2,548 research outputs found

    Modal Test of the NASA Mobile Launcher at Kennedy Space Center

    Get PDF
    The NASA Mobile Launcher (ML), located at Kennedy Space Center (KSC), has recently been modified to support the launch of the new NASA Space Launch System (SLS). The ML is a massive structureconsisting of a 345-foot tall tower attached to a two-story base, weighing approximately 10.5 million poundsthat will secure the SLS vehicle as it rolls to the launch pad on a Crawler Transporter, as well as provide a launch platform at the pad. The ML will also provide the boundary condition for an upcoming SLS Integrated Modal Test (IMT). To help correlate the ML math models prior to this modal test, and allow focus to remain on updating SLS vehicle models during the IMT, a ML-only experimental modal test was performed in June 2019. Excitation of the tower and platform was provided by five uniquely-designed test fixtures, each enclosing a hydraulic shaker, capable of exerting thousands of pounds of force into the structure. For modes not that were not sufficiently excited by the test fixture shakers, a specially-designed mobile drop tower provided impact excitation at additional locations of interest. The response of the ML was measured with a total of 361 accelerometers. Following the random vibration, sine sweep vibration, and modal impact testing, frequency response functions were calculated and modes were extracted for three different configurations of the ML in 0 Hz to 12 Hz frequency range. This paper will provide a case study in performing modal tests on large structures by discussing the Mobile Launcher, the test strategy, an overview of the test results, and recommendations for meeting a tight test schedule for a large-scale modal test

    A Review of Active Yaw Control System for Vehicle Handling and Stability Enhancement

    Get PDF
    Yaw stability control systemplays a significant role in vehicle lateral dynamics in order to improve the vehicle handling and stability performances. However, not many researches have been focused on the transient performances improvement of vehicle yaw rate and sideslip tracking control. This paper reviews the vital elements for control system design of an active yaw stability control system; the vehicle dynamic models, control objectives, active chassis control, and control strategies with the focus on identifying suitable criteria for improved transient performances. Each element is discussed and compared in terms of their underlying theory, strengths, weaknesses, and applicability. Based on this, we conclude that the sliding mode control with nonlinear sliding surface based on composite nonlinear feedback is a potential control strategy for improving the transient performances of yaw rate and sideslip tracking control

    Nonlinear Modeling and Control of Driving Interfaces and Continuum Robots for System Performance Gains

    Get PDF
    With the rise of (semi)autonomous vehicles and continuum robotics technology and applications, there has been an increasing interest in controller and haptic interface designs. The presence of nonlinearities in the vehicle dynamics is the main challenge in the selection of control algorithms for real-time regulation and tracking of (semi)autonomous vehicles. Moreover, control of continuum structures with infinite dimensions proves to be difficult due to their complex dynamics plus the soft and flexible nature of the manipulator body. The trajectory tracking and control of automobile and robotic systems requires control algorithms that can effectively deal with the nonlinearities of the system without the need for approximation, modeling uncertainties, and input disturbances. Control strategies based on a linearized model are often inadequate in meeting precise performance requirements. To cope with these challenges, one must consider nonlinear techniques. Nonlinear control systems provide tools and methodologies for enabling the design and realization of (semi)autonomous vehicle and continuum robots with extended specifications based on the operational mission profiles. This dissertation provides an insight into various nonlinear controllers developed for (semi)autonomous vehicles and continuum robots as a guideline for future applications in the automobile and soft robotics field. A comprehensive assessment of the approaches and control strategies, as well as insight into the future areas of research in this field, are presented.First, two vehicle haptic interfaces, including a robotic grip and a joystick, both of which are accompanied by nonlinear sliding mode control, have been developed and studied on a steer-by-wire platform integrated with a virtual reality driving environment. An operator-in-the-loop evaluation that included 30 human test subjects was used to investigate these haptic steering interfaces over a prescribed series of driving maneuvers through real time data logging and post-test questionnaires. A conventional steering wheel with a robust sliding mode controller was used for all the driving events for comparison. Test subjects operated these interfaces for a given track comprised of a double lane-change maneuver and a country road driving event. Subjective and objective results demonstrate that the driver’s experience can be enhanced up to 75.3% with a robotic steering input when compared to the traditional steering wheel during extreme maneuvers such as high-speed driving and sharp turn (e.g., hairpin turn) passing. Second, a cellphone-inspired portable human-machine-interface (HMI) that incorporated the directional control of the vehicle as well as the brake and throttle functionality into a single holistic device will be presented. A nonlinear adaptive control technique and an optimal control approach based on driver intent were also proposed to accompany the mechatronic system for combined longitudinal and lateral vehicle guidance. Assisting the disabled drivers by excluding extensive arm and leg movements ergonomically, the device has been tested in a driving simulator platform. Human test subjects evaluated the mechatronic system with various control configurations through obstacle avoidance and city road driving test, and a conventional set of steering wheel and pedals were also utilized for comparison. Subjective and objective results from the tests demonstrate that the mobile driving interface with the proposed control scheme can enhance the driver’s performance by up to 55.8% when compared to the traditional driving system during aggressive maneuvers. The system’s superior performance during certain vehicle maneuvers and approval received from the participants demonstrated its potential as an alternative driving adaptation for disabled drivers. Third, a novel strategy is designed for trajectory control of a multi-section continuum robot in three-dimensional space to achieve accurate orientation, curvature, and section length tracking. The formulation connects the continuum manipulator dynamic behavior to a virtual discrete-jointed robot whose degrees of freedom are directly mapped to those of a continuum robot section under the hypothesis of constant curvature. Based on this connection, a computed torque control architecture is developed for the virtual robot, for which inverse kinematics and dynamic equations are constructed and exploited, with appropriate transformations developed for implementation on the continuum robot. The control algorithm is validated in a realistic simulation and implemented on a six degree-of-freedom two-section OctArm continuum manipulator. Both simulation and experimental results show that the proposed method could manage simultaneous extension/contraction, bending, and torsion actions on multi-section continuum robots with decent tracking performance (e.g. steady state arc length and curvature tracking error of 3.3mm and 130mm-1, respectively). Last, semi-autonomous vehicles equipped with assistive control systems may experience degraded lateral behaviors when aggressive driver steering commands compete with high levels of autonomy. This challenge can be mitigated with effective operator intent recognition, which can configure automated systems in context-specific situations where the driver intends to perform a steering maneuver. In this article, an ensemble learning-based driver intent recognition strategy has been developed. A nonlinear model predictive control algorithm has been designed and implemented to generate haptic feedback for lateral vehicle guidance, assisting the drivers in accomplishing their intended action. To validate the framework, operator-in-the-loop testing with 30 human subjects was conducted on a steer-by-wire platform with a virtual reality driving environment. The roadway scenarios included lane change, obstacle avoidance, intersection turns, and highway exit. The automated system with learning-based driver intent recognition was compared to both the automated system with a finite state machine-based driver intent estimator and the automated system without any driver intent prediction for all driving events. Test results demonstrate that semi-autonomous vehicle performance can be enhanced by up to 74.1% with a learning-based intent predictor. The proposed holistic framework that integrates human intelligence, machine learning algorithms, and vehicle control can help solve the driver-system conflict problem leading to safer vehicle operations

    A vehicle stability control strategy with adaptive neural network sliding mode theory based on system uncertainty approximation

    Get PDF
    Modelling uncertainty, parameter variation and unknown external disturbance are the major concerns in the development of an advanced controller for vehicle stability at the limits of handling. Sliding mode control (SMC) method has proved to be robust against parameter variation and unknown external disturbance with satisfactory tracking performance. But modelling uncertainty, such as errors caused in model simplification, is inevitable in model-based controller design, resulting in lowered control quality. The adaptive radial basis function network (ARBFN) can effectively improve the control performance against large system uncertainty by learning to approximate arbitrary nonlinear functions and ensure the global asymptotic stability of the closed-loop system. In this paper, a novel vehicle dynamics stability control strategy is proposed using the adaptive radial basis function network sliding mode control (ARBFN-SMC) to learn system uncertainty and eliminate its adverse effects. This strategy adopts a hierarchical control structure which consists of reference model layer, yaw moment control layer, braking torque allocation layer and executive layer. Co-simulation using MATLAB/Simulink and AMESim is conducted on a verified 15-DOF nonlinear vehicle system model with the integrated-electro-hydraulic brake system (I-EHB) actuator in a Sine With Dwell manoeuvre. The simulation results show that ARBFN-SMC scheme exhibits superior stability and tracking performance in different running conditions compared with SMC scheme

    RISE-Based Integrated Motion Control of Autonomous Ground Vehicles With Asymptotic Prescribed Performance

    Get PDF
    This article investigates the integrated lane-keeping and roll control for autonomous ground vehicles (AGVs) considering the transient performance and system disturbances. The robust integral of the sign of error (RISE) control strategy is proposed to achieve the lane-keeping control purpose with rollover prevention, by guaranteeing the asymptotic stability of the closed-loop system, attenuating systematic disturbances, and maintaining the controlled states within the prescribed performance boundaries. Three contributions have been made in this article: 1) a new prescribed performance function (PPF) that does not require accurate initial errors is proposed to guarantee the tracking errors restricted within the predefined asymptotic boundaries; 2) a modified neural network (NN) estimator which requires fewer adaptively updated parameters is proposed to approximate the unknown vertical dynamics; and 3) the improved RISE control based on PPF is proposed to achieve the integrated control objective, which analytically guarantees both the controller continuity and closed-loop system asymptotic stability by integrating the signum error function. The overall system stability is proved with the Lyapunov function. The controller effectiveness and robustness are finally verified by comparative simulations using two representative driving maneuvers, based on the high-fidelity CarSim-Simulink simulation

    Mu-synthesis PID control of full-car with parallel active link suspension under variable payload

    Get PDF
    This paper presents a combined μ -synthesis PID control scheme, employing a frequency separation paradigm, for a recently proposed novel active suspension, the Parallel Active Link Suspension (PALS). The developed μ -synthesis control scheme is superior to the conventional H∞ control, previously designed for the PALS, in terms of ride comfort and road holding (higher frequency dynamics), with important realistic uncertainties, such as in vehicle payload, taken into account. The developed PID control method is applied to guarantee good chassis attitude control capabilities and minimization of pitch and roll motions (low frequency dynamics). A multi-objective control method, which merges the aforementioned PID and μ -synthesis-based controls is further introduced to achieve simultaneously the low frequency mitigation of attitude motions and the high frequency vibration suppression of the vehicle. A seven-degree-of-freedom Sport Utility Vehicle (SUV) full car model with PALS, is employed in this work to test the synthesized controller by nonlinear simulations with different ISO-defined road events and variable vehicle payload. The results demonstrate the control scheme's significant robustness and performance, as compared to the conventional passive suspension as well as the actively controlled PALS by conventional H∞ control, achieved for a wide range of vehicle payload considered in the investigation

    Advanced robust control strategies of mechatronic suspensions for cars

    Get PDF
    Two novel mechatronic suspensions for road vehicles are studied in this thesis: the Series Active Variable Geometry Suspension (SAVGS) and the Parallel Active Link Suspension (PALS). The SAVGS and the PALS complement each other in terms of the vehicle categories they serve, which range from light high-performance vehicles (the Grand Tourer) to heavy SUV vehicles, respectively, based on the sprung mass and the passive suspension stiffness. Previous work developed various control methodologies for these types of suspension. Compared to existing active suspension solutions, both the SAVGS and the PALS are capable of low-frequency chassis attitude control and high-frequency ride comfort and road holding enhancement. In order to solve the limitation of both SAVGS and PALS robustness, mu-synthesis control methodologies are first developed for SAVGS and PALS, respectively, to account for structured uncertainties arising from changes to system parameters within realistic operating ranges. Subsequently, to guarantee robustness of both low-frequency and high-frequency vehicle dynamics for PALS, the mu-synthesis scheme is combined with proportional-integral-derivative (PID) control, employing a frequency separation paradigm. Moreover, as an alternative robustness guaranteeing scheme that captures plant nonlinearities and road unevenness as uncertainties and disturbances, a novel robust model predictive control (RMPC) based methodology is proposed for the SAVGS, motivated by the promise shown by RMPC in other industrial applications. Finally, aiming to provide further performance stability and improvements, feedforward control is developed for the PALS. Nonlinear simulations with a set of ISO driving situations are performed to evaluate the efficiency and effectiveness of the proposed control methods in this thesis.Open Acces

    Multi-bot Easy Control Hierarchy

    Get PDF
    The goal of our project is to create a software architecture that makes it possible to easily control a multi-robot system, as well as seamlessly change control modes during operation. The different control schemes first include the ability to implement on-board and off-board controllers. Second, the commands can specify either actuator level, vehicle level, or fleet level behavior. Finally, motion can be specified by giving a waypoint and time constraint, a velocity and heading, or a throttle and angle. Our code is abstracted so that any type of robot - ranging from ones that use a differential drive set up, to three-wheeled holonomic platforms, to quadcopters - can be added to the system by simply writing drivers that interface with the hardware used and by implementing math packages that do the required calculations. Our team has successfully demonstrated piloting a single robots while switching between waypoint navigation and a joystick controller. In addition, we have demonstrated the synchronized control of two robots using joystick control. Future work includes implementing a more robust cluster control, including off-board functionality, and incorporating our architecture into different types of robots
    • …
    corecore