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Abstract. Studying industrial systems by simulation enables the designer to study their dynamic behaviour and
to determine characteristics of the system. Unfortunately, simulation also has some disadvantages. These can be
overcome by using formal methods. Formal methods allow a thorough analysis of the possible behaviours of a
system, parameterised system analysis and a modular approach to the analysis of systems. We present a case study
in which a model of an industrial system is studied in a formal way. For this purpose, the model is first specified
and simulated using the CSP-based executable specification language χ . The model is translated into a model in
the process algebra µCRL. This enables us to give a correctness proof of the parameterised model and to study
the model in isolation.
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1. Introduction

Industry makes higher demands on methodologies used for the design of new factories and
their machinery. Firstly, due to the huge amount of money involved and growing competition
on the market, no mistakes can be afforded. The final design of a factory must be as optimal
as possible. As a consequence, the same holds for the machinery inside. Building a new
factory or improving a factory step by step is not an option anymore; the new factory should
perform satisfactory from the beginning. Therefore, one must be able to predict system
characteristics like throughput and cycle time and be able to rely on factory equipment; be
able to assure certain behaviour. In addition, new factories must be realised within shorter
periods. Products change faster, new products are developed faster and so must the systems
needed to produce them.

Modelling is often used in the design and analysis of industrial systems. This follows
from the fact that, usually, models are better suited for experimentation than real systems.
Three kinds of models can be distinguished [28]: physical (e.g., scale models), graphical
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(e.g., engineering drawings), and symbolic (e.g., formal specifications). By far, most of the
models used in computing science belong to the last category, while in other engineering
disciplines also the other two are widely used.

In many applications, symbolic models are easier to construct and manipulate than physi-
cal or graphical ones. This is especially true for complex systems. Symbolic models can have
a form of verbal descriptions, mathematical expressions, or computer programs. Clearly, it
is important to choose a suitable modelling language to construct comprehensible models.
Whether a language is suitable depends on the application at hand and hence languages
come in different flavours.

Often modelling languages are subdivided into the following three categories: continuous-
time languages, discrete-event languages, and their combination. Continuous-time mod-
elling languages, such as ACSL [31] and Omola [2], are used for modelling physical systems
where an infinite number of state changes can occur in a given finite time interval. Usually
differential algebraic equations are used in such languages. Discrete-event modelling lan-
guages, such as SIMAN [33] and ExSpect [39], are used for describing systems that only
allow a finite number of state changes in any finite time interval. Finally, languages exist
that combine continuous-time and discrete-event features into one formalism. Examples
are COSMOS [27], VHDL [10, 26, 35], and χ [1, 3, 12].

1.1. Simulating industrial systems with χ

Within the Systems Engineering group (http://se.wtb.tue.nl/), industrial systems (mostly
production systems) are investigated in order to understand and improve their dynamic
behaviour. They are modelled using a language especially designed for this purpose called
χ [3, 38]. Validation of χ models can be done by means of simulation [1].

The formalism χ offers a language for specifying industrial systems including their
control systems. Furthermore, the dynamic behaviour of these systems can be studied. As
stated in the previous paragraph, it is possible to simulate χ models. This proves to be of
considerable importance when designing and optimising industrial systems. Namely, the
dynamic behaviour of an industrial system can be studied and system characteristics like
throughput and cycle time versus the work in process can be determined. Furthermore, a
model can easily be adapted to new requirements or specifications. The consequences can
be studied by simulating the model again. Also various control strategies can be tested in
this way. Money and time can be saved since changing a model costs only a fraction of
making changes to the actual system.

The language χ has been tested and used extensively in many different industrial areas.
Some of the projects that used χ and its simulator are mentioned below. Mostly, the ob-
jective was to reduce cycle time and to increase throughput by applying better scheduling
strategies.

– product oriented manufacturing: the balancing of a car assembly line (Volvo/Mitsubishi),
– process oriented manufacturing: the design of an ASIC wafer fab (Philips [24, 36, 37]),
– hybrid oriented production: production optimisation in a beer brewery (Heineken) and

the design of a fruit juice blending and packaging plant (Riedel [13]),
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– machinery: design of control architectures and scheduling algorithms for medical
equipment (TNO) and wafersteppers (ASML).

Although the simulation approach towards the validation of industrial systems turned out
to be successful, the approach has some disadvantages. Firstly, due to the non-deterministic
nature of concurrent systems, one cannot obtain complete information about all possible
behaviours of a system by means of simulation. There is always the risk of missing the
one behaviour which causes the system to fail. As a consequence, the absence of deadlocks
cannot be guaranteed. Secondly, simulation requires the assignment of concrete values to
system parameters such as production rates, buffer sizes, operating times of machines and
the amount of work in process. As a consequence, simulations must be repeated when
there is a change in the system parameters. Finally, due to the fact that our validation is
restricted to simulation we are forced to work with closed systems only. This means that
the environment of the system must be modelled as well. As a consequence, we cannot
study parts of the system in isolation. Thus, simulation does not allow a modular analysis
of system behaviour. This makes analysis of complex industrial systems very difficult.

1.2. Verifying industrial systems with χ

The problems discussed in the previous paragraph lead to the insight that, apart from the
ability to simulate, the ability to verify system properties is desired. A solution is to be found
in proving system characteristics by using formal methods. Formal methods are the key to
software verification in general, and in our case, the key to verifying χ programs. Firstly, it
allows a thorough analysis of the possible behaviours of a specified system. One can verify
whether or not a system has the desired behaviour. Furthermore, formal methods allow
parameterised system analysis. Often, characteristics can be derived for classes of systems.
Formal methods also overcome the disadvantage last mentioned; it is possible to determine
the behaviour of parts of the system in isolation, thus allowing a modular approach to the
analysis of systems. Examples of such formal methods are the process algebras CSP [25],
ACP [5], µCRL [18], and Petri Nets [34].

As a first step towards the verification of complex industrial systems specified in χ , we
only consider the discrete-event part of χ in this article.

A formal method that can serve as a solution to the previously mentioned problems, for
the discrete-event case, is the process algebra µCRL [18]. The description of continuous-
time systems in µCRL is currently being investigated [23]. The process algebra µCRL
is an extension of the process algebra ACPτ [5] with a formal treatment of data. Data is
present through so-called abstract data types. The language µCRL consists of only a few
composition mechanisms that are expressive enough to describe large distributed systems.
It has been the base for the development of a proof theory [17] and proof methodology [20]
using which the verification of larger distributed systems in a precise logical way becomes
a routine action.

The language µCRL and its proof methodology have been applied successfully to a
number of case studies. These include, but are not limited to, the correctness proofs of a one
bit sliding window protocol [7], a leader election protocol [14], a distributed summation
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algorithm [21], and a bounded retransmission protocol [22]. The mathematical precision
which characterises proofs in µCRL allows for the formalisation of these in proof checkers
[6, 29].

In this paper, a case study is presented that deals with the earlier mentioned disadvantages
of simulation. The case study considers a slightly adapted architecture of a sub-system of
Philips’ wafer fab MOS4YOU situated in Nijmegen, The Netherlands. We construct a χ

model of this industrial system and map this model onto a µCRL model. Firstly, we give a
correctness proof of the χ model by verifying the process algebra model using the notion
of focus points and convergent process operators [20]. That is, we prove that this model has
the desired external behaviour, which among other things, means that it is deadlock free.
Secondly, we claim this property for an arbitrary parameter. Thirdly, we study the model
in isolation, that is, without considering the environment. This is in contrast with the χ

simulator which requires the environment to be specified.
Furthermore, let us mention that we are aware of the fact that the studied model is

relatively small, especially in comparison with the size of the χ models that are usually
constructed. This is due to the fact that this case study is only our first attempt in applying
formal techniques to the analysis of industrial systems modelled in the χ language.

2. The χ language

Within the χ language the behaviour of each system component is described by a process.
These processes can be grouped into a system by means of parallel composition. Such a
system in its turn, can act as a process; it can be combined with other processes and systems
to form a new system. In this way, a hierarchical structure can be built in which the resulting
top-level system describes the overall behaviour of the modelled system.

Each process is specified in an imperative way using guarded commands [11]. Con-
sequently, χ exhibits non-determinism. Individual processes or groups of processes that
operate concurrently communicate with each other by means of synchronous communica-
tion via channels. All channels are one-to-one connections between processes. This aspect
of the language is based on CSP (Communicating Sequential Processes [25]).

To visualise the structure of a model, a graphical representation is used. A process (or
system) is represented by a circle with the process name in this circle. A channel is visualised
by a curved arrow between the processes that are connected by it. The direction of the arrow
indicates the direction of the material or information flow. Somewhere along the arrow, the
channel name is given. The graphical representation is not an essential part of the formalism
but is helpful in structuring system specifications.

We only discuss a small part of the χ language, i.e. the language constructs needed for
the case study discussed in Section 4. All other language features are omitted. A complete
description of the χ language can be found in [1]. For now, the syntax as it is given
in Table 1 suffices. The syntax is given in Backus-Naur Form (BNF) and the syntax of
(boolean) expressions is omitted.

Assignments. The term x := e denotes the assignment statement. It changes the value of x
to e.
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Table 1. Syntax of χ statements.

x : variable, a: channel, e: expression, b: boolean expression

PS: := x := e assignment statement
| PS1; PS2 catenation statement
| ES event statement
| [GP] selection statement
| ∗[GP] repetitive selection statement
| [GC] selective waiting statement
| ∗[GC] repetitive selective waiting statement

E S ::= a ! e send statement
| a ? x receive statement

GP ::= b → PS | GP [] GP

GC ::= b; ES → PS | GC [] GC

Sequential composition. The term PS1; PS2 denotes the sequential composition of the
statements PS1 and PS2, meaning that statement PS2 is executed after the execution of
statement PS1 has finished.

Events. An event statement is either a send or a receive statement. The send statement a ! e
can be used to send expression e via channel a to the other process connected with this
channel. On the other hand, the receive statement a ? x can receive such an expression and
assign it to variable x .

Selection. The selection statement can be used to denote that, depending on certain condi-
tions (the guards), different statements should be executed. The construct b → PS is called
a guarded command. A selection statement can combine one ore more guarded commands.
Upon execution of a selection statement, all guards are evaluated. If none of the guards eval-
uates to true, execution of the selection statement deadlocks. In case more than one guard
evaluates to true, one alternative is chosen non-deterministically and the corresponding
statement is executed.

A repetitive selection statement can be used if we want a selection to be executed re-
peatedly as long as one or more guards evaluate to true. The repetition stops if all guards
yield false, in that case the statement following the repetitive selection is executed. Note
that therefore the repetitive selection cannot deadlock, as opposite to its non-repetitive
variant.

Selective waiting. A selective waiting statement is somewhat like a selection statement
with this difference that a possible communication is also part of the guard. Namely,
besides the fact that all boolean expressions are evaluated to see which alternatives are
valid, also opportunities to send or receive are checked. Only the alternatives that have
a boolean expression that yields true and are able to actually communicate are consid-
ered to be valid. From these alternatives one alternative is chosen non-deterministically.
As is the case for a selection statement; if none of the alternatives is valid, the statement
deadlocks.

A repetitive selective waiting statement can be used if we want a selective waiting to be
executed repeatedly as long as one or more boolean expressions evaluate to true and their
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corresponding communications are possible. The repetition stops if all boolean expressions
yield false or there are no opportunities to communicate. In that case, the statement following
the repetitive selective waiting is executed. Note that also in this case the repetitive variant
cannot deadlock.

3. The process algebra µCRL

In this section, we briefly introduce the process algebra µCRL and the proof methodology
that is used for the case study.

3.1. Specification of data in µCRL

In µCRL [18] there is a simple, yet powerful mechanism to specify data. We use (un-
conditional equational) abstract data types with an explicit distinction between constructor
functions and ‘normal’ functions [40]. The advantage of having such a simple language
is that it can easily be explained and formally defined. Moreover, all properties of a data
type must be explicitly denoted, and henceforth it is clear which assumptions can be used
when proving properties about data or processes. A disadvantage is of course that even the
simplest data types must be specified each time, and that there are no high level constructs
that allow compact specification of complex data types.

Because booleans are used in the if-then-else construct in the language, the sort Bool
must be declared in every µCRL specification. It is assumed that t (true) and f (false) are the
only constructor functions of sort Bool. Furthermore, we assume that t and f are different
and that every boolean expression equals one of them:

¬(t = f)

¬(b = t) → b = f

If in a specification t and f can be proven equal, for instance if the specification contains an
equation t = f, then we say that the specification is inconsistent and it looses its meaning.
Hence, for the booleans we declare

sort Bool

func t :→ Bool

f :→ Bool

The division between constructors and mappings gives us general induction principles [40].
If a sort D is declared with a number of constructors, then we may assume that every term
of sort D can be written as the application of a constructor to a number of arguments. So,
if we want to prove a property p(d) for all d of sort D, then we only need to provide proofs
for p(cn(d1, . . . , dn)) for each n-ary constructor cn : S1 × · · · × Sn → D and each di a
term of sort Si . If any of the arguments of cn , say argument d j , is of sort D then, as d j is
smaller than d , we may use that p(d j ) as an induction hypothesis. If we apply this line of
argumentation, we say we apply induction on D.
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As an example of specifying data and reasoning about data, suppose that we have declared
the natural numbers with constructors zero and succ and non-constructor function plus as
follows:

sort N
func zero :→ N

succ : N → N
map plus : N × N → N
var m, n : N
rew plus(m, zero) = m

plus(m, succ(n)) = succ(plus(m, n))

.

We can, for instance, derive that plus(zero, n) = n for all n. We apply induction on N. First,
we must show that plus(zero, zero) = zero, considering the case where n = zero. This is a
trivial instance of the first axiom on addition. Second, we must show plus(zero, succ(n′)) =
succ(n′), assuming that n has the form succ(n′). In this case we may assume that the
property to be proven holds already for n′, i.e., plus(zero, n′) = n′. Then we obtain
plus(zero, succ(n′)) = succ(plus(zero, n′)) = succ(n′).

In the remainder of this paper we will omit all specifications of abstract data types.

3.2. Specification of processes in µCRL

The process algebra µCRL offers the following building blocks for describing processes:
atomic actions, alternative and sequential composition, deadlock, process declarations, con-
ditionals, alternative quantification, encapsulation, internal actions, hiding, and parallel
composition. These will be explained below.

Atomic actions. Actions are abstract representations of events in the real world that is
described. For instance sending the number 3 can be described by send(3) and boiling
food can be described by boil(food) where 3 and food are terms declared by a data type
specification. An action consists of an action name possibly followed by one or more data
terms within brackets. The set of all action names that are declared in a µCRL specification
is denoted by Act. In accordance with process algebras such a CCS, CSP and ACP, actions
in µCRL are considered to be atomic.

Sequential and alternative composition. The two elementary operators to construct pro-
cesses are the sequential composition operator · and the alternative composition operator
+. The process p · q first performs the actions of p, until p terminates, and then continues
with the actions in q . The process p + q behaves like p or q, depending on which of
the two performs the first action. Note that the sequential operator binds stronger than the
alternative composition operator.

In Table 2 axioms A1–A5 are listed describing the elementary properties of the sequential
and alternative composition operators. For instance, the axioms A1, A2 and A3 express that
+ is commutative, associative and idempotent. In these and other axioms we use variables
p, q and r that can be instantiated by process terms. In the sequel, we use the letter a for an
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Table 2. Basic axioms for µCRL.

p + q = q + p (A1)

p + (q + r ) = (p + q) + r (A2)

p + p = p (A3)

(p + q) · r = p · r + q · r (A4)

(p · q) · r = p · (q · r ) (A5)

Table 3. Axioms for deadlock.

p + δ = p (A6)

δ · p = δ (A7)

action name, and we give each action a single argument d̄ representing all its arguments.
The letter c is used for any action or any of the special constants δ and τ , which are explained
below.

Deadlock. The µCRL language contains a constant δ, expressing that no further actions can
be performed. This constant is called deadlock. A typical property for δ is p + δ = p; the
choice in p + q is determined by the first action performed by either p or q, and therefore
one can never choose for δ. In other words, as long as there are alternatives deadlock is
avoided. In Table 3, the axioms A6 and A7 characterise the main properties of δ.

Process declarations. Process declarations have the form:

X (x1 : s1, . . . , xn : sn) = p.

Here X is the process name, xi are variables, not clashing with the name of a constant func-
tion or a parameterless process or action name, and si are sort names. In this rule, process
X (x1, . . . , xn) is declared to have the same (potential) behaviour as the process expression p.
A process declaration must be considered as an equation in the ordinary mathematical sense.
This means that with a declaration such as the one above an occurrence of X (u1, . . . , un)
can be replaced by p(u1/x1, . . . , un/xn), or vice versa, p(u1/x1, . . . , un/xn) may be re-
placed by X (u1, . . . , un). The notation p(e/v) represents the substitution of an expression
e for every free occurrence of the variable v in process term p.

Conditional operator. The process expression p � b � q where p and q are processes, and
b is a data term of sort Bool, behaves like p if b is equal to t and if b is equal to f, be-
haves like q . This operator is called the conditional operator, and operates precisely as an
then if else construct. Using the conditional operator data influences process behaviour.
The conditional operator is characterised by axioms C1 and C2 in Table 4. There are no
more axioms needed, because all required properties about the conditionals appear to be
provable using the previously stated assumptions about the sort Bool.

Sum operator. The sum operator
∑

d:D p behaves like the possibly infinite choice between
p(di/d) for any data term di taken from D, i.e. as p(d1/d) + p(d2/d) + · · ·. The sum
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Table 4. Axioms for the conditional operator.

p � t � q = p (C1)

p � f � q = q (C2)

Table 5. Axioms for the sum operator.

∑
d:D p = p if d �∈ FV(p) (SUM1)∑
d:D p = ∑

d:D p + p(e/d) (SUM3)∑
d:D(p + q) = ∑

d:D p + ∑
d:D q (SUM4)

(
∑

d:D p) · q = ∑
d:D(p · q) if d �∈ FV(q) (SUM5)

Table 6. Axioms for encapsulation.

∂H (δ) = δ (DD)

∂H (τ ) = τ (DT)

∂H (a(d̄)) = a(d̄) if a /∈ H (D1)

∂H (a(d̄)) = δ if a ∈ H (D2)

∂H (p + q) = ∂H (p) + ∂H (q) (D3)

∂H (p · q) = ∂H (p) · ∂H (q) (D)4

∂H (
∑

d:D p) = ∑
d:D ∂H (p) (SUM8)

operator
∑

d:D p is a difficult operator, because it acts as a binder just like the lambda in
the lambda calculus [4]. Conforming the λ-calculus, we allow α-conversion in the sum
operator, and do not state this explicitly. Hence, we consider the expressions

∑
d:D p and∑

e:D p(e/d) as equal. In Table 5 the axioms for the sum operator are listed. The notation
FV(p) represents the free variables of process p. We may not substitute the action a(d) for
p in the left hand side of SUM1 in Table 4, because this would cause d to become bound
by the sum operator. This is expressed by d not in FV(p). So, SUM1 is a concise way of
saying that if d does not appear in p, then we may omit the sum operator in

∑
d:D p.

Encapsulation. Sometimes, we want to express that certain actions cannot happen, and must
be blocked, i.e. renamed to δ. Generally, this is only done when we want to force this action
into a communication. The encapsulation operator ∂H (H ⊆ Act) is especially designed
for this task. In ∂H (p) it prevents all actions of which the action name is mentioned in H
from happening. Typically, ∂{b}(a · b(3) · c) = a · δ, where a, b and c are action names. The
properties of ∂H are given in Table 6.

Abstraction and internal actions. Abstraction is an important means to analyse communi-
cating systems. It means that certain actions are made invisible, such that the relationship
between the remaining actions becomes more clear. A specification can be proven equal to
an implementation, consisting of a number of parallel processes, after hiding all internal
communications between these components.

The hidden action or internal action is denoted τ . It represents an action that can take
place in a system, but cannot be observed directly. The internal action is meant for analysis
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Table 7. Axioms for abstraction and internal actions.

c · τ = c (B1)

p · (τ · (q + r ) + q) = p · (q + r ) (B2)

τI (δ) = δ (TID)

τI (τ ) = τ (TIT)

τI (a(d̄)) = a(d̄) if a /∈ I (TI1)

τI (a(d̄)) = τ if a ∈ I (TI2)

τI (p + q) = τI (p) + τI (q) (TI3)

τI (p · q) = τI (p) · τI (q) (TI4)

τI (
∑

d:D p) = ∑
d:D τI (p) (SUM9)

purposes, and hardly ever used in specifications, as it is very uncommon to specify that some-
thing unobservable must happen. A typical identity characterising the internal action τ is a ·
τ · p = a· p, with a an action and p a process term. It says that it is impossible to tell by obser-
vation whether or not internal actions happen after the a. Sometimes, the presence of internal
actions can be observed, due to the context in which they appear. E.g. a + τ ·b �= a + b, as the
left hand side can silently execute the τ , after which it only offers a b action, whereas the right
hand side can always do an a. The difference between the two processes can be observed by
insisting in both cases that the a happens. This is always successful in a + b, but may lead
to a deadlock in a + τ · b. The axioms for internal actions, B1 and B2, are given in Table 7.

In order to make actions hidden, the hiding operator τI (I ⊆ Act) is introduced, where I
is a set of action names. The process τI (p) behaves as the process p, except that all actions
with action names in I are renamed to τ . This is characterised by the axioms in Table 7.

Parallel composition. The parallel composition operator can be used to put processes in
parallel. The behaviour of p ‖ q is the arbitrary interleaving of actions of the processes p
and q , assuming for the moment that there is no communication between p and q. For
example the process a ‖ b behaves the same as a · b + b · a.

It is possible to let processes p and q in p ‖ q communicate. The possible communications
are defined by a partial, commutative and associative communication function γ : Act ×
Act → Act ∪ {δ, τ }. Suppose that we have defined γ (a, b) = γ (b, a) = c. This means that
if actions a(d̄) and b(d̄) can happen in parallel, they may synchronise and this synchronisa-
tion is denoted by c(d̄). If two actions synchronise, their arguments must be exactly the same.
In a communication definition it is required that action names a, b and c are declared with
exactly the same data sorts. It is not necessary that these sorts are unique. It is for example
perfectly right to declare the three actions both with a sort D and with a pair of sorts D×Bool.

If a communication is defined as above, synchronisation is another possibility for parallel
processes. For example the process a ‖ b is now equivalent to a · b + b · a + c. Generally, this
is not quite what is desired, as the intention generally is that a and b do not happen on their
own. Therefore, the encapsulation operator can be used. The process ∂{a,b}(a ‖ b) is equal
to c.

Axioms that describe the parallel operator are in Table 8. In order to formulate the axioms
two auxiliary parallel operators have been defined. The left merge �� is a binary operator
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Table 8. Axioms for parallelism in µCRL.

p ‖ q = p �� q + q �� p + p | q (CM1)

c �� p = c · p (CM2)

c · p �� q = c · (p ‖ q) (CM3)

(p + q) �� r = p �� r + q �� r (CM4)

(
∑

d:D p) �� q = ∑
d:D(p �� q) if d �∈ FV(q) (SUM6)

a(d̄) | a′ (ē) =
{

γ (a, a′)(d̄) � eq(d̄, ē) � δ if γ (a, a′) defined

δ otherwise
(CF)

δ | c = δ (CD1)

c | δ = δ (CD2)

τ | c = δ (CT1)

c | τ = δ (CT2)

c · p | c′ = (c | c′) · p (CM5)

c | c′ · p = (c | c′) · p (CM6)

c · p | c′ · q = (c | c′) · (p ‖ q) (CM7)

(p + q) | r = p | r + q | r (CM8)

p | (q + r ) = p | q + p | r (CM9)

(
∑

d:D p) | q = ∑
d:D(p | q) if d �∈ FV(q) (SUM7)

p | (
∑

d:D q) = ∑
d:D(p | q) if d �∈ FV(p) (SUM7′)

that behaves exactly as the parallel operator, except that its first action must come from
the left hand side. The communication merge | is also a binary operator behaving as the
parallel operator, except that the first action must be a synchronisation between its left and
right operand. The core law for the parallel operator is CM1 in Table 8. It says that in p ‖ q
either p performs the first step, represented by the summand p �� q, or q can do the first
step, represented by q �� p, or the first step of p ‖ q is a communication between p and q,
represented by p | q . All other axioms in Table 8 are designed to eliminate the parallel
operators in favour of the alternative and the sequential operator.

The axioms provided for the µCRL language describe which processes are considered
equivalent. For µCRL a structured operational semantics can be found in [18]. The equiva-
lence described by the axioms corresponds with the notion of rooted branching bisimulation
on transition systems.

3.3. Proof methodology

Consider an implementation of a model that can be described as the parallel composition of
several processes p1, . . . , pn . These processes communicate via send and receive actions.
First, the send and receive actions that did not result in a communication are encapsulated.
Then, the internal actions (i.e., the actions within the system itself and without a direct
link to the environment), are abstracted from. Given a specification Spec describing the
external behaviour that the implementation should satisfy, it should be the case that the
implementation (after the previously mentioned encapsulation and abstraction) equals this
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specification:

Spec = τI (∂H (p1 ‖ p2 ‖ · · · ‖ pn)).

To prove such an equivalence, we use the notion of focus points and convergent process op-
erators [20]. It forms a strategy for finding algebraic correctness proofs for communication
systems described in µCRL.

Proving that two processes are equivalent comes to realising a state mapping h that
satisfies certain constraints called the matching criteria. This state mapping should map
states of the abstract implementation to corresponding states of the specification, in such a
way that the same set of external actions can be executed directly. Since most of the time
states of the abstract implementation do not directly match with a state of the specification,
we make an explicit distinction between states in the abstract implementation that do so
indeed, and states from which such a state can be reached after some internal computation,
i.e. a number of internal steps. States that match directly with a state in the specification
are called focus points. In such a state, the abstract implementation cannot perform internal
actions, that is, there are no outgoing τ -steps. The other states are called non-focus points.
If the abstract implementation is convergent (i.e. there is no infinite sequence of internal
steps), we have that from a non-focus point a focus point can be reached by performing
finitely many internal actions. Focus points are characterised by the focus condition. The
set of states that reach the same focus point after some internal activity is called a cone. If
we have no unbounded internal activity (i.e. no infinite sequence of consecutive τ -actions
exist), every state belongs to some cone. The state mapping now maps all states of a cone
to the state corresponding to the focus point of the cone.

Processes are denoted in a particular format called Clustered Linear Process Equations
(C-LPEs). They enrich the process algebraic language with a symbolic representation of
the (possibly infinite) state space of a process by means of state variables and formulas
concerning these variables. The C-LPE format resembles I/O-automata [30] and Unity
processes [9].

Definition 1 (C-LPE). Let Act ⊆ Act ∪ {τ } be a finite set of actions and let D be an
arbitrary data sort. A Clustered Linear Process Equation (C-LPE) over Act and D is an
equation of the form

p(d:D) =
∑

a∈Act

∑
ea :Ea

a( fa(d, ea)) · p(ga(d, ea)) � ba(d, ea) � δ,

for data types Ea, Da , and functions fa : D → Ea → Da , ga : D → Ea → D and ba :
D → Ea → Bool.

The C-LPE p in the above definition describes that process p in a state described by d can
perform the action a( fa(d, ea)) if for some ea of type Ea the guard ba(d, ea) is satisfied.
After the execution the state of process p is described by ga(d, ea). In a C-LPE there is at
most one summand in the alternative composition for every a ∈ Act.
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In the sequel, when we write fa(d, ea), ga(d, ea) and ba(d, ea), we refer to the abstract im-
plementation, whereas with f ′

a(d, ea), g′
a(d, ea) and b′

a(d, ea), we refer to the specification.

Definition 2 (Focus condition). The focus condition FCp(d) of C-LPE p in state d is the
formula

¬∃eτ :Eτ
(bτ (d, eτ )).

Definition 3 (Matching criteria). Let p(d:D) and q(d ′:D′) be C-LPEs. Then the function
h : D → D′ is a state mapping if it satisfies the following matching criteria for all eτ :Eτ ,
a ∈ Act \ {τ }, and ea :Ea

p is convergent, (1)

bτ (d, eτ ) → h(d) = h(gτ (d, eτ ), (2)

ba(d, ea) → b′
a(h(d), ea), (3)

FCp(d) ∧ b′
a(h(d), ea) → ba(d, ea), (4)

ba(d, ea) → fa(d, ea) = f ′
a(h(d), ea), (5)

ba(d, ea) → h(ga(d, ea)) = g′
a(h(d), ea). (6)

In [20], the matching criteria are explained as follows: Criterion (1) says that p must be
convergent. This means that in a cone every internal action τ must constitute progress
towards a focus point. Criterion (2) says that if in a state d in the abstract implementation
an internal step can be done (bτ (d, eτ ) is valid), then this internal step is not observable.
This is described by saying that both states relate to the same state in the specification.
Criterion (3) says that when the abstract implementation can perform an external step, then
the corresponding state in the specification must also be able to perform this step. Note
that, in general, the converse need not hold. If the specification can perform an a-action in a
certain state e, then it is only necessary that in every state d of the abstract implementation
such that h(d) = e an a-step can be done after some internal actions. The latter is guaranteed
by Criterion (4). This criterion says that in a focus point of the abstract implementation, an
action a can be performed if it is enabled in the specification. Criteria (5) and (6) express
that corresponding external actions carry the same data parameter (modulo h) and lead to
corresponding states, respectively.

Theorem 1. Let p(d:D) and q(d ′:D′) be C-LPEs and h : D → D′ a state mapping. If q
does not contain τ -steps, then p and q are equivalent: p = q.

4. The case study

This particular case study deals with an industrial system. It consists of a stocker S, a
transporting mechanism T , a machine M and a controller C . This is depicted in figure 1.
The stocker obtains products from the environment via channel es. These products are
transported to machine M through the channels st and tm. Machine M collects the incoming
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Figure 1. Industrial system.

products until the amount of collected products has reached the batch size (s). At that
moment, the newly formed batch is sent back to S via the transporter through the channels
mt and ts. S collects those batches and returns them to the environment via channel se.
The interaction between the transporting mechanism, which can only handle one product
or batch at a time, and the machine is controlled by process C . It exchanges information
with T and M via the channels ct and cm respectively.

Firstly, we specify the χ models of the specification (�) and implementation of the
industrial system. From these χ models we derive the C-LPE models � and �, the latter
being the abstract implementation. In Section 5, we then realise a state mapping h, which
maps the states of � to the corresponding states of �, and prove that � = �.

Products are represented by naturals. Batches are lists (notation: type∗) of products. In χ

the types ‘prod’ and ‘batch’ are then declared by

type prod = nat,
batch = prod∗.

Before we present the χ models, the predefined functions take and drop are given. The
natural numbers are denoted by N. Furthermore, the constant [] denotes the empty list and
the function ++ denotes concatenation of lists. The function len gives the length of a list
and the functions hd and tl give the head and the tail of a list, respectively. The definitions
of the functions ++ , len, hd and tl are omitted.

Definition 4. Let T be an arbitrary data type. Then for all x ∈ T , xs ∈ T ∗ and n ∈ N, the
functions take, drop : T ∗ × N → T ∗ are defined by

take([], n) = [],

take(xs, 0) = [],

take([x] ++ xs, n + 1) = [x] ++ take(xs, n),

drop([], n) = [],

drop(xs, 0) = xs,

drop([x] ++ xs, n + 1) = drop(xs, n).

The intuition behind the two functions defined above can be expressed by q = take(q, n)
++ drop(q, n) for all q and n.
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The desired external behaviour, to be specified in process �, can be described as follows:
products enter the system via channel es. Every time process � contains a number of
products equal to or greater than the batch size s, a batch can be returned to the environment
via channel se. We can abbreviate an expression ‘true; ES’ to ES. This is done in the process
descriptions of � and S.

proc �(es : ? prod, se : ! batch, s : nat) =
|[ x : prod, xs : batch
| xs := []
; ∗[ es ? x → xs := xs ++ [x]

[] len(xs) ≥ s; se ! take(xs, s) → xs := drop(xs, s)
]

]|

The implementation consists of the parallel composition of the processes S, T , M and C .

proc S(es : ? prod, st : ! prod, ts : ? batch, se : ! batch)=
|[ x : prod, xs, y : batch, ys : batch∗

| xs := []; ys := []
; ∗[ es ? x → xs := xs ++ [x]

[] len(xs) > 0; st ! hd(xs) → xs := tl(xs)
[] ts ? y → ys := ys ++ [y]
[] len(ys) > 0; se ! hd(ys) → ys := tl(ys)
]

]|
proc T (st : ? prod, tm : ! prod, mt : ? batch

, ts : ! batch, ct : ? bool) =
|[ x : prod, xs : batch, z : bool
| xs := []; z := true
; ∗[ [ z; st ? x → xs := xs ++ [x]; tm ! hd(xs); xs := []

[] ¬z; mt ? xs → ts ! xs; xs := []
]

; ct ? z
]

]|
proc M(tm : ? prod, mt : ! batch, cm : ? bool) =
|[ x : prod, xs : batch, z : bool
| xs := []; z := true
; ∗[ [ z; tm ? x → xs := xs ++ [x]

[] ¬z; mt ! xs → xs := []
]

; cm ? z
]

]|
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proc C(ct, cm : ! bool, s : nat) =
|[ i : nat
| i := 0
; ∗[ ct ! (i + 1 �= s); cm ! (i + 1 �= s)

; i := (i + 1) mod (s + 1)
]

]|
syst STMC(es : ? prod, se : ! batch, s : nat) =
|[ st, tm : prod, mt, ts : batch, ct, cm : bool
| S(es, st, ts, se)
‖ T (st, tm, mt, ts, ct)
‖ M(tm, mt, cm)
‖ C(ct, cm, s)
]|

Let us now specify the C-LPE models for the specification and the abstract implementation.
We shortly discuss the way to obtain a C-LPE model from a corresponding χ model and
illustrate that approach for the specification.

The main issue when translating a χ model into its µCRL equivalent is that one has to take
into account a second programming paradigm. Within the χ language the process part and
the arithmetic part are mixed and specified in an imperative way. That is, explicit sequences
of steps are specified in order to realise a certain result. The µCRL language, on the other
hand, has a clear distinction between the process part and the arithmetic part and it uses a
combined approach. The process part is imperative, supporting recursion, while the arith-
metic part is declarative. The latter implies that changes of variables are described in terms
of functions. The state parameters are included in the process’ parameter list. Arithmetic is
handled by updating those state parameters when a process is recursively called.

Table 1 shows us that, in essence, χ processes are built from the assignment statement
(x := e), the send statement (a ! e), the receive statement (a ? x), and boolean expressions
which act as guards (b). A C-LPE, as defined in Definition 1, is built from actions, recursive
calls of that particular process and guards. We represent a send and receive statement by a
send and receive action, sa(e) and ra(x), and in addition, we also define a communication
action ca(e). Such a communication action results from a successful synchronised execu-
tion of a send and receive action according to a predefined communication function γ :
γ (sa, ra) = ca . In stead of the assignment statement we write e/v if a variable v is replaced
by an expression e.

Let us now, as an example, consider the specification. Even though χ does not have
an explicit notion of states, it is not hard to see that process � is described by list xs
and parameter s. Furthermore, to facilitate the verification in Section 5, we assume that
consecutive products entering our system are also labelled consecutively, starting at 1.
Therefore, we introduce the parameters x� and xs in the µCRL processes � and S. They
represent the next product to be received via channel es. The µCRL process � is then
parameterised by x� , xs� , and s. As a result, the state space is then given by D� =
N × N∗ × N>0. Note that, in addition to updating list xs� after we received a new product,
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Figure 2. Transition diagram of process �.

we now also need to increase x� by 1. Also note that, in order to increase readability of the
expressions to follow, we only show those parameters of a process in its parameter list that
are actually modified.

This leads to the following definition of the specification in C-LPE format.

Definition 5. The specification is given by the process �(1, [], s), where

�(x�, xs�, s) = res(x�) · �(x� + 1/x�, xs� ++ [x�]/xs�)

+ sse(take(xs�, s)) · �(drop(xs�, s)/xs�) � len(xs�) ≥ s � δ.

The transition diagram of process � is depicted in figure 2 below.
Before we construct the µCRL model for the abstract implementation, we first specify its

components. The components are the processes S, T , M and C . Because the C-LPE format
forces us to maintain former sequential compositions within a process by means of some
extra arithmetic, extra state parameters jt , jm, jc ∈ N are introduced in the processes T , M
and C . These parameters are used in guards to enforce the execution of a specific action as
the successor of a certain previous action.

Definition 6. For (xs, xss, yss) ∈ DS , where DS = N × N∗ × (N∗)∗, we define

S(xs, xss, yss) = res(xs) · S(xs + 1/xs, xss ++ [xs]/xss)

+ sst (hd(xss)) · S(tl(xss)/xss) � len(xss) > 0 � δ

+
∑
y:N ∗

rts(y) · S(yss ++ [y]/yss)

+ sse(hd(yss)) · S(tl(yss)/yss) � len(yss) > 0 � δ.

For (xst , zt , jt ) ∈ DT , where DT = N∗ × Bool × N, we define

T (xst , zt , jt ) =
∑
x :N

rst(x) · T (xst ++ [x]/xst , 1/ jt ) � zt ∧ jt = 0 � δ

+ stm(hd(xst )) · T ([]/xst , 2/ jt ) � zt ∧ jt = 1 � δ

+
∑

xs:N ∗
rmt(xs) · T (xst ++ xs/xst , 1/ jt ) � ¬zt ∧ jt = 0 � δ



266 KLEIJN, RENIERS AND ROODA

+ sts(xst ) · T ([]/xst , 2/ jt ) � ¬zt ∧ jt = 1 � δ

+
∑

z:Bool

rct(z) · T (z/zt , 0/ jt ) � jt = 2 � δ.

For (xsm, zm, jm) ∈ DM , where DM = N∗ × Bool × N, we define

M(xsm, zm, jm) =
∑
x :N

rtm(x) · M(xsm ++ [x]/xsm, 1/ jm) � zm ∧ jm = 0 � δ

+ smt(xsm) · M([]/xsm, 1/ jm)� ¬ zm ∧ jm = 0 � δ

+
∑

z:Bool

rcm(z) · M(z/zm, 0/ jm) � jm = 1 � δ.

For (ic, jc, s) ∈ DC , where DC = N × N × N>0, we define

C(ic, jc, s) = sct (ic + 1 �= s) · C(1/ jc) � jc = 0 � δ

+ scm(ic + 1 �= s) · C((ic + 1) mod (s + 1)/ic, 0/ jc) � jc = 1 � δ.

These processes communicate over the channels as depicted in figure 1. For this case study,
γ is defined by

γ (sch, rch) = cch

for all ch ∈ {es, st, tm, mt, ts, se, ct, cm}.
The implementation is obtained by putting the individual processes S, T , M and C in

parallel and disabling the occurrence of the loose send and receive actions. This is achieved
by means of the encapsulation operator ∂H , where

H = {sch, rch | ch ∈ {st, tm, mt, ts, ct, cm}}.

The implementation can then be described by

∂H (S(1, [], []) ‖ T ([], t, 0) ‖ M([], t, 0) ‖ C(0, 0, s)).

Then, we abstract from the internal actions of the implementation to arrive at an abstract
implementation. The internal actions, i.e. successful communications over the internal chan-
nels, are given by the set

I = {cch | ch ∈ {st, tm, mt, ts, ct, cm}}.

This abstraction is achieved by applying the abstraction operator τI . The abstract imple-
mentation is then given by

τI (∂H (S(1, [], []) ‖ T ([], t, 0) ‖ M([], t, 0) ‖ C(0, 0, s))).

The state space of the abstract implementation can be seen as a compound state space of the
state spaces of the individual processes. It is denoted by D� = DS × DT × DM × DC . Next,
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we linearise the abstract implementation, and the result is referred to as � in the sequel.
The τ -actions are numbered for referring purposes.

Theorem 2. The abstract implementation � is the process

�(1, [], [], [], t, 0, [], t, 0, 0, 0, s),

where

�(xs, xss, yss, xst , zt , jt , xsm, zm, jm, ic, jc, s)

= res(xs) · �(xs + 1/xs, xss ++ [xs]/xss)

+ τ1 · �(tl(xss)/xss, xst ++ [hd(xss)]/xst , 1/ jt )

� len(xss) > 0 ∧ zt ∧ jt = 0 � δ

+ τ2 · �([]/xst , 2/ jt , xsm ++ [hd(xst )]/xsm, 1/ jm)

� zt ∧ jt = 1 ∧ zm ∧ jm = 0 � δ

+ τ3 · �(xst ++ xsm/xst , 1/ jt , []/xsm, 1/ jm)

� ¬zt ∧ jt = 0 ∧ ¬zm ∧ jm = 0 � δ

+ τ4 · �(yss ++ [xst ]/yss, []/xst , 2/] jt )

� ¬ zt ∧ jt = 1 � δ

+ sse(hd(yss)) · �(tl(yss)/yss)

� len(yss) > 0 � δ

+ τ5 · �(ic < s/zt , 0/ jt , 1/ jc)

� jt = 2 ∧ jc = 0 � δ

+ τ6 · �(ic < s/zm, 0/ jm, (ic + 1) mod (s + 1)/ic, 0/ jc)

� jm = 1 ∧ jc = 1 � δ.

5. Verification

In this section, we define a state mapping h : D� → D� between the abstract implementa-
tion and the specification. This mapping relates states from the abstract implementation to
states from the specification.

In this case study, the mapping h is defined in two steps. Since the products that enter the
industrial system never overtake and the products are numbered consecutively, the state can
be described in terms of the minimal and maximal product number present in the system. A
transformation of the state of the abstract implementation into these two numbers is defined
by the function h1 : D� → D�′ , where D�′ = N × N, the minimal and maximal product
number.

In the specification the state is described in terms of a list of the product numbers that are
in the system. Again, under the assumption that the products are numbered consecutively,
it is not hard to obtain this list once the minimal and maximal product number are known.
This is achieved by the auxiliary function h2 : D�′ → D� .
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Let us look at function h1 in more detail. It is defined in terms of the function min, which
returns the minimal product number present in the system and the function max, which
returns the maximal product number present in the system. We find the minimal product
number present in the system by walking through the system in reverse until a product is
encountered. If our system is empty, the minimal product number equals xs by definition.
The maximal product number equals xs − 1 (Proposition 2).

Before we define the functions min and max, let us first define the functions flat and list.
Function flat flattens a list of lists and function list creates a list containing the products
present in the system.

In the sequel, we use d ∈ D� as a shorthand notation for the list of parameters of the
abstract implementation:

(xs, xss, yss, xst , zt , jt , xsm, zm, jm, ic, jc, s).

The initial configuration of this list in the abstract implementation, (1, [], [], [], t, 0, [],
t, 0, 0, 0, s), will be referred to as d0, whereas a new configuration after an arbitrary action
originating from a configuration d will be referred to as d�.

Definition 7. Let T be an arbitrary data type. Then for all xs : T ∗, xss : (T ∗)∗ the function
flat : (T ∗)∗ → T ∗ is defined by

flat([]) = [],

flat([xs] ++ xss) = xs ++ flat(xss).

The function list : D� → N∗ is defined by

list(d) =
{

flat(yss) ++ (xst ++ xsm) ++ xss ++ [xs] if ¬ zt ,

flat(yss) ++ (xsm ++ xst ) ++ xss ++ [xs] if zt .

The functions min, max : D� → N are defined by

min(d) = hd(list(d)),

max(d) = (xs − 1) max 0.

The function h2 is defined in terms of the function np, which returns the number of the next
product to be received via channel es (xs), and the function pp, which constructs the list of
present products xs� .

Definition 8. The functions np : D�′ → N and pp : D�′ → N∗ are defined by

np(m, n) = n + 1,

pp(m, n) = [m, . . . , n],

where [m, . . . , n] denotes the empty list [] in the case that m > n and otherwise denotes a
list of consecutive numbers from m to n.
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Table 9. Invariants.

(¬zt ∧ jt = 1) ∨ jt = 2 → jc = 0 (7)

¬zt ∧ jt = 1 → len(xst ) = s (8)

¬ jt = 1 → xst = [] (9)

jm = 0 → jt = 0 ∨ (zt ∧ jt = 1) (10)

¬zm ↔ ic = s (11)

jm = 0 → (zt ↔ zm ) (12)

jm = 0 → len(xsm ) = ic (13)

( jt = 0 ∨ (zt ∧ jt = 1)) ∧ jm = 1 → jc = 1 (14)

Definition 9. The functions h1 : D� → D�′ , h2 : D�′ → D� , and h : D� → D� are
defined by

h1(d) = (min(d), max(d)),

h2(d) = (np(d ′), pp(d ′)),
h(d) = h2(h1(d)).

Before we prove that the matching criteria hold for our state mapping h, let us first prove
some general properties of h and �. For instance, we need invariants which describe how
the system parameters of the abstract implementation relate to each other. The ones required
in the sequel are given in Table 9. Since one can easily verify that these invariants hold for
the abstract implementation, proofs are omitted. One of the disadvantages of the approach
towards verification in this paper is that the invariants used do not correspond well with
intuition. This is due to the fact that we had to introduce additional state variables while
linearising the system. Such state variables usually play a prominent rôle in invariants. This
makes it hard to give a good intuition for such invariants.

Consider the function inc : N∗ → Bool. This function checks if a list of numbers xs ∈ N∗

is increasing with increments of value 1. If this is the case, the function inc yields true, else
it yields false.

Definition 10. The function inc : N∗ → Bool is, for all x, x1, x2 ∈ N and xs ∈ N∗,
defined by

inc([]) = t,

inc([x]) = t,

inc([x1] ++ [x2] ++ xs) = inc([x2] ++ xs) ∧ x2 = x1 + 1.

Lemma 1. Without any further proof, we claim that the following properties hold for the
function inc, with s, x ∈ N, xs ∈ N∗ and ‘toe(xs)’ last element of xs
1. xs �= [] → inc(xs) ∧ x = toe(xs) + 1 ↔ inc(xs ++ [x]),
2. inc(xs) → inc(drop(xs, s)).

Proposition 1. inc(pp(m, n)).
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Proof: Due to Definition 8 all lists [m, . . . , n] are increasing.

Proposition 2. �(d0) � max(d) = xs − 1.

Proof: For all reachable states of our abstract implementation � (Theorem 2), it is
derivable that xs > 0, or in shorthand notation: �(d0) � xs > 0. Furthermore, since
�(d0) � xs > 0, we obtain �(d0) � max(d) = xs − 1.

Proposition 3. ∀τ∈{τ1,...,τ6}(�(d0) � bτ (d) → list(d) = list(d�)).

Proof: Proposition 3 holds for τ1 up to τ4 since for all lists xs0, xs1 and xs2, we have
that (xs0 ++ xs1) ++ xs2 = xs0 ++ (xs1 ++ xs2) (associativity). Considering τ5, Inv. (9) holds.
Therefore, whether zt equals true or false has no influence on the result of the function list
defined in Definition 7. We always have xst ++ xsm = xsm ++ xst and thus Proposition 3
also holds for the action τ5. Proposition 3 trivially holds for the action τ6 since none of the
relevant parameters of the function list are modified.

Proposition 4. �(d0) � inc(list(d)).

Proof: The proposition is proved by induction. We have �(d0) � inc(list(d0)) since
inc(list(d0)) = inc([1]), which yields true according to Definition 10. Let us furthermore
prove

∀a∈Act (�(d0) � ba(d) ∧ inc(list(d)) → inc(list(d�))).

– Action res(x�): d : inc(flat(yss) ++ · · · ++ xss ++ [x�])
d� : inc(flat(yss) ++ · · · ++ (xss ++ [x�]) ++ [x� + 1])

According to Property 1 of Lemma 1, we have that

�(d0) � bres(x�)(d) ∧ inc(list(d)) → inc(list(d�)).

– Action sse(hd(yss)): d : inc(flat(yss) ++ · · · ++ [x�]),
d�: inc(flat(tl(yss)) ++ · · · ++ [x�]).

Within the abstract implementation � it is reassured that we will not have tl(yss) = tl([])
by the condition len(yss) > 0. Therefore, according to Property 2 of Lemma 1, we have
that

�(d0) � bsse(hd(yss ))(d) ∧ inc(list(d)) → inc(list(d�)).

– Actions τ1 up to τ6: From Proposition 3, it follows that

∀τ∈{τ1,...,τ6}, (�(d0) � bτ (d) → list(d) = list(d�)).

and thus we have that

∀τ∈{τ1,...,τ6}(�(d0) � bτ (d) ∧ inc(list(d)) → inc(list(d�))).
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Proposition 5. �(d0) � min(d) > max(d) → min(d) = x�.

Proof: Suppose that �(d0) � min(d) > max(d). From Proposition 2, it follows that
�(d0) � max(d) = x� − 1 and as a consequence, we have that �(d0) � min(d) ≥ x�.
From Definition 7 and Proposition 4 it follows that that �(d0) � min(d) ≤ x�. Thus,
�(d0) � min(d) > max(d) → min(d) = x�.

Next, we show that the state mapping h satisfies the matching criteria, which implies that
specification and abstract implementation of our system are equivalent (Theorem 1). This
is done by discussing the criteria one by one and proving that each criterion holds.

Criterion 1. � is convergent.

Proof: As our implementation � does not contain any τ loops, we have that in a cone of
the implementation � every internal action τ constitutes progress towards a focus point.
Consequently, � is convergent.

Criterion 2. ∀eτ :Eτ
(bτ (d, eτ ) → h(d) = h(gτ (d, eτ ))).

Figure 3 gives a graphical representation of Criterion 2. The transition from one state to
another is represented by a vertical arrow accompanied by a possible condition and its
action. State mappings between the implementation and the specification are represented
by dashed arrows.

Criterion 2 says that if in a state d in the abstract implementation an internal step can
be done (bτ (d, eτ ) is valid), then this internal step is not observable. This is described by
saying that both states relate to the same state in the specification. In our case, internal steps
represent internal movement of material or transport of information. None of these actions
have an effect on the number of products present in the system nor do they effect their order.

Proof: Since h(d) = h2(h1(d)), we can write Criterion 2 as bτ (d) → h2(h1(d)) =
h2(h1(gτ (d))). Then it suffices to prove that bτ (d) → h1(d) = h1(gτ (d)). Together with
h1(d) = (min(d), max(d)) (Definition 9) and by using d� = gτ (d) as a shorthand notation,
this comes to proving the following two propositions

bτ (d) → min(d) = min(d�), (15.1)

bτ (d) → max(d) = max(d�). (15.2)

Figure 3. Criterion 2.
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Figure 4. Criterion 3.

Let us prove (15.1). Suppose that ∀τ∈{τ1,...,τ6}(�(d0) � bτ (d)). From Proposition 3 it follows
that �(d0) � list(d) = list(d�). So, �(d0) � min(d) = min(d�).

Let us furthermore prove (15.2). It trivially holds since from Proposition 2 it follows that
�(d0) � max(d) = x� − 1 and the parameter x� is not modified after any of the τ -steps τ1

up to τ6.

Criterion 3. ∀a∈Act\{τ }∀ea :Ea (ba(d, ea) → b′
a(h(d), ea)).

Figure 4 gives a graphical representation of Criterion 3. It says that when the abstract im-
plementation can perform an external step, then the corresponding state in the specification
must also be able to perform this step. In case of our system, we have that both specification
and abstract implementation can always receive a new product. Furthermore, we can prove
that when len(yss) > 0 we also have len(xs�) ≥ s. This means that when the abstract
implementation is able to deliver a completed batch, the specification is able to do the
same.

Proof: Proving that the state mapping h matches the third criterion means proving that it
holds for a ∈ {res(x�), sse(hd(yss))}. It is easy to see that this criterion is satisfied in case of
res(x�) because in that case we have b′

a(h(d)) = t. In case of sse(hd(yss)), we have that ba(d)
equals len(yss) > 0 and b′

a(h(d)) equals len(pp(min(d), max(d))) ≥ s. Then it remains to
prove that

len(yss) > 0 → len(pp(min(d), max(d))) > s.

Suppose len(yss) > 0, then at least a number of products equal to the batch size is present in
the system. From Proposition 4 it follows that �(d0) � inc(list(d)). As a result, max(d) ≥
min(d) + s − 1 and due to the definition of function pp, we have len(pp(min(d), max(d))) ≥
s.

Criterion 4. ∀a∈Act\{τ }∀ea :Ea (FC�(d) ∧ b′
a(h(d), ea) → ba(d, ea)).

Figure 5 gives a graphical representation of Criterion 4. It says that in a focus point of the
abstract implementation, an action a in the abstract implementation can be performed if it is
enabled in the specification. In our case, it holds that both the specification and the abstract
implementation can receive a new product. Concerning the delivery of processed batches,
we can prove that when len(xs�) ≥ s, we can also realise len(yss) > 0, the possibility to
deliver a completed batch in the abstract implementation, provided that no τ step is enabled.
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Figure 5. Criterion 4.

Proof: Proving that the state mapping h matches the fourth criterion means proving that
it holds for a ∈ {res(x�), sse(hd(yss))}. It is easy to see that this criterion is satisfied in case
of action res(x�) as ba(d) = t.

In case of sse(hd(yss)), b′
a(h(d)) = len(pp(min(d), max(d))) ≥ s and ba(d) = len(yss) >

0. The focus condition equals ¬bτ (d) which yields
∧

1≤i≤6 ¬bτi (d). The proposition to
prove then is as follows

¬bτ (d) ∧ len(pp(min(d), max(d))) ≥ s → len(yss) > 0. (16)

Let us prove this by means of case distinction based on the lists yss , xst , xsm and xss .

Case len(yss) > 0. The conclusion of (16) yields t and we are done.

Case len(xst ) > 0. We are only interested in the case jt = 1 since ¬ jt = 1 → xst = []
(Inv. (9)).

– Suppose zt ∧ jt = 1.

• Suppose jm = 0. According to Inv. (12), jm = 0 → (zt ↔ zm), we have zm ∧ jm = 0.
This implies that τ2 is enabled and the premise yields f.

• Suppose jm = 1. According to Inv. (14), ( jt = 0 ∨ (zt ∧ jt = 1)) ∧ jm = 1 → jc = 1,
we have jm = 1 ∧ jc = 1. This implies that τ6 is enabled and the premise yields f.

– Suppose ¬zt ∧ jt = 1. This implies that τ4 is enabled and the premise yields f.

Case len(xsm) > 0.

– Suppose jm = 0. In that case, Inv. (10), jm = 0 → jt = 0 ∨ (zt ∧ jt = 1) and Inv. (12),
jm = 0 → (zt ↔ zm), apply.

• Suppose zt ∧ jt = 0.

* Suppose len(xsm) < s. In case len(pp(min(d), max(d))) ≥ s, then we have that
max(d) ≥ min(d) + s − 1 according to Definition 10. Together with the fact
that len(xsm) < s, len(yss) = 0 and len(xst ) = 0, this implies that len(xss) >

0. Consequently, τ1 is enabled and the premise yields f. In case len(pp(min(d),
max(d))) < s the premise also yields f.

* Suppose len(xsm) = s. This case cannot occur here since according to Inv. (13),
jm = 0 → len(xsm) = ic, we should have ic = s, which implies that we also
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have ¬zm (Inv. (11), ¬zm ↔ ic = s). This is in contradiction with Inv. (12),
jm = 0 → (zt ↔ zm).

• Suppose ¬zt ∧ jt = 0. This implies that τ3 is enabled and the premise yields f.
• Suppose zt ∧ jt = 1. This implies that τ2 is enabled and the premise yields f.

– Suppose jm = 1.

• Suppose jt = 0 ∨ (zt ∧ jt = 1). In that case, we have jm = 1 ∧ jc = 1 according
to Inv. (14), ( jt = 0 ∨ (zt ∧ jt = 1)) ∧ jm = 1 → jc = 1. This implies that τ6 is
enabled and the premise yields f.

• Suppose ¬zt ∧ jt = 1. This implies that τ4 is enabled and the premise yields f.
• Suppose jt = 2. In that case we have jt = 2 ∧ jc = 0 according to Inv. (7),

(¬zt ∧ jt = 1) ∨ jt = 2 → jc = 0. This implies that τ5 is enabled and the premise
yields f.

Case len(xss) > 0.

– Suppose zt ∧ jt = 0. This implies that τ1 is enabled and the premise yields f.
– Suppose ¬zt ∧ jt = 0.

• Suppose jm = 0. According to Inv. (12), jm = 0 → (zt ↔ zm), τ3 is enabled and the
premise yields f.

• Suppose jm = 1. According to Inv. (14), ( jt = 0 ∨ (zt ∧ jt = 1)) ∧ jm = 1 → jc = 1,
τ6 is enabled and the premise yields f.

– Suppose zt ∧ jt = 1. In case jm = 0, according to Inv. (12), jm = 0 → (zt ↔ zm), we
have that τ2 is enabled and the premise yields f. In case jm = 1, according to Inv. (14),
( jt = 0 ∨ (zt ∧ jt = 1)) ∧ jm = 1 → jc = 1, we have that τ6 is enabled and the
premise yields f.

– Suppose ¬zt ∧ jt = 1. This implies that τ4 is enabled and the premise yields f.
– Suppose jt = 2. According to Inv. (7), (¬zt ∧ jt = 1) ∨ jt = 2 → jc = 0, we have

that τ5 is enabled and the premise yields f.

Case len(xss) = 0. In this case min(d) = x�, and max(d) = x� − 1. Then the premise
yields f because len(pp(x�, x� − 1)) = 0.

Criterion 5. ∀a∈Act\{τ }∀ea :Ea (ba(d, ea) → fa(d, ea) = f ′
a(h(d), ea)).

Figure 6 gives a graphical representation of Criterion 5. It says that corresponding external
actions carry the same data parameter (modulo h).

Proof: Proving that the state mapping h matches the fifth criterion means proving that it
holds for a ∈ {res(x�), sse(hd(yss))}. That gives us the following propositions for the actions
res(x�) and sse(hd(yss)) respectively

t → x� = x�, (17.1)

len(yss) > 0 → hd(yss) = take(xs�, s). (17.2)
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Figure 6. Criterion 5.

For the proof of (17.1), consider the following computation

x� = np(min(d�), max(d�))

= max(d�) + 1

= (x� − 1) + 1

= x�.

For the proof of (17.2), consider the following

take(xs�, s) = take(pp(min(d�), max(d�)), s)

= take([min(d�), . . . , max(d�)], s).

Then it remains to prove that

len(yss) > 0 → hd(yss) = take([min(d�), . . . , max(d�)], s).

This holds if the following propositions hold

len(yss) > 0 → inc(hd(yss)) ∧ inc(take([min(d�), . . . , max(d�)], s)), (18.1)

len(yss) > 0 → len(hd(yss)) = len(take([min(d�), . . . , max(d�)], s)), (18.2)

len(yss) > 0 → hd(hd(yss)) = hd(take([min(d�), . . . , max(d�)], s)). (18.3)

For the proof of (18.1), consider the following. From Proposition 4, it follows that �(d0) �
inc(list(d�)). In that case we also have inc(hd(yss)) because of the definition of the functions
list and flat (Definition 7). Furthermore, due to the definitions of functions take and inc,
Definitions 4 and 10,

∀xs∈N∗∀s∈N(inc(xs) → inc(take(xs, s)).

So, we also have inc(take([min(d�), . . . , max(d�)], s)) and thus (18.1) holds.
For the proof of (18.2), consider the following. For the case that len(yss) > 0, let us denote

yss as [y0, . . . , yn] with yi ∈ N∗. Now we can prove that len(yi ) = s for each i such that
0 ≤ i ≤ n. Looking at Theorem 2 and using the Inv. (8), (11) and (13), we can see that this
holds. Thus, len(yss) > 0 → len(hd(yss)) = s and from the definition of the function take,
Definition 4, and Definition 5 it follows that also len(xs�) ≥ s → len(take(xs�, s)) = s.
So, both hd(yss) and take([min(d�), . . . , max(d�)], s) have length s and thus (18.2) holds.
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Figure 7. Criterion 6.

For the proof of (18.3), consider the following. From Definition 5 it follows that
len(xs�) ≥ s. In that case, consider the following computation

hd(take([min(d�), . . . , max(d�)], s)) = min(d�)

= hd(list(d�))

= hd(flat(yss))

= hd(hd(yss)).

Criterion 6. ∀a∈Act\{τ }∀ea :Ea (ba(d, ea) → h(ga(d, ea)) = g′
a(h(d), ea)).

Figure 7 gives a graphical representation of Criterion 6. It says that corresponding exter-
nal actions lead to corresponding states. We prove that this is the case for our abstract
implementation and specification.

Proof: Proving that the function h satisfies Criterion 6 means proving that it holds for
any external action.

Let us first consider the action res(xs). In that case we have ba(d) = t and we have
that ga(d) = d[xs + 1/xs, xss ++ [xs]/xss]. The latter is denoted as d� in the sequel.
We have

h(d�) = (np(min(d�), max(d�)), pp(min(d�), max(d�))),

g′
a(h(d)) = (np(min(d), max(d)) + 1,

pp(min(d), max(d)) ++ [np(min(d), max(d))]).

Then, the following propositions remain to prove

np(min(d�), max(d�)) = np(min(d), max(d)) + 1, (19.1)

pp(min(d�), max(d�)) = pp(min(d), max(d)) ++ [np(min(d), max(d))]. (19.2)

Before we prove these propositions, let us first prove that in general, for res(xs), the following
two propositions hold

min(d�) = min(d), (20.1)

max(d�) = max(d) + 1. (20.2)
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For the proof of (20.1), consider the following computation

min(d�) = hd(list(d�))

= hd(flat(yss) ++ · · · ++ (xss ++ [xs]) ++ [xs + 1])

= hd(flat(yss) ++ · · · ++ xss ++ [xs])

= min(d).

For the proof of (20.2), consider the following computation

max(d�) = max(d[xs + 1/xs, xss ++ [xs]/xss])

= (xs + 1) − 1

= xs

= max(d) + 1.

Now these propositions are proved, we can use them while proving (19.1) and (19.2). For
the proof of (19.1), consider the following computation

np(min(d�), max(d�)) = max(d�) + 1

= (max(d) + 1) + 1

= np(min(d), max(d)) + 1.

For the proof of (19.2), consider the following computation

pp(min(d�), max(d�)) = [min(d�), . . . , max(d�)]

= [min(d), . . . , max(d) + 1]

= [min(d), . . . , max(d)] ++ [max(d) + 1]

= pp(min(d), max(d)) ++ [np(min(d), max(d))].

Let us now consider the action sse(hd(yss)). In that case, ba(d) = len(yss) > 0 and ga(d) =
d[tl(yss)/yss]. Again, we use the shorthand notation d� for d[tl(yss)/yss].

We have

h(d�) = (np(min(d�), max(d�)), pp(min(d�), max(d�))),

g′
a(h(d)) = (np(min(d), max(d)), drop(pp(min(d), max(d)), s)).

In that case, the following propositions remain to prove

np(min(d�), max(d�)) = np(min(d), max(d)), (21.1)

pp(min(d�), max(d�)) = drop(pp(min(d), max(d)), s). (21.2)
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Before we prove these propositions, we first prove that in general, for sse(hd(yss)), the
following propositions hold

min(d�) = min(d) + s, (22.1)

max(d�) = max(d). (22.2)

For the proof of (22.1), consider the following computation

min(d�) = hd(list(d�))

= hd(flat(tl(yss)) ++ · · · ++ [xs])

= hd(drop(flat(yss), s) ++ · · · ++ [xs])

= hd(flat(yss) ++ · · · ++ [xs]) + s

= hd(list(d)) + s

= min(d) + s.

For the proof of (22.2), consider the following computation

max(d�) = max(d[tl(yss)/yss])

= xs − 1

= max(d).

Now these propositions are proved, let us prove (21.1) and (21.2). For the proof of (21.1),
consider the following computation

np(min(d�), max(d�)) = max(d�) + 1

= max(d) + 1

= np(min(d), max(d)).

For the proof of (21.2), consider the following computation

pp(min(d�), max(d�)) = [min(d�), . . . , max(d�)]

= [min(d) + s, . . . , max(d)]

= drop([min(d), . . . , max(d)], s)

= drop(pp(min(d), max(d)), s).

This completes the proof of Criterion 6.

Theorem 3. For any batch size s, we have � = �.

Proof: This follows immediately from Theorem 1 and the fact that h, as defined in
Definition 9, is a state mapping (satisfies the matching criteria).
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6. Conclusions

We investigated whether formal methods could be used for the analysis of industrial systems
models specified using the specification language χ . The case study described in this paper
was a first attempt. It dealt with a model of an industrial system and had three objectives.
The first objective was to give a correctness proof of this model. The second objective was
to determine system properties for arbitrary parameters and the third objective was to study
the model in isolation. The objectives are met through the use of a particular formal method.

Before we draw conclusions concerning these matters, let us first conclude the following
on the use of χ , µCRL, and focus points and convergent process operators:

– Using the formalism χ , one can specify real-life models quickly and easily. These models
can then be validated by means of simulation. In that way, results can be obtained within a
short period of time. Specifying formal models, like µCRL models, is more difficult and
time consuming. Furthermore, for the time being, verification of such models is restricted
to models of a small size. On the other hand, formal models can be verified, whereas χ

models can only be validated.
– The main issue when translating a χ model into its µCRL equivalent is that one has to

take into account a second programming paradigm. The χ language uses an imperative
approach for both the process part and the arithmetic part, while µCRL uses an imperative
and a declarative approach respectively. Furthermore, in χ the process part and arithmetic
part are mixed while µCRL has a clear distinction between both parts.

– Focus points and convergent process operators are very well suited for the actual verifi-
cation of the model since they provide a strategy for finding algebraic correctness proofs
for communication systems.

– One of the disadvantages of the approach towards verification used in this paper is that
the invariants, as listed in Table 9, do not correspond well with intuition.

– The efficacy of the state mapping between the abstract implementation and the specifi-
cation for a great deal determines the burden of the proof to follow.

Since we verified the µCRL model and because we may, on intuitive grounds, conclude
that we succeeded in preserving the semantics while deriving the µCRL model from the
χ model, we allow ourselves to apply the statements to be made on the µCRL model to
the χ model. Current research is concerned with enabling direct formal reasoning about χ

models and enabling formal translations to other specification languages, like µCRL, by
setting up a formal semantics of χ [8].

We succeeded in giving a correctness proof by proving that the external behaviour of
the implementation is equivalent with the specification (� = �). Moreover, we proved the
model to be correct for an arbitrary batch size s. Finally, we were able to study the model
in isolation. Unlike in simulation, no addition of processes describing the environment is
needed. This allows a modular approach to the analysis of systems.

Our first step in integrating formal methods with an existing design methodology for
industrial systems proved to be successful. Future research will be concerned with per-
forming more extensive case studies in industry and the development of required tool
support. The latter should enable verification of real-life models of industrial systems.
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Furthermore, it should decrease the time needed to come to correct design of industrial
systems.

Although, for the case study presented in this article, the respective steps of the proof
methodology have been carried out manually, many of these steps can be performed me-
chanically.

– The translation of the χ -models into µCRL processes can at the moment not be supported
mechanically. As soon as the intuitions underlying the translation presented in this paper
are captured in a formal semantics, this topic can be addressed.

– The linearisation of the parallel composition of the µCRL processes describing the χ -
models can be performed mechanically [19].

– Given linear process operators for the specification and implementation of a system, the
conditions that have to be satisfied according to the cones and foci theorem (i.e. the
matching criteria) can easily be generated automatically.

– Checking whether a given formula is an invariant for a given linear process operator can
be mechanically supported by theorem provers such as PVS [32] and HOL [16].

Besides these, the µCRL toolset offers a state space generator that interfaces well with
the Caesar/Aldebaran toolset [15], a simulator and several tools to symbolically reduce a
generated state space [41].
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