ir) � eq(ir, 2) � δ

+ s5(ac)·R(inv(br)/br, 1/ir) � eq(ir, 3) � δ

The acknowledgment transmitter AS repeats sending its acknowledgment bit b′r
via port 6, until it receives an acknowledgment ac from port 5, after which the
acknowledgment bit is inverted.

Definition 3.4.4 (Acknowledgment transmitter)

AS(b′r:Bit) = r5(ac)·AS(inv(b′r)/b
′
r) + s6(b

′
r)·AS()

The acknowledgment transmission channel L reads an acknowledgment bit from
port 6. It non-deterministically does one of three things: deliver it correctly via
port 7, lose the acknowledgment, or corrupt the acknowledgment by changing
it to ae. The non-deterministic choice between the three options is modeled by
the action j. bl is the attached alternating bit for L. And its state is modeled
by the parameter il.

38 Chapter 3 Cones and Foci: A Mechanical Proof Framework

Definition 3.4.5 (Acknowledgment transmission channel)

L(bl:Bit, il:Nat)

=
∑

b:Bit r6(b)·L(b/bl, 2/il) � eq(il, 1) � δ

+ (j·L(1/il) + j·L(3/il) + j·L(4/il)) � eq(il, 2) � δ

+ s7(bl)·L(1/il) � eq(il, 3) � δ

+ s7(ae)·L(1/il) � eq(il, 4) � δ

The acknowledgment receiver AR reads an acknowledgment bit from port 7. If
the bit is the expected one, it sends an acknowledgment ac to the data trans-
mitter S via port 8, after which the bit-to-be-expected is inverted. Acknowledg-
ments errors ae or unexpected bits are ignored. And its state is modeled by the
parameter i′s.

Definition 3.4.6 (Acknowledgment receiver)

AR(b′s:Bit, i
′
s:Nat)

= r7(b
′
s)·AR(2/i′s) � eq(i′s, 1) � δ

+ (r7(ae) + r7(inv(b
′
s)))·AR() � eq(i′s, 1) � δ

+ s8(ac)·AR(inv(b′s)/b
′
s, 1/i

′
s) � eq(i′s, 2) � δ

The µCRL specification of the CABP is obtained by putting the six compo-
nents in parallel and encapsulating the internal actions at ports {3, 4, 5, 6, 7, 8}.
Synchronization between the components is modeled by communication actions
at connecting ports.

Definition 3.4.7 Let H denote {s3, r3, s4, r4, s5, r5, s6, r6, s7, r7, s8, r8}, and I
denote {c3, c4, c5, c6, c7, c8, j}.

CABP (d:D)

= τI(∂H (S(d, b0, 1) ‖ AR(b0, 1) ‖ K(d, b1, 1) ‖ L(b1, 1) ‖ R(d, b0, 1) ‖ AS(b1)))

Next the CABP is expanded to an LPE Sys . Note that the parameters
b′s (of AR) and b′r (of AS) are missing. The reason for this is that during
the linearization the communications at ports 6 and 7 enforce eq(b′s, bl) and
eq(b′r, bl).

Lemma 3.4.8 For all d:D we have

CABP (d) = Sys(d, b0, 1, 1, d, b0, 1, d, b1, 1, b1, 1)

3.4 Application to the CABP 39

where

Sys(ds:D, bs:Bit , is:Nat , i′s:Nat , dr:D, br:Bit , ir:Nat , dk:D, bk:Bit ,
ik:Nat , bl:Bit , il:Nat)

=
∑

d:D r1(d)·Sys(d/ds, 2/is) � eq(is, 1) � δ (1)

+ τ ·Sys(ds/dk, bs/bk, 2/ik) � eq(is, 2) ∧ eq(ik, 1) � δ (2)

+ (τ ·Sys(1/ik) + τ ·Sys(3/ik) + τ ·Sys(4/ik)) � eq(ik, 2) � δ (3)

+ τ ·Sys(dk/dr, 2/ir, 1/ik) � eq(ir, 1) ∧ eq(br, bk) ∧ eq(ik, 3) � δ (4)

+ τ ·Sys(1/ik) � eq(ir, 1) ∧ eq(br, inv(bk)) ∧ eq(ik, 3) � δ (5)

+ τ ·Sys(1/ik) � eq(ir, 1) ∧ eq(ik, 4) � δ (6)

+ s2(dr)·Sys(3/ir) � eq(ir, 2) � δ (7)

+ τ ·Sys(inv(br)/br, 1/ir) � eq(ir, 3) � δ (8)

+ τ ·Sys(inv(br)/bl, 2/il) � eq(il, 1) � δ (9)

+ (τ ·Sys(1/il) + τ ·Sys(3/il) + τ ·Sys(4/il)) � eq(il, 2) � δ (10)

+ τ ·Sys(1/il, 2/i
′
s) � eq(i′s, 1) ∧ eq(bl, bs) ∧ eq(il, 3) � δ (11)

+ τ ·Sys(1/il) � eq(i′s, 1) ∧ eq(bl, inv(bs)) ∧ eq(il, 3) � δ (12)

+ τ ·Sys(1/il) � eq(i′s, 1) ∧ eq(il, 4) � δ (13)

+ τ ·Sys(inv(bs)/bs, 1/is, 1/i
′
s) � eq(is, 2) ∧ eq(i′s, 2) � δ (14)

Proof. See [79]. �

The specification of the external behavior of the CABP is a one-datum buffer,
which repeatedly reads a datum at port 1, and sends out this same datum at
port 2.

Definition 3.4.9 The LPE of the external behavior of the CABP is

B(d:D, b:Bool) =
∑

d′:D r1(d
′)·B(d′,F) � b� δ + s2(d)·B(d,T) � ¬b� δ.

3.4.3 Verification using cones and foci

We apply our version of the cones and foci method to verify the CABP. Let Ξ
abbreviate D×Bit ×Nat ×Nat ×D×Bit ×Nat ×D×Bit ×Nat ×Bit ×Nat .
Furthermore, let ξ:Ξ denote (ds, bs, is, i

′
s, dr, br, ir, dk, bk, ik, bl, il). We list six

invariants for the CABP, which are taken from [79].

40 Chapter 3 Cones and Foci: A Mechanical Proof Framework

Definition 3.4.10

I1(ξ) ≡ eq(is, 1) ∨ eq(is, 2)
I2(ξ) ≡ eq(i′s, 1) ∨ eq(i′s, 2)
I3(ξ) ≡ eq(ik, 1) ∨ eq(ik, 2) ∨ eq(ik, 3) ∨ eq(ik, 4)
I4(ξ) ≡ eq(ir, 1) ∨ eq(ir, 2) ∨ eq(ir, 3)
I5(ξ) ≡ eq(il, 1) ∨ eq(il, 2) ∨ eq(il, 3) ∨ eq(il, 4)
I6(ξ) ≡ (eq(is, 1) ⇒ eq(bs, inv(bk)) ∧ eq(bs, br) ∧ eq(ds, dk)

∧ eq(ds, dr) ∧ eq(i
′
s, 1) ∧ eq(ir, 1))

∧ (eq(bs, bk) ⇒ eq(ds, dk))
∧ (eq(ir, 2) ∨ eq(ir, 3) ⇒ eq(ds, dr) ∧ eq(bs, br) ∧ eq(bs, bk))
∧ (eq(bs, inv(br)) ⇒ eq(ds, dr) ∧ eq(bs, bk))
∧ (eq(bs, bl) ⇒ eq(bs, inv(br)))
∧ (eq(i′s, 2) ⇒ eq(bs, bl)).

I1 ∼ I5 describe the range of the data parameters is, i
′
s, ik, ir, and il, re-

spectively. I6 expresses that each component in Figure 3.1 either has received
information about the datum being transmitted which it must forward, or did
not yet receive this information.

Lemma 3.4.11 I1, I2, I3, I4, I5 and I6 are invariants of Sys.

Proof. We need to show that the invariants are preserved by each of the
summands (1) − (14) in the specification of Sys . Invariants I1 − I5 are trivial
to prove. To prove I6, we divide I6 into its six parts:

I61(ξ) ≡ (eq(is, 1) ⇒ eq(bs, inv(bk)) ∧ eq(bs, br) ∧ eq(ds, dk)
∧ eq(ds, dr) ∧ eq(i

′
s, 1) ∧ eq(ir, 1))

I62(ξ) ≡ eq(bs, bk) ⇒ eq(ds, dk)
I63(ξ) ≡ eq(ir, 2) ∨ eq(ir, 3) ⇒ eq(ds, dr) ∧ eq(bs, br) ∧ eq(bs, bk)
I64(ξ) ≡ eq(bs, inv(br)) ⇒ eq(ds, dr) ∧ eq(bs, bk)
I65(ξ) ≡ eq(bs, bl) ⇒ eq(bs, inv(br))
I66(ξ) ≡ eq(i′s, 2) ⇒ eq(bs, bl).

We consider only seven summands in the specification of Sys; the other
summands trivially preserve I6. For the sake of presentation, we represent
eq(b1, inv(b2)) as ¬eq(b1, b2), where b1 and b2 range over the sort Bit.

1. Summand (1): I6 ∧ eq(is, 1) ⇒ I6(d/ds, 2/is).

I61(d/ds, 2/is) is straightforward. By eq(is, 1) and I61, we have eq(ir, 1),
¬eq(bs, bk), and eq(bs, br). By ¬eq(bs, bk), I62(d/ds, 2/is). By eq(ir, 1),
I63(d/ds, 2/is). eq(bs, br) implies I64(d/ds, 2/is). I65, I66(d/ds, 2/is) are
trivial.

2. Summand (2): I6 ∧ eq(is, 2) ∧ eq(ik, 1) ⇒ I6(ds/dk, bs/bk, 2/ik).

eq(is, 2) implies I61(ds/dk, bs/bk, 2/ik), I62(ds/dk, bs/bk, 2/ik) is straight-
forward. I63(ds/dk, bs/bk, 2/ik) and I64(ds/dk, bs/bk, 2/ik) follows imme-
diately from I63 and I64, respectively. I65, I66(ds/dk, bs/bk, 2/ik) are
trivial.

3.4 Application to the CABP 41

3. Summand (4): I6 ∧eq(ir, 1)∧eq(br, bk)∧eq(ik , 3) ⇒ I6(dk/dr, 2/ir, 1/ik).

Assuming eq(is, 1), by I61, it follows that ¬eq(bs, bk) and eq(bs, br). Hence,
¬eq(br, bk). This contradicts the condition eq(br, bk). ¬eq(is, 1) implies
I61(dk/dr, 2/ir, 1/ik). I64 implies eq(bs, br) ∨ eq(bs, bk), which together
with the condition eq(br, bk) yields eq(bs, br) ∧ eq(bs, bk). So I62 implies
eq(ds, dk). Hence, I63(dk/dr, 2/ir, 1/ik). By eq(bs, br), it follows that
I64(dk/dr, 2/ir, 1/ik). I62, I65, I66(dk/dr, 2/ir, 1/ik) are trivial.

4. Summand (8): I6 ∧ eq(ir, 3) ⇒ I6(inv(br)/br, 1/ir).

Assuming eq(is, 1), by I61, we have eq(ir, 1), which contradicts the con-
dition eq(ir, 3). So I61(inv(br)/br, 1/ir). I63(inv(br)/br, 1/ir) is straight-
forward. By eq(ir, 3) and I63, we have eq(ds, dr) and eq(bs, bk). Hence,
I64(inv(br)/br, 1/ir). By eq(ir, 3) and I63, we have eq(bs, br), so I65 im-
plies ¬eq(bs, bl). Hence, I65(inv(br)/br, 1/ir). I62, I66(inv(br)/br, 1/ir)
are trivial.

5. Summand (9): I6 ∧ eq(il, 1) ⇒ I6(inv(br)/bl, 2/il),

I65(inv(br)/bl, 2/il) is straightforward. If eq(i′s, 2), it follows I66 that
eq(bs, bl), so by I65 we have ¬eq(bl, br). Hence, I66(inv(br)/bl, 2/il).
I61 ∼ I64(inv(br)/bl, 2/il) are trivial.

6. Summand (11): I6 ∧ eq(i
′
s, 1) ∧ eq(bl, bs) ∧ eq(il, 3) ⇒ I6(1/il, 2/i

′
s).

By eq(bl, bs) and I65, we have ¬eq(bs, br). So by I61, ¬eq(is, 1). Hence,
I61(1/il, 2/i

′
s). eq(bl, bs) implies I66(1/il, 2/i

′
s). I62 ∼ I65(1/il, 2/i

′
s) are

trivial.

7. Summand (14): I6 ∧ eq(is, 2) ∧ eq(i′s, 2) ⇒ I6(inv(bs)/bs, 1/is, 1/i
′
s).

To prove I61(inv(bs)/bs, 1/is, 1/i
′
s), we need to show that eq(bs, bk) ∧

¬eq(br, bs) ∧ eq(ds, dk) ∧ eq(ds, dr) ∧ eq(ir, 1). As eq(i′s, 2), by I66 we
have eq(bs, bl), so by I65, we have ¬eq(bs, br). By I64, it follows that
eq(ds, dr) ∧ eq(bs, bk). As eq(bs, bk), by I62, eq(ds, dk). By I63 and I4,
¬eq(bs, br) implies eq(ir, 1). Hence, I61(inv(bs)/bs, 1/is, 1/i

′
s). I62 ∼

I66(inv(bs)/bs, 1/is, 1/i
′
s) are trivial.

�

We define the focus condition (see Definition 3.2.1) for Sys as the disjunction
of the conditions of summands in the LPE in Definition 3.4.8 that deal with an
external action; these summands are (1) and (7). (Note that this differs from the
prescribed focus condition in [79], which would be the negation of the disjunction
of conditions of the summands that deal with a τ .)

Definition 3.4.12 The focus condition for Sys is

FC (ξ) = eq(is, 1) ∨ eq(ir, 2).

42 Chapter 3 Cones and Foci: A Mechanical Proof Framework

We proceed to prove that each state satisfying the invariants I1 − I6 can
reach a focus point (see Definition 3.2.1) by a sequence of τ -transitions.

Lemma 3.4.13 (Reachability of focus points) For each ξ:Ξ together with∧6
n=1 In(ξ), there is a ξ̂:Ξ such that FC (ξ̂) and ξ

τ
→ · · ·

τ
→ ξ̂ in Sys.

Proof. The case FC (ξ) is trivial. Let ¬FC (ξ); in view of I1 and I4, this implies
eq(is, 2)∧ (eq(ir, 1)∨ eq(ir, 3)). In case eq(is, 2)∧ eq(ir, 3), by summand (8) we
can reach a state with eq(is, 2)∧eq(ir, 1). From a state with eq(is, 2)∧eq(ir, 1),
by I3 and summands (2), (3) and (6), we can reach a state where eq(is, 2) ∧
eq(ir, 1) ∧ eq(ik, 3). We distinguish two cases.

1. eq(br, bk).

By summand (4) we can reach a focus point.

2. eq(br, inv(bk)).

If i′s = 2, then by summand (14) we can reach a focus point. So by I2

we can assume that i′s = 1. By summands (5), (2) and (3), we can reach
a state where eq(is, 2) ∧ eq(i′s, 1) ∧ eq(ir, 1) ∧ eq(ik, 3) ∧ eq(br, inv(bk)) ∧
eq(bk, bs). By I5 and summands (10), (9) and (13) we can reach a state
where eq(is, 2)∧eq(i′s, 1)∧eq(ir, 1)∧eq(ik, 3)∧eq(br, inv(bk))∧eq(bk, bs)∧
eq(il, 3). If eq(bl, bs), then by summands (11) and (14) we can reach a focus
point. Otherwise, eq(bl, inv(bs)). Since eq(bk, bs) and eq(br, inv(bk)), we
have eq(bl, br). By summand (12), we can reach a state where eq(is, 2) ∧
eq(i′s, 1) ∧ eq(ir, 1) ∧ eq(ik, 3) ∧ eq(br, inv(bk)) ∧ eq(bk, bs) ∧ eq(il, 1)∧
eq(bl, inv(bs)) ∧ eq(bl, br). Then by summand (9) we can reach a state
where eq(bl, bs), since bl is replaced by inv(br). Then by summands (10),
(11) and (14), we can reach a focus point.

Our completely formal proof in PVS has many more steps. The main steps of
the proof using the rules in Definition 3.2.7 can be found in Section 3.4.4. �

We define the state mapping φ : Ξ → D × Bool (see Definition 3.2.2) by

φ(ξ) = 〈ds, eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)〉.

Intuitively, φ maps those states to T in which R is awaiting a datum that
still has to be received by S. This is the case if either S is awaiting a datum
(eq(is, 1)), or R has sent out a datum that was not yet acknowledged to S
(eq(ir, 3) ∨ ¬eq(bs, br)). Note that φ is independent of i′s, dr, dk, bk, ik, bl, il; we
write φ(ds, bs, is, br, ir).

Theorem 3.4.14 For all d:D and b0, b1:Bit ,

Sys(d, b0, 1, 1, d, b0, 1, d, b1, 1, b1, 1) ↔b B(d,T).

3.4 Application to the CABP 43

Proof. It is easy to check that ∧6
n=1In(d, b0, 1, 1, d, b0, 1, d, b1, 1, b1, 1).

We obtain the following matching criteria (see Definition 3.2.3). For class
I, we only need to check the summands (4), (8) and (14), as the other nine
summands that involve an initial action leave the values of the parameters in
φ(ds, bs, is, br, ir) unchanged.

1. eq(ir, 1)∧eq(br , bk)∧eq(ik , 3) ⇒ φ(ds, bs, is, br, ir) = φ(ds, bs, is, br, 2/ir)

2. eq(ir, 3) ⇒ φ(ds, bs, is, br, ir) = φ(ds, bs, is, inv(br)/br, 1/ir)

3. eq(is, 2) ∧ eq(i′s, 2) ⇒ φ(ds, bs, is, br, ir) = φ(ds, inv(bs)/bs, 1/is, br, ir)

The matching criteria for the other four classes are produced by summands (1)
and (7). For class II we get:

1. eq(is, 1) ⇒ eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)

2. eq(ir, 2) ⇒ ¬(eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br))

For class III we get:

1. (eq(is, 1) ∨ eq(ir, 2)) ∧ (eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)) ⇒ eq(is, 1)

2. (eq(is, 1) ∨ eq(ir, 2)) ∧ ¬(eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)) ⇒ eq(ir, 2)

For class IV we get:

1. ∀d:D (eq(is, 1) ⇒ d = d)

2. eq(ir, 2) ⇒ dr = ds

Finally, for class V we get:

1. ∀d:D (eq(is, 1) ⇒ φ(d/ds, bs, 2/is, br, ir) = 〈d,F〉)

2. eq(ir, 2) ⇒ φ(ds, bs, is, br, 3/ir) = 〈ds,T〉

We proceed to prove the matching criteria.

I.1 Let eq(ir, 1). Then

φ(ds, bs, is, br, ir) = 〈ds, eq(is, 1) ∨ eq(1, 3) ∨ ¬eq(bs, br)〉
= 〈ds, eq(is, 1) ∨ eq(2, 3) ∨ ¬eq(bs, br)〉
= φ(ds, bs, is, br, 2/ir).

I.2 Let eq(ir, 3). Then by I6, eq(bs, br). Hence,

φ(ds, bs, is, br, ir) = 〈ds, eq(is, 1) ∨ eq(3, 3) ∨ ¬eq(bs, br)〉
= 〈ds,T〉
= 〈ds, eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, inv(br))〉
= φ(ds, bs, is, inv(br)/br, 1/ir).

44 Chapter 3 Cones and Foci: A Mechanical Proof Framework

I.3 Let eq(i′s, 2). I6, eq(bs, bl) together with I6 yield eq(bs, inv(br)). Hence,

φ(ds, bs, is, br, ir) = 〈ds, eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)〉
= 〈ds,T〉
= 〈ds, eq(1, 1) ∨ eq(ir, 3) ∨ ¬eq(inv(bs), br)〉
= φ(ds, inv(bs)/bs, 1/is, br, ir).

II.1 Trivial.

II.2 Let eq(ir, 2). Then clearly ¬eq(ir, 3), and by I6, eq(bs, br). Furthermore,
according to I6, eq(is, 1) ⇒ eq(ir, 1), so eq(ir, 2) also implies ¬eq(is, 1).

III.1 If ¬eq(ir, 2), then eq(is, 1)∨ eq(ir, 2) implies eq(is, 1). If eq(ir, 2), then by
I6, eq(bs, br), so that eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br) implies eq(is, 1).

III.2 If ¬eq(is, 1), then eq(is, 1) ∨ eq(ir, 2) implies eq(ir, 2). If eq(is, 1), then
¬(eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)) is false, so that it implies eq(ir, 2).

IV.1 Trivial.

IV.2 Let eq(ir, 2). Then by I6, eq(dr, ds).

V.1 Let eq(is, 1). Then by I6, eq(ir, 1) and eq(bs, br). So for any d:D,

φ(d/ds, bs, 2/is, br, ir) = 〈d, eq(2, 1) ∨ eq(1, 3) ∨ ¬eq(bs, br)〉
= 〈d,F〉.

V.2
φ(ds, bs, is, br, 3/ir) = 〈ds, eq(is, 1) ∨ eq(3, 3) ∨ ¬eq(bs, br)〉

= 〈ds,T〉.

Note that φ(d, b0, 1, b0, 1) = 〈d,T〉. So by Theorem 3.2.4 and Lemma 3.4.13,

Sys(d, b0, 1, 1, d, b0, 1, d, b1, 1, b1, 1) ↔b B(d,T).

�

3.4.4 Illustration of the proof framework

Let us illustrate the mechanical proof framework set up in Section 3.3 on the
verification of the CABP as it was described in Section 3.4.3. The purpose of
this section is to show how the mechanical framework can be instantiated with
a concrete protocol. A second goal is to illustrate in more detail how we can
use the proof rules (see Lemma 3.2.7) for reachability, to formally prove in PVS
that focus points are always reachable.

To apply the generic theory, we use the PVS mechanism of theory instantia-
tion. For instance, the theory LPE was parameterized by sets of actions, states,
et al. This theory will be imported, using the set of actions, states et al. from
the linearized version of CABP, which we have to define first. To this end we
start a new theory, parameterized by an arbitrary type of data elements (D,
with special element d0:D).

3.4 Application to the CABP 45

Defining the LPEs. The starting point will be the linearized version of
the CABP, represented by Sys in Lemma 3.4.8. The type cabp state is de-
fined as a record of all state parameters. Note that we use the predefined
PVS-types nat and bool (bool is also used to represent sort Bit). The type
cabp act is defined as an abstract data type. The syntax below introduces
constructors (r1,s2:[D->cabp act] and tau:cabp act), recognizer predicates
(r1?,s2?,tau?:[cabp act->bool]), and another destructors (d:[(r1?)->D]
and d:[(r2?)->D]). Subsequently we import the theory LPE with the corre-
sponding parameters. The LPE for the implementation of the CABP contains
18 summands (note that summands (3) and (10) in Lemma 3.4.8 each represent
three summands). Note that the only local parameter in this LPE that is bound
by

∑
has type D.

CABP[D:TYPE+,d0:D]: THEORY BEGIN

cabp state:TYPE= [#ds:D,bs:bool,is:nat,i1s:nat,dr:D,br:bool,

ir:nat,dk:D,bk:bool,ik:nat,bl:bool,il:nat#]

cabp act:DATATYPE BEGIN

r1(d:D):r1? s2(d:D):s2? tau:tau?

END cabp act

IMPORTING LPE[cabp act,cabp state,D,18,tau]

The next step is to define the implementation of the CABP as an LPE
in PVS. It consists of an initial vector, and a list of summands, indexed by
LAMBDA i. The LAMBDA (S,d) indicates the dependency of each summand on
the state and the local variables. Note that given state S, S‘x denotes the value
of parameter x in S. The notation S WITH [x := v] denotes the same state as
S except the value of field x which is set to v. We only display the summands
corresponding to summand (1) and (14) of Sys.

i:VAR below(18) S:VAR cabp state d:VAR D

cabp: LPE= (#

init:= (#ds:=d0,bs:=FALSE,is:=1,i1s:=1,dr:=d0,

br:=FALSE,ir:=1,dk:=d0,bk:=TRUE,ik:=1,bl:=TRUE,il:=1#),

sums:=LAMBDA i: LAMBDA (S,d):COND

i=0->(#act:=r1(d),guard:=S‘is=1,

next:=S WITH [ds:=d,is:=2]#),

...

i=17->(#act:=tau,guard:=S‘is=2 AND S‘i1s=2,

next:=S WITH [bs:=NOT S‘bs,is:=1,i1s:=1]#)

ENDCOND#)

In a similar way, the desired external behavior of the CABP is presented as
a one-datum buffer. The representation of the LPE B from Definition 3.4.9 in
PVS is:

46 Chapter 3 Cones and Foci: A Mechanical Proof Framework

buf state:TYPE=[#d:D,b:bool#]

B:VAR buf state d1:VAR D j:VAR below(2)

IMPORTING LPE[cabp act,buf state,D,2,tau]

buffer: LPE=

(#init:=(#d:=d0,b:=TRUE#),

sums:=LAMBDA j: LAMBDA (B,d1):COND

j=0->(#act:=r1(d1),guard:=B‘b,next:=(#d:=d1,b:=FALSE#)#),

j=1->(#act:=s2(B‘d),guard:=NOT B‘b,next:=B

WITH [b:=TRUE]#)

ENDCOND#)

Invariants, state mapping, focus points. The next step is to define the
ingredients for the cones and foci method. We need to define invariants, a state
mapping and focus points. In PVS these are all functions that take state vectors
as input. We only show a snapshot:

IMPORTING invariant[cabp act,cabp state,D,18]

I1(S):bool= S‘is=1 OR S‘is=2

...

I64(S):bool= (S‘bs = NOT S‘br) IMPLIES

S‘ds=S‘dr AND S‘bs=S‘bk

I6(S):bool=I61(S) AND ... AND I66(S)

IMPORTING CONESFOCI METHOD[cabp state,buf state,D,cabp act,tau,18,2]

FC(S):bool= S‘is=1 OR S‘ir=2

h(S):buf state=(#d:=S‘ds,b:=S‘is=1 OR S‘ir=3 OR NOT S‘bs=S‘br#)

cabp inv:LEMMA invariant(cabp)(I1 AND I2 AND I3 AND I4 AND I5 AND I6)

matching:LEMMA Reachable(cabp)(S) IMPLIES MC(cabp,buffer,k,h,FC)(S)

The proof of the reachability criterion will be discussed in the next para-
graph. The correctness of the invariants and the matching criteria were proved
already (see Section 3.4). These proofs could be formalized in PVS in a straight-
forward fashion. The proof script follows a fixed pattern: first we unfold the
definitions of LPE and invariants or matching criteria. Then we use rewriting
to generate a finite conjunction from the quantification FORALL i:below(n).
Subsequently (using the PVS tactic THEN*), we apply the powerful PVS tactic
(GRIND) to the subgoals. Sometimes a few subgoals remain, which are then
proved manually.

Reachability of focus points. We formally prove Lemma 3.4.13, which
states that each reachable state of the CABP can reach a focus point by a
sequence of τ -transitions using the rules in Lemma 3.2.7. This corresponds
to the theorem CABP RC in the PVS part below. Using the general theorems
CONESFOCI and REACH CRIT, we conclude from the specific theorems cabp inv,
matching and CABP RC that CABP is indeed CORRECT w.r.t. the one-datum buffer
specification.

3.4 Application to the CABP 47

IMPORTING PRECONDITION[cabp act,cabp state,D,18]

...

CABP RC:LEMMA

Reach(step(cabp,tau))(I1 AND I2 AND I3 AND I4 AND I5,FC)

CABP CORRECT:

THEOREM brbisimilar(lpe2lts(cabp),lpe2lts(buffer))

END CABP

We now explain the structure of the proof of CABP RC. This proof is based on
the proof rules for reachability, introduced in Sections 3.2.2 and 3.3.4. It requires
some manual work, viz. the identification of the intermediate predicates, and
characterizing the reachable set of states after a number of steps. Each step
corresponds to a separate lemma in PVS. The atomic steps are proved by the
precondition rule (semi-automatically). An example of such a lemma in PVS is:

Q2(S):bool = S‘ir=1 AND S‘is=2 AND S‘ik=2 AND S‘i1s=1

AND S‘bk = S‘bs

Q3(S):bool = S‘ir=1 AND S‘is=2 AND S‘ik=3 AND S‘i1s=1

AND S‘bk = S‘bs

Q2 to Q3: LEMMA Reach(Tau)(Q2,Q3)

These basic steps are combined by using mainly the transitivity rule and the dis-
junction rule. We now provide the complete list of the intermediate predicates,
together with the used proof rules. We do not display the use of implication and
invariant rules, but of course the PVS proofs contain all details. The fragment
before corresponds to the third step of item (5) below, where summand (3) is
used to increase ik.

1. {ir = 1 ∧ is = 2 ∧ ik = 4} � {ir = 1 ∧ is = 2 ∧ ik = 1} �

{ir = 1 ∧ is = 2 ∧ ik = 2} � {ir = 1 ∧ is = 2 ∧ ik = 3}
Using the precondition rule, on summands (6), (2) and (3), respectively.

2. {I3 ∧ ir = 1 ∧ is = 2} � {ir = 1 ∧ is = 2 ∧ ik = 3}
Using the disjunction rule with ik = 1 ∨ ik = 2 ∨ ik = 3 ∨ ik = 4, and the
transitivity rule on the results of step 1.

3. {ir = 1 ∧ is = 2 ∧ ik = 3 ∧ br = bk} � FC
Using the precondition rule on summand (4).

4. {ir = 1 ∧ is = 2 ∧ ik = 3 ∧ i′s = 2} � FC
Using the precondition rule on summand (14).

5. {ir = 1 ∧ is = 2 ∧ ik = 3 ∧ i′s = 1 ∧ br 6= bk} �

{ir = 1 ∧ is = 2 ∧ ik = 1 ∧ i′s = 1} �

{ir = 1 ∧ is = 2 ∧ ik = 2 ∧ i′s = 1 ∧ bk = bs} �

{ir = 1 ∧ is = 2 ∧ ik = 3 ∧ i′s = 1 ∧ bk = bs} =: Q
Using the precondition rule on summands (5), (2) and (3).

48 Chapter 3 Cones and Foci: A Mechanical Proof Framework

6. {Q ∧ il = 2} � {Q ∧ il = 1};
{Q ∧ il = 4} � {Q ∧ il = 1};
{Q ∧ il = 3 ∧ bl 6= bs} � {Q ∧ il = 1} � {Q ∧ il = 2 ∧ bl 6= br} �

{Q ∧ il = 3 ∧ bl 6= br}
Using the precondition rule on summands (10), (13), (12), (9) and (10),
respectively.

7. {Q ∧ (il ∈ {1, 2, 4} ∨ (il = 3 ∧ bl 6= bs))} � {Q ∧ il = 3 ∧ bl 6= br}.
Using the disjunction rule and the transitivity rule on the results of step
6.

8. {Q ∧ il = 3 ∧ bl = bs} � {ir = 1 ∧ is = 2 ∧ ik = 3 ∧ i′s = 2} � FC .
Using the precondition rule on summand (11), and then the transitivity
rule with step 4.

9. {Q ∧ I5} � FC .
By I5, il ∈ {1, 2, 3, 4}. So we can distinguish the cases il ∈ {1, 2, 4},
il = 3 ∧ bl 6= bs and il = 3 ∧ bl = bs. In all but the last case, we arrive
at a situation where bk = bs ∧ bl 6= br (by step 7). Note that this implies
bk = br ∨ bl = bs. So we can use case distinction again, and reach the
focus condition via step 3 or step 8.

10. {ir = 1 ∧ is = 2 ∧ ik = 3 ∧ I2 ∧ I5} � FC .
From I2 and the disjunction rule we can distinguish the cases br = bk,
i′s = 2 and i′s = 1 ∧ br 6= bk. We solve them by the results of step 3, step
4, and transitivity of 5 and 9, respectively.

11. {ir = 3 ∧ is = 2} � {ir = 1 ∧ is = 2}.
Using the precondition rule on summand (8).

12. I1 ∧ I2 ∧ I3 ∧ I4 ∧ I5 � FC .
Using the invariants I1 and I4, we can distinguish the following cases:

• is = 1 or is = 2 ∧ ir = 2 (both reach FC in zero steps);

• is = 2 ∧ ir = 3 (leads to the next case by step 11);

• is = 2 ∧ ir = 1. This leads to is = 2 ∧ ir = 1 ∧ ik = 3 by step 2 and
then to FC by step 10.

This finishes the complete mechanical verification of the CABP in PVS using
the cones and foci method. The files of the verification of the CABP in PVS
can be found at http://www.cwi.nl/~vdpol/conesfoci/.

3.5 Conclusions

In this chapter, we have developed a mechanical framework for protocol verifica-
tion, based on the cones and foci method. We summarize our main contribution
as follows:

3.5 Conclusions 49

• We generalized the original cones and foci method [79]. Compared to the
original one, our method is more generally applicable, in the sense that
it can deal with τ -loops without requiring a cumbersome treatment to
eliminate them.

• We presented a set of rules to support the reachability analysis of focus
points. They have been proved to be quite powerful in two case studies.

• We formalized the complete cones and foci method in PVS.

The feasibility of this mechanical framework has been illustrated by the
verification of the CABP. We are confident that the framework forms a solid
basis for mechanical protocol verification. For instance, the same framework
has been applied to the verification of a sliding window protocol in µCRL (see
Chapter 4), which we consider a true milestone in verification efforts using
process algebra.

The foci and cones method provides a systematic approach to protocol ver-
ification. It allows for fully rigorous correctness proofs in a general setting with
possibly infinite state spaces (i.e. with arbitrary data, arbitrary window size,
et al.). The method requires intelligent manual steps, such as the invention of
invariants, a state mapping, and the focus criterion. However, the method is
such that after these creative parts a number of verification conditions can be
generated and proved (semi-)automatically. So the strength of the mechanical
framework is that one can focus on the creative steps, and check the tedious
parts by a theorem prover. Yet, a complete machine-checked proof is obtained,
because the meta-theory has also been proof-checked in a generic manner. We
experienced that many proofs and proof scripts can be reused after small changes
in the protocol, or after a change in the invariants. Actually, in some cases the
PVS theorem prover assisted in finding the correct invariants.

50 Chapter 3 Cones and Foci: A Mechanical Proof Framework

Chapter 4

Verifying a Sliding Window Protocol in

µCRL

4.1 Introduction

Sliding window protocols [30] (SWPs) ensure successful transmission of messages
from a sender to a receiver through a medium, in which messages may get
lost. Their main characteristic is that the sender does not wait for an incoming
acknowledgment before sending next messages, for optimal use of bandwidth.
This is the reason why many data communication systems include the SWP, in
one of its many variations.

In SWPs, both the sender and the receiver maintain a buffer. In practice
the buffer at the receiver is often much smaller than at the sender, but here we
make the simplifying assumption that both buffers can contain up to n messages
(n > 0). By providing the messages with sequence numbers, reliable in-order
delivery without duplications is guaranteed. The sequence numbers can be taken
modulo 2n (and not less, see [165] for a nice argument). The messages at the
sender are numbered from i to i+n (modulo 2n); this is called a window. When
an acknowledgment reaches the sender, indicating that k messages have arrived
correctly, the window slides forward, so that the sending buffer can contain
messages with sequence numbers i+ k to i + k + n (modulo 2n). The window
of the receiver slides forward when the first element in this window is passed on
to the environment.

Within the process algebraic community, SWPs have attracted much at-
tention, because their precise formal verification turned out to be surprisingly
difficult. We provide a comparison with verifications of SWPs from the liter-
ature in Section 4.2, and restrict ourselves here to the context in which this
chapter was written. After the advent of process algebra in the early eighties of
last century, it was observed that simple protocols, such as the alternating bit
protocol, could readily be verified. In an attempt to show that more difficult
protocols could also be dealt with, SWPs were considered. Middeldorp [125]
and Brunekreef [25] gave specifications in ACP [16] and PSF [123], respectively.
Vaandrager [171], Groenveld [68], van Wamel [176] and Bezem and Groote [19]

51

52 Chapter 4 Verifying a Sliding Window Protocol in µCRL

manually verified one-bit SWPs, in which the size of the sending and receiving
window is one.

Starting in 1990, we attempted to prove the most complex SWP from [165]
(not taking into account additional features such as duplex message passing
and piggybacking) correct using µCRL, which is a suitable process algebraic
formalism for such purposes. This turned out to be unexpectedly hard, and
has led to the development of new proof methods for protocol verification. We
therefore consider the current chapter as a true milestone in process algebraic
verification.

Our first observation was that the external behavior of the protocol, as
given in [165], was unclear. We adapted the SWP such that it nicely behaves
as a queue of capacity 2n. The second observation was that the SWP of [165]
contained a deadlock [69, Stelling 7], which could only occur after at least n
messages were transmitted. This error was communicated to Tanenbaum, and
has been repaired in more recent editions of [165]. Another bug in the µCRL
specification of the SWP was detected by means of a model checking analysis.
A first attempt to prove the resulting SWP correct led to the verification of a
bakery protocol [71], and to the development of the cones and foci proof method
[79, 54]. This method plays an essential role in the proof in the current chapter,
and has been used to prove many other protocols and distributed algorithms
correct. But the correctness proof required an additional idea, already put
forward by Schoone [154], to first perform the proof with unbounded sequence
numbers, and to separately eliminate modulo arithmetic.

We present a specification in µCRL of a SWP with buffer size 2n and win-
dow size n, for arbitrary n. The medium between the sender and the receiver
is modeled as a lossy queue of unbounded capacity. We manually prove that
the external behavior of this protocol is branching bisimilar [64] to a FIFO
queue of capacity 2n. This proof is entirely based on the axiomatic theory
underlying µCRL and the axioms characterizing the data types. It implies
both safety and liveness of the protocol (the latter under the assumption of
fairness). First, we linearize the specification, meaning that we get rid of par-
allel operators. Moreover, communication actions are stripped from their data
parameters. Then we eliminate modulo arithmetic, using the proof principle
CL-RSP [20]. Finally, we apply the cones and foci technique, to prove that
the linear specification without modulo arithmetic is branching bisimilar to a
FIFO queue of capacity 2n. All lemmas for the data types, all invariants and
all correctness proofs have been checked using PVS. The PVS files are available
via http://www.cwi.nl/~pangjun/swp/.

A concise overview of other verifications of SWPs is presented in Section
4.2. Many of these verifications deal with either unbounded sequence numbers,
in which case the intricacies of modulo arithmetic disappear, or a fixed finite
window size. The papers that do treat arbitrary finite window sizes in most
cases restrict to safety properties.

4.2 Related Work 53

Outline of the chapter. This chapter is set up as follows. Section 4.2 gives
an overview of related work on verifying SWPs. Section 4.3 introduces the
proof techniques of µCRL used in this chapter. In Section 4.4, the data types
needed for specifying the SWP and its external behavior are presented. Section
4.5 features the µCRL specifications of the SWP and its external behavior. In
Section 4.6, three consecutive transformations are applied to the specification of
the SWP, to linearize the specification, eliminate arguments of communication
actions, and get rid of modulo arithmetic. In Section 4.7, properties of the data
types and invariants of the transformed specification are proved. In Section 4.8,
it is proved that the three transformations preserve branching bisimulation, and
that the transformed specification behaves like a FIFO queue. We conclude this
chapter in Section 4.9.

4.2 Related Work

Sliding window protocols have attracted considerable interest from the formal
verification community. In this section we present an overview. Many of these
verifications deal with unbounded sequence numbers, in which case modulo
arithmetic is avoided, or with a fixed finite window size. The papers that do
treat arbitrary finite window sizes mostly restrict to safety properties.

Infinite window size Stenning [163] studied a SWP with unbounded se-
quence numbers and an infinite window size, in which messages can be lost,
duplicated or reordered. A timeout mechanism is used to trigger retransmis-
sion. Stenning gave informal manual proofs of some safety properties. Knuth
[103] examined more general principles behind Stenning’s protocol, and manu-
ally verified some safety properties. Hailpern [82] used temporal logic to formu-
late safety and liveness properties for Stenning’s protocol, and established their
validity by informal reasoning. Jonsson [97] also verified both safety and live-
ness properties of the protocol, using temporal logic and a manual compositional
verification technique.

Fixed finite window size Richier et al. [146] specified a SWP in a process
algebra based language Estelle/R, and verified safety properties for window size
up to eight using the model checker Xesar. Madelaine and Vergamini [119] spec-
ified a SWP in LOTOS, with the help of the simulation environment Lite, and
proved some safety properties for window size six. Holzmann [91, 92] used the
Spin model checker to verify both safety and liveness properties of a SWP with
sequence numbers up to five. Kaivola [99] verified safety and liveness proper-
ties using model checking for a SWP with window size up to seven. Godefroid
and Long [65] specified a full duplex SWP in a guarded command language,
and verified the protocol for window size two using a model checker based on
Queue BDDs. Stahl et al. [162] used a combination of abstraction, data in-
dependence, compositional reasoning and model checking to verify safety and
liveness properties for a SWP with window size up to sixteen. The protocol

54 Chapter 4 Verifying a Sliding Window Protocol in µCRL

was specified in Promela, the input language for the Spin model checker. Smith
and Klarlund [160] specified a SWP in the high-level language IOA, and used
the theorem prover MONA to verify a safety property for unbounded sequence
numbers with window size up to 256. Latvala [112] modeled a SWP using Col-
ored Petri nets. A liveness property was model checked with fairness constraints
for window size up to eleven.

Arbitrary finite window size Cardell-Oliver [29] specified a SWP using
higher order logic, and manually proved and mechanically checked safety prop-
erties using HOL. (Van de Snepscheut [161] noted that what Cardell-Oliver
claims to be a liveness property is in fact a safety property.) Schoone [154]
manually proved safety properties for several SWPs using assertional verifica-
tion. Van de Snepscheut [161] gave a correctness proof of a SWP as a sequence
of correctness preserving transformations of a sequential program. Paliwoda and
Sanders [132] specified a reduced version of what they call a SWP (but which
is in fact very similar to the bakery protocol from [71]) in the process algebra
CSP, and verified a safety property modulo trace semantics. Röckl and Esparza
[148] verified the correctness of this bakery protocol modulo weak bisimulation
using Isabelle/HOL, by explicitly checking a bisimulation relation. Jonsson and
Nilsson [98] used an automated reachability analysis to verify safety properties
for a SWP with arbitrary sending window size and receiving window size one.
Rusu [152] used the theorem prover PVS to verify both safety and liveness prop-
erties for a SWP with unbounded sequence numbers. Chkliaev et al. [33] used
a timed state machine in PVS to specify a SWP with a timeout mechanism and
proved some safety properties with the mechanical support of PVS. Correctness
is based on the timeout mechanism, which allows messages in the mediums to
be reordered.

4.3 Proof Techniques

The goal of this chapter is to prove that the initial state of the forthcoming
µCRL specification of a SWP is branching bisimilar to a FIFO queue. In the
proof of this fact, we will use three proof principles from the literature to derive
that two µCRL specifications are branching (or even strongly) bisimilar: sum
elimination, CL-RSP, and cones and foci.

• Sum elimination [71] states that a summation over a data type from which
only one element can be selected can be removed. To be more precise,

∑

d:D

p(d) / d = e ∧ b . δ ↔ p(e) / b . δ.

• CL-RSP [20] states that the solutions of a linear µCRL specification that
does not contain any infinite τ sequence are all strongly bisimilar. This
proof principle basically extends RSP [18] to a setting with data. The
reader is referred to [20] for more details regarding CL-RSP.

4.4 Data Types 55

• The cones and foci method from [54, 79] rephrases the question whether
two linear µCRL specifications τI(S1) and S2 are branching bisimilar,
where S2 does not contain actions from some set I of internal actions,
in terms of data equalities. The reader is referred to Chapter 3 for the
technical details of the cones and foci technique.

4.4 Data Types

In this section, the data types used in the µCRL specification of the SWP are
presented: booleans, natural numbers supplied with modulo arithmetic, and
buffers. Furthermore, basic properties are given for the operations defined on
these data types.

4.4.1 Booleans

We introduce the data type Bool of booleans.

T,F :→ Bool
∧,∨ : Bool × Bool → Bool
¬ : Bool → Bool
⇒,⇔: Bool × Bool → Bool

T and F denote true and false, respectively. The infix operations ∧ and ∨
represent conjunction and disjunction, respectively. Finally, ¬ denotes negation.
The defining equations are:

b ∧ T = b ¬T = F
b ∧ F = F ¬F = T
b ∨ T = T b⇒ b′ = b′ ∨ ¬b
b ∨ F = b b⇔ b′ = (b⇒ b′) ∧ (b′ ⇒ b)

4.4.2 If-then-else and equality

For each data type D in this chapter we assume the presence of an operation

if : Bool ×D ×D → D

with as defining equations

if (T, d, e) = d
if (F, d, e) = e

Furthermore, for each data type D in this chapter one can easily define a map-
ping eq : D × D → Bool such that eq(d, e) holds if and only if d = e can be
derived. For notational convenience we take the liberty to write d = e instead
of eq(d, e).

56 Chapter 4 Verifying a Sliding Window Protocol in µCRL

4.4.3 Natural numbers

We introduce the data type Nat of natural numbers.

0 :→ Nat
S : Nat → Nat
+, .−, · : Nat × Nat → Nat
≤, <,≥, >: Nat × Nat → Bool

0 denotes zero and S(n) the successor of n. The infix operations +, .− and ·
represent addition, monus (also called proper subtraction) and multiplication,
respectively. Finally, the infix operations ≤, <, ≥ and > are the less-than(-or-
equal) and greater-than(-or-equal) operations. Usually, the sign for multiplica-
tion is omitted, and ¬(i = j) is abbreviated to i 6= j.

i+ 0 = i 0 ≤ i = T
i+ S(j) = S(i+ j) S(i) ≤ 0 = F
i .− 0 = i S(i) ≤ S(j) = i ≤ j
0 .− i = 0 0 < S(i) = T
S(i) .− S(j) = i .− j i < 0 = F
i·0 = 0 S(i) < S(j) = i < j
i·S(j) = (i·j) + i i ≥ j = ¬(j < i)

i > j = ¬(j ≤ i)

We take as binding convention:

{=, 6=} > {·} > {+, .−} > {≤, <,≥, >} > {¬} > {∧,∨} > {⇒,⇔}.

4.4.4 Modulo arithmetic

Since the size of the buffers at the sender and the receiver in the sliding window
are of size 2n, calculations modulo 2n play an important role. We introduce the
following notation for modulo calculations:

| : Nat × Nat → Nat
div : Nat × Nat → Nat

i|n denotes i modulo n, while i div n denotes i integer divided by n. The modulo
operations are defined by the following equations (for n > 0):

i|n = if (i < n, i, (i .− n)|n)
i div n = if (i < n, 0, S((i .− n) div n))

4.4.5 Buffers

The sender and the receiver in the SWP both maintain a buffer containing
the sending and the receiving window, respectively (outside these windows both
buffers are empty). Let ∆ be the set of data elements that can be communicated
between sender and receiver. The buffers are modeled as a list of pairs (d, i)

4.4 Data Types 57

with d:∆ and i:Nat , representing that position (or sequence number) i of the
buffer is occupied by datum d. The data type Buf is specified as follows, where
[] denotes the empty buffer:

[] :→ Buf
inb : ∆ × Nat × Buf → Buf

q|n denotes buffer q with all sequence numbers taken modulo n.

[]|n = []
inb(d, i, q)|n = inb(d, i|n, q|n)

test(i, q) produces T if and only if position i in q is occupied, retrieve(i, q)
produces the datum that resides at position i in buffer q (if this position is
occupied),1 and remove(i, q) is obtained by emptying position i in buffer q.

test(i, []) = F
test(i, inb(d, j, q)) = i=j ∨ test(i, q)
retrieve(i, inb(d, j, q)) = if (i=j, d, retrieve(i, q))
remove(i, []) = []
remove(i, inb(d, j, q)) = if (i=j, remove(i, q), inb(d, j, remove(i, q)))

release(i, j, q) is obtained by emptying positions i up to j in q. release|n(i, j, q)
does the same modulo n.

release(i, j, q) = if (i ≥ j, q, release(S(i), j, remove(i, q)))
release|n(i, j, q) = if (i|n=j|n, q, release|n(S(i), j, remove(i, q)))

next-empty(i, q) produces the first empty position in q, counting upwards from
sequence number i onward. next-empty|n(i, q) does the same modulo n.

next-empty(i, q) = if (test(i, q),next-empty(S(i), q), i)
next-empty|n(i, q) = if (next-empty(i|n, q|n) < n,next-empty(i|n, q|n),

next-empty(0, q|n))

Intuitively, in-window(i, j, k) produces T if and only if j lies in the range from
i to k .− 1, modulo n, where n is greater than i, j and k.

in-window(i, j, k) = i ≤ j < k ∨ k < i ≤ j ∨ j < k < i

Finally, we define an operation on buffers that is only needed in the derivation
of some data equalities in Section 4.7.1: max(q) produces the greatest sequence
number that is occupied in q.

max([]) = 0
max(inb(d, i, q)) = if (i ≥ max(q), i,max(q))

1Note that retrieve(i, []) is undefined. One could choose to equate it to a default value in
∆, or to a fresh error element in ∆. However, the first approach could cover up flaws in the
µCRL specification of the SWP, and the second approach would needlessly complicate the
data type ∆. We prefer to work with a partially defined version of retrieve, which is allowed
in µCRL. All operations in µCRL models, however, are total; partially specified operations
just lead to the existence of multiple models.

58 Chapter 4 Verifying a Sliding Window Protocol in µCRL

4.4.6 Mediums

The medium in the SWP between the sender and the receiver is modeled as
a lossy channel of unbounded capacity with FIFO behavior. We model the
medium containing frames from the sender to the receiver by a data type MedK.
It represents a list of pairs (d, i) with a datum d:∆ and its sequence number

i:Nat . Let []
K

denote an empty medium.

[]K :→ MedK
inm : ∆ × Nat × MedK → MedK

g|n denotes medium g with all sequence numbers taken modulo n.

[]
K
|n = []

K

inm(d, i, g)|n = inm(d, i|n, g|n)

member(d, i, g) produces T if and only if the pair (d, i) is in g. length(g) denotes
the length of g. return-dat(i, g) and return-seq(i, g) produce the datum and
the sequence number, respectively, that resides at position i in g (positions are
counted from 0). For convenience, we use last-dat(g) and last-seq(g) to produce
the datum and the sequence number, respectively, that resides at the end of g.
delete(i, g) is obtained by emptying position i in g. Similarly, delete-last(g) is
obtained by emptying the last position in g.

member(d, i, []
K

) = F
member(d, i, inm(e, j, g)) = (d = e ∧ i = j) ∨ member(d, i, g)

length([]
K

) = 0
length(inm(d, i, g)) = S(length(g))
return-dat(i, inm(d, j, g)) = if (i = 0, d, return-dat(i− 1, g))
return-seq(i, inm(d, j, g)) = if (i = 0, j, return-seq(i− 1, g))
last-dat(inm(d, i, g)) = if (length(g) = 0, d, last-dat(g))
last-seq(inm(d, i, g)) = if (length(g) = 0, i, last-dat(g))
delete(i, inm(d, j, g)) = if (i = 0, g, inm(d, j, delete(i− 1, g)))
delete-last(inm(d, i, g)) = if (length(g) = 0, g,

inm(d, i, delete-last(g)))

The medium containing the sequence numbers from the receiver to the sender
by a data type MedL. Similarly, we have the following defining equations.

[]L :→ MedL
inm : Nat × MedL → MedL

[]
L
|n = []

L

inm(i, g′)|n = inm(i|n, g
′|n)

4.5 Sliding Window Protocol 59

member(i, []
L
) = F

member(i, inm(j, g)) = i = j ∨ member(d, i, g)

length([]
L
) = 0

length(inm(i, g′)) = S(length(g′))
return-seq(i, inm(j, g′)) = if (i = 0, j, return-seq(i− 1, g′))
last-seq(inm(i, g′)) = if (length(g′) = 0, i, last-seq(g′))
delete(i, inm(j, g′)) = if (i = 0, g′, inm(j, delete(i− 1, g′)))
delete-last(inm(j, g′)) = if (length(g′) = 0, g′, inm(j, delete-last(g′)))

4.4.7 Lists

We introduce the data type of List of lists, which are used in the specification
of the desired external behavior of the SWP: a FIFO queue of size 2n. Let 〈〉
denote the empty list.

〈〉 :→ List
inl : ∆ × List → List

length(λ) denotes the length of λ, top(λ) produces the datum that resides at
the top of λ, tail(λ) is obtained by removing the top position in λ, append(d, λ)
adds datum d at the end of λ, and λ++λ′ represents list concatenation.

length(〈〉) = 0
length(inl(d, λ)) = S(length(λ))
top(inl(d, λ)) = d
tail (inl(d, λ)) = λ
append(d, 〈〉) = inl(d, 〈〉)
append(d, inl(e, λ)) = inl(e, append(d, λ))
〈〉++λ = λ
inl(d, λ)++λ′ = inl(d, λ++λ′)

Furthermore, q[i..j〉 is the list containing the elements in buffer q at positions i
up to but not including j.

q[i..j〉 = if (i ≥ j, 〈〉, inl(retrieve(i, q), q[S(i)..j〉))

4.5 Sliding Window Protocol

In this section, a µCRL specification of a SWP is presented, together with its
desired external behavior.

4.5.1 Specification of a sliding window protocol

Figure 4.1 depicts the SWP. A sender S stores data elements that it receives via
channel A in a buffer of size 2n, in the order in which they are received. S can
send a datum, together with its sequence number in the buffer, to a receiver R
via a medium that behaves as lossy queue of unbounded capacity, represented
by the medium K and the channels B and C. Upon reception, R may store the

60 Chapter 4 Verifying a Sliding Window Protocol in µCRL

datum in its buffer, where its position in the buffer is dictated by the attached
sequence number. In order to avoid a possible overlap between the sequence
numbers of different data elements in the buffers of S and R, no more than
one half of the buffers of S and R may be occupied at any time; these halves
are called the sending and the receiving window, respectively. R can pass on
a datum that resides at the first position in its window via channel D; in that
case the receiving window slides forward by one position. Furthermore, R can
send the sequence number of the first empty position in (or just outside) its
window as an acknowledgment to S via a medium that behaves as lossy queue
of unbounded capacity, represented by the medium L and the channels E and
F. If S receives this acknowledgment, its window slides forward accordingly.

K

L

C
D

E

B

F

RS
A

2n−1

2n−2

2n−3

1

.

2n−1

2n−2

2n−3

0

1

2

.

0

2

Figure 4.1: Sliding window protocol

The sender S is modeled by the process S(`,m, q), where q is a buffer of size
2n, ` the first position in the sending window, and m the first empty position in
(or just outside) the sending window. Data elements can be selected at random
for transmission from (the filled part of) the sending window.

S(`:Nat ,m:Nat , q:Buf) =
∑

d:∆ rA(d)·S(`, S(m)|2n, inb(d,m, q))
/ in-window(`,m, (`+ n)|2n) . δ

+
∑

k:Nat sB(retrieve(k, q), k)·S(`,m, q)
/ test(k, q) . δ

+
∑

k:Nat rF(k)·S(k,m, release|2n(`, k, q))

The receiver R is modeled by the process R(`′, q′), where q′ is a buffer of
size 2n and `′ the first position in the receiving window.

4.5 Sliding Window Protocol 61

R(`′:Nat , q′:Buf) =
∑

d:∆

∑
k:Nat rC(d, k)·(R(`′, inb(d, k, q′))

/ in-window(`′, k, (`′ + n)|2n) . R(`′, q′))

+ sD(retrieve(`′, q′))·R(S(`′)|2n, remove(`′, q′))
/ test(`′, q′) . δ

+ sE(next-empty|2n(`′, q′))·R(`′, q′)

Finally, we specify the mediums K and L, which have unbounded capacity
and may lose frames between S and R, and vice versa. We cannot allow re-
ordering of messages in the medium, as this would violate the correctness of the
protocol. The medium K (see Figure 4.2) is modeled by the process K(g, p),
where g:MedK is a buffer with unbounded capacity, and p:Nat a pointer indi-
cating that the frames in between position 0 and p (excluding p) can still be
lost, and the frames beyond p cannot be lost any more.

position: 1

p

m
n

g with length(g) = n + 1

0

(e0, i0) (e1, i1) (en, in)(em, im)

Figure 4.2: The medium K

K receives a frame from S, stores it at the front (position 0) of g, and
accordingly increases p by one. It sends the last frame (last-dat(g), last-seq(g))
in g to R. A frame at position k can be lost (if k < p), and p is then decreased
by one. K can also make a choice that the frame at position p cannot be lost
(p:=p−1). The action j expresses the nondeterministic choice whether or not a
frame is lost. In a similar way, we model the medium L by the process L(g′, p′).

K(g:MedK, p:Nat) =
∑

d:∆

∑
k:Nat rB(d, k)·K(inm(d, k, g), p+ 1)

+
∑

k:Nat j·K(delete(k, g), p− 1) / k < p . δ

+ sC(last-dat(g), last-seq(g))·K(delete-last(g), p)
/ p < length(g) . δ

+ j·K(g, p− 1) / p > 0 . δ

62 Chapter 4 Verifying a Sliding Window Protocol in µCRL

L(g′:MedL, p′:Nat) =
∑

k:Nat rE(k)·L(inm(k, g′), p′ + 1)

+
∑

k:Nat j·L(delete(k, g′), p′ − 1) / k < p′ . δ

+ sF(last-seq(g′))·L(delete-last(g′), p′)
/ p′ < length(g′) . δ

+ j·L(g′, p′ − 1) / p′ > 0 . δ

For each channel i ∈ {B,C,E,F}, actions si and ri can communicate, re-
sulting in the action ci. The initial state of the SWP is expressed by

τI(∂H(S(0, 0, []) ‖ R(0, []) ‖ K([]
K
, 0) ‖ L([]

L
, 0)))

where the set H consists of the read and send actions over the internal channels
B, C, E, and F, namely H = {sB, rB, sC, rC, sE, rE, sF, rF}, while the set I
consists of the communication actions over these internal channels together with
j, namely I = {cB, cC, cE, cF, j}.

4.5.2 External behavior

Data elements that are read from channel A should be sent into channel D in
the same order, and no data elements should be lost. In other words, the SWP
is intended to be a solution for the linear specification.

Z(λ:List) =
∑

d:∆ rA(d)·Z(append(d, λ)) / length(λ) < 2n . δ

+ sD(top(λ))·Z(tail (λ)) / length(λ) > 0 . δ

Note that rA(d) can be performed until the list λ contains 2n elements, because
in that situation the sending and receiving windows will be filled. Furthermore,
sD(top(λ)) can only be performed if λ is not empty.

The remainder of this chapter is devoted to proving the following theorem,
expressing that the external behavior of our µCRL specification of a SWP cor-
responds to a FIFO queue of size 2n.

Theorem 4.5.1 τI(∂H(S(0, 0, []) ‖ R(0, []) ‖ K([]K , 0) ‖ L([]L, 0))) ↔b Z(〈〉).

4.6 Transformations of the Specification

This section witnesses three transformations, one to eliminate parallel operators,
one to eliminate arguments of communication actions, and one to eliminate
modulo arithmetic.

4.6.1 Linearization

The starting point of our correctness proof is a linear specification Mmod , in
which no parallel operators occur. Mmod can be obtained from the µCRL

4.6 Transformations of the Specification 63

specification of the SWP without the hiding operator, i.e.,

∂H(S(0, 0, []) ‖ R(0, []) ‖ K([]
K
, 0) ‖ L([]

L
, 0))

by means of a linearization algorithm presented in [76].
The linear specification Mmod of the SWP, with encapsulation but without

hiding, takes the following form. For the sake of presentation, we only present
parameters whose values are changed.

Mmod(`:Nat ,m:Nat , q:Buf , `′:Nat , q′:Buf , g:MedK, p:Nat ,
g′:MedL, p′:Nat)

=
∑

d:∆ rA(d)·Mmod(m:=S(m)|2n, q:=inb(d,m, q))
/ in-window(`,m, (`+ n)|2n) . δ

+
∑

k:Nat cB(retrieve(k, q), k)·Mmod(g:=inm(retrieve(k, q), k, g), p:=p+ 1)
/ test(k, q) . δ

+
∑

k:Nat j·Mmod(g:= delete(k, g), p:=p− 1) / k < p . δ

+ j·Mmod(p:=p− 1) / p > 0 . δ

+ cC(last-dat(g), last-seq(g))·
Mmod(q′:=inb(last-dat(g), last-seq(g), q′), g:=delete-last(g))

/ p < length(g) ∧ in-window(`′, last-seq(g), (`′ + n)|2n) . δ

+ cC(last-dat(g), last-seq(g))·Mmod(g:=delete-last(g))
/ p < length(g) ∧ ¬in-window(`′, last-seq(g), (`′ + n)|2n) . δ

+ sD(retrieve(`′, q′))·Mmod(`′:=S(`′)|2n, q
′:=remove(`′, q′)) / test(`′, q′) . δ

+ cE(next-empty|2n(`′, q′))·
Mmod(g′:=inm(next-empty|2n(`′, q′), g′), p′:=p′ + 1)

+
∑

k:Nat j·Mmod(g′:=delete(k, g′), p′:=p′ − 1) / k < p′ . δ

+ j·Mmod(p′:=p′ − 1) / p′ > 0 . δ

+ cF(last-seq(g′))·
Mmod(`:=last-seq(g′), q:=release|2n(`, last-seq(g′), q), g′:=delete-last(g′))

/ p′ < length(g′) . δ

Theorem 4.6.1

∂H(S(0, 0, []) ‖ R(0, []) ‖ K([]
K
, 0) ‖ L([]

L
, 0))↔Mmod(0, 0, [], 0, [], []

K
, 0, []

L
, 0).

Proof. It is not hard to see that replacing Mmod(`,m, q, `′, q′, g, p, g′, p′) by
∂H(S(`,m, q) ‖ R(`′, q′) ‖ K(g, p) ‖ L(g′, p′)) is a solution for the recursive
equation above, using the axioms of µCRL [74]. (The details are left to the
reader.) Hence, the theorem follows by CL-RSP [20]. �

64 Chapter 4 Verifying a Sliding Window Protocol in µCRL

4.6.2 Eliminating arguments of communication actions

The linear specification Nmod is obtained from Mmod by stripping all arguments
from communication actions, and renaming these actions to a fresh action c.

Nmod(`:Nat ,m:Nat , q:Buf , `′:Nat , q′:Buf , g:MedK, p:Nat ,
g′:MedL, p′:Nat)

=
∑

d:∆ rA(d)·Nmod(m:=S(m)|2n, q:=inb(d,m, q))
/ in-window(`,m, (`+ n)|2n) . δ

+
∑

k:Nat c·Nmod(g:=inm(retrieve(k, q), k, g), p:=p+ 1) / test(k, q) . δ

+
∑

k:Nat j·Nmod(g:= delete(k, g), p:=p− 1) / k < p . δ

+ j·Nmod(p:=p− 1) / p > 0 . δ

+ c·Nmod(q′:=inb(last-dat(g), last-seq(g), q′), g:=delete-last(g))
/ p < length(g) ∧ in-window(`′, last-seq(g), (`′ + n)|2n) . δ

+ c·Nmod(g:=delete-last(g))
/ p < length(g) ∧ ¬in-window(`′, last-seq(g), (`′ + n)|2n) . δ

+ sD(retrieve(`′, q′))·Nmod(`′:=S(`′)|2n, q
′:=remove(`′, q′)) / test(`′, q′) . δ

+ c·Nmod(g′:=inm(next-empty|2n(`′, q′), g′), p′:=p′ + 1)

+
∑

k:Nat j·Nmod(g′:=delete(k, g′), p′:=p′ − 1) / k < p′ . δ

+ j·Nmod(p′:=p′ − 1) / p′ > 0 . δ

+ c·Nmod(`:=last-seq(g′), q:=release|2n(`, last-seq(g′), q), g′:=delete-last(g′))
/ p′ < length(g′) . δ

Theorem 4.6.2

τI(Mmod(0, 0, [], 0, [], []K , 0, []L, 0)) ↔ τ{c,j}(Nmod(0, 0, [], 0, [], []K , 0, []L, 0)).

Proof. By a simple renaming. �

4.6.3 Getting rid of modulo arithmetic

The specification of Nnonmod is obtained by eliminating all occurrences of |2n

from Nmod , replacing in-window(`,m, (`+ n)|2n by m < ` + n, and replacing
in-window(`′, last-seq(g), (`′ + n)|2n by `′ ≤ last-seq(g) < `′ + n.

4.7 Properties of Data 65

Nnonmod(`:Nat ,m:Nat , q:Buf , `′:Nat , q′:Buf , g:MedK, p:Nat ,
g′:MedL, p′:Nat)

=
∑

d:∆ rA(d)·Nnonmod(m:=S(m), q:=inb(d,m, q)) / m < `+ n . δ (A)

+
∑

k:Nat c·Nnonmod(g:=inm(retrieve(k, q), k, g), p:=p+ 1) / test(k, q) . δ (B)

+
∑

k:Nat j·Nnonmod(g:= delete(k, g), p:=p− 1) / k < p . δ (C)

+ j·Nnonmod(p:=p− 1) / p > 0 . δ (D)

+ c·Nnonmod(q′:=inb(last-dat(g), last-seq(g), q′), g:=delete-last(g))
/ p < length(g) ∧ (`′ ≤ last-seq(g) < `′ + n) . δ (E)

+ c·Nnonmod(g:=delete-last(g))
/ p < length(g) ∧ ¬(`′ ≤ last-seq(g) < `′ + n) . δ (F)

+ sD(retrieve(`′, q′))·Nnonmod(`′:=S(`′), q′:=remove(`′, q′)) / test(`′, q′) . δ (G)

+ c·Nnonmod(g′:=inm(next-empty(`′, q′), g′), p′:=p′ + 1) (H)

+
∑

k:Nat j·Nnonmod(g′:=delete(k, g′), p′:=p′ − 1) / k < p′ . δ (I)

+ j·Nnonmod(p′:=p′ − 1) / p′ > 0 . δ (J)

+ c·Nnonmod(`:=last-seq(g′), q:=release(`, last-seq(g′), q), g′:=delete-last(g′))
/ p′ < length(g′) . δ (K)

Theorem 4.6.3

Nmod(0, 0, [], 0, [], []
K
, 0, []

L
, 0) ↔ Nnonmod(0, 0, [], 0, [], []

K
, 0, []

L
, 0).

The proof of Theorem 4.6.3 is presented in Section 4.8.1. Next, in Section
4.8.2, we prove the correctness of Nnonmod . In these proofs we will need a wide
range of data equalities, which we proceed to prove in Section 4.7.

4.7 Properties of Data

4.7.1 Basic properties

In the correctness proof we will make use of basic properties of the operations on
Nat and Bool , which are derivable from their axioms (using induction). Some
typical examples of such properties are:

¬¬b = b
i+ k < j + k = i < j

i ≥ j ⇒ (i .− j) + k = (i+ k) .− j

Lemmas 4.7.1 and 4.7.2 collect basic facts on modulo arithmetic and on buffers,
respectively. Lemma 4.7.3 contains some results on modulo arithmetic related to
buffers. Lemma 4.7.4 presents some facts on the next-empty operation, together

66 Chapter 4 Verifying a Sliding Window Protocol in µCRL

with one result on max, which is needed to derive those facts. Lemmas 4.7.5 and
4.7.6 collect some results on unbounded buffers. Finally, Lemma 4.7.7 contains
basic facts on lists. Unless stated otherwise (this only happens in Lemmas
4.7.3.2-4.7.3.6, 4.7.3.9 and 4.7.5.12) all variables that occur in a data lemma are
implicitly universally quantified at the outside of the equality.

Lemma 4.7.1 Let n > 0.

1. (i|n + j)|n = (i+ j)|n

2. i|n < n

3. (i·n)|n = 0

4. i = (i div n)·n+ i|n

5. j ≤ i ≤ j + n
⇒ (i div 2n = j div 2n ∧ j|2n ≤ i|2n ≤ j|2n + n) ∨ (i div 2n = S(j div 2n) ∧
i|2n + n ≤ j|2n)

6. i ≤ j ⇒ i div n ≤ j div n

Proof.

1. By induction on i.

• i < n. Then i|n = i.

• i ≥ n.

(i|n + j)|n
= ((i .− n)|n + j)|n
= ((i .− n) + j)|n (by induction, i, n > 0)
= ((i+ j) .− n)|n (i ≥ n)
= (i+ j)|n

2. Trivial, by induction on i.

3. Trivial, by induction on i.

4. By induction on i.

• i < n.

Then i div n = 0 and i|n = i. Clearly, i = 0·n+ i.

• i ≥ n.

Then i div n = S((i .− n) div n) and i|n = (i .− n)|n. Hence,

i
= (i .− n) + n (because i ≥ n)
= ((i .− n) div n)·n+ (i .− n)|n + n (by induction, i, n > 0)
= S((i .− n) div n)·n+ (i .− n)|n
= (i div n)·n+ i|n

4.7 Properties of Data 67

5. Let j ≤ i ≤ j + n.
Case 1: i div 2n < j div 2n.

j − i
= (j div 2n)·2n+ j|2n − ((i div 2n)·2n+ i|2n) (Lem. 4.7.1.4)
= (j div 2n− i div 2n)·2n+ (j|2n − i|2n)
≥ 2n+ (j|2n − i|2n) (i div 2n < j div 2n)
> 2n− 2n (Lem. 4.7.1.2)
= 0 (contradict with j ≤ i)

Case 2: i div 2n = j div 2n. We need to show j|2n ≤ i|2n ≤ j|2n + n.

j ≤ i ≤ j + n
= (j div 2n)·2n+ j|2n ≤ (i div 2n)·2n+ i|2n

≤ (j div 2n)·2n+ j|2n + n (Lem. 4.7.1.4)
= j|2n ≤ i|2n ≤ j|2n + n (i div 2n = j div 2n)

Case 3: i div 2n = S(j div 2n). We need to show i|2n + n < j|2n.

i ≤ j + n
= (i div 2n)·2n+ i|2n

≤ (j div 2n)·2n+ j|2n + n (Lem. 4.7.1.4)
= (j div 2n)·2n+ 2n+ i|2n

≤ (j div 2n)·2n+ j|2n + n (i div 2n = S(j div 2n))
= i|2n + n ≤ j|2n

Case 4: i div 2n > S(j div 2n).

i− (j + n)
= (i div 2n)·2n+ i|2n

−((j div 2n)·2n+ j|2n) − n (Lem. 4.7.1.4)
≥ (j div 2n)·2n+ 4n+ i|2n

−(j div 2n)·2n− j|2n − n (i div 2n > S(j div 2n))
= 3n+ i|2n − j|2n

> 3n− 2n (Lem. 4.7.1.2)
> 0 (contradict with i < j + n)

6. By induction on i.

• i < n. Then i div n = 0.

• i ≥ n.

i div n
= S((i .− n) div n)
≤ S((j .− n) div n) (by induction, because i ≤ j, n > 0)
= j div n (because n ≤ i ≤ j)

�

68 Chapter 4 Verifying a Sliding Window Protocol in µCRL

Lemma 4.7.2 1. test(i, remove(j, q)) = (test(i, q) ∧ i 6= j)

2. i 6= j ⇒ retrieve(i, remove(j, q)) = retrieve(i, q)

3. test(i, release(j, k, q)) = (test(i, q) ∧ ¬(j ≤ i < k))

4. ¬(j ≤ i < k) ⇒ retrieve(i, release(j, k, q)) = retrieve(i, q)

5. q 6= [] ⇒ test(max (q), q)

Proof.

1. By induction on the structure of q.

• q = [].

test(i, remove(j, [])) = test(i, []) = F = test(i, []) ∧ i 6= j.

• q = inb(d, k, q′).

Case 1: j = k.

test(i, remove(j, inb(d, k, q′)))
= test(i, remove(j, q′))
= test(i, q′) ∧ i 6= j (by induction)
= test(i, inb(d, k, q′)) ∧ i 6= j (because j = k)

Case 2: j 6= k.
Case 2.1: i = k. Then i 6= j.

test(i, remove(j, inb(d, k, q′)))
= test(i, inb(d, k, remove(j, q′)))
= T
= test(i, inb(d, k, q′)) ∧ i 6= j

Case 2.2: i 6= k.

test(i, remove(j, inb(d, k, q′)))
= test(i, inb(d, k, remove(j, q′)))
= test(i, remove(j, q′))
= test(i, q′) ∧ i 6= j (by induction)
= test(i, inb(d, k, q′)) ∧ i 6= j

2. By induction on the structure of q.

• q = [].

Then remove(j, []) = [].

• q = inb(d, k, q′).

Case 1: j = k.

retrieve(i, remove(j, inb(d, k, q′)))
= retrieve(i, remove(j, q′))
= retrieve(i, q′) (by induction)
= retrieve(i, inb(d, k, q′))

4.7 Properties of Data 69

Case 2: j 6= k.
Case 2.1: i = k.

retrieve(i, remove(j, inb(d, k, q′)))
= retrieve(i, inb(d, k, remove(j, q′)))
= d
= retrieve(i, inb(d, k, q′))

Case 2.2: i 6= k.

retrieve(i, remove(j, inb(d, k, q′)))
= retrieve(i, inb(d, k, remove(j, q′)))
= retrieve(i, remove(j, q′))
= retrieve(i, q′) (by induction)
= retrieve(i, inb(d, k, q′))

3. By induction on k .− j.

• j ≥ k.

Then test(i, release(j, k, q)) = test(i, q) and ¬(j ≤ i < k) = T.

• j < k.

test(i, release(j, k, q))
= test(i, release(S(j), k, remove(j, q)))
= test(i, remove(j, q)) ∧ ¬(S(j) ≤ i < k) (by induction)
= test(i, q) ∧ ¬(j ≤ i < k) (Lem. 4.7.2.1)

4. By induction on k .− j.

• j ≥ k.

Then retrieve(i, release(j, k, q)) = retrieve(i, q).

• j < k.

Then ¬(j ≤ i < k) implies i 6= j. Hence,

retrieve(i, release(j, k, q))
= retrieve(i, release(S(j), k, remove(j, q)))
= retrieve(i, remove(j, q)) (by induction)
= retrieve(i, q) (Lem. 4.7.2.2, because i 6= j)

5. By induction on the structure of q.

• g = [].

This case is trivial.

• q = inb(d, k, q′).

By definition, max (inb(d, k, q′)) = if (k ≥ max(q′), k,max (q′)).

Case 1: k ≥ max (q′). Then max (inb(d, k, q′)) = k.
Clearly, test(k, inb(d, k, q′)).

Case 2: k < max (q′). Then max (inb(d, k, q′)) = max(q′).
test(max (q′), inb(d, k, q′)) = test(max (q′), q′). Hence, by induction,
test(max (q′), q′).

70 Chapter 4 Verifying a Sliding Window Protocol in µCRL

�

Lemma 4.7.3 1. test(k, q|2n) ⇒ k = k|2n

2. (∀j:Nat(test(j, q) ⇒ i ≤ j < i+ n) ∧ i ≤ k ≤ i+ n)
⇒ test(k, q) = test(k|2n, q|2n)

3. (∀j:Nat(test(j, q) ⇒ i ≤ j < i+ n) ∧ test(k, q))
⇒ retrieve(k, q) = retrieve(k|2n, q|2n)

4. (∀j:Nat(test(j, q) ⇒ i ≤ j < i+ n) ∧ i ≤ k ≤ i+ n)
⇒ remove(k, q)|2n = remove(k|2n, q|2n)

5. (∀j:Nat(test(j, q) ⇒ i ≤ j < i+ n) ∧ i ≤ k ≤ i+ n)
⇒ release(i, k, q)|2n = release|2n(i, k, q|2n)

6. (∀j:Nat(test(j, q) ⇒ i ≤ j < i+ n) ∧ i ≤ k ≤ i+ n)
⇒ next-empty(k, q)|2n = next-empty|2n(k|2n, q|2n)

7. i ≤ k < i+ n ⇒ in-window(i|2n, k|2n, (i+ n)|2n)

8. in-window(i|2n, k|2n, (i+ n)|2n)
⇒ k + n < i ∨ i ≤ k < i+ n ∨ k ≥ i+ 2n

9. (∀j:Nat(test(j, q) ⇒ i ≤ j < i+ n) ∧ test(k, q|2n))
⇒ in-window(i|2n, k, (i+ n)|2n)

Proof.

1. Trivial, by induction on the structure of q, using Lemma 4.7.1.2.

2. By induction on the structure of q.

• q = []. Then test(k, []) = F = test(k|2n, []|2n).

• q = inb(d, `, q′).

Let test(j, q) ⇒ i ≤ j < i+ n and i ≤ k ≤ i+ n.

Case 1: k|2n = `|2n.
test(`, q), so i ≤ ` < i + n. In combination with i ≤ k ≤ i + n,
k|2n = `|2n, Lemmas 4.7.1.4 and 4.7.1.5, this implies k = `. Hence,
test(k, q). Furthermore, k|2n = `|2n implies test(k|2n, q|2n).

Case 2: k|2n 6= `|2n. Then also k 6= `.
test(j, q′) ⇒ test(j, q) ⇒ i ≤ j < i + n, so induction can be applied
with respect to q′.

test(k, inb(d, `, q′))
= test(k, q′)
= test(k|2n, q

′|2n) (by induction)
= test(k|2n, inb(d, `, q′)|2n)

3. By induction on the structure of q.

4.7 Properties of Data 71

• q = []. Then test(k, []) = F.

• q = inb(d, `, q′).

Let test(j, q) ⇒ i ≤ j < i+ n and test(k, q).

Case 1: k = `. Then also k|2n = `|2n.
Hence, retrieve(k, q) = d = retrieve(k|2n, q|2n).

Case 2: k 6= `.
test(j, q′) ⇒ test(j, q) ⇒ i ≤ j < i + n, and test(k, q) together with
k 6= ` implies test(k, q′), so induction can be applied with respect
to q′. test(k, q) and test(`, q), so i ≤ k < i + n and i ≤ ` < i + n.
In combination with k 6= `, Lemmas 4.7.1.4 and 4.7.1.5, this implies
k|2n 6= `|2n. Hence,

retrieve(k, q)
= retrieve(k, q′)
= retrieve(k|2n, q

′|2n) (by induction)
= retrieve(k|2n, q|2n)

4. By induction on the structure of q.

• q = [].

remove(k, [])|2n = [] = remove(k|2n, []|2n).

• q = inb(d, `, q′).

Let test(j, q) ⇒ i ≤ j < i+ n and i ≤ k ≤ i+ n.

Case 1: k = `. Then also k|2n = `|2n.

remove(k, q)|2n

= remove(k, q′)|2n

= remove(k|2n, q
′|2n) (by induction)

= remove(k|2n, q|2n)

Case 2: k 6= `.
test(`, q), so i ≤ ` < i+ n. In combination with i ≤ k ≤ i+ n, k 6= `,
Lemmas 4.7.1.4 and 4.7.1.5, this implies k|2n 6= `|2n. Hence,

remove(k, q)|2n

= inb(d, `, remove(k, q′))|2n

= inb(d, `|2n, remove(k, q′)|2n)
= inb(d, `|2n, remove(k|2n, q

′|2n)) (by induction)
= remove(k|2n, q|2n)

5. By induction on k .− i. Let test(j, q) ⇒ i ≤ j < i+ n.

• i = k. Then also i|2n = k|2n.

Hence, release(i, k, q)|2n = q|2n = release|2n(i, k, q|2n).

72 Chapter 4 Verifying a Sliding Window Protocol in µCRL

• i < k ≤ i+ n.

By Lemmas 4.7.1.4 and 4.7.1.5, i|2n 6= k|2n. Hence,

release(i, k, q)|2n

= release(S(i), k, remove(i, q))|2n

= release|2n(S(i), k, remove(i, q)|2n) (by induction)
= release|2n(S(i), k, remove(i|2n, q|2n)) (Lem. 4.7.3.4)
= release|2n(i, k, q|2n)

6. By induction on (i+ n) .− k. Let test(j, q) ⇒ i ≤ j < i+ n.

• k = i+ n.

¬test(i+ n, q), so by Lemma 4.7.3.2, ¬test((i+ n)|2n, q|2n). Then by
Lemma 4.7.1.2, (i+ n)|2n < 2n. Hence,

next-empty(i+ n, q)|2n

= (i+ n)|2n

= next-empty((i+ n)|2n, q|2n)
= next-empty|2n((i+ n)|2n, q|2n)

• i ≤ k ≤ i+ n.

Case 1: ¬test(k, q). By Lemma 4.7.3.2, also ¬test(k|2n, q|2n).

By Lemma 4.7.1.2, k|2n < 2n. Hence,

next-empty(k, q)|2n

= k|2n

= next-empty(k|2n, q|2n)
= next-empty|2n(k|2n, q|2n)

Case 2: test(k, q). By Lemma 4.7.3.2, also test(k|2n, q|2n).

We prove next-empty|2n(k|2n, q|2n) = next-empty|2n(S(k)|2n, q|2n).

Case 2.1: k|2n = 2n− 1.

By Lemma 4.7.4.3,

next-empty(k|2n, q|2n)
= next-empty(S(k|2n), q|2n)
= next-empty(2n, q|2n)
≥ 2n

Hence,
next-empty|2n(k|2n, q|2n)

= next-empty(0, q|2n)
= next-empty|2n(S(k)|2n, q|2n)

Case 2.2: k|2n < 2n− 1.

4.7 Properties of Data 73

Using Lemma 4.7.1.1, we can derive S(k)|2n = S(k|2n). Since

next-empty(k|2n, q|2n)
= next-empty(S(k|2n), q|2n)
= next-empty(S(k)|2n, q|2n)

we have next-empty|2n(k|2n, q|2n) = next-empty|2n(S(k)|2n, q|2n).

Concluding,

next-empty(k, q)|2n

= next-empty(S(k), q)|2n

= next-empty|2n(S(k)|2n, q|2n) (by induction)
= next-empty|2n(k|2n, q|2n)

7. Let i ≤ k < i+ n.

Case 1: S(i div 2n)·2n ≤ k.
Then S(i div 2n)·2n ≤ k < i + n < S(i div 2n)·2n+ n (by Lem. 4.7.1.4).
Then by Lemmas 4.7.1.2, 4.7.1.5 and 4.7.1.6 it follows that k div 2n =
(i+ n) div 2n = S(i div 2n). Hence, in view of Lemma 4.7.1.4, k|2n <
(i+ n)|2n < i|2n.

Case 2: k < S(i div 2n)·2n ≤ i+ n.
Then (i div 2n)·2n ≤ i ≤ k < (i div 2n)·2n + 2n, so by Lemma 4.7.1.6
k div 2n = i div 2n. Furthermore, S(i div 2n)·2n ≤ i+n < S(i div 2n)·2n+
n, so (i+ n) div 2n = S(i div 2n). Hence, (i+ n)|2n < i|2n ≤ k|2n.

Case 3: i+ n < S(i div 2n)·2n.
Then (i div 2n)·2n ≤ i ≤ k < i+n < (i div 2n)·2n+2n. By Lemma 4.7.1.6,
k div 2n = (i+ n) div 2n = i div 2n. Hence, i|2n ≤ k|2n < (i+ n)|2n.

By definition,

in-window(i|2n, k|2n, (i+ n)|2n)
= i|2n ≤ k|2n < (i+ n)|2n∨

(i+ n)|2n < i|2n ≤ k|2n∨
k|2n < (i+ n)|2n < i|2n

so in all three cases we conclude in-window(i|2n, k|2n, (i+ n)|2n).

8. We prove
(i+ n ≤ k < i+ 2n ∨ i ≤ k + n < i+ n)
⇒ ¬in-window(i|2n, k|2n, (i+ n)|2n).

• i+ n ≤ k < i+ 2n.

Then i div 2n ≤ (i+ n) div 2n ≤ k div 2n ≤ S(i div 2n). We distin-
guish three cases, in which we repeatedly apply Lemma 4.7.1.4.

Case 1: i div 2n = (i+ n) div 2n = k div 2n.
Then i < i+n yields i|2n < (i+ n)|2n and i+n ≤ k yields (i+ n)|2n ≤
k|2n.

74 Chapter 4 Verifying a Sliding Window Protocol in µCRL

Case 2: S(i div 2n) = S((i+ n) div 2n) = k div 2n.
Then i < i+ n yields i|2n < (i+ n)|2n and k < i+ 2n yields k|2n <
i|2n.

Case 3: S(i div 2n) = (i+ n) div 2n = k div 2n.
Then i + n ≤ k yields (i+ n)|2n ≤ k|2n and k < i + 2n yields
k|2n < i|2n.

In all three cases we can conclude ¬in-window(i|2n, k|2n, (i+ n)|2n).

• i ≤ k + n < i+ n.

Then i+ n ≤ k + 2n < i+ 2n, so by Case 1,
¬in-window(i|2n, (k + 2n)|2n, (i+ n)|2n).
Hence, ¬in-window(i|2n, k|2n, (i+ n)|2n).

9. By induction on the structure of q.

• q = [].

This case follows from the fact that test(k, []|2n) = F.

• q = inb(d, `, q′). Then test(`, q), so i ≤ ` < i+ n.

Thus, by Lemma 4.7.3.7, in-window(i|2n, `|2n, (i+ n)|2n). Hence,

test(k, inb(d, `, q′)|2n)
⇔ k = `|2n ∨ test(k, q′|2n)
⇒ k = `|2n ∨ in-window(i|2n, k, (i+ n)|2n)
⇔ in-window(i|2n, k, (i+ n)|2n)

�

Lemma 4.7.4 1. test(i, q) ⇒ i ≤ max(q)

2. i ≤ j < next-empty(i, q) ⇒ test(j, q)

3. next-empty(i, q) ≥ i

4. next-empty(i, inb(d, j, q)) ≥ next-empty(i, q)

5. j 6= next-empty(i, q)
⇒ next-empty(i, inb(d, j, q)) = next-empty(i, q)

6. next-empty(i, inb(d,next-empty(i, q), q))
= next-empty(S(next-empty(i, q)), q)

7. ¬(i ≤ j < next-empty(i, q))
⇒ next-empty(i, remove(j, q)) = next-empty(i, q)

Proof.

1. By induction on the structure of q.

• q = [].

Then test(i, []) = F.

4.7 Properties of Data 75

• q = inb(d, j, q′).

Case 1: i = j. Then clearly i ≤ max(inb(d, j, q′)).

Case 2: i 6= j. Then test(i, inb(d, j, q′)) implies test(i, q′), so

i ≤ max(q′) (by induction) ≤ max(inb(d, j, q′)).

2. By induction on j .− i.

• i = j.

¬test(i, q) implies next-empty(i, q) = i = j.

• i < j.

Case 1: ¬test(i, q). Then next-empty(i, q) = i < j.

Case 2: test(i, q).

i < j < next-empty(i, q)
⇔ S(i) ≤ j < next-empty(S(i), q)
⇒ test(j, q) (by induction)

3. By induction on S(max(q)) .− i.

• ¬test(i, q). (This includes the base case S(max(q)) ≤ i.)

Then next-empty(i, q) = i.

• test(i, q).

By Lemma 4.7.4.1, i ≤ max(q), so S(max(q)) .− S(i) < S(max(q)) .−
i. Hence, by induction, next-empty(i, q) = next-empty(S(i), q) > i.

4. By induction on S(max(q)) .− i.

• ¬test(i, q).

Then next-empty(i, inb(d, j, q)) ≥ i (Lem. 4.7.4.3)=next-empty(i, q).

• test(i, q). Then also test(i, inb(d, j, q)).

By Lemma 4.7.4.1, i ≤ max(q), so S(max(q)) .− S(i) < S(max(q)) .−
i. Hence,

next-empty(i, inb(d, j, q))
= next-empty(S(i), inb(d, j, q))
≥ next-empty(S(i), q) (by induction)
= next-empty(i, q)

5. By induction on S(max(q)) .− i. Let j 6= next-empty(i, q).

• ¬test(i, q).

Then next-empty(i, q) = i. This implies j 6= i, so ¬test(i, inb(d, j, q)).
Hence, next-empty(i, inb(d, j, q)) = i.

76 Chapter 4 Verifying a Sliding Window Protocol in µCRL

• test(i, q). Then also test(i, inb(d, j, q)).

By Lemma 4.7.4.1, i ≤ max(q), so S(max(q)) .− S(i) < S(max(q)) .−
i. Furthermore, test(i, q) implies j 6= next-empty(S(i), q). Hence,

next-empty(i, inb(d, j, q))
= next-empty(S(i), inb(d, j, q))
= next-empty(S(i), q) (by induction)
= next-empty(i, q)

6. By induction on S(max(q)) .− i.

• ¬test(i, q).

Then next-empty(i, q) = i. By Lemma 4.7.4.3, next-empty(S(i), q) 6=
i. Hence,

next-empty(i, inb(d,next-empty(i, q), q))
= next-empty(i, inb(d, i, q))
= next-empty(S(i), inb(d, i, q))
= next-empty(S(i), q) (Lem. 4.7.4.5)
= next-empty(S(next-empty(i, q)), q)

• test(i, q).

By Lemma 4.7.4.1, i ≤ max(q), so the induction hypothesis can be
applied with respect to S(i).

next-empty(i, inb(d,next-empty(i, q), q))
= next-empty(S(i), inb(d,next-empty(S(i), q), q))
= next-empty(S(next-empty(S(i), q)), q) (by induction)
= next-empty(S(next-empty(i, q)), q)

7. We apply induction on S(max(q)) .− i.

• ¬test(i, q).

Then, by Lemma 4.7.2.1, ¬test(i, remove(j, q)). Hence,
next-empty(i, remove(j, q)) = i = next-empty(i, q).

• test(i, q).

Let ¬(i ≤ j < next-empty(i, q)). test(i, q) implies ¬(S(i) ≤ j <
next-empty(S(i), q)). Furthermore, by Lemma 4.7.4.1, i ≤ max(q),
so the induction hypothesis can be applied with respect to S(i).
Since next-empty(i, q) = next-empty(S(i), q) ≥ S(i) (Lem. 4.7.4.3),
¬(i ≤ j < next-empty(i, q)) implies j 6= i. Then, by Lemma 4.7.2.1,
test(i, remove(j, q)). Hence,

next-empty(i, remove(j, q))
= next-empty(S(i), remove(j, q))
= next-empty(S(i), q) (by induction)
= next-empty(i, q)

4.7 Properties of Data 77

�

Lemma 4.7.5 1. length(g) = length(g|2n)

2. i < length(g) ⇒ return-seq(i, g)|2n = return-seq(i, g|2n)

3. i < length(g) ⇒ return-dat(i, g) = return-dat(i, g|2n)

4. i < length(g) ⇒ delete(i, g)|2n = delete(i, g|2n)

5. length(g) > 0 ⇒ last-dat(g) = return-dat(length(g) − 1, g)

6. length(g) > 0 ⇒ last-seq(g) = return-seq(length(g) − 1, g)

7. length(g) > 0 ⇒ delete-last(g) = delete(length(g) − 1, g)

8. (i < length(g) ∧ member(d, j, delete(i, g))) ⇒ member(d, j, g)

9. i < length(g) ⇒ length(delete(i, g)) = length(g) − 1

10. i < length(g) ⇒ member(return-dat(i, g), return-seq(i, g), g)

11. (i < length(g) − 1 ∧ j < length(g))
⇒ return-seq(i, delete(j, g))=if (i < j, return-seq(i, g), return-seq(i+ 1, g))

12. member(d, i, g)
⇒ ∃j:Nat (j < length(g) ∧ return-seq(j, g) = i ∧ return-dat(j, g) = d)

Proof. We prove Lemma 4.7.5.11 by induction on the structure of g. The other
lemmas are straightforward, by induction on g, and left to reader.

• g = []
K

. Then length(g) = 0. This case is trivial.

• g = inm(e, k, g1).

Let i < length(g1) and j ≤ length(g1).

Case 1: j = 0. Then ¬(i < j) and

return-seq(i, delete(j, g))
= return-seq(i, g1)
= return-seq(i+ 1, g)

Case 2: j > 0.

If i = 0, then i < j and return-seq(i, delete(j, g)) = k = return-seq(i, g).

If i > 0, then

return-seq(i, delete(j, g))
= return-seq(i− 1, delete(j − 1, g1))
= if (i− 1 < j − 1, return-seq(i− 1, g1), return-seq(i, g1)) (by induction)
= if (i < j, return-seq(i, g), return-seq(i+ 1, g))

78 Chapter 4 Verifying a Sliding Window Protocol in µCRL

�

Lemma 4.7.6 1. length(g′) = length(g′|2n)

2. i < length(g′) ⇒ return-seq(i, g′)|2n = return-seq(i, g′|2n)

3. i < length(g′) ⇒ delete(i, g′)|2n = delete(i, g′|2n)

4. length(g′) > 0 ⇒ last-seq(g′) = return-seq(length(g′) − 1, g′)

5. length(g′) > 0 ⇒ delete-last(g′) = delete(length(g′) − 1, g′)

6. (i < length(g′) ∧ member(j, delete(i, g′))) ⇒ member(j, g′)

7. i < length(g′) ⇒ length(delete(i, g′)) = length(g′) − 1

8. i < length(g′) ⇒ member(return-seq(i, g′), g′)

9. (i < length(g′) − 1 ∧ j < length(g′))
⇒ return-seq(i, delete(j, g′))=if (i<j, return-seq(i, g′), return-seq(i+1, g′))

Proof. The proof of Lemma 4.7.6.9 is similar to the proof of Lemma 4.7.5.11.
The other lemmas are straightforward by induction on g′. �

Lemma 4.7.7 1. (λ++λ′)++λ′′ = λ++(λ′++λ′′)

2. length(λ++λ′) = length(λ) + length(λ′)

3. append(d, λ++λ′) = λ++append(d, λ′)

4. length(q[i..j〉) = j .− i

5. i ≤ k ≤ j ⇒ q[i..j〉 = q[i..k〉++q[k..j〉

6. i ≤ j ⇒ append(d, q[i..j〉) = inb(d, j, q)[i..S(j)〉

7. test(k, q) ⇒ inb(retrieve(k, q), k, q)[i..j〉 = q[i..j〉

8. ¬(i ≤ k < j) ⇒ remove(k, q)[i..j〉 = q[i..j〉

9. ` ≤ i ⇒ release(k, `, q)[i..j〉 = q[i..j〉

Proof. The proofs of these nine facts are straightforward and left to the reader.
We restrict to a listing of the induction bases.

1. By induction on the length of λ.

2. By induction on the length of λ.

3. By induction on the length of λ.

4. By induction on j .− i.

5. By induction on k .− i.

4.7 Properties of Data 79

6. By induction on j .− i.

7. By induction on j .− i.

8. By induction on j .− i, together with Lemmas 4.7.2.1 and 4.7.2.2.

9. By induction on j .− i, together with Lemmas 4.7.2.3 and 4.7.2.4.

�

4.7.2 Invariants

Invariants of a system are properties of data that are satisfied throughout the
reachable state space of the system. Lemma 4.7.8 collects 27 invariants of
Nnonmod that are needed in the correctness proof. Occurrences of variables
i, j:Nat and d, e:∆ in an invariant are always implicitly universally quantified
at the outside of the invariant.

Lemma 4.7.8 The invariants hold for Nnonmod (`,m, q, `′, q′, g, p, g′, p′).

1. p ≤ length(g)

2. p′ ≤ length(g′)

3. member(i, g′) ⇒ i ≤ next-empty(`′, q′)

4. ` ≤ next-empty(`′, q′)

5. i < j < length(g′) ⇒ return-seq(i, g′) ≥ return-seq(j, g′)

6. member(i, g′) ⇒ ` ≤ i

7. test(i, q) ⇒ i < m

8. member(d, i, g) ⇒ i < m

9. test(i, q′) ⇒ i < m

10. test(i, q′) ⇒ `′ ≤ i < `′ + n

11. `′ ≤ m

12. next-empty(`′, q′) ≤ m

13. next-empty(`′, q′) ≤ `′ + n

14. ` ≤ m

15. test(i, q) ⇒ ` ≤ i

16. ` ≤ i < m ⇒ test(i, q)

17. ` ≤ `′ + n

80 Chapter 4 Verifying a Sliding Window Protocol in µCRL

18. m ≤ `+ n

19. i ≤ j < length(g) ⇒ return-seq(i, g) + n > return-seq(j, g)

20. (member(d, i, g) ∧ test(j, q′)) ⇒ i+ n > j

21. member(d, i, g) ⇒ i+ n ≥ `′

22. member(d, i, g) ⇒ i+ n ≥ next-empty(`′, q′)

23. (member(d, i, g) ∧ test(i, q)) ⇒ retrieve(i, q) = d

24. (test(i, q) ∧ test(i, q′)) ⇒ retrieve(i, q) = retrieve(i, q′)

25. (member(d, i, g) ∧ member(e, i, g)) ⇒ d = e

26. (member(d, i, g) ∧ test(i, q′)) ⇒ retrieve(i, q′) = d

27. (` ≤ i ≤ m ∧ j ≤ next-empty(i, q′)) ⇒ q[i..j〉 = q′[i..j〉

Proof. It is easy to verify that all invariants hold in the initial state (where
the buffers and mediums are empty, the parameters in the natural numbers
equal zero). In case 1-27 we show that the invariant is preserved by each of the
summands A-K in the specification of Nnonmod . For each of these invariants we
only treat the summands in which one or more values of parameters occurring
in the invariant are updated. In each of these proof obligations, we list the new
values of these parameters together with those conjuncts in the condition of the
summand under consideration that play a role in the proof.

1. p ≤ length(g).
Summands B,C,D,E and F need to be checked. F is the same as E.

B: g := inm(retrieve(k, q), k, g), p := p+ 1;
length(inm(retrieve(k, q), k, g)) = length(g) + 1 ≥ p+ 1.

C: g := delete(k, g), p := p− 1; under condition k < p;
Since k < p ≤ length(g), by Lemma 4.7.5.9,
length(delete(k, g)) = length(g) − 1 ≥ p− 1.

D: p := p− 1; under condition p > 0;
p− 1 < p ≤ length(g).

E: g := delete-last(g); under condition p < length(g);
Since 0 < length(g), by Lemmas 4.7.5.7 and 4.7.5.9,
length(delete-last(g)) = length(g) − 1 ≥ p.

2. p′ ≤ length(g′).
Summands H, I, J and K need to be checked.

H : g′ := inm(next-empty(`′, q′), g′), p′ := p′ + 1;
length(inm(next-empty(`′, q′), g′)) = length(g′) + 1 ≥ p′ + 1.

4.7 Properties of Data 81

I : g′ := delete(k, g′), p′ := p′ − 1; under condition k < p′;
Since k < p′ ≤ length(g′), by Lemma 4.7.6.7,
length(delete(k, g′)) = length(g′) − 1 ≥ p′ − 1.

J : p′ := p′ − 1; under condition p′ > 0;
p′ − 1 < p′ ≤ length(g′).

K: g′ := delete-last(g′); under condition p′ < length(g′);
Since 0 < length(g′), by Lemmas 4.7.6.5 and 4.7.6.7,
length(delete-last(g′)) = length(g′) − 1 ≥ p.

3. member(i, g′) ⇒ i ≤ next-empty(`′, q′).
Summands E, G, H , I and K need to be checked.

E: q′ := inb(last-dat(g), last-seq(g), q′);
Let member(i, g′). Then

i
≤ next-empty(`′, q′)
≤ next-empty(`′, inb(last-dat(g), last-seq(g), q′)) (Lem. 4.7.4.4)

G: `′ := S(`′), q′ := remove(`′, q′); under condition test(`′, q′);
Let member(i, g′). Then,

i
≤ next-empty(`′, q′)
= next-empty(S(`′), q′)
= next-empty(S(`′), remove(`′, q′)) (Lem. 4.7.4.7)

H : g′ := inm(next-empty(`′, q′), g′);
Let member(i, inm(next-empty(`′, q′), g′)).
Case 1: i = next-empty(`′, q′).
next-empty(`′, q′) ≤ next-empty(`′, q′).

Case 2: i 6= next-empty(`′, q′).
member(i, inm(next-empty(`′, q′), g′)) = member(i, g′) ⇒
i ≤ next-empty(`′, q′).

I : g′ := delete(k, g′); under condition k < p′;
Let member(i, delete(k, g′)). By Invariant 4.7.8.2, k < p′ ≤ length(g′). By
Lemma 4.7.6.6, member(i, delete(k, g′)) ⇒ member(i, g′) ⇒
i ≤ next-empty(`′, q′).

K: g′ := delete-last(g′); under condition p′ < length(g′);
Let member(i, delete-last(g′)). By Lemmas 4.7.6.5 and 4.7.6.6,
member(i, delete-last(g′)) ⇒ member(i, g′) ⇒ i ≤ next-empty(`′, q′).

4. ` ≤ next-empty(`′, q′).
Summands E, G and K need to be checked.

E: q′ := inb(last-dat(g), last-seq(g), q′);
` ≤ next-empty(`′, q′) ≤ next-empty(`′, inb(last-dat(g), last-seq(g), q′))
(Lem. 4.7.4.4).

82 Chapter 4 Verifying a Sliding Window Protocol in µCRL

G: `′ := S(`′), q′ := remove(`′, q′); under condition test(`′, q′);

`
≤ next-empty(`′, q′)
= next-empty(S(`′), q′)
= next-empty(S(`′), remove(`′, q′)) (Lem. 4.7.4.7)

K: ` := last-seq(g′); under condition p′ < length(g′).
0 < length(g′), so by Lemmas 4.7.6.4 and 4.7.6.8, member(last-seq(g′), g).
Hence, by Invariant 4.7.8.3, last-seq(g′) ≤ next-empty(`′, q′).

5. i < j < length(g′) ⇒ return-seq(i, g′) ≥ return-seq(j, g′).
Summands H, I and K need to be checked.

H : g′ := inm(next-empty(`′, q′), g′);
Let i < j < length(g′) + 1.
Case 1: i > 0. Then i− 1 < j − 1 < length(g′). So

return-seq(i, inm(next-empty(`′, q′), g′))
= return-seq(i− 1, g′)
≥ return-seq(j − 1, g′)
= return-seq(j, inm(next-empty(`′, q′), g′))

Case 2: i = 0.
Since j > 0, return-seq(j, inm(next-empty(`′, q′), g′)) = return-seq(j −
1, g′). Since j − 1<length(g′), by Lemma 4.7.6.8, member(return-seq(j −
1, g′), g′). By Invariant 4.7.8.3,

return-seq(j − 1, g′)
≤ next-empty(`′, q′)
= return-seq(i, inm(next-empty(`′, q′), g′)) (because i = 0)

I : g′ := delete(k, g′); under condition k < p′;
Let i < j < length(delete(k, g′)). By Invariant 4.7.8.2, k < p′ ≤ length(g′).
So by Lemma 4.7.6.7, length(delete(k, g′)) = length(g′) − 1. Since i <
i + 1 ≤ j < j + 1 < length(g′), return-seq(i, g′) ≥ return-seq(i + 1, g′) ≥
return-seq(j, g′) ≥ return-seq(j + 1, g′). So by Lemma 4.7.6.9,

return-seq(i, delete(k, g′))
≥ return-seq(i+ 1, g′)
≥ return-seq(j, g′)
≥ return-seq(j, delete(k, g′))

K: g′ := delete-last(g′); under condition p′ < length(g′);
Let i < j < length(delete-last(g′)). Since 0 < length(g′), Lemmas 4.7.6.5

4.7 Properties of Data 83

and 4.7.6.7 imply length(delete-last(g′)) = length(g′)− 1. Hence, by Lem-
mas 4.7.6.5 and 4.7.6.9,

return-seq(i, delete-last(g′))
= return-seq(i, g′)
≥ return-seq(j, g′)
= return-seq(i, delete-last(g′))

6. member(i, g′) ⇒ ` ≤ i.
Summands H , I and K need to be checked.

H : g′ := inm(next-empty(`′, q′), g′);
Let member(i, inm(next-empty(`′, q′), g′)).
Case 1: i = next-empty(`′, q′).
By Invariant 4.7.8.4, ` ≤ next-empty(`′, q′).

Case 2: i 6= next-empty(`′, q′).
member(i, inm(next-empty(`′, q′), g′)) ⇒ member(i, g′) ⇒ ` ≤ i.

I : g′ := delete(k, g′); under condition k < p′;
By Invariant 4.7.8.2, k < p′ ≤ length(g′). So by Lemma 4.7.6.6,
member(i, delete(k, g′)) ⇒ member(i, g′) ⇒ ` ≤ i.

K: g′ := delete-last(g′); under condition p′ < length(g′);
Since 0 < length(g′), by Lemmas 4.7.6.5 and 4.7.6.6,
member(i, delete-last(g′)) ⇒ member(i, g′) ⇒ ` ≤ i.

7. test(i, q) ⇒ i < m.
Summands A and K need to be checked.

A: m := S(m), q := inb(d,m, q);
test(i, inb(d,m, q)) ⇔ (i = m ∨ test(i, q)) ⇒ (i = m ∨ i < m) ⇔ i < S(m).

K: q := release(`, last-seq(g′), q);
test(i, release(`, last-seq(g′), q)) ⇒ test(i, q) (Lem. 4.7.2.3) ⇒ i < m.

8. member(d, i, g) ⇒ i < m.
Summands A,B,C,E and F need to be checked. F is the same as E.

A: m := S(m);
member(d, i, g) ⇒ i < m < S(m).

B: g := inm(retrieve(k, q), k, g); under condition test(k, q);
Let member(d, i, inm(retrieve(k, q), k, g)).
Case 1: i = k. Since test(k, q), by Invariant 4.7.8.7, k < m.
Case 2: i 6= k.
member(d, i, inm(retrieve(k, q), k, g)) = member(d, i, g) ⇒ i < m.

C: g := delete(k, g); under condition k < p;
By Invariant 4.7.8.1, k < p ≤ length(g). So by Lemma 4.7.5.8,
member(d, i, delete(k, g)) ⇒ member(d, i, g) ⇒ i < m.

E: g := delete-last(g); under condition p < length(g);
Since 0 < length(g), by Lemmas 4.7.5.7 and 4.7.5.8,
member(d, i, delete-last(g)) ⇒ member(d, i, g) ⇒ i < m.

84 Chapter 4 Verifying a Sliding Window Protocol in µCRL

9. test(i, q′) ⇒ i < m.
Summands A, E and G need to be checked.

A: m := S(m);
test(i, q′) ⇒ i < m < S(m).

E: q′ := inb(last-dat(g), last-seq(g), q′); under condition p < length(g);
Since 0 < length(g), by Lemmas 4.7.5.5, 4.7.5.6 and 4.7.5.10,
member(last-dat(g), last-seq(g), g). By Invariant 4.7.8.8, last-seq(g)<m.
Hence,

test(i, inb(last-dat(g), last-seq(g), q′))
⇔ (i = last-seq(g) ∨ test(i, q′))
⇒ (i = last-seq(g) ∨ i < m)
⇔ i < m

G: q′ := remove(`′, q′);
test(i, remove(`′, q′)) ⇒ test(i, q′) (Lem. 4.7.2.1) ⇒ i < m.

10. test(i, q′) ⇒ `′ ≤ i < `′ + n.
Summands E and G need to be checked.

E: q′ := inb(last-dat(g), last-seq(g), q′); under condition `′ ≤ last-seq(g) <
`′ + n;

test(i, inb(last-dat(g), last-seq(g), q′))
⇔ (i = last-seq(g) ∨ test(i, q′))
⇒ (i = last-seq(g) ∨ `′ ≤ i < `′ + n)
⇔ `′ ≤ i < `′ + n

G: `′ := S(`′), q′ := remove(`′, q′);

test(i, remove(`′, q′))
⇔ (test(i, q′) ∧ i 6= `′) (Lem. 4.7.2.1)
⇒ (`′ ≤ i < `′ + n ∧ i 6= `′)
⇒ S(`′) ≤ i < S(`′) + n

11. `′ ≤ m.
Summands A and G need to be checked.

A: m := S(m);
`′ ≤ m < S(m).

G: `′ := S(`′); under condition test(`′, q′);
By Invariant 4.7.8.9, test(`′, q′) ⇒ `′ < m. Hence, S(`′) ≤ m.

12. next-empty(`′, q′) ≤ m.
By Invariant 4.7.8.11, `′ ≤ m. By Invariant 4.7.8.9, ¬test(m, q′). Hence,
by Lemma 4.7.4.2, next-empty(`′, q′) ≤ m.

13. next-empty(`′, q′) ≤ `′ + n.
By Invariant 4.7.8.10, ¬test(`′ + n, q′). Hence, by Lemma 4.7.4.2,
next-empty(`′, q′) ≤ `′ + n.

4.7 Properties of Data 85

14. ` ≤ m.
By Invariants 4.7.8.4 and 4.7.8.12.

15. test(i, q) ⇒ ` ≤ i.
Summands A and K need to be checked.

A: q := inb(d,m, q);
By Invariant 4.7.8.14, ` ≤ m. Hence,

test(i, inb(d,m, q))
⇔ (i = m ∨ test(i, q))
⇒ (i = m ∨ ` ≤ i)
⇔ ` ≤ i

K: ` := last-seq(g′), q := release(`, last-seq(g′), q);

test(i, release(`, last-seq(g′), q))
⇔ (test(i, q) ∧ ¬(` ≤ i < last-seq(g′))) (Lem. 4.7.2.3)
⇒ (` ≤ i ∧ ¬(` ≤ i < last-seq(g′)))
⇒ last-seq(g′) ≤ i

16. ` ≤ i < m⇒ test(i, q).
Summands A and K need to be checked.

A: m := S(m), q := inb(d,m, q);

` ≤ i < S(m)
⇒ (i = m ∨ ` ≤ i < m)
⇒ (i = m ∨ test(i, q))
⇔ test(i, inb(d,m, q))

K: ` := last-seq(g′), q := release(`, last-seq(g′), q); under condition
p′ < length(g′);
Since 0 < length(g′), by Lemmas 4.7.6.4 and 4.7.6.8,
member(last-seq(g′), g′). Then by Invariant 4.7.8.6, ` ≤ last-seq(g′). So,

last-seq(g′) ≤ i < m
⇔ (` ≤ i < m ∧ ¬(` ≤ i < last-seq(g′)))
⇒ (test(i, q) ∧ ¬(` ≤ i < last-seq(g′)))
⇔ test(i, release(`, last-seq(g′), q)) (Lem. 4.7.2.3)

17. ` ≤ `′ + n.
By Invariants 4.7.8.4 and 4.7.8.13.

18. m ≤ `+ n.
Summands A and K need to be checked.

A: m := S(m); under condition m < `+ n;
Then S(m) ≤ `+ n.

86 Chapter 4 Verifying a Sliding Window Protocol in µCRL

K: ` := last-seq(g′); under condition p′ < length(g′);
Since 0 < length(g′), by Lemmas 4.7.6.4 and 4.7.6.8,
member(last-seq(g′), g′). Then by Invariant 4.7.8.6, ` ≤ last-seq(g′).
Hence, m ≤ `+ n ≤ last-seq(g′) + n.

19. i ≤ j < length(g) ⇒ return-seq(i, g) + n > return-seq(j, g).
Summands B,C,E and F need to be checked. F is the same as E.

B: g := inm(retrieve(k, q), k, g); under condition test(k, q);
Case 1: i > 0. Let i ≤ j < length(g) + 1.

return-seq(j, inm(retrieve(k, q), k, g))
= return-seq(j − 1, g)
< return-seq(i− 1, g) + n
= return-seq(i, inm(retrieve(k, q), k, g)) + n

Case 2: i = 0.
Case 2.1: j = 0. This case is trivial.

Case 2.2: j 6= 0.
Lemma 4.7.5.10 yields member(return-dat(j−1, g), return-seq(j−1, g), g).
By Invariant 4.7.8.8, return-seq(j − 1, g) < m. By Invariant 4.7.8.15,
test(k, q) ⇒ ` ≤ k.

return-seq(j, inm(retrieve(k, q), k, g))
= return-seq(j − 1, g)
< m
≤ `+ n (Lem. 4.7.8.18)
≤ k + n
= return-seq(i, inm(retrieve(k, q), k, g)) + n (because i = 0)

C: g := delete(k, g); under condition k < p;
Let i ≤ j < length(delete(k, g)). By Invariant 4.7.8.1, k < p ≤ length(g).
By Lemma 4.7.5.9, length(delete(k, g)) = length(g) − 1.

Case 1: k ≤ i.
Since i+ 1 ≤ j + 1 < length(g), by Lemma 4.7.5.11,

return-seq(i, delete(k, g)) + n
= return-seq(i+ 1, g) + n
> return-seq(j + 1, g)
= return-seq(j, delete(k, g))

Case 2: i < k ≤ j.
Since i < j + 1 < length(g), by Lemma 4.7.5.11,

return-seq(i, delete(k, g)) + n
= return-seq(i, g) + n
> return-seq(j + 1, g)
= return-seq(j, delete(k, g))

4.7 Properties of Data 87

Case 3: j < k.
Since i ≤ j < length(g), by Lemma 4.7.5.11,

return-seq(i, delete(k, g)) + n
= return-seq(i, g) + n
> return-seq(j, g)
= return-seq(j, delete(k, g))

E: g := delete-last(g); under condition p < length(g);
Let i ≤ j < length(delete-last(g)). By Lemmas 4.7.5.6 and 4.7.5.9, 0 <
length(g) implies length(delete-last(g)) = length(g) − 1. Since i ≤ j <
length(g), by Lemma 4.7.5.11,

return-seq(i, delete-last(g)) + n
= return-seq(i, g) + n
> return-seq(j, g)
= return-seq(j, delete-last(g))

20. (member(d, i, g) ∧ test(j, q′)) ⇒ i+ n > j.
Summands B,C,E, F and G need to be checked.

B: g := inm(retrieve(k, q), k, g); under condition test(k, q);
Let member(d, i, inm(retrieve(k, q), k, g)) and test(j, q′).
Case 1: i = k.
By Invariant 4.7.8.15, test(k, q) yields ` ≤ k, and by Invariant 4.7.8.9,
test(j, q′) yields j < m. Hence, k + n ≥ `+ n ≥ m (Inv. 4.7.8.18) > j.

Case 2: i 6= k.
member(d, i, inm(retrieve(k, q), k, g)) = member(d, i, g). Hence, i+ n > j.

C: g := delete(k, g); under condition k < p;
Let member(d, i, delete(k, g)) and test(j, q′). By Invariant 4.7.8.1, k <
p ≤ length(g). In view of Lemma 4.7.5.8, member(d, i, delete(k, g)) ⇒
member(d, i, g). Hence, i+ n > j.

E: q′ := inb(last-dat(g), last-seq(g), q′), g := delete-last(g); under condi-
tion p < length(g) and `′ ≤ last-seq(g) < `′ + n.
Let member(d, i, delete-last(g)) and test(j, inb(last-dat(g), last-seq(g), q ′)).
Since 0 < length(g), by Lemmas 4.7.5.7 and 4.7.5.8,
member(d, i, delete-last(g)) ⇒ member(d, i, g).

Case 1: j = last-seq(g).
Case 1.1: i = last-seq(g). This case is trivial.

Case 1.2: i 6= last-seq(g).
Since 0 < length(g), by Lemma 4.7.5.6, last-seq(g)=return-seq(length(g)−
1, g). Since member(d, i, g), by Lemma 4.7.5.12, there exists a k such that
k < length(g) and return-seq(k, g) = i. By Invariant 4.7.8.19,
i+ n > return-seq(length(g) − 1, g) = last-seq(g).

88 Chapter 4 Verifying a Sliding Window Protocol in µCRL

Case 2: j 6= last-seq(g).
test(j, inb(last-dat(g), last-seq(g), q′)) = test(j, q′). Hence, i+ n > j.

F : g := delete-last(g); under condition p < length(g);
Let member(d, i, delete-last(g)) and test(j, q′). Since 0 < length(g), by
Lemmas 4.7.5.7 and 4.7.5.8, member(d, i, delete-last(g)) ⇒ member(d, i, g).
Hence, i+ n > j.

G: q′ := remove(`′, q′);
Let member(d, i, g) and test(j, remove(`′, q′)). By Lemma 4.7.2.1,
test(j, remove(`′, q′)) ⇒ test(j, q′). Hence, i+ n > j.

21. member(d, i, g) ⇒ i+ n ≥ `′.
Summands B,C,E, F and G need to be checked. F is the same as E.

B: g := inm(retrieve(k, q), k, g); under condition test(k, q);
Let member(d, i, inm(retrieve(k, q), k, g)).

Case 1: i = k.
By Invariant 4.7.8.15, test(k, q) yields ` ≤ k. Hence, k + n ≥ ` + n ≥
m (Inv. 4.7.8.18) ≥ `′ (Inv. 4.7.8.11).

Case 2: i 6= k.
member(d, i, inm(retrieve(k, q), k, g)) = member(d, i, g) ⇒ i+ n ≥ `′.

C: g := delete(k, g); under condition k < p;
Let member(d, i, delete(k, g)). By Invariant 4.7.8.1, k < p ≤ length(g). By
Lemma 4.7.5.8, we have
member(d, i, delete(k, g)) ⇒ member(d, i, g) ⇒ i+ n ≥ `′.

E: g := delete-last(g); under condition p < length(g);
Let member(d, i, delete-last(g)). Since 0 < length(g), by Lemmas 4.7.5.7
and 4.7.5.8, we have
member(d, i, delete-last(g)) ⇒ member(d, i, g) ⇒ i+ n ≥ `′.

G: `′ = S(`′); under condition test(`′, q′);
Let member(d, i, g). By Invariant 4.7.8.20, test(`′, q′) implies i + n > `′.
Hence, i+ n ≥ S(`′).

22. member(d, i, g) ⇒ i+ n ≥ next-empty(`′, q′).
We distinguish two cases.
Case 1: q′ = []. Then next-empty(`′, q′) = `′.
By Invariant 4.7.8.21, member(d, i, g) ⇒ i+ n ≥ `′.

Case 2: q′ 6= [].
By Lemma 4.7.2.5, test(max (q ′), q′). So Invariant 4.7.8.20 yields
member(d, i, g) ⇒ i + n > max (q ′). By Lemmas 4.7.4.1 and 4.7.4.2,
next-empty(`′, q′) ≤ max (q ′) + 1. Hence, member(d, i, g) ⇒ i + n ≥
next-empty(`′, q′).

23. (member(d, i, g) ∧ test(i, q)) ⇒ retrieve(i, q) = d.
Summands A,B,C,E, F and K need to be checked. F is the same as E.

4.7 Properties of Data 89

A: q := inb(e,m, q);
By Invariant 4.7.8.8, member(d, i, g) ⇒ i < m.
So retrieve(i, inb(e,m, q)) = retrieve(i, q) = d.

B: g := inm(retrieve(k, q), k, g);
Let member(d, i, inm(retrieve(k, q), k, g)) and test(i, q).
Case 1: d = retrieve(k, q) and i = k. This case is trivial.

Case 2: Otherwise. member(d, i, inm(retrieve(k, q), k, g))=member(d, i, g).
Since test(i, q), retrieve(i, q) = d.

C: g := delete(k, g); under condition k < p;
Let member(d, i, delete(k, g)) and test(i, q). By Invariant 4.7.8.1, k <
p ≤ length(g). Then by Lemma 4.7.5.8, member(d, i, delete(k, g)) ⇒
member(d, i, g). Since test(i, q), retrieve(i, q) = d.

E: g := delete-last(g); under condition p < length(g);
Let member(d, i, delete-last(g)) and test(i, q). Since 0 < length(g), by
Lemmas 4.7.5.7 and 4.7.5.8, member(d, i, delete-last(g)) ⇒ member(d, i, g).
Since test(i, q), retrieve(i, q) = d.

K: q := release(`, last-seq(g′), q);
Let member(d, i, delete-last(g)) and test(i, release(`, last-seq(g′), q)). By
Lemma 4.7.2.3, test(i, q) and ¬(` ≤ i < last-seq(g′)). By Lemma 4.7.2.4,
retrieve(i, release(`, last-seq(g′), q)) = retrieve(i, q) = d.

24. (test(i, q) ∧ test(i, q′)) ⇒ retrieve(i, q) = retrieve(i, q′).
Summands A, E, G and K must be checked.

A: q := inb(d,m, q);
By Invariant 4.7.8.9, test(i, q′) implies i 6= m. So

test(i, inb(d,m, q)) ∧ test(i, q′)
⇔ test(i, q) ∧ test(i, q′)
⇒ retrieve(i, inb(d,m, q)) = retrieve(i, q) = retrieve(i, q′)

E: q′ := inb(last-dat(g), last-seq(g), q′); under condition p < length(g);
Let test(i, q) and test(i, inb(last-dat(g), last-seq(g), q′)).

Case 1: i 6= last-seq(g).

test(i, q) ∧ test(i, inb(last-dat(g), last-seq(g), q′))
⇒ test(i, q) ∧ test(i, q′)
⇒ retrieve(i, q) = retrieve(i, q′)

= retrieve(i, inb(last-dat(g), last-seq(g), q′))

Case 2: i = last-seq(g).
Since 0 < length(g), by Lemmas 4.7.5.5, 4.7.5.6 and 4.7.5.10,
member(last-dat(g), last-seq(g), g). Since test(last-seq(g), q),

retrieve(last-seq(g), q)
= last-dat(g) (Inv. 4.7.8.23)
= retrieve(last-dat(g), inb(last-dat(g), last-seq(g), q′))

90 Chapter 4 Verifying a Sliding Window Protocol in µCRL

G: q′ := remove(`′, q′);

test(i, q) ∧ test(i, remove(`′, q′))
⇔ test(i, q) ∧ test(i, q′) ∧ i 6= `′ (Lem. 4.7.2.1)
⇒ retrieve(i, q) = retrieve(i, q′)

= retrieve(i, remove(`′, q′)) (Lem. 4.7.2.2)

K: q := release(`, last-seq(g′), q);

test(i, release(`, last-seq(g′), q)) ∧ test(i, q′)
⇔ test(i, q) ∧ test(i, q′) ∧ ¬(` ≤ i < last-seq(g′)) (Lem. 4.7.2.3)
⇒ retrieve(i, q′) = retrieve(i, q)

= retrieve(i, release(`, h′, q)) (Lem. 4.7.2.4)

25. (member(d, i, g) ∧ member(e, i, g)) ⇒ d = e.
Summands B,C,E and F need to be checked. F is the same as E.

B: g := inm(retrieve(k, q), k, g); under condition test(k, q);
Let member(d, i, inm(retrieve(k, q), k, g)) and
member(e, i, inm(retrieve(k, q), k, g)).

Case 1: i = k.
By Invariant 4.7.8.23, test(k, q) implies d = retrieve(k, q) = e.

Case 2: i 6= k.
member(d, i, inm(retrieve(k, q), k, g)) ⇒ member(d, i, g) and
member(e, i, inm(retrieve(k, q), k, g)) ⇒ member(e, i, g). Hence, d = e.

C: g := delete(k, g); under condition k < p;
By Invariant 4.7.8.1, k < p ≤ length(g). By Lemma 4.7.5.8,

member(d, i, delete(k, g)) ∧ member(e, i, delete(k, g))
⇒ member(d, i, g) ∧ member(e, i, g)
⇒ d = e

E: g := delete-last(g); under condition p < length(g);
Since 0 < length(g), by Lemmas 4.7.5.7 and 4.7.5.8,

member(d, i, delete-last(g)) ∧ member(e, i, delete-last(g))
⇒ member(d, i, g) ∧ member(e, i, g)
⇒ d = e

26. (member(d, i, g) ∧ test(i, q′)) ⇒ retrieve(i, q′) = d.
Summands B,C,E, F and G need to be checked.

B: g := inm(retrieve(k, q), k, g); under condition test(k, q);
Let member(d, i, inm(retrieve(k, q), k, g)) and test(i, q′).

Case 1: d = retrieve(k, q) and i = k.
Since test(k, q) and test(k, q′), by Invariant 4.7.8.24, retrieve(k, q′) = d =
retrieve(k, q).

4.7 Properties of Data 91

Case 2: Otherwise.
member(d, i, inm(retrieve(k, q), k, g)) = member(d, i, g). Since test(i, q′),
retrieve(i, q′) = d.

C: g := delete(k, g); under condition k < p;
Let member(d, i, delete(k, g)) and test(i, q′). By Invariant 4.7.8.1, k < p ≤
length(g). By Lemma 4.7.5.8, member(d, i, delete(k, g)) ⇒ member(d, i, g).
Since test(i, q′), retrieve(i, q′) = d.

E: q′ := inb(last-dat(g), last-seq(g), q′), g := delete-last(g); under condi-
tion p < length(g);
Let member(d, i, delete-last(g)) and test(i, inb(last-dat(g), last-seq(g), q ′)).
Since 0 < length(g), by Lemmas 4.7.5.7 and 4.7.5.8,
member(d, i, delete-last(g)) ⇒ member(d, i, g).

Case 1: i = last-seq(g).
Since 0 < length(g), by Lemmas 4.7.5.5, 4.7.5.6 and 4.7.5.10, we have
member(last-dat(g), last-seq(g), g).
Since member(d, last-seq(g), delete-last(g)), by Invariant 4.7.8.25,
d = last-dat(g) = retrieve(last-seq(g), inb(last-dat(g), last-seq(g), q ′)).

Case 2: i 6= last-seq(g).
Then test(i, inb(last-dat(g), last-seq(g), q′)) ⇒ test(i, q′).
By member(d, i, g), retrieve(i, q′) = d.

F : g := delete-last(g); under condition p < length(g);
Let member(d, i, delete-last(g)) and test(i, q′). Since 0 < length(g), by
Lemmas 4.7.5.7 and 4.7.5.8, member(d, i, delete-last(g)) ⇒ member(d, i, g).
Since test(i, q′), retrieve(i, q′) = d

G: q′ := remove(`′, q′);
By Lemma 4.7.2.1, test(i, remove(`′, q′)) implies test(i, q′) and i 6= `′.
Hence, member(d, i, g) ⇒ retrieve(i, remove(`′, q′)) = retrieve(i, q′) (Lem.
4.7.2.2)= d.

27. (` ≤ i ≤ m ∧ j ≤ next-empty(i, q′)) ⇒ q[i..j〉 = q′[i..j〉.
Let ` ≤ i ≤ m and j ≤ next-empty(i, q′)). We apply induction on j .− i.

If i ≥ j, then q[i..j〉 = 〈〉 = q′[i..j〉.

Let i < j.
Case 1: i = m.
By Invariant 4.7.8.9, j ≤ next-empty(i, q′) = m. Hence, q[i..j〉 = 〈〉 =
q′[i..j〉.

Case 2: ` ≤ i < m.
Then by Invariant 4.7.8.16, test(i, q). Furthermore, by Lemma 4.7.4.2,

92 Chapter 4 Verifying a Sliding Window Protocol in µCRL

i < j ≤ next-empty(i, q′) implies test(i, q′). Hence,

q[i..j〉
= inb(retrieve(i, q), q[S(i)..j〉)
= inb(retrieve(i, q), q′[S(i)..j〉) (by induction)
= inb(retrieve(i, q′), q′[S(i)..j〉) (Inv. 4.7.8.24)
= q′[i..j〉.

�

4.8 Correctness of Nmod

In Section 4.8.1, we prove Theorem 4.6.3, which states that Nmod and Nnonmod

are strongly bisimilar. Next, in Section 4.8.2 we prove that Nnonmod behaves
like a FIFO queue of size 2n. Theorem 4.5.1 is proved in Section 4.8.3.

4.8.1 Equality of Nmod and Nnonmod

In this section we present a proof of Theorem 4.6.3. It suffices to prove that for
all `,m, `′:Nat , q, q′:Buf , g:MedK and g′:MedL,

Nmod(`|2n,m|2n, q|2n, `
′|2n, q

′|2n, g|2n, p, g
′|2n, p

′)
↔ Nnonmod (`,m, q, `′, q′, g, p, g′, p′)

Proof. We show that Nmod(`|2n,m|2n, q|2n, `
′|2n, q

′|2n, g|2n, p, g
′|2n, p

′) is a so-
lution for the defining equation of Nnonmod(`,m, q, `′, q′, g, p, g′, p′). Hence, we
must derive the following equation.2

Nmod(`|2n,m|2n, q|2n, `
′|2n, q

′|2n, g|2n, p, g
′|2n, p

′)

=
∑

d:∆ rA(d)·Nmod(m:=S(m)|2n, q:=inb(d,m, q)|2n)
/ m < `+ n . δ (A)

+
∑

k:Nat c·Nmod(g:=inm(retrieve(k, q), k, g)|2n, p:=p+ 1)
/ test(k, q) . δ (B)

+
∑

k:Nat j·Nmod(g:= delete(k, g)|2n, p:=p− 1) / k < p . δ (C)

+ j·Nmod(p:=p− 1) / p > 0 . δ (D)

+ c·Nmod(q′:=inb(last-dat(g), last-seq(g), q′)|2n, g:=delete-last(g)|2n)
/ p < length(g) ∧ (`′ ≤ last-seq(g) < `′ + n) . δ (E)

+ c·Nmod(g:=delete-last(g)|2n)
/ p < length(g) ∧ ¬(`′ ≤ last-seq(g) < `′ + n) . δ (F)

2By abuse of notation, we use the parameters `, m, q, `′, q′, g, g′ in an ambiguous way. For
example, m refers both to the second parameter of Nmod and to the value of this parameter.

4.8 Correctness of Nmod 93

+ sD(retrieve(`′, q′))·Nmod(`′:=S(`′)|2n, q
′:=remove(`′, q′)|2n)

/ test(`′, q′) . δ (G)

+ c·Nmod(g′:=inm(next-empty(`′, q′), g′)|2n, p
′:=p′ + 1) (H)

+
∑

k:Nat j·Nmod(g′:=delete(k, g′)|2n, p
′:=p′ − 1) / k < p′ . δ (I)

+ j·Nmod(p′:=p′ − 1) / p′ > 0 . δ (J)

+ c·Nmod(`:=last-seq(g′)|2n, q:=release(`, last-seq(g′), q)|2n,
g′:=delete-last(g′)|2n) / p′ < length(g′) . δ (K)

In order to prove this, we instantiate the parameters in the defining equation
of Nmod with `|2n,m|2n, q|2n, `

′|2n, g|2n, p, g
′|2n, p

′.

Nmod(`|2n,m|2n, q|2n, `
′|2n, q

′|2n, g|2n, p, g
′|2n, p

′)

=
∑

d:∆ rA(d)·Nmod(m:=S(m|2n)|2n, q:=inb(d,m|2n, q|2n))
/ in-window(`|2n,m|2n, (`|2n + n)|2n) . δ (A)

+
∑

k:Nat c·Nmod(g:=inm(retrieve(k, q|2n), k, g|2n), p:=p+ 1)
/ test(k, q|2n) . δ (B)

+
∑

k:Nat j·Nmod(g:= delete(k, g|2n), p:=p− 1) / k < p . δ (C)

+ j·Nmod(p:=p− 1) / p > 0 . δ (D)

+ c·Nmod(q′:=inb(last-dat(g|2n), last-seq(g|2n), q′|2n),
g:=delete-last(g|2n)) / p < length(g|2n)∧
in-window(`′|2n, last-seq(g|2n), (`′|2n + n)|2n) . δ (E)

+ c·Nmod(g:=delete-last(g|2n)) / p < length(g|2n)∧
¬in-window(`′|2n, last-seq(g|2n), (`′|2n + n)|2n) . δ (F)

+ sD(retrieve(`′|2n, q
′|2n))·Nmod(`′:=S(`′|2n)|2n, q

′:=remove(`′|2n, q
′|2n))

/ test(`′|2n, q
′|2n) . δ (G)

+ c·Nmod(g′:=inm(next-empty|2n(`′|2n, q
′|2n), g′|2n), p′:=p′ + 1) (H)

+
∑

k:Nat j·Nmod(g′:=delete(k, g′|2n), p′:=p′ − 1) / k < p′ . δ (I)

+ j·Nmod(p′:=p′ − 1) / p′ > 0 . δ (J)

+ c·Nmod(`:=last-seq(g′|2n)|2n, q:=release|2n(`|2n, last-seq(g
′|2n)|2n, q|2n),

g′:=delete-last(g′|2n)) / p′ < length(g′|2n) . δ (K)

In order to equate the eleven summands in both specifications, we obtain
the following proof obligations. Cases for summands that are syntactically the
same are omitted.

94 Chapter 4 Verifying a Sliding Window Protocol in µCRL

A • m < `+ n⇔ in-window(`|2n,m|2n, (`|2n + n)|2n).

m < `+ n
⇔ ` ≤ m < `+ n (Inv. 4.7.8.14)
⇒ in-window(`|2n,m|2n, (`+ n)|2n) (Lem. 4.7.3.7)

Reversely,

in-window(`|2n,m|2n, (`+ n)|2n)
⇒ m+ n < ` ∨ ` ≤ m < `+ n ∨m ≥ `+ 2n (Lem. 4.7.3.8)
⇔ m < `+ n (Inv. 4.7.8.14, 4.7.8.18)

Moreover, by Lemma 4.7.1.1, (`+ n)|2n = (`|2n + n)|2n.

• S(m)|2n = S(m|2n)|2n.

This follows from Lemma 4.7.1.1.

• inb(d,m, q)|2n = inb(d,m|2n, q|2n).

This follows from the definition of buffers modulo 2n.

B Below we equate the entire summand B of the two specifications. The
argument p := p+1 is omitted, because it is irrelevant for this derivation.

∑
k:Nat c·Nmod(g:=inm(retrieve(k, q), k, g)|2n)

/ test(k, q) . δ

=
∑

k:Nat c·Nmod(g:=inm(retrieve(k, q), k|2n, g|2n))
/ test(k, q) ∧ ` ≤ k < `+ n . δ (Inv. 4.7.8.7, 4.7.8.15, 4.7.8.18)

=
∑

k:Nat c·Nmod(g:=inm(retrieve(k|2n, q|2n), k|2n, g|2n))
/ test(k|2n, q|2n) ∧ ` ≤ k < `+ n . δ (Lem. 4.7.3.2, 4.7.3.3)

=
∑

k′:Nat

∑
k:Nat c·Nmod(g:=inm(retrieve(k′, q|2n), k′, g|2n))

/ test(k′, q|2n) ∧ ` ≤ k < `+ n ∧ k′ = k|2n . δ (sum elim.)

=
∑

k′:Nat

∑
k:Nat c·Nmod(g:=inm(retrieve(k′, q|2n), k′, g|2n))

/ test(k′, q|2n) ∧ k = (` div 2n)2n+ k′∧
`|2n ≤ k′ < `|2n + n ∧ k′ = k|2n . δ

+
∑

k′:Nat

∑
k:Nat c·Nmod(g:=inm(retrieve(k′, q|2n), k′, g|2n))

/ test(k′, q|2n) ∧ k = S(` div 2n)2n+ k′∧
k′ + n < `|2n ∧ k′ = k|2n . δ (Lem. 4.7.1.4, 4.7.1.5)

=
∑

k′:Nat c·Nmod(g:=inm(retrieve(k′, q|2n), k′, g|2n))
/ test(k′, q|2n) ∧ `|2n ≤ k′ < `|2n + n ∧ k′ = k′ . δ

+
∑

k′:Nat c·Nmod(g:=inm(retrieve(k′, q|2n), k′, g|2n))
/ test(k′, q|2n) ∧ k′ + n < `|2n ∧ k′ = k′ . δ (sum elim., Lem. 4.7.1.3)

=
∑

k′:Nat c·Nmod(g:=inm(retrieve(k′, q|2n), k′, g|2n))
/ test(k′, q|2n) . δ (see below)

4.8 Correctness of Nmod 95

The last equality follows from the following derivation:

test(k′, q|2n)
⇒ test(k′|2n, q|2n) (Lem. 4.7.3.1)
⇒ ` ≤ k′|2n < `+ n (Inv. 4.7.8.7, 4.7.8.15, 4.7.8.18)
⇒ in-window(`|2n, k

′|2n, (`+ n)|2n) (Lem. 4.7.3.9)
⇒ k′ + n < `|2n ∨ `|2n ≤ k′ < `|2n + n

∨k′ ≥ `|2n + 2n (Lem. 4.7.1.1, 4.7.3.8)
⇔ k′ + n < `|2n ∨ `|2n ≤ k′ < `|2n + n (Lem. 4.7.1.2, 4.7.3.1)

C k < p⇒ delete(k, g)|2n = delete(k, g|2n).

By Invariant 4.7.8.1, k<p ≤ length(g). So this follows from Lemma 4.7.5.4.

E • length(g) = length(g|2n).

This follows from Lemma 4.7.5.1.

• p < length(g) ⇒ (`′ ≤ last-seq(g) < `′ + n =
in-window(`′|2n, last-seq(g)|2n, (`

′|2n + n)|2n)).

Since 0 < length(g), Lemmas 4.7.5.5, 4.7.5.6, and 4.7.5.10 yield
member(last-dat(g), last-seq(g), g). So in combination with Invariant
4.7.8.22, this implies next-empty(`′, q′) ≤ last-seq(g) + n. Hence,
by Lemma 4.7.4.3, `′ ≤ last-seq(g) + n. Furthermore, by Invariant
4.7.8.8, last-seq(g) < m, by Invariant 4.7.8.18, m ≤ ` + n, and by
Invariant 4.7.8.17, ` ≤ `′ + n. Hence, last-seq(g) < `′ + 2n. So by
Lemmas 4.7.3.7 and 4.7.3.8,
`′ ≤ last-seq(g) < `′+n = in-window(`′|2n, last-seq(g)|2n, (`

′ + n)|2n).
And by Lemma 4.7.1.1, (`′ + n)|2n = (`′|2n + n)|2n.

• p < length(g) ⇒ inb(last-dat(g), last-seq(g), q′)|2n =
inb(last-dat(g|2n), last-seq(g|2n), q′|2n).

This follows from the definitions of buffers modulo 2n, and Lem-
mas 4.7.5.5, 4.7.5.6, 4.7.5.2 and 4.7.5.3.

• p < length(g) ⇒ delete-last(g)|2n = delete-last(g|2n).

This follows from Lemmas 4.7.5.7 and 4.7.5.4.

F • ¬(`′ ≤ last-seq(g) < `′ + n)
⇔ ¬in-window(`′|2n, last-seq(g)|2n, (`

′|2n + n)|2n).

This follows immediately from the second item of the previous case.

• p < length(g) ⇒ delete-last(g)|2n = delete-last(g|2n).

This follows immediately from the fourth item of the previous case.

G • test(`′, q′) = test(`′|2n, q
′|2n).

This follows from Lemma 4.7.3.2 together with Invariant 4.7.8.10.

• test(`′, q′) ⇒ (retrieve(`′, q′) = retrieve(`′|2n, q
′|2n)).

This follows from Lemma 4.7.3.3 together with Invariant 4.7.8.10.

96 Chapter 4 Verifying a Sliding Window Protocol in µCRL

• S(`′)|2n = S(`′|2n)|2n.

This follows from Lemma 4.7.1.1.

• remove(`′, q′)|2n = remove(`′|2n, q
′|2n).

This follows from Lemma 4.7.3.4 together with Invariant 4.7.8.10.

H inm(next-empty(`′, q′)|2n, g
′)|2n = inm(next-empty|2n(`′|2n, q

′|2n), g′|2n).

By Lemma 4.7.3.6 and Invariant 4.7.8.10,
next-empty(`′, q′)|2n = next-empty|2n(`′|2n, q

′|2n). So the desired equality
follows the definition of mediums modulo 2n.

I k < p′ ⇒ delete(k, g′)|2n = delete(k, g′|2n).
By Invariant 4.7.8.2, k < p′ ≤ length(g′). So the desired equality follows
from Lemma 4.7.6.3.

K • length(g′) = length(g′|2n).

This follows from Lemma 4.7.6.1.

• p′ < length(g′) ⇒ last-seq(g′)|2n = last-seq(g′|2n)|2n.

This follows from Lemmas 4.7.6.4, 4.7.6.2 and 4.7.1.1.

• release(`, last-seq(g′), q)|2n = release|2n(`|2n, last-seq(g
′)|2n, q|2n).

By Lemmas 4.7.6.4 and 4.7.6.8, the condition p′ < length(g′) implies
member(last-seq(g′), g′). So by Invariant 4.7.8.6, ` ≤ last-seq(g′). By
Invariants 4.7.8.3 and 4.7.8.12, last-seq(g′) ≤ next-empty(`′, q′) ≤ m.
And by Invariant 4.7.8.18, m ≤ ` + n. So ` ≤ last-seq(g′) ≤ ` + n.
Furthermore, by Invariants 4.7.8.7, 4.7.8.15 and 4.7.8.18, test(i, q) ⇒
` ≤ i < ` + n. Hence, the desired equation follows from Lemma
4.7.3.5.

• p′ < length(g′) ⇒ delete-last(g′)|2n = delete-last(g′|2n).

This follows from Lemmas 4.7.6.3 and 4.7.6.5.

Hence, Nmod(`|2n,m|2n, q|2n, `
′|2n, q

′|2n, g|2n, p, g
′|2n, p

′) is a solution for the
defining equation of Nnonmod(`,m, q, `′, q′, g, p, g′, p′). So by CL-RSP, they are
strongly (and thus branching) bisimilar. �

4.8.2 Correctness of Nnonmod

We prove that Nnonmod is branching bisimilar to the FIFO queue Z of size 2n
(see Section 4.5.2), using the cones and foci method [54].

Let Ξ abbreviate Nat ×Nat ×Buf ×Nat ×Buf ×MedK×Nat ×MedL×Nat .
Furthermore, let ξ:Ξ denote (`,m, q, `′, q′, g, p, g′, p′). The state mapping φ :
Ξ ⇒ List , which maps states of Nnonmod to states of Z, is defined by:

φ(ξ) = q′[`′..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉

Intuitively, φ collects the data elements in the sending and receiving windows,
starting at the first position of the receiving window (i.e., `′) until the first empty

4.8 Correctness of Nmod 97

position in this window, and then continuing in the sending window until the
first empty position in that window (i.e., m). Note that φ is independent of
`, g, p, g′, p′; we therefore write φ(m, q, `′, q′).

The focus points are those states where either the sending window is empty
(meaning that ` = m), or the receiving window is full and all data elements in
the receiving window have been acknowledged, meaning that ` = `′ + n. That
is, the focus condition for Nnonmod (`,m, q, `′, q′, g, p, g′, p′) is

FC (`,m, q, `′, q′, g, p, g′, p′) := ` = m ∨ ` = `′ + n

Lemma 4.8.1 For each ξ:Ξ where the invariants in Lemma 4.7.8 hold, there is
a ξ̂:Ξ with FC(ξ̂) such that Nnonmod (ξ)

c1→ · · ·
cn→ Nnonmod(ξ̂), where c1, . . . , cn ∈

I.

Proof. By Invariants 4.7.8.12 and 4.7.8.13, next-empty(`′, q′) ≤ min{m, `′+n}.
We prove by induction on min{m, `′ +n}−next-empty(`′, q′) that for each state
ξ where the invariants in Lemma 4.7.8 hold, a focus point can be reached by a
sequence of internal actions.
Basis: next-empty(`′, q′) = min{m, `′ + n}.
Let y = length(g′) and x = next-empty(`′, q′) at state ξ. By summand H ,
we reach a state ξ′ with g′ := inm(x, g′). Hence, at state ξ′ there exists a
0 ≤ k < y such that return-seq(k, g′) = x and return-seq(i, g′) 6= x for any
k < i < y. In view of Invariant 4.7.8.5, k < i < y ⇒ x > return-seq(i, g′). Then,
by repeating summand J (p′ times), we reach a state ξ′′ with p′ = 0. Then,
by repeating summand K (y − (k + 1) times), we reach a state ξ ′′′ such that
last-seq(g′) = x. During these executions of H, J and K the values of m, `′, q′

remain the same. By again performing summand K, we reach a state ξ̂ where
` = last-seq(g′) = x = min{m, `′ + n}. Then ` = m or ` = `′ + n, so FC(ξ̂).
Induction step: next-empty(`′, q′) < min{m, `′ + n}.
Let y = length(g) and x = next-empty(`′, q′) at state ξ. By Invariants 4.7.8.4 and
4.7.8.12, ` ≤ x < m. So by Invariant 4.7.8.16, test(x, q). Furthermore, in view of
Lemma 4.7.4.3, `′ ≤ x < `′+n. By summand B, we perform an internal action to
a state ξ′ with g:=inm(d, x, g) (where d denotes retrieve(x, q)). Hence, at state
ξ′ there exists a 0 ≤ k < y such that return-seq(k, g) = x and return-seq(i, g) 6= x
for any k < i < y. Then, by repeating summand D (p times), we reach a state
ξ′′ with p = 0. Then, by repeating summands E and F (y − (k + 1) times),
we reach a state ξ′′′ with last-dat(g) = d and last-seq(g) = x. During these
executions of B,D,E and F , the values of m, `′ remain the same; and since
during the executions of E and F last-seq(g) 6= x, in view of Lemma 4.7.4.5, the
value of next-empty(`′, q′) remains the same. By again performing summand E,
we reach a state ξ′′′′ where q′ := inb(d, x, q′). Recall that x = next-empty(`′, q′).

next-empty(`′, in(d,next-empty(`′, q′), q′))
= next-empty(S(next-empty(`′, q′)), q′) (Lem. 4.7.4.6)
> next-empty(`′, q′) (Lem. 4.7.4.3)

98 Chapter 4 Verifying a Sliding Window Protocol in µCRL

So we can apply the induction hypothesis to conclude that from ξ ′′′′ a focus
point ξ̂ can be reached by a sequence of internal actions.

�

Theorem 4.8.2 For all e:∆,

τ{c,j}(Nnonmod(0, 0, [], 0, [], []K , 0, []L, 0)) ↔b Z(〈〉).

Proof. By the cones and foci method we obtain the following matching criteria
(see Definition 3.2.3). Trivial matching criteria are left out.
Class I:

(p < length(g) ∧ `′ ≤ last-seq(g) < `′ + n)
⇒ φ(m, q, `′, q′) = φ(m, q, `′, inb(last-dat(g), last-seq(g), q′))

p′ < length(g′) ⇒ φ(m, q, `′, q′) = φ(m, release(`, last-seq(g′), q), `′, q′)

Class II:
m < `+ n ⇒ length(φ(m, q, `′, q′)) < 2n

test(`′, q′) ⇒ length(φ(m, q, `′, q′)) > 0

Class III:

((` = m ∨ ` = `′ + n) ∧ length(φ(m, q, `′, q′)) < 2n) ⇒ m < `+ n

((` = m ∨ ` = `′ + n) ∧ length(φ(m, q, `′, q′)) > 0) ⇒ test(`′, q′)

Class IV:
test(`′, q′) ⇒ retrieve(`′, q′) = top(φ(m, q, `′, q′))

Class V:

m < `+ n ⇒ φ(S(m), inb(d,m, q), `′, q′) = append(d, φ(m, q, `′, q′))

test(`′, q′) ⇒ φ(m, q, S(`′), remove(`′, q′)) = tail(φ(m, q, `′, q′))

I.1 (p < length(g) ∧ `′ ≤ last-seq(g) < `′ + n)
⇒ φ(m, q, `′, q′) = φ(m, q, `′, inb(last-dat(g), last-seq(g), q′)).

Let p < length(g). By Lemmas 4.7.5.5, 4.7.5.6 and 4.7.5.10,
member(last-dat(g), last-seq(g), g).

Case 1: last-seq(g) 6= next-empty(`′, q′). By Lemma 4.7.4.5,
next-empty(`′, inb(last-dat(g), last-seq(g), q′)) = next-empty(`′, q′). Hence,

φ(m, q, `′, inb(last-dat(g), last-seq(g), q′))
= inb(last-dat(g), last-seq(g), q′)[`′..next-empty(`′, q′)〉

++q[next-empty(`′, q′)..m〉

Case 1.1: `′ ≤ last-seq(g) < next-empty(`′, q′).
By Lemma 4.7.4.2, test(last-seq(g), q′), so by Invariant 4.7.8.26 and
member(last-dat(g), last-seq(g), g), retrieve(last-seq(g), q′) = last-dat(g).

4.8 Correctness of Nmod 99

So by Lemma 4.7.7.7, inb(last-dat(g), last-seq(g), q′)[`′..next-empty(`′, q′)〉
= q′[`′..next-empty(`′, q′)〉.

Case 1.2: ¬(`′ ≤ last-seq(g) < next-empty(`′, q′)). Using Lemma 4.7.7.8,
it follows that

inb(last-dat(g), last-seq(g), q′)[`′..next-empty(`′, q′)〉
= remove(last-seq(g), inb(last-dat(g), last-seq(g), q′))

[`′..next-empty(`′, q′)〉
= remove(last-seq(g), q′)[`′..next-empty(`′, q′)〉
= q′[`′..next-empty(`′, q′)〉

Case 2: last-seq(g) = next-empty(`′, q′).
The derivation splits into two parts.

(1) Using Lemma 4.7.7.8, it follows that

inb(last-dat(g), last-seq(g), q′)[`′..last-seq(g)〉
= remove(last-dat(g), inb(last-dat(g), last-seq(g), q′))[`′..last-seq(g)〉
= remove(last-dat(g), q′)[`′..last-seq(g)〉
= q′[`′..last-seq(g)〉

(2) By Invariant 4.7.8.4, ` ≤ last-seq(g).
By Invariant 4.7.8.8 and member(last-dat(g), last-seq(g), g), last-seq(g) <
m. Thus, by Invariant 4.7.8.16, test(last-seq(g), q). So by Invariant 4.7.8.23
together with member(last-dat(g), last-seq(g), g), retrieve(last-seq(g), q) =
last-dat(g). Since ` ≤ S(last-seq(g)) ≤ m, by Invariant 4.7.8.27,

q′[S(last-seq(g))..next-empty(S(last-seq(g)), q′)〉
= q[S(last-seq(g))..next-empty(S(last-seq(g)), q′)〉

Hence,

inb(last-dat(g), last-seq(g), q′)
[last-seq(g)..next-empty(S(last-seq(g)), q′)〉

= inl(last-dat(g), inb(last-dat(g), last-seq(g), q′)
[S(last-seq(g))..next-empty(S(last-seq(g)), q′)〉)

= inl(last-dat(g), remove(last-seq(g), inb(last-dat(g), last-seq(g), q ′))
[S(last-seq(g))..next-empty(S(last-seq(g)), q′)〉) (Lem. 4.7.7.8)

= inl(last-dat(g), remove(last-seq(g), q′)
[S(last-seq(g))..next-empty(S(last-seq(g)), q′)〉)

= inl(last-dat(g), q′[S(last-seq(g))..next-empty(S(last-seq(g)), q′)〉)
(Lem. 4.7.7.8)

= inl(last-dat(g), q[S(last-seq(g))..next-empty(S(last-seq(g)), q′)〉)
(see above)

= q[last-seq(g)..next-empty(S(last-seq(g)), q′)〉

100 Chapter 4 Verifying a Sliding Window Protocol in µCRL

We combine (1) and (2). Recall that last-seq(g) = next-empty(`′, q′).

(inb(last-dat(g), last-seq(g), q′)
[`′..next-empty(`′, inb(last-dat(g), last-seq(g), q′))〉)
++q[next-empty(`′, inb(last-dat(g), last-seq(g), q′))..m〉

= inb(last-dat(g), last-seq(g), q′)[`′..next-empty(S(last-seq(g)), q′)〉
++q[next-empty(S(last-seq(g)), q′)..m〉 (Lem. 4.7.4.6)

= (inb(last-dat(g), last-seq(g), q′)[`′..last-seq(g)〉
++inb(last-dat(g), last-seq(g), q′)
[last-seq(g)..next-empty(S(last-seq(g)), q′)〉)
++q[next-empty(S(last-seq(g)), q′)..m〉 (Lem. 4.7.4.3, 4.7.7.5)

= (q′[`′..last-seq(g)〉++q[last-seq(g)..next-empty(S(last-seq(g)), q′)〉
++q[next-empty(S(last-seq(g)), q′)..m〉 ((1), (2))

= q′[`′..last-seq(g)〉++q[last-seq(g)..m〉 (Lem. 4.7.7.1, 4.7.4.2, 4.7.7.5)

I.2 p′ < length(g′) ⇒ φ(m, q, `′, q′) = φ(m, release(`, last-seq(g′), q), `′, q′).

p′<length(g′), so by Lemmas 4.7.6.4 and 4.7.6.8, member(last-seq(g′), g′).

By Invariant 4.7.8.3, last-seq(g′)≤next-empty(`′, q′). So by Lemma 4.7.7.9,

release(`, last-seq(g′), q)[next-empty(`′, q′)..m〉 = q[next-empty(`′, q′)..m〉

II.1 m < `+ n⇒ length(φ(m, q, `′, q′)) < 2n.

Let m < `+ n.

length(q′[`′..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉)
= length(q′[`′..next-empty(`′, q′)〉)

+length(q[next-empty(`′, q′)..m〉)) (Lem. 4.7.7.2)
= (next-empty(`′, q′) .− `′) + (m .− next-empty(`′, q′)) (Lem. 4.7.7.4)
≤ n+ (m .− `) (Inv. 4.7.8.13, 4.7.8.4)
< 2n

II.2 test(`′, q′) ⇒ length(φ(m, q, `′, q′)) > 0.

test(`′, q′) together with Lemma 4.7.4.3 yields
next-empty(`′, q′) = next-empty(S(`′), q′) ≥ S(`′). Hence, by Lemmas
4.7.7.2 and 4.7.7.4,

length(φ(m, q, `′, q′))
= (next-empty(`′, q′) .− `′) + (m .− next-empty(`′, q′))
> 0

III.1 ((` = m ∨ ` = `′ + n) ∧ length(φ(m, q, `′, q′)) < 2n) ⇒ m < `+ n.

Case 1: ` = m. Then m < `+ n holds trivially.

4.8 Correctness of Nmod 101

Case 2: ` = `′ + n.

length(φ(m, q, `′, q′))
= (next-empty(`′, q′) .− `′)

+(m .− next-empty(`′, q′)) (Lem. 4.7.7.2, 4.7.7.4)
≤ ((`′ + n) .− `′) + (m .− `) (Inv. 4.7.8.13, 4.7.8.4)
= n+ (m .− `)

So length(φ(m, q, `′, q′)) < 2n implies m < `+ n.

III.2 ((` = m ∨ ` = `′ + n) ∧ length(φ(m, q, `′, q′)) > 0) ⇒ test(`′, q′).

Case 1: ` = m. Then m .− next-empty(`′, q′) ≤ m .− ` (Inv. 4.7.8.4) = 0.
Hence,

length(φ(m, q, `′, q′))
= (next-empty(`′, q′) .− `′)

+(m .− next-empty(`′, q′)) (Lem. 4.7.7.2, 4.7.7.4)
= next-empty(`′, q′) .− `′

Hence, length(φ(m, q, `′, q′)) > 0 yields next-empty(`′, q′) > `′, which im-
plies test(`′, q′).

Case 2: ` = `′ +n. Then by Invariant 4.7.8.4, next-empty(`′, q′) ≥ `′ +n,
which implies test(`′, q′).

IV test(`′, q′) ⇒ retrieve(`′, q′) = top(φ(m, q, `′, q′)).

test(`′, q′) implies next-empty(`′, q′) = next-empty(S(`′), q′) ≥ S(`′) (Lem.
4.7.4.3). Hence,

q′[`′..next-empty(`′, q′)〉
= inl(retrieve(`′, q′), q′[S(`′)..next-empty(`′, q′)〉)

So
top(φ(m, q, `′, q′))

= top(inl(retrieve(`′, q′), q′[S(`′)..next-empty(`′, q′)〉
++q[next-empty(`′, q′)..m〉))

= retrieve(`′, q′)

V.1 m < `+ n⇒ φ(S(m), inb(d,m, q), `′, q′) = append(d, φ(m, q, `′, q′)).

q′[`′..next-empty(`′, q′)〉++
inb(d,m, q)[next-empty(`′, q′)..S(m)〉

= q′[`′..next-empty(`′, q′)〉++
append(d, q[next-empty(`′, q′)..m〉) (Lem. 4.7.7.6, Inv. 4.7.8.12)

= append(d, q′[`′..next-empty(`′, q′)〉++
q[next-empty(`′, q′)..m〉) (Lem. 4.7.7.3)

102 Chapter 4 Verifying a Sliding Window Protocol in µCRL

V.2 test(`′, q′) ⇒ φ(m, q, S(`′), remove(`′, q′)) = tail (φ(m, q, `′, q′)).

test(`′, q′), together with Lemma 4.7.4.3 implies next-empty(`′, q′) =
next-empty(S(`′), q′) ≥ S(`′). Hence,

remove(`′, q′)[S(`′)..next-empty(S(`′), remove(`′, q′))〉
++q[next-empty(S(`′), remove(`′, q′))..m〉

= remove(`′, q′)[S(`′)..next-empty(S(`′), q′)〉
++q[next-empty(S(`′), q′)..m〉 (Lem. 4.7.4.7)

= remove(`′, q′)[S(`′)..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉
= q′[S(`′)..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉 (Lem. 4.7.7.8)
= tail(q′[`′..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉)

�

4.8.3 Correctness of the sliding window protocol

Finally, we can prove Theorem 4.5.1.

Proof.

τI(∂H(S(0, 0, []) ‖ R(0, []) ‖ K([]
K
, 0) ‖ L([]

L
, 0)))

↔ τI(Mmod(0, 0, [], 0, [], []
K
, 0, []

L
, 0)) (Thm. 4.6.1)

↔ τ{c,j}(Nmod(0, 0, [], 0, [], []K , 0, []L, 0)) (Thm. 4.6.2)

↔ τ{c,j}(Nnonmod (0, 0, [], 0, [], []
K
, 0, []

L
, 0)) (Thm. 4.6.3)

↔b Z(〈〉) (Thm. 4.8.2)

�

4.9 Conclusions

In this chapter, we have proved the correctness of a sliding window protocol
with an arbitrary finite window size n and sequence numbers modulo 2n. We
showed that the sliding window protocol is branching bisimilar to a queue of
capacity 2n. This proof is entirely based on the axiomatic theory underlying
µCRL and the axioms characterizing the data types, and was checked with the
help of PVS. It implies both safety and liveness of the protocol.

Chapter 5

A Note on K-state Self-Stabilization in

a Ring with K = N

5.1 Introduction

In his seminal paper [40], Dijkstra introduced the notion of self-stabilization. A
distributed system is said to be self-stabilizing if it satisfies the following two
properties:

1. convergence: starting from an arbitrary state, the system is guaranteed to
reach a stable state;

2. closure: once the system reaches a stable state, it cannot become unstable
anymore.

A system with the property of self-stabilization can have the advantages of fault
tolerance, robustness for dynamic topologies, and straightforward initialization.

Consider a system with a number of processes sharing a common resource
(usually called critical section). Given an arbitrary initial state of the system,
there might be more than one process enabled to access the common resource.
The problem of mutual exclusion is to guarantee that the common resource
cannot be accessed by more than one process simultaneously. Self-stabilizing
algorithms for mutual exclusion make sure that each infinite run of the system
reaches a stable state where exactly one process is enabled; and from then on,
mutual exclusion of the common resource is guaranteed.

In [40], Dijkstra presented three elementary self-stabilizing algorithms for
mutual exclusion on a ring network: an algorithm with K-state processes, an
algorithm with four-state processes, and an algorithm with three-state processes.
Regarding their correctness, he wrote:

“For brevity’s sake most of the heuristics that led me to find them,
together with the proofs that they satisfy the requirements, have
been omitted, [...]”.

103

104 Chapter 5 A Note on K-state Self-Stabilization in a Ring with K = N

After more than ten years, Dijkstra [42] published a proof of self-stabilization of
his algorithm with three-state processes, and acknowledged that the verification
was actually not trivial.

In this chapter, we focus on Dijkstra’s algorithm with K-state processes. We
consider a system of N + 1 processes, numbered from 0 through N , arranged
in a unidirectional ring. Each process pi has a counter v(i) that can hold a
value from 0 to K − 1. Each process can observe its own counter value and the
counter value of its anti-clockwise neighbor. p0 is a distinguished process that is
enabled when v(0) = v(N), and when enabled, it can increment its counter by
1 modulo K. Each process pi for i = 1, . . . , N is enabled when v(i) 6= v(i− 1),
and when enabled, it can update its counter value so that v(i) = v(i− 1). Thus
the behavior of the system can be presented as follows:

Dijkstra’s K-state algorithm for mutual exclusion.
Assume that processes p0, . . . , pN form a unidirectional ring, where the counter
for each process pi holds a value v(i) ∈ {0, . . . ,K − 1}.

• if v(0) = v(N), then v(0) := (v(0) + 1) mod K;

• if v(i) 6= v(i− 1) for i = 1, . . . , N , then v(i) := v(i− 1).

The system is said to be in a stable state if it contains exactly one enabled
process, which can be interpreted as holding a token. This token can be passed
along the ring network; a process can access the common resource only when it
holds the token.

This algorithm has been proved correct by different proof methods for self-
stabilization, e.g. [172, 167, 168]. It attracted much attention from the formal
verification community. There are two distinct traditions in automatic verifica-
tion: theorem proving and model checking. Merz [124] formalized the algorithm
and proved it correct in Isabelle/HOL [130]. Qadeer and Shankar [144] applied
PVS [131] to prove its correctness. Later on, Kulkarni et al. [106] also proved
its correctness using PVS in a different fashion. Model checking techniques were
applied to this algorithm in [159, 169]. Due to the state explosion problem, this
approach has some restrictions: it cannot be directly used for any possible ini-
tial state, and/or it can only prove the algorithm correct with a limited number
of processes and states.

However, all these proofs only showed correctness of the algorithm under a
weaker condition, namely the algorithm is correct if K > N . This also happened
in Schneider’s survey paper on self-stabilization [153]. The only exception we
could find is [106]. Although they proved the algorithm correct for K > N ,
almost at the end of the paper, they stated:

“it is possible to prove stabilization when K ≥ N– we will need
to redo only the proofs that depend on this assumption, namely
Lemmas 6.4, 6.6, 6.8.”

However, the validity of this claim is not clear, especially their formulation of
Lemma 6.4 is false when K = N .

5.2 Proof of Self-Stabilization 105

Judging on the literature, it seems to be a common belief that Dijkstra’s
K-state mutual exclusion algorithm on a ring only stabilizes when K > N . But
in fact, Dijkstra gave a note after presenting the solution with K-state machines
in [40] as follows:

“Note 1. [...] the relation K ≥ N is sufficient.”

A brief informal proof sketch was given by himself in [41]. In addition, he said:

“(and for smaller values of K counter examples kill the assumption
of self-stabilization.)”

We note that, if K = N , there should be at least three processes in the ring;
namely, if K = N = 1, then clearly p0 is always enabled and p1 is never enabled.
If K > N , then the algorithm also works for a ring with two processes.

In this chapter, we formally prove that if N > 1, then K ≥ N is sufficient
for the stabilization of Dijkstra’s K-state mutual exclusion algorithm. For the
condition K > N , the proofs in [172, 167, 144, 124, 106] used the classic pigeon-
hole principle. The proof for K = N becomes considerably more complicated,
since the pigeonhole principle cannot be simply applied for any state of the al-
gorithm. This will be explained in detail in Section 5.3. Our proof, which is
different from the proof sketch in [41], has been checked in PVS.

Outline of the chapter. In Section 5.2, we show that Dijkstra’s K-state
mutual exclusion algorithm on a ring also stabilizes when the number of states
per process is one less than the number of processes on the ring, namely K ≥ N .
We formalized the algorithm and checked our proof in PVS. Our verification in
PVS is based on [144], we reused their formalization of the algorithm and most
of their lemmas. We present the crucial lemmas of our PVS verification in
Section 5.3. In Section 5.4, we show that K ≥ N is sharp by a counter-example,
which was missing in [41]. Section 5.5 contains some conclusions.

5.2 Proof of Self-Stabilization

We give the proof that Dijkstra’s K-state mutual exclusion algorithm on a ring
stabilizes when K ≥ N . First we prove the closure property for self-stabilization
(see Proposition 5.2.2).

Lemma 5.2.1 In each state of the algorithm, there is at least one enabled
process.

Proof. We distinguish two cases:

• for all i ∈ {1, . . . , N}, v(i) = v(0). In particular, v(0) = v(N), which
implies p0 is enabled;

• otherwise, there exists a j ∈ {1, . . . , N} such that v(j) 6= v(0), and for all
i ∈ {1, . . . , j − 1}, v(i) = v(0). Since v(j) 6= v(j − 1), pj is enabled.

106 Chapter 5 A Note on K-state Self-Stabilization in a Ring with K = N

�

Lemma 5.2.1 implies that no run of the algorithm ever deadlocks, as in each state
the enabled process(es) can “fire”, meaning that the counter value is updated.

Proposition 5.2.2 Once in a stable state, the system will remain in stable
states.

Proof. We assume pi is the only enabled process in some stable state. It is
easy to see that when pi fires, it makes itself disabled, and it makes at most pi’s
clockwise neighbor enabled. By Lemma 5.2.1, in each state of the algorithm,
there exists at least one enabled process. Therefore, after the firing of pi, the
clockwise neighbor of pi is the only enabled process, so the system remains in a
stable state. �

We proceed to prove the convergence property for self-stabilization (see The-
orem 5.2.5).

Lemma 5.2.3 In each infinite run of the algorithm, p0 fires infinitely often.

Proof. Given a state, consider the sum over all elements in the set {N − i |
i ∈ {1, . . . , N} ∧ pi is enabled}. Clearly, when a nonzero process fires, this sum
strictly decreases. Furthermore, for each state, this sum is at least 0. Hence, in
each infinite run, p0 must fire infinitely often. �

Definition 5.2.4 The legitimate states are those states that satisfy v(i) = x
for all i < j and v(i) = (x − 1) mod K for all j ≤ i ≤ N , for some choice of
x < K and j ≤ N .

Note that a legitimate state is stable, as only pj is enabled.

Theorem 5.2.5 Let N > 1. Even if K = N , Dijkstra’s K-state mutual exclu-
sion algorithm for N + 1 processes stabilizes.

Proof. By Lemma 5.2.1, no run of the algorithm deadlocks. By Lemma 5.2.3,
in each infinite run of the algorithm p0 fires infinitely often.

Let N > 1. We prove that each infinite run of the algorithm visits a le-
gitimate state. Consider the case where p0 fires for the first time. Then just
before that, v(0) = v(N) = y for some y, and the new value of v(0) becomes
(y+1) mod K. Now consider the case when p0 fires again. Then just before that,
v(0) = v(N) = (y+1) mod K. In order for pN to change its counter value from
y to (y + 1) mod K, it must have copied (y + 1) mod K from its anti-clockwise
neighbor pN−1. This moment must have occurred after p0 changed its counter
value to v(0) = (y + 1) mod K. But then, just after pN copies (y + 1) mod K
from pN−1, we actually have v(N − 1) = v(N) = (y + 1) mod K. In other
words, since N > 1 implies that pN−1 6= p0, two different nonzero processes
hold the same counter value (y+1) mod K. Then the N nonzero processes hold

5.3 Mechanical Verification in PVS 107

at most N − 1 different counter values from {0, . . . ,K − 1}. When K ≥ N (so
in particular when K = N), then at this point in time there is an x < K that
does not occur as the counter value of any nonzero process in the ring.

Since p0 fires infinitely often, eventually v(0) becomes x. The other processes
merely copy counter values from their anti-clockwise neighbors, so at this point
no other process holds x. The next time p0 fires, v(N) = v(0) = x. The only
way that pN gets the counter value x is if all intermediate processes have copied
x from p0. We conclude that all processes have the counter value x, which is a
legitimate state. �

Dijkstra [41] gave a specific scenario to show that the system will definitely
reach a legitimate state, after p0 has been enabled for N times. In most cases,
a legitimate state can be detected earlier than in that scenario, as shown in the
above proof.

5.3 Mechanical Verification in PVS

In [144], Qadeer and Shankar presented a detailed description of a mechanical
verification in PVS of stabilization of Dijkstra’s K-state mutual exclusion al-
gorithm. Although they only checked the correctness of the algorithm under
the condition K > N , their PVS formalism and proof could for a large part be
reused,1 which saved us much effort and gave us many insightful thoughts on
the verification in PVS.

First, we present Qadeer and Shankar’s claims to sketch their proof skeleton.
Then we show the lemma that we had to adapt for our proof. The algorithm
satisfies the following properties, for each state of the system, and each infinite
run from this state:

I. there is always at least one enabled process;

II. the number of enabled processes never increases;

III. the enabledness of each process is eventually toggled;

IV. p0 eventually takes on any counter value below K (follows by Property
III);

These properties require no restriction on the relation between N and K. Prop-
erty I corresponds to Lemma 5.2.1. Property II follows the fact that when a
process fires, it makes itself disabled, and it makes at most its clockwise neigh-
bor enabled. Property III is a more general version of Lemma 5.2.3. Qadeer
and Shankar’s PVS proof of these first four properties could be (more or less)
reused by us directly.

V. there is some value x below K such that v(i) 6= x for all i ∈ {1, . . . , N}
(follows by Property IV, and the proof of Theorem 5.2.5);

1The URL http://www.csl.sri.com/pvs/examples/self-stability/ contains their PVS
formalization and proofs.

108 Chapter 5 A Note on K-state Self-Stabilization in a Ring with K = N

VI. eventually v(0) = x, and v(i) 6= x for all i ∈ {1, . . . , N}; then p0 is disabled
until v(i) = v(0) for all i ∈ {1, . . . , N} (follows by Property V);

VII. the system is self-stabilizing (follows by properties VI, I, and II).

The proof of Property V uses the pigeonhole principle, which states that if each
of n+1 pigeons is assigned to one of n pigeonholes, then some hole must contain
at least two pigeons. This principle was also formulated and proved in [144].

Let S(v) denote the set {x < K | ∃i ∈ {1, . . . , N}(v(i) = x)}. The following
lemma corresponds to Property V. It states that the nonzero processes do not
contain all the possible counter values.

Lemma 5.3.1 (Lemma 4.13 in [144]) If K > N , then ∃x < K(x 6∈ S(v)).

Under the condition K > N , this can be informally proved as follows [144]:
there are N nonzero processes, and hence at most N distinct counter values
at these processes; if there are K (K > N) possible counter values, then there
must be some x < K that is not the counter value at any nonzero process.

If we relax the condition to K ≥ N , the above proof fails, because the
pigeonhole principle does not apply when the number of pigeons equals the
number of pigeonholes.

Starting from this point, we assume that K ≥ N . We define T (v) to denote
the set {x < K | ∃i ∈ {1, . . . , N − 1}(v(i) = x)}. In the following lemma the
pigeonhole principle does apply.

Lemma 5.3.2 ∃x < K(x 6∈ T (v)).

Proof. T (v) contains at most N − 1 distinct counter values at processes from
p1 to pN−1. If there are K (K ≥ N) possible counter values, then there must
be some x < K with x 6∈ T (v). �

To check the proof of Lemma 5.3.2 in PVS, we could simply follow the PVS
proof steps of Lemma 5.3.1 in [144]. Now we introduce an extra lemma.

Lemma 5.3.3 v(N) ∈ T (v) ⇒ S(v) = T (v).

Proof. This is straightforward by the definitions of S(v) and T (v). �

In PVS, Lemma 5.3.3 could be proved by using existing PVS libraries for the
finite cardinalities. Now we present the main lemma for our PVS proof, corre-
sponding to Lemma 5.3.1 in [144] (Property VI).

Lemma 5.3.4 Each infinite run of the algorithm eventually reaches a state
where the nonzero processes do not contain all the possible counter values.

Proof. We know from Property III that pN will eventually fire. By the algo-
rithm, we then have v(N) = v(N − 1), so that v(N) ∈ T (v). By Lemma 5.3.3,
S(v) = T (v). By Lemma 5.3.2, we can find an x < K with x 6∈ T (v), so
x 6∈ S(v). �

5.4 K = N is Sharp 109

After proving Lemma 5.3.4, and reusing (more or less) the lemmas and the
PVS proof steps for properties VI and VII in [144], we could mechanically prove
self-stabilization of Dijkstra’s K-state algorithm in PVS.

5.4 K = N is Sharp

In this section, we give a counter-example showing that a smaller value of K
would kill self-stabilization. For example, in Figure 5.1 (which assumes that
N ≥ 3), we have a system with K = N − 1, meaning that each process can
have a counter value {0, . . . , N − 2}. Consider the initial state shown at the top
left-hand side of Figure 5.1, in which p0, . . . , pN−2 hold counter values from 0
to N − 2, pN−1 holds counter value 0, and pN holds counter value 1. By the
algorithm, p1, . . . , pN are enabled, so the number of enabled processes is N . (In
Figure 5.1, black processes are enabled.)

Step: 2Inital state

p2

p3

p1

2

3

0

1

0
1

N−2

p2

p3

pN
p1

2

3

0

1

N−2

p2

p3

pN
p1

2

3

N−2

0

0
1

N−2

pN

Step: N−1Step: NStep: N+1

p2

p3

pN
p1

1

2

N−2

0

0
1

N−3

p2

p3

pN
p1

1

2

N−2

0

0
0

N−3

p2

p3

pN
p1

1

2

N−2

0 0

N−3

Step: 1

pN−1 pN−1 pN−1

pN−2pN−2pN−2

pN−2pN−2 pN−2

pN−1pN−1

N−2

p0 p0p0

p0
p0 p0

pN−1

0

0

Figure 5.1: A counter-example: a ring with K = N − 1

We have a run as follows:

Step 1: pN fires and makes p0 enabled;

Step 2: pN−1 fires and makes pN enabled;

.

Step N − 1: p2 fires and makes p3 enabled;

Step N : p1 fires and makes p2 enabled;

110 Chapter 5 A Note on K-state Self-Stabilization in a Ring with K = N

Step N + 1: p0 fires and makes p1 enabled.

From the initial state, after the above N + 1 steps (all processes have fired only
once), the system ends in a state where the counter values of the processes are
symmetric (modulo N−1) to the initial state, so it still hasN enabled processes.
This scenario can be executed infinitely often without breaking the symmetry.
So the system will never reach a legitimate state. Thus K = N is sharp!

5.5 Conclusions

Judging on the literature on self-stabilization, it seems to be common belief that
Dijkstra’s K-state algorithm on a ring stabilizes when K > N . In this chapter
we show that, contrary to this common belief, the algorithm also stabilizes when
the number of states per process is one less than the number of processes on the
ring (namely K = N). Our proof was formalized and checked in PVS, based on
[144]. We have given a counter-example showing that K = N is indeed sharp.

One important fact (Lemma 5.3.4) used in our proof is that the nonzero
processes do not contain all the possible counter values. By this observation,
together with the fact that each process is infinitely often enabled, we can prove
that each infinite run of the algorithm will reach a legitimate state. For the
case K > N , this fact can be proved using the pigeonhole principle, as is done
in [172, 167, 144, 124, 106]. For the case K = N in this chapter, we choose the
moment that pN is enabled and fires, which makes v(N) = v(N −1). After that
we can apply the pigeonhole principle. Another important fact (Lemma 5.2.2) is
that whenever the system reaches a stable state, it will remain in stable states.
Thus we have proved the properties for self-stabilization.

Regarding the verification in PVS, we downloaded the PVS code and proof
by Qadeer and Shankar. Following their proof steps in PVS, we simply added a
new definition of T (v), proved two new lemmas (Lemma 5.3.2 and Lemma 5.3.3),
and adapted one lemma as Lemma 5.3.4. The whole verification did not take too
much effort. First, we spent a few days to understand the formalism and proof
in [144]. Since the PVS system, including PVS libraries, has been updated
after 1998, the downloaded PVS proof could not be simply rerun. We made
some adaptions to make their PVS proof work again. After that, when we had
the idea to prove (as shown in Section 5.2) the algorithm correct under the
condition K = N , the proof was completely checked in PVS within one day.
The files containing our PVS formalization and proofs can be found at the URL
http://www.cwi.nl/~pangjun/stabilization/.

Part II

Model Checking

111

Chapter 6

Analysis of a Distributed System for

Lifting Trucks

6.1 Introduction

This chapter reports on the analysis of a real-life system for lifting trucks (lorries,
railway carriages, buses and other vehicles). The system consists of a number
of lifts; each lift supports one wheel of the truck that is being lifted and has its
own micro-controller. The controls of the different lifts are connected by means
of a network. A special purpose protocol has been developed to let the lifts
operate synchronously.

This system has been designed and implemented by a Dutch company, that
is specialized in the design of embedded systems. When testing the implemen-
tation the developers found three problems. They solved these problems by
trial and error, partly because the causes of two of the three problems were
unclear. In close cooperation with the developers, we specified the lift system in
µCRL. Next, we analyzed the resulting specification with the µCRL tool set and
CADP. The three known problems turned up in our specification (which adds
to our confidence that the specification is close to the actual implementation).
In addition we found a fourth error. This error was unknown and found its
way into the implementation of the lift system. We incorporated solutions for
these problems in the specification. We have analyzed the µCRL specification
that results from the incorporation of the proposed solutions, showing that this
specification meets the requirements of the developers.

However, this happened independently of the developers, who decided not
to wait for the results of the formal analysis in µCRL and to redesign their
implementation based on their own solutions. To distinguish between the two
lift systems, we call the first lift system ‘original design’ and the one with the
solutions of the developers ‘redesign’.

The developers experienced a new problem in the redesign. Again the reason
was unclear. Since the error traces displayed a regular pattern in time, the devel-
opers thought modeling exact timing might reveal the reason for this problem.
In the µCRL specification, time is abstracted away. We could extend the µCRL

113

114 Chapter 6 Analysis of a Distributed System for Lifting Trucks

model with exact timing information, but there is no automated verification
tool set for timed process algebras. Therefore it was decided to use UPPAAL
[111], which is a tool set for validation and model checking of real-time systems.

The UPPAAL model of the redesign was achieved in several steps. First the
µCRL model was translated into UPPAAL. Then the UPPAAL model was re-
fined to move it closer to the real system; each lift is split into two components,
where one component communicates with the other lifts and the other compo-
nent can receive input from the environment. The developers’ solutions for the
aforementioned problems were adopted. After discussions with the developers,
exact timing information was added. The requirements for the lift system were
formulated in UPPAAL, using its requirement specification language and test
automata, and model checked. Using the graphic simulation tool in UPPAAL,
we detected the reason for the new problem, which the developers encountered
in the redesign. We propose a new solution, which is based on the solution that
was already put forward in the analysis of the original design. The UPPAAL
model with the new solution satisfies all the requirements.

The developers acknowledge the efficiency and usefulness of formal verifica-
tion for their redesign. Our solution is being implemented in the new release of
the lift system; they are now more confident in the correct functioning of the
redesigned lift system.

Outline of the chapter. This chapter is organized as follows. After this
introduction, we give an informal specification of the lift system in Section 6.2.
Next we discuss the requirements which the system should satisfy in Section 6.3.
From Section 6.4 to Section 6.6, we present the analysis of the original design of
the lift system in µCRL. From Section 6.7 to Section 6.9, we present the analysis
of the redesign of the lift system in UPPAAL. We show that the solutions of the
developers do not solve these problems found in the original design completely,
while a refined version of our solution in the µCRL specification does. We
conclude this chapter in Section 6.10.

6.2 Description of the Lift System

First, we explain the general layout of the lift system (Section 6.2.1). Then we
explain the manner in which lift movement is controlled (Section 6.2.2).

6.2.1 Layout of the lift system

The system studied in this chapter consists of an arbitrary number of lifts.
Each lift supports one wheel of a vehicle being lifted. The system is operated
by means of buttons on the lifts. There are four such buttons on each lift: up,
down, setref and axle. The system knows three kinds of movements. If the
up or down button of a certain lift is pressed, all the lifts of the system should
go up, respectively down. If the up (or down) button is pressed together with
setref, only one lift (the one of which the buttons are pressed) should go up

6.2 Description of the Lift System 115

(or down). This allows the operator to adjust the height of a lift to inequalities
in the surface of the floor. If the up or down button is pressed together with
the axle button, the opposite lifts (and only those) are supposed to move up
or down, respectively. This is needed to replace the axle of a truck. As different
trucks may have different numbers of wheels, the operator may add or remove
lifts to or from the system. We have only studied the first kind of movement.

Normally, the lifts contain a locking pin which is intended to prevent the lift
from moving down when motors fail, or oil is leaking from the hydraulic pumps
or valves. This pin restricts the movement of the lifts. If one wants to move the
lifts over a larger distance this pin has to be retracted. This detail is not taken
into account in our specification.

Lift movement is controlled by means of a micro-controller. In real life, the
lift controller can adopt eight different states. For our study the following states
are important: startup, standby, up, and down. The meaning of these states
will become clear in the course of the discussion.

The controllers of the different lifts belonging to a system are connected
to a CAN (Controller Area Network) bus [147] which is interrupted by relays
(see Figure 6.1). These relays do not exist in real systems, they are part of the
protocol developed by the developers. The different controllers connected to the
bus are called stations. There is a relay between every pair of adjacent stations
and each relay is controlled by the station at its left side.

The CAN bus is a simple, low-cost, multi-master serial bus with error detec-
tion capabilities. Multi-master means that all stations can claim the bus at each
bus cycle and several stations can claim the bus simultaneously, in which case a
non-destructive arbitration mechanism determines which message is transmit-
ted by the bus. A message on the bus is immediately received by all other
stations connected to the sending station via closed relays. The CAN protocol
does not use addresses.

In the lift system, the user data field of the messages transferred over the
bus contains three pieces of information: the position of the sender station,
the type of the message, and the (measured) height of the sender’s lift. There
are two kinds of messages: state messages and sync messages. State messages
report the state of the sender station (e.g. startup, standby, up, down).
sync messages initiate physical movement. In response to a sync message each
station will immediately report its state to the motor of its lift. This means
that if the station is in the up state after a sync message, the lift will move up
a fixed distance; if the station is in the down state, the lift will move down a
fixed distance; and if the station is in standby it will not move.

The system continuously checks the heights broadcast in the messages to
determine if they do not differ too much. If there is something wrong an emer-
gency stop is brought about. This is not modeled in our specification as this
would increase the number of states of the system tremendously.

116 Chapter 6 Analysis of a Distributed System for Lifting Trucks

D

A B
a

b

c

d

C D

A B

C

a

d

b

1

23

4

c

Figure 6.1: State of the relays before (left) and after (right) initialization

6.2.2 Control of lift movement

To assure that all lifts move simultaneously in the same direction, the station
initiating a certain movement must verify whether all stations are in the appro-
priate state before it sends the sync message.

The CAN protocol allows several stations to claim the bus at the same time.
However, in the lift system, the stations are programmed in such a way that
(during normal operation) the stations take turns claiming the bus. They claim
the bus in a fixed order (clockwise in Figure 6.1).

To achieve this orderly usage of the bus, each station must know its position
in the network. Furthermore, in order to be able to find out whether all stations
are in the same state, each station must know how many stations there are in
the network. This is achieved by means of a startup phase in which all the
stations come to know their position in the network as well as the total number
of stations in the network. This startup phase is discussed below:

Startup

When the system is switched on, all the relays are open (see the left part of
Figure 6.1).

In the startup phase two things might happen to a station:

• The setref button of that station might be pressed. In this case the
station will initiate the startup phase as follows:

1. it stores that it has position 1;

2. it adopts the startup state;

3. it closes its relay;

4. it broadcasts a startup message;

5. it opens its relay, this guarantees that this station will only receive a
startup message when all stations have determined their positions;

6.2 Description of the Lift System 117

6. it waits for a startup message;

7. it stores the position of the sender of that message as the number of
stations in the network;

8. it adopts the standby state;

9. it broadcasts this state.

• The station might receive a startup message from another station. In
this case:

1. it adds 1 to the position of the sender of that message and stores this
as its own position;

2. it stores its own position as the number of stations in the network;

3. it adopts the startup state;

4. it closes its relay;

5. it sends a startup message (note that unlike the previous part the
station does not open its relay, it will receive all subsequent startup

messages);

6. – if it receives another startup message it stores the position of
the sender of that message as the number of stations in the net-
work;

– if it receives a standby message it adopts the standby state
(if the station has position 2 it will in addition initiate normal
operation by broadcasting a standby message).

Assume, for example that in the system of Figure 6.1 the setref button
of station B is pressed. The station of this lift gets position 1. It closes the
relay between B and C, broadcasts a startup message, and opens this relay
again. The startup message from B is received by only one station (C). This
station draws the conclusion that it has position 2. It subsequently closes the
relay to D and broadcasts a startup message. This message is received by
only one station (D). This station draws the conclusion that it has position 3,
closes the relay to A and sends a startup message. This message is received
by A and C. C draws the conclusion that now there are three stations in the
network. A draws the conclusion that it has position 4, closes the relay to B and
broadcasts a startup message. This message is received by B, C, and D. C and
D draw the conclusion that now there are four stations in the network. Station
B draws the conclusion that the circle is completed. It stores the position of the
sender of that message (4) as the number of stations in the network, adopts the
standby state and initiates normal operation by sending a standby message.
This message is received by C, D, and A which adopt the standby state in
response.

The result is that all stations are connected in the manner pictured in the
right part of Figure 6.1, that all stations know how many stations there are in
the network and what their position is, and that all stations are in standby.
Normal operation starts when station 2 broadcasts its state.

118 Chapter 6 Analysis of a Distributed System for Lifting Trucks

Normal operation

During normal operation, the first station (with position 1) broadcasts its state
and height, then the next station broadcasts its state and height and so on, until
the last station has broadcast its state and height, after which the first station
starts again.

Passive
Down

Active
Down

STANDBY

Active
UP

Passive
Up

receive DOWN
receive STANDBY

receive UP UP pressed

UP released

receive SYNC, move(up)

 receive SYNC, move(down)

receive DOWN

receive SYNC, move(down)

receive UP

receive SYNC, move(up)

receive STANDBY

receive SYNC

receive DOWN

DOWN released

DOWN pressed
receive UP

Figure 6.2: State transitions of an individual lift during normal operation

The transition diagram of each lift during normal operation is sketched in
Figure 6.2.1 Initially all stations are in standby. A station in standby changes
to another state if one of its buttons is pressed or if it receives a message with
another state. The station that is initiating a certain change (i.e. when it is
in standby and a button is pressed) is called the active station. All other
stations are passive. If the up or down button of a certain lift is pressed and
its station is in standby, that station becomes active and changes its state to
up or down, respectively. When a passive station receives a state message, it
adopts the state in that message. An active station does not change its state in
response to state messages. The state of an active station changes only if the
pressed button is released. In that case its state changes to standby and the
station becomes passive again.

As said, physical movement is initiated by a sync message. In order to
assure that all lifts move in the same direction, the active station will count
the number of messages that contain the intended state. The active station will
send a sync message if and only if it has counted enough messages with the

1Some actions of pressing or releasing a button are not represented in this figure, since
those actions do not make any state transition of a lift during normal operation phase.

6.3 Requirements 119

right state (i.e. all the other stations are in the same state as itself), when it is
its turn to use the bus.

Assume, for example, that all stations are in standby and that the up

button of station 4 (in the right part of Figure 6.2) is pressed. This station
adopts the up state. When it is this station’s turn to use the bus (getting a
message from its predecessor), it will broadcast its state; in response the other
stations will adopt the up state too. Next, it is station 1’s turn to use the bus.
This station will broadcast its state (which is up). The message from station 1
is received by all other stations, among which the active station 4. As the state
in the message is the same as that of the active station 4, this latter station will
count this message. In the next two cycles station 2 and station 3 claim the bus
in turn and broadcast their states (up), both messages are counted by station
4. So, station 4 will have received the right number of up messages when it is
its turn to use the bus again and it will send a sync message to initiate physical
movement.

6.3 Requirements

There are five requirements for the lift system, that have been formulated in
cooperation with the developers. Each requirement describes a different aspect
of the system’s behavior.

1. Deadlock freeness : the lift system never ends up in a state where it cannot
perform any action.

2. Liveness I : it is always possible for the system to get to a state in which
pressing the up or down button of any lift will yield the appropriate
response.

3. Liveness II : if exactly one up or exactly one down button is pressed
and not released, then all the lifts will (eventually) move up or down,
respectively.

4. Safety I : if one of the lifts moves, all the other lifts should simultaneously
move in the same direction.

5. Safety II : if the lifts move, an appropriate button was pressed. In other
words, the lifts will not move if no one has pressed a button.

The two liveness requirements make sure that buttons can always be pressed
and in response the lifts will always move. The two safety requirements make
sure that the system will move properly.

6.4 µCRL Model of the Original Design

We specified the lift system in µCRL. As is demonstrated by this case study,
this language is useful as a tool to analyze embedded controllers.

120 Chapter 6 Analysis of a Distributed System for Lifting Trucks

As we described in Section 6.2, our specification is an abstraction of the real
system. Such details as the locking pins, the parameter of height containing
in the messages, and the checking of the height broadcast in messages are not
modeled in our specification. And we only studied two kinds of movement of
the lift system: If the up or down button of one lift is pressed, all the lifts of
the system should go up, respectively down. The initial specification for system
with three lifts is given at http://www.cwi.nl/~pangjun/lift/. Here we only
highlight some parts of this specification. The part on data types is discussed
in Section 6.4.1, and the part on processes in Section 6.4.2.

6.4.1 Data types

Obviously we need to represent the physical structure of the lift system. This is
done by means of the sort Address. The constructors of this data type consist of
identifiers (one for each station). The functions suc and pre yield the identifiers
of the neighbors in the circle. suc yields the one at the right-hand side, pre
yields the one at the left-hand side (see Figure 6.1). Because of the similarity
in structure, we use this data type also to represent the position of a station.
We specify the sort Address with three elements below:

sort Address
func 1, 2, 3: →Address
map suc: Address→Address

pre: Address→Address
eq: Address×Address→Bool

rew suc(1)=2 pre(1)=3
suc(2)=3 pre(2)=1
suc(3)=1 pre(3)=2
eq(1,1)=T eq(1,2)=F eq(1,3)=F
eq(2,2)=T eq(2,1)=F eq(2,3)=F
eq(3,3)=T eq(3,1)=F eq(3,2)=F

This data type is also used to identify the position of relays. Relay n is the one
between the station with address n and the station with address suc(n); it is
controlled by the station at the left side (addressed as n).

To model the bus, we must record which relays are closed. This is done by
means of the sort Alist, which is a list of addresses. The constructors of this
sort are ema and insert. ema stands for an empty list. insert constructs a
new list by inserting an address into a list. The function remove(a,A) removes
all the occurrences of the address a from the list A. Function test(a,A) tells
us whether the address a is in list A. The function empty(A) is used to judge
whether a list is empty, or not. if (b, A,A′) is an auxiliary function to specify
test and reset, where b is a data term of sort Bool. It is used to simulate
conditional equations, meaning that if b holds then A is selected, otherwise A’.
And the concatenation of two lists is represented by the function conc(A,A′).
The function Addresses(A, a) is used to get the list of all stations connected to
the station a via list A of closed relays. a is excluded in the result. Functions

6.4 µCRL Model of the Original Design 121

Addresses-up, Addresses-down, Addresses-up-aux and Addresses-down-aux are
used to help the specification of Addresses.

sort Alist
func ema: →Alist

insert: Address×Alist→Alist
map remove: Address×Alist→Alist

test: Address×Alist→Bool
empty: Alist→Bool
if: Bool×Alist×Alist→Alist
conc: Alist×Alist→Alist
Addresses: Alist×Address→Alist
Addresses-up: Alist×Address×Address→Alist
Addresses-down: Alist×Address×Address→Alist
Addresses-up-aux: Bool×Bool×Alist×Address×Address→Alist
Addresses-down-aux: Bool×Bool×Alist×Address×Address→Alist

var a, a’: Address
A, A’: Alist
b: Bool

rew remove(a,ema)=ema
remove(a,insert(a’,A))=if(eq(a,a’),remove(a,A),insert(a’,remove(a,A)))
test(a,ema)=F
test(a,insert(a’,A))=if(eq(a,a’),f,test(a,A))
empty(ema)=T
empty(insert(a,A))=F
if(T,A,A’)=A
if(F,A,A’)=A’
conc(ema,A)=A
conc(insert(a,A),A’)=insert(a,conc(A,A’))
Addresses(A,a)=conc(Address-up(A,a,a),Address-down(A,a,a))
Addresses-up(A,a,a’)=Addresses-up-aux(test(a,A),eq(suc(a),a’),A,a,a’)
Addresses-down(A,a,a’)=

Addresses-down-aux(eq(pre(a),a’),test(pre(a),A),A,a,a’)
Addresses-up-aux(T,T,A,a,a’)=insert(suc(a),ema)
Addresses-up-aux(T,F,A,a,a’)=insert(suc(a),Address-up(A,suc(a),a’))
Addresses-up-aux(F,b,A,a,a’)=ema
Addresses-down-aux(T,b,A,a,a’)=ema
Addresses-down-aux(F,T,A,a,a’)=

insert(pre(a),Addresses-down(A,pre(a),a’))
Addresses-down-aux(F,F,A,a,a’)=ema

In our model, the following states of stations are specified by a sort State:
standby, up, down, startup and sync. The state sync is not really a state,
but it can be broadcast in a message instead of the states. This kind of message
is used to synchronize the physical movement of all the lifts.

sort State

122 Chapter 6 Analysis of a Distributed System for Lifting Trucks

func standby, up, down, startup, sync: →State

The messages traveling in the network are specified by a sort Message. A
message has the form mes(a, s): a is the position of the station sending the mes-
sage and s is the state of the sending station. By using the functions getaddress
and getstate, we can get the position, respectively the state of the station.

sort Message
func mes: Address×State→Message
map getaddress: Message→Address

getstate: Message→State
var a: Address s: State
rew getaddress(mes(a,s))=a

getstate(mes(a,s))=s

6.4.2 Processes

In this section, we focus on the process part of our specification. The bus and
the stations are both modeled as separate processes.

The specification of the bus poses two problems. First, we must represent
which relays are open and which ones are closed. This is done by parameterizing
the bus process with an Alist R of identifiers of all closed relays. If a station
closes a relay, the identifier of the relay is added to this list. If it opens a relay,
the identifier of the relay is removed from this list. This is achieved with the
help of two actions r open-relay(n) and r close-relay(n).

Second, we must represent the transportation of messages over the bus. In
the system, a message put on the bus by one station is received by all the other
stations connected to the sending station via closed relays. This is modeled by
means of a delivery process (Deliver) parameterized with an Alist A of stations
that have yet to receive the message. After accepting a message from a station
with the action r stob(m, a) (receive message m from station a to the bus),
the bus process moves to the delivery phase, provided that the list R is not
empty. This phase consists of a number of cycles. In each cycle, the message
is delivered to one station in list A by the action s btos(m, a) (send message m
from the bus to station a) and then the next cycle is entered with the station
a removed from list A. If the last station is removed, the bus process returns
to the Bus phase. The Deliver process has R as one of its parameters; this is
needed to restart the Bus process after the delivery phase with the correct list
of closed relays. In the delivery phase, the bus does not accept messages from
the stations, which ensures that a message broadcast by a station is received by
all stations connected to it before the next station can send a message.

act r stob, s btos: Message×Address
r open-relay, r close-relay: Address

proc Bus(R:Alist) =∑
mes:Message

∑
a:Addressr stob(mes,a)·

6.4 µCRL Model of the Original Design 123

(Bus(R)�empty(Addresses(R,a))�Deliver(mes,R,Addresses(R,a)))
+

∑
a:Addressr open-relay(a)·Bus(remove(a,R))

+
∑

a:Addressr close-relay(a)·Bus(insert(a,R))

proc Deliver(mes:Message, R:Alist, A:Alist) =∑
a:Addresss btos(mes,a)·

(Bus(R)�empty(remove(a,A))�Deliver(mes,R,remove(a,A)))
�test(a,A)�δ
+

∑
a:Addressr open-relay(a)·Deliver(mes,remove(a,R),A)

+
∑

a:Addressr close-relay(a)·Deliver(mes,insert(a,R),A)

The actions r stob and s btos are intended to communicate with the actions
s stob (send a message from a station to the bus) and r btos (receive a message
from the bus to a station) into c stob and c btos, respectively. Likewise, the
actions r open-relay and r close-relay are synchronized with the actions s open-
relay and s close-relay.

comm s stob | r stob = c stob
s btos | r btos = c btos
s open-relay | r open-relay = c open-relay
s close-relay | r close-relay = c close-relay

After modeling the bus process, we come to the specification of the lift
controller. The following actions are associated with the buttons of a lift. They
do not represent all physical actions of pressing a button of the real system.
Only those actions of pressing a button which have effect on the behavior of the
system are modeled in our specification (see Figure 6.2). For example, in the
normal operation phase, a setref button can be physically pressed. Since in
this phase a station does not respond to this action, the action setref cannot
occur according to our specification of the normal operation phase (see the
specification of Lift2). Leaving out these actions does not affect our verification.
The action of outputting state s of station n to the motor input is represented
as the action move(n, s).

act setref, up, down, released: Address
move: Address×State

The control of the lift system movement is divided into two phases. Initially,
all relays are open. In the first phase (startup phase), the network connection
is set up, and each station gets to know its position and the number of stations
in the network. In the second phase (normal operation phase), the stations
claim the bus in a fixed order and the physical movement of the system can be
initiated. Each lift process is parameterized with an address n, which identifies
the station.

The behavior of a station in the startup phase is modeled by two processes,
Lift0 and Lift1. Initially, all stations are in Lift0. Lift0 specifies the initial
behavior of a station. In this phase, the setref button of a station can be
pressed, or a station can receive a startup message from another one. Lift1

124 Chapter 6 Analysis of a Distributed System for Lifting Trucks

models how the stations with a position greater than 1 get to know the number
of stations in the network. The parameter m is added to Lift1 to record the
position of a station. The parameter nos is used to remember the number of
the stations.

The station of which the setref button is pressed gets position 1. It closes
its relay with the action s close-relay(n) and broadcasts a startup message.
Next, it opens its relay with the action s open-relay(n) and waits for a startup

message. When it gets the startup message, it responds by changing its state
to standby and broadcasting its state, then it goes into the normal operation
phase, which is modeled as Lift2. If a station (not the one on which the setref

button is pressed) gets a startup message, it adds 1 to the position of the
message’s sender and stores this both as its m and as its nos. It adapts the
startup state, closes its relay and broadcast its own state. Next, it moves into
Lift1, where it can change its own nos according to the position of the startup

messages it receives. In the phase of Lift1, each station gets to know the number
of stations in the network by the position of the last startup message. When
a station with a position greater than 1 gets a standby message, it adopts its
states to standby and goes into process Lift2. If it is its turn to claim the bus
(when it receives a message from its predecessor), it also broadcasts a standby

message. In this way, the startup phase is finished and all stations are connected
to one bus. The processes Lift0 and Lift1 are specified as follows:

proc Lift0(n:Address)=
setref(n)·s close-relay(n)· s stob(mes(1,startup),n)· s open-relay(n)·∑

mes:Messager btos(mes,n)·

(s stob(mes(1,standby),n)·Lift2(n,1,getaddress(mes),standby)
�eq(getstate(mes),startup)�δ)

+
∑

mes:Message r btos(mes,n)·

(s close-relay(n)·s stob(mes(suc(getaddress(mes)),startup),n)·
Lift1(n,suc(getaddress(mes)),suc(getaddress(mes)))
�eq(getstate(mes),startup)�δ)

proc Lift1(n:Address, m:Address, nos:Address)=∑
mes:Messager btos(mes,n)·

(Lift1(n,m,getaddress(mes))
�eq(getstate(mes),startup)�

((s stob(mes(1,standby),n)·Lift2(n,m,nos,standby)
�eq(getaddress(mes),pre(m))�
Lift2(n,m,nos,standby))

�eq(getstate(mes),standby)�δ))

Note that during the startup phase, all the stations expect to receive either a
startup message or a standby message, otherwise it will result into a deadlock.
This can be model checked later on.

The behavior of a station during normal operation is specified by means of
two processes (Lift2 and Lift3). The parameter s is used to record the state

6.4 µCRL Model of the Original Design 125

of the station. In this phase, the stations broadcast their messages in a fixed
order. A station knows that it is its turn to claim the bus when it receives a
message from its predecessor. In both Lift2 and Lift3, a station responds to
an incoming sync message by immediately outputting its state to the motor
input with the action move(n, s). Lift2 models the behavior of a station that is
passive or in standby. In this phase, a station will respond to a state message
by adopting the state in the message. When a station gets the turn to claim the
bus, it adopts the state in the received message and broadcasts it. In addition, a
station in standby will respond to an action of pressing a button. It adopts the
corresponding state and becomes active (Lift3). Lift3 models the behavior of
an active station. The parameter count is used to count the number of stations
that are in the same state as this active one. This counter is initiated with
the number of stations in the network. Each time the active station receives a
message with the same state as itself, the counter is decreased. When the active
station gets the turn to use the bus, it will determine whether it has received
enough messages of the right type (i.e. whether its counter equals 2 and the
state of the message of its predecessor is the same as the state of itself). If so, it
will send a sync message, output its state to the motor, broadcast its own state
and reset the counter to the number of the stations in the network. If not, it
will broadcast its state and reset its counter. When the pressed button on the
lift is released (modeled by released(n)), the active station returns to standby.

proc Lift2(n:Address, m:Address, nos:Address, s:State)=
(up(n)·Lift3(n,m,nos,up,nos)+down(n)·Lift3(n,m,nos,down,nos))
�eq(s,standby)�δ
+

∑
mes:Messager btos(mes,n)·

(move(n,s)·Lift2(n,m,nos,s)
�eq(getstate(mes),sync)�

(s stob(mes(m,getstate(mes)),n)·Lift2(n,m,nos,getstate(mes))
�eq(getaddress(mes),pre(m))�
Lift2(n,m,nos,getstate(mes))))

proc Lift3(n:Address, m:Address, nos:Address, s:State, count:Address)=
released(n)·Lift2(n,m,nos,standby)
�not(eq(s,standby))�δ
+

∑
mes:Messager btos(mes,n)·

(move(n,s)·Lift3(n,m,nos,s,count)
�eq(getstate(mes),sync)�

((s stob(mes(m,sync),n)·move(n,s)·
s stob(mes(m,s),n)·Lift3(n,m,nos,s,nos)
�eq((getstate(mes),s)∧eq(count,2)�
s stob(mes(m,s),n)·Lift3(n,m,nos,s,nos))

�eq(getaddress(mes),pre(m))�
(Lift3(n,m,nos,s,pre(count))
�eq(getstate(mes),s)�
Lift3(n,m,nos,s,count))))

126 Chapter 6 Analysis of a Distributed System for Lifting Trucks

By putting n Lift0 processes and one Bus process in parallel, we model a
system with n lifts (n ≥ 2) as follows:

init τI∂H (Bus(ema) ‖ Lift0(1) ‖ Lift0(2) ‖ ... Lift0(n))

where I denotes the set {c stob, c btos, c open-relay, c close-relay} and H
denotes the set {s open-relay, r open-relay, s close-relay, r close-relay, s stob,
r stob, s btos, r btos}. Initially, the list of identifiers of closed relays is empty.

The encapsulation operator ∂ enforces the actions s open-relay, s close-relay,
s btos and s stob to occur in communication with the actions r open-relay,
r close-relay, r btos and r btos, respectively. To analyze the specification, all
internal actions like the communication between bus and stations can be ab-
stracted away, which is achieved by converting them into the τ action with the
help of the τ operator.

6.5 Analysis the Original Design

In our study, the µCRL tool set was used to generate a labeled transition system
from the µCRL specification. This LTS was analyzed with the CADP tool
set. When an error was found the specification was modified and the modified
specification was analyzed again.

It is interesting to see that the problems were being detected in a rather
unordered fashion. For instance problem 1 showed itself by visualizing the
system behavior for a system with 3 lifts after hiding all communications to and
from the bus and reducing the resulting LTS modulo branching bisimulation.
The first sign of the problem was that not all internal actions had been removed.
Trying to understand the reason for this uncovered the precise problem quickly.

Four errors were found in the original design. We discuss these problems
separately and propose solutions (Sections 6.5.1–6.5.4). The modified specifica-
tion resulting from the incorporation of our suggestions was shown to meet the
requirements (Section 6.6).

6.5.1 Problem 1

The first problem occurs if in the startup phase station 2 sends a startup

message before the relay between station 1 and 2 is opened (see Figure 6.1 and
the example in Section 6.2.2). This startup message is received by station 1,
which will draw the erroneous conclusion that the circle is completed. From
this all sorts of errors may occur (depending on the exact timing). For example,
station 1 sends the standby message, which initiates normal operation, while
the relay between station 1 and station 2 is opened, no station will receive this
message. The startup phase will continue as intended until station 1 receives
the startup message from the last station in the system. As this is unexpected
it will result in a deadlock.

The developers had spotted this problem in the testing phase, but they were
unaware of its cause. They had solved the problem by adding delays before
sending a startup message.

6.5 Analysis the Original Design 127

In our revised specification, the delay is modeled by the communication of
two actions, s sync and r sync. This is enough to make sure that station 2 waits
till the relay between station 1 and station 2 is closed, before it sends a startup

message.2

Our experiments have indicated that this solves the problem adequately
(if the delay is long enough to make sure that the relay between station 1 and
station 2 is opened before station 2 sends the startup message). The developers
implemented our solution and confirmed that it suffices to delay only the second
startup message. The main modification is made in the definition of process
Lift0. It is shown together with the solution to the second problem at the end
of Section 6.5.2.

6.5.2 Problem 2

The second problem occurs if the setref buttons of two lifts are pressed at
almost the same time. This may result in different lifts moving in different
directions. Assume that the system consists of four lifts (A, B, C, D) and that
the setref buttons of A and C are pressed at the same time (see Figure 6.1).
Both A and C send a startup message, which is received by respectively B
and D. The relays between A and B, and between C and D are opened again.
Next B closes the relay between B and C and then B broadcasts a startup

message. This message is received by C. Station C draws the conclusion that
the circle is completed and initiates normal operation. At the same time D
closes the relay between D and A and sends a startup message that is received
by A, after which A initiates normal operation. The result is that there are two
independently operating networks, one consisting of A and D; the other of B
and C. There is no way in which the stations or the bus can prevent or detect
this situation.

A similar situation may occur if the setref buttons of two neighboring
lifts (say A and B) are pressed. Assume that B sends a startup message
before A does so. The message from B is received by C. Assume that next
the relay between B and C is opened again and that A subsequently sends its
startup message. Station B receives it, draws the conclusion that the circle is
completed, and initiates normal operation. Station A opens the relay between
A and B, and after receiving a startup message from D it finishes the startup
phase. The result is that B is isolated from the rest of the network. Again the
system will not detect this error.

We have modified the specification in such way that it is impossible to ini-
tiate the system by pressing the setref button of several lifts at once. The
process Setref monitor is defined to prevent that in the startup phase more than
one setref button is pressed at different lifts at the same time. The action
setref (n) in Lift0 is replaced by the action s init(n), which applies a lock on
the monitor. After station 1 gets a startup message, it releases the lock by
the action s stable. During the period when the monitor is locked, pressing

2The operator ∂ can enforce the two actions s sync and r sync to occur in communication
with each other, and not on their own.

128 Chapter 6 Analysis of a Distributed System for Lifting Trucks

the setref button at another station does not have an effect on the whole lift
system.

comm s init | r init = c init
s stable | r stable = c stable
s sync | r sync = c sync

proc Setref monitor =∑
n:Addressr init(n)·r stable·Setref monitor

proc Lift0(n:Address)=
s init(n)·s close-relay(n)·s stob(mes(1,startup),n)·
s open-relay(n)·s sync·∑

mes:Messager btos(mes,n)·

(s stable·s stob(mes(1,standby),n)·
Lift2(n,1,getaddress(mes),standby)
�eq(getstate(mes),startup)�δ)
+

∑
mes:Messager btos(mes,n)·

(s close-relay(n)·
(r sync·s stob(mes(2,startup),n)·Lift1(n,2,startup)
�eq(getaddress(mes),1)�
s stob(mes(suc(getaddress(mes)),startup),n)·
Lift1(n,suc(getaddress(mes)),startup))

�eq(getstate(mes),startup)�δ)

The developers did not implement this solution, but chose to emphasize
in the manual that it is important to make sure that in the initial phase the
setref button of only one lift is pressed. We also took this assumption into our
µCRL model. Given the chosen bus it seems impossible to solve this problem
satisfactorily. As a result of our analysis, the implementation of the lift system
was adapted. At initialization of the system, a random identifier is created to
minimize the risk that more than one independent network comes into existence.

6.5.3 Problem 3

The third problem occurs if during normal operation a button is pressed and
released at an inappropriate moment. Suppose that in a network of four stations
all stations are standby, and that the down button of station 1 is pressed, as
a result of which it acquires the down state. When it is the turn of station 1
to use the bus it broadcasts the down state, and all other stations adopt this
state in response. Suppose that the down button of station 1 is released after
station 3 sends its down message, but before station 4 has done this. As a result
station 1 returns to the standby state. In this state it adopts the state of all
state messages it receives, so when station 4 sends its state message it adopts
the down state. We now have the situation that all stations are in down state,
but there is no active station. This means that they will remain in that state
until the system is shut down.

6.5 Analysis the Original Design 129

This problem was independently discovered by the developers when testing
the system. They tried to use flags to solve this problem, more discussion can
be found in the analysis of the redesign. Our solution to this problem is simple.
We let the station wait to become passive after the button is released, until
it is that station’s turn to use the bus. This is the solution incorporated in
our modified specification. The main modification is made in the definition of
process Lift3. It is shown together with the solution to the fourth problem at
the end of Section 6.5.4.

6.5.4 Problem 4

The fourth problem occurs when during normal operation two (up or down)
buttons on different lifts are pressed at almost the same time. Suppose there
are four stations in the network and that the down buttons of station 1 and
station 2 are pressed at the same moment, as a result of which both stations
become active. Assume that it is station 1’s turn to use the bus. It sends a
down message, and in response station 3 and station 4 adopt the down state.
In turn stations 2, 3 and 4 send a down message. When it is the turn of station
1 to use the bus again, it has counted three down messages, so it sends sync

(after which all lifts move down), and as the down button is still pressed it
then sends down. Now it is station 2’s turn and as this station is active and
has counted three down messages it sends a sync message. Suppose (and now
comes the problem) that the down button of station 1 is released after station
1 has sent the down message and before station 2 sends the sync message. As
a result station 1 is in standby when it receives the sync message, and its lift
remains at the same height while the others move down.

A similar problem occurs if the down button of station 2 is released just
after station 3 has sent its down message but before station 1 sends its sync

message. In this case lift 2 will remain at the same height while the others move
down.

This problem was not known to the developers and found its way into the
implementation. We propose to solve this problem by allowing a station to
become active only when it is its turn to use the bus and only when at that
moment there is no other station active. In the revised specification, a Bool
parameter is added into the definition of process Lift2 to mark the station that
wants to be active. It is set true when one button of the station is pressed.
When it is the marked station’s turn to use the bus, but it finds there is already
an active station in the system, the marked station fails to be active. It adopts
the state of the received message and broadcasts the message. Our experiments
indicate that this solves the problem adequately.

proc Lift2(n:Address, m:Address, nos:Address, s:State, c:Bool)=
(up(n)·Lift2(n,m,nos,up,nos,T)+down(n)·Lift2(n,m,nos,down,nos,T))
�eq(s,standby)�δ
+

∑
mes:Messager btos(mes,n)·

(move(n,s)·Lift2(n,m,nos,s,c)

130 Chapter 6 Analysis of a Distributed System for Lifting Trucks

�eq(getstate(mes),sync)�
(((s stob(mes(m,s),n)·Lift3(n,m,nos,s,nos)
� eq(getstate(mes),standby)�
s stob(mes(m,getstate(mes)),n)·Lift2(n,m,nos,getstate(mes),F))

�c�
s stob(mes(m,getstate(mes)),n)·Lift2(n,m,nos,getstate(mes),F))

�eq(getaddress(mes),pre(m))�
(Lift2(n,m,nos,s,c)�c�Lift2(n,m,nos,getstate(mes),c))))

proc Lift3(n:Address, m:Address, nos:Address, s:State, count:Address)=
released(n)·Lift3(n,m,nos,standby,nos)
�not(eq(s,standby))�δ
+

∑
mes:Messager btos(mes,n)·

((s stob(mes(m,standby),n)·Lift2(n,m,nos,standby,F)
�eq(s,standby)�
(s stob(mes(m,sync),n)·move(n,s)·
s stob(mes(m,s),n)·Lift3(n,m,nos,s,nos)
�eq(getstate(mes),s)∧eq(count,2)�
s stob(mes(m,s),n)·Lift3(n,m,nos,s,nos)))

�eq(getaddress(mes),pre(m))�
(Lift3(n,m,nos,s,pre(count))
�eq(getstate(mes),s)�
Lift3(n,m,nos,s,count)))

After these four problems were all repaired, no more problems have been
found. We showed by means of model checking that that this modified specifi-
cation meets the requirements in the next section. The specification that was
model checked is given at http://www.cwi.nl/~pangjun/lift/.

6.6 Verification with CADP

6.6.1 Expressing the requirements

There are five requirements for the lift system. The first property is a universal
one: deadlock freeness. In the regular alternation-free µ-calculus syntax (see
Section 2.4) this is specified as follows:

P1 [T∗] 〈T〉 T

stating that every reachable state has at least one successor.
The second property is that of Liveness I, which means that buttons on the

stations can eventually be pressed. The regular alternation-free µ-calculus code
is given below,3 where ‘?’ is universally quantified on the sort Address :

P2.1 [(¬up(.))∗] 〈(¬up(.))∗·up(?)〉 T

P2.2 [(¬down(.))∗] 〈(¬down(.))∗·down(?)〉 T

3“.” is used to match any character in regular expressions.

6.6 Verification with CADP 131

It states that all fair execution sequences leading to an up or down action after
zero or more transitions.

The property of Liveness II is expressed below. We use ‘?’ to indicate the
address of the lift on which the up (or down) button is pressed, it is universally
quantified on the sort Address.

P3.1 [(¬(up(.)|down(.)))∗·up(?)]
µY.〈T〉 T ∧ [(¬(up(.)|down(.)|released(?)|move(.,up)))] Y

P3.2 [(¬(up(.)|down(.)))∗·down(?)]
µY.〈T〉 T ∧ [(¬(up(.)|down(.)|released(?)|move(.,down)))] Y

It says that in any execution sequence containing only one button-pressed action,
and containing no button-released action of the pressed button, the system
always begins to move.

The fourth property of our specification is Safety I. It says that if one of
the lifts moves, all the other lifts should not move in the opposite direction.
What is more, to keep the trucks in balance, all lifts have to move in the same
direction. Note that Safety I also requires that all lifts should move at (almost)
the same moment, the CAN bus can guarantee that a sync message on the bus
is immediately received by all other stations connected to the sending station
via closed relays, we did not take this into account. To formalize this property,
any order of the lifts’ movements must be dealt with carefully. This means that
the size of the formula grows in a factorial fashion with respect to the number
of lifts. To solve this problem, we split the formula into pieces which can be
checked by the model checker Evaluator. Taking a lift system with three stations
as an example, one piece of this property is specified as follows:

P4 [¬(move(1,up)|move(2,up)|move(3,up))∗·
move(1,up)·
¬(move(1,up)|move(2,up)|move(3,up))∗·
move(2,up)·
¬(move(1,up)|move(2,up)|move(3,up))∗·
(move(3,down)|move(3, standby))] F

The above code says that in all paths, lift 1 is the first to move up, after that,
no movement of the other stations, and then lift 2 moves up, also no movements
of other stations following; moreover, the action of lift 3 moving down (or not
moving) always results in a state where F holds. Equivalently, as long as lift 1
and lift 2 move up, lift 3 cannot move down or remain at the same height. The
other possibilities of the movement of stations can be specified similarly.

The fifth property of Safety II states that if no up or down button is pressed,
then the system cannot move up or down. The following shows the code in the
regular alternation-free µ-calculus.

P5.1 [(¬up(.))∗·move(.,up)] F

P5.2 [(¬down(.))∗·move(.,down)] F

This should be read as follows: if an execution sequence does not contain button-
pressed action, then in the resulting state the stations cannot move up or down.

132 Chapter 6 Analysis of a Distributed System for Lifting Trucks

Number of lifts States Transitions
2 383 636
3 7,282 18,957
4 128,901 390,948
5 2,155,576 8,287,715

Table 6.1: Labeled transition system dimensions

6.6.2 Verifying the modified specification

All five requirements stated in Section 6.3 were shown to be satisfied by our
modified µCRL specification of the lift system with respectively 2, 3, 4 and 5
lifts. The dimensions of the generated LTSs are summarized in Table 6.1. For
each of the lift systems, the numbers of states and transitions of the generated
LTS are given. The size of the generated LTS quickly increases with the number
of the lifts. This is due to the fact that buttons on each lift can be pressed in
any arbitrary order. Generation and model checking were performed on a 1.4
GHz AMD AthlonTM Processor with 512 Mb memory.

Owing to a distributed state space generation algorithm [22], we can generate
the LTS for a system with six lifts on a cluster at CWI. The generated LTS has
around 33, 900, 000 states and 165, 000, 000 transitions, which is too large to
serve as an input to the model checker. Hence, the five requirements were not
checked on this LTS.

6.7 UPPAAL Model of the Redesign

The developers of the original design in µCRL decided not to wait for the results
of the formal analysis and redesigned their implementation based on their own
solutions.

The developers experienced a new problem in the redesign. Again the reason
was unclear. Since the error traces displayed a regular pattern in time, the devel-
opers thought modeling exact timing might reveal the reason for this problem.
In the µCRL specification, time is abstracted away. We could extend the µCRL
model with exact timing information, but there is no automated verification
tool set for timed process algebras. Therefore it was decided to use UPPAAL
[111], which is a tool set for validation and model checking of real-time systems.

UPPAAL is a tool set for validation and model checking of real-time systems,
which are modeled as networks of timed automata [3] extended with global
shared variables. It consists of a number of tools including a graphic editor for
system description, a simulator and a model checker. The idea of the UPPAAL
tool set is to model a system using timed automata, simulate it and then verify
properties of the system. During the design phase, the graphic simulator is used
intensively to validate the dynamic behavior of each design sketch, in particular
for fault detection, and later on for debugging the generated diagnostic traces.
The verifier mainly checks for invariants and reachability properties. It does so

6.7 UPPAAL Model of the Redesign 133

by exploring the state space of a system using ‘on-the-fly’ searching techniques.
It uses symbolic techniques to reduce the verification of modal logic formulas to
solving simple reachability constraints. Some notable recent case studies with
UPPAAL are [84, 114, 15].

The UPPAAL model presented in this section is the result of a few steps.
First the µCRL model of the original design was translated into UPPAAL. This
model was then changed into a representation of the redesign by adding the
developers’ solutions to the problems, that were found in the original design.
The UPPAAL model of the redesign is also more specific, since interactions
between the environment and the lift system are added that were abstracted
away in the µCRL model of the original design. Furthermore, the model was
extended with exact timing information. With respect to the explanation of
the original design in Section 6.2, the redesign can be viewed as a refinement
of the µCRL model. However, the desired behavior of the lift is basically the
same as explained in Section 6.2. The redesign should therefore meet the same
requirements as the original design.

The UPPAAL model contains four components. They are automata: Sta-
tion, Bus, Interface and Timer. In UPPAAL, an automaton can be instantiated
an arbitrary number of times. As explained in Section 6.2, the lift system con-
sists of one bus and an arbitrary number of lifts. The automaton Bus models
the can bus. For each lift in the system, we create two automata: Station and
Interface. The automaton Station models the micro controller. In automaton
Interface, the pressing and releasing of buttons on the lift is modeled. The au-
tomaton Timer is used to model time delay. In this section we walk through
the model. Pictures of these automata are presented with only necessary expla-
nation.

6.7.1 Transforming the µCRL model

To analyze the redesign of this system, we first transformed the µCRL model
into UPPAAL. In this section, we discuss some model choices that were made.

Value passing

In µCRL, two actions can only synchronize if they occur in parallel, and if their
data parameters are semantically the same, which means that communication
can be used to represent data transfer from one process to another. The com-
munication function was used heavily in the µCRL specification of the original
design, to model the communications between the bus and stations. However,
in UPPAAL, data transfer (or value passing) between processes (or automata)
cannot be modeled in this way.

We define two channels between the bus and stations: bustolift and lifttobus,
and declare several global variables for data transfer when communication hap-
pens. When a station wants to send a message to the bus, it has to instantiate
the values for some global variables in the message, for instance the state and the
sender’s position. When communication takes place, the values of those global

134 Chapter 6 Analysis of a Distributed System for Lifting Trucks

right2

leftbroadcasting

rigthbroadcasting

initial

left42left41

left6

left5left3

right5

left2

right4

right12

deliver

left1

right11

right3

closerelay?openrelay?

lifttobus?
sender:=tobesender,
tobesender:=0,
messagestate:=tobemessagestate,
tobemessagestate:=0,
messageposition:=tobemessageposition,
tobemessageposition:=0

closedrelay[sender]==0

closedrelay[sender]==1

relaypointer:=sender

sender>1

sender==1

relaypointer:=N

relaypointer := sender-1

closedrelay[relaypointer]==0

closedrelay[relaypointer]==1

relaypointer==0,
sender>1

relaypointer==0,
sender==1

relaypointer>0

relaypointer<N
relaypointer:=relaypointer+1

relaypointer==N
relaypointer:=1

relaypointer==sender

relaypointer==sender

closedrelay[relaypointer]==1

receiver:=relaypointer

bustolift!
relaypointer:=relaypointer-1

receiver:=(relaypointer==N?
1: relaypointer+1)bustolift!

relaypointer!=sender

relaypointer!=sender

closedrelay[relaypointer]==0

Figure 6.3: The automaton Bus

variables are saved to the variables used by the bus. After communication, those
global variables are provided with default values. In a similar fashion, messages
are sent from the bus to stations. Detailed information can be found in the
automata Station and Bus (see Figure 6.3, Figure 6.5 and Figure 6.6).

Messages broadcasting

In µCRL, summation
∑

d:D p(d) provides the possibly infinite choice over a data
type D. In the µCRL specification of the bus, when the bus gets a message from
a station, it can compute the set of stations who can get this message via closed
relays. Then the bus can choose one station from the set nondeterministically,
and send it the message. In this way, we can model the broadcasting of a
message. In UPPAAL, the summation operator is absent. We set a kind of fixed
order for the bus to broadcast a message. The relay controlled by a station is
modeled as a flag. When the relay is closed, the flag is set to 1; otherwise it is 0.
When a bus broadcasts a message, it starts to check the flag at the position of
the message sender. If the flag is 1, it sends a message to the station connected
by this relay, and continues to check the flag of this station. As soon as it
reaches a flag with value 0, it continues at the station preceding the message
sender. If the flag at this station is 1, the message is sent to the station, and
the bus continues to check the flag at the preceding station. This procedure
moves on until the bus reaches another flag with value 0. Recall that in both
phases of the lift system, there is at least one open relay, which guarantees that
the broadcasting procedure terminates. In the automaton Bus (see Figure 6.3),
when a bus gets a message at the initial node, it starts broadcasting the message
from the left part of the picture, then continues at the right part, and finally

6.7 UPPAAL Model of the Redesign 135

inDown

inUP

onlyonesetref

inSBY

onesetref==0
setref!
onesetref:=1,
buttonstate[myid]:=Standby

pressed[myid]<2,
cyclecounter[myid]<CYCLES,
buttonstate[myid]==Standby
buttonstate[myid]:=Up,
pressed[myid]:=pressed[myid]+1

pressed[myid]<2,
cyclecounter[myid]<CYCLES,
buttonstate[myid]==Standby
buttonstate[myid]:=Down,
pressed[myid]:=pressed[myid]+1

released[myid]<2,
cyclecounter[myid]<CYCLES,
buttonstate[myid]==Up
buttonstate[myid]:=Standby,
released[myid]:=released[myid]+1

released[myid]<2,
cyclecounter[myid]<CYCLES,
buttonstate[myid]==Down
buttonstate[myid]:=Standby,
released[myid]:=released[myid]+1

cyclecounter[myid]==CYCLES

mainloop!

pressed[myid]:=1,
released[myid]:=0

cyclecounter[myid]==CYCLES
mainloop!

pressed[myid]:=1,
released[myid]:=0

cyclecounter[myid]==CYCLES

mainloop!

pressed[myid]:=0,
released[myid]:=0

onesetref>0
buttonstate[myid]:=Standby

Figure 6.4: The automaton Interface

goes back to the initial node.

One SETREF button pressed

In Section 6.5, the second problem of the original design was found during the
startup phase. It occurs if the setref buttons at two lifts are pressed. The
result of the problem is that after the startup phase there will be two lift systems
instead of one. The situation may lead to the violation of all the requirements.
Given the chosen bus it seems impossible to solve this problem satisfactorily.
The developers chose to emphasize in the manual that it is important to make
sure that in the startup phase the setref button of only one lift is pressed. We
also take this assumption into our analysis of the redesign.

In the UPPAAL model it is impossible to press another setref button
after one is pressed. We use guards on transitions to block pressing of setref

buttons after one setref button has been pressed. In the automaton Interface
(see Figure 6.4), a variable onesetref is used as a guard on both transitions
from the initial state. Initially the variable is zero, so one Interface can take
the transition with the guard onesetref==0, if the setref button on the lift is
pressed. The variable onesetref is now set to 1. In order to leave their initial
state, the other Interface automata have to take the other transition with the
guard onesetref>0. Therefore it is simply made impossible to press more than
one setref button in our UPPAAL model.

6.7.2 Adding the solutions

In the automaton Station, the two phases of the lift system as explained in
Section 6.2 are clearly distinguishable.

136 Chapter 6 Analysis of a Distributed System for Lifting Trucks

position2

whatposition

broadcaststartup
x<=29

close

receivestartup
x<=24

receivestartup2 x<=1

inital

relayopened
x<=30

sendstandby

initialise

waitforturn

endofSTARTUP

waittoopen

x<=25

sendstartuprelayclosed

x<=24

setrefpressed

waitforbus

NormalOperation

setref? x == 24

tobesender:=myid,
tobemessagestate:=Startup,
position[myid]:=1,
currentstate[myid]:=Startup,
number[myid]:=1,
tobemessageposition:=1

lifttobus!

myid==receiver
bustolift?myid==receiver

bustolift?
x:=0

messagestate==Startup, tobemessagestate==0
number[myid]:=messageposition,
currentstate[myid]:= Standby,
tobesender := myid,
tobemessagestate:=Standby,
tobemessageposition:=position[myid],
cyclecounter[myid]:=0,
CAN[myid]:=0,FCHA[myid]:=0,ECHO[myid]:=0

lifttobus!

messagestate==Startup,
tobemessagestate==0, x==24

position[myid]:=messageposition+1,
number[myid]:=messageposition+1,
currentstate[myid]:=Startup,
tobesender:=myid,
tobemessagestate:=Startup,
tobemessageposition:=number[myid]

closerelay!

closedrelay[myid]:=1

myid==receiver,
messagestate==Standby

bustolift?

currentstate[myid]:=Standby,
lastsender[myid]:=
(messageposition==number[myid]?
0:messageposition),
cyclecounter[myid]:=0,
CAN[myid]:=0,FCHA[myid]:=0,ECHO[myid]:=0

tobemessagestate==0

tobesender:=myid,
tobemessagestate:=Standby,
tobemessageposition:=position[myid]

myid==receiver,
messagestate==Startup

bustolift?
number[myid]:=
messageposition,
x:=0

x==30

position[myid]>=2, x==29

lifttobus!

x:=0

(lastsender[myid]+1)==position[myid]

closerelay!
closedrelay[myid]:=1,
x:=0

x==25
openrelay!
closedrelay[myid]:=0

x==1

x:=0

(lastsender[myid]+1)!=position[myid]

endofST:=endofST+1

Figure 6.5: The automaton Station: Startup phase

Startup

Until all the stations have reached the node normaloperation, they are in the
startup phase. The main role of the startup phase is to find out which position
a lift has in the network and how many lifts there are in the network. The
variables position and number are assigned to each lift to store this information.

The station where the setref button is pressed will move clockwise in Fig-
ure 6.5 from the initial node. It gets position 1, closes its relay, and sends a
startup message to the bus. After that it opens its relay and waits for a
startup message. When it gets the startup message, it adopts the value of
the variable number in this message; iy this way it gets to know how many lifts
there are in the system. Then, it sends a standby message and reaches the
normaloperation node. The other stations will move anti-clockwise in Figure 6.5
from the initial node. They first get a startup message, increase the sender of
the message by one, and save it as their own position. They close their own relay
and send a startup message. There is a small loop in Figure 6.5, to indicate

6.7 UPPAAL Model of the Redesign 137

startmoving activemovement

passivemovement
normaloperation

decidevalues

S5

gobacktonormal

S4

countenough

S3

S2S1

wait2

wait1

getmessage

sendingsyncmes

sendingstatemes

myturn

waitforbus2

waitforbus1

endofSTARTUP

myid==receiver,
messagestate==Sync

bustolift?

move[myid]:=currentstate[myid]

t10!

move[myid]:=0

myid==receiver,
messagestate<Sync,
cyclecounter[myid]<CYCLES
bustolift?

lastsender[myid]:=(messageposition==number[myid]?
0:messageposition),
cyclecounter[myid]:=cyclecounter[myid]+1

counter[myid]!=1

counter[myid]==1

tobemessagestate==0
tobesender:=myid,
tobemessagestate:=Sync,
tobemessageposition:=position[myid]

move[myid]:=currentstate[myid]

tobemessagestate==0

tobesender:=myid,
tobemessagestate:=currentstate[myid],
tobemessageposition:=position[myid],
counter[myid]:=number[myid]move[myid]:=0

CAN[myid]==0,
cyclecounter[myid]==CYCLES

mainloop?

counter[myid]:=(currentstate[myid]!=buttonstate[myid]?
number[myid]:counter[myid]),
ECHO[myid]:=(currentstate[myid]!=buttonstate[myid]?1:ECHO[myid]),
FCHA[myid]:=(currentstate[myid]!=buttonstate[myid]?1:FCHA[myid]),
currentstate[myid]:=buttonstate[myid],
cyclecounter[myid]:=0

CAN[myid]==1,
cyclecounter[myid]==CYCLES
mainloop?
cyclecounter[myid]:=0

CAN[myid]==1,
currentstate[myid]!=Standby

ECHO[myid]==0

currentstate[myid]==Standby

messagestate!=Standby CAN[myid]==0,
currentstate[myid]!=Standby

counter[myid]:=(messagestate!=currentstate[myid]?
counter[myid]:counter[myid]-1)

CAN[myid]:=(currentstate[myid]==Standby?
CAN[myid]:1),
currentstate[myid]:=messagestate

ECHO[myid]==1

messagestate==Standby

CAN[myid]:=0,FCHA[myid]:=0,
ECHO[myid]:=(lastsender[myid]+1
==position[myid]?0:ECHO[myid])

currentstate[myid]:=
(ECHO[myid]==1?currentstate[myid]:messagestate),
CAN[myid]:=(ECHO[myid]==1?currentstate[myid]:1)

t10!

(lastsender[myid]+1)==position[myid]

(lastsender[myid]+1)!=position[myid]

lifttobus! t10! t15!

t20!

lifttobus!

t10!

Figure 6.6: The automaton Station: Normal operation

that the stations keep getting startup messages and changing the knowledge of
the number of lifts in the system. In the end, they will get a standby message,
and end up in the normaloperation node. When all the stations have reached
the normaloperation node, all the stations are standby. They all have a unique
value for position, and the value of number of all the lifts is equal to the total
number of lifts in the network.

Some time delays are added into the startup phase to solve one problem
found during testing. The timing information will be discussed in Section 6.7.3.

Normal operation

At node normaloperation, a station enters the normal operation phase, which is
depicted in Figure 6.6. In the normal operation phase, a distinction is made
between two loops which a station can perform. One is the main loop, which
takes place at the node normaloperation in Figure 6.6; and the other one we will
call internal loop, which is the other part of Figure 6.6. The difference between
the main loop and the internal loop can be stated as follows: in a main loop
the station receives state messages from its Interface and can change its state
accordingly, and in an internal loop the station exchanges state messages with
Bus and changes its state accordingly.

The main loop is a short loop in which the automaton Station synchronizes
with its Interface. Executing the main loop is the only way the station can get

138 Chapter 6 Analysis of a Distributed System for Lifting Trucks

information about which button on the lift (if any) is pressed or released. This
main loop takes place after a fixed number of internal loops, which is modeled
as a constant CYCLES in the UPPAAL model. And a counter cyclecounter
is used to record the number of internal loops that have happened after the
last main loop. When cyclecounter==CYCLES, the main loop takes place and
cyclecounter is reset to 0. If the station detects a difference between its current
state (modeled by variable currentstate) and the state of the Interface (modeled
by variable buttonstate), the station may change its state and adopt the one
from the Interface. The main loop is also part of the original design, but it was
abstracted away in the µCRL model in Section 6.4. In the UPPAAL model of
the redesign it could not be left out, because as we will see the solutions from
the developers interact in a critical way with the main loop.

In an internal loop, a station can do several things. First a station can
get messages from the bus. Second, a station can send a message to the other
stations, if it gets the turn to use the bus. Third, the active station can count
state messages and initiate a movement of the whole system. In that case
the active station will enter the node activemovement, while the other stations
get a sync message and enter the node passivemovement. A variable move is
associated to each station to indicate the direction of the current movement.

Flags

Problem three and four found in Section 6.5 occur in the normal operation
phase. The third problem happens when an up or down button is pressed
and released at an inappropriate moment. The lift system will end up in the
situation that all stations are in up or down state, but there is no active station.
This means that all the lifts will remain in that state until the system is shut
down. This problem violates property Liveness II in Section 6.3. The reason
for this problem is that in the original system a station becomes passive as soon
as the pressed button on this lift is released. This problem was discovered by
the developers when testing the system, and they solved it by means of flags.

The fourth problem occurs when two up or down buttons on different lifts
are pressed at the same time and one of them is released at an inappropriate
moment. As a result, some lifts will move, and one lift (where the button
is released) remains at the same height. This violates property Safety I in
Section 6.3. The reason for this problem is that a station becomes active as soon
as a button on this lift is pressed. This problem was unknown to the developers
and found its way into the final implementation of the original system. The
detailed description of each problem can be found in Section 6.5. We proposed
to solve this problem by allowing a station to decide to be active or passive only
when it is its turn to use the bus. In the analysis of the redesign, we focus on the
solutions from the developers, and explain how they fail to solve the problems in
Section 6.8. Furthermore, in Section 6.9 we refine our solution from Section 6.5,
and show that it does solve the problems.

The developers attempted to solve the third problem with flags. When they
are set their value is 1, and when they are reset their value is 0. The flags serve as

6.7 UPPAAL Model of the Redesign 139

blocks: they can prevent state changes when they are set. Two type of flags are
used in the redesign, i.e. Can, Echo. Every station has its own flags. Initially
all flags are 0. The Can flag is set when a station receives a state message
from the bus. An exception is the standby message. If a station receives this
message, the opposite happens: Can is reset, but only when the current state of
the station is also standby; otherwise Can is left unchanged. The idea of the
developers was to use the Can flag to block state changes by the main loop. If
Can is set, the main loop cannot change the state of the station. In Figure 6.6,
we have two main loops with different guards. One is CAN==1, and the other
CAN==0. If CAN==0 the main loop is taken. The current state of the station
is compared with the Interface. In Figure 6.4, Interface can communicate with
Station when it is in the nodes inUp (the up button is pressed), inDown (the
down button is pressed) or inSby (no button is pressed). If CAN==1, some
counters such as cyclecounter are reset, but nothing else happens.

The Echo flag can only be set via the main loop with guard CAN==0.
When the station detects a difference between its current state and the state
of the button, Echo is set. When Echo is set, the state of the station cannot
change by messages it receives from the bus. Like Can, Echo can only be reset
when the state of the station is standby and a standby message is received
from the bus. But for Echo, there is an extra requirement that has to be
fulfilled before it can be reset: it has to be the station’s turn to use the bus.

6.7.3 Adding timing information

The time model in UPPAAL is continuous or dense. Clocks are used to capture
time in UPPAAL. They can be associated with a transition or a node. In a
transition, clock variables can be reset or used as a guard. In a node, clock
variables can be used as a hold up to let the process stay in that node for a
certain amount of time. Such nodes are said to be labeled with an invariant.

The way we modeled the time information of the lift system is influenced by
the developers’ solution to solve one problem found in the startup phase. It is
also influenced by the fact that during normal operation the stations take fixed
turns to use the bus. During the startup phase there is no such order. This
difference has led to a different treatment of the timing information in the two
phases. We first discuss the startup phase and then normal operation.

Startup

The first problem found in Section 6.5 occurs in the startup phase. It has to
do with the re-opening of the relay between the first and second lift at the
wrong moment. Consider Figure 6.1 in Section 6.2 again. The setref button
is pressed on station B, which closes its relay and sends a startup message
to station C. If station C sends a startup message before the relay between
station B and station C is opened, this message is received by station B, which
draws the incorrect conclusion that there are only two lifts in the network.

The solution to this problem is to let station C (or in general the station

140 Chapter 6 Analysis of a Distributed System for Lifting Trucks

n15 k<=15

n5

k<=5

back

n10k<=10

start

go k<=0

n20

k<=20

t5?

t10? t15?

t20?

k==5

k==10 k==15

k==20

k:=0

endofST==N k:=0

Figure 6.7: The automaton Timer

with position 2) wait until the relay between the first station and the second
station is opened, before sending the startup message. The developers added
delays to the original design to make sure this happens.

In the redesign, during the startup phase, a local clock x is assigned to each
station. The local clock is reset when a station gets a startup message, or a
setref button is pressed. This is used to capture the moment when the stations
join the network. Receiving a message from the bus or sending a message to the
bus costs 1 millisecond. The opening and closing of a relay cost 5 milliseconds.
There is a delay of 24 milliseconds before sending a startup message. This is
all the timing information in the startup phase.

Normal operation

During normal operation, the local clocks used during the startup phase are not
used anymore. Instead we use one global clock. We create an extra automaton
Timer depicted in Figure 6.7.

Transitions normally don’t take time in UPPAAL, but this does happen in
the lift system. Each main loop consumes 1 millisecond. After each main loop,
the station waits 0.5 millisecond to get messages from the bus. During the
internal loop, the receiving and sending messages take 1 millisecond. Before
sending a sync message, stations delay 1.5 milliseconds. Before sending a state
message, stations delay 2 milliseconds. This is all the timing information in
the normal operation phase. We use Timer to express time consumption by
transitions; this idea is borrowed from [84]. The guard endofST==N makes
sure that the Timer is only used in normal operation, where N is the number of
lifts in the system. In node go, time is constrained to not progress at all. This
means that in order for time to progress, one of the edges tn? must be taken;
where n ∈ {5, 10, 15, 20} expresses the amount time of delay. These edges then
lead to nodes where time can progress with the corresponding number of time
units, where after control returns immediately to the go node.

6.8 Analysis of the Redesign 141

6.8 Analysis of the Redesign

Since the redesign does not change the desired external behavior of lifts, the UP-
PAAL model of the redesign should satisfy all the requirements in Section 6.3.
We formulate those requirements in the UPPAAL requirement specification lan-
guage, and verify them, sometimes with the help of test automata, to check
whether the redesign solves problems 3 and 4. We give the definition and ex-
planation of the UPPAAL requirement specification language [111] briefly as
follows:

• A[] P: for all paths p always holds;

• E〈〉 P: there exists a path where p eventually hold;

• A〈〉 P: for all paths p will eventually hold;

• E[] P: there exists a path where p always holds;

• p→q: whenever p holds q will eventually hold.

where p and q are state formulas.

6.8.1 Expressing the requirements

We first check deadlock freeness. This can be translated into the UPPAAL
requirement specification language directly:

• A[] not deadlock

The redesign satisfies this property, which indicates that the solution from the
developers solves the first problem found in Section 6.5. In the implementation
of the lift system, the delay for each startup message is 24 milliseconds. In the
UPPAAL model, a delay of 6 milliseconds for each startup message is already
enough to solve this problem.

Liveness I says that buttons on a lift can be pressed and released whenever
the user wants, and that the system will respond to this. After implementing
the main loop in the UPPAAL model, it is always possible to press or release
buttons. So for the redesign, Liveness I becomes trivial.

Liveness II says that if an up or down button is pressed and not released
and no other button is pressed, all lifts will move. In the UPPAAL requirement
specification language, it is impossible to express this property. Fortunately,
according to [2], we can transform this property into a test automaton, in which
an approach is developed to model-checking of timed automata via reachability
testing. The idea is to create a bad state in the test automaton and let the
verifier check whether the system can reach this state. If it does, the system
violates a certain property.

The test automaton may need some extra decorations for the verification
purpose. In principle, with the test automaton we can express all scenarios we

142 Chapter 6 Analysis of a Distributed System for Lifting Trucks

initial

wait2 bad

wait1

wait3

endofST==N

visitmovement<N,
enoughcycles==NCYCLE

press?

visitmovement:=0,
enoughtcycles:=0

nomore<NOMORE release? nomore:=nomore+1

nomore<NOMORE
press?

release?
nomore:=nomore+1

Figure 6.8: The test automaton for Liveness II

want to check. As this would lead to a possibly infinite state space, some sce-
narios which are not interesting can be abstracted away. For example, in the lift
system, the buttons can be pressed and released many times. We consider only
those scenarios where a button on one lift is pressed and released at most once.
The test automaton for the requirement Liveness II is depicted in Figure 6.8
below.

We add new synchronizations between the Interface automata and the test
automaton via press and release channels, to model the number of pressing and
releasing actions. In the test automaton only one pressing and releasing per
lift can take place. nomore is a variable that is used to block more pressing
and releasing actions. This test automaton is used to express that if a button
is pressed and not released any more, after some period of time (modeled by
variable enoughcycles) all the lifts will move. We now check whether the test
automaton can reach the node bad. If the test automaton reaches the node
bad, it means that not all the lifts have moved and the system violates property
Liveness II.

• A[] not testautomaton.bad

Test automata are also used to model and check the other two safety properties.
With Liveness II, we could check that if one button is pressed, all the lifts

reach their activemovement or passivemovement node within a certain amount
of time. What we do not check is whether they move in the same direction.

Safety I demands that whenever a lift moves, all the other lifts move simulta-
neously in the same direction. The corresponding test automaton is depicted in
Figure 6.9. This test automaton waits for one lift to reach the activemovement
node, which is detected by a synchronization on channel go? between Station
and this test automaton. The test automaton then checks whether the other
lifts move in the same direction (modeled by guard visitmovement<N) within a
certain amount of time (modeled by enoughcycles==NCYCLES).

Safety II states that there will be no movement when no button has been
pressed. The corresponding test automaton is depicted in Figure 6.10. The
variable noupdown (meaning no up or down button pressed) is used to block

6.8 Analysis of the Redesign 143

initial wait

bad

go?

enoughcycles:=0 visitmovement!=N,
enoughcycles==NCYLES

Figure 6.9: The test automaton for Safety I

initial wait

bad

noupdown==0
visitmovement>=1

Figure 6.10: The test automaton for Safety II

all pressings of buttons in the Interfaces. Now we can check whether it is still
possible for the lifts to reach movement nodes (modeled by visitmovement>=1).

The redesign satisfies requirement Safety II, and violates requirements Live-
ness II and Safety I. We will discuss the diagnostic traces and the reasons in
the next section.

6.8.2 Problems

The developers invented flags to solve the third problem found in Section 6.5.
These flags seem to solve the error scenario described in Section 6.5. But during
the testing phase, the developers encountered a new error; again the cause for
this error was not clear to them. We have built a UPPAAL model (see Sec-
tion 6.7) for the redesign and checked it. Liveness II turned out to be violated.
We first investigated the diagnostic trace generated by the model checker in UP-
PAAL, and then gave the reason why the solution from the developers failed.
The generated diagnostic trace contains 256 transitions; we used the graphic
simulation tool in UPPAAL to analyze it.

Initially all the flags are 0. When an up button is pressed on one station
(A), Echo will be set and the state of station A will change to up. Station
A sends an up message. The other stations will set the Can flag and change
their state to up. Suppose the button is released again. The flag of station
A does not change, but its state will change to standby (see the main loop
in Figure 6.6). Station A will send a standby message which the others will
adopt. When they have adopted this state, and if they receive another standby

message, the Can flags of the other stations will be reset. After a short while
all Can flags in the network are 0, Echo of station A is 1, and all the states of

144 Chapter 6 Analysis of a Distributed System for Lifting Trucks

the stations are standby. Suppose now that an up button of another station
(B) is pressed. Station B will send an up message. Station A will receive this
but cannot change its state because Echo is set. When it is station A’s turn
to use the bus it will therefore send a standby message. Station B will receive
this standby message, and it will not count enough up messages. The whole
counting procedure has to start over again. Station B will send an up message.
The other stations will adopt this state and send a up message. But when it is
station A’s turn, again since Echo is set, it will send a standby message and
station B will again not count enough up messages. It is clear that the Echo of
station A should be reset to get out of this situation, but that can only happen
when the state of the station is standby, a standby message is received, and
it is this station’s turn to use the bus. For station A this never happens. As a
result, the whole system will never move, even when an up button is pressed.

The test automaton detects this problem. Even though the solution of the
developers has some virtue, they seem not to have taken into account that
the main reason for the third problem lies in the fact that the active station
immediately changes its state to standby after a button is released. Their
solution was directed to block state changes to the active station after its state
has changed to standby. This is not the heart of the problem and therefore
the problem remains in the redesign.

The fourth problem found in Section 6.5 is also still in the redesign. The
redesign violates property Safety I. The reason resembles what is already ex-
plained in Section 6.5. This is not very surprising, since the fourth problem was
unknown to the developers at the time of the redesign.

6.9 A New Solution

In this section, we refine the solution proposed in Section 6.5 in such a way that
it corresponds with UPPAAL and resemble to the solution from the developers.
The key point why our solution differs from the flags added into the redesign
is that our solution creates a link between the state change of a station and
the turn of the station to use the bus. This idea was already mentioned in the
µCRL model in Section 6.5, but it was not further specified. With the more
exact model of the redesign, including the main loop, and using the idea of the
flags the developers came up with, now we work out the idea in detail.

The new flags are called Change and Active. They are assigned to each
station. Can and Echo are no longer a part of the new solution. When
Active is 1, the corresponding station is active; otherwise, the station is passive.
Change of a station is set when there is a button pressed or released at this
station (through the main loop). This is used to remember that the Active flag
at this station must change from active to passive, or vice versa. Only when
the station gets its turn to use the bus, this change will actually happen. If
one station wants to become active, it has to make sure that there are no other
active stations in the system, by checking whether the state of the message from
the bus is standby. If the Change of a station is set, this station does not

6.10 Conclusions 145

change its state until it is its turn to use the bus to make a decision. Change

is reset together with a setting or resetting of Active.
Changing the new flags has no effect on the automata Interface, Bus and

Timer. They are exactly the same as in the redesign. Only the automaton
Station has undergone crucial changes. We will not explain the new Station
automaton in detail, more information can be found in [100]. All requirements
have been checked successfully on the model with this new solution. In partic-
ular, problem three and four are resolved.

Remarks. Since more details of the lift system are taken into account in the
UPPAAL model, the state space of the redesign increases dramatically. For the
UPPAAL model of the redesign, we could only manage the analysis for systems
with three lifts (UPPAAL version 3.2.4). The requirements were checked on a
1.4 GHz AMD AthlonTM Processor with 512 Mb memory. When it turned out
that the error traces that were discovered by the developers had nothing to do
with exact timing properties, we made a translation of the UPPAAL model into
µCRL, and repeated the verification with µCRL and CADP.

6.10 Conclusions

In this chapter, we have reported an industrial case study on applying formal
techniques for the design and analysis of a distributed system for lifting trucks.
Our work can be considered as one piece of evidence that formal verification
techniques are mature enough to be applied in industrial projects.

First, we have described a model of the original design of a distributed lift
system in µCRL. Our primary finding is that such a model is an efficient tool
to understand the behavior of embedded distributed systems, in the sense that
it helped us to find errors and understand their nature using the available tech-
nology. We also find confirmation of our previous findings that the possibility
to describe interactions in a process algebraic way, and data using equational
abstract data types provide exactly the required means for this specification and
its validation. The four problems found in the original design are summarized
as follows:

1. During the startup phase, the relay between the first and second lift is re-
opened at the wrong moment; it results in a deadlock in the lift system.

2. During the startup phase, the setref buttons at two lifts are pressed; the
system will have two independent networks instead of one.

3. During normal operation, an up or down button is pressed and released
at an inappropriate moment; this problem violates property Liveness II.

4. During normal operation, two up or down buttons at different lifts are
pressed at almost the same time, and one is released at an inappropriate
moment; this problem violates property Safety I.

146 Chapter 6 Analysis of a Distributed System for Lifting Trucks

The first three problems were also found by the developers, and the fourth was
new and unknown to them.

Second, the redesign was then modeled in UPPAAL. The analysis in Sec-
tion 6.8 has produced some interesting results. It shows that the redesign does
not satisfy all the requirements, meaning that the redesign by the developers
does not solve all the problems found in the original design. Only one problem
is solved by adding time delays. The third problem, for which those flags were
developed, and the fourth problem are not solved.

We could analyze the µCRL model of the original design with up to five lifts.
For increased certainty, it would be nice to increase this number, preferably up to
32, as this is the maximal allowed configuration. It is clear that more advanced
techniques are needed, and much work into these is going on. It leads too far
to mention all of them but work on parametric reduction of state spaces [70],
confluence reduction [78] and parametric composition of parallel processes [81]
are all activities striving to enable the analysis of systems with many more up
to possibly unbounded parallel components.

The developers of the system have fully acknowledged that these techniques
have increased their understanding and are planning to release a new version of
the product including the improvements we suggest.

Chapter 7

Model Checking a Cache Coherence

Protocol for Jackal

7.1 Introduction

Shared memory is an attractive programming model for interprocess communi-
cation and synchronization in multiprocess computations. In the past decade, a
popular research topic has been the design of systems to provide a shared mem-
ory abstraction of physically distributed memory machines. This abstraction,
known as Distributed Shared Memory (DSM), has been implemented both in
software (e.g., to provide the shared memory programming model on networks of
workstations) and in hardware (e.g., using cache coherence protocols to support
shared memory across physically distributed main memories).

Multithreading is a programming paradigm for implementing parallel appli-
cations on shared memory multiprocessors. The Java memory model (JMM) [67]
prescribes certain abstract rules that any implementation of Java multithreading
must follow. Jackal [174] is a fine-grained DSM implementation of the Java pro-
gramming language. It aims to implement the JMM and allows multithreaded
Java programs to run unmodified on DSM. It employs a self-invalidation based,
multiple-writer cache coherence protocol, which allows processors to cache a
region (which is either an object or a fixed-size partition of an array) created
on another processor (i.e., the region’s home). All threads on one process share
one copy of a cached region. The home node and the caching processors store
this copy at the same virtual address. A cached region copy remains valid for a
particular thread until that thread reaches a synchronization point. In Jackal,
several optimizations [173, 174] improve both sequential and parallel applica-
tion performance. Among them, the automatic home node migration reduces
the amount of synchronization, by automatically appointing the processor that
is likely to access a region most often as the region’s home.

In this chapter, we present our formal analysis of a cache coherence pro-
tocol for Jackal using the µCRL toolset and CADP. A µCRL specification of
the protocol (including automatic home node migration) was extracted from an
informal (C language-like) description of the protocol. To avoid state explosion,

147

148 Chapter 7 Model Checking a Cache Coherence Protocol for Jackal

we made certain abstractions with respect to the protocol’s implementation. Re-
quirements were verified by the µCRL toolset together with CADP. Our analysis
revealed many inconsistencies between the description and the implementation.
We found two errors were in the description. The developers of the protocol
checked the two errors and found their way in the implementation. Both errors
can happen when a thread is writing a region from remote (i.e., the thread does
not run on the home of the region). During the thread’s waiting for a proper
protocol lock or an up-to-date copy of the region, the home node may migrate to
the thread’s processor, so that the thread actually accesses the region at home.
The first error resulted into a deadlock. The second error was found when
model checking the property of only one home for each region. After updating
our formal specification, the requirements were successfully checked on several
configurations. Our solutions to the errors were adapted in the implementation
of the protocol.

Outline of the chapter. The remainder of this chapter is structured as fol-
lows. In Section 7.2, we discuss related work on analyzing the JMM or its
replacement proposal and verifying cache coherence protocols using formal tech-
niques. An informal description of the JMM is given in Section 7.3. Section 7.4
presents the Jackal system and its cache coherence protocol. Section 7.5 focuses
on our formal analysis in µCRL. The µCRL specifications for each component
of the protocol and the verification results are given. Discussions and future
work are mentioned in Section 7.6.

7.2 Related Work

The use of formal methods to analyze the JMM is an active research topic.
In [151], the authors developed a formal executable specification of the JMM
[67]. Their specification is operational and uses guarded commands. This model
can be used to verify popular software construction idioms for multithreaded
Java. In [177], the Murφ verification system [43] was applied to study the CRF
memory mode [120]. A suite of test programs was designed to reveal pivotal
properties of the model. This approach was also applied to Manson and Pugh’s
proposal [121] by the same authors [178]. Two proofs of the correctness for
Cachet [158], an adaptive cache coherence protocol, were presented in [164].
Each proof demonstrates soundness (conformance to the CRF memory model)
and liveness. One proof is manual, based on a term-rewriting system definition;
the other is machine-assisted, based on a TLA [110] formulation and using the
theorem prover PVS. Similar to [177, 178], we use formal specification and model
checking techniques. A major difference is that we analyzed a cache coherence
protocol within a Java DSM system that is already implemented and far more
complicated than the abstract memory models analyzed in [151, 164, 177, 178].
Our analysis helped to improve the actual design and implementation of the
protocol.

Our work is also related to the verification of cache coherence protocols.

7.3 Java Memory Model 149

Shared Main Memory

Thread#2

Buf Buf

Working Memory

Thread#n

Buf Buf

Working Memory

Thread#1

Buf Buf

Working Memory

Figure 7.1: JMM memory system

Formal methods have been successfully applied in the automatic verification
of cache coherence on sequentially consistent systems [109], e.g. [24, 38, 87].
Coherence in shared memory multiprocessors is much more difficult to verify.
Recently, Pong and Dubois [143] used their state-based tool for the verification
of a delayed protocol [45], which is an aggressive protocol for relaxed memory
models. We encountered the same difficulties as [143], such as that the hard-
ware to model is complex, and that the properties of the protocol are hard to
formulate. Differences between our work and [143] are: we analyzed a protocol
designed for distributed shared memory machines; and the protocol supports
multithreaded Java programs, which makes matters more complicated.

7.3 Java Memory Model

The Java language supports multithreaded programming, where threads can
interact among themselves via read/write of shared data. The JMM prescribes
certain abstract rules that any implementation of Java multithreading must
follow. We briefly present the current JMM as given in [67].

The JMM allows each thread to cache variables in its working memory, which
keeps its own working copy of the variables. A thread can only manipulate
the values in its working memory, which is inaccessible to other threads. The
working memories are caches of a single main memory, which is shared by all
threads. Main memory keeps the main copy of every variable. A thread’s
working memory must be flushed to main memory at each synchronization point.
A synchronization point is a lock or unlock operation corresponding to the entry
or exit of a synchronized block. The memory structure is depicted in Figure 7.1.

The JMM defines a set of actions that threads may use to interact with
memory. A thread invokes four actions: use, assign, lock and unlock. The other
actions: read, load, store and write, are invoked by a multithreaded implemen-
tation following the temporal ordering constraints in the current JMM ([67,

150 Chapter 7 Model Checking a Cache Coherence Protocol for Jackal

Chapter 17]). The meaning of each action is as follows:

1. use: Read from the working memory of a variable by a thread.

2. assign: Write into the working memory of a variable by a thread.

3. read : Initiate reading from the main memory of a variable by a thread.

4. load : Complete reading from the main memory of a variable by a thread.

5. store: Initiate writing the working memory into the main memory of a
variable by a thread.

6. write: Complete writing the working memory into the main memory of a
variable by a thread.

7. lock : Get the values in the main memory transferred to a thread’s working
memory through read and load action.

8. unlock : Put the values a thread holds in its working memory back to the
main memory through store and write action.

There are many problems in the current JMM [67], such as that semantics
for final variable operations is omitted and that Volatile variable operations
do not have synchronization effects for normal variable operations. In view of
these problems, the Java Specification Request (JSR) 133 is under development.
Two replacement semantics have been proposed to improve the JMM, one by
Manson and Pugh [121], the other by Maessen, Arind and Shen [120]. A detailed
discussion of the various problems in the current JMM can be found at http://
www.cs.umd.edu/~pugh/java/memoryModel/. Jackal is intended to implement
the memory model in JSR, which will be released soon.

7.4 Jackal DSM System

Jackal [174] is a fine-grained DSM implementation of the Java programming
language. Its runtime system implements a self-invalidation based, multiple-
writer cache coherence protocol for regions.

The Jackal memory model allows processors to cache a region created on
another processor (i.e., the region’s home). All threads on one processor share
one copy of a cached region. The home node and the caching processors all store
this copy at the same virtual address. The protocol is based on self-invalidation,
which means the cached copy of a region remains valid until the thread itself
invalidates the copy, which occurs whenever it reaches a synchronization point.
Jackal combines features of HLRC [179] and TreadMarks [101]. As in HLRC,
modifications are flushed to a home node; as in TreadMarks, twinning and diffing
are used to allow concurrent writes to shared data. Unlike TreadMarks, Jackal
uses software access checks inserted before each object usage to detect non-local
or stable data.

7.4 Jackal DSM System 151

The implementation of the Jackal memory model contains three compo-
nents: address space management, access checks and synchronization. Several
optimizations were made to improve both sequential and parallel application
performance [173, 174].

7.4.1 Address space management

Jackal stores all regions in a single, shared virtual address space. Each region
occupies the same virtual address range on all processors that store a copy of
the region. Regions are named and accessed through their virtual address. Each
processor owns part of the physical memory and creates objects and arrays in its
own part. In this way, each processor can allocate objects without synchronizing
with other processors. When a thread wishes to access a region created by
another processor, it must potentially allocate physical memory for the virtual
memory pages in which the object is stored, and retrieve an up-to-date copy of
the region from its home node. If a processor runs out of free physical memory,
it initiates a global garbage collection that frees both Java objects and physical
memory pages.

To implement self-invalidation, each thread keeps track of the regions it
accessed and cached since its last synchronization point. The data structure
storing this information is called the flush list. At synchronization points, all
regions on the thread’s flush list are invalidated for that thread, by writing diffs
back to their home nodes. A diff contains the difference between a region’s
object data and its twin data.

7.4.2 Access check

Jackal’s compiler generates a software access check for every use of a region.
The access check determines whether the region referenced by a given pointer
contains a valid local copy. Whenever an access check detects an invalid local
copy, the runtime system contacts the region’s home. It asks the home node for
a copy of the region and stores this copy at the same virtual address as at the
home node. The thread requesting the region receives a pointer to that region
and adds it to its flush list. This flush list is similar to the working memory in
the current JMM [67].

7.4.3 Synchronization

Logically, each Java object contains an object lock and a condition variable.
Since threads can access objects from different processors, Jackal provides dis-
tributed synchronization protocols. Briefly, an object’s home node acts as the
object’s object lock manager. lock, unlock, wait and notify calls are imple-
mented as control messages to the lock’s home node. To acquire an object lock,
a thread sends a lock request message to the object lock manager and waits.
When the lock is available, the manager replies with a notify message; other-
wise, the thread needs to wait for the lock to be released. To unlock, the lock

152 Chapter 7 Model Checking a Cache Coherence Protocol for Jackal

holder sends an unlock message to the home node. We did not model object
locks, since they are not relevant to the requirements that we formulated for the
protocol (see Section 7.5.2).

7.4.4 Automatic home node migration

Java programs do not indicate which object locks protect which data items.
This make it difficult to combine data and synchronization traffic. Jackal may
have to communicate multiple times to acquire an object lock, to access the
data protected by the lock and to release the lock. Recall that the home of
a region acts as the manager of the object lock. To decrease synchronization
traffic, automatic home node migration has been implemented in Jackal. It
means that Jackal may automatically appoint the processor that is likely to
access a region most often as the region’s home. This optimization is triggered
during the following two cases.

1. A thread writes to a region, and an access check detects an invalid local
copy; the runtime system contacts the region’s home, and finds that the
thread’s processor is the only one from which threads are writing to this
region. Then the home of this region migrates to the thread’s processor.

2. A thread flushes at a synchronization point, and there is only one processor
left from which threads are writing to some region. Then the home of this
region migrates to this processor.

Jackal can detect these situations at runtime, and thus reduce synchronization
traffic. Automatic home node migration complicates meeting the requirements
in Section 7.5.2.

7.4.5 Other features

To improve performance, a source-level global optimization object-graph aggre-
gation, and runtime optimization adaptive lazy flushing, are implemented in
Jackal.

The Jackal compiler can detect situations where an access to some object
(called root object) is always followed by accesses to subobjects. In that case,
the system views the root object and the subobjects as an object graph. Jackal
attempts to aggregate all access checks on objects in such a graph into a single
access check on the graph’s root object. If this check fails, the entire object
graph is fetched, which can reduce the number of network round-trips. We
did not model object-graph aggregation since we modeled memory at a rather
abstract level.

The Jackal cache coherence protocol invalidates all data in a thread’s working
memory at each synchronization point. That is, the protocol exactly follows
the specification of the JMM, which potentially leads to much interprocessor
communication. Due to adaptive lazy flushing, it is not necessary to invalidate
and flush a region that is accessed by only a single processor or that is only read

7.5 Specification and Analysis in µCRL 153

T1

T2P1

Acess Check

L
ock M

anagem
ent

List of visited regions

HomeQueue

RemoteQueue

Synchronous C
om

m
unications

Shared Virtual Address Space

P2

L
ock M

anagem
ent

HomeQueue

RemoteQueue

List of visited regions

Acess Check

T3

T4

Figure 7.2: Components in the Jackal architecture

by its accessing threads. We did not model adaptive lazy flushing, since it is
not relevant to the requirements that we formulated.

7.5 Specification and Analysis in µCRL

In this section, we present a formal specification of Jackal’s cache coherence
protocol in µCRL and verify some requirements at the behavioral level.

7.5.1 Specification of the protocol

The cache coherence protocol in Jackal is more complex than an interleaved
execution of the threads, where each thread executes in program order. The
permitted set of execution traces is a superset of the simple interleaved execution
of the individual threads. Furthermore, the µCRL specification is an exhaustive
nondeterministic description of the cache coherence protocol. This may lead to
state explosion. To deal with this problem, we made some abstractions of each
component. In the following discussion, we present the µCRL specification
for each component, together with the abstractions we made. For the sake of
presentation, we only give parts of the specification to illuminate the crucial
points, and omit the specification of data types. The complete specification
can be found at Appendix A (also available at http://www.cwi.nl/~pangjun/
ccp/).

Our model of the cache coherence protocol is a parallel composition of
threads, processors, regions, protocol lock managers and message queues upon a
set of communication actions. Fig. 7.2 shows the various components and their
interactions in the µCRL specification. Pi are identities of processors, and Ti

identities of threads. By means of these communications, data can be trans-
ferred between two processes. The complete µCRL specification of this protocol
consists of around 1000 lines.

154 Chapter 7 Model Checking a Cache Coherence Protocol for Jackal

proc Thread(tid:ThreadId,pid:ProcessId,FlushList:RegionIdSet)=
write(tid).ThreadWrite(tid,pid,FlushList)
+
flush(tid).ThreadInvalidate(tid,pid,FlushList)
�not(empty(FlushList))�δ

Table 7.1: Specification of a thread

% Synchronization between actions.
comm s refresh | r refresh = c refresh

s norefresh | r norefresh = c norefresh
s sendback | r sendback = c sendback

proc ThreadWrite(tid:ThreadId,pid:ProcessId,FlushList:RegionIdSet)=
% The thread has written the region (rid1) before.
Thread(tid,pid,FlushList)
�test(rid1,FlushList)�∑

r:Region r sendback(tid,pid,r).

% Write the region at home, if pid=gethome(r).
(s norefresh(tid,pid).WriteHome(tid,pid,insert(rid1,FlushList))
�eq(gethome(r),pid)�

% Otherwise, write the region from remote.
s norefresh(tid,pid).WriteRemote(tid,pid,insert(rid1,FlushList)))

Table 7.2: Specification of a thread writing

Threads

Each thread runs on a processor, and can perform a number of actions: read,
write and invalidate. It maintains two lists: ReadList contains the identities
of regions that it is reading or recently read from, and WriteList contains the
identities of regions that it is writing or recently wrote to.1 When a thread starts
reading from or writing to a region, the corresponding access check determines
whether there is a valid local copy of this region at the thread’s processor. The
server lock is needed if the thread runs on the region’s home (i.e., if the thread
reads or writes at home); otherwise, the fault lock of the thread’s processor is
acquired (i.e., if the thread reads or writes from remote). When a fault lock
is granted, the thread retrieves an up-to-date copy of the region from its home
node. The thread continues reading from or writing to the region and finally
releases the lock by sending an unlock message to the protocol lock manager
(see Table 7.2 and Table 7.3).

When a thread invalidates, it empties both its ReadList and WriteList. If

1We only model threads with a FlushList in µCRL. See later discussion.

7.5 Specification and Analysis in µCRL 155

% Synchronization between actions.
comm s require faultlock | r require faultlock = c require faultlock

s no faultwait | r no faultwait = c no faultwait
s signal faultwait | r signal faultwait = c signal faultwait
s data require | r i data require = c i data require
s signal | r signal = c signal
s free faultlock | r free faultlock = c free faultlock

% Thread writes from remote, requires a fault lock,
% and asks for a fresh copy of the region.

proc WriteRemote(tid:ThreadId,pid:ProcessId,FlushList:RegionIdSet) =
s require faultlock(pid).
(r no faultwait(pid)+r signal faultwait(pid)).
(
∑

r:Region r sendback(tid,pid,r).

% Ask for a fresh copy of the region.
s data require(tid,pid,gethome(r)).s norefresh(tid,pid).

% Copy arrives, the thread is notified.
(
∑

pid′:ProcessIdr signal(tid,pid′).

(
∑

newr:Regionr sendback(tid,pid,newr).

s refresh(tid,pid,setlocalthreads(newr,S(getlocalthreads(newr)))).
s free faultlock(pid).Thread(tid,pid,wl))))

Table 7.3: Specification of a thread writing to a region from remote

the thread invalidates a region in its WriteList at home, and it may find out that
there is only one processor left from which threads are writing to the region,
then the home of the region migrates to this processor. If the thread invalidates
a region in its WriteList from remote, it sends a Flush message to the home of
the region, the Flush message also contains a diff with the difference between
the region’s object and twin data. The home processor of the region will take
charge of automatic home migration. The flush lock of the home of each region
is acquired before invalidating, and released after invalidating (see Table 7.4 and
Table 7.5).

In the µCRL specification, each thread is modeled as a separate process with
a unique identity (see Table 7.1). It contains one parameter pid to indicate
on which processor the corresponding thread executes. Since the behavior of
reading from a region is part of the behavior of writing to a region, and since
writing is far more critical for the correctness of the protocol than reading, we
abstracted away from the read action of threads. As a result, a thread only
maintains a FlushList and flushes the regions in this FlushList.

156 Chapter 7 Model Checking a Cache Coherence Protocol for Jackal

% Synchronization between actions.
comm s require flushlock | r require flushlock = c require flushlock

s no flushwait | r no flushwait = c no flushwait
s signal flushwait | r signal flushwait = c signal flushwait

proc ThreadInvalidate(tid:ThreadId,pid:ProcessId,FlushList:RegionIdSet) =
% Thread requires a flush lock.
s require flushlock(pid).
(r no flushwait(pid)+r signal flushwait(pid)).∑

r:Region r sendback(tid,pid,r).

% Invalidate at home, we only model one region: rid1.
(FlushHome(tid,pid,remove(rid1,FlushList),r)
�eq(gethome(r),pid)�

% Otherwise, invalidate from remote.
FlushRemote(tid,pid,remove(rid1,FlushList),r)))

Table 7.4: Specification of a thread invalidating

% Synchronization between actions.
comm s flush | r i flush = c i flush

s free flushlock | r free flushlock = c free flushlock

proc FlushRemote(tid:ThreadId,pid:ProcessId,FlushList:RegionIdSet,
r:Region) =

% No thread is using this region. Set the last parameter as true.
s flush(tid,pid,gethome(r),r,T).
% Refresh the region’s information.
% We use *new-information-of-the-region* to indicate the updating.
s refresh(tid,pid,*new-information-of-the-region*).
s free flushlock(pid).
% This invalidation is finished, the thread is notified.∑

pid′:ProcessId r signal(tid,pid’).Thread(tid,pid,FlusList)

�eq(sub1(getlocalthreads(r)),0)�
% Otherwise, set the last parameter as false.
s flush(tid,pid,gethome(r),r,F).
% Refresh the region’s information.
s refresh(tid,pid,*new-information-of-the-region*).
s free flushlock(pid).
% This invalidation is finished, the thread is notified.∑

pid′:ProcessId r signal(tid,pid’).Thread(tid,pid,FlusList)

Table 7.5: Specification of a thread flushing a region from remote

7.5 Specification and Analysis in µCRL 157

% pid indicates where the region is;
% r contains the region’s information.

proc Region(pid:ProcessId, r:Region) =
% Communication with threads.∑

tid:ThreadId s sendback(tid,pid,r).
(r norefresh(tid,pid).Region(pid,r)
+

∑
r′:Region r refresh(tid,pid,r’).Region(pid,r’))

% Communication with processors.
+ s sendback(pid,r).
(r norefresh(pid).Region(pid,r)
+

∑
r′:Regionr refresh(pid,r’).Region(pid,r’)))

Table 7.6: Specification of a region

Regions

Jackal uses a single shared virtual address space. Each region occupies the same
virtual address range on all processors that store a copy of it. When a region
is created on one processor, a copy of this region is also created on every other
processor. A region contains the following information:

1. Location: A processor’s identity, denoting at which node the region (or a
copy) is.

2. Home: A processor’s identity, denoting the home node for this region.

3. State: A region can evolve into four kinds of states. When no thread uses
this region, the state of the region is Unused ; if a region is only used by
threads on its home node, its state is Homeonly ; if all accesses of a region
are read actions, the state of this region is Readonly ; in all other cases,
the state of a region is Shared.

4. ReaderList: A list of processors’ identities containing threads that are
reading or recently read from this region. It is only maintained at the
home node.

5. WriterList: A list of processors’ identities containing threads that are
writing or recently wrote to this region. It is only maintained at the home
node.

6. Object data: An array of bytes.

7. Twin data: An array of bytes. It is a copy of the object data for diffing
at non-home nodes; initially it is null.

8. Localthreads: A natural number, the number of threads accessing this
region at the location of the region.

158 Chapter 7 Model Checking a Cache Coherence Protocol for Jackal

In µCRL, each region is modeled as a separate component. As a result of our
abstraction of the behavior of threads, we made some corresponding abstractions
for regions. Each region has only two states; we kept the Unused state, while
the other three states are mapped to a state Used. The region only needs to
maintain the WriterList. Furthermore, we did not model object and twin data,
since they are not relevant to our requirements for the protocol. So in our model
a thread cannot write any value to a region. Still, when a thread flushes a region
from remote, a message (without a diff) is sent back to the home of this region
to unlock its fault lock.

We use a set of synchronized actions to ensure that during an access to
a region, no other processes can change the information of this region (see
Table 7.2). For example, a thread gets the information of a region by performing
a synchronized action r sendback, and the accesses to this region are blocked
until this thread executes another synchronized action s norefresh (if it has
changed nothing) or s refresh (if it has changed some information of the region).
The synchronized actions on a region are presented in Table 7.6, together with
the specification for regions in µCRL. To avoid state explosion, we only analyzed
configurations containing one region with identity rid1.

Messages to processors

Four kinds of messages can be delivered to a processor.

1. Data Request: This message is sent when a thread starts writing to a
region from remote. When a processor gets this message, and it is the
home of the region, it adds the thread’s processor into the WriterList of
the region and sends back an up-to-date copy of the region to the thread’s
processor by a Data Return message. If it is not the home of the region
(meaning that the region migrated its home in the meantime), it forwards
the Data Request message to the region’s new home.

2. Data Return: This message is received by a processor when an up-to-date
copy of a region has arrived. The processor updates the object and twin
data of the region. Moreover, if the message is a home node migration
message, then the processor becomes the home of this region, and starts
maintaining the WriterList and the state of the region.

3. Flush: This message is sent when a thread flushes from remote. When a
processor gets this message, and it is the home of the region, it removes
the thread’s processor from the WriterList of the region; moreover, it may
send a home node migration message to a new home of this region (by a
Region Sponmigrate message). When it is not the home of the region, it
forwards the Flush message to the region’s new home.

4. Region Sponmigrate: When a processor gets this message, it becomes the
home of the region in question.

7.5 Specification and Analysis in µCRL 159

% Synchronization between actions.
comm s i data require | r data require = c o data require

s free homequeuelock | r free homequeuelock = c free homequeuelock
s data return | r o data return = c i data return
s i region sponmigrate | r region sponmigrate = c o region sponmigrate

proc Processor(pid:ProcessId) =
% Processor gets a Data Request message (forwarded) from processor pid’.∑

tid:ThreadId

∑
pid′:ProcessIdr data require(tid,pid’,pid).

% We only model one region: rid1. Check the current state of the region.
% If the processor is not the home of the region,
% then the message is forwarded to the real home.

r sendback(pid,rid1).
(s data require(tid,pid’,gethome(rid1)).
s norefresh(pid).s free homequeuelock(pid).Processor(pid)
�not(eq(gethome(rid1), pid))�

% Refresh the region’s information, and send the region back.
% If the region is UNUSED, then the Data Return message
% is also a home migration message. Set the last parameter as true.

(s data return(tid,pid’,pid,*new-infomation-of-the-region*,T).
s refresh(pid,*new-infomation-of-the-region*).
s free homequeuelock(pid).Processor(pid)
�eq(getstate(rid1),UNUSED)�

% It is not a home migration message. Set the last parameter as false.
s data return(tid,pid’,pid,*new-infomation-of-the-region*,F).
s refresh(pid,*new-infomation-of-the-region*).
s free homequeuelock(pid).Processor(pid)))

+
% Processor gets a Region Sponmigrate message.
% It becomes the region’s home node by refreshing
% the region’s parameters.∑

tid:ThreadId

∑
pid′:ProcessId

∑
r′:Regionr region sponmigrate(tid,pid’,pid,r’).

(
∑

r:Regionr sendback(pid,r).

% Set the home by itself; maintain the state and writerlist.
s refresh(pid,*new-infomation-of-the-region*).
s free homequeuelock(pid).Processor(pid))

+ ...

Table 7.7: Specification of a processor dealing with a message

160 Chapter 7 Model Checking a Cache Coherence Protocol for Jackal

% Synchronization between actions.
comm s require homequeuelock | r require homequeuelock

= c require homequeuelock
s no homequeuewait | r no homequeuewait
= c no homequeuewait

s signal homequeuewait | r signal homequeuewait
= c signal homequeuewait

s region sponmigrate | r i region sponmigrate
= c i region sponmigrate

proc HomeQueue(pid:ProcessId)=
% Home queue gets a Data Request message.
% To deal with it, the homequeue lock is needed.∑

tid:ThreadId

∑
pid′:ProcessId

% Put a message into the queue.
r i data require(tid,pid’,pid).s require homequeuelock(pid).
(r no homequeuewait(pid)+r signal homequeuewait(pid)).

% The processor takes this message.
s i data require(tid,pid’,pid).HomeQueue(pid)

+
% Home queue gets a Region Sponmigrate message.
% To deal with it, the homequeue lock is needed.∑

tid:ThreadId

∑
pid′:ProcessId

∑
r:Region

% Put a message into the queue.
r i region sponmigrate(tid,pid’,pid,r).s require homequeuelock(pid).
(r no homequeuewait(pid)+r signal homequeuewait(pid)).

% The processor takes this message.
s i region sponmigrate(tid,pid’,pid,r).HomeQueue(pid)

+ ...

Table 7.8: Part of the specification of a home queue

7.5 Specification and Analysis in µCRL 161

% Synchronization between actions.
comm s require remotequeuelock | r require remotequeuelock

= c require remotequeuelock
s no remotequeuewait | r no remotequeuewait

= c no remotequeuewait
s signal remotequeuewait | r signal remotequeuewait

= c signal remotequeuewait
s o data return | r data return

= c o data return

proc RemoteQueue(pid:ProcessId) =
% Remote queue gets a Data Return message.
% To deal with it, the remotequeue lock is needed.∑

tid:ThreadId

∑
pid′:ProcessId

∑
r:Region

∑
b:Bool

% Put a message into the queue.
r o data return(tid,pid’,pid,r,b).s require remotequeuelock(pid).
(r no remotequeuewait(pid)+r signal remotequeuewait(pid)).

% The processor takes this message.
s o data return(tid,pid’,pid,r,b).RemoteQueue(pid)

Table 7.9: Specification of a remote queue

In µCRL, each processor is modeled as a separate component (with a unique
identity). How a processor deals with Region Sponmigrate and Data Request
messages is specified in Table 7.7.

Each processor maintains two message queues to store incoming messages.
The HomeQueue is designed to buffer messages containing a request, while the
RemoteQueue buffers messages containing a reply. For example, when a thread
tries to get an up-to-date data copy from a region’s home, first a Data Request
message is put into the home node’s HomeQueue. When a Data Return message
arrives, it is put into the RemoteQueue of the thread’s processor. The µCRL
process for a message queue contains one parameter pid to indicate to which
processor this message queue belongs to (see Table 7.8 and Table 7.9). To avoid
state explosion, we only modeled queues that can contain one message.

Protocol locks

As already explained in the specification of threads, protocol locks guarantee
exclusivity when threads write to or flush a region. Each processor acts as the
protocol lock manager of its regions and region copies. To acquire a protocol
lock, a protocol lock request message is sent to the region’s home. If the lock is
available, the manager replies with a grant message. Otherwise, the requester
needs to wait for the lock to be released, and the protocol lock manager adds the
requester into the lock’s waiting list. To unlock, the current lock owner sends

162 Chapter 7 Model Checking a Cache Coherence Protocol for Jackal

% We only present those parameters whose values are changed.
proc Locker(pid:ProcessId,faulters:Bool,flushers:Bool,

homequeue:Bool,remotequeue:Bool,wait faulters:Natural,
wait flushers:Natural,wait homequeue:Natural,
wait remotequeue:Natural)=

% Get a request for the fault lock. If this lock can be granted,
% send a no-wait message.
r require faultlock(pid).
(s no faultwait(pid).Locker(t/faulters)
�and(faulters,flushers)�
% Otherwise, increase the number of threads waiting for this lock.
% Later on, the thread waiting on fault lock will be signaled.
Locker(S(wait faulters)/wait faulters))
% The fault lock is released, if a thread can be notified,
% send a signal wait message, and decrease the waiting number.
+ r free faultlock(pid).
((s signal homequeuewait(pid).
Locker(f/faulters,t/homequeue,
sub1(wait homequeue)/wait homequeue)

�and(not(eq(wait homequeue,0)),homequeue)�...)
�and(not(and(eq(wait homequeue,0),
eq(wait remotequeue,0))),flushers)�...)

+ ...

Table 7.10: Part of the specification of a protocol lock management

an unlock message to the protocol lock manager. When the manager gets an
unlock message, it checks whether a thread waiting for this lock can be notified,
under some constraints. For instance, a fault lock can be granted only if this
fault lock and the flush lock are not held by other threads.

There are five protocol locks for each processor: homequeue lock, remote-
queue lock, server lock, fault lock and flush lock. The homequeue lock and re-
motequeue lock are needed to make sure that the handling of a popped message
from a HomeQueue or a RemoteQueue by its processor is completed before
the next message is popped from the queue. The cache coherence protocol
allows writes to a region at home and from remote to happen concurrently.
The server lock, fault lock and flush lock ensure exclusivity between threads at
a processor. The server lock and flush lock must be mutually exclusive for the
home of a region, to protect the integrity of region data values and other region’s
information; likewise, the fault lock and flush lock must be mutually exclusive
for non-home nodes of a region. When a thread writes at home or from remote,
the server lock or the fault lock of the thread’s processor is needed, respectively.
When a thread flushes, the flush lock of its processor is needed.

Protocol lock management of a processor is modeled in µCRL as a separate

7.5 Specification and Analysis in µCRL 163

component (see Table 7.10). Each protocol lock is modeled as a boolean variable,
since a protocol lock can be held by at most one thread at a time. The waiting
list of a lock is modeled as a natural number, representing the number of threads
in the waiting list, to enable checking for emptiness; waiting lists do not need to
contain thread identities, since waiting and notification are specified by means
of a pair of synchronized actions, carrying the identity of the waiting thread
as a parameter. When a protocol lock is available, the protocol lock manager
randomly selects a waiting thread to notify.

Assertions from the developers

The developers added many assertions into the description and required that
the protocol should not violate any of them. The assertions are modeled as a
part of the µCRL specification. They can be divided into two classes: order
assertions and preconditions.

• Order assertions: This class of assertions imposes a certain order on the
usage of the system’s resources. For example, when a thread performs
an action on a region, the corresponding protocol lock should already be
held by the thread. Order assertions are modeled in µCRL by imposing a
certain order on the execution of actions. In the aforementioned example,
in the µCRL specification, the behavior of a thread is modeled like this:
only after execution of the action r no serverwait or r signal serverwait,
the thread can access a region at home.

• Preconditions: This class of assertions requires that only when a certain
precondition is satisfied, the description after it can be executed. For
example, only under certain conditions (see Section 7.4.4) the home of the
region automatically migrates. Preconditions are modeled in the µCRL
specification as boolean terms in conditional expressions.

7.5.2 Requirements

We formulated three requirements for the cache coherence protocol.

1. Deadlock freeness: The protocol never ends up in a state where it cannot
perform any action.

2. Relaxed cache coherence: For each region, at any time there exists one
home node.

3. Liveness: Requests for writing to or flushing a region cannot be bounced
around the network forever.

7.5.3 Validation of the requirements

The µCRL toolset was used to check the syntax and the static semantics of
the specification, and also to transform it into a linear form. The linear form

164 Chapter 7 Model Checking a Cache Coherence Protocol for Jackal

was used to generate LTSs for various configurations of processors and threads.
Next, we validated the three requirements with respect to these configurations.

Requirement 1

We used the µCRL toolset to check for deadlocks. This deadlock checking exer-
cise led to the detection of many mistakes both in the informal description and
in the µCRL specification of the protocol. For the first case, when the develop-
ers extracted a C-like description of the protocol from its implementation, they
abstracted away from certain implementation details; some of these details were
actually crucial for the correctness of the µCRL specification. For the second
case, at some points the analyzers understood the description differently from
what the developers really meant. Whenever a deadlock trace was found, it was
simulated to understand the reason for the deadlock. This analysis took us a
lot of time, since many of the traces were quite long (typically more than 300
transitions) and difficult to comprehend. Whenever a mistake was found, the
µCRL specification was adapted and checked for deadlocks again.

One deadlock found by the analyzers, on a configuration of two processors
each containing one thread, was a real problem in the implementation. When
a thread wants to write to a region from remote, it acquires the fault lock of
its home node by sending a lock message. If the lock is unavailable, the thread
waits for the lock to be released. Whenever it is notified, it continues with its
access to the region and holds the fault lock until it sends an unlock message to
the home node. In the deadlock trace, we found that while a thread is waiting
for a fault lock, the home of the region may migrate to the thread’s processor.
Then in fact the thread writes to the region at home, it needs to acquire the
server lock instead of the fault lock. This error resulted in a deadlock in the
implementation. The chosen solution is that after a thread obtains a fault lock,
it checks whether it still writes from remote. If this is not the case, it sends
an unlock message to release the held fault lock, and then sends a message
to acquire the server lock. After fixing this problem as proposed, no more
deadlocks were found.

Requirement 2

Due to automatic home node migration, it needs to be checked that at any time
there exists at most one home node for each region. We divided this requirement
into two parts.

2.1 Each region has at most one home node.

2.2 If the system is stable, each region has no more than n− 1 copies, where
n is the number of processors.

To verify these two parts, actions s home and r home were added to the speci-
fication of a region, when a region finds that its location equals its home node;
s copy and r copy were added, when a region finds that its location does not

7.5 Specification and Analysis in µCRL 165

% Synchronization between actions.
comm s home | r home = c home

s copy | r copy = c copy

proc Region(pid:ProcessId, r:Region)=
% This part remains the same as before.
... +
% s home, r home indicate pid is the home.
r home.Region(pid,r)�eq(pid,gethome(r))�δ
+ s home.Region(pid,r)�eq(pid,gethome(r))�δ
% s copy, r copy indicate pid has a copy.
+ δ�eq(pid,gethome(r))�r copy.Region(pid,r)
+ δ�eq(pid,gethome(r))�s copy.Region(pid,r)

Table 7.11: Modified specification of a region

equal its home node. We synchronized s home and r home into c home, s copy
and r copy into c copy (see Table 7.11). Furthermore, we encapsulated s home,
r home, s copy and r copy, so that these actions are forced to synchronize.

We verified requirement 2.1 by checking the absence of c home in the gen-
erated LTSs. This is formulated in the regular alternation-free µ-calculus (see
Section 2.4) as follows:

2.1 [T∗·c home] F

It says that if an execution sequence contains c home, then in the resulting state
false holds. This formula was checked to be true by Evaluator, a model checker
from the CADP toolset.

For requirement 2.2, a stable state of a system means that no protocol lock
is held, and that the message queues are empty. We added actions home-
queue empty and remotequeue empty to the µCRL specification of queues to
indicate that queues are empty, and added an action lock empty to the spec-
ification of the protocol lock manager to indicate that no lock is held. Then
for a model with two processors, we checked that the generated LTS does not
contain a state which can perform c copy, lock empty, homequeue empty and re-
motequeue empty. This requirement is presented in the regular alternation-free
µ-calculus as follows:

2.2 ¬〈T∗〉 (〈c copy〉 T ∧〈lock empty〉 T ∧〈homequeue empty〉 T ∧
〈remotequeue empty〉 T)

Note that the above two formulas only work for configurations with two proces-
sors, meaning that there are two copies for each region.

A second error in the implementation of the protocol was found while model
checking this property on a configuration of two processors, with two threads
running on one processor and a third thread on the other processor. The error

166 Chapter 7 Model Checking a Cache Coherence Protocol for Jackal

can happen when a thread is writing to a region from remote. During its waiting
for an up-to-date copy of the region from the region’s home, the home node may
migrate (by a Region Sponmigrate message) to the processor where the thread
resides. When the Data Return message with an up-to-date copy of the region
arrives, the thread refreshes the region’s home by the sender of the answer
message. In the resulting state of the protocol, neither of the two processors
is the home of the region. So c copy may happen even in a stable state. The
chosen solution is that when a processor gets a Region Sponmigrate message, it
informs those local threads that are writing to the region at the previous home
node, so that these threads will behave as writing at home. After fixing this
problem as proposed, property 2.2 was successfully model checked.

Requirement 3

The third requirement, that requests of writing to or flushing a region cannot be
bounced around the network forever, is a liveness property. Actions writeover
and flushover were added to the µCRL specification of a thread to indicate that
a thread completed its pending actions. The following shows the code in the
regular alternation-free µ-calculus for this requirement.

3.1 A thread eventually finishes writing to a region:

[T∗·write(?)] µY.〈T〉 T ∧ [¬writeover(?)] Y

3.2 A thread eventually finishes its flush of a region:

[T∗·flush(?)] µY.〈T〉 T ∧ [¬flushover(?)] Y

We use ‘?’ to indicate any identity of a thread. These two formulas express that
after a thread initiates its action (writer(?) or flush(?)), the end of this action
(writeover(?) or flushover(?)) is inevitable. This requirement was successfully
model checked on two configurations.

7.5.4 Verification results

We applied advanced techniques for generating LTSs on a cluster at CWI, con-
sisting of eight nodes. Each node is a dual AMD Athlon MP 1600+ system,
with 1.4Ghz processors 2GB RAM and 40GB disk. The nodes are connected
by a private ethernet network (100baseT switch) and by a public fast ethernet
network (1000baseT switch). Our case study benefited a lot from the µCRL
distributed LTS generation tool [22], and also pushed forward its development.

The sizes of the generated LTSs and the verification results are summarized
in Table 7.12. Due to the complexity of this protocol, the size of the LTS grows
very rapidly with respect to the number of threads and processors. With the
current µCRL toolset, we could generate LTSs for the following three configura-
tions: 1) two processors, each with one thread; 2) two processors, one with one
thread, the other with two threads; 3) three processors, each with one thread.
For the third configuration, we could only check the first requirement, because

7.6 Conclusions 167

Configuration States Transitions Requirements Checked
1 65,234 460,162 1, 2, 3
2 5,424,848 40,476,069 1, 2, 3
3 82,371,105 893,181,444 1

Table 7.12: Verification results

the generated LTS was too large to serve as input to the model checker. The
shortest error traces for the two flaws in the original implementation of the pro-
tocol that were detected during the model checking phase (see Section 7.5.3)
both consisted of more than 100 transitions.

7.6 Conclusions

In this chapter, we used formal specification and model checking techniques to
analyze a cache coherence protocol for a Java DSM implementation. We spec-
ified the protocol in µCRL and analyzed it. Some general requirements were
formulated and verified for several configurations. Our analysis uncovered a lot
of inconsistencies between the description and the implementation of this pro-
tocol. Two errors were found and fixed in the implementation, which improved
the design and implementation of this protocol.

During the specification and analysis phase, we encountered quite a few
difficulties. First, it took a relatively long time to obtain a µCRL specification
of the protocol. During this period, the developers made important changes to
the protocol, so that the µCRL specification had to be updated a number of
times. Such gaps between an implementation and its formal model could be
avoided if formal methods were used at an earlier design phase. Second, both
the developers and analyzers made mistakes in their work. In our analysis, many
deadlocks were due to the inconsistencies and misunderstandings. Third, more
advanced techniques for distributed/parallel state space generation, reduction,
and model checking are highly needed. Our future work will mainly focus on
verifying whether the cache coherence protocol implements the JMM in [67,
Chapter 17], and checking the requirements on more configurations.

168 Chapter 7 Model Checking a Cache Coherence Protocol for Jackal

Chapter 8

Simplifying Itai-Rodeh Leader Election

for Anonymous Rings

8.1 Introduction

Leader election is the problem of electing a unique leader in a network, in the
sense that the leader (process) knows that it has been elected and the other pro-
cesses know that they have not been elected. Leader election algorithms require
that all processes have the same local algorithm and that each computation
terminates, with one process elected as leader. This is a fundamental problem
in distributed computing and has numerous applications. For example, it is an
important tool for breaking symmetry in a distributed system. By choosing a
process as the leader it is possible to execute centralized protocols in a decen-
tralized environment. Leader election can also be used to recover from token
loss for token-based protocols, by making the leader responsible for generating
a new token when the current one is lost.

There exists a broad range of leader election algorithms; see e.g. the summary
in the text books [167, 116]. These algorithms have different message complex-
ity in worst and/or average case. Furthermore, they vary in communication
mechanism (asynchronous vs. synchronous), process names (unique identities
vs. anonymous), and network topology (e.g. ring, tree, complete graph).

A first leader election algorithm for unidirectional rings was given by Le Lann
[113]. It requires that each process has a unique identity, with a total ordering
on identities; the process with the largest identity becomes the leader. The
basic idea of Le Lann’s algorithm is that each process sends a message around
the ring bearing its identity. Thus it requires a total of n2 messages, where n
is the number of processes in the ring. Chang and Roberts [32] improved Le
Lann’s algorithm by letting only the message with the largest identity complete
the round trip; their algorithm still requires in the order of n2 messages in the
worst case, but only n logn on average. Franklin [58] developed an leader elec-
tion algorithm for bidirectional rings with a worst-case message complexity of
O(n log n). Peterson [138] and Dolev, Klawe, and Rodeh [44] independently
adapted Franklin’s algorithm so that it also works for unidirectional rings. All

169

170 Chapter 8 Simplifying Itai-Rodeh Leader Election for Anonymous Rings

the above algorithms work both for asynchronous and for synchronous commu-
nication, and do not require a priori knowledge about the number of processes.

Sometimes the processes in a network cannot be distinguished by means of
unique identities. First, as the number of processes in a network increases, it may
become difficult to keep the identities of all processes distinct; or a network may
accidentally assign the same identity to different processes. Second, identities
cannot always be sent around the network, for instance for reasons of efficiency.
An example of the latter is FireWire, the IEEE 1394 high performance serial
bus (see Section 8.2 for a more detailed description). A leader election algorithm
that works in the absence of unique process identities is also desirable from the
standpoint of fault tolerance. In an anonymous network, processes do not carry
an identity. Angluin [5] showed that there does not exist a terminating algorithm
for electing a leader in an asynchronous anonymous network. According to this
result, a Las Vegas algorithm (meaning that the probability that the algorithm
terminates is greater than zero, and all terminal configurations are correct) is
the best possible option.

Itai and Rodeh [95, 96] proposed a probabilistic leader election algorithm for
anonymous unidirectional rings, based on the Chang-Roberts algorithm. Each
process selects a random identity from a finite domain, and processes with the
largest identity start a new election round if they detect a name clash. It is
assumed that the size of the ring is known to all processes, so that each process
can recognize its own message (by means of a hop counter that is part of the
message). The Itai-Rodeh algorithm is a Las Vegas algorithm that terminates
with probability one; it takes n logn messages on average.

The Itai-Rodeh algorithm makes no assumptions about channel behavior,
except fair scheduling. An old message, that has been overtaken by other mes-
sages in the ring, could in principle result in a situation where no leader is elected
(see Figure 8.1 in Section 8.3.2). In order to avoid this problem, the algorithm
proceeds in successive rounds, and each process and message is supplied with
a round number. Thus an old message can be recognized and ignored. Due to
the use of round numbers, the Itai-Rodeh algorithm has an infinite state space.

In this chapter, we make the assumption that channels are FIFO. We show
that in this case round numbers can be omitted from the Itai-Rodeh algorithm.
We present two adaptations of the Itai-Rodeh algorithm, that are correct in the
presence of FIFO channels. In the first algorithm, a process may only choose
a new identity when its message has completed the round trip, as is the case
in the Itai-Rodeh algorithm. In the second algorithm, a process selects a new
identity as soon as it detects that another process in the ring carries the same
identity (even though this identity may not be the largest one in the ring). Since
both algorithms do not use round numbers, they are finite-state. This means
that we can apply model checking [35] to automatically verify properties of an
algorithm, specified in some temporal logic. These properties can be checked
against the explicit (finite) state space of the algorithm, for specific ring sizes.
We used PRISM [107], a model checker that can be used to model and analyze
systems containing probabilistic aspects. We specified both algorithms in the
PRISM language, and for rings up to size four we verified the property: “with

8.2 Related Work 171

probability one, eventually exactly one leader is elected”. Furthermore, we
present a manual correctness proof for both algorithms, for arbitrary ring size.

PRISM offers the possibility to calculate the probability that our algorithms
have terminated after some number of messages. These statistics show that the
first algorithm on average requires more messages to terminate than the second
algorithm.

Finally, we show that if processes can select identities from a set of only two
elements, then our algorithms also work correctly for non-FIFO channels.

Outline of the chapter. Related work is summarized in Section 8.2. Sec-
tion 8.3 contains the original Itai-Rodeh algorithm. In Sections 8.4 and 8.5, we
present two probabilistic leader election algorithms for anonymous rings with
FIFO channels. We explain our verification results with PRISM, and give a
manual correctness proof for each algorithm. Section 8.6 reveals some experi-
mental results using PRISM on the number of messages needed to terminate.
In Section 8.7, we prove that if the domain of identities contains only two ele-
ments, the requirement that channels are FIFO can be dropped. We conclude
this chapter in Section 8.8.

8.2 Related Work

On the web page of PRISM (http://www.cs.bham.ac.uk/~dxp/prism/), the
Itai-Rodeh algorithm for asynchronous rings was adapted for synchronous rings.
In PRISM, processes synchronize on action labels, so a synchronous ring can
simply be modeled by excluding channels from the specification. Processes are
synchronized in the same round, thus round numbers are not needed (similar to
our Algorithm A). The state space therefore becomes finite, and PRISM could
be used to verify the property “with probability one, eventually a unique leader
is elected”, for rings up to size eight. Also the probability of electing a leader
in one round was calculated.

Garavel and Mounier [62] described both the Chang-Roberts algorithm and
Le Lann’s algorithm using the process algebraic language LOTOS. They stud-
ied these two algorithms in the presence of unreliable communication network
and/or unreliable processes and suggested some improvements. Their verifica-
tion was performed using the model checker CADP. Fredlund et al. [60] gave
a manual correctness proof of the Dolev-Klawe-Rodeh algorithm in the process
algebraic language µCRL, for arbitrary ring size. Brunekreef et al. [26] designed
a number of leader election algorithms for a broadcast network, where processes
may participate and crash spontaneously. They used linear-time temporal logic
to manually prove that the algorithms satisfy their requirements.

The IEEE 1394 high performance serial bus (called “FireWire”) is used to
transport video and audio signals within a network of multimedia devices. In
the tree identify phase of IEEE 1394, which takes place after a bus reset in
the network, a leader is elected. For the sake of performance, identities of
nodes cannot be sent around the network, so that it is basically an anonymous

172 Chapter 8 Simplifying Itai-Rodeh Leader Election for Anonymous Rings

network. The leader election algorithm in the IEEE 1394 standard works for
acyclic, connected networks. If a cycle is present, it produces a timeout. The
algorithm has been specified and verified with a number of different formal
techniques. We give an overview of these case studies.

Shankland and van der Zwaag [157] manually verified the leader election
algorithm in µCRL, at three different levels of detail. Shankland and Verdejo
[156] used E-LOTOS to manually verify the algorithm. Abrial et al. [1] used an
event-driven approach with the B Method to develop mathematical models of
the algorithm; the internal consistency of each model as well as its correctness
with regard to its previous abstraction were proved mechanically. Verdejo et
al. [175] described the algorithm at different abstract levels, using the language
Maude based on rewriting logic; they verified the algorithm by an exhaustive ex-
ploration of the state space that always exactly one leader is chosen. Moreover,
they gave a manual correctness proof for general acyclic networks. Devillers
et al. [39] verified the algorithm using an I/O automata model; the main part
of their proof has been checked with the theorem prover PVS. Romijn [150]
extended their I/O automata model with timing parameters from the IEEE
1394 standard, and manually proved that under certain timing restrictions the
algorithm behaves correctly. Calder and Miller [28] verified some properties of
the algorithm using the model checker Spin, for networks with up to six nodes.
Schuppan and Biere [155] used the model checker SMV to check the correctness
of the algorithm for networks with up to ten nodes.

8.3 Itai-Rodeh Leader Election

We consider an asynchronous, anonymous, unidirectional ring consisting of n ≥
2 processes p0, . . . , pn−1. Processes communicate asynchronously by sending and
receiving messages over channels, which are assumed to be reliable. Channels are
unidirectional: a message sent by pi is added to the message queue of p(i+1)mod n.
The message queues are guided by a fair scheduler, meaning that in each infinite
execution sequence, every sent message eventually arrives at its destination.
Processes are anonymous, so they do not have unique identities. The challenge
is to present a uniform local algorithm for each process, such that one leader is
elected among the processes.

8.3.1 The Itai-Rodeh algorithm

Itai and Rodeh [95, 96] studied how to break the symmetry in anonymous net-
works using probabilistic algorithms. They presented a probabilistic algorithm
to elect a leader in the above network model, under the assumption that pro-
cesses know that the size of the ring is n. It is a Las Vegas algorithm that
terminates with probability one. The Itai-Rodeh algorithm is based on the
Chang-Roberts algorithm [32], where processes are assumed to have unique
identities, and each process sends out a message carrying its identity. Only the
message with the largest identity completes the round trip and returns to its
originator, which becomes the leader.

8.3 Itai-Rodeh Leader Election 173

In the Itai-Rodeh algorithm, each process selects a random identity from
a finite set. So different processes may carry the same identity. Again each
process sends out a message carrying its identity. Messages are supplied with
a hop counter, so that a process can recognize its own message (by checking
whether the hop counter equals the ring size n). Moreover, a process with the
largest identity present in the ring must be able to detect whether there are other
processes in the ring with the same identity. Therefore each message is supplied
with a bit, which is dirtied when it passes a process that is not its originator
but shares the same identity. When a process receives its own message, either
it becomes the leader (if the bit is clean), or it selects a new identity and
starts the next election round (if the bit is dirty). In this next election round,
only processes that shared the largest identity in the ring are active. All other
processes have been made passive by the receipt of a message with an identity
larger than their own. The active processes maintain a round number, which
initially starts at zero and is augmented at each new election round. Thus
messages from earlier election rounds can be recognized and ignored.

We proceed to present a detailed description of the Itai-Rodeh algorithm.

The Itai-Rodeh algorithm.

• Initially, all processes are active, and each process pi randomly selects
its identity id i ∈ {1, . . . , k} and sends the message (id i, 1, 1, true).

• Upon receipt of a message (id , round , hop, bit), a passive process pi

(state i = passive) passes on the message, increasing the counter hop
by one; an active process pi (state i = active) behaves according to one
of the following steps:

– if hop = n and bit = true, then pi becomes the leader (state ′
i =

leader);

– if hop = n and bit = false , then pi selects a new random identity
id ′

i ∈ {1, . . . , k}, moves to the next round (round ′
i = round i + 1),

and sends the message (id ′
i, round ′

i, 1, true);

– if (round , id) = (round i, id i) and hop < n, then pi passes on the
message (id , round , hop + 1, false);

– if (round , id) > (round i, id i),
a then pi becomes passive (state ′

i =
passive) and passes on the message (id , round , hop + 1, bit);

– if (round , id) < (round i, id i), then pi purges the message.

aWe compare (round , id) and (round i, id i) lexicographically.

Each process pi maintains three parameters:

- id i ∈ {1, . . . , k}, for some k ≥ 2, is its identity;

- statei ranges over {active , passive , leader};

174 Chapter 8 Simplifying Itai-Rodeh Leader Election for Anonymous Rings

- round i ∈ N
+ represents the number of the current election round.

Only active processes may become the leader; passive processes simply pass on
messages. At the start of a new election round, each active process sends a
message of the form (id , round , hop, bit), where:

- the values of id and round are taken from the process that sends the
message;

- hop is a counter that initially has the value one, and which is increased by
one every time it is passed on by a process;

- bit is a bit that initially is true, and which is set to false when it visits a
process that has the same identity but that is not its originator.

We say that an execution sequence of the Itai-Rodeh algorithm has termi-
nated if each process is either passive or elected as leader, and there are no
remaining messages in the channels.

Theorem 8.3.1 [95] The Itai-Rodeh algorithm terminates with probability
one, and upon termination a unique leader has been elected.

8.3.2 Round numbers are needed

v

u > v

v

v > w, x

(u, 1, true) (v, 3, true)

v

v > w, x

(x, 1, true)

(v, 1, true)

u u w x w x
(u, 1, true) (w, 1, true)

(v, 1, true)

Figure 8.1: Round numbers are essential if channels are not FIFO

Figure 8.1 presents a scenario to show that if round numbers were omitted,
the Itai-Rodeh algorithm could produce an execution sequence in which all
processes become passive, so that no leader is elected. This example uses the
fact that channels are not FIFO. Let k ≥ 3. Figure 8.1 depicts a ring of size
three; black processes are active and white processes are passive. Initially, all
processes are active, and the two processes above select the same identity u,
while the one below selects an identity v < u. (See the left side of Figure 8.1.)
The three processes send a message with their identity, and at the receipt of
a message with identity u, process v becomes passive. Since channels are not
FIFO, the message (v, 1, true) can be overtaken by the other two messages with
identity u. The latter two messages return to their originators with a dirty bit.
So the processes with identity u detect a name clash, select new identities w < v
and x < v, and send messages carrying these identities. (See the middle part

8.4 Leader Election without Round Numbers 175

of Figure 8.1.) Finally, the message with identity v makes the processes with
identities w and x passive. The three messages in the ring are passed on forever
by the three passive processes. (See the right side of Figure 8.1.)

8.4 Leader Election without Round Numbers

We observe that if channels are FIFO, round numbers are redundant. Thus we
obtain a simplification of the Itai-Rodeh algorithm. Algorithm A is obtained
by considering only those cases in the Itai-Rodeh algorithm where the active
process pi and the incoming message have the same round number. Correctness
of Algorithm A follows from the proposition below.

Algorithm A.

• Initially, all processes are active, and each process pi randomly selects
its identity id i ∈ {1, . . . , k} and sends the message (id i, 1, true).

• Upon receipt of a message (id , hop, bit), a passive process pi (statei =
passive) passes on the message, increasing the counter hop by one; an ac-
tive process pi (statei = active) behaves according to one of the following
steps:

– if hop = n and bit = true, then pi becomes the leader (state ′
i =

leader);

– if hop = n and bit = false , then pi selects a new random identity
id ′

i ∈ {1, . . . , k} and sends the message (id ′
i, 1, true);

– if id = id i and hop < n, then pi passes on the message (id , hop +
1, false);

– if id > id i, then pi becomes passive (state ′
i = passive) and passes

on the message (id , hop + 1, bit);

– if id < id i, then pi purges the message.

Proposition 8.4.1 Consider the Itai-Rodeh algorithm where all channels are
FIFO. When an active process receives a message, then the round number of
the process and of the message are always the same.

Proof. Let message m = (idj , roundj , hop, bit), which originates from process
pj , arrive at active process pi. Suppose that up to this moment, messages
never arrived at active processes with a different round number. We prove that
round i = round j . We derive the desired equality in two steps.

• round i ≤ round j .

Let round i > 1, for else we are done. Then a message m′ with round
number round i−1 originated at pi and completed the round trip, where
all the active processes that it visited had round number round i−1. FIFO

176 Chapter 8 Simplifying Itai-Rodeh Leader Election for Anonymous Rings

behavior guarantees that after m′ returned to pi, no other message with
round number ≤ round i−1 can have arrived at pi. So round i ≤ round j .

• round i ≥ round j .

Let round j > 1, for else we are done. Then a message m′′ with round
number round j−1 originated at pj and completed the round trip, where
all the active processes that it visited (so in particular pi) had round
number round j−1. Since m′′ completed the round trip and passed pi

while this process remained active, it follows that both pi and pj had the
maximal identity in round round j−1. So the message m′′′ that originated
at pi with round number round j−1 also completed the round trip. FIFO
behavior guarantees that m′′′ arrived at pj before m′′, so that m′′′ passed
pj before m was created at pj . FIFO behavior guarantees that m′′′ arrived
at pi before m. So round i ≥ round j .

Hence, round i = round j . �

Theorem 8.4.2 Let channels be FIFO. Then Algorithm A terminates with
probability one, and upon termination exactly one leader is elected.

Proof. By Theorem 8.3.1 together with Proposition 8.4.1, upon termination
exactly one leader is elected. Namely, the execution traces are a subset of the
execution traces of the Itai-Rodeh algorithm.

We have to redo the probability analysis, since a probabilistic result for a
set of execution traces is not always inherited by subsets of execution traces.

When there are ` ≥ 2 active processes in the ring, these processes all remain
active if and only if they all the time choose the same identity. Otherwise, at
least one active process will become passive. The probability that all active
processes select the same identity in one “round” is (1

k
)`−1. So the probabil-

ity for all ` active processes to choose the same identity m times in a row is
(1

k
)m(`−1). Since k ≥ 2, the probability that the number of active processes

eventually decreases is one.
Clearly, when there is only one active process in the ring, it will be elected

as the leader. After the round trip of its final message there are no remaining
messages, because channels are FIFO. �

8.4.1 Automated verification with PRISM

Owing to the elimination of round numbers, Algorithm A is finite-state, contrary
to the Itai-Rodeh algorithm. Hence we can apply explicit state space generation
and model checking to establish the correctness of Algorithm A for fixed ring
sizes. This analysis of Algorithm A was actually performed before constructing
the manual correctness proof of Algorithm A from the previous section, as a
means to confirm our intuition that Algorithm A works correctly in case of
FIFO channels. Moreover, this model checking exercise has some additional
value compared to Theorem 8.4.2. Namely, since the manual proofs of Theorem
8.3.1, Proposition 8.4.1 and Theorem 8.4.2 were not formalized and checked with
a theorem prover, there is no absolute guarantee that they are free of flaws.

8.4 Leader Election without Round Numbers 177

A short introduction to PRISM

PRISM [107] is a probabilistic model checker. It allows one to model and ana-
lyze systems and algorithms containing probabilistic aspects. PRISM supports
three kinds of probabilistic models: continuous-time Markov chains (CTMCs),
discrete-time Markov chains (DTMCs) and Markov decision processes (MDPs).
Analysis is performed through model checking such systems against specifica-
tions written in the probabilistic temporal logic PCTL [83, 11] if the model is a
DTMC or an MDP, or CSL [10] in the case of a CTMC.

In order to model check probabilistic properties of Algorithm A, we first
encoded the algorithm as a DTMC model using the PRISM language, which
is a simple, state-based language, based on the Reactive Modules formalism of
Alur and Henzinger [4]. A system is composed of a number of modules that
contain local variables, and that can interact with each other. The behavior of
a DTMC is described by a set of commands of the form:

[a] g → λ1 : u1 + . . .+ λ` : u`

a is an action label in the style of process algebras, which introduces synchro-
nization into the model. It can only be performed simultaneously by all modules
that have an occurrence of action label a in their specification. If a transition
does not have to synchronize with other transitions, then no action label needs
to be provided for this transition. The symbol g is a predicate over all the vari-
ables in the system. Each ui describes a transition which the module can make
if g is true. A transition updates the value of the variables by giving their new
primed value with respect to their unprimed value. The λi are used to assign
probabilistic information to the transition. It is required that λ1 + · · ·+λ` = 1.
This probabilistic information can be omitted if ` = 1 (and so λ1 = 1). PRISM
considers states without outgoing transitions as error states; terminating states
can be modeled by adding a self-loop. A more detailed description of PRISM
can be found in [107].

Verifying Algorithm A with PRISM

We used PRISM to verify that Algorithm A satisfies the probabilistic property
“with probability 1, eventually exactly one leader is elected”. We modeled each
FIFO channel and each process as a separate module in PRISM. The following
code in the PRISM language gives the specification for a channel of size two.
The channel channel1 receives a message (mes1 id,mes1 counter,mes1 bit) from
process p1 (synchronized on action label rec from p1) and sends it to process
p2 (synchronized on action label send to p2). Each position i ∈ {1, 2} in the
channel is represented by a triple of natural numbers: one for the process identity
contained in a message (b 1 2 i1), one for the hop counter (b 1 2 i2), and one
for the bit (b 1 2 i3). If the natural numbers for a position in a channel are
greater than zero, it means this position is occupied by a message. Otherwise,
the position is empty.

We present the channel between processes p1 and p2. Both the number of
processes and the size of the identity set are two (N = 2; K = 2).

178 Chapter 8 Simplifying Itai-Rodeh Leader Election for Anonymous Rings

module channel1
b 1 2 11: [0..K]; b 1 2 12:[0..N]; b 1 2 13:[0..1];
b 1 2 21: [0..K]; b 1 2 22:[0..N]; b 1 2 13:[0..1];
[rec from p1] b 1 2 11=0

→ (b 1 2 11’=mes1 id) & (b 1 2 12’=mes1 counter) &
(b 1 2 13’=mes1 bit);

[rec from p1] (b 1 2 11>0) & (b 1 2 21=0)
→ (b 1 2 21’=mes1 id) & (b 1 2 22’=mes1 counter) &

(b 1 2 23’=mes1 bit);
[send to p2] b 1 2 11>0

→ (b 1 2 11’=b 1 2 21) & (b 1 2 12’=b 1 2 22) &
(b 1 2 13’=b 1 2 23) & (b 1 2 21’=0) &
(b 1 2 22’=0) & (b 1 2 23’=0);

endmodule

mes1 id, mes1 counter and mes1 bit are shared variables. They are used in
the module process1 below for receiving and sending messages. Only in that
module values can be assigned to these variables. mes1 id carries the identity
of a message, mes1 counter its hop counter, and mes1 bit the clean (1) or dirty
(0) bit. If no message is present, all three variables have the value zero. (So
mes1 bit = 0 can have two meanings: either there is no message, or the bit is
dirty.)

Each process pi is specified by means of a variable processi id :[0..K] for its
identity (where 0 means that the process is passive or selecting a new identity),
a variable si :[0..5] for its local state (this is explained below), and a variable
leaderi :[0..1] (where in state 0 means that the process is passive, and 1 that it
is the leader). The following PRISM code is the specification for process p1.

module process1
process1 id:[0..K]; s1:[0..5]; leader1:[0..1];
mes1 id:[0..K]; mes1 counter:[0..N]; mes1 bit:[0..1];

When a process is in state 0, it is active and can randomly (modeled by the
probability rate R = 1/K) select its identity, build a new message with this
identity, and set its state to 1.

[] s1=0
→ R: (s1’=1) & (process1 id’=1) & (mes1 id’=1) &

(mes1 counter’=1) & (mes1 bit’=1)
+ R: (s1’=1) & (process1 id’=2) & (mes1 id’=2) &

(mes1 counter’=1) & (mes1 bit’=1);

When s1 = 1, the process sends the new message into channel 1 (modeled by
a synchronization with module channel1 on action rec from p1), and moves to
state 2.

[rec from p1] s1=1
→ (s1’=2) & (mes1 id’=0) & (mes1 counter’=0) &

(mes1 bit’=0);

8.4 Leader Election without Round Numbers 179

In state 2 the process can receive a message from channel 2 (modeled by a
synchronization with module channel2 on action send to p1), and go to state
3. Note that b 2 1 11, b 2 1 12 and b 2 1 31 are shared variables, representing
the first position in the module channel2.

[send to p1] s1=2
→ (s1’=3) & (mes1 id’=b 2 1 11) &

(mes1 counter’=b 2 1 12) & (mes1 bit’=b 2 1 13);

When a process is in state 3, it has received a message and takes a decision. If
the process got its own message back (mes1 counter = N) and the bit of the
message is clean (mes1 bit = 1), the process is elected as the leader (leader1 ′ =
1), and moves to state 4.

[] (s1=3) & (mes1 counter=N) & (mes1 bit=1)
→ (s1’=4) & (process1 id’=0) & (mes1 id’=0) &

(mes1 counter’=0) & (mes1 bit’=0) & (leader1’=1);

If mes1 counter = N and mes1 bit = 0, the process changes its state to 0 and
will select a new random identity.

[] (s1=3) & (mes1 counter=N) & (mes1 bit=0)
→ (s1’=0) & (process1 id’=0) & (mes1 id’=0) &

(mes1 counter’=0) & (mes1 bit’=0);

If mes1 id = process1 id and mes1 counter < N , the process has received a
message with the same identity, but the message does not originate from itself.
It increases the hop counter in the message by one, makes the bit dirty, and
moves to state 5 to pass on the message.

[] (s1=3) & (mes1 id=process1 id) & (mes1 counter<N)
→ (s1’=5) & (mes1 counter’=mes1 counter+1) &

(mes1 bit’=0);

If mes1 id < process1 id , the process purges the message, and moves back to
state 2 to receive another message.

[] (s1=3) & (mes1 id<process1 id)
→ (s1’=2) & (mes1 id’=0) & (mes1 counter’=0) &

(mes1 bit’=0);

If mes1 id > process1 id , the process increases the hop counter in the message
by one, and goes to state 4 where it becomes passive (i.e., the value of leader1
remains zero).

[] (s1=3) & (mes1 id>process1 id)
→ (s1’=4) & (process1 id’=0) &

(mes1 counter’=mes1 counter+1);

In state 5, a process passes on a message, and moves to state 2.

180 Chapter 8 Simplifying Itai-Rodeh Leader Election for Anonymous Rings

[rec from p1] (s1=5)
→ (s1’=2) & (mes1 id’=0) & (mes1 counter’=0) &

(mes1 bit’=0);

In state 4, a passive process (leader1 = 0) can only pass on messages with their
hop counter increased by one.

[send to p1] (s1=4) & (leader1=0) & (mes1 id=0)
→ (mes1 id’=b 2 1 11) & (mes1 counter’=b 2 1 12+1) &

(mes1 bit’=b 2 1 13);
[rec from p1] (s1=4) & (leader1=0) & (mes1 id>0)

→ (mes1 id’=0) & (mes1 counter’=0) & (mes1 bit’=0);

We added the conjunct leader1 = 0 to the predicate in order to emphasize
that the leader does not have to deal with incoming messages. Namely, when a
process is elected as the leader there are no remaining messages, owing to the
fact that channels are FIFO.

A self-loop with synchronization on an action label done is added to processes
in state 4, to avoid deadlock states.

[done] (s1=4) → (s1’=s1);
endmodule

Other channels and processes can be constructed by carefully module renaming
modules channel1 and process1. The initial value of each variable is the minimal
value in its range.

Below we specify the property “with probability 1, eventually exactly one
leader is elected” for a ring with two processes as a PCTL formula:

Property: P>=1 [true U (s1=4 & s2=4 & leader1+leader2=1 &
b 1 2 11+b 2 1 11=0)]

It states that the probability that eventually both p1 and p2 get into state 4
(s1 = 4 ∧ s2 = 4), with exactly one process elected as the leader (leader1 +
leader2 = 1), is at least one. In addition, we check that the algorithm terminates
with no message in the ring (b 1 2 11 + b 2 1 11 = 0).

To model check this property, the algorithmic description (in the module-
based language) was parsed and converted into an MTBDD [61]. In PRISM,
reachability is performed to identify non-reachable states and the MTBDD is
filtered accordingly. Table 8.1 shows statistics for each model we have built.
The first part gives the parameters for each model: the ring size n, the size
of the identity set, and the size of the channel. It is not hard to see that at
any time there are at most n messages in the ring, so channel size n suffices;
and having n different possible identities means that in each “round”, all active
processes can select a different identity. The second part gives the number of
states and transitions in the MTBDD representing the model.

Property was successfully checked on all the ring networks in Table 8.1 (we
used the model checker PRISM 2.0 with its default options). Note that for

8.5 Leader Election without Bits 181

Processes Identities Channel size FIFO States Transitions
Ex.1 2 2 2 yes 127 216
Ex.2 3 3 3 yes 5,467 12,360
Ex.3 4 3 4 yes 99,329 283,872

Table 8.1: Model checking result for Algorithm A with FIFO channels

n = 4, we could only check the property for an identity set of size three. For
n = 4 and an identity set of size four, and in general for n ≥ 5, PRISM fails to
build a model due to the lack of memory.

8.5 Leader Election without Bits

In this section, we present another leader election algorithm, which is a variation
of Algorithm A. Again channels are assumed to be FIFO. We observe that when
an active process pi detects a name clash, meaning that it receives a message
with its own identity and hop counter smaller than n, it is not necessary for pi

to wait for its own message to return. Instead pi can immediately select a new
random identity and send a new message. Algorithm B is obtained by adapting
Algorithm A according to this observation. In particular all occurrences of bits
are omitted.

Algorithm B.

• Initially, all processes are active, and each process pi randomly selects
its identity id i ∈ {1, . . . , k} and sends the message (id i, 1).

• Upon receipt of a message (id, hop), a passive process pi (state i =
passive) passes on the message, increasing the counter hop by one; an ac-
tive process pi (statei = active) behaves according to one of the following
steps:

– if hop = n, then pi becomes the leader (state ′
i = leader);

– if id = id i and hop < n, then pi selects a new random identity
id ′

i ∈ {1, . . . , k} and sends the message (id ′
i, 1);

– if id > id i, then pi becomes passive (state ′
i = passive) and passes

on the message (id , hop + 1);

– if id < id i, then pi purges the message.

We first discuss the automatic verification of Algorithm B with PRISM in
Section 8.5.1. Then we give a manual correctness proof for Algorithm B, for
arbitrary ring size, in Section 8.5.2.

182 Chapter 8 Simplifying Itai-Rodeh Leader Election for Anonymous Rings

8.5.1 Automated verification with PRISM

Channels are modeled in the same way as in Section 8.4. We present each process
pi with a variable process i id :[0..K] for its identity, a variable s i :[0..4] for its
local state, and a variable leader i :[0..1]. We present only part of the PRISM
specification for process p1. The parts when a process is in state 0, 1, 2 or 4
are omitted, as this behavior is very similar to Algorithm A (see Section 8.4.1).
State 5 is redundant here, because a process selects a new identity as soon as it
detects a name clash.

module process1
process1 id:[0..K]; s1:[0..4]; leader1:[0..1]; mes1 id:[0..K];
mes1 counter:[0..N];

When a process in state 3, it has received a message from the channel and
takes a decision. If mes1 counter = N , the process is elected as the leader
(leader1 ′ = 1), and moves to state 4.

[] (s1=3) & (mes1 counter=N)
→ (s1’=4) & (process1 id’=0) & (mes1 id’=0) &

(mes1 counter’=0) & (leader1’=1);

If mes1 id = process1 id and mes1 counter < N , the process goes back to state
0 and will select a new identity.

[] (s1=3) & (mes1 id=process1 id) & (mes1 counter<N)
→ (s1’=0) & (mes1 id’=0) & (mes1 counter’=0) &

(process1 id’=0);

If mes1 id < process1 id , the process purges the message, and moves back to
state 2 to receive another message.

[] (s1=3) & (mes1 id<process1 id)
→ (s1’=2) & (mes1 id’=0) & (mes1 counter’=0);

If mes1 id > process1 id , the process becomes passive, increases the hop counter
of the message by one, and goes to state 4.

[] (s1=3) & (mes1 id>process1 id)
→ (s1’=4) & (process1 id’=0) &

(mes1 counter’=mes1 counter+1);
...

endmodule

Other channels and processes can be constructed by module renaming.
Property was successfully model checked with respect to Algorithm B, in a

setting with FIFO channels, for rings up to size five. For any larger ring size,
and in case of ring size five and an identity domain containing three elements,
PRISM fails to produce an MTBDD. Table 8.2 summarizes the verification
results for Algorithm B with PRISM.

8.5 Leader Election without Bits 183

Processes Identities Channel size FIFO States Transitions
Ex.1 2 2 2 yes 97 168
Ex.2 3 3 3 yes 6,019 14,115
Ex.3 4 3 4 yes 176,068 521,452
Ex.4 4 4 4 yes 537,467 1,615,408
Ex.5 5 2 5 yes 752,047 2,626,405

Table 8.2: Model checking result for Algorithm B with FIFO channels

8.5.2 The correctness proof

In this section we give a correctness proof for Algorithm B, in case of FIFO
channels, with respect to ring networks of arbitrary size.

Definition 8.5.1 The processes and messages between a process p and a mes-
sage m are the ones that are encountered when traveling in the ring from p to
m.

Lemma 8.5.2 Let active process p have identity id p and message m have iden-
tity idm. If idp 6= idm, then there is an active process or message between p
and m with an identity ≥ min{idp, idm}.

Proof. We apply induction on execution sequences.
Basis: Prior to the first arrival of a message, every process is active and has
generated a message with its own identity; thus the lemma trivially holds.
Induction step: When a message arrives at a passive process, it is simply for-
warded. Assume a message m = (id , hop) arrives at an active process pi with
identity id i. If hop = n, then pi is elected as the leader. Since channels are
FIFO, in this case the round trip of the final message of pi guarantees that there
are no remaining messages; thus the lemma trivially holds. Now suppose that
hop < n. We consider three cases. In each case we only consider each pair of
an active process and a message that could violate the condition of the lemma
due to the arrival of m at pi.

• id i > id . Then m is purged by pi.

Let pj be an active process with identity id j and m′ a message with iden-
tity id ′, such that pi and m are between pj andm′, and id ≥ min{id j , id

′}.
The active process pi between pj and m′ has identity id i > min{id j , id

′}.

• id i < id . Then pi becomes passive and sends the message (id , hop + 1).

Let pj be an active process with identity id j and m′ a message with
identity id ′, such that pi and m are between pj and m′, and id i ≥
min{id j , id

′}. The message (id , hop + 1) between pj and m′ has iden-
tity id > min{id j , id

′}.

184 Chapter 8 Simplifying Itai-Rodeh Leader Election for Anonymous Rings

• id i = id . Then pi selects a new identity id ′
i and sends the message (id ′

i, 1).

We consider three cases, covering each pair of an active process and a
message with different identities that is either newly created (the first two
cases) or that could violate the condition of the lemma due to the new
identity of pi (the third case).

Case 1: For any message m′ with identity id ′ 6= id ′
i, (id ′

i, 1) is a message
between pi and m′ with identity id ′

i ≥ min{id ′
i, id

′}.

Case 2: For any active process pj with identity id j 6= id ′
i, pi is an active

process between pj and (id ′
i, 1) with identity id ′

i ≥ min{id j , id
′
i}.

Case 3: Let pj be an active process with identity id j and m′ a message
with identity id ′ 6= id j , such that pi and m are between pj and m′, and
id i ≥ min{id j , id

′}. Since id ′ 6= id j , either id j 6= id i or id i 6= id ′. So by
induction there is an active process or message either between pj and m
with an identity ≥ min{id j , id i}, or between pi and m′ with an identity
≥ min{id i, id

′}. Since id i ≥ min{id j , id
′}, in either case there is an active

process or message between pj and m′ with an identity ≥ min{id j , id
′}.

�

Definition 8.5.3 An active process p is related to a message m if they have the
same identity id , and all active processes and messages between p and m have
an identity smaller than id .

Lemma 8.5.4 Let active process p be related to message m. Let ξ be the
maximum of all identities of active processes and messages between p and m
(ξ = 0 if there are none).

1. Between p and m, there is an equal number of active processes and of
messages with identity ξ; and

2. if p is not the originator of m, then there is an active process or message
between p and m.

Proof. We apply induction on execution sequences.
Basis: Prior to the first arrival of a message, every process is active and has
generated a message with its own identity; thus the lemma trivially holds.
Induction step: When a message arrives at a passive process, it is simply for-
warded. Assume a message m = (id , hop) arrives at an active process pi with
identity id i. If hop = n, then pi is elected as the leader. Since channels are
FIFO, in this case the round trip of the final message of pi guarantees that
there are no remaining messages; thus the lemma trivially holds. Now suppose
that hop < n. We consider three cases. In each of these cases we only consider
related pairs that were either created or affected by the arrival of m at pi.

• id i > id . Then m is purged by pi.

8.5 Leader Election without Bits 185

Let pi be between an active process pj and a message m′. Clearly, id
is not the maximal identity of active processes and messages between pj

and m′. So if pj and m′ are related after the purging of m, they were
also related before this moment. Hence, by induction, the pair pj and m′

satisfies condition 1 of the lemma. Furthermore, pi is an active process
between pj and m′, so the pair also satisfies condition 2.

• id i < id . Then p becomes passive and sends the message (id , hop + 1).

If an active process p′ is related to (id , hop +1), then clearly it was also re-
lated to m. So by induction the pair p′ and (id , hop+1) satisfies conditions
1 and 2.

Let pi and (id , hop +1) be between an active process pj and a message m′.
Clearly, id i is not the maximal identity of active processes and messages
between pj and m′. So if pj andm′ are related after pi has become passive,
they were also related before this moment. Hence, by induction, the pair
pj and m′ satisfies condition 1 of the lemma. Furthermore, (id , hop + 1)
is a message between pj and m′, so the pair also satisfies condition 2.

• id i = id . Then pi selects a new identity id ′
i and sends the message (id ′

i, 1).

Note that pi is the only active process related to (id ′
i, 1), and vice versa.

Clearly, conditions 1 and 2 of the lemma are satisfied by this pair.

Let an active process pj with identity id j be related to a message m′, such
that pi and (id ′

i, 1) are between pj and m′. Since pi is between pj and m′,
condition 2 is satisfied by this pair. We proceed to prove condition 1 for
this pair. We consider three cases.

Case 1: id i > id j . Then by Lemma 8.5.2 there is an active process or
message between pi and m′ with identity ≥ id j . This active process or
message is also between pj and m′, which contradicts the fact that pj is
related to m′.

Case 2: id i < id j . Then pj and m′ were already related before m reached
pi, so by induction this pair satisfied condition 1 beforem reached pi. Let ξ
denote the maximum of all identities of active processes (and of messages)
between pj and m′ before m reached pi; and let # denote the number
of active processes (and of messages) between pj and m′ with identity ξ
before m reached pi. Moreover, let ξ′π and ξ′µ denote the maximum of all
identities of active processes and messages, respectively, between pj and
m′ after m reached pi; and let #′

π and #′
µ denote the number of active

processes and messages, respectively, between pj and m′ with identity ξ′π
and ξ′µ, respectively, after m reached pi. Clearly id i ≤ ξ. We consider five
cases.

If id ′
i > ξ, then ξ′π = id ′

i = ξ′µ and #′
π = 1 = #′

µ.

If id ′
i = ξ and id i = ξ, then ξ′π = ξ = ξ′µ and #′

π = # = #′
µ.

If id ′
i = ξ and id i < ξ, then ξ′π = ξ = ξ′µ and #′

π = # + 1 = #′
µ.

186 Chapter 8 Simplifying Itai-Rodeh Leader Election for Anonymous Rings

If id ′
i < ξ and id i = ξ, then ξ′π = ξ = ξ′µ and #′

π = # − 1 = #′
µ.

Namely, since id i < id j , by Lemma 8.5.2 there must be an active process
or message between pi and m′ with identity ≥ id i. Since id i = ξ, this
identity must be equal to id i.

If id ′
i < ξ and id i < ξ, then ξ′π = ξ = ξ′µ and #′

π = # = #′
µ.

Case 3: id i = id j . Then before m reached pi, pj was related to m and
pi was related to m′. So by induction, before m reached pi, these pairs
satisfied condition 1. Let ξ1 and ξ2 denote the maximum of all identities
of active processes (and of messages) between pj and m and between pi

and m′, respectively, before m reached pi; and let #1 and #2 denote
the number of active processes (and of messages) between pj and m and
between pi and m′, respectively, before m reached pi. Moreover, let ξ′π, ξ′µ,
#′

π and #′
µ have the same meaning as in the previous case. We consider

seven cases.

If id ′
i > max{ξ1, ξ2}, then ξ′π = id ′

i = ξ′µ and #′
π = 1 = #′

µ.

If ξ1 > max{id ′
i, ξ2}, then ξ′π = ξ1 = ξ′µ and #′

π = #1 = #′
µ.

If ξ2 > max{id ′
i, ξ1}, then ξ′π = ξ2 = ξ′µ and #′

π = #2 = #′
µ.

If id ′
i = ξ1 > ξ2, then ξ′π = id ′

i = ξ′µ and #′
π = #1 + 1 = #′

µ.

If id ′
i = ξ2 > ξ1, then ξ′π = id ′

i = ξ′µ and #′
π = #2 + 1 = #′

µ.

If ξ1 = ξ2 > id ′
i, then ξ′π = ξ1 = ξ′µ and #′

π = #1 + #2 = #′
µ.

If id ′
i = ξ1 = ξ2, then ξ′π = id ′

i = ξ′µ and #′
π = #1 + #2 + 1 = #′

µ.

�

We say that an active process or message is maximal if its identity is maximal
among the active processes or messages in the ring, respectively. In the following
proposition we write ξπ and ξµ for the identity of maximal active processes and
messages, respectively. The number of active processes and messages with the
same identity id is denoted by #id

π and #id
µ , respectively. We write #π and #µ

for the number of maximal active processes and messages, respectively.

Proposition 8.5.5 Until a leader is elected, there exist active processes and
messages in the ring, and ξπ = ξµ and #π = #µ.

Proof. We apply induction on execution sequences.
Basis: Prior to the first arrival of a message, every process is active and has
generated a message with its own identity; thus the proposition trivially holds.
Induction step: By induction, ξπ = ξµ and #π = #µ; we write ξ for ξπ and
ξµ, and # for #π and #µ. When a message arrives at a passive process, it is
simply forwarded. Assume a message m = (id , hop) arrives at an active process
pi with identity id i. If hop = n, then pi is elected as the leader. Now suppose
that hop < n. We consider four cases.

8.5 Leader Election without Bits 187

• id i > id . Since ξπ = ξµ, m is not a maximal message. It is purged by pi.
The values of ξπ and ξµ remain unchanged.

• id i < id . Since ξπ = ξµ, pi is not a maximal process. It becomes passive.
The values of ξπ and ξµ remain unchanged.

• id i = id < ξ. Then pi selects a new identity id ′
i, and sends the message

(id ′
i, 1). If id ′

i > ξ, then ξ′π = id ′
i = ξ′µ and #′

π = 1 = #′
µ. If id ′

i = ξ, then

ξ′π = ξ = ξ′µ and #′
π = (# + 1) = #′

µ. If id ′
i < ξ, then ξ′π = ξ = ξ′µ and

#′
π = # = #′

µ.

• id i = id = ξ. Then pi selects a new identity id ′
i, and sends the message

(id ′
i, 1). We distinguish two cases.

Case 1: # > 1. If id ′
i > ξ, then ξ′π = id ′

i = ξ′µ and #′
π = 1 = #′

µ. If

id ′
i = ξ, then ξ′π = ξ = ξ′µ and #′

π = # = #′
µ. If id ′

i < ξ, then ξ′π = ξ = ξ′µ
and #′

π = (# − 1) = #′
µ.

Case 2: # = 1. Then clearly pi is related to m, and all other active
processes and messages are between them. Since hop < n, pi is not the
originator of m, so by Lemma 8.5.4.2 there is some active process or mes-
sage between them. Let ξ0 > 0 be the maximum of all identities of active
processes 6= pi and messages 6= m. By Lemma 8.5.4.1, #ξ0

π = #ξ0
µ . If

id ′
i > ξ0, then ξ′π = id ′

i = ξ′µ and #′
π = 1 = #′

µ. If id ′
i = ξ0, then

ξ′π = ξ0 = ξ′µ and #′
π = (#ξ0

π + 1) = #′
µ. If id ′

i < ξ0, then ξ′π = ξ0 = ξ′µ
and #′

π = #ξ0

π = #′
µ.

�

Theorem 8.5.6 Let channels be FIFO. Then Algorithm B terminates with
probability one, and upon termination exactly one leader is elected.

Proof. By Proposition 8.5.5, some processes remain active until a leader is
elected. A process can be elected as the leader only if it receives a message with
a hop counter equal to n, which means the message has passed through all other
processes and made them passive. Hence, we have uniqueness of the leader.

It remains to show that the algorithm terminates with probability one. When
there are ` ≥ 2 active processes in the ring, these processes all remain active
if and only if they all the time choose the same identity. Otherwise, at least
one active process will become passive. The probability that all active processes
select the same identity in one “round” is (1

k
)`−1. So the probability for all `

active processes to choose the same identity m times in a row is (1
k
)m(`−1). Since

k ≥ 2, the probability that the number of active processes eventually decreases
is one.

Clearly, when there is only one active process in the ring, it will be elected
as the leader. After the round trip of its final message there are no remaining
messages, because channels are FIFO. �

188 Chapter 8 Simplifying Itai-Rodeh Leader Election for Anonymous Rings

8.6 Performance Analysis

A probabilistic analysis in [95] reveals that if k = n, the expected number of
rounds required for the Itai-Rodeh algorithm to elect a leader in a ring with
size n is bounded by e· n

n−1 . The expected number of messages for each round
is O(n log n). Hence, the average message complexity of the Itai-Rodeh algo-
rithm is O(n logn). Likewise, Algorithms A and B have an average message
complexity of O(n log n).

The probabilistic temporal logic PCTL [83, 11] can be used to express soft
deadlines, such as “the probability of electing a leader within t discrete time
steps is at most 0.5”.1 A PCTL formula to calculate the probability of electing
a leader within t discrete time steps for a ring with two processes is

P=? [true U<=t (s1=4 & s2=4 & leader1+leader2=1)]

We used PRISM to calculate the probability that Algorithms A and B termi-
nate within a given number of transitions, for rings of size two and three. The
experimental results presented in Figure 8.2 and Figure 8.3 indicate that Al-
gorithm B seems to have a better performance than Algorithm A. Note that
when t moves to infinity, both algorithms elect a leader with probability one.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

pr
ob

ab
ili

ty
 o

f e
le

ct
in

g
a

le
ad

er

number of discrete time steps

2 processes, 2 identities

algorithm A
algorithm B

Figure 8.2: The probability of electing a leader with deadlines.

8.7 Leader Election with Two Identities

In this section we show that when k = 2, both Algorithm A and Algorithm B
(with some small adaptations) are correct even if channels are not FIFO. Note

1Each discrete time step corresponds to one transition in the algorithm.

8.7 Leader Election with Two Identities 189

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

pr
ob

ab
ili

ty
 o

f e
le

ct
in

g
a

le
ad

er

number of discrete time steps

3 processes, 3 identities

algorithm A
algorithm B

Figure 8.3: The probability of electing a leader with deadlines.

that if k = 2, then in Figure 8.1 we cannot find identities u, v, w, x such that
u > v > w, x.

We first explain the changes that need to be made to Algorithms A and
B. If channels are not FIFO, then when a leader is elected, there may still be
messages in the ring. So to guarantee that the algorithms terminate with no
message in the ring, the leader must be able to purge incoming messages.

v

u

v

v

v

u

(v, 1, true)

(v, 1, true)

v

u

(u, 2, true)

(v, 2, false) (v, 2, false)

(u, 1, true)

(v, 3, false)

(u, 2, true)

Figure 8.4: Algorithm A: if channels are not FIFO, hop counters can be greater
than n.

We need to make one more minor adaptation to the PRISM model of Algo-
rithm A. Namely, the domain of hop counters has to be enlarged from [0..N] to
[0..2N − 1]. Figure 8.4 presents a scenario to show that a message can continue
after completing a round trip. It depicts a ring of size two; black processes are
active and white processes are passive. Initially, both processes are active, select
the smaller of the two identities v, and send a message with their identity. (See
the left side of Figure 8.4.) The message from the top node arrives back at its
originator, which selects as new identity u > v and sends a message with its

190 Chapter 8 Simplifying Itai-Rodeh Leader Election for Anonymous Rings

Processes Channel size FIFO States Transitions
Ex.1 2 2 no 533 898

Table 8.3: Model checking result for Algorithm A with k = 2

Processes Channel size FIFO States Transitions
Ex.1 2 2 no 391 666
Ex.2 3 3 no 63,433 147,660

Table 8.4: Model checking result for Algorithm B with k = 2

identity. (See the second part of Figure 8.4.) Since channels are not FIFO, the
message with identity v can be overtaken by the message with identity u, and
the latter message makes the bottom node passive. (See the third part of Fig-
ure 8.4.) Finally, the message (v, 2, false) is passed on by its passive originator
to become (v, 3, false). (See the right side of Figure 8.4.)

We verified Algorithms A and B (with the aforementioned adaptations) using
PRISM in the setting that k = 2 and channels are not FIFO. Here, we omit
the PRISM specification, and only present the verification results in Table 8.3
and Table 8.4. We successfully analyzed Algorithm A for a ring of size two, and
Algorithm B for rings up to size three. For any larger ring size, PRISM fails to
build a model.

Theorem 8.7.1 Let k = 2. Algorithm A terminates with probability one, and
upon termination exactly one leader has been elected.

Proof. Since k = 2, the identity set contains only two elements. Let u denote
the largest element. First, we present a proposition.

Proposition 8.7.2 Until a leader is elected, there exist active processes and
messages in the ring.

We apply induction on execution sequences.
Basis: Prior to the first arrival of a message, every process is active and has
generated a message with its own identity; thus the proposition trivially holds.
Induction step: When a message arrives at a passive process, it is simply for-
warded. Assume that message m = (id , hop, bit) arrives at active process pi

with identity id i. We distinguish two cases.

• id i = id .

If hop = n and bit = true, then pi is elected as the leader.

If hop = n and bit = false , then pi remains active, selects a new identity
id ′

i and sends the message (id ′
i, 1, true).

8.7 Leader Election with Two Identities 191

If hop < n, then pi remains active and sends the message (id , hop +
1, false).

• id i 6= id .

If id i = u, then pi is the originator of a message with identity u. This
message will complete the round trip, since no process has an identity
larger than u; so this message is still in the ring. pi remains active and
purges m.

If id = u, then m originates from a process pj with identity u. pj remains
active until m has completed the round trip, since no message can have
an identity larger than u. pi becomes passive and sends the message
(id , hop + 1, bit).

It follows from Proposition 8.7.2 that some processes remain active until a
leader is elected. An active process can be elected as the leader only if it receives
a message with hop counter n and bit true, which means the message has passed
through all other processes and made them passive. Hence, we have uniqueness
of the leader.

The proof that the algorithm terminates with probability one is similar to
the probability analysis in the proof of Theorem 8.4.2. When a leader is elected,
it purges the remaining messages in the ring. �

Theorem 8.7.3 Let k = 2. Algorithm B terminates with probability one, and
upon termination exactly one leader has been elected.

Proof. Since k = 2, the identity set contains only two elements. Let u denote
the larger element. First, we present a proposition. We write #π and #µ for
the number of active processes and messages with identity u, respectively.

Proposition 8.7.4 Until a leader is elected, there exist active processes and
messages in the ring, and #π = #µ.

We apply induction on execution sequences.
Basis: Prior to the first arrival of a message, every process is active and has
generated a message with its own identity; thus the proposition trivially holds.
Induction step: By induction, #π = #µ; we write # for #π and #µ. When
a message arrives at a passive process, it is simply forwarded. Assume that
message m = (id , hop) arrives at active process pi with identity id i. If hop = n,
then pi is elected as the leader. Let hop < n. We distinguish two cases.

• id i = id .

Then pi remains active, selects a new identity id ′
i, and sends the message

(id ′
i, 1). If id i = id ′

i, then #′
π = # = #′

µ. If id i = u and id ′
i 6= u, then

#′
π = # − 1 = #′

µ. If id i 6= u and id ′
i = u, then #′

π = # + 1 = #′
µ.

192 Chapter 8 Simplifying Itai-Rodeh Leader Election for Anonymous Rings

• id i 6= id .

Then clearly # > 0.

If id = u, then pi becomes passive and sends the message (id , hop + 1).
#′

π = # = #′
µ.

If id i = u, then pi remains active and purges m. #′
π = # = #′

µ.

By Proposition 8.7.4, some processes remain active until a leader is elected.
An active process can be elected as the leader only if it receives a message with
a hop counter equal to n, which means the message has passed through all other
processes and made them passive. Hence, we have uniqueness of the leader.

The proof that the algorithm terminates with probability one is similar to
the probability analysis in the proof of Theorem 8.5.6. When a leader is elected,
it purges the remaining messages in the ring. �

8.8 Conclusions

In this chapter, we presented two probabilistic leader election algorithms for
anonymous unidirectional rings with FIFO channels. Both algorithms were
specified and successfully model checked with PRISM. They satisfy the prop-
erty “with probability 1, eventually exactly one leader is elected”. The com-
plete specifications in PRISM can be found at http://www.cwi.nl/~pangjun/
leader/. The generation of state spaces and the verifications were performed
on a 1.4 GHz AMD AthlonTM Processor with 512 Mb memory. We also gave
a manual correctness proof for each algorithm. Future work is to formalize and
check these proofs by means of a theorem prover such as PVS.

Itai and Rodeh [95] stated:

“We could have used any of the improved algorithms [27], [44], [88],
[138].”

Following this direction, we developed two more probabilistic leader election
algorithms, based on the Dolev-Klawe-Rodeh algorithm [44, 58]. Both of them
are finite-state, and we model checked them successfully in µCRL [21] up to ring
size six. The adaptations of the Dolev-Klawe-Rodeh algorithm are very simi-
lar to our adaptations (Algorithms A and B) of the Chang-Roberts algorithm;
i.e., processes again select random identities, and name clashes are resolved in
exactly the same way. Therefore our adaptations of the Dolev-Klawe-Rodeh al-
gorithm are not presented here. The interested reader can find the specifications
of all our algorithms at http://www.cwi.nl/~pangjun/leader/. These specifi-
cations are in the language µCRL, which was used for an initial non-probabilistic
model checking exercise.

Chapter 9

Conclusions

Conclusions have been drawn for Chapters 3 to 8 separately. In this chapter, I
will give some concluding remarks, from the perspective of the entire project.

Recall that the general goal of the project is:

“to establish whether it is possible to achieve reliable quality of soft-
ware for medium size embedded systems, and to better utilize the
formal methods in industry.”

and that the major question to be answered is:

“whether the current technology developed in the past by the for-
mal methods research community can indeed become an effective
practical tool within a development environment.”

The research proposal argued that most of the published case studies of
formal verification in the literature were quite remote from the actual product
design process and generally only dealt with fractions of a system, as the total
system tends to be too complex. The situation at Weidmüller/Add-Controls is
quite different. The products they design, embedded controllers, are relatively
not very complex. Moreover, direct communication with the development de-
partment is possible, which provides an ideal platform for experiments on the
trajectory from formal design towards real products.

However, the project progressed in an unexpected way. This project was
initially proposed by Jan Friso Groote and Jos van Wamel at CWI. Not long
after the project started in August of 2000, both Jan Friso and Jos left CWI,
and Wan Fokkink succeeded as the project leader at CWI. In 2001, the divi-
sion of Weidmüller supporting this project decided to set up a new company
– Add-Controls. During the initial phase of Add-Controls, there was no new
development of embedded systems. The distributed lift system (see Chapter 6)
became its main commercial product.

Nevertheless, we have tried to stick to the spirit of the project. The dis-
tributed lift system was first analyzed in 2000 and 2001, and then was redesigned
at Add-Controls. The analysis of the redesign took place in 2002 and 2003. In

193

194 Chapter 9 Conclusions

order to perform another real-life case study during the design phase, in 2001
and 2002, we analyzed the cache coherence protocol for Jackal system, which
is a distributed shared memory implementation of the Java language. In 2003
and the beginning of 2004, we used formal verification techniques to design new
distributed algorithms and show their correctness. In the meantime, some the-
oretical research has been carried out for the project. A protocol verification
method was developed and supplied with mechanical support (see Chapter 3).
The usefulness of this method was illustrated by a challenging case study (see
Chapter 4).

To summarize, in this project:

• Different formal verification techniques such as manual proof, model check-
ing and theorem proving have been applied for the analysis of distributed
system. Theorem proving was applied in Chapter 5. The combination
of manual proof and theorem proving was applied in Chapters 3 and 4.
Model checking was applied in Chapters 6 and 7. The combination of
manual proof and model checking was applied in Chapter 8.

• We have tried different tools for the verification of different aspects of dis-
tributed systems. The theorem prover PVS [131] was used in Chapters 3,
4 and 5. The µCRL tool set [21] and the model checker CADP [49, 63]
were used in Chapters 6 and 7. The real-time model checker UPPAAL
[111] was used in Chapter 6. The probabilistic model checker PRISM
[107] was used in Chapter 8. The tool for conformance testing TorX [14]
and the model checker for hybrid systems HyTech [86] were used in two
abandoned case studies.

• Formal verification has been applied in different phases of system develop-
ment. The implementation of original design of the distributed lift system
was analyzed in Chapters 6, while the redesign of the system was analyzed
before implementing. During its formal verification, the cache coherence
protocol in Chapters 7 was still under implementation, and some evolution
of its design took place. In Chapters 8, formal verification was used to
develop new distributed algorithms for leader election.

• The case studies cover a wide range of distributed systems; namely an em-
bedded controller (Chapters 6), a communication protocol (Chapter 4), a
cache coherence protocol (Chapter 7), and distributed algorithms (Chap-
ters 5 and 8).

Within this project, we have achieved certain positive results. Formal veri-
fication can find problems in real-life distributed systems, and suggest possible
solutions. Formal verification can also be used to prove protocols and algo-
rithms correct. Therefore, the proper use of formal methods does lead to more
reliable, dependable systems. Using formal methods in the industrial system
development can be effective, at least for embedded controllers.

On the other hand, the situation of using formal methods in the industrial
system development described in the thesis of Judi Romijn [149, Chapter 8] has

195

not improved dramatically in the last five years. Thus, to make formal methods
an effective practical tool within an industrial development environment, signif-
icant developments in formal methods still have to be made. For example, the
cones and foci method developed in this thesis is still far from a practical tool,
which can be used directly in industry. How to integrate formal methods into
the whole development process of industrial systems partly remains an open
question.

I draw some conclusions on what I have learned from the project:

• Model checking is useful for detecting errors in real-life systems and for
gaining more confidence about the design of a system. Theorem proving
is useful for giving correctness proofs.

• Both researchers of formal methods and their industrial partners need to
speak each other’s language. Researchers need to understand the system
designed and implemented by the industry in order to perform better
formal analysis. On the other hand, developers from industry need some
knowledge of formal specification languages and verification methods in
order to give feedback and appreciate the result of the formal analysis.

• Researchers must take the input from developers seriously. Analyzing a
formal model that deviates too much from the actual system or has a very
high level of abstraction is not useful in practice (see e.g., Chapter 6). De-
velopers of industrial systems must take the input from the formal analysis
of researchers seriously. As shown in Chapter 6, the formal analysis of the
original design of the lift system in µCRL would have saved the developers
considerable effort in the redesign.

• The developers of the lift system stress that formal methods should be
applied in the early design phases to save testing effort and cost.

• It is important that experiments within the formal analysis process can be
reproduced easily. When a system is under formal analysis, its design and
implementation can still be modified by the developers (see e.g., Chap-
ter 7). After some changes took place, the experiments that had been
done before needed to be repeated in order to check whether the changes
have effect on the correctness of the system.

• It is necessary for researchers to have the ability of using different for-
malisms and tools in order to verify different aspects of systems. In my
experience, the translation of a formal model of a system into another for-
malism is in general not very difficult (see e.g., Chapter 6 and Chapter 8).

• Not all system errors can be detected with formal methods, which is a
lesson I learned from an abandoned case study.

From my personal viewpoint, I give some remarks on improving the effec-
tiveness of using formal methods in industry.

196 Chapter 9 Conclusions

First, for researchers to improve formal methods, we must: 1) reduce the
learning curve of formal methods such that they are easy to learn, and quick
to use; 2) increase the expressiveness of formal methods such that they can
be used to specify and verify more systems; 3) develop new efficient and ef-
fective verification techniques such that they can deal with large and complex
systems; 4) integrate different formal verification techniques in a uniform frame-
work such that within a verification task we can benefit from different techniques
and switch among different methods smoothly; 5) transfer formal methods to
potential users by educating under-graduate students in formal methods and
performing more case studies for industry; 6) invest more time and manpower
in project, like the one in this thesis.

Second, to apply formal methods in a industrial system development, it is
important for industry: 1) to know in which projects using formal methods can
be beneficial; 2) to recognize when and where to apply formal methods in such
projects; 3) to educate their designers in formal methods; 4) to support more
research project, like the one in this thesis.

Appendix A

µCRL Code of the Cache Coherence

Protocol

%%

% For data types, equality function defintions are all omitted.

% Sort: Bool

%%

sort Bool

func T,F:->Bool

map if:Bool#Bool#Bool->Bool

not:Bool->Bool

and,or,eq:Bool#Bool->Bool

var b,b’:Bool

rew if(T,b,b’)=b if(F,b,b’)=b’

not(T)=F not(F)=T not(not(b))=b

and(T,b)=b and(F,b)=F and(b,T)=b and(b,F)=F

or(T,b)=T or(F,b)=b or(b,T)=T or(b,F)=b

%%

% Sort: Natural.

%%

sort Natural

func 0:->Natural

S:Natural->Natural

map sub1: Natural->Natural

eq,gt: Natural#Natural->Bool

var n,m:Natural

rew sub1(0)=0 sub1(S(n))=n

gt(0, n)=F gt(S(n),0)=T gt(S(n),S(m))=gt(n,m)

%%

% Sort: ThreadId

%%

sort ThreadId

func tid1,tid2,tid3:->ThreadId

map eq,le:ThreadId#ThreadId->Bool

var t:ThreadId

197

198 Appendix A µCRL Code of the Cache Coherence Protocol

rew le(t,t)=T le(tid1,t)=T le(tid2,tid1)=F le(tid2,tid3)=T

le(tid3,tid1)=F le(tid3,tid2)=F

%%

% Sort: ProcessorId

%%

sort ProcessorId

func pid1,pid2 :->ProcessorId

map eq,le:ProcessorId#ProcessorId->Bool

var p:ProcessorId

rew le(pid1,p)=T le(pid2,pid1)=F le(pid2,pid2)=T

%%

% Sort: RegionId, only one region with identity rid1

%%

sort RegionId

func rid1 :->RegionId

map eq:RegionId#RegionId->Bool

%%

% This sort is used for a region, which maintains a list of processors

% which have written to the region recently.

%%

sort ProcessorIdSet

func ema:->ProcessorIdSet

in:ProcessorId#ProcessorIdSet->ProcessorIdSet

map remove:ProcessorId#ProcessorIdSet->ProcessorIdSet

test:ProcessorId#ProcessorIdSet->Bool

empty:ProcessorIdSet->Bool

if:Bool#ProcessorIdSet#ProcessorIdSet->ProcessorIdSet

eq:ProcessorIdSet#ProcessorIdSet->Bool

count:ProcessorIdSet->Natural

% Get the identity when there is only one processor.

getIden:ProcessorIdSet->ProcessorId

insert:ProcessorId#ProcessorIdSet->ProcessorIdSet

var a,a’:ProcessorId A,A’:ProcessorIdSet

rew remove(a,ema)=ema

remove(a,in(a’,A))=if(eq(a,a’),remove(a,A),in(a’,remove(a,A)))

test(a,ema)=F test(a,in(a’,A))=if(eq(a,a’),T,test(a,A))

empty(ema)=T empty(in(a,A))=F

if(T,A,A’)=A if(F,A,A’)=A’

count(ema)=0 count(in(a,A))=S(count(remove(a,in(a,A))))

getIden(in(a,A))=a

insert(a,ema)=in(a,ema)

insert(a,in(a’,A’))=if(eq(a,a’),in(a’,A’),

if(le(a,a’),in(a,in(a’,A’)),in(a’,insert(a,A’))))

%%

%This sort is used for a thread, which maintians a list of regions

% where the thread has written recently.

%%

sort RegionIdSet

func ridema:->RegionIdSet

in:RegionId#RegionIdSet->RegionIdSet

199

% These functions are defined similarly as in ProcessorIdSet. Omitted.

map remove:RegionId#RegionIdSet->RegionIdSet

test:RegionId#RegionIdSet->Bool

empty:RegionIdSet->Bool

if:Bool#RegionIdSet#RegionIdSet->RegionIdSet

eq:RegionIdSet#RegionIdSet->Bool

count:RegionIdSet->Natural

getIden:RegionIdSet->RegionId

insert:RegionId#RegionIdSet->RegionIdSet

%%

% State of regions, initially, the region is UNUSED.

%%

sort State

func UNUSED,USED:->State

map eq: State#State->Bool

if:Bool#State#State->State

var s1,s2:State

rew if(T,s1,s2)=s1 if(F,s1,s2)=s2

%%

% Sort: Region

% Id, Home, State, accessorlist, Data, Twin, the number of local threads

%%

sort Region

func reg:RegionId#ProcessorId#State#ProcessorIdSet#Natural->Region

map getid:Region->RegionId

gethome:Region->ProcessorId

getstate:Region->State

getaccessorlist:Region->ProcessorIdSet

getlocalt:Region->Natural

sethome:Region#ProcessorId->Region

setstate:Region#State->Region

setaccessorlist:Region#ProcessorIdSet->Region

setlocalt:Region#Natural->Region

eq:Region#Region->Bool

var id,id’: RegionId h,h’:ProcessorId w,w’:ProcessorIdSet

s,s’:State lt,lt’:Natural region:Region

rew getid(reg(id,h,s,w,lt))=id

gethome(reg(id,h,s,w,lt))=h

getstate(reg(id,h,s,w,lt))=s

getaccessorlist(reg(id,h,s,w,lt))=w

getlocalt(reg(id,h,s,w,lt))=lt

sethome(reg(id,h,s,w,lt),h’)=reg(id,h’,s,w,lt)

setstate(reg(id,h,s,w,lt),s’)=reg(id,h,s’,w,lt)

setaccessorlist(reg(id,h,s,w,lt),w’)=reg(id,h,s,w’,lt)

setlocalt(reg(id,h,s,w,lt),lt’)=reg(id,h,s,w,lt’)

%%

% Actions: We synchronize s_* and r_* into an action c_*.

% The communication functions will be omitted.

%%

act

200 Appendix A µCRL Code of the Cache Coherence Protocol

s_require_faultlock,r_require_faultlock,c_require_faultlock: ProcessorId

s_require_flushlock,r_require_flushlock,c_require_flushlock: ProcessorId

s_require_serverlock,r_require_serverlock,

c_require_serverlock: ProcessorId

s_require_homequeuelock,r_require_homequeuelock,

c_require_homequeuelock: ProcessorId

s_require_remotequeuelock,r_require_remotequeuelock,

c_require_remotequeuelock: ProcessorId

s_free_faultlock,r_free_faultlock,c_free_faultlock: ProcessorId

s_free_flushlock,r_free_flushlock,c_free_flushlock: ProcessorId

s_free_serverlock,r_free_serverlock,c_free_serverlock: ProcessorId

s_free_homequeuelock,r_free_homequeuelock,

c_free_homequeuelock: ProcessorId

s_free_remotequeuelock,r_free_remotequeuelock,

c_free_remotequeuelock: ProcessorId

s_no_faultwait,r_no_faultwait,c_no_faultwait: ProcessorId

s_no_flushwait,r_no_flushwait,c_no_flushwait: ProcessorId

s_no_serverwait,r_no_serverwait,c_no_serverwait: ProcessorId

s_no_homequeuewait,r_no_homequeuewait,

c_no_homequeuewait: ProcessorId

s_no_remotequeuewait,r_no_remotequeuewait,

c_no_remotequeuewait: ProcessorId

s_signal_faultwait,r_signal_faultwait,c_signal_faultwait: ProcessorId

s_signal_flushwait,r_signal_flushwait,c_signal_flushwait: ProcessorId

s_signal_serverwait,r_signal_serverwait,c_signal_serverwait: ProcessorId

s_signal_homequeuewait,r_signal_homequeuewait,

c_signal_homequeuewait: ProcessorId

s_signal_remotequeuewait,r_signal_remotequeuewait,

c_signal_remotequeuewait: ProcessorId

s_data_require,r_i_data_require,c_i_data_require,

s_i_data_require,r_data_require,c_o_data_require:

ThreadId#ProcessorId#ProcessorId

s_data_return,r_o_data_return,c_i_data_return,

s_o_data_return,r_data_return,c_o_data_return:

ThreadId#ProcessorId#ProcessorId#Region#Bool

s_flush,r_i_flush,c_i_flush, s_i_flush,r_flush,c_o_flush:

ThreadId#ProcessorId#ProcessorId#Region#Bool

s_region_sponmigrate,r_i_region_sponmigrate,c_i_region_sponmigrate,

s_i_region_sponmigrate,r_region_sponmigrate,c_o_region_sponmigrate:

ThreadId#ProcessorId#ProcessorId#Region

s_sendback,r_sendback,c_sendback:ThreadId#ProcessorId#Region

s_refresh,r_refresh,c_refresh:ThreadId#ProcessorId#Region

s_norefresh,r_norefresh,c_norefresh:ThreadId#ProcessorId

s_sendback,r_sendback,c_sendback: ProcessorId#Region

s_refresh,r_refresh,c_refresh: ProcessorId#Region

s_norefresh,r_norefresh,c_norefresh: ProcessorId

s_signal,r_signal,c_signal: ThreadId#ProcessorId

write,writeover,flush,flushover:ThreadId

r_home s_home c_home r_copy s_copy c_copy

lockempty,homequeueempty,remotequeueempty:ProcessorId

201

%%

% Process: Thread

%%

proc Thread(tid:ThreadId,pid:ProcessorId,FlushList:RegionIdSet)=

write(tid).ThreadWrite(tid,pid,FlushList) +

flush(tid).ThreadInvalidate(tid,pid,FlushList)

<| not(eq(FlushList, ridema)) |>delta

%%

% Process: ThreadWrite

%%

proc ThreadWrite(tid:ThreadId,pid:ProcessorId,FlushList:RegionIdSet)=

Thread(tid,pid,FlushList)

<| test(rid1, FlushList) |>

sum(r:Region,r_sendback(tid,pid,r).

(s_norefresh(tid,pid).

WriteHome(tid,pid,insert(rid1,FlushList))

<| eq(gethome(r), pid) |>

s_norefresh(tid,pid).

WriteRemote(tid,pid,insert(rid1,FlushList))

))

%%

% Process: WriteHome, thread writes at home.

%%

proc WriteHome(tid:ThreadId,pid:ProcessorId,FlushList:RegionIdSet)=

s_require_serverlock(pid).

(r_no_serverwait(pid)+r_signal_serverwait(pid)).

sum(r:Region,r_sendback(tid,pid,r).

((s_refresh(tid,pid,setlocalt(setstate(setaccessorlist(

r,insert(pid,getaccessorlist(r))),USED),S(getlocalt(r)))).

s_free_serverlock(pid).

writeover(tid).Thread(tid,pid,FlushList)

<| eq(getstate(r), UNUSED) |>

s_refresh(tid,pid,setlocalt(setaccessorlist(

r,insert(pid,getaccessorlist(r))),S(getlocalt(r)))).

s_free_serverlock(pid).

writeover(tid).Thread(tid,pid,FlushList)

)

<| eq(gethome(r), pid) |>

s_norefresh(tid,pid).

s_free_serverlock(pid).

WriteRemote(tid,pid,FlushList)

))

%%

% Process: WriteRemote, thread writes from remote.

%%

proc WriteRemote(tid:ThreadId,pid:ProcessorId,FlushList:RegionIdSet)=

s_require_faultlock(pid).

(r_no_faultwait(pid)+r_signal_faultwait(pid)).

sum(r:Region,r_sendback(tid,pid,r).

(s_data_require(tid,pid,gethome(r)).

202 Appendix A µCRL Code of the Cache Coherence Protocol

s_norefresh(tid,pid).

sum(pid’:ProcessorId,r_signal(tid,pid’).

sum(newr:Region,r_sendback(tid,pid,newr).

s_refresh(tid,pid,setlocalt(newr,S(getlocalt(newr)))).

s_free_faultlock(pid).

writeover(tid).Thread(tid,pid,FlushList)

))

<| not(eq(gethome(r),pid)) |>

s_norefresh(tid,pid).

s_free_faultlock(pid).

WriteHome(tid,pid,FlushList)

))

%%

% Process: ThreadInvalidate

%%

proc ThreadInvalidate(tid:ThreadId,pid:ProcessorId,

FlushList:RegionIdSet)=

Thread(tid,pid,FlushList)

<| eq(FlushList, ridema) |>

s_require_flushlock(pid).

(r_no_flushwait(pid)+r_signal_flushwait(pid)).

sum(r:Region,r_sendback(tid,pid,r).

(FlushHome(tid,pid,remove(rid1,FlushList),r)

<| eq(gethome(r),pid) |>

FlushRemote(tid,pid,remove(rid1,FlushList),r)

))

%%

% Process: FlushHome, thread invalidates at home.

%%

proc FlushHome(tid:ThreadId,pid:ProcessorId,FlushList:RegionIdSet,

r:Region)=

(s_refresh(tid,pid,setlocalt(setstate(setaccessorlist(

r,remove(pid,getaccessorlist(r))),UNUSED),sub1(getlocalt(r)))).

s_free_flushlock(pid).

flushover(tid).Thread(tid,pid,FlushList)

<| empty(remove(pid,getaccessorlist(r))) |>

((s_region_sponmigrate(tid,pid,

getIden(remove(pid,getaccessorlist(r))),

setaccessorlist(r,remove(pid,getaccessorlist(r)))).

s_refresh(tid,pid,sethome(setlocalt(setstate(

setaccessorlist(r,ema),UNUSED),sub1(getlocalt(r))),

getIden(remove(pid,getaccessorlist(r))))).

s_free_flushlock(pid).

flushover(tid).Thread(tid,pid,FlushList)

<| not(eq(getIden(remove(pid,getaccessorlist(r))), pid))|>

s_refresh(tid,pid,setlocalt(setaccessorlist(

r,remove(pid,getaccessorlist(r))),sub1(getlocalt(r)))).

s_free_flushlock(pid).

flushover(tid).Thread(tid,pid,FlushList)

)

203

<| eq(count(remove(pid,getaccessorlist(r))),S(0)) |>

s_refresh(tid,pid,setlocalt(setaccessorlist(

r,remove(pid,getaccessorlist(r))),sub1(getlocalt(r)))).

s_free_flushlock(pid).

flushover(tid).Thread(tid,pid,FlushList)

))

<| eq(sub1(getlocalt(r)),0) |>

s_refresh(tid,pid,setlocalt(r,sub1(getlocalt(r)))).

s_free_flushlock(pid).

flushover(tid).Thread(tid,pid,FlushList)

%%

% Process: FlushRemote, threads invalidates from remote.

%%

proc FlushRemote(tid:ThreadId,pid:ProcessorId,FlushList:RegionIdSet,

r:Region)=

s_flush(tid,pid,gethome(r),r,T).

s_refresh(tid,pid,setlocalt(setaccessorlist(setstate(

r,UNUSED),ema),sub1(getlocalt(r)))).

s_free_flushlock(pid).

sum(pid’:ProcessorId,r_signal(tid,pid’).

flushover(tid).Thread(tid,pid,FlushList)

)

<| eq(sub1(getlocalt(r)),0) |>

s_flush(tid,pid,gethome(r),r,F).

s_refresh(tid,pid,setlocalt(setaccessorlist(

r,ema),sub1(getlocalt(r)))).s_free_flushlock(pid).

sum(pid’:ProcessorId,r_signal(tid,pid’).

flushover(tid).Thread(tid,pid,FlushList)

)

%%

% Process: Region, both thread and processor can access the information.

%%

proc Region(pid:ProcessorId,r:Region)=

sum(tid:ThreadId, s_sendback(tid,pid,r).

(r_norefresh(tid,pid).Region(pid,r)+

sum(r’:Region, r_refresh(tid,pid,r’).Region(pid,r’))

))

+ s_sendback(pid,r).

(r_norefresh(pid).Region(pid,r)+

sum(r’:Region,r_refresh(pid,r’).Region(pid,r’))

)

+ r_home.Region(pid,r)<| eq(pid,gethome(r)) |>delta

+ s_home.Region(pid,r)<| eq(pid,gethome(r)) |>delta

+ r_copy.Region(pid,r)<| not(eq(pid,gethome(r))) |>delta

+ s_copy.Region(pid,r)<| not(eq(pid,gethome(r))) |>delta

%%

% Process: Processor, dealing with four messages.

%%

proc Processor(pid:ProcessorId)=

sum(tid:ThreadId,sum(pid’:ProcessorId,sum(r’:Region,sum(b:Bool,

204 Appendix A µCRL Code of the Cache Coherence Protocol

r_data_return(tid,pid,pid’,r’,b).

(sum(r:Region,r_sendback(pid,r).

(s_signal(tid,pid).

s_refresh(pid,sethome(setstate(

r,getstate(r’)),gethome(r’))).

s_free_remotequeuelock(pid).

Processor(pid)

<| not(eq(gethome(r),pid)) |>

s_signal(tid,pid).

s_refresh(pid,sethome(setstate(

r,USED),pid)).s_free_remotequeuelock(pid).

Processor(pid)

))

<| not(b) |>

sum(r:Region,r_sendback(pid,r).

s_signal(tid,pid).

s_refresh(pid,sethome(setstate(setaccessorlist(

r,getaccessorlist(r’)),USED),pid)).

s_free_remotequeuelock(pid).

Processor(pid)

))

))))

+ sum(tid:ThreadId,sum(pid’:ProcessorId,

r_data_require(tid,pid’,pid).

sum(r:Region,

r_sendback(pid,r).

(s_data_require(tid,pid’,gethome(r)).

s_norefresh(pid).

s_free_homequeuelock(pid).

Processor(pid)

<| not(eq(gethome(r),pid)) |>

((s_data_return(tid,pid’,pid,sethome(setstate(

setaccessorlist(r,insert(pid’,

getaccessorlist(r))),UNUSED),pid’),T).

s_refresh(pid,sethome(setstate(setaccessorlist(

r,ema),UNUSED),pid’)).

s_free_homequeuelock(pid).

Processor(pid)

<| eq(getstate(r),UNUSED) |>

s_data_return(tid,pid’,pid,

setstate(setaccessorlist(r,

insert(pid’,getaccessorlist(r))),USED),F).

s_refresh(pid,setstate(setaccessorlist(

r,insert(pid’,getaccessorlist(r))),USED)).

s_free_homequeuelock(pid).

Processor(pid)

)

<| not(eq(pid,pid’)) |>

s_signal(tid,pid).

s_refresh(pid,setstate(setaccessorlist(

205

r, insert(pid’,getaccessorlist(r))),USED)).

s_free_homequeuelock(pid).

Processor(pid)

)))

))

+ sum(tid:ThreadId,sum(pid’:ProcessorId,sum(r’:Region,sum(b:Bool,

r_flush(tid,pid’,pid,r’,b).

sum(r:Region,

r_sendback(pid,r).

(s_flush(tid,pid’,gethome(r),r’,b).

s_norefresh(pid).

s_free_homequeuelock(pid).

Processor(pid)

<| not(eq(gethome(r), pid)) |>

(s_signal(tid,pid).

s_refresh(pid,r).

s_free_homequeuelock(pid).

Processor(pid)

<| not(b) |>

(s_signal(tid,pid).

s_refresh(pid,setstate(setaccessorlist(

r,remove(pid’,getaccessorlist(r))),UNUSED)).

s_free_homequeuelock(pid).

Processor(pid)

<| empty(remove(pid’,getaccessorlist(r))) |>

((s_region_sponmigrate(tid,pid,

getIden(remove(pid’,getaccessorlist(r))),

setaccessorlist(r,

remove(pid’,getaccessorlist(r)))).

s_signal(tid,pid).

s_refresh(pid,sethome(setstate(

setaccessorlist(r,ema),UNUSED),

getIden(remove(pid’,getaccessorlist(r))))).

s_free_homequeuelock(pid).

Processor(pid)

<| not(eq(getIden(remove(pid’,

getaccessorlist(r))),gethome(r))) |>

s_signal(tid,pid).

s_refresh(pid,setstate(setaccessorlist(

r,remove(pid’,getaccessorlist(r))),USED)).

s_free_homequeuelock(pid).

Processor(pid)

)

<|eq(count(remove(pid’,getaccessorlist(r))),S(0))|>

s_signal(tid,pid).

s_refresh(pid,setaccessorlist(

r,remove(pid’,getaccessorlist(r)))).

s_free_homequeuelock(pid).

Processor(pid)

)))))

206 Appendix A µCRL Code of the Cache Coherence Protocol

)))))

+ sum(tid:ThreadId,sum(pid’:ProcessorId,sum(r’:Region,

r_region_sponmigrate(tid,pid’,pid,r’).

sum(r:Region,

r_sendback(pid,r).

s_refresh(pid,sethome(setstate(setaccessorlist(

r,getaccessorlist(r’)),USED),pid)).

s_free_homequeuelock(pid).

Processor(pid)

))))

%%

% Process: HomeQueue, size one.

%%

proc HomeQueue(pid: ProcessorId)=

sum(tid:ThreadId,sum(pid’:ProcessorId,

r_i_data_require(tid,pid’,pid).

s_require_homequeuelock(pid).

(r_no_homequeuewait(pid)+r_signal_homequeuewait(pid)).

s_i_data_require(tid,pid’,pid).HomeQueue(pid)

))

+ sum(tid:ThreadId,sum(pid’:ProcessorId,sum(r:Region,sum(b:Bool,

r_i_flush(tid,pid’,pid,r,b).

s_require_homequeuelock(pid).

(r_no_homequeuewait(pid)+r_signal_homequeuewait(pid)).

s_i_flush(tid,pid’,pid,r,b).HomeQueue(pid)

))))

+ sum(tid:ThreadId,sum(pid’:ProcessorId,sum(r:Region,

r_i_region_sponmigrate(tid,pid’,pid,r).

s_require_homequeuelock(pid).

(r_no_homequeuewait(pid)+r_signal_homequeuewait(pid)).

s_i_region_sponmigrate(tid,pid’,pid,r).HomeQueue(pid)

)))

+ homequeueempty(pid).HomeQueue(pid)

%%

% Process: RemoteQueue, size one.

%%

proc RemoteQueue(pid: ProcessorId)=

sum(tid:ThreadId,sum(pid’:ProcessorId,sum(r:Region,sum(b:Bool,

r_o_data_return(tid,pid,pid’,r,b).

s_require_remotequeuelock(pid).

(r_no_remotequeuewait(pid)+r_signal_remotequeuewait(pid)).

s_o_data_return(tid,pid,pid’,r,b).RemoteQueue(pid)

))))

+ remotequeueempty(pid).RemoteQueue(pid)

%%

% Process: Locker

%%

proc Locker(pid:ProcessorId,faulters:Natural,flushers:Natural,

homequeue:Natural,remotequeue:Natural,

wait_faulters:Natural,wait_flushers:Natural,

207

wait_homequeue:Natural,wait_remotequeue:Natural)=

lockempty(pid).

Locker(pid,faulters,flushers,homequeue,remotequeue,

wait_faulters,wait_flushers,wait_homequeue,wait_remotequeue)

<| and(and(and(and(and(and(and(

eq(faulters,0),eq(flushers,0)),eq(homequeue,0)),

eq(remotequeue,0)),eq(wait_faulters,0)),eq(wait_flushers,0)),

eq(wait_homequeue,0)),eq(wait_remotequeue,0)) |>delta

+

r_require_faultlock(pid).s_no_faultwait(pid).

Locker(pid,S(faulters),flushers,homequeue,remotequeue,

wait_faulters,wait_flushers,wait_homequeue,wait_remotequeue)

<| and(eq(faulters,0), eq(flushers,0)) |>

r_require_faultlock(pid).

Locker(pid,faulters,flushers,homequeue,remotequeue,

S(wait_faulters),wait_flushers,wait_homequeue,wait_remotequeue)

+

r_require_flushlock(pid).s_no_flushwait(pid).

Locker(pid,faulters,S(flushers),homequeue,remotequeue,

wait_faulters,wait_flushers,wait_homequeue,wait_remotequeue)

<| and(and(and(eq(faulters,0),eq(flushers,0)),

eq(homequeue,0)),eq(remotequeue,0)) |>

r_require_flushlock(pid).

Locker(pid,faulters,flushers,homequeue,remotequeue,

wait_faulters,S(wait_flushers),wait_homequeue,wait_remotequeue)

+

r_require_serverlock(pid).s_no_serverwait(pid).

Locker(pid,faulters,flushers,S(homequeue),remotequeue,

wait_faulters,wait_flushers,wait_homequeue,wait_remotequeue)

<| and(eq(homequeue,0),eq(flushers,0)) |>

r_require_serverlock(pid).

Locker(pid,faulters,flushers,homequeue,remotequeue,

wait_faulters,wait_flushers,S(wait_homequeue),wait_remotequeue)

+

r_require_homequeuelock(pid).s_no_homequeuewait(pid).

Locker(pid,faulters,flushers,S(homequeue),remotequeue,

wait_faulters,wait_flushers,wait_homequeue,wait_remotequeue)

<| and(eq(homequeue,0),eq(flushers,0)) |>

r_require_homequeuelock(pid).

Locker(pid,faulters,flushers,homequeue,remotequeue,

wait_faulters,wait_flushers,S(wait_homequeue),wait_remotequeue)

+

r_require_remotequeuelock(pid).s_no_remotequeuewait(pid).

Locker(pid,faulters,flushers,homequeue,S(remotequeue),

wait_faulters,wait_flushers,wait_homequeue,wait_remotequeue)

<| and(eq(remotequeue,0),eq(flushers,0)) |>

r_require_remotequeuelock(pid).

Locker(pid,faulters,flushers,homequeue,remotequeue,

wait_faulters,wait_flushers,wait_homequeue,S(wait_remotequeue))

+

208 Appendix A µCRL Code of the Cache Coherence Protocol

r_free_faultlock(pid).

(((s_signal_serverwait(pid).

Locker(pid,sub1(faulters),flushers,S(homequeue),

remotequeue,wait_faulters,wait_flushers,

sub1(wait_homequeue),wait_remotequeue)

+

s_signal_homequeuewait(pid).

Locker(pid,sub1(faulters),flushers,S(homequeue),

remotequeue,wait_faulters,wait_flushers,

sub1(wait_homequeue),wait_remotequeue)

)

<| and(not(eq(wait_homequeue,0)),eq(homequeue,0)) |>

((s_signal_remotequeuewait(pid).

Locker(pid,sub1(faulters),flushers,homequeue,

S(remotequeue),wait_faulters,wait_flushers,

wait_homequeue,sub1(wait_remotequeue))

<| not(eq(wait_remotequeue,0)) |>

Locker(pid,sub1(faulters),flushers,homequeue,

remotequeue,wait_faulters,wait_flushers,

wait_homequeue,wait_remotequeue)

)

<| eq(remotequeue,0) |>

Locker(pid,sub1(faulters),flushers,homequeue,

remotequeue,wait_faulters,wait_flushers,

wait_homequeue,wait_remotequeue)

))

<| and(not(and(eq(wait_homequeue,0),

eq(wait_remotequeue,0))),eq(flushers,0)) |>

(s_signal_flushwait(pid).

Locker(pid,sub1(faulters),S(flushers),homequeue,

remotequeue,wait_faulters,sub1(wait_flushers),

wait_homequeue,wait_remotequeue)

<| and(and(and(and(not(eq(wait_flushers,0)),eq(flushers,0)),

eq(homequeue,0)),eq(remotequeue,0)),eq(sub1(faulters),0)) |>

(s_signal_faultwait(pid).

Locker(pid,faulters,flushers,homequeue,

remotequeue,sub1(wait_faulters),wait_flushers,

wait_homequeue,wait_remotequeue)

<| and(and(and(not(eq(wait_faulters,0)),eq(homequeue,0)),

eq(flushers,0)),eq(sub1(faulters),0)) |>

Locker(pid,sub1(faulters),flushers,homequeue,

remotequeue,wait_faulters,wait_flushers,

wait_homequeue,wait_remotequeue)

)))

+

r_free_flushlock(pid).

(((s_signal_serverwait(pid).

Locker(pid,faulters,sub1(flushers),S(homequeue),

remotequeue,wait_faulters,wait_flushers,

sub1(wait_homequeue),wait_remotequeue)

209

+

s_signal_homequeuewait(pid).

Locker(pid,faulters,sub1(flushers),S(homequeue),

remotequeue,wait_faulters,wait_flushers,

sub1(wait_homequeue),wait_remotequeue)

)

<| and(not(eq(wait_homequeue,0)),eq(homequeue,0)) |>

((s_signal_remotequeuewait(pid).

Locker(pid,faulters,sub1(flushers),homequeue,

S(remotequeue),wait_faulters,wait_flushers,

wait_homequeue,sub1(wait_remotequeue))

<| not(eq(wait_remotequeue,0)) |>

Locker(pid,faulters,sub1(flushers),homequeue,

remotequeue,wait_faulters,wait_flushers,

wait_homequeue,wait_remotequeue)

)

<| eq(remotequeue,0) |>

Locker(pid,faulters,sub1(flushers),homequeue,

remotequeue,wait_faulters,wait_flushers,

wait_homequeue,wait_remotequeue)

))

<| and(not(and(eq(wait_homequeue,0),

eq(wait_remotequeue,0))),eq(sub1(flushers),0)) |>

(s_signal_flushwait(pid).

Locker(pid,faulters,flushers,homequeue,

remotequeue,wait_faulters,sub1(wait_flushers),

wait_homequeue,wait_remotequeue)

<| and(and(and(and(not(eq(wait_flushers,0)),eq(remotequeue,0)),

eq(homequeue,0)),eq(sub1(flushers),0)),eq(faulters,0)) |>

(s_signal_faultwait(pid).

Locker(pid,S(faulters),sub1(flushers),homequeue,

remotequeue,sub1(wait_faulters),wait_flushers,

wait_homequeue,wait_remotequeue)

<| and(and(and(not(eq(wait_faulters,0)),eq(homequeue,0)),

eq(sub1(flushers),0)),eq(faulters,0)) |>

Locker(pid,faulters,sub1(flushers),homequeue,

remotequeue,wait_faulters,wait_flushers,

wait_homequeue,wait_remotequeue)

)))

+

r_free_serverlock(pid).

(((s_signal_serverwait(pid).

Locker(pid,faulters,flushers,homequeue,

remotequeue,wait_faulters,wait_flushers,

sub1(wait_homequeue),wait_remotequeue)

+

s_signal_homequeuewait(pid).

Locker(pid,faulters,flushers,homequeue,

remotequeue,wait_faulters,wait_flushers,

sub1(wait_homequeue),wait_remotequeue)

210 Appendix A µCRL Code of the Cache Coherence Protocol

)

<| and(not(eq(wait_homequeue,0)),eq(sub1(homequeue),0)) |>

((s_signal_remotequeuewait(pid).

Locker(pid,faulters,flushers,sub1(homequeue),

S(remotequeue),wait_faulters,wait_flushers,

wait_homequeue,sub1(wait_remotequeue))

<| not(eq(wait_remotequeue,0)) |>

Locker(pid,faulters,flushers,sub1(homequeue),

remotequeue,wait_faulters,wait_flushers,

wait_homequeue,wait_remotequeue)

)

<| eq(remotequeue,0) |>

Locker(pid,faulters,flushers,sub1(homequeue),

remotequeue,wait_faulters,wait_flushers,

wait_homequeue,wait_remotequeue)

))

<| and(not(and(eq(wait_homequeue,0),

eq(wait_remotequeue,0))),eq(flushers,0)) |>

(s_signal_flushwait(pid).

Locker(pid,faulters,S(flushers),sub1(homequeue),

remotequeue,wait_faulters,sub1(wait_flushers),

wait_homequeue,wait_remotequeue)

<| and(and(and(and(not(eq(wait_flushers,0)),eq(remotequeue,0)),

eq(sub1(homequeue),0)),eq(flushers,0)),eq(faulters,0)) |>

(s_signal_faultwait(pid).

Locker(pid,S(faulters),flushers,sub1(homequeue),

remotequeue,sub1(wait_faulters),wait_flushers,

wait_homequeue,wait_remotequeue)

<| and(and(and(not(eq(wait_faulters,0)),eq(flushers,0)),

eq(sub1(homequeue),0)),eq(faulters,0)) |>

Locker(pid,faulters,flushers,sub1(homequeue),

remotequeue,wait_faulters,wait_flushers,

wait_homequeue,wait_remotequeue)

)))

+

r_free_homequeuelock(pid).

(((s_signal_serverwait(pid).

Locker(pid,faulters,flushers,homequeue,

remotequeue,wait_faulters,wait_flushers,

sub1(wait_homequeue),wait_remotequeue)

+

s_signal_homequeuewait(pid).

Locker(pid,faulters,flushers,homequeue,

remotequeue,wait_faulters,wait_flushers,

sub1(wait_homequeue),wait_remotequeue)

)

<| and(eq(sub1(homequeue),0),not(eq(wait_homequeue,0))) |>

((s_signal_remotequeuewait(pid).

Locker(pid,faulters,flushers,sub1(homequeue),

S(remotequeue),wait_faulters,wait_flushers,

211

wait_homequeue,sub1(wait_remotequeue))

<| not(eq(wait_remotequeue,0)) |>

Locker(pid,faulters,flushers,sub1(homequeue),

remotequeue,wait_faulters,wait_flushers,

wait_homequeue,wait_remotequeue)

)

<| eq(remotequeue,0) |>

Locker(pid,faulters,flushers,sub1(homequeue),

remotequeue,wait_faulters,wait_flushers,

wait_homequeue,wait_remotequeue)

))

<| and(not(and(eq(wait_homequeue,0),

eq(wait_remotequeue,0))),eq(flushers,0)) |>

(s_signal_flushwait(pid).

Locker(pid,faulters,S(flushers),sub1(homequeue),

remotequeue,wait_faulters,sub1(wait_flushers),

wait_homequeue,wait_remotequeue)

<| and(and(and(and(not(eq(wait_flushers,0)),eq(remotequeue,0)),

eq(sub1(homequeue),0)),eq(flushers,0)),eq(faulters,0)) |>

(s_signal_faultwait(pid).

Locker(pid,S(faulters),flushers,sub1(homequeue),

remotequeue,sub1(wait_faulters),wait_flushers,

wait_homequeue,wait_remotequeue)

<| and(and(and(not(eq(wait_faulters,0)),

eq(sub1(homequeue),0)),eq(flushers,0)),eq(faulters,0)) |>

Locker(pid,faulters,flushers,sub1(homequeue),

remotequeue,wait_faulters,wait_flushers,

wait_homequeue,wait_remotequeue)

)))

+

r_free_remotequeuelock(pid).

(((s_signal_serverwait(pid).

Locker(pid,faulters,flushers,S(homequeue),

sub1(remotequeue),wait_faulters,wait_flushers,

sub1(wait_homequeue),wait_remotequeue)

+

s_signal_homequeuewait(pid).

Locker(pid,faulters,flushers,S(homequeue),

sub1(remotequeue),wait_faulters,wait_flushers,

sub1(wait_homequeue),wait_remotequeue)

)

<| and(eq(homequeue,0),not(eq(wait_homequeue,0))) |>

((s_signal_remotequeuewait(pid).

Locker(pid,faulters,flushers,homequeue,

remotequeue,wait_faulters,wait_flushers,

wait_homequeue,sub1(wait_remotequeue))

<| not(eq(wait_remotequeue,0)) |>

Locker(pid,faulters,flushers,homequeue,

sub1(remotequeue),wait_faulters,wait_flushers,

wait_homequeue,wait_remotequeue)

212 Appendix A µCRL Code of the Cache Coherence Protocol

)

<| eq(sub1(remotequeue),0) |>

Locker(pid,faulters,flushers,homequeue,

sub1(remotequeue),wait_faulters,wait_flushers,

wait_homequeue,wait_remotequeue)

))

<| and(not(and(eq(wait_homequeue,0),

eq(wait_remotequeue,0))),eq(flushers,0)) |>

(s_signal_flushwait(pid).

Locker(pid,faulters,S(flushers),homequeue,

sub1(remotequeue),wait_faulters,sub1(wait_flushers),

wait_homequeue,wait_remotequeue)

<| and(and(and(and(not(eq(wait_flushers,0)),

eq(sub1(remotequeue),0)),eq(faulters,0)),

eq(homequeue,0)),eq(flushers,0)) |>

(s_signal_faultwait(pid).

Locker(pid,S(faulters),flushers,homequeue,

sub1(remotequeue),sub1(wait_faulters),

wait_flushers,wait_homequeue,wait_remotequeue)

<| and(and(and(not(eq(wait_faulters,0)),

eq(homequeue,0)),eq(flushers,0)),eq(faulters,0)) |>

Locker(pid,faulters,flushers,homequeue,

sub1(remotequeue),wait_faulters,wait_flushers,

wait_homequeue,wait_remotequeue)

)))

%%

% The protocol with 2 processors, 3 threads and 1 region.

% Each processor has a copy of the region.

%%

init hide ({...}, % Omitted. Hide all communication actions here.

encap({...}, % Omitted. Enfore all r_* s_* into c_*.

Processor(pid1) || Processor(pid2) ||

Thread(tid1,pid1,ridema) || Thread(tid2,pid2,ridema) ||

Thread(tid3,pid1,ridema) ||

Locker(pid1,0,0,0,0,0,0,0,0) || Locker(pid2,0,0,0,0,0,0,0,0) ||

HomeQueue(pid1) || HomeQueue(pid2) ||

RemoteQueue(pid1) || RemoteQueue(pid2) ||

Region(pid1,reg(rid1,pid1,UNUSED,ema,0)) ||

Region(pid2,reg(rid1,pid1,UNUSED,ema,0))

))

Bibliography

[1] J.-R. Abrial, D. Cansell, and D. Méry. A mechanically proved and incre-
mental development of IEEE 1394 FireWire tree identify protocol. Formal
Aspects of Computing, 14(3):215-227, 2003.

[2] L. Aceto, P. Bouyer, A. Burgueño, and K.G. Larsen. The power of reach-
ability testing for timed automata. Theoretical Computer Science, 300(1-
3):411-475, 2003.

[3] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[4] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System
Design, 15(1):7-48, 1999.

[5] D. Angluin. Local and global properties in networks of processors (extended
abstract). In Proc. 12th ACM Symposium on Theory of Computing, pp.
82-93. ACM, 1980.

[6] T. Arts and I.A. van Langevelde. Correct performance of transaction capa-
bilities. In Proc. 2nd Conference on Application of Concurrency to System
Design, pp. 35–42. IEEE Computer Society, 2001.

[7] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge Uni-
versity Press, 1998.

[8] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the consistency of
Koomen’s fair abstraction rule. Theoretical Computer Science, 51:129–176,
1987.

[9] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1990.

[10] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking
continuous-time Markov chains by transient analysis. In Proc. 12th Confer-
ence on Computer Aided Verification, LNCS 1855, pp. 358–372. Springer,
2000.

213

214 Bibliography

[11] C. Baier and M.Z. Kwiatkowska. Model checking for a probabilistic branch-
ing time logic with fairness. Distributed Computing, 11(3):125-155, 1998.

[12] J.W. de Bakker and J.I. Zucker. Processes and the denotational semantics
of concurrency. Information and Control, 54(1/2):70-120, 1982.

[13] T. Basten. Branching bisimilarity is an equivalence indeed! Information
Processing Letters, 58(3):141–147, 1996.

[14] A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs,
S. Mauw, and L. Heerink. Formal test automation: A simple experiment.
Proc. 12th Workshop on Testing of Communicating Systems, IFIP Confer-
ence Proceedings 147, pp. 179-196. Kluwer, 1999.

[15] J. Bengtsson, W.O.D. Griffioen, K.J. Kristoffersen, K.G. Larsen, F. Lars-
son, P. Pettersson, and Y. Wang. Automated analysis of an audio control
protocol using UPPAAL. Journal of Logic and Algebraic Programming,
52-53:163–181, 2002.

[16] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communi-
cation. Information and Computation, 60(1-3):109–137, 1984.

[17] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37:77–121, 1985.

[18] J.A. Bergstra and J.W. Klop. Verification of an alternating bit protocol by
means of process algebra. In Proc. Spring School on Mathematical Methods
of Specification and Synthesis of Software Systems, LNCS 215, pp. 9–23.
Springer, 1986.

[19] M.A. Bezem and J.F. Groote. A correctness proof of a one bit sliding
window protocol in µCRL. The Computer Journal, 37(4):289–307, 1994.

[20] M.A. Bezem and J.F. Groote. Invariants in process algebra with data.
In Proc. 5th Conference on Concurrency Theory, LNCS 836, pp. 401–416.
Springer, 1994.

[21] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. van Langevelde, B. Lisser,
and J.C. van de Pol. µCRL: A toolset for analysing algebraic specifications.
In Proc. 13th Conference on Computer Aided Verification, LNCS 2102, pp.
250–254. Springer, 2001.

[22] S.C.C. Blom, I.A. van Langevelde, and B. Lisser. Compressed and dis-
tributed file formats for labeled transition systems. In Proc. 2nd Workshop
on Parallel and Distributed Model Checking, ENTCS 89(1). Elsevier, 2003.

[23] S.C.C. Blom and J.C. van de Pol. State space reduction by proving con-
fluence. In Proc. 14th Conference on Computer Aided Verification, LNCS
2404, pp. 596–609. Springer, 2002.

Bibliography 215

[24] M. Broy, S. Merz, and M. Spies, eds. Formal Systems Specification: The
RPC-Memory Specification Case Study, LNCS 1169. Springer, 1996.

[25] J.J. Brunekreef. Sliding window protocols. In Algebraic Specification of
Protocols. Cambridge Tracts in Theoretical Computer Science 36, pp. 71–
112. Cambridge University Press, 1993.

[26] J.J. Brunekreef, J.-P. Katoen, R.L.C. Koymans, and S. Mauw. Algebraic
specification of dynamic leader election protocols in broadcast networks.
Distributed Computing, 9(4):157-171, 1996.

[27] J.E. Burns. A formal model for message passing systems. Technical Report
TR-91, Indiana University, 1980.

[28] M. Calder and A. Miller. Using Spin to analyse the tree identity phase of
the IEEE 1394 high-performance serial bus (FireWire) protocol. Formal
Aspects of Computing, 14(3):247-266, 2003.

[29] R. Cardell-Oliver. Using higher order logic for modelling real-time proto-
cols. In Proc. 4th Joint Conference on Theory and Practice of Software
Development, LNCS 494, pp. 259–282. Springer, 1991.

[30] V.G. Cerf and R.E. Kahn. A protocol for packet network intercommunica-
tion. IEEE Transactions on Communications, 22(5):637–648, 1974.

[31] K.M. Chandy and J. Misra. Parallel Program Design. A Foundation. Ad-
dison Wesley, 1988.

[32] E.J.H. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Communication of
the ACM, 22(5):281-283, 1979.

[33] D. Chkliaev, J. Hooman, and E. de Vink. Verification and improvement
of the sliding window protocol. In Proc. 9th Conference on Tools and
Algorithms for the Construction and Analysis of Systems, LNCS 2619, pp.
113–127. Springer, 2003.

[34] A. Cimatti, F. Giunchiglia, P. Pecchiari, B. Pietra, J. Profeta, D. Romano,
P. Traverso, and B. Yu. A provably correct embedded verifier for the cer-
tification of safety critical software. In Proc. 9th Conference on Computer
Aided Verification, LNCS 1254, pp. 202–213. Springer, 1997.

[35] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press,
2000.

[36] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems Concepts
and Design. Addison Wesley, 1994.

[37] B. Courcelle. Recursive applicative program schemes. In Handbook of
Theoretical Computer Science, Volume B, Formal Methods and Semantics,
pp. 459–492. Elsevier, 1990.

216 Bibliography

[38] G. Delzanno. Automatic verification of parameterized cache coherence pro-
tocols. In Proc. 12th Conference on Computer Aided Verification, LNCS
1855, pp. 53–68. Springer, 2000.

[39] M.C.A. Devillers, W.O.D. Griffioen, J.M.T. Romijn, and F.W. Vaandrager.
Verification of a leader election protocol - Formal methods applied to IEEE
1394. Formal Methods in System Design, 16(3):307–320, 2000.

[40] E.W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
munications of the ACM, 17(11):643–644, 1974.

[41] E.W. Dijkstra. Self-stabilization in spite of distributed control. In Selected
Writings on Computing: A Personal Perspective, pp. 41–46, Springer, 1982.

[42] E.W. Dijkstra. A belated proof of self-stabilization. Distributed Computing,
1(1):5-6, Springer, 1986.

[43] D.L. Dill. The Murphi verification system. In Proc. 8th Conference on
Computer Aided Verification, LNCS 1102, pp. 390-393. Springer, 1996.

[44] D. Dolev, M. Klawe, and M. Rodeh. An O(n logn) unidirectional dis-
tributed algorithm for extrema finding in a circle. Journal of Algorithms,
3:245-260, 1982.

[45] M. Dubois, J.-C. Wang, L. Barroso, K. Lee, and Y.-S. Chen. Delayed
consistency and its effects on the miss rate of parallel programs. In Proc.
1991 ACM/IEEE Conference on Supercomputing, pp. 197–206, 1991.

[46] P.H.J. van Eijk, C.A. Vissers, and M. Diaz, eds. The formal description
technique LOTOS. Elsevier, 1989.

[47] E.A. Emerson and J.Y. Halpern. “Sometimes” and “not never” revisited:
on branching versus linear time. Journal of the ACM, 33(1):151-178, 1986.

[48] E.A. Emerson and C.-L. Lei. Modalities for model checking: branching
time logic strikes back. Science of Computer Programming, 8(3):275-306,
1987.

[49] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and
M. Sighireanu. CADP – A protocol validation and verification toolbox.
In Proc. 8th Conference on Computer-Aided Verification, LNCS 1102, pp.
437–440. Springer, 1996.

[50] W.J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, 2000.

[51] W.J. Fokkink, J.F. Groote, J. Pang, B. Badban, and J.C. van de Pol.
Verifying a sliding window protocol in µCRL. In Proc. 10th Conference on
Algebraic Methodology and Software Technology, LNCS 3116. pp. 148-163.
Springer, 2004.

Bibliography 217

[52] W.J. Fokkink, J.-H. Hoepman, and J. Pang. A note on K-state self-
stabilization in a ring with K = N . CWI Technical Report SEN-R0402,
2004.

[53] W.J. Fokkink, N.Y. Ioustinova, E. Kesseler, J.C. van de Pol, Y.S. Usenko,
and Y.A. Yushtein. Refinement and verification applied to an in-flight data
acquisition unit. In Proc. 13th Conference on Concurrency Theory, LNCS
2421, pp. 1–23. Springer, 2002.

[54] W.J. Fokkink and J. Pang. Cones and foci for protocol verification re-
visited. In Proc. 6th Conference on Foundations of Software Science and
Computation Structures, LNCS 2620, pp. 267–281. Springer, 2003.

[55] W.J. Fokkink and J. Pang. Formal verification of timed systems using cones
and foci. In Proc. 6th AMAST Workshop on Real-Time Systems, ENTCS,
Elsevier, 2004. To appear.

[56] W.J. Fokkink and J. Pang. Simplifying Itai-Rodeh leader election for
anonymous rings. CWI Technical Report SEN-R0405, 2004.

[57] W.J. Fokkink and J.C. van de Pol. Simulation as a correct transformation
of rewrite systems. In Proc. 22nd Symposium on Mathematical Foundations
of Computer Science, LNCS 1295, pp. 249–258. Springer, 1997.

[58] R. Franklin. On an improved algorithm for decentralized extrema find-
ing in circular configurations of processors. Communication of the ACM,
25(5):336-337, 1982.

[59] G.N. Frederickson and N.A. Lynch. Electing a leader in a synchronous ring.
Journal of the ACM, 34(1):98-115, 1987.

[60] L.A. Fredlund, J.F. Groote, and H.P. Korver. Formal verification of a
leader election protocol in process algebra. Theoretical Computer Science,
177(2):459-486, 1997.

[61] M. Fujita, P.C. McGeer, and J.C-Y. Yang. Multi-terminal binary decision
diagrams: An efficient data structure for matrix representation. Formal
Methods in System Design, 10(2/3):149-169, 1997.

[62] H. Garavel and L. Mounier. Specification and verification of various dis-
tributed leader election algorithms for unidirectional ring networks. Science
of Computer Programming, 29(1/2):171-197, 1997.

[63] H. Garavel, F. Lang and R. Mateescu. An overview of CADP 2001. Euro-
pean Association for Software Science and Technology Newsletter 4:13-24,
2002.

[64] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in
bisimulation semantics. Journal of the ACM, 43(3):555–600, 1996.

218 Bibliography

[65] P. Godefroid and D.E. Long. Symbolic protocol verification with Queue
BDDs. Formal Methods and System Design, 14(3):257–271, 1999.

[66] W. Goerigk and F. Simon. Towards rigorous compiler implementation ver-
ification. In Collaboration between Human and Artificial Societies, Coor-
dination and Agent-Based Distributed Computing, LNCS 1624, pp. 62–73.
Springer, 1999.

[67] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison
Wesley, 1996.

[68] R.A. Groenveld. Verification of a sliding window protocol by means of
process algebra. Report P8701, University of Amsterdam, 1987.

[69] J.F. Groote. Process Algebra and Structured Operational Semantics. PhD
thesis, University of Amsterdam, 1991.

[70] J.F. Groote and B. Lisser. Computer assisted manipulation of algebraic
process specifications. In Proc. 3rd Workshop on Verification and Com-
putational Logic, Technical Report DSSE-TR-2002-5. Department of Elec-
tronics and Computer Science, University of Southampton, 2002.

[71] J.F. Groote and H.P. Korver. Correctness proof of the bakery protocol in
µCRL. In Proc. 1st Workshop on the Algebra of Communicating Processes,
Workshops in Computing, pp. 63–86. Springer, 1995.

[72] J.F. Groote, F. Monin, and J.C. van de Pol. Checking verifications of
protocols and distributed systems by computer. In Proc. 9th Conference
on Concurrency Theory, LNCS 1466, pp. 629–655. Springer, 1998.

[73] J.F. Groote, J. Pang, and A.G. Wouters. Analysis of a distributed system
for lifting trucks. Journal of Logic and Algebraic Programming, 55(1/2):21–
56, 2003.

[74] J.F. Groote and A. Ponse. Proof theory for µCRL: A language for processes
with data. In Proc. Workshop on Semantics of Specification Languages,
Workshops in Computing, pp. 232–251. Springer, 1994.

[75] J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In Proc.
1st Workshop on the Algebra of Communicating Processes, Workshops in
Computing Series, pp. 26–62. Springer, 1995.

[76] J.F. Groote, A. Ponse, and Y.S. Usenko. Linearization in parallel pCRL.
Journal of Logic and Algebraic Programming, 48(1/2):39–72, 2001.

[77] J.F. Groote and M.A. Reniers. Algebraic process verification. In J.A.
Bergstra, A. Ponse, and S.A. Smolka, eds. Handbook of Process Algebra,
pp. 1151–1208. Elsevier, 2001.

[78] J.F. Groote and M.P.A Sellink. Confluence for process verification. Theo-
retical Computer Science, 170(1/2):47–81, 1996.

Bibliography 219

[79] J.F. Groote and J. Springintveld. Focus points and convergent process
operators. A proof strategy for protocol verification. Journal of Logic and
Algebraic Programming, 49(1/2):31–60, 2001.

[80] J.F. Groote and F.W. Vaandrager. An efficient algorithm for branching
bisimulation and stuttering equivalence. In Proc. 17th Colloquium on Au-
tomata, Languages and Programming, LNCS 443, pp. 626–638. Springer,
1990.

[81] J.F. Groote and J.J. van Wamel. The parallel composition of uniform
processes with data. Theoretical Computer Science, 266(1/2):65-75, 2001.

[82] B.T. Hailpern. Verifying Concurrent Processes Using Temporal Logic.
LNCS 129, Springer, 1982.

[83] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing 6(5): 512-535, 1994.

[84] K. Havelund, K.G. Larsen, and A. Skou. Formal verification of a power con-
troller using the real-time model checker UPPAAL. In Proc. 5th AMAST
Workshop on Formal Methods for Real-Time and Probabilistic Systems,
LNCS 1601, pp. 277-298. Springer, 1999.

[85] M.C.B. Hennessy and R. Milner. Algebraic laws for nondeterminism and
concurrency. Journal of the ACM, 32(1):137-161, 1985.

[86] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for
hybrid systems. Software Tools for Technology Transfer, 1(1/2):110-122,
1997.

[87] T.A. Henzinger, S. Qadeer, and S. Rajamani. Verifying sequential consis-
tency on shared memory multiprocessor systems. In Proc. 11th Conference
on Computer Aided Verification, LNCS 1633, pp. 301–315. Springer, 1999.

[88] D.S. Hirschberg and J.B. Sinclair. Decentralized extrema-finding in circular
configurations of processes. Communication of the ACM, 23(11):627-628,
1980.

[89] C.A.R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666–677, 1978.

[90] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[91] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall, 1991.

[92] G.J. Holzmann. The model checker Spin. IEEE Transactions on Software
Engineering, 23(5):279-295, 1997.

220 Bibliography

[93] J. Hooman and J.C. van de Pol. Formal verification of replication on a
distributed data space architecture. In Proc. ACM 2002 Symposium on
Applied Computing, Special Track on Coordination Models, Languages and
Applications, pp. 351-358. ACM, 2002.

[94] G.E. Hughes and M.J. Cresswell. A Companion to Modal Logic. Methuen,
1984.

[95] A. Itai and M. Rodeh. Symmetry breaking in distributive networks. In
Proc. 22nd Annual Symposium on Foundations of Computer Science, pp.
150–158. IEEE Computer Society, 1981.

[96] A. Itai and M. Rodeh. Symmetry breaking in distributed networks. Infor-
mation and Computation, 88(1):60-87, 1990.

[97] B. Jonsson. Compositional Verification of Distributed Systems. PhD thesis,
Department of Computer Science, Uppsala University, 1987.

[98] B. Jonsson and M. Nilsson. Transitive closures of regular relations for ver-
ifying infinite-state systems. In Proc. 6th Conference on Tools and Algo-
rithms for Construction and Analysis of Systems, LNCS 1785, pp. 220–234.
Springer, 2000.

[99] R. Kaivola. Using compositional preorders in the verification of sliding
window protocol. In Proc. 9th Conference on Computer Aided Verification,
LNCS 1254, pp. 48–59. Springer, 1997.

[100] B. Karstens. Formal verification of the redesign of a distributed lift system
using UPPAAL. Master thesis, Utrecht University, 2003.

[101] P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks: Dis-
tributed shared memory on standard workstations and operating systems.
In Proc. USENIX Winter 1994 Conference, pp. 115–132, 1994.

[102] R.M. Keller. Formal verification of parallel programs. Communications
of the ACM, 19(7):371–384, 1976.

[103] D.E. Knuth. Verification of link-level protocols. BIT, 21:21–36, 1981.

[104] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333-354, 1983.

[105] C.P.J. Koymans and J.C. Mulder. A modular approach to protocol verifi-
cation using process algebra. In Applications of Process Algebra, Cambridge
Tracts in Theoretical Computer Science 17, pp. 261–306. Cambridge Uni-
versity Press, 1990.

[106] S.S. Kulkarni, J. Rushby, and N. Shankar. A case-study in component-
based mechanical verification of fault-tolerant programs. In Proc. 4th Work-
shop on Self-Stabilization, pp. 33-40. IEEE Computer Society, 1999.

Bibliography 221

[107] M.Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic
symbolic model checker. In Proc. 12th Conference on Computer Perfor-
mance Evaluation, Modelling Techniques and Tools, LNCS 2324, pp. 200-
204. Springer, 2002.

[108] L. Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, 3(2):125-143, 1977.

[109] L. Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess program. IEEE Transaction on Computers, 28(9):690–
691, 1979.

[110] L. Lamport. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison Wesley, 2003.

[111] K.G. Larsen, P. Pettersson, and Y. Wang. UPPAAL in a nutshell. Software
Tools for Technology Transfer, 1(1/2):134–152, 1997.

[112] T. Latvala. Model checking LTL properties of high-level Petri nets with
fairness constraints. In Proc. 22nd Conference on Application and Theory
of Petri Nets, LNCS 2075, pp. 242–262. Springer, 2001.

[113] G. Le Lann. Distributed systems: Towards a formal approach. Informa-
tion Processing 77, Proc. of the IFIP Congress, pp. 155-160, 1977.

[114] M. Lindahl, P. Pettersson, and Y. Wang. Formal design and analysis of
a gear controller. Software Tools for Technology Transfer, 3(3):353–368,
2001.

[115] J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of Abstract Data
Types. Wiley/Teubner, 1996.

[116] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[117] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for dis-
tributed algorithms. In Proc. 6th ACM Symposium on Principles of Dis-
tributed Computing, pp. 137–151. ACM, 1987.

[118] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations.
Part I: Untimed systems. Information and Computation, 121(2):214–233,
1995.

[119] E. Madelaine and D. Vergamini. Specification and verification of a sliding
window protocol in Lotos. In Proc. 4th Conference on Formal Description
Techniques for Distributed Systems and Communication Protocols, IFIP
Transactions (C-2), pp. 495-510. North-Holland, 1991.

[120] J. Maessen, Arvind, and X. Shen. Improving the Java memory model
using CRF. In Proc. 2000 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, pp. 1–12. ACM, 2000.

222 Bibliography

[121] J. Manson and W. Pugh. Core semantics of multithreaded Java. In Proc.
ACM 2001 Java Grande Conference, pp. 29–38. ACM, 2001.

[122] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for
regular alternation-free mu-calculus. Science of Computer Programming,
46(3):255-281, 2003.

[123] S. Mauw and G.J. Veltink. A process specification formalism. Fundamenta
Informaticae, 13(2):85–139, 1990.

[124] S. Merz. On the verification of a self-stabilizing algorithm. Technical
Report, University of Munich, 1998.

[125] A. Middeldorp. Specification of a sliding window protocol within the
framework of process algebra. Report FVI 86-19, University of Amsterdam,
1986.

[126] R. Milner. A Calculus of Communicating Systems. LNCS 92, Springer,
1980.

[127] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25(3):267-310, 1983.

[128] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[129] G.C. Necula. Translation validation for an optimizing compiler. In Proc.
2000 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 83–94. ACM, 2000.

[130] T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assis-
tant for Higher-Order Logic. Springer, 2002.

[131] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS:
Combining specification, proof checking, and model checking. In Proc.
8th Conference on Computer-Aided Verification, LNCS 1102, pp. 411-414.
Springer, 1996.

[132] K. Paliwoda and J.W. Sanders. An incremental specification of the sliding-
window protocol. Distributed Computing, 5:83–94, 1991.

[133] J. Pang. Analysis of a security protocol in µCRL. In Proc. 4th Conference
on Formal Engineering Methods, LNCS 2495, pp. 396-400. Springer, 2002.

[134] J. Pang, W.J. Fokkink, R.F.H. Hofman, and R. Veldema. Model check-
ing a cache coherence protocol for a Java DSM implementation. In Proc.
8th Workshop on Formal Methods for Parallel Programming: Theory and
Applications, 238. IEEE Computer Society, 2003.

[135] J. Pang, B. Karstens, and W.J. Fokkink. Analyzing the redesign of a
distributed lift system in UPPAAL. In Proc. 5th Conference on Formal
Engineering Methods, LNCS 2885, pp. 504-522. Springer, 2003.

Bibliography 223

[136] J. Pang, J.C. van de Pol, and M. Valero Espada. Abstraction of parallel
uniform processes with data. In Proc. 2nd Conference on Software Engi-
neering and Formal Methods, IEEE Computer Society, 2004, To appear.

[137] D.M.R. Park. Concurrency and automata on infinite sequences. In Proc.
5th GI-Conference on Theoretical Computer Science, LNCS 104, pp. 167-
183. Springer, 1981.

[138] G.L. Peterson. An O(n logn) unidirectional algorithm for the circular ex-
trema problem. IEEE Transactions on Programming Languages and Sys-
tems, 4(4):758-762, 1982.

[139] A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symposium
on Foundations of Computer Science, pp. 46-57. IEEE Computer Society,
1977.

[140] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Proc.
4th Conference on Tools and Algorithms for Construction and Analysis of
Systems, LNCS 1384, pp. 151–166. Springer, 1998.

[141] J.C. van de Pol. A prover for the µCRL toolset with applications – version
0.1. Technical Report SEN-R0106, CWI Amsterdam, 2001.

[142] J.C. van de Pol and M. Valero Espada. Formal specification of Java-
SpacesTM architecture using µCRL. In Proc. 5th Conference on Coordina-
tion Models and Languages, LNCS 2315, pp. 274–290. Springer, 2002.

[143] F. Pong and M. Dubois. Formal automatic verification of cache coherence
in multiprocessors with relaxed memory models. IEEE Transaction on
Parallel and Distributed Systems, 11(9):989–1006, 2000.

[144] S. Qadeer and N. Shankar. Verifying a self-stabilizing mutual exclusion
algorithm. In Proc. IFIP Working Conference on Programming Concept
and Methods, pp. 424-442. Chapman & Hall, 1998.

[145] J-P. Queille and J. Sifakis. Fairness and related properties in transition
systems - A temporal logic to deal with fairness. Acta Informatica, 19:195-
220, 1983.

[146] J.L. Richier, C. Rodriguez, J. Sifakis, and J. Voiron. Verification in Xe-
sar of the sliding window protocol. In Proc. 7th Conference on Protocol
Specification, Testing and Verification, pp. 235–248. North-Holland, 1987.

[147] Robert Bosch GmbH, Postfach 30 02 40, D-70442 Stuttgart, Germany.
CAN Specification. Version 2.0, 1991.

[148] C. Röckl and J. Esparza. Proof-checking protocols using bisimulations. In
Proc. 10th Conference on Concurrency Theory, LNCS 1664, pp. 525–540.
Springer, 1999.

224 Bibliography

[149] J.M.T. Romijn. Analysing Industrial Protocols with Formal Methods. PhD
thesis, University of Twente, 1999.

[150] J.M.T. Romijn. A timed verification of the IEEE 1394 leader election
protocol. Formal Methods in System Design, 19(2):165–194, 2001.

[151] A. Roychoudhury and T. Mitra. Specifying multithreaded Java semantics
for program verification. In Proc. ACM SIGSOFT Conference on Software
Engineering, pp. 192–201. ACM, 2002.

[152] V. Rusu. Verifying a sliding-window protocol using PVS. In Proc. 21st
Conference on Formal Techniques for Networked and Distributed Systems,
IFIP Conference Proceedings 197, pp. 251-268. Kluwer, 2001.

[153] M. Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45-67,
1993.

[154] A.A. Schoone. Assertional Verification in Distributed Computing. PhD
thesis, Utrecht University, 1991.

[155] V. Schuppan and A. Biere. Verifying the IEEE 1394 FireWire tree identity
protocol with SMV. Formal Aspects of Computing, 14(3):267-280, 2003.

[156] C. Shankland and A. Verdejo. A case study in abstraction using E-LOTOS
and the FireWire. Computer Networks, 37(3/4):481-502, 2001.

[157] C. Shankland and M. B. van der Zwaag. The tree identify protocol of IEEE
1394 in µCRL. Formal Aspects of Computing, 10(5/6):509-531, 1998.

[158] X. Shen, Arvind, and L. Rodolph. Cachet: an adaptive cache coherence
protocol of distributed shared memory systems. In Proc. 13th ACM Con-
ference on Supercomputing, pp. 135–144, 1999.

[159] S.K. Shukla, D.J. Rosenkrantz, and S.S. Ravi. Simulation and validation
tool for self-stabilizing protocols. In Proc. 2nd SPIN Workshop, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science (32),
1996.

[160] M.A. Smith and N. Klarlund. Verification of a sliding window protocol
using IOA and MONA. In Proc. 20th Conference on Formal Techniques
for Distributed System Development, IFIP Conference Proceedings 183, pp.
19–34. Kluwer, 2000.

[161] J.L.A. van de Snepscheut. The sliding window protocol revisited. Formal
Aspects of Computing, 7(1):3–17, 1995.

[162] K. Stahl, K. Baukus, Y. Lakhnech, and M. Steffen. Divide, abstract,
and model-check. In Proc. 6th SPIN Workshop, LNCS 1680, pp. 57–76.
Springer, 1999.

Bibliography 225

[163] N.V. Stenning. A data transfer protocol. Computer Networks, 1(2):99–
110, 1976.

[164] J. Stoy, X. Shen, and Arvind. Proofs of correctness of cache-coherence
protocols. In Formal Methods for Increasing Software Productivity: Proc.
Symposium of Formal Methods Europe, LNCS 2021, pp. 43–71. Springer,
2001.

[165] A.S. Tanenbaum. Computer Networks. Prentice Hall, 1981.

[166] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285–309, 1955.

[167] G. Tel. Introduction to Distributed Algorithms. Cambridge University
Press, 1994.

[168] O.E. Theel. Exploitation of Ljapunov theory for verifying self-stabilizing
algorithms. In Proc. 14th Conference on Distributed Computing, LNCS
1914, pp. 209-222. Springer, 2000.

[169] T. Tsuchiya, S. Nagano, R.B. Paidi, and T. Kikuno. Symbolic model
checking for self-stabilizing algorithms. IEEE Transaction on Parallel and
Distributed Systems, 12(1):81-95, 2001.

[170] Y.S. Usenko. Linearization of µCRL specifications (extended abstract).
In Proc. 3rd Workshop on Verification and Computational Logic, Tech-
nical Report DSSE-TR-2002-5. Department of Electronics and Computer
Science, University of Southampton, 2002.

[171] F.W. Vaandrager. Verification of two communication protocols by means
of process algebra. Report CS-R8608, CWI, Amsterdam, 1986.

[172] G. Varghese. Self-Stabilization by Local Checking and Corrections. PhD
thesis, MIT, 1992.

[173] R. Veldema, R.F.H. Hofman, R. Bhoedjang, and H.E. Bal. Runtime op-
timizations for a Java DSM implementation. In Proc. ACM Java Grande
Conference, pp. 153–162. ACM, 2001.

[174] R. Veldema, R.F.H. Hofman, R. Bhoedjang, C. Jacobs, and H.E. Bal.
Source-level global optimizations for fine-grain distributed shared memory
systems. In Proc. 8th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pp. 83–92. ACM, 2001.

[175] A. Verdejo, I. Pita, and N. Marti-Oliet. Specification and verification of
the tree identify protocol of IEEE 1394 in rewriting logic. Formal Aspects
of Computing, 14(3):228-246, 2003.

[176] J.J. van Wamel. A study of a one bit sliding window protocol in ACP.
Report P9212, University of Amsterdam, 1992.

226 Bibliography

[177] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Analyzing the CRF Java
memory model. In Proc. 8th Asia-Pacific Software Engineering Conference,
pp. 21–28. IEEE Computer Society, 2001.

[178] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Specifying Java thread
semantics using a uniform memory model. In Proc. ACM 2002 Java Grande
Conference, pp. 192–201. ACM, 2002.

[179] Y. Zhou, L. Iftode, and K. Li. Performance evaluation of two home-based
lazy release-consistency protocols for shared virtual memory systems. In
Proc. 2nd USENIX Symposium on Operating Systems Design and Imple-
mentation, pp. 75–88, 1996.

[180] M.B. van der Zwaag. The cones and foci proof technique for timed tran-
sition systems. Information Processing Letters, 80(1):33–40, 2001.

Summary

The design and implementation of distributed systems are error-prone and be-
coming extremely complex. Formal methods can be used to specify systems
in a precise, consistent and non-ambiguous way. Moreover, formal verification
techniques, such as model checking and theorem proving, can be used to verify
whether a system has desired properties. The proper use of formal methods will
lead to more reliable, dependable, and secure systems in the future.

Chapter 3 presents a cones and foci proof method, which rephrases the ques-
tion whether two system specifications are branching bisimilar in terms of proof
obligations on relations between data objects. Compared to the original cones
and foci method from Groote and Springintveld [79], this method is more gener-
ally applicable, and does not require a preprocessing step to eliminate internal
loops. The method has been formalized and proved correct using the theorem
prover PVS [131]. Thus a framework for mechanical protocol verification has
been established.

Chapter 4 presents the verification of one of the most complex sliding window
protocols presented in Tanenbaum’s Computer Networks textbook [165] using
the cones and foci method and its mechanical framework in PVS. We proved the
correctness of this sliding window protocol with an arbitrary finite window size
n and sequence numbers modulo 2n. We showed that the external behavior of
this protocol is equivalent to a FIFO queue of capacity 2n. This proof is entirely
based on the axiomatic theory underlying µCRL and the axioms characterizing
the data types, and was checked with the help of PVS.

Chapter 5 presents that, contrary to common belief, Dijkstra’s K-state mu-
tual exclusion algorithm on a ring [40, 41] also stabilizes when the number K
of states per process is one less than the number N + 1 of processes in the ring.
The algorithm and the proof has been formalized and checked in PVS, based
on Qadeer and Shankar’s work [144].

Chapter 6 presents the analysis of a distributed system for lifting trucks.
When testing the implementation of the system, the developers found prob-
lems. They solved these problems by trial and error, partly because the causes
of problems were unclear. The analysis of the original design of the system in
µCRL [75, 21] in combination with the CADP toolset [49, 63] revealed the rea-
sons for the problems. Another new problem was found in the model, which was
indeed present in the implementation of the system. Solutions were proposed
and included in the µCRL specification, and we showed by model checking that

227

228 Summary

the problems were solved indeed. The developers tried to solve the problems
independently. They made a redesign of the lift system based on their own
solutions, The redesign was analyzed by using the real-time model checker UP-
PAAL [111]. We showed that the solutions of the developers do not solve the
problems completely, while a refined version of our solutions contained in the
µCRL specification does. Currently, the lift system is under revision, and our
solutions to the problems are being implemented.

Chapter 7 presents the analysis of a self-invalidation based, multiple-writer
cache coherence protocol for Jackal, which is a fine-grained, distributed shared
memory implementation of Java. The verification allowed to discover two errors
in the design of the cache coherence protocol. Also, a large number of inconsis-
tencies and misunderstandings were found, mostly caused by the evolution of
the implementation simultaneously with the formal analysis process. This case
study benefited a lot from the µCRL distributed state space generation tool,
and also pushed forward its development.

Chapter 8 presents two probabilistic leader election algorithms for anony-
mous unidirectional rings with FIFO channels, based on an algorithm from Itai
and Rodeh [95]. In contrast to the Itai-Rodeh algorithm, our algorithms are
finite-state. So they can be analyzed using explicit state space exploration; we
used the probabilistic model checker PRISM [107] to verify, for rings up to size
four, that eventually a unique leader is elected with probability one.

Nederlandse Samenvatting

Formele Verificatie van Gedistribueerde Systemen

Het ontwerp en implementeren van gedistribueerde systemen is zeer gecom-
pliceerd geworden, en daarmee gevoelig voor fouten. Formele methoden kunnen
worden gebruikt voor precieze en consistente specificatie van systemen. Boven-
dien kunnen formele verificatie gereedschappen, zoals model checkers en au-
tomatische stellingbewijzers, worden gebruikt om na te gaan of een systeem de
gewenste eigenschappen heeft. Goed gebruik van formele methoden zal in de
toekomst leiden tot betrouwbaarder en veiliger gedistribueerde systemen.

Hoofdstuk 3 presenteert een cones en foci bewijsmethode, die de vraag of
twee systeem-specificaties equivalent zijn herformuleert in termen van bewijsver-
plichtingen en relaties tussen data-objecten. Deze methode is algemener toepas-
baar dan de originele cones en foci methode van Groote en Springintveld [79],
en is geformaliseerd en correct bewezen met behulp van de stellingbewijzer
PVS [131]. Aldus wordt een raamwerk voor mechanische protocol-verificatie
verkregen.

Hoofdstuk 4 bevat de verificatie van één van de meest ingewikkelde sliding
window protocollen uit Tanenbaum’s Computer Networks tekstboek [165], op
basis van het raamwerk uit het vorige hoofdstuk. De correctheid van dit sliding
window protocol wordt aangetoond voor een willekeurige omvang van de win-
dows, en voor volgnummers modulo 2n. Het externe gedrag van het protocol
is equivalent met een FIFO queue van capaciteit 2n. Het bewijs is volledig
gebaseerd op de axiomatische theorie die ten grondslag ligt aan µCRL, en de
axioma’s voor de data-types.

Hoofdstuk 5 laat zien dat (in tegenstelling tot wat soms wordt beweerd) Di-
jkstra’sK-state mutual exclusion algoritme voor een ring [40, 41] ook stabiliseert
wanneer het aantal K van toestanden per proces één minder is dan het aantal
N + 1 van processen in de ring. Het algoritme en het bewijs zijn geformaliseerd
in PVS, op basis van eerder werk van Qadeer and Shankar [144].

Hoofdstuk 6 presenteert de analyse van een gedistribueerd systeem voor
het optillen van voertuigen zoals vrachtwagens en treinen. Tijdens het testen
van een implementatie liepen de ontwerpers van het systeem tegen problemen
aan. Deze problemen werden ad hoc opgelost, zonder dat de oorzaken van de
problemen echt duidelijk waren geworden. Door middel van een analyse van

229

230 Nederlandse Samenvatting

het oorspronkelijke systeem-ontwerp met µCRL [75, 21], in combinatie met de
CADP toolset [49, 63], konden we de oorzaken voor de problemen aantonen.
Bovendien werd een nieuw probleem gedetecteerd, dat inderdaad aanwezig bleek
te zijn in de implementatie. We stelden oplossingen voor en namen die op
in de µCRL specificatie. Door middel van model checken met CADP werd
aannemelijk gemaakt dat de problemen aldus werkelijk waren opgelost. De
ontwerpers echter maakten in de tussentijd onafhankelijk een herontwerp van
het liftsysteem, en namen daarin andere oplossingen op voor bovengenoemde
problemen. We analyseerden dit herontwerp met behulp van de tijdsgebaseerde
model checker UPPAAL [111]. Deze analyse toonde aan dat de oplossingen van
de ontwerpers de problemen niet volledig oplossen, terwijl een verfijnde versie
van onze oplossingen dat wel doet. Momenteel is het liftsysteem opnieuw onder
revisie, en worden onze oplossingen gëımplementeerd.

Hoofdstuk 7 bevat de analyse van een multiple-writer cache coherence proto-
col voor een gedistribueerde shared memory implementatie van Java, genaamd
Jackal. Tijdens de verificatie, door middel van model checken, werden twee
fouten ontdekt in het ontwerp van dit cache coherence protocol. Ook werden
een groot aantal tegenstrijdigheden en misverstanden aan het licht gebracht, in
de meeste gevallen veroorzaakt door de ontwikkeling van de implementatie in
parallel met onze verificatie. Doordat bij deze verificatie zeer grote toestand-
sruimten gegenereerd werden, was het gebruik van een gedistribueerde generator
essentieel. Anderzijds bleek deze case-studie een belangrijke drijfveer tot verdere
verbetering van deze gedistribueerde generator.

Hoofdstuk 8 presenteert twee probabilistische leader election algoritmes voor
anonieme, unidirectionele ringen met FIFO kanalen, gebaseerd op een algoritme
van Itai en Rodeh [95]. In tegenstelling tot het Itai-Rodeh algoritme hebben
onze algoritmes een eindige toestandsruimte. Aldus kunnen zij worden geanaly-
seerd door middel van expliciete exploratie van de toestandsruimte; wij hebben
de probabilistische model checker PRISM [107] gebruikt om te verifiëren, voor
ringen ter grootte Vier, dat met kans één uiteindelijk een unieke leider wordt
gekozen.

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Pro-

cess Algebra. Faculty of Mathematics and
Computing Science, TUE. 1996-01

A.M. Geerling. Transformational Devel-

opment of Data-Parallel Algorithms. Fac-
ulty of Mathematics and Computer Science,
KUN. 1996-02

P.M. Achten. Interactive Functional Pro-

grams: Models, Methods, and Implementa-

tion. Faculty of Mathematics and Computer
Science, KUN. 1996-03

M.G.A. Verhoeven. Parallel Local

Search. Faculty of Mathematics and Com-
puting Science, TUE. 1996-04

M.H.G.K. Kesseler. The Implementation

of Functional Languages on Parallel Ma-

chines with Distrib. Memory. Faculty of
Mathematics and Computer Science, KUN.
1996-05

D. Alstein. Distributed Algorithms for

Hard Real-Time Systems. Faculty of Mathe-
matics and Computing Science, TUE. 1996-
06

J.H. Hoepman. Communication, Syn-

chronization, and Fault-Tolerance. Fac-
ulty of Mathematics and Computer Science,
UvA. 1996-07

H. Doornbos. Reductivity Arguments and

Program Construction. Faculty of Mathe-
matics and Computing Science, TUE. 1996-
08

D. Turi. Functorial Operational Semantics

and its Denotational Dual. Faculty of Math-
ematics and Computer Science, VUA. 1996-
09

A.M.G. Peeters. Single-Rail Handshake

Circuits. Faculty of Mathematics and Com-
puting Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering

Specification Formalism. Faculty of Mechan-
ical Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in

Lambda Calculus and its Relation to Type

Inference. Faculty of Mathematics and Com-
puting Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and

Partition Refinement for Model Checking.

Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-13

M.M. Bonsangue. Topological Dualities

in Semantics. Faculty of Mathematics and
Computer Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs

of Small Treewidth. Faculty of Mathematics
and Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transfor-

mations in Context. Faculty of Computer
Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of

Data Types. Faculty of Mathematics and
Computing Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type The-

ory in Logic and Mathematics. Faculty of
Mathematics and Computing Science, TUE.
1997-04

C.J. Bloo. Preservation of Termination for

Explicit Substitution. Faculty of Mathemat-
ics and Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Al-

gebra. Faculty of Mathematics and Comput-
ing Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional

Approach to Syntax and Typing. Faculty of
Mathematics and Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal

Testing. Faculty of Computer Science, UT.
1998-01

G. Naumoski and W. Alberts. A

Discrete-Event Simulator for Systems Engi-

neering. Faculty of Mechanical Engineering,
TUE. 1998-02

J. Verriet. Scheduling with Communica-

tion for Multiprocessor Computation. Fac-
ulty of Mathematics and Computer Science,
UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous

Low-Power 80C51 Microcontroller. Fac-
ulty of Mathematics and Computing Science,
TUE. 1998-04

A.A. Basten. In Terms of Nets: System

Design with Petri Nets and Process Algebra.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1998-05

E. Voermans. Inductive Datatypes with

Laws and Subtyping – A Relational Model.

Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-01

H. ter Doest. Towards Probabilistic

Unification-based Parsing. Faculty of Com-
puter Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simula-

tion of Surface Processes. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
03

C.H.M. van Kemenade. Recombinative

Evolutionary Search. Faculty of Mathemat-
ics and Natural Sciences, UL. 1999-04

E.I. Barakova. Learning Reliability: a

Study on Indecisiveness in Sample Selec-

tion. Faculty of Mathematics and Natural
Sciences, RUG. 1999-05

M.P. Bodlaender. Schedulere Optimiza-

tion in Real-Time Distributed Databases.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-06

M.A. Reniers. Message Sequence Chart:

Syntax and Semantics. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
07

J.P. Warners. Nonlinear Approaches to

Satisfiability Problems. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
08

J.M.T. Romijn. Analysing Industrial Pro-

tocols with Formal Methods. Faculty of
Computer Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata

for Timed and Stochastic Systems. Faculty
of Computer Science, UT. 1999-10

G. Fábián. A Language and Simulator for

Hybrid Systems. Faculty of Mechanical En-
gineering, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts

and Proof Rules. Faculty of Mathematics
and Computing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated

Neural Prediction System. Faculty of Math-
ematics and Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Imple-

mentation of Attribute Grammars. Faculty
of Mathematics and Computer Science, UU.
1999-14

R. Schiefer. Viper, A Visualisation Tool

for Parallel Program Construction. Fac-
ulty of Mathematics and Computing Science,
TUE. 1999-15

K.M.M. de Leeuw. Cryptology and State-

craft in the Dutch Republic. Faculty of
Mathematics and Computer Science, UvA.
2000-01

T.E.J. Vos. UNITY in Diversity. A

stratified approach to the verification of dis-

tributed algorithms. Faculty of Mathematics
and Computer Science, UU. 2000-02

W. Mallon. Theories and Tools for the

Design of Delay-Insensitive Communicating

Processes. Faculty of Mathematics and Nat-
ural Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer

Aided Verification of Protocols. Faculty of
Science, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the

MathSpad Editor. Faculty of Mathematics
and Computing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending

and Packaging Plant. Faculty of Mechanical
Engineering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriv-

ing Correct Programs. Faculty of Mathemat-
ics and Computing Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging

Heterogeneous Applications. Faculty of Nat-
ural Sciences, Mathematics and Computer
Science, UvA. 2000-08

E. Saaman. Another Formal Specification

Language. Faculty of Mathematics and Nat-
ural Sciences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary

Search Discovering and Representing Search

Space Structure. Faculty of Mathematics
and Natural Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a com-

putational approach to knowledge, observa-

tion and communication. Faculty of Mathe-
matics and Computing Science, TU/e. 2001-
02

M. Huisman. Reasoning about Java Pro-

grams in Higher Order Logic using PVS and

Isabelle. Faculty of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design

Processes through Structured Reflection.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting:

Syntax and Semantics. Faculty of Sciences,
Division of Mathematics and Computer Sci-
ence, VUA. 2001-05

R. van Liere. Studies in Interactive Visu-

alization. Faculty of Natural Sciences, Math-
ematics and Computer Science, UvA. 2001-
06

A.G. Engels. Languages for Analysis and

Testing of Event Sequences. Faculty of
Mathematics and Computing Science, TU/e.
2001-07

J. Hage. Structural Aspects of Switching

Classes. Faculty of Mathematics and Natu-
ral Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Analy-

sis of Data in Environmental Epidemiology:

A Case-study into Acute Effects of Air Pol-

lution Episodes. Faculty of Mathematics and
Natural Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model

Checking. Faculty of Computer Science, UT.
2001-10

D. Chkliaev. Mechanical Verification of

Concurrency Control and Recovery Proto-

cols. Faculty of Mathematics and Comput-
ing Science, TU/e. 2001-11

M.D. Oostdijk. Generation and Presen-

tation of Formal Mathematical Documents.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-12

A.T. Hofkamp. Reactive Machine Con-

trol: A Simulation Approach using χ. Fac-
ulty of Mechanical Engineering, TU/e. 2001-
13

D. Bošnački. Enhancing State Space

Reduction Techniques for Model Checking.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-14

M.C. van Wezel. Neural Networks for In-

telligent Data Analysis: theoretical and ex-

perimental aspects. Faculty of Mathematics
and Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Speci-

fication and Analysis of Industrial Systems.
Faculty of Mathematics and Computer Sci-
ence and Faculty of Mechanical Engineering,
TU/e. 2002-02

T. Kuipers. Techniques for Understanding

Legacy Software Systems. Faculty of Nat-
ural Sciences, Mathematics and Computer
Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in Pro-

cess Algebra. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA.
2002-04

R.J. Willemen. School Timetable Con-

struction: Algorithms and Complexity. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verifi-

cation of Probabilistic, Real-time and Para-

metric Systems. Faculty of Science, Mathe-
matics and Computer Science, KUN. 2002-
06

N. van Vugt. Models of Molecular Com-

puting. Faculty of Mathematics and Natural
Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guid-

ing and Cost-Optimality in Model Check-

ing of Timed and Hybrid Systems. Faculty
of Science, Mathematics and Computer Sci-
ence, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin

Packing. Faculty of Mathematics and Natu-
ral Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Fil-

tering: Concepts and Algorithms. Faculty
of Mathematics and Natural Sciences, UL.
2002-10

M.B. van der Zwaag. Models and Logics

for Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Science,
UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions

of Semantical Models. Faculty of Sciences,
Division of Mathematics and Computer Sci-
ence, VUA. 2002-12

L. Moonen. Exploring Software Systems.
Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary

Computation to Constraint Satisfaction and

Data Mining. Faculty of Mathematics and
Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2002-16

J.J.D. Aerts. Random Redundant Storage

for Video on Demand. Faculty of Mathe-
matics and Computer Science, TU/e. 2003-
01

M. de Jonge. To Reuse or To Be Reused:

Techniques for component composition and

construction. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA.
2003-02

J.M.W. Visser. Generic Traversal over

Typed Source Code Representations. Faculty
of Natural Sciences, Mathematics, and Com-
puter Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-04

T.A.C. Willemse. Semantics and Veri-

fication in Process Algebras with Data and

Timing. Faculty of Mathematics and Com-
puter Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of

Catalytic Reactions. Faculty of Mathematics
and Computer Science, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of

Tertiary Storage. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2003-07

H.P. Benz. Casual Multimedia Process An-

notation – CoMPAs. Faculty of Electrical
Engineering, Mathematics & Computer Sci-
ence, UT. 2003-08

D. Distefano. On Modelchecking the Dy-

namics of Object-based Software: a Founda-

tional Approach. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2003-09

M.H. ter Beek. Team Automata – A For-

mal Approach to the Modeling of Collabora-

tion Between System Components. Faculty
of Mathematics and Natural Sciences, UL.
2003-10

D.J.P. Leijen. The λ Abroad – A Func-

tional Approach to Software Components.
Faculty of Mathematics and Computer Sci-
ence, UU. 2003-11

W.P.A.J. Michiels. Performance Ratios

for the Differencing Method. Faculty of
Mathematics and Computer Science, TU/e.
2004-01

G.I. Jojgov. Incomplete Proofs and Terms

and Their Use in Interactive Theorem Prov-

ing. Faculty of Mathematics and Computer
Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Computing

– Splicing and Membrane systems. Faculty
of Mathematics and Natural Sciences, UL.
2004-03

S. Maneth. Models of Tree Translation.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-04

Y. Qian. Data Synchronization and Brows-

ing for Home Environments. Faculty of
Mathematics and Computer Science and
Faculty of Industrial Design, TU/e. 2004-05

F. Bartels. On Generalised Coinduc-

tion and Probabilistic Specification Formats.
Faculty of Sciences, Division of Mathematics
and Computer Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real Anal-

ysis: a Type-Theoretical Formalization and

Applications. Faculty of Science, Mathemat-
ics and Computer Science, KUN. 2004-07

E.H. Gerding. Autonomous Agents in

Bargaining Games: An Evolutionary Inves-

tigation of Fundamentals, Strategies, and

Business Applications. Faculty of Technol-
ogy Management, TU/e. 2004-08

N. Goga. Control and Selection Techniques

for the Automated Testing of Reactive Sys-

tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic:

Representations, Algorithms and Proofs.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2004-10

A. Löh. Exploring Generic Haskell. Fac-
ulty of Mathematics and Computer Science,
UU. 2004-11

I.C.M. Flinsenberg. Route Planning Al-

gorithms for Car Navigation. Faculty of
Mathematics and Computer Science, TU/e.
2004-12

R.J. Bril. Real-time Scheduling for Media

Processing Using Conditionally Guaranteed

Budgets. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-13

J. Pang. Formal Verification of Distributed

Systems. Faculty of Sciences, Division of
Mathematics and Computer Science, VUA.
2004-14

