69 research outputs found

    Optimum Illuminant Determination Based on Reduced and Optimized Multispectral Spectroscopy to Enhance Vein Detection

    Get PDF
    Venepuncture as a mode of gaining intravenous access has been a prime practice in surgical procedures and other conventional drug administering into a patient. Biomedical engineering has stressed relatively high scale of importance in the spectroscopic analysis of vein imaging as a sparky approach to promote a non-invasive catheterization. However, medical personnel are challenged by the physiological circumstances of skin tone, presence of scars and irregularity of the epidermal topology, when performing subcutaneous vein localization, which led them to increase number of insertion attempts. Hence, this paper proposes an optimized solution to provide enhanced visual aids for personnel to achieve successful vein catheterization at first attempt

    Numerical Demultiplexing of Color Image Sensor Measurements via Non-linear Random Forest Modeling

    Get PDF
    Due to recent advancements in technology, consumer digital cameras are becoming cheaper and easier to use. These consumer digital cameras, with Bayer color filter arrays (CFAs), allow for simultaneous capture of the red, green and blue (RGB) channels. To achieve higher spectral resolution, multispectral imaging systems use methods such as filter wheels and tunable filters to capture data in a sequential manner. However, in order to capture transient phenomena, one would need to capture spectral information of a 2D scene in a simultaneous manner. Therefore, there has been an on-going trend towards creating a simultaneous multispectral imaging system that uses a conventional consumer digital camera with a Bayer CFA. Such a system allows for a effective imaging of transient or dynamic phenomena with a low-cost and compact system. Currently, the main method to accomplish this is known as Wiener estimation which uses statistical assumptions of the relationship between the incoming spectra and the RGB measurements. However, these assumptions limit the ability to accurately predict the incoming spectra. Therefore, we leverage a comprehensive framework based on numerical demultiplexing of sensor measurements via spectral characterization of the image sensor CFA and non-linear random forest modeling. To create this numerical demultiplexing system we create a forward model from the spectral sensitivity of the imaging system, which is accomplished with a monochrometer. This forward model is then used to create a mapping of 10,000 randomly generated spectra to their corresponding RGB values. This mapping acts as our training set for our non-linear inverse model which utilizes the random forest modeling framework. Having constructed the numerical demultiplexer, we test the performance against the state-of-the-art Wiener estimation for both quantitative and qualitative experiments. In the first set of experiments, we performed a quantitative performance assessment of the proposed framework within a controlled simulation environment. The second set of experiments, validated the observations made from the first set of controlled simulation experiments within a real-world setting. More specifically, we used an icon with different colors as well as a scene of different color flowers to perform quantitative analysis. In these experiments, we show that the proposed numerical demultiplexer outperforms the state-of-the art and is a more robust and reliable way to infer higher spectra from RGB measurements. Having validated the numerical demultiplexer, we use it for two applications which are photoplethysmogrpahic imaging and multispectral microscopy. For photoplethysmogrpahic imaging we found that decomposing the RGB camera measurements into narrow-band spectral information can noticeably improve the prediction of heart rate estimation. In addition, we used the numerical demultiplexer for both a bright-field multispectral microscope as well as a dark-field fluorescence multispectral microscope, which illustrates its potential as a low-cost, portable, point-of-care system

    Optimum Illuminant Determination Based on Reduced and Optimized Multispectral Spectroscopy to Enhance Vein Detection

    Get PDF
    Venepuncture as a mode of gaining intravenous access has been a prime practice in surgical procedures and other conventional drug administering into a patient. Biomedical engineering has stressed relatively high scale of importance in the spectroscopic analysis of vein imaging as a sparky approach to promote a non-invasive catheterization. However, medical personnel are challenged by the physiological circumstances of skin tone, presence of scars and irregularity of the epidermal topology, when performing subcutaneous vein localization, which led them to increase number of insertion attempts. Hence, this paper proposes an optimized solution to provide enhanced visual aids for personnel to achieve successful vein catheterization at first attempt

    Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis

    Get PDF
    We investigate the potential of mobile smartphone-based multispectral imaging for the quantitative diagnosis and management of skin lesions. Recently, various mobile devices such as a smartphone have emerged as healthcare tools. They have been applied for the early diagnosis of nonmalignant and malignant skin diseases. Particularly, when they are combined with an advanced optical imaging technique such as multispectral imaging and analysis, it would be beneficial for the early diagnosis of such skin diseases and for further quantitative prognosis monitoring after treatment at home. Thus, we demonstrate here the development of a smartphone-based multispectral imaging system with high portability and its potential for mobile skin diagnosis. The results suggest that smartphone-based multispectral imaging and analysis has great potential as a healthcare tool for quantitative mobile skin diagnosis. © 2016 Optical Society of America.1

    Mobile phone camera possibilities for spectral imaging

    Get PDF

    Statistical Curve Analysis: Developing Methods and Expanding Knowledge in Health

    Get PDF
    The analysis of curves can be claimed to be the core of most scientific ventures. In this dissertation, we focus on the statistical aspect of this type of analysis. Here, the curves originate from health and food-related areas and include improvements in blood glucose measurements, classification of moles, measurements of parameters during liver transplants in pigs, and data from the monitoring of the quality of fish. More specifically, the statistical curve analysis consists of several perspectives were all have some kind of in- trinsic comparison effort. However, the main approaches in these studies are related to regression and the problem of finding suitable critical regions. The regression part consists of robust nonlinear regression and linear mixed models while the critical regions are found through classification and hypothesis testing in scale-space. By improving the critical decision boundaries through e.g. the Bonferroni correction of scale-space maps in Paper I, and developing features to improve decisions regarding the classification of moles in Paper II, we were able to obtain high sensitivity and specificity in the developed systems. Re- gression was an integral part of the classification effort in Paper II, the improvement of blood glucose measurements in Paper III, and the statistical analysis of parameters measured during liver transplantation in pigs in Paper IV. Paper I is focused on maximizing sensitivity and specificity when detecting a significant change in the data. Here as in Paper II hyperspectral images are the source of data. The developed method produces a scale-space, where significant changes can be detected. Paper II aims to maximize sensitivity, specificity, and precision in the classification of moles. This is accomplished through curves from subimages obtained from each channel of the hyperspectral images. These curves show characteristic features from three important classes of moles. By using these features through the regression of these curves, we accomplish high sensitivity, specificity, and precision in the classification pursuit. In Paper III, we introduce a novel method for improving blood glucose estimation from continuous glucose measurements by using deconvolution. First, regression is used to estimate the parameters in the convolution kernel. Thereafter this response function was deconvolved through regression. In this way, we can estimate blood glucose from subcutaneous measurements. This gives a new method for controlling blood glucose levels which is of great importance for type 1 diabetes patients during and after exercise to avoid hypoglycemia. Testing two different methods in liver transplantation of pigs, where the statistical analysis of curves was done through the application of linear mixed models, is the focus of Paper IV. An important output of this work is that the two treatments can be statistically distinguished through the use of linear mixed models

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    Face recognition by means of advanced contributions in machine learning

    Get PDF
    Face recognition (FR) has been extensively studied, due to both scientific fundamental challenges and current and potential applications where human identification is needed. FR systems have the benefits of their non intrusiveness, low cost of equipments and no useragreement requirements when doing acquisition, among the most important ones. Nevertheless, despite the progress made in last years and the different solutions proposed, FR performance is not yet satisfactory when more demanding conditions are required (different viewpoints, blocked effects, illumination changes, strong lighting states, etc). Particularly, the effect of such non-controlled lighting conditions on face images leads to one of the strongest distortions in facial appearance. This dissertation addresses the problem of FR when dealing with less constrained illumination situations. In order to approach the problem, a new multi-session and multi-spectral face database has been acquired in visible, Near-infrared (NIR) and Thermal infrared (TIR) spectra, under different lighting conditions. A theoretical analysis using information theory to demonstrate the complementarities between different spectral bands have been firstly carried out. The optimal exploitation of the information provided by the set of multispectral images has been subsequently addressed by using multimodal matching score fusion techniques that efficiently synthesize complementary meaningful information among different spectra. Due to peculiarities in thermal images, a specific face segmentation algorithm has been required and developed. In the final proposed system, the Discrete Cosine Transform as dimensionality reduction tool and a fractional distance for matching were used, so that the cost in processing time and memory was significantly reduced. Prior to this classification task, a selection of the relevant frequency bands is proposed in order to optimize the overall system, based on identifying and maximizing independence relations by means of discriminability criteria. The system has been extensively evaluated on the multispectral face database specifically performed for our purpose. On this regard, a new visualization procedure has been suggested in order to combine different bands for establishing valid comparisons and giving statistical information about the significance of the results. This experimental framework has more easily enabled the improvement of robustness against training and testing illumination mismatch. Additionally, focusing problem in thermal spectrum has been also addressed, firstly, for the more general case of the thermal images (or thermograms), and then for the case of facialthermograms from both theoretical and practical point of view. In order to analyze the quality of such facial thermograms degraded by blurring, an appropriate algorithm has been successfully developed. Experimental results strongly support the proposed multispectral facial image fusion, achieving very high performance in several conditions. These results represent a new advance in providing a robust matching across changes in illumination, further inspiring highly accurate FR approaches in practical scenarios.El reconeixement facial (FR) ha estat àmpliament estudiat, degut tant als reptes fonamentals científics que suposa com a les aplicacions actuals i futures on requereix la identificació de les persones. Els sistemes de reconeixement facial tenen els avantatges de ser no intrusius,presentar un baix cost dels equips d’adquisició i no la no necessitat d’autorització per part de l’individu a l’hora de realitzar l'adquisició, entre les més importants. De totes maneres i malgrat els avenços aconseguits en els darrers anys i les diferents solucions proposades, el rendiment del FR encara no resulta satisfactori quan es requereixen condicions més exigents (diferents punts de vista, efectes de bloqueig, canvis en la il·luminació, condicions de llum extremes, etc.). Concretament, l'efecte d'aquestes variacions no controlades en les condicions d'il·luminació sobre les imatges facials condueix a una de les distorsions més accentuades sobre l'aparença facial. Aquesta tesi aborda el problema del FR en condicions d'il·luminació menys restringides. Per tal d'abordar el problema, hem adquirit una nova base de dades de cara multisessió i multiespectral en l'espectre infraroig visible, infraroig proper (NIR) i tèrmic (TIR), sota diferents condicions d'il·luminació. En primer lloc s'ha dut a terme una anàlisi teòrica utilitzant la teoria de la informació per demostrar la complementarietat entre les diferents bandes espectrals objecte d’estudi. L'òptim aprofitament de la informació proporcionada pel conjunt d'imatges multiespectrals s'ha abordat posteriorment mitjançant l'ús de tècniques de fusió de puntuació multimodals, capaces de sintetitzar de manera eficient el conjunt d’informació significativa complementària entre els diferents espectres. A causa de les característiques particulars de les imatges tèrmiques, s’ha requerit del desenvolupament d’un algorisme específic per la segmentació de les mateixes. En el sistema proposat final, s’ha utilitzat com a eina de reducció de la dimensionalitat de les imatges, la Transformada del Cosinus Discreta i una distància fraccional per realitzar les tasques de classificació de manera que el cost en temps de processament i de memòria es va reduir de forma significa. Prèviament a aquesta tasca de classificació, es proposa una selecció de les bandes de freqüències més rellevants, basat en la identificació i la maximització de les relacions d'independència per mitjà de criteris discriminabilitat, per tal d'optimitzar el conjunt del sistema. El sistema ha estat àmpliament avaluat sobre la base de dades de cara multiespectral, desenvolupada pel nostre propòsit. En aquest sentit s'ha suggerit l’ús d’un nou procediment de visualització per combinar diferents bandes per poder establir comparacions vàlides i donar informació estadística sobre el significat dels resultats. Aquest marc experimental ha permès més fàcilment la millora de la robustesa quan les condicions d’il·luminació eren diferents entre els processos d’entrament i test. De forma complementària, s’ha tractat la problemàtica de l’enfocament de les imatges en l'espectre tèrmic, en primer lloc, pel cas general de les imatges tèrmiques (o termogrames) i posteriorment pel cas concret dels termogrames facials, des dels punt de vista tant teòric com pràctic. En aquest sentit i per tal d'analitzar la qualitat d’aquests termogrames facials degradats per efectes de desenfocament, s'ha desenvolupat un últim algorisme. Els resultats experimentals recolzen fermament que la fusió d'imatges facials multiespectrals proposada assoleix un rendiment molt alt en diverses condicions d’il·luminació. Aquests resultats representen un nou avenç en l’aportació de solucions robustes quan es contemplen canvis en la il·luminació, i esperen poder inspirar a futures implementacions de sistemes de reconeixement facial precisos en escenaris no controlats.Postprint (published version

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application
    corecore