

Verification of a sliding window protocol in µCRL

Citation for published version (APA):
Badban, B., Fokkink, W. J., Groote, J. F., Pang, J., & Pol, van de, J. C. (2004). Verification of a sliding window
protocol in µCRL. In Proceedings 5th PROGRESS Symposium on Embedded Systems (Nieuwegein, The
Netherlands, October 20, 2004) (pp. 157-176). STW Technology Foundation.

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/e9a272a9-d019-409f-967f-bc223fdd0dcf

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

1

Verification of a Sliding Window Protocol in µCRL
Bahareh Badban 1, Wan Fokkink 1,2, Jan Friso Groote 1,3, Jun Pang 1, and Jaco van de Pol 1

1 CWI, Department of Software Engineering
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

email: {badban,wan,pangjun,vdpol}@cwi.nl
2 Vrije Universiteit Amsterdam, Department of Theoretical Computer Science

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
email: wanf@cs.vu.nl

3 Eindhoven University of Technology, Department of Computer Science
PO Box 513, 5600 MB Eindhoven, The Netherlands

email: jfg@win.tue.nl

Abstract— We prove the correctness of a sliding win-
dow protocol with an arbitrary finite window size n and
sequence numbers modulo 2n. The correctness consists
of showing that the sliding window protocol is branching
bisimilar to a queue of capacity 2n. The proof is given
entirely on the basis of an axiomatic theory, and has been
checked in the theorem prover PVS.

Keywords— µCRL, branching bisimulation, process al-
gebra, sliding window protocols, specification, verification
techniques

? This research is partly supported by the Dutch Technology

Foundation STW under the project CES5008: Improving the

quality of embedded systems using formal design and systematic

testing.

I. Introduction

Sliding window protocols [7] (SWPs) ensure suc-
cessful transmission of messages from a sender to a
receiver through a medium, in which messages may
get lost. Their main characteristic is that the sender
does not wait for an incoming acknowledgment before
sending next messages, for optimal use of bandwidth.
This is the reason why many data communication sys-
tems include the SWP, in one of its many variations.

In SWPs, both the sender and the receiver maintain
a buffer. In practice the buffer at the receiver is often
much smaller than at the sender, but here we make the
simplifying assumption that both buffers can contain
up to n messages. By providing the messages with se-
quence numbers, reliable in-order delivery without du-
plications is guaranteed. The sequence numbers can
be taken modulo 2n (and not less, see [42] for a nice
argument). The messages at the sender are numbered
from i to i + n (modulo 2n); this is called a window.
When an acknowledgment reaches the sender, indicat-
ing that k messages have arrived correctly, the window
slides forward, so that the sending buffer can contain

messages with sequence numbers i + k to i + k + n

(modulo 2n). The window of the receiver slides for-
ward when the first element in this window is passed
on to the environment.

Within the process algebraic community, SWPs
have attracted much attention, because their precise
formal verification turned out to be surprisingly diffi-
cult. We provide a comparison with verifications of
SWPs from the literature in Section VIII, and re-
strict here to the context in which this paper was writ-
ten. After the advent of process algebra in the early
eighties of last century, it was observed that simple
protocols, such as the alternating bit protocol, could
readily be verified. In an attempt to show that more
difficult protocols could also be dealt with, SWPs
were considered. Middeldorp [31] and Brunekreef [5]
gave specifications in ACP [1] and PSF [30], respec-
tively. Vaandrager [43], Groenveld [12], van Wamel
[44] and Bezem and Groote [3] manually verified one-
bit SWPs, in which the size of the sending and receiv-
ing window is one.

Starting in 1990, we attempted to prove the most
complex SWP from [42] (not taking into account ad-
ditional features such as duplex message passing and
piggybacking) correct using µCRL [16], which is a
suitable process algebraic formalism for such pur-
poses. This turned out to be unexpectedly hard, and
has led to the development of new proof methods for
protocol verification. We therefore consider the cur-
rent paper as a true milestone in process algebraic
verification.

Our first observation was that the external behav-
ior of the protocol, as given in [42], was unclear. We
adapted the SWP such that it nicely behaves as a
queue of capacity 2n. The second observation was
that the SWP of [42] contained a deadlock [13, Stelling

157

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

2

7], which could only occur after at least n messages
were transmitted. This error was communicated to
Tanenbaum, and has been repaired in more recent edi-
tions of [42]. Another bug in the µCRL specification
of the SWP was detected by means of a model check-
ing analysis. A first attempt to prove the resulting
SWP correct led to the verification of a bakery proto-
col [14], and to the development of the cones and foci

proof method [19], [9]. This method plays an essential
role in the proof in the current paper, and has been
used to prove many other protocols and distributed al-
gorithms correct. But the correctness proof required
an additional idea, already put forward by Schoone
[37], to first perform the proof with unbounded se-
quence numbers, and to separately eliminate modulo
arithmetic.

We present a specification in µCRL of a SWP with
buffer size 2n and window size n, for arbitrary n.
The medium between the sender and the receiver
is modeled as a lossy queue of unbounded capac-
ity. We manually prove that the external behavior
of this protocol is branching bisimilar [10] to a FIFO
queue of capacity 2n. This proof is entirely based on
the axiomatic theory underlying µCRL and the ax-
ioms characterizing the data types. It implies both
safety and liveness of the protocol (the latter un-
der the assumption of fairness). First, we linearize
the specification, meaning that we get rid of paral-
lel operators. Moreover, communication actions are
stripped from their data parameters. Then we elimi-
nate modulo arithmetic, using the proof principle CL-
RSP [4]. Finally, we apply the cones and foci tech-
nique, to prove that the linear specification without
modulo arithmetic is branching bisimilar to a FIFO
queue of capacity 2n. All lemmas for the data types,
all invariants and all correctness proofs have been
checked using PVS. The PVS files are available via
http://www.cwi.nl/~pangjun/swp/.

A concise overview of other verifications of SWPs
is presented in Section VIII. Many of these verifica-
tions deal with either unbounded sequence numbers,
in which case the intricacies of modulo arithmetic dis-
appear, or a fixed finite window size. The papers that
do treat arbitrary finite window sizes in most cases
restrict to safety properties.

This paper is set up as follows. Section II introduces
the process part of µCRL. In Section III, the data
types needed for specifying the SWP and its external
behavior are presented. Section IV features the µCRL
specifications of the SWP and its external behavior.
In Section V, three consecutive transformations are

applied to the specification of the SWP, to linearize
the specification, eliminate arguments of communica-
tion actions, and get rid of modulo arithmetic. In
Section VI, properties of the data types and invari-
ants of the transformed specification are proved. In
Section VII, it is proved that the three transforma-
tions preserve branching bisimulation, and that the
transformed specification behaves like a FIFO queue.
Finally, Section VIII gives an overview of related work
on verifying SWPs. The verification contained in this
paper has been extended to verify a SWP with piggy-
backing.

II. µCRL

µCRL [16] (see also [18]) is a language for specify-
ing distributed systems and protocols in an algebraic
style. It is based on the process algebra ACP [1] ex-
tended with equational abstract data types [28]. In a
µCRL specification, one part specifies the data types
by means of equations d = e, while a second part spec-
ifies the process behavior. We assume the data sort of
booleans Bool with constants t and f, and the usual
connectives ∧, ∨, ¬, ⇒ and ⇔. For a boolean b, we
abbreviate b = t to b and b = f to ¬b.

The data types needed for our µCRL specification
of a SWP are presented in Section III. In this sec-
tion we focus on the process part of µCRL. Processes
are represented by process terms, which describe the
order in which the actions from a set A may hap-
pen. A process term consists of action names and
recursion variables combined by process algebraic op-
erators. Actions and recursion variables may carry
data parameters. There are two predefined actions
outside A: δ represents deadlock, and τ a hidden
action. These two actions never carry data param-
eters. p·q denotes sequential composition and p + q

non-deterministic choice. Summation
∑

d:D p(d) pro-
vides the possibly infinite choice over a data type D,
and the conditional construct p � b � q with b a data
term of sort Bool behaves as p if b and as q if ¬b. Par-
allel composition p ‖ q interleaves the actions of p and
q; moreover, actions from p and q may also synchro-
nize to a communication action, when this is explicitly
allowed by a predefined communication function. Two
actions can only synchronize if their data parameters
are equal. Encapsulation ∂H(p), which renames all
occurrences in p of actions from the set H into δ, can
be used to force actions into communication. Hiding
τI(p) renames all occurrences in p of actions from the
set I into τ . Finally, processes can be specified by

158

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

3

means of recursive equations

X(d1:D1, . . . , dn:Dn) ≈ p

where X is a recursion variable, di a data parameter of
type Di for i = 1, . . . , n, and p a process term (possi-
bly containing recursion variables and the parameters
di). A recursive specification is linear, called a linear
process equation (LPE), if it is of the form

X(d1:D1, . . . , dn:Dn) ≈∑`
i=1

∑
zi:Zi

ai(e
i
1, . . . , e

i
mi

)·X(di
1, . . . , d

i
n) / bi . δ.

To each µCRL specification belongs a directed
graph, called a labeled transition system (LTS), which
is defined by the structural operational semantics of
µCRL (see [16]). In this labeled transition system,
the states are process terms, and the edges are la-
beled with parameterized actions. Branching bisimu-
lation ↔b [10] and strong bisimulation ↔ [33] are two
well-established equivalence relations on the states
in labeled transition systems. Conveniently, strong
bisimulation equivalence implies branching bisimula-
tion equivalence. The proof theory of µCRL from [15]
is sound modulo branching bisimulation equivalence,
meaning that if p ≈ q can be derived from it then
p ↔b q.

Definition II.1 (Branching bisimulation) Assume an
LTS. A branching bisimulation relation B is a sym-
metric binary relation on states such that if sB t and

s
`
→ s′, then

- either ` = τ and s′ B t;
- or there is a sequence of (zero or more) τ -transitions

t
τ
→ · · ·

τ
→ t0 such that sB t0 and t0

`
→ t′ with s′ B t′.

Two states s and t are branching bisimilar, denoted
by s ↔b t, if there is a branching bisimulation relation
B such that sB t.

The goal of this paper is to prove that the initial
state of the forthcoming µCRL specification of a SWP
is branching bisimilar to a FIFO queue. In the proof
of this fact, we will use three proof principles from the
literature to derive that two µCRL specifications are
branching (or even strongly) bisimilar: sum elimina-
tion, CL-RSP, and cones and foci.

• Sum elimination [14] states that a summation over a
data type from which only one element can be selected
can be removed. To be more precise,

∑

d:D

p(d) / d = e ∧ b . δ ↔ p(e) / b . δ.

• CL-RSP [4] states that the solutions of a linear
µCRL specification that does not contain any infinite
τ sequence are all strongly bisimilar. This proof prin-
ciple basically extends RSP [2] to a setting with data.
The reader is referred to [4] for more details regarding
CL-RSP.
• The cones and foci method from [9], [19] rephrases
the question whether two linear µCRL specifications
τI(S1) and S2 are branching bisimilar, where S2 does
not contain actions from some set I of internal ac-
tions, in terms of data equalities. A state mapping φ

relates each state in S1 to a state in S2. Furthermore,
some states in S1 are declared to be focus points, by
means of a predicate FC. The cone of a focus point
consists of the states in S1 that can reach this focus
point by a string of actions from I. It is required that
each reachable state in S1 is in the cone of a focus
point. If a number of matching criteria are satisfied,
then τI(S1) and S2 are branching bisimilar. We give
the definition of matching criteria and the general tho-
erem as follows. The reader is referred to [9] for the
technical details of the cones and foci technique.
Let Act be a set of actions. Assume an LPE X

X(d:D)
=

∑
a∈Act∪{τ}

∑
e:Ea

a(fa(d, e))·X(ga(d, e))

�ha(d, e) � δ.

Furthermore, assume an LPE Y without hidden ac-
tions

Y (d′:D′)
=

∑
a∈Act

∑
e:Ea

a(f ′
a(d

′, e))·Y (g′a(d
′, e))

�h′
a(d

′, e) � δ.

Definition II.2 (Matching criteria) A state mapping
φ : D → D′ satisfies the matching criteria for d:D
if for all a ∈ Act :
I ∀e:Ea (hτ (d, e) ⇒ φ(d) = φ(gτ (d, e)));
II ∀e:Ea (ha(d, e) ⇒ h′

a(φ(d), e));
III FC (d) ⇒ ∀e:Ea (h′

a(φ(d), e) ⇒ ha(d, e));
IV ∀e:Ea (ha(d, e) ⇒ fa(d, e) = f ′

a(φ(d), e));
V ∀e:Ea (ha(d, e) ⇒ φ(ga(d, e)) = g′a(φ(d), e)).

Matching criterion I requires that the τ -transitions at
d are inert, meaning that d and gτ (d, e) are branch-
ing bisimilar. Criteria II, IV and V express that each
external transition of d can be simulated by φ(d). Fi-
nally, criterion III expresses that if d is a focus point,
then each external transition of φ(d) can be simulated
by d.

159

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

4

Theorem II.3 Assume LPEs X(d:D) and Y (d′:D′)
written as before. Let I : D → Bool be an invari-
ant for X. Suppose that for all d:D with I(d),
1. φ : D → D′ satisfies the matching criteria for d,

and
2. there is a d̂:D such that FC (d̂) and d

τ
→ · · ·

τ
→ d̂

in the LTS for X.
Then for all d:D with I(d),

X(d) ↔b Y (φ(d)).

III. Data Types

In this section, the data types used in the µCRL
specification of the SWP are presented: booleans, nat-
ural numbers supplied with modulo arithmetic, and
buffers. Furthermore, basic properties are given for
the operations defined on these data types.

A. Booleans

We introduce the data type Bool of booleans.

t, f :→ Bool

∧,∨ : Bool × Bool → Bool

¬ : Bool → Bool

⇒,⇔: Bool × Bool → Bool

t and f denote true and false, respectively. The infix
operations ∧ and ∨ represent conjunction and disjunc-
tion, respectively. Finally, ¬ denotes negation. The
defining equations are:

b ∧ t = b

b ∧ f = f

b ∨ t = t

b ∨ f = b

¬t = f

¬f = t

b ⇒ b′ = b′ ∨ ¬b

b ⇔ b′ = (b ⇒ b′) ∧ (b′ ⇒ b)

B. If-then-else and Equality

For each data type D in this paper we assume the
presence of an operation

if : Bool × D × D → D

with as defining equations

if (t, d, e) = d

if (f, d, e) = e

Furthermore, for each data type D in this paper one
can easily define a mapping eq : D × D → Bool such
that eq(d, e) holds if and only if d = e can be derived.
For notational convenience we take the liberty to write
d = e instead of eq(d, e).

C. Natural Numbers

We introduce the data type Nat of natural numbers.

0 :→ Nat

S : Nat → Nat

+, .−, · : Nat × Nat → Nat

≤, <,≥, >: Nat × Nat → Bool

0 denotes zero and S(n) the successor of n. The in-
fix operations +, .− and · represent addition, monus
(also called proper subtraction) and multiplication,
respectively. Finally, the infix operations ≤, <, ≥ and
> are the less-than(-or-equal) and greater-than(-or-
equal) operations. Usually, the sign for multiplication
is omitted, and ¬(i = j) is abbreviated to i 6= j.

i + 0 = i

i + S(j) = S(i + j)
i .− 0 = i

0 .− i = 0
S(i) .− S(j) = i .− j

i·0 = 0
i·S(j) = (i·j) + i

0 ≤ i = t

S(i) ≤ 0 = f

S(i) ≤ S(j) = i ≤ j

0 < S(i) = t

i < 0 = f

S(i) < S(j) = i < j

i ≥ j = ¬(j < i)
i > j = ¬(j ≤ i)

We take as binding convention: {=, 6=} > {·} > {+, .−
} > {≤, <,≥, >} > {¬} > {∧,∨} > {⇒,⇔}.

D. Modulo Arithmetic

Since the size of the buffers at the sender and the
receiver in the sliding window are of size 2n, calcula-
tions modulo 2n play an important role. We introduce
the following notation for modulo calculations:

| : Nat × Nat → Nat

div : Nat × Nat → Nat

i|n denotes i modulo n, while i div n denotes i integer
divided by n. The modulo operations are defined by
the following equations (for n > 0):

i|n = if (i < n, i, (i .− n)|n)
i div n = if (i < n, 0, S((i .− n) div n))

160

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

5

E. Buffers

The sender and the receiver in the SWP both main-
tain a buffer containing the sending and the receiv-
ing window, respectively (outside these windows both
buffers are empty). Let ∆ be the set of data ele-
ments that can be communicated between sender and
receiver. The buffers are modeled as a list of pairs
(d, i) with d:∆ and i:Nat , representing that position
(or sequence number) i of the buffer is occupied by
datum d. The data type Buf is specified as follows,
where [] denotes the empty buffer:

[] :→ Buf

inb : ∆ × Nat × Buf → Buf

q|n denotes buffer q with all sequence numbers taken
modulo n.

[]|n = []
inb(d, i, q)|n = inb(d, i|n, q|n)

test(i, q) produces t if and only if position i in q is oc-
cupied, retrieve(i, q) produces the datum that resides
at position i in buffer q (if this position is occupied),1

and remove(i, q) is obtained by emptying position i in
buffer q.

test(i, []) = f

test(i, inb(d, j, q)) = i=j ∨ test(i, q)
retrieve(i, inb(d, j, q)) = if (i=j, d, retrieve(i, q))
remove(i, []) = []
remove(i, inb(d, j, q)) = if (i=j, remove(i, q),

inb(d, j, remove(i, q)))

release(i, j, q) is obtained by emptying positions i up
to j in q. release|n(i, j, q) does the same modulo n.

release(i, j, q) = if (i ≥ j, q,

release(S(i), j, remove(i, q)))
release|n(i, j, q) = if (i|n=j|n, q,

release|n(S(i), j, remove(i, q)))

next-empty(i, q) produces the first empty position in
q, counting upwards from sequence number i onward.

1Note that retrieve(i, []) is undefined. One could choose to
equate it to a default value in ∆, or to a fresh error element
in ∆. However, the first approach could cover up flaws in the
µCRL specification of the SWP, and the second approach would
needlessly complicate the data type ∆. We prefer to work with a
partially defined version of retrieve, which is allowed in µCRL.
All operations in µCRL models, however, are total; partially
specified operations just lead to the existence of multiple mod-
els.

next-empty|n(i, q) does the same modulo n.

next-empty(i, q) = if (test(i, q),
next-empty(S(i), q), i)

next-empty|n(i, q) = if (next-empty(i|n, q|n) < n,

next-empty(i|n, q|n),
next-empty(0, q|n))

Intuitively, in-window(i, j, k) produces t if and only if
j lies in the range from i to k .− 1, modulo n, where
n is greater than i, j and k.

in-window(i, j, k) = i ≤ j < k ∨ k < i ≤ j ∨ j < k < i

Finally, we define an operation on buffers that is only
needed in the derivation of some data equalities in
Section VI-A: max(q) produces the greatest sequence
number that is occupied in q.

max([]) = 0
max(inb(d, i, q)) = if (i ≥ max(q), i,max(q))

F. Mediums

The medium in the SWP between the sender and
the receiver is modeled as a lossy channel of un-
bounded capacity with FIFO behavior. We model the
medium containing frames from the sender to the re-
ceiver by a data type MedK. It represents a list of
pairs (d, i) with a datum d:∆ and its sequence num-
ber i:Nat . Let []K denote an empty medium. g|n
denotes medium g with all sequence numbers taken
modulo n. member(d, i, g) produces t if and only if
the pair (d, i) is in g. length(g) denotes the length
of g. return-dat(i, g) and return-seq(i, g) produce the
datum and the sequence number, respectively, that
resides at position i in g (positions are counted from
0). For convenience, we use last-dat(g) and last-seq(g)
to produce the datum and the sequence number, re-
spectively, that resides at the end of g. delete(i, g)
is obtained by emptying position i in g. Similarly,
delete-last(g) is obtained by emptying the last posi-
tion in g.

The medium containing the sequence numbers from
the receiver to the sender by a data type MedL. Sim-
ilarly, we have the following defining equations.

G. Lists

We introduce the data type of List of lists, which
are used in the specification of the desired external
behavior of the SWP: a FIFO queue of size 2n. Let
〈〉 denote the empty list.

〈〉 :→ List

inl : ∆ × List → List

161

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

6

[]K :→ MedK

inm : ∆ × Nat × MedK → MedK

[]K |n = []K

inm(d, i, g)|n = inm(d, i|n, g|n)

member(d, i, []K) = f

member(d, i, inm(e, j, g)) = (d = e ∧ i = j) ∨member(d, i, g)

length([]K) = 0
length(inm(d, i, g)) = S(length(g))
return-dat(i, inm(d, j, g)) = if (i = 0, d, return-dat(i − 1, g))
return-seq(i, inm(d, j, g)) = if (i = 0, j, return-seq(i − 1, g))
last-dat(inm(d, i, g)) = if (length(g) = 0, d, last-dat(g))
last-seq(inm(d, i, g)) = if (length(g) = 0, i, last-dat(g))
delete(i, inm(d, j, g)) = if (i = 0, g, inm(d, j, delete(i − 1, g)))
delete-last(inm(d, i, g)) = if (length(g) = 0, g, inm(d, i, delete-last(g)))

[]L :→ MedL

inm : Nat × MedL → MedL

[]L|n = []L

inm(i, g′)|n = inm(i|n, g′|n)

member(i, []L) = f

member(i, inm(j, g)) = i = j ∨ member(d, i, g)

length([]L) = 0
length(inm(i, g′)) = S(length(g′))
return-seq(i, inm(j, g′)) = if (i = 0, j, return-seq(i − 1, g′))
last-seq(inm(i, g′)) = if (length(g′) = 0, i, last-seq(g′))
delete(i, inm(j, g′)) = if (i = 0, g′, inm(j, delete(i − 1, g′)))
delete-last(inm(j, g′)) = if (length(g′) = 0, g′, inm(j, delete-last(g′)))

length(λ) denotes the length of λ, top(λ) produces the
datum that resides at the top of λ, tail(λ) is obtained
by removing the top position in λ, append(d, λ) adds
datum d at the end of λ, and λ++λ′ represents list
concatenation.

length(〈〉) = 0
length(inl(d, λ)) = S(length(λ))
top(inl(d, λ)) = d

tail(inl(d, λ)) = λ

append(d, 〈〉) = inl(d, 〈〉)
append(d, inl(e, λ)) = inl(e, append(d, λ))
〈〉++λ = λ

inl(d, λ)++λ′ = inl(d, λ++λ′)

Furthermore, q[i..j〉 is the list containing the elements
in buffer q at positions i up to but not including j.

q[i..j〉 = if (i ≥ j, 〈〉, inl(retrieve(i, q), q[S(i)..j〉))

IV. Sliding Window Protocol

In this section, a µCRL specification of a SWP is
presented, together with its desired external behavior.

A. Specification of a Sliding Window Protocol

Figure 1 depicts the SWP. A sender S stores data
elements that it receives via channel A in a buffer of
size 2n, in the order in which they are received. S can
send a datum, together with its sequence number in
the buffer, to a receiver R via a medium that behaves
as lossy queue of unbounded capacity, represented by
the medium K and the channels B and C. Upon re-
ception, R may store the datum in its buffer, where
its position in the buffer is dictated by the attached
sequence number. In order to avoid a possible over-
lap between the sequence numbers of different data
elements in the buffers of S and R, no more than
one half of the buffers of S and R may be occupied

162

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

7

at any time; these halves are called the sending and
the receiving window, respectively. R can pass on a
datum that resides at the first position in its window
via channel D; in that case the receiving window slides
forward by one position. Furthermore, R can send the
sequence number of the first empty position in (or just
outside) its window as an acknowledgment to S via a
medium that behaves as lossy queue of unbounded
capacity, represented by the medium L and the chan-
nels E and F. If S receives this acknowledgment, its
window slides forward accordingly.

The sender S is modeled by the process S(`,m, q),
where q is a buffer of size 2n, ` the first position in
the sending window, and m the first empty position in
(or just outside) the sending window. Data elements
can be selected at random for transmission from (the
filled part of) the sending window. The receiver R is
modeled by the process R(`′, q′), where q′ is a buffer
of size 2n and `′ the first position in the receiving
window.

Finally, we specify the mediums K and L, which
have unbounded capacity and may lose frames be-
tween S and R, and vice versa. We cannot allow
reordering of messages in the medium, as this would
violate the correctness of the protocol. The medium
K (see Fig. 2) is modeled by the process K(g, p),
where g:MedK is a buffer with unbounded capacity,
and p:Nat a pointer indicating that the frames in be-
tween position 0 and p (excluding p) can still be lost,
and the frames beyond p cannot be lost any more.

K receives a frame from S, stores it at the front
(position 0) of g, and accordingly increases p by one.
It sends the last frame (last-dat(g), last-seq(g)) in g to
R. A frame at position k can be lost (if k < p), and
p is then decreased by one. K can also make a choice
that the frame at position p cannot be lost (p:=p −
1). The action j expresses the nondeterministic choice
whether or not a frame is lost. In a similar way, we
model the medium L by the process L(g ′, p′).

For each channel i ∈ {B,C,E,F}, actions si and
ri can communicate, resulting in the action ci. The
initial state of the SWP is expressed by

τI(∂H(S(0, 0, []) ‖ R(0, []) ‖ K([]K , 0) ‖ L([]L, 0)))

where the set H consists of the read and send actions
over the internal channels B, C, E, and F, namely H =
{sB, rB, sC, rC, sE, rE, sF, rF}, while the set I consists
of the communication actions over these internal chan-
nels together with j, namely I = {cB, cC, cE, cF, j}.

B. External Behavior

Data elements that are read from channel A should
be sent into channel D in the same order, and no data
elements should be lost. In other words, the SWP
is intended to be a solution for the linear specifica-
tion Note that rA(d) can be performed until the list
λ contains 2n elements, because in that situation the
sending and receiving windows will be filled. Further-
more, sD(top(λ)) can only be performed if λ is not
empty.

The remainder of this paper is devoted to proving
the following theorem, expressing that the external
behavior of our µCRL specification of a SWP corre-
sponds to a FIFO queue of size 2n.

Theorem IV.1 τI(∂H(S(0, 0, []) ‖ R(0, []) ‖ K([]K , 0) ‖
L([]L, 0))) ↔b Z(〈〉).

V. Transformations of the Specification

This section witnesses three transformations, one
to eliminate parallel operators, one to eliminate argu-
ments of communication actions, and one to eliminate
modulo arithmetic.

A. Linearization

The starting point of our correctness proof is a lin-
ear specification Mmod , in which no parallel operators
occur. Mmod can be obtained from the µCRL speci-
fication of the SWP without the hiding operator, i.e.,

∂H(S(0, 0, []) ‖ R(0, []) ‖ K([]K , 0) ‖ L([]L, 0))

by means of a linearization algorithm presented in
[17].

The linear specification Mmod of the SWP, with en-
capsulation but without hiding, takes the following
form. For the sake of presentation, we only present
parameters whose values are changed.

Theorem V.1 ∂H(S(0, 0, []) ‖ R(0, []) ‖ K([]K , 0) ‖
L([]L, 0)) ↔ Mmod (0, 0, [], 0, [], []K , 0, []L, 0).

Proof: It is not hard to see that replac-
ing Mmod (`,m, q, `′, q′, g, p, g′, p′) by ∂H(S(`,m, q) ‖
R(`′, q′) ‖ K(g, p) ‖ L(g′, p′)) is a solution for the
recursive equation above, using the axioms of µCRL
[15]. (The details are left to the reader.) Hence, the
theorem follows by CL-RSP [4].

163

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

8

L

B

E

D
C

F

K

RS
A

· · · · · ·

2n−1

2n−2

2n−3

0

1

2

· · · · · ·

2n−1

2n−2

2n−3

0

1

2

Fig. 1. Sliding window protocol

position: 1

p

m n

(e0, i0) (en, in)(em, im)(e1, i1)

g with length(g) = n + 1

0

Fig. 2. The medium K

S(`:Nat ,m:Nat , q:Buf) ≈
∑

d:∆
rA(d)·S(`, S(m)|2n, inb(d,m, q))

/ in-window(`,m, (` + n)|2n) . δ

+
∑

k:Nat
sB(retrieve(k, q), k)·S(`,m, q)

/ test(k, q) . δ

+
∑

k:Nat
rF(k)·S(k,m, release|2n(`, k, q))

R(`′:Nat , q′:Buf) ≈
∑

d:∆

∑
k:Nat

rC(d, k)·(R(`′, inb(d, k, q′))

/ in-window(`′, k, (`′ + n)|2n) . R(`′, q′))

+ sD(retrieve(`′, q′))·R(S(`′)|2n, remove(`′, q′))
/ test(`′, q′) . δ

+ sE(next-empty|2n(`′, q′))·R(`′, q′)

K(g:MedK, p:Nat) ≈
∑

d:∆

∑
k:Nat

rB(d, k)·K(inm(d, k, g), p + 1)

+
∑

k:Nat
j·K(delete(k, g), p − 1) / k < p . δ

+ sC(last-dat(g), last-seq(g))·K(delete-last(g), p)
/ p < length(g) . δ

+ j·K(g, p − 1) / p > 0 . δ

L(g′:MedL, p′:Nat) ≈
∑

k:Nat
rE(k)·L(inm(k, g′), p′ + 1)

+
∑

k:Nat
j·L(delete(k, g′), p′ − 1) / k < p′ . δ

+ sF(last-seq(g′))·L(delete-last(g′), p′)
/ p′ < length(g′) . δ

+ j·L(g′, p′ − 1) / p′ > 0 . δ

164

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

9

Z(λ:List) ≈
∑

d:∆
rA(d)·Z(append(d, λ)) / length(λ) < 2n . δ

+ sD(top(λ))·Z(tail(λ)) / length(λ) > 0 . δ

Mmod (`:Nat ,m:Nat , q:Buf , `′:Nat , q′:Buf , g:MedK, p:Nat , g′:MedL, p′:Nat)

≈
∑

d:∆
rA(d)·Mmod (m:=S(m)|2n, q:=inb(d,m, q))

/ in-window(`,m, (` + n)|2n) . δ

+
∑

k:Nat
cB(retrieve(k, q), k)·Mmod (g:=inm(retrieve(k, q), k, g), p:=p + 1)

/ test(k, q) . δ

+
∑

k:Nat
j·Mmod (g:= delete(k, g), p:=p − 1) / k < p . δ

+ j·Mmod (p:=p − 1) / p > 0 . δ

+ cC(last-dat(g), last-seq(g))·Mmod (q′:=inb(last-dat(g), last-seq(g), q ′), g:=delete-last(g))
/ p < length(g) ∧ in-window(`′, last-seq(g), (`′ + n)|2n) . δ

+ cC(last-dat(g), last-seq(g))·Mmod (g:=delete-last(g))
/ p < length(g) ∧ ¬in-window(`′, last-seq(g), (`′ + n)|2n) . δ

+ sD(retrieve(`′, q′))·Mmod (`′:=S(`′)|2n, q′:=remove(`′, q′)) / test(`′, q′) . δ

+ cE(next-empty|2n(`′, q′))·Mmod (g′:=inm(next-empty|2n(`′, q′), g′), p′:=p′ + 1)

+
∑

k:Nat
j·Mmod (g′:=delete(k, g′), p′:=p′ − 1) / k < p′ . δ

+ j·Mmod (p′:=p′ − 1) / p′ > 0 . δ

+ cF(last-seq(g′))·Mmod (`:=last-seq(g′), q:=release|2n(`, last-seq(g′), q), g′:=delete-last(g′))
/ p′ < length(g′) . δ

B. Eliminating Arguments of Communication Ac-

tions

The linear specification Nmod is obtained from
Mmod by stripping all arguments from communica-
tion actions, and renaming these actions to a fresh
action c.

Theorem V.2 τI(Mmod (0, 0, [], 0, [], []K , 0, []L, 0)) ↔
τ{c,j}(Nmod (0, 0, [], 0, [], []K , 0, []L, 0)).

Proof: By a simple renaming.

C. Getting Rid of Modulo Arithmetic

The specification of Nnonmod is obtained by elim-
inating all occurrences of |2n from Nmod , and re-
placing in-window(`,m, (` + n)|2n by m < ` +
n and in-window(`′, last-seq(g), (`′ + n)|2n by `′ ≤
last-seq(g) < `′ + n.

Theorem V.3 Nmod (0, 0, [], 0, [], []K , 0, []L, 0) ↔
Nnonmod (0, 0, [], 0, [], []K , 0, []L, 0).

The proof of Theorem V.3 is presented in Section
VII-A. Next, in Section VII-B, we prove the correct-
ness of Nnonmod . In these proofs we will need a wide

range of data equalities, which we proceed to prove in
Section VI.

VI. Properties of Data

A. Basic Properties

In the correctness proof we will make use of ba-
sic properties of the operations on Nat and Bool ,
which are derivable from their axioms (using induc-
tion). Some typical examples of such properties are:

¬¬b = b

i + k < j + k = i < j

i ≥ j ⇒ (i .− j) + k = (i + k) .− j

Lemmas VI.1 and VI.2 collect basic facts on mod-
ulo arithmetic and on buffers, respectively. Lemma
VI.3 contains some results on modulo arithmetic re-
lated to buffers. Lemma VI.4 presents some facts on
the next-empty operation, together with one result on
max, which is needed to derive those facts. Lem-
mas VI.5 and VI.6 collect some results on unbounded
buffers. Finally, Lemma VI.7 contains basic facts on
lists. Unless stated otherwise (this only happens in

165

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

10

Nmod (`:Nat ,m:Nat , q:Buf , `′:Nat , q′:Buf , g:MedK, p:Nat , g′:MedL, p′:Nat)

≈
∑

d:∆
rA(d)·Nmod (m:=S(m)|2n, q:=inb(d,m, q))

/ in-window(`,m, (` + n)|2n) . δ

+
∑

k:Nat
c·Nmod (g:=inm(retrieve(k, q), k, g), p:=p + 1) / test(k, q) . δ

+
∑

k:Nat
j·Nmod (g:= delete(k, g), p:=p − 1) / k < p . δ

+ j·Nmod (p:=p − 1) / p > 0 . δ

+ c·Nmod (q′:=inb(last-dat(g), last-seq(g), q ′), g:=delete-last(g))
/ p < length(g) ∧ in-window(`′, last-seq(g), (`′ + n)|2n) . δ

+ c·Nmod (g:=delete-last(g))
/ p < length(g) ∧ ¬in-window(`′, last-seq(g), (`′ + n)|2n) . δ

+ sD(retrieve(`′, q′))·Nmod (`′:=S(`′)|2n, q′:=remove(`′, q′)) / test(`′, q′) . δ

+ c·Nmod (g′:=inm(next-empty|2n(`′, q′), g′), p′:=p′ + 1)

+
∑

k:Nat
j·Nmod (g′:=delete(k, g′), p′:=p′ − 1) / k < p′ . δ

+ j·Nmod (p′:=p′ − 1) / p′ > 0 . δ

+ c·Nmod (`:=last-seq(g′), q:=release|2n(`, last-seq(g′), q), g′:=delete-last(g′))
/ p′ < length(g′) . δ

Nnonmod (`:Nat ,m:Nat , q:Buf , `′:Nat , q′:Buf , g:MedK, p:Nat , g′:MedL, p′:Nat)

≈
∑

d:∆
rA(d)·Nnonmod (m:=S(m), q:=inb(d,m, q)) / m < ` + n . δ (A)

+
∑

k:Nat
c·Nnonmod (g:=inm(retrieve(k, q), k, g), p:=p + 1) / test(k, q) . δ (B)

+
∑

k:Nat
j·Nnonmod (g:= delete(k, g), p:=p − 1) / k < p . δ (C)

+ j·Nnonmod (p:=p − 1) / p > 0 . δ (D)

+ c·Nnonmod (q′:=inb(last-dat(g), last-seq(g), q ′), g:=delete-last(g))
/ p < length(g) ∧ (`′ ≤ last-seq(g) < `′ + n) . δ (E)

+ c·Nnonmod (g:=delete-last(g))
/ p < length(g) ∧ ¬(`′ ≤ last-seq(g) < `′ + n) . δ (F)

+ sD(retrieve(`′, q′))·Nnonmod (`′:=S(`′), q′:=remove(`′, q′)) / test(`′, q′) . δ (G)

+ c·Nnonmod (g′:=inm(next-empty(`′, q′), g′), p′:=p′ + 1) (H)

+
∑

k:Nat
j·Nnonmod (g′:=delete(k, g′), p′:=p′ − 1) / k < p′ . δ (I)

+ j·Nnonmod (p′:=p′ − 1) / p′ > 0 . δ (J)

+ c·Nnonmod (`:=last-seq(g′), q:=release(`, last-seq(g′), q), g′:=delete-last(g′))
/ p′ < length(g′) . δ (K)

166

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

11

Lemmas VI.3.2-VI.3.6, VI.3.9 and VI.5.12) all vari-
ables that occur in a data lemma are implicitly uni-
versally quantified at the outside of the equality. To
the purpose of presentation, all proofs of the lemmas
are omitted.

Lemma VI.1 Let n > 0.

1. (i|n + j)|n = (i + j)|n
2. i|n < n

3. (i·n)|n = 0

4. i = (i div n)·n + i|n
5. j ≤ i ≤ j + n

⇒ (i div 2n = j div 2n ∧ j|2n ≤ i|2n ≤ j|2n + n) ∨
(i div 2n = S(j div 2n) ∧ i|2n + n ≤ j|2n)

6. i ≤ j ⇒ i div n ≤ j div n

Lemma VI.2 1. test(i, remove(j, q)) = (test(i, q) ∧ i 6=
j)

2. i 6= j ⇒ retrieve(i, remove(j, q)) = retrieve(i, q)

3. test(i, release(j, k, q)) = (test(i, q) ∧ ¬(j ≤ i < k))

4. ¬(j ≤ i < k) ⇒ retrieve(i, release(j, k, q)) =
retrieve(i, q)

5. q 6= [] ⇒ test(max (q), q)

Lemma VI.3 1. test(k, q|2n) ⇒ k = k|2n

2. (∀j:Nat(test(j, q) ⇒ i ≤ j < i + n)∧ i ≤ k ≤ i + n)
⇒ test(k, q) = test(k|2n, q|2n)

3. (∀j:Nat(test(j, q) ⇒ i ≤ j < i + n) ∧ test(k, q))
⇒ retrieve(k, q) = retrieve(k|2n, q|2n)

4. (∀j:Nat(test(j, q) ⇒ i ≤ j < i + n)∧ i ≤ k ≤ i + n)
⇒ remove(k, q)|2n = remove(k|2n, q|2n)
5. (∀j:Nat(test(j, q) ⇒ i ≤ j < i + n)∧ i ≤ k ≤ i + n)
⇒ release(i, k, q)|2n = release|2n(i, k, q|2n)

6. (∀j:Nat(test(j, q) ⇒ i ≤ j < i + n)∧ i ≤ k ≤ i + n)
⇒ next-empty(k, q)|2n = next-empty|2n(k|2n, q|2n)

7. i ≤ k < i + n ⇒ in-window(i|2n, k|2n, (i + n)|2n)

8. in-window(i|2n, k|2n, (i + n)|2n)
⇒ k + n < i ∨ i ≤ k < i + n ∨ k ≥ i + 2n

9. (∀j:Nat(test(j, q) ⇒ i ≤ j < i + n) ∧ test(k, q|2n))
⇒ in-window(i|2n, k, (i + n)|2n)

Lemma VI.4 1. test(i, q) ⇒ i ≤ max(q)

2. i ≤ j < next-empty(i, q) ⇒ test(j, q)

3. next-empty(i, q) ≥ i

4. next-empty(i, inb(d, j, q)) ≥ next-empty(i, q)

5. j 6= next-empty(i, q)
⇒ next-empty(i, inb(d, j, q)) = next-empty(i, q)

6. next-empty(i, inb(d,next-empty(i, q), q))
= next-empty(S(next-empty(i, q)), q)

7. ¬(i ≤ j < next-empty(i, q))
⇒ next-empty(i, remove(j, q)) = next-empty(i, q)

Lemma VI.5 1. length(g) = length(g|2n)
2. i < length(g)
⇒ return-seq(i, g)|2n = return-seq(i, g|2n)

3. i < length(g)
⇒ return-dat(i, g) = return-dat(i, g|2n)
4. i < length(g)
⇒ delete(i, g)|2n = delete(i, g|2n)

5. length(g) > 0
⇒ last-dat(g) = return-dat(length(g) − 1, g)
6. length(g) > 0
⇒ last-seq(g) = return-seq(length(g) − 1, g)

7. length(g) > 0
⇒ delete-last(g) = delete(length(g) − 1, g)

8. (i < length(g) ∧ member(d, j, delete(i, g)))
⇒ member(d, j, g)
9. i < length(g)
⇒ length(delete(i, g)) = length(g) − 1

10. i < length(g)
⇒ member(return-dat(i, g), return-seq(i, g), g)
11. (i < length(g) − 1 ∧ j < length(g))
⇒ return-seq(i, delete(j, g))
= if (i < j, return-seq(i, g), return-seq(i + 1, g))

12. member(d, i, g)
⇒ ∃j:Nat (j < length(g) ∧ return-seq(j, g) = i

∧return-dat(j, g) = d)

Lemma VI.6 1. length(g′) = length(g′|2n)
2. i < length(g′)
⇒ return-seq(i, g′)|2n = return-seq(i, g′|2n)

3. i < length(g′)
⇒ delete(i, g′)|2n = delete(i, g′|2n)

4. length(g′) > 0
⇒ last-seq(g′) = return-seq(length(g′) − 1, g′)
5. length(g′) > 0
⇒ delete-last(g′) = delete(length(g′) − 1, g′)

6. (i < length(g′) ∧ member(j, delete(i, g′)))
⇒ member(j, g′)
7. i < length(g′)
⇒ length(delete(i, g′)) = length(g′) − 1

8. i < length(g′)
⇒ member(return-seq(i, g′), g′)
9. (i < length(g′) − 1 ∧ j < length(g′))
⇒ return-seq(i, delete(j, g′))
= if (i < j, return-seq(i, g′), return-seq(i + 1, g′))

Lemma VI.7 1. (λ++λ′)++λ′′ = λ++(λ′++λ′′)

2. length(λ++λ′) = length(λ) + length(λ′)

3. append(d, λ++λ′) = λ++append(d, λ′)
4. length(q[i..j〉) = j .− i

5. i ≤ k ≤ j ⇒ q[i..j〉 = q[i..k〉++q[k..j〉

6. i ≤ j ⇒ append(d, q[i..j〉) = inb(d, j, q)[i..S(j)〉

167

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

12

7. test(k, q) ⇒ inb(retrieve(k, q), k, q)[i..j〉 = q[i..j〉

8. ¬(i ≤ k < j) ⇒ remove(k, q)[i..j〉 = q[i..j〉

9. ` ≤ i ⇒ release(k, `, q)[i..j〉 = q[i..j〉

B. Invariants

Invariants of a system are properties of data that
are satisfied throughout the reachable state space of
the system. Lemma VI.8 collects 27 invariants of
Nnonmod that are needed in the correctness proof. Oc-
currences of variables i, j:Nat and d, e:∆ in an invari-
ant are always implicitly universally quantified at the
outside of the invariant.

Lemma VI.8 The following invariants 1-27 hold for
Nnonmod (`,m, q, `′, q′, g, p, g′, p′).

1. p ≤ length(g)

2. p′ ≤ length(g′)

3. member(i, g′) ⇒ i ≤ next-empty(`′, q′)

4. ` ≤ next-empty(`′, q′)

5. i < j < length(g′)
⇒ return-seq(i, g′) ≥ return-seq(j, g′)

6. member(i, g′) ⇒ ` ≤ i

7. test(i, q) ⇒ i < m

8. member(d, i, g) ⇒ i < m

9. test(i, q′) ⇒ i < m

10. test(i, q′) ⇒ `′ ≤ i < `′ + n

11. `′ ≤ m

12. next-empty(`′, q′) ≤ m

13. next-empty(`′, q′) ≤ `′ + n

14. ` ≤ m

15. test(i, q) ⇒ ` ≤ i

16. ` ≤ i < m ⇒ test(i, q)

17. ` ≤ `′ + n

18. m ≤ ` + n

19. i ≤ j < length(g)
⇒ return-seq(i, g) + n > return-seq(j, g)

20. (member(d, i, g) ∧ test(j, q′)) ⇒ i + n > j

21. member(d, i, g) ⇒ i + n ≥ `′

22. member(d, i, g) ⇒ i + n ≥ next-empty(`′, q′)

23. (member(d, i, g) ∧ test(i, q))
⇒ retrieve(i, q) = d

24. (test(i, q) ∧ test(i, q′))
⇒ retrieve(i, q) = retrieve(i, q′)

25. (member(d, i, g) ∧ member(e, i, g))
⇒ d = e

26. (member(d, i, g) ∧ test(i, q′))
⇒ retrieve(i, q′) = d

27. (` ≤ i ≤ m ∧ j ≤ next-empty(i, q′))
⇒ q[i..j〉 = q′[i..j〉

VII. Correctness of Nmod

In Section VII-A, we prove Theorem V.3, which
states that Nmod and Nnonmod are strongly bisimilar.
Next, in Section VII-B we prove that Nnonmod behaves
like a FIFO queue of size 2n. Theorem IV.1 is proved
in Section VII-C.

A. Equality of Nmod and Nnonmod

In this section we present a proof of Theorem V.3.
It suffices to prove that for all `,m, `′:Nat , q, q′:Buf ,
g:MedK and g′:MedL,

Nmod (`|2n,m|2n, q|2n, `′|2n, q′|2n, g|2n, p, g′|2n, p′)
↔ Nnonmod (`,m, q, `′, q′, g, p, g′, p′)

Proof: We show that
Nmod (`|2n,m|2n, q|2n, `′|2n, q′|2n, g|2n, p, g′|2n, p′)
is a solution for the defining equation of
Nnonmod (`,m, q, `′, q′, g, p, g′, p′).
Hence, we must derive the following equation.2

In order to prove this, we instantiate the parameters
in the defining equation of Nmod with `|2n,m|2n,

q|2n, `′|2n, g|2n, p, g′|2n, p′.

In order to equate the eleven summands in both
specifications, we obtain the following proof obliga-
tions. Cases for summands that are syntactically the
same are omitted.

A • m < `+n ⇔ in-window(`|2n,m|2n, (`|2n + n)|2n).

m < ` + n

⇔ ` ≤ m < ` + n

(Inv. VI.8.14)
⇒ in-window(`|2n,m|2n, (` + n)|2n)

(Lem. VI.3.7)

Reversely,

in-window(`|2n,m|2n, (` + n)|2n)
⇒ m + n < ` ∨ ` ≤ m < ` + n ∨ m ≥ ` + 2n

(Lem. VI.3.8)
⇔ m < ` + n

(Inv. VI.8.14 and VI.8.18)

Moreover, by Lemma VI.1.1, (` + n)|2n = (`|2n + n)|2n.
• S(m)|2n = S(m|2n)|2n.

This follows from Lemma VI.1.1.
• inb(d,m, q)|2n = inb(d,m|2n, q|2n).

This follows from the definition of buffers modulo 2n.

2By abuse of notation, we use the parameters `, m, q, `′, q′,
g, g′ in an ambiguous way. For example, m refers both to the
second parameter of Nmod and to the value of this parameter.

168

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

13

Nmod (`|2n,m|2n, q|2n, `′|2n, q′|2n, g|2n, p, g′|2n, p′)

≈
∑

d:∆
rA(d)·Nmod (m:=S(m)|2n, q:=inb(d,m, q)|2n) / m < ` + n . δ (A)

+
∑

k:Nat
c·Nmod (g:=inm(retrieve(k, q), k, g)|2n , p:=p + 1) / test(k, q) . δ (B)

+
∑

k:Nat
j·Nmod (g:= delete(k, g)|2n, p:=p − 1) / k < p . δ (C)

+ j·Nmod (p:=p − 1) / p > 0 . δ (D)

+ c·Nmod (q′:=inb(last-dat(g), last-seq(g), q ′)|2n, g:=delete-last(g)|2n)
/ p < length(g) ∧ (`′ ≤ last-seq(g) < `′ + n) . δ (E)

+ c·Nmod (g:=delete-last(g)|2n)
/ p < length(g) ∧ ¬(`′ ≤ last-seq(g) < `′ + n) . δ (F)

+ sD(retrieve(`′, q′))·Nmod (`′:=S(`′)|2n, q′:=remove(`′, q′)|2n) / test(`′, q′) . δ (G)

+ c·Nmod (g′:=inm(next-empty(`′, q′), g′)|2n, p′:=p′ + 1) (H)

+
∑

k:Nat
j·Nmod (g′:=delete(k, g′)|2n, p′:=p′ − 1) / k < p′ . δ (I)

+ j·Nmod (p′:=p′ − 1) / p′ > 0 . δ (J)

+ c·Nmod (`:=last-seq(g′)|2n, q:=release(`, last-seq(g′), q)|2n, g′:=delete-last(g′)|2n)
/ p′ < length(g′) . δ (K)

Nmod (`|2n,m|2n, q|2n, `′|2n, q′|2n, g|2n, p, g′|2n, p′)

≈
∑

d:∆
rA(d)·Nmod (m:=S(m|2n)|2n, q:=inb(d,m|2n, q|2n))

/ in-window(`|2n,m|2n, (`|2n + n)|2n) . δ (A)

+
∑

k:Nat
c·Nmod (g:=inm(retrieve(k, q|2n), k, g|2n), p:=p + 1)

/ test(k, q|2n) . δ (B)

+
∑

k:Nat
j·Nmod (g:= delete(k, g|2n), p:=p − 1) / k < p . δ (C)

+ j·Nmod (p:=p − 1) / p > 0 . δ (D)

+ c·Nmod (q′:=inb(last-dat(g|2n), last-seq(g|2n), q′|2n), g:=delete-last(g|2n))
/ p < length(g|2n) ∧ in-window(`′|2n, last-seq(g|2n), (`′|2n + n)|2n) . δ (E)

+ c·Nmod (g:=delete-last(g|2n))
/ p < length(g|2n) ∧ ¬in-window(`′|2n, last-seq(g|2n), (`′|2n + n)|2n) . δ (F)

+ sD(retrieve(`′|2n, q′|2n))·Nmod (`′:=S(`′|2n)|2n, q′:=remove(`′|2n, q′|2n)) / test(`′|2n, q′|2n) . δ (G)

+ c·Nmod (g′:=inm(next-empty|2n(`′|2n, q′|2n), g′|2n), p′:=p′ + 1) (H)

+
∑

k:Nat
j·Nmod (g′:=delete(k, g′|2n), p′:=p′ − 1) / k < p′ . δ (I)

+ j·Nmod (p′:=p′ − 1) / p′ > 0 . δ (J)

+ c·Nmod (`:=last-seq(g′|2n)|2n, q:=release|2n(`|2n, last-seq(g′|2n)|2n, q|2n), g′:=delete-last(g′|2n)) (K)
/ p′ < length(g′|2n) . δ

169

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

14

∑
k:Nat

c·Nmod (g:=inm(retrieve(k, q), k, g)|2n)
/ test(k, q) . δ

≈
∑

k:Nat
c·Nmod (g:=inm(retrieve(k, q), k|2n, g|2n))

/ test(k, q) ∧ ` ≤ k < ` + n . δ (Inv. VI.8.7, VI.8.15, VI.8.18)

≈
∑

k:Nat
c·Nmod (g:=inm(retrieve(k|2n, q|2n), k|2n, g|2n))

/ test(k|2n, q|2n) ∧ ` ≤ k < ` + n . δ (Lem. VI.3.2, VI.3.3)

≈
∑

k′:Nat

∑
k:Nat

c·Nmod (g:=inm(retrieve(k′, q|2n), k′, g|2n))
/ test(k′, q|2n) ∧ ` ≤ k < ` + n ∧ k′ = k|2n . δ (sum elim.)

≈
∑

k′:Nat

∑
k:Nat

c·Nmod (g:=inm(retrieve(k′, q|2n), k′, g|2n))
/ test(k′, q|2n) ∧ k = (` div 2n)2n + k′∧
`|2n ≤ k′ < `|2n + n ∧ k′ = k|2n . δ

+
∑

k′:Nat

∑
k:Nat

c·Nmod (g:=inm(retrieve(k′, q|2n), k′, g|2n))
/ test(k′, q|2n) ∧ k = S(` div 2n)2n + k′∧
k′ + n < `|2n ∧ k′ = k|2n . δ (Lem. VI.1.4, VI.1.5)

≈
∑

k′:Nat
c·Nmod (g:=inm(retrieve(k′, q|2n), k′, g|2n))

/ test(k′, q|2n) ∧ `|2n ≤ k′ < `|2n + n ∧ k′ = k′ . δ

+
∑

k′:Nat
c·Nmod (g:=inm(retrieve(k′, q|2n), k′, g|2n))

/ test(k′, q|2n) ∧ k′ + n < `|2n ∧ k′ = k′ . δ (sum elim., Lem. VI.1.3)

≈
∑

k′:Nat
c·Nmod (g:=inm(retrieve(k′, q|2n), k′, g|2n))

/ test(k′, q|2n) . δ (see below)

B Below we equate the entire summand B of the two
specifications. The argument p := p + 1 is omitted,
because it is irrelevant for this derivation.
The last equality follows from the following derivation:

test(k′, q|2n)
⇒ test(k′|2n, q|2n)

(Lem. VI.3.1)
⇒ ` ≤ k′|2n < ` + n

(Inv. VI.8.7, VI.8.15, VI.8.18)
⇒ in-window(`|2n, k′|2n, (` + n)|2n)

(Lem. VI.3.9)
⇒ k′ + n < `|2n ∨ `|2n ≤ k′ < `|2n + n

∨k′ ≥ `|2n + 2n
(Lem. VI.1.1, VI.3.8)

⇔ k′ + n < `|2n ∨ `|2n ≤ k′ < `|2n + n

(Lem. VI.1.2, VI.3.1)

C k < p ⇒ delete(k, g)|2n = delete(k, g|2n).
By Invariant VI.8.1, k < p ≤ length(g). So this follows
from Lemma VI.5.4.
E • length(g) = length(g|2n).
This follows from Lemma VI.5.1.
• p < length(g) ⇒ (`′ ≤ last-seq(g) < `′ + n =

in-window(`′|2n, last-seq(g)|2n, (`′|2n + n)|2n)).
Since 0 < length(g), Lemmas VI.5.5, VI.5.6, and

VI.5.10 yield member(last-dat(g), last-seq(g), g). So by
Invariant VI.8.22, next-empty(`′, q′) ≤ last-seq(g) + n.
Hence, by Lemma VI.4.3, `′ ≤ last-seq(g) + n. Fur-
thermore, by Invariant VI.8.8, last-seq(g) < m, by In-
variant VI.8.18, m ≤ ` + n, and by Invariant VI.8.17,
` ≤ `′ + n. Hence, last-seq(g) < `′ + 2n. So by
Lemmas VI.3.7 and VI.3.8, `′ ≤ last-seq(g) < `′ +
n = in-window(`′|2n, last-seq(g)|2n, (`′ + n)|2n). And
by Lemma VI.1.1, (`′ + n)|2n = (`′|2n + n)|2n.
• p < length(g) ⇒ inb(last-dat(g), last-seq(g), q ′)|2n =

inb(last-dat(g|2n), last-seq(g|2n), q′|2n).
This follows from the definitions of buffers modulo 2n,
and Lemmas VI.5.5, VI.5.6, VI.5.2 and VI.5.3.
• p < length(g) ⇒ delete-last(g)|2n = delete-last(g|2n).

This follows from Lemmas VI.5.7 and VI.5.4.
F • ¬(`′ ≤ last-seq(g) < `′ + n)
⇔ ¬in-window(`′|2n, last-seq(g)|2n, (`′|2n + n)|2n).
This follows immediately from the second item of the
previous case.
• p < length(g) ⇒ delete-last(g)|2n = delete-last(g|2n).

This follows immediately from the fourth item of the
previous case.
G • test(`′, q′) = test(`′|2n, q′|2n).
This follows from Lemma VI.3.2 together with Invari-
ant VI.8.10.

170

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

15

• test(`′, q′) ⇒ (retrieve(`′, q′) = retrieve(`′|2n, q′|2n)).
This follows from Lemma VI.3.3 together with Invari-
ant VI.8.10.
• S(`′)|2n = S(`′|2n)|2n.

This follows from Lemma VI.1.1.
• remove(`′, q′)|2n = remove(`′|2n, q′|2n).

This follows from Lemma VI.3.4 together with Invari-
ant VI.8.10.
H inm(next-empty(`′, q′)|2n, g′)|2n

= inm(next-empty|2n(`′|2n, q′|2n), g′|2n).
By Lemma VI.3.6 and Invariant VI.8.10,
next-empty(`′, q′)|2n = next-empty|2n(`′|2n, q′|2n). So
the desired equality follows the definition of mediums
modulo 2n.
I k < p′ ⇒ delete(k, g′)|2n = delete(k, g′|2n).
By Invariant VI.8.2, k < p′ ≤ length(g′). So the de-
sired equality follows from Lemma VI.6.3.
K • length(g′) = length(g′|2n).
This follows from Lemma VI.6.1.
• p′ < length(g′) ⇒ last-seq(g′)|2n = last-seq(g′|2n)|2n.

This follows from Lemmas VI.6.4, VI.6.2 and VI.1.1.
• release(`, last-seq(g′), q)|2n

= release|2n(`|2n, last-seq(g′)|2n, q|2n).
By Lemmas VI.6.4 and VI.6.8, p′ < length(g′) im-
plies member(last-seq(g′), g′). So by Invariant VI.8.6,
` ≤ last-seq(g′). By Invariants VI.8.3 and VI.8.12,
last-seq(g′) ≤ next-empty(`′, q′) ≤ m. And by In-
variant VI.8.18, m ≤ ` + n. So ` ≤ last-seq(g ′) ≤
`+ n. Furthermore, by Invariants VI.8.7, VI.8.15 and
VI.8.18, test(i, q) ⇒ ` ≤ i < ` + n. Hence, the desired
equation follows from Lemma VI.3.5.
• p′ < length(g′)
⇒ delete-last(g′)|2n = delete-last(g′|2n).
This follows from Lemmas VI.6.3 and VI.6.5.

Hence, Nmod (`|2n,m|2n, q|2n, `′|2n, q′|2n, g|2n, p, g′|2n, p′)
is a solution for the defining equation of
Nnonmod (`,m, q, `′, q′, g, p, g′, p′). So by CL-RSP, they
are strongly (and thus branching) bisimilar.

B. Correctness of Nnonmod

We prove that Nnonmod is branching bisimilar to the
FIFO queue Z of size 2n (see Section IV-B), using the
cones and foci method [9].

Let Ξ abbreviate Nat × Nat × Buf × Nat ×
Buf × MedK × Nat × MedL × Nat . Furthermore,
let ξ:Ξ denote (`,m, q, `′, q′, g, p, g′, p′). The state
mapping φ : Ξ ⇒ List , which maps states of
Nnonmod to states of Z, is defined by: φ(ξ) =
q′[`′..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉

Intuitively, φ collects the data elements in the send-
ing and receiving windows, starting at the first posi-

tion of the receiving window (i.e., `′) until the first
empty position in this window, and then continuing
in the sending window until the first empty position
in that window (i.e., m). Note that φ is independent
of `, g, p, g′, p′; we therefore write φ(m, q, `′, q′).

The focus points are those states where either the
sending window is empty (meaning that ` = m), or
the receiving window is full and all data elements in
the receiving window have been acknowledged, mean-
ing that ` = `′ + n. That is, the focus condition for
Nnonmod (`,m, q, `′, q′, g, p, g′, p′) is

FC (`,m, q, `′, q′, g, p, g′, p′) := ` = m ∨ ` = `′ + n

Lemma VII.1 For each ξ:Ξ where the invariants in
Lemma VI.8 hold, there is a ξ̂:Ξ with FC(ξ̂) such that

Nnonmod (ξ)
c1→ · · ·

cn→ Nnonmod (ξ̂), where c1, . . . , cn ∈
I.

Proof: By Invariants VI.8.12 and VI.8.13,
next-empty(`′, q′) ≤ min{m, `′ + n}. We prove by in-
duction on min{m, `′ +n}−next-empty(`′, q′) that for
each state ξ where the invariants in Lemma VI.8 hold,
a focus point can be reached by a sequence of com-
munication actions.
Base Case: next-empty(`′, q′) = min{m, `′ + n}.
Let y = length(g′) and x = next-empty(`′, q′) at
state ξ. By summand H, we reach a state ξ ′ with
g′ := inm(x, g′). Hence, at state ξ′ there exists a
0 ≤ k < y such that return-seq(k, g′) = x and
return-seq(i, g′) 6= x for any k < i < y. In view of
Invariant VI.8.5, k < i < y ⇒ x > return-seq(i, g ′).
Then, by repeating summand J (p′ times), we reach
a state ξ′′ with p′ = 0. Then, by repeating summand
K (y − (k + 1) times), we reach a state ξ ′′′ such that
last-seq(g′) = x. During these executions of H,J and
K the values of m, `′, q′ remain the same. By again
performing summand K, we reach a state ξ̂ where
` = last-seq(g′) = x = min{m, `′ + n}. Then ` = m or
` = `′ + n, so FC(ξ̂).
Induction Case: next-empty(`′, q′) < min{m, `′ +
n}.
Let y = length(g) and x = next-empty(`′, q′) at state
ξ. By Invariants VI.8.4 and VI.8.12, ` ≤ x < m. So
by Invariant VI.8.16, test(x, q). Furthermore, in view
of Lemma VI.4.3, `′ ≤ x < `′ + n. By summand
B, we perform a communication action to a state ξ ′

with g:=inm(d, x, g) (where d denotes retrieve(x, q)).
Hence, at state ξ′ there exists a 0 ≤ k < y such that
return-seq(k, g) = x and return-seq(i, g) 6= x for any
k < i < y. Then, by repeating summand D (p times),
we reach a state ξ′′ with p = 0. Then, by repeating

171

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

16

summands E and F (y−(k+1) times), we reach a state
ξ′′′ with last-dat(g) = d and last-seq(g) = x. During
these executions of B,D,E and F , the values of m, `′

remain the same; and since during the executions of E

and F last-seq(g) 6= x, in view of Lemma VI.4.5, the
value of next-empty(`′, q′) remains the same. By again
performing summand E, we reach a state ξ ′′′′ where
q′ := inb(d, x, q′). Recall that x = next-empty(`′, q′).

next-empty(`′, in(d,next-empty(`′, q′), q′))
= next-empty(S(next-empty(`′, q′)), q′)

(Lem. VI.4.6)
> next-empty(`′, q′)

(Lem. VI.4.3)

So we can apply the induction hypothesis to conclude
that from ξ′′′′ a focus point ξ̂ can be reached by a
sequence of communication actions.

Theorem VII.2 For all e:∆,

τ{c,j}(Nnonmod (0, 0, [], 0, [], []K , 0, []L, 0)) ↔b Z(〈〉).

Proof: By the cones and foci method we obtain
the following matching criteria (see Definition II.2).
Trivial matching criteria are left out.

Class I:

(p < length(g) ∧ `′ ≤ last-seq(g) < `′ + n)
⇒ φ(m, q, `′, q′) = φ(m, q, `′, inb(last-dat(g),
last-seq(g), q′))

p′ < length(g′)
⇒ φ(m, q, `′, q′) = φ(m, release(`, last-seq(g′), q), `′, q′)

Class II:

m < ` + n ⇒ length(φ(m, q, `′, q′)) < 2n

test(`′, q′) ⇒ length(φ(m, q, `′, q′)) > 0

Class III:

((` = m ∨ ` = `′ + n) ∧ length(φ(m, q, `′, q′)) < 2n)
⇒ m < ` + n

((` = m ∨ ` = `′ + n) ∧ length(φ(m, q, `′, q′)) > 0)
⇒ test(`′, q′)

Class IV:

test(`′, q′) ⇒ retrieve(`′, q′) = top(φ(m, q, `′, q′))

Class V:

m < ` + n

⇒ φ(S(m), inb(d,m, q), `′, q′) =
append(d, φ(m, q, `′, q′))

test(`′, q′)
⇒ φ(m, q, S(`′), remove(`′, q′)) = tail(φ(m, q, `′, q′))

I.1 Let p < length(g). By Lemmas VI.5.5, VI.5.6 and
VI.5.10, member(last-dat(g), last-seq(g), g).
Case 1: last-seq(g) 6= next-empty(`′, q′).
By Lemma VI.4.5,
next-empty(`′, inb(last-dat(g), last-seq(g), q ′))
= next-empty(`′, q′). Hence,

φ(m, q, `′, inb(last-dat(g), last-seq(g), q ′))
= inb(last-dat(g), last-seq(g), q ′)[`′..next-empty(`′, q′)〉

++q[next-empty(`′, q′)..m〉

Case 1.1: `′ ≤ last-seq(g) < next-empty(`′, q′).
By Lemma VI.4.2, test(last-seq(g), q ′), so by Invariant
VI.8.26 together with
member(last-dat(g), last-seq(g), g), retrieve(last-seq(g), q ′)
= last-dat(g). So by Lemma VI.7.7,
inb(last-dat(g), last-seq(g), q′)[`′..next-empty(`′, q′)〉 =
q′[`′..next-empty(`′, q′)〉.
Case 1.2: ¬(`′ ≤ last-seq(g) < next-empty(`′, q′)).
Using Lemma VI.7.8, it follows that

inb(last-dat(g), last-seq(g), q′)[`′..next-empty(`′, q′)〉
= remove(last-seq(g), inb(last-dat(g), last-seq(g), q ′))

[`′..next-empty(`′, q′)〉
= remove(last-seq(g), q′)[`′..next-empty(`′, q′)〉
= q′[`′..next-empty(`′, q′)〉

Case 2: last-seq(g) = next-empty(`′, q′).
The derivation splits into two parts.
(1) Using Lemma VI.7.8, it follows that

inb(last-dat(g), last-seq(g), q′)[`′..last-seq(g)〉
= remove(last-dat(g), inb(last-dat(g), last-seq(g), q ′))

[`′..last-seq(g)〉
= remove(last-dat(g), q′)[`′..last-seq(g)〉
= q′[`′..last-seq(g)〉

(2) By Invariant VI.8.4, ` ≤ last-seq(g). By In-
variant VI.8.8 and member(last-dat(g), last-seq(g), g),
last-seq(g) < m. Thus, by Invariant VI.8.16,
test(last-seq(g), q). So by Invariant VI.8.23 with
member(last-dat(g), last-seq(g), g), retrieve(last-seq(g), q)
= last-dat(g). Since ` ≤ S(last-seq(g)) ≤ m, by In-
variant VI.8.27,

q′[S(last-seq(g))..next-empty(S(last-seq(g)), q ′)〉
= q[S(last-seq(g))..next-empty(S(last-seq(g)), q ′)〉

172

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

17

Hence,

inb(last-dat(g), last-seq(g), q′)
[last-seq(g)..next-empty(S(last-seq(g)), q ′)〉

= inl(last-dat(g), inb(last-dat(g), last-seq(g), q ′)
[S(last-seq(g))..next-empty(S(last-seq(g)), q ′)〉)

= inl(last-dat(g), remove(last-seq(g),
inb(last-dat(g), last-seq(g), q′))
[S(last-seq(g))..next-empty(S(last-seq(g)), q ′)〉)
(Lem. VI.7.8)

= inl(last-dat(g), remove(last-seq(g), q ′)
[S(last-seq(g))..next-empty(S(last-seq(g)), q ′)〉)

= inl(last-dat(g),
q′[S(last-seq(g))..next-empty(S(last-seq(g)), q ′)〉)
(Lem. VI.7.8)

= inl(last-dat(g),
q[S(last-seq(g))..next-empty(S(last-seq(g)), q ′)〉)
(see above)

= q[last-seq(g)..next-empty(S(last-seq(g)), q ′)〉

Finally, we combine (1) and (2). We recall that
last-seq(g) = next-empty(`′, q′).

inb(last-dat(g), last-seq(g), q′)
[`′..next-empty(`′, inb(last-dat(g), last-seq(g), q ′))〉
++q[next-empty(`′, inb(last-dat(g), last-seq(g), q ′))
..m〉

= inb(last-dat(g), last-seq(g), q ′)
[`′..next-empty(S(last-seq(g)), q′)〉
++q[next-empty(S(last-seq(g)), q ′)..m〉
(Lem. VI.4.6)

= (inb(last-dat(g), last-seq(g), q ′)
[`′..last-seq(g)〉
++inb(last-dat(g), last-seq(g), q ′)
[last-seq(g)..next-empty(S(last-seq(g)), q ′)〉)
++q[next-empty(S(last-seq(g)), q ′)..m〉
(Lem. VI.4.3, VI.7.5)

= (q′[`′..last-seq(g)〉
++q[last-seq(g)..next-empty(S(last-seq(g)), q ′)〉)
++q[next-empty(S(last-seq(g)), q ′)..m〉
(1), (2)

= q′[`′..last-seq(g)〉++q[last-seq(g)..m〉
(Lem. VI.7.1, VI.4.2, VI.7.5)

I.2 Let p′ < length(g′). By Lemmas VI.6.4 and VI.6.8,
member(last-seq(g′), g′).
By Invariant VI.8.3, last-seq(g′) ≤ next-empty(`′, q′).
So by Lemma VI.7.9, release(`, last-seq(g ′), q)
[next-empty(`′, q′)..m〉 = q[next-empty(`′, q′)..m〉

II.1 Let m < ` + n.

length(q′[`′..next-empty(`′, q′)〉++
q[next-empty(`′, q′)..m〉)

= length(q′[`′..next-empty(`′, q′)〉)
+length(q[next-empty(`′, q′)..m〉))
(Lem. VI.7.2)

= (next-empty(`′, q′) .− `′) + (m .− next-empty(`′, q′))
(Lem. VI.7.4)

≤ n + (m .− `)
(Inv. VI.8.13, VI.8.4)

< 2n

II.2 test(`′, q′) together with Lemma VI.4.3 yields
next-empty(`′, q′) = next-empty(S(`′), q′) ≥ S(`′).
Hence, by Lemmas VI.7.2 and VI.7.4,

length(φ(m, q, `′, q′))
= (next-empty(`′, q′) .− `′) + (m .− next-empty(`′, q′))
> 0

III.1 Case 1: ` = m.
Then m < ` + n holds trivially.
Case 2: ` = `′ + n.

length(φ(m, q, `′, q′))
= (next-empty(`′, q′) .− `′) + (m .− next-empty(`′, q′))

(Lem. VI.7.2, VI.7.4)
≤ ((`′ + n) .− `′) + (m .− `)

(Inv. VI.8.13, VI.8.4)
= n + (m .− `)

So length(φ(m, q, `′, q′)) < 2n implies m < ` + n.
III.2 Case 1: ` = m.
Then m .− next-empty(`′, q′) ≤ m .− ` (Inv. VI.8.4) =
0, so

length(φ(m, q, `′, q′))
= (next-empty(`′, q′) .− `′) + (m .− next-empty(`′, q′))

(Lem. VI.7.2, VI.7.4)
= next-empty(`′, q′) .− `′

Hence, length(φ(m, q, `′, q′)) > 0 yields
next-empty(`′, q′) > `′, which implies test(`′, q′).
Case 2: ` = `′ + n.
Then by Invariant VI.8.4, next-empty(`′, q′) ≥ `′ + n,
which implies test(`′, q′).
IV test(`′, q′) implies next-empty(`′, q′)
= next-empty(S(`′), q′) ≥ S(`′) (Lem. VI.4.3). Hence,

q′[`′..next-empty(`′, q′)〉
= inl(retrieve(`′, q′), q′[S(`′)..next-empty(`′, q′)〉)

173

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

18

So

top(φ(m, q, `′, q′))
= top(inl(retrieve(`′, q′), q′[S(`′)..next-empty(`′, q′)〉

++q[next-empty(`′, q′)..m〉))
= retrieve(`′, q′)

V.1

q′[`′..next-empty(`′, q′)〉++
inb(d,m, q)[next-empty(`′, q′)..S(m)〉

= q′[`′..next-empty(`′, q′)〉++
append(d, q[next-empty(`′, q′)..m〉)
(Lem. VI.7.6, Inv. VI.8.12)

= append(d, q′[`′..next-empty(`′, q′)〉++
q[next-empty(`′, q′)..m〉)
(Lem. VI.7.3)

V.2 test(`′, q′) and Lemma VI.4.3 imply
next-empty(`′, q′) = next-empty(S(`′), q′) ≥ S(`′).
Hence,

remove(`′, q′)[S(`′)..
next-empty(S(`′), remove(`′, q′))〉
++q[next-empty(S(`′), remove(`′, q′))..m〉

= remove(`′, q′)[S(`′)..next-empty(S(`′), q′)〉
++q[next-empty(S(`′), q′)..m〉
(Lem. VI.4.7)

= remove(`′, q′)[S(`′)..next-empty(`′, q′)〉
++q[next-empty(`′, q′)..m〉

= q′[S(`′)..next-empty(`′, q′)〉
++q[next-empty(`′, q′)..m〉
(Lem. VI.7.8)

= tail (q′[`′..next-empty(`′, q′)〉
++q[next-empty(`′, q′)..m〉)

C. Correctness of the Sliding Window Protocol

Finally, we can prove Theorem IV.1.

Proof:

τI(∂H(S(0, 0, []) ‖ R(0, []) ‖ K([]K , 0) ‖ L([]L, 0)))

↔ τI(Mmod (0, 0, [], 0, [], []K , 0, []L, 0))
(Thm. V.1)

↔ τ{c,j}(Nmod (0, 0, [], 0, [], []K , 0, []L, 0))

(Thm. V.2)

↔ τ{c,j}(Nnonmod (0, 0, [], 0, [], []K , 0, []L, 0))

(Thm. V.3)
↔b Z(〈〉)

(Thm. VII.2)

VIII. Related Work

Sliding window protocols have attracted consider-
able interest from the formal verification community.
In this section we present an overview. Many of these
verifications deal with unbounded sequence numbers,
in which case modulo arithmetic is avoided, or with
a fixed finite window size. The papers that do treat
arbitrary finite window sizes mostly restrict to safety
properties.

Infinite window size. Stenning [41] studied a SWP
with unbounded sequence numbers and an infinite
window size, in which messages can be lost, duplicated
or reordered. A timeout mechanism is used to trig-
ger retransmission. Stenning gave informal manual
proofs of some safety properties. Knuth [26] exam-
ined more general principles behind Stenning’s pro-
tocol, and manually verified some safety properties.
Hailpern [20] used temporal logic to formulate safety
and liveness properties for Stenning’s protocol, and
established their validity by informal reasoning. Jon-
sson [23] also verified both safety and liveness proper-
ties of the protocol, using temporal logic and a manual
compositional verification technique.

Fixed finite window size. Richier et al. [34] specified a
SWP in a process algebra based language Estelle/R,
and verified safety properties for window size up to
eight using the model checker Xesar. Madelaine and
Vergamini [29] specified a SWP in Lotos, with the
help of the simulation environment Lite, and proved
some safety properties for window size six. Holzmann
[21], [22] used the Spin model checker to verify both
safety and liveness properties of a SWP with sequence
numbers up to five. Kaivola [25] verified safety and
liveness properties using model checking for a SWP
with window size up to seven. Godefroid and Long
[11] specified a full duplex SWP in a guarded com-
mand language, and verified the protocol for win-
dow size two using a model checker based on Queue
BDDs. Stahl et al. [40] used a combination of abstrac-
tion, data independence, compositional reasoning and
model checking to verify safety and liveness properties
for a SWP with window size up to sixteen. The pro-
tocol was specified in Promela, the input language for
the Spin model checker. Smith and Klarlund [38] spec-
ified a SWP in the high-level language IOA, and used
the theorem prover MONA to verify a safety prop-
erty for unbounded sequence numbers with window
size up to 256. Latvala [27] modeled a SWP using
Colored Petri nets. A liveness property was model
checked with fairness constraints for window size up

174

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

19

to eleven.

Arbitrary finite window size. Cardell-Oliver [6] spec-
ified a SWP using higher order logic, and manually
proved and mechanically checked safety properties us-
ing HOL. (Van de Snepscheut [39] noted that what
Cardell-Oliver claims to be a liveness property is in
fact a safety property.) Schoone [37] manually proved
safety properties for several SWPs using assertional
verification. Van de Snepscheut [39] gave a correct-
ness proof of a SWP as a sequence of correctness
preserving transformations of a sequential program.
Paliwoda and Sanders [32] specified a reduced ver-
sion of what they call a SWP (but which is in fact
very similar to the bakery protocol from [14]) in the
process algebra CSP, and verified a safety property
modulo trace semantics. Röckl and Esparza [35] ver-
ified the correctness of this bakery protocol modulo
weak bisimulation using Isabelle/HOL, by explicitly
checking a bisimulation relation. Jonsson and Nilsson
[24] used an automated reachability analysis to verify
safety properties for a SWP with arbitrary sending
window size and receiving window size one. Rusu [36]
used the theorem prover PVS to verify both safety
and liveness properties for a SWP with unbounded
sequence numbers. Chkliaev et al. [8] used a timed
state machine in PVS to specify a SWP with a timeout
mechanism and proved some safety properties with
the mechanical support of PVS. Correctness is based
on the timeout mechanism, which allows messages in
the mediums to be reordered.

References

[1] J.A. Bergstra and J.W. Klop. Process algebra for syn-
chronous communication. Information and Computation,
60:109–137, 1984.

[2] J.A. Bergstra and J.W. Klop. Verification of an alternating
bit protocol by means of process algebra. In Proc. Spring

School on Mathematical Methods of Specification and Syn-

thesis of Software Systems, LNCS 215, pp. 9–23. Springer,
1986.

[3] M.A. Bezem and J.F. Groote. A correctness proof of a
one bit sliding window protocol in µCRL. The Computer

Journal, 37(4):289–307, 1994.

[4] M.A. Bezem and J.F. Groote. Invariants in process alge-
bra with data. In Proc. 5th Conference on Concurrency

Theory, LNCS 836, pp. 401–416. Springer, 1994.

[5] J.J. Brunekreef. Sliding window protocols. In Algebraic

Specification of Protocols. Cambridge Tracts in Theoretical
Computer Science 36, pp. 71–112. Cambridge University
Press, 1993.

[6] R. Cardell-Oliver. sing higher order logic for modelling real-
time protocols. In Proc. 4th Joint Conference on Theory

and Practice of Software Development, LNCS 494, pp. 259–
282. Springer, 1991.

[7] V.G. Cerf and R.E. Kahn. A protocol for packet network

intercommunication. IEEE Transactions on Communica-

tions, COM-22:637–648, 1974.

[8] D. Chkliaev, J. Hooman, and E. de Vink. Verification
and improvement of the sliding window protocol. In Proc.

9th Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems, LNCS 2619, pp. 113–127.
Springer, 2003.

[9] W.J. Fokkink and J. Pang. Cones and foci for protocol
verification revisited. In Proc. 6th Conference on Foun-

dations of Software Science and Computation Structures,
LNCS 2620, pp. 267–281, Springer, 2003.

[10] R.J. van Glabbeek and W.P. Weijland. Branching time
and abstraction in bisimulation semantics. Journal of the

ACM, 43:555–600, 1996.

[11] P. Godefroid and D.E. Long. Symbolic protocol verification
with Queue BDDs. Formal Methods and System Design,
14(3):257–271, 1999.

[12] R.A. Groenveld. Verification of a sliding window protocol
by means of process algebra. Report P8701, University of
Amsterdam, 1987.

[13] J.F. Groote. Process Algebra and Structured Operational

Semantics. PhD thesis, University of Amsterdam, 1991.

[14] J.F. Groote and H.P. Korver. Correctness proof of the
bakery protocol in µCRL. In Proc. 1st Workshop on the

Algebra of Communicating Processes, Workshops in Com-
puting, pp. 63–86. Springer, 1995.

[15] J.F. Groote and A. Ponse. Proof theory for µCRL: A lan-
guage for processes with data. In Proc. Workshop on Se-

mantics of Specification Languages, Workshops in Comput-
ing, pp. 232–251. Springer, 1994.

[16] J.F. Groote and A. Ponse. The syntax and semantics of
µCRL. In Proc. 1st Workshop on the Algebra of Commu-

nicating Processes, Workshops in Computing Series, pp.
26–62. Springer, 1995.

[17] J. F. Groote, A. Ponse, and Y.S. Usenko. Linearization in
parallel pCRL. Journal of Logic and Algebraic Program-

ming, 48(1/2):39–72, 2001.

[18] J.F. Groote and M. Reniers. Algebraic process verification.
In J.A. Bergstra, A. Ponse, and S.A. Smolka, eds, Handbook

of Process Algebra, pp. 1151–1208. Elsevier, 2001.

[19] J.F. Groote and J. Springintveld. Focus points and con-
vergent process operators. A proof strategy for protocol
verification. Journal of Logic and Algebraic Programming,
49(1/2):31–60, 2001.

[20] B.T. Hailpern. Verifying Concurrent Processes Using Tem-

poral Logic. LNCS 129, Springer, 1982.

[21] G.J. Holzmann. Design and Validation of Computer Pro-

tocols. Prentice Hall, 1991.

[22] G.J. Holzmann. The model checker Spin. IEEE Transac-

tions on Software Engineering, 23(5):279-295, 1997.

[23] B. Jonsson. Compositional Verification of Distributed Sys-

tems. PhD thesis, Department of Computer Science, Upp-
sala University, 1987.

[24] B. Jonsson and M. Nilsson. Transitive closures of regular
relations for verifying infinite-state systems. In Proc. 6th

Conference on Tools and Algorithms for Construction and

Analysis of Systems, LNCS 1785, pp. 220–234. Springer,
2000

[25] R. Kaivola. Using compositional preorders in the verifica-
tion of sliding window protocol. In Proc. 9th Conference

on Computer Aided Verification, LNCS 1254, pp. 48–59.
Springer, 1997.

175

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

20

[26] D.E. Knuth. Verification of link-level protocols. BIT,
21:21–36, 1981.

[27] T. Latvala. Model checking LTL properties of high-level
Petri nets with fairness constraints. In Proc. 22nd Confer-

ence on Application and Theory of Petri Nets, LNCS 2075,
pp. 242–262. Springer, 2001.

[28] J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of

Abstract Data Types. Wiley/Teubner, 1996.
[29] E. Madelaine and D. Vergamini. Specification and veri-

fication of a sliding window protocol in Lotos. In Proc.

4th Conference on Formal Description Techniques for

Distributed Systems and Communication Protocols, IFIP
Transactions, pp. 495-510. North-Holland, 1991.

[30] S. Mauw and G.J. Veltink. A process specification formal-
ism. Fundamenta Informaticae, 13(2):85–139, 1990.

[31] A. Middeldorp. Specification of a sliding window protocol
within the framework of process algebra. Report FVI 86-
19, University of Amsterdam, 1986.

[32] K. Paliwoda and J.W. Sanders. An incremental specifica-
tion of the sliding-window protocol. Distributed Comput-

ing, 5:83–94, 1991.
[33] D.M.R. Park. Concurrency and automata on infinite se-

quences. In Proc. 5th GI-Conference on Theoretical Com-

puter Science, LNCS 104, pp. 167–183. Springer, 1981.
[34] J.L. Richier, C. Rodriguez, J. Sifakis, and J. Voiron. Ver-

ification in Xesar of the sliding window protocol. In Proc.

7th Conference on Protocol Specification, Testing and Ver-

ification, pp. 235–248. North-Holland, 1987.
[35] C. Röckl and J. Esparza. Proof-checking protocols using

bisimulations. In Proc. 10th Conference on Concurrency

Theory, LNCS 1664, pp. 525–540. Springer, 1999.
[36] V. Rusu. Verifying a sliding-window protocol using PVS. In

Proc. 21st Conference on Formal Techniques for Networked

and Distributed Systems, IFIP Conference Proceedings 197,
pp. 251-268. Kluwer, 2001.

[37] A.A. Schoone. Assertional Verification in Distributed Com-

puting. PhD thesis, Utrecht University, 1991.
[38] M.A. Smith and N. Klarlund. Verification of a sliding win-

dow protocol using IOA and MONA. In Proc. 2oth Con-

ference on Formal Techniques for Distributed System De-

velopment, IFIP Conference Proceedings 183, pp. 19–34.
Kluwer, 2000.

[39] J.L.A. van de Snepscheut. The sliding window protocol
revisited. Formal Aspects of Computing, 7(1):3–17, 1995.

[40] K. Stahl, K. Baukus, Y. Lakhnech, and M. Steffen. Divide,
abstract, and model-check. In Proc. 6th International SPIN

Workshop, LNCS 1680, pp. 57–76. Springer, 1999.
[41] N.V. Stenning. A data transfer protocol. Computer Net-

works, 1(2):99–110, 1976.
[42] A.S. Tanenbaum. Computer Networks. Prentice Hall, 1981.
[43] F.W. Vaandrager. Verification of two communication pro-

tocols by means of process algebra. Report CS-R8608,
CWI, Amsterdam, 1986.

[44] J.J. van Wamel. A study of a one bit sliding window pro-
tocol in ACP. Report P9212, University of Amsterdam,
1992.

176

