Santa Clara University
Scholar Commons

Computer Engineering Senior Theses Engineering Senior Theses

6-15-2017

Multi-bot Easy Control Hierarchy

Ryan Cooper

Santa Clara University, rcooper@scu.edu

Marton Demeter
Santa Clara University, mdemeter@scu.edu

Jonathan Ho
Santa Clara University, jrho@scu.edu

Alan Nguyen
Santa Clara University, aknguyen@scu.edu

Follow this and additional works at: https://scholarcommons.scu.edu/cseng senior

b Part of the Computer Engineering Commons

Recommended Citation

Cooper, Ryan; Demeter, Marton; Ho, Jonathan; and Nguyen, Alan, "Multi-bot Easy Control Hierarchy" (2017). Computer Engineering
Senior Theses. 75.
https://scholarcommons.scu.edu/cseng_senior/75

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in

Computer Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior/75?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

SANTA CLARA UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

Date: June 14, 2017

ITHEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Ryan Cooper
Marton Demeter
Jonathan Ho

Alan Nguyen

ENTITLED

Multi-bot Easy Control Hierarchy

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

z‘/{‘ 2
/’?; 3 LA {“f!{ _ ; A

Department Chair

Multi-bot Easy Control Hierarchy

by

Ryan Cooper
Marton Demeter
Jonathan Ho

Alan Nguyen

Submitted in partial fulfillment of the requirements
for the degree of

Bachelor of Science in Computer Science and Engineering

School of Engineering
Santa Clara University

Santa Clara, California
June 15, 2017

Multi-bot Easy Control Hierarchy

Ryan Cooper
Marton Demeter
Jonathan Ho

Alan Nguyen

Department of Computer Engineering

Santa Clara University
June 15, 2017

ABSTRACT

The goal of our project is to create a software architecture that makes it possible to easily control a multi-
robot system, as well as seamlessly change control modes during operation. The different control schemes
first include the ability to implement on-board and off-board controllers. Second, the commands can specify
either actuator level, vehicle level, or fleet level behavior. Finally, motion can be specified by giving a way-
point and time constraint, a velocity and heading, or a throttle and angle. Our code is abstracted so that any
type of robot - ranging from ones that use a differential drive set up, to three-wheeled holonomic platforms,
to quadcopters - can be added to the system by simply writing drivers that interface with the hardware used
and by implementing math packages that do the required calculations. Our team has successfully demon-
strated piloting a single robots while switching between waypoint navigation and a joystick controller. In
addition, we have demonstrated the synchronized control of two robots using joystick control. Future work
includes implementing a more robust cluster control, including off-board functionality, and incorporating our
architecture into different types of robots.

il

Acknowledgements

The Multi-bot Easy Control Hierarchy team would like to acknowledge these
individuals and organizations for their continued help and support.

Dr. Christopher Kitts

Santa Clara University School of Engineering

Santa Clara University’s Robotics Systems Laboratory
Scot Tomer

Mike Rasay

Anne Mahacek

iv

Table of Contents

1 Introduction

1.1 Background L e
1.2 Project Objective e
2 System Overview
2.1 Requirements e e e
22 UseCases . . v v v v vt e e e e e
2.2.1 Use Case: Manual Controlof Robot
2.2.2 Use Case: Set WaypointforRobot
2.2.3 Use Case: Switch Between Manual and Waypoint Modes
2.3 Technologies Used
2.4 Physical Depiction
25 FlowDiagram
2.6 Ground Control System Architecture
2.7 Robot Software Architecture L
2.8 Matlab Controller e
29 Dataturbine e
2.10 Risk Table
3 User Interface
3.1 DesCription e e e
32 Front-endDesign L
32,1 Settings L e e e e e e e e
322 RObOtS . . . e e
323 Graphics e
33 Back-endDesign
330 Server e e
332 LOgEer e e e e e e
34 Testingand Results e
34.1 RobOts e
342 Server e
4 Robot Prototype
4.1 OVEIVIEW . . . Lt it e e e e e e e
4.2 Requirements e e e e e
4.3 Components of Prototype L
5 Switching Architecture
S50 Design o
5.2 Implemented Controllers e
5.2.1 ManualControl
5.2.2 Waypoint Navigation L
5.2.3 Switching Implementation oL oL

o=

W L L D

11
12
13
14
15
16
16

18
18
18
18
21
22
23
23
23
25
25
25

6 Pozyx

6.1
6.2

Testing o o e e e e e e e e
Results e e e e

7 Societal Issues

8 Summary

8.1 Project OVerview
8.2 Future Work e
References

A Appendix

Al
A2

A3

Annotated Bibliography
Literature Review e e e e
A.2.1 Proposed Objectives e
A2.2 Previous Work e e e e
Source Code e e e
A3.1 Robot e e
A32 WebUL e
A33 GroundControl e e e

vi

35
35
35

40

43
43
43

45

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
22
23
24
2.5
2.6

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13

4.1
4.2
4.3

5.1

6.1
6.2
6.3
6.4

Quadcopter e 1
Joystick Controller e e e 2
MARV . . 2
Eight Channel Controller 3
Pixhawk Flight Controller 3
Use Case for Multi-bot Easy Control Hierarchy 9
Physical Depiction L 12
Data Flow Diagram 12
Architecture Diagram for Ground Control System 13
Architecture Diagram for Robot Software 14
Command Packet 15
Initial Designo e 19
Model Overlay to Configure Initial Robot Settings 19
Overview of the User Interface, 20
Single and Cluster Configuration Options 20
Populated Controller and Robot Dropdowns 21
Waypoint Settings e e e 21
Connected Robot 22
Disconnected Robot 22
Unselected Robot with Heading 22
Selected Robots with Center of Cluster 23
Waypoint e 23
Data Flow Diagram of the User Interface 24
Logfile e e 24
Robot Prototype 26
Edison Component Block Diagram 27
Raspberry Pi Component Block Diagram 28
Implemented Controller Switching Overview 34
Pozyx Position Distribution Before Filtering 38
Pozyx Position Distribution After Filtering 38
Pozyx Anchor Layout 39
Pozyx Waypoint Error 39

vii

List of Tables

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12

3.1

4.1

6.1
6.2
6.3
6.4

Ryan Cooper’s AHP Input 6
Marton Demeter’s AHP Input 6
Alan Nguyen’s AHPInput 7
Jonathan Ho’s AHP Input L 7
Final Requirements Ranking 8
Requirements L e e 8
Use Case: Manual Controlof Robot 0 0 ... 9
Use Case: Set Waypoint forRobot 10
Use Case: Switch Between Manual and Waypoint Modes 10
Software Technology Used 11
Hardware Technology Used i 11
Risk Analysis Table e 17
User Interface Throughput Test 25
Billof Materials e 29
Position ACCUIacy e 36
Grid Offset 36
Waypoint Navigation Accuracy L 37
Increasing Height of Pozyx Anchor 37

viii

Chapter 1

Introduction

1.1 Background

As robots become more widespread and the variety of autonomous tasks increases, the ability to ac-
commodate different control specifications becomes increasingly important. Robots nowadays have a wide
variety of benefits and are used for a multitude of applications, which often present a benefit to society in
various applications, such as manufacturing, search and rescue, and convenience [1]. As automation becomes
more feasible, robots have the potential of changing the way industry operates. Because the variety of appli-
cations is endless, it is unlikely that these robots share the same actuators and operating platforms. Robots

that travel on land, water, and air all have contrasting control specifications.

Figure 1.1: Quadcopter

We break these control specifications into three categories, which we call “the dimensions of control.”
The first dimension is switching between different levels of control such as actuator-, vehicle-, and fleet-
level. The Robotics Systems Lab (RSL) has previously developed a set of robotic kayaks that have the ability
to switch between these levels [4]. Autonomous applications such as locating environmental pollution and

escorting targets [5] are made possible when operating in fleet-level. Precision control of a single kayak

is achievable through vehicle- or actuator-level control by specifying joystick based velocity commands as

shown in Figure 1.2.

Figure 1.2: Joystick Controller

Our second dimension is switching between the aforementioned velocity control and waypoint posi-
tion control. A good example of a system capable of such switching is a commercial drone autopilot system
called the 3DR PixHawk as seen in Figure 1.5. Utilizing a graphical user interface, the user has the ability to
develop a flight plan, consisting of a series of waypoints, which will then be executed on the autopilot. The
RSL has already utilized this piece of technology in the project MARV shown in Figurel.3[2], which uses
the PixHawk’s waypointing capability to map the bottom of various lakes. When manual velocity control is

needed, that functionality is also available on the PixHawk.

Figure 1.3: MARV

The third dimension of switching establishes where the calculations occur - onboard or offboard the
robot. Most of the RSL projects focused on cluster control are built with an offboard controller designed

in Simulink in Matlab. The RSL has previously built a controller that switches between these two levels of

computation [6].

Figure 1.4: Eight Channel Controller

ht Controller

Figure 1.5: Pixhawk Flight Controller

The RSL is currently developing advanced robotic missions that require the flexibility to switch from
one control configuration to another. For one application, it may be beneficial to control the robot to move
at a specific velocity in a specific direction. For another, it would be better to set up a path for the robot
travel to autonomously, and it is always a safe idea to be able to quickly switch to manual control when doing
an autonomous mission. The existing systems have no quick way to switch between different controllers, as
the switching requires reprogramming, rebooting, and reinitializing the robot. This can be a tedious process
that wastes a lot of time for researchers when they are testing new control algorithms. The current way of
switching can be a potential risk for the field robots. If the robots are too distant to physically interact, such as
underwater or in space, the robot could be damaged or abandoned. The RSL needs a better way to change how

their robots are being controlled. It would provide them greater flexibility and a potentially greater degree of

control if the modes of control were easily switched. For example, in some cases, waypoint navigation is
preferred over manual control. The RSL requires an architecture that allows for a seamless switch between
control by synchronizing active controllers and rerouting controller communication. We will save the RSL

their time and money when switching between configurations and platforms.

1.2 Project Objective

The objective of the project was to create a system that allows for a seamless switch between control
configurations by synchronizing the activation of controllers and by rerouting controller communications. To
achieve this, our team has integrated the technologies preferred by the Robotic Systems Lab, such as Matlab
and Dataturbine, to handle robot controllers and communication within our architecture. We created a user
interface that keeps track of deployed robots and allows for the user to configure which controller the robots
obey. We also built three differential-drive robots utilizing the Intel Edison and Raspberry Pi microprocessors
to show cross-platform compatibility and act as a testbed to prove our system in a real-world scenario. The
result of our efforts produced a system that allows roboticists to configure their cross-platform robots and

controllers on the fly using an intuitive interface.

Chapter 2

System Overview

2.1 Requirements

After speaking with our advisor, Dr. Christopher Kitts, our team gathered a list of requirements, which
are presented in Table 2.6 for our project. We split the requirements into different categories such as func-
tional, non-functional, and design constraint. These were further divided into critical and recommended.
Because of the limited time scope of the project, our team needed to rank certain features to determine our
priorities and allow us to allocate work effectively. The team input their opinions by comparing different
features in an analytic hierarchy process table. These inputs are shown in Table 2.1, Table 2.2, Table 2.3, and

Table 2.4. The inputs were compiled and the features were ranked based on the data in Table 2.5.

2.2 Use Cases

Figure 2.1 shows the use cases that define the tasks that a user can perform to achieve a certain goal
within our system. The use cases have two primary components: a detailed description of each use case and a
summary diagram. The use case descriptions include the preconditions and postconditions needed to achieve
a certain goal, the type of user involved, what steps the user needs to perform to reach the use case goal, as

well as exceptions that the system may encounter.

2.2.1 Use Case: Manual Control of Robot

Our project revolves around the ability to switch between controllers when operating a robot. The first
type of controller that we discussed revolved around controlling the robot manually with a physical controller.

This is shown in Table 2.7.

2.2.2 Use Case: Set Waypoint for Robot

As shown in Table 2.8, the next use case is waypoint navigation. Dr. Kitts suggested that we implement

this algorithm first due to its relative simplicity. It utilizes our graphical user interface.

5

Table 2.1: Ryan Cooper’s AHP Input

Ryan GUI to dis- | Different Switching Different Multiple Expandable
play info levels of | onboard- kinds of | control and interop-
control /offboard platforms tools erable
GUI to dis- | 1 0.5 2 3 3 2
play info
Different 2 1 2 3 3 2
levels of
control
Switching 0.5 0.5 1 2 3 2
onboard-
/Joffboard
Different 0.3333 0.3333 0.5 1 2 0.5
kinds of
platforms
Multiple 0.3333 0.3333 0.3333 0.5 1 0.5
control
tools
Expandable | 0.5 0.5 0.5 2 2 1
and interop-
erable
Table 2.2: Marton Demeter’s AHP Input
Marton GUI to dis- | Different Switching Different Multiple Expandable
play info levels of | onboard- kinds of | control and interop-
control /offboard platforms tools erable
GUI to dis- | 1 0.5 3 2 3 3
play info
Different 2 1 2 2 3 2
levels of
control
Switching 0.3333 0.5 1 2 2 2
onboard-
Joftboard
Different 0.5 0.5 0.5 1 2 2
kinds of
platforms
Multiple 0.3333 0.3333 0.5 0.5 1 0.5
control
tools
Expandable | 0.3333 0.5 0.5 0.5 2 1
and interop-
erable

Table 2.3: Alan Nguyen’s AHP Input

Alan GUI to dis- | Different Switching Different Multiple Expandable
play info levels of | onboard- kinds of | control and interop-

control /offboard platforms tools erable

GUI to dis- | 1 0.5 0.5 0.5 0.5 0.5

play info

Different 2 1 2 1.5 3 2

levels of

control

Switching 2 0.5 1 2 2 1

onboard-

/Joffboard

Different 2 0.666 0.5 1 2 1

kinds of

platforms

Multiple 2 0.3333 0.5 0.5 1 0.5

control

tools

Expandable | 2 0.5 1 1 2 1

and interop-

erable
Table 2.4: Jonathan Ho’s AHP Input

Jonathan GUI to dis- | Different Switching Different Multiple Expandable

play info levels of | onboard- kinds of | control and interop-

control /offboard platforms tools erable

GUI to dis- | 1 0.5 2 2 3 3

play info

Different 2 1 3 2 3 3

levels of

control

Switching 0.5 0.3333 1 1 2 2

onboard-

Joftboard

Different 0.5 0.5 1 1 2 2

kinds of

platforms

Multiple 0.3333 0.3333 0.5 0.5 1 0.5

control

tools

Expandable | 0.3333 0.3333 0.5 0.5 2 1

and interop-

erable

Table 2.5: Final Requirements Ranking

Final Rankings

GUI to display info 0.2038619662
Different levels of control 0.294287738
Switching onboard/offboard 0.1665858258

Different kinds of robots and domains | 0.1328613009

Multiple control tools 0.07895176963

Expandable and interoperable 0.1234513994

Table 2.6: Requirements

Functional Requirements

Have a GUI to show information on robots such as speed, distance, location, and mode

Critical Able to support robots of different specifications, domains, or mobility
Convert between different ways of controlling the system onboard or offboard control
Accommodate specifying velocity commands vs position commands

Recommended

Have multiple ways of controlling all connected robots such as controller, joystick, or computer program

Non-Functional Requirements

An expandable, interoperable architecture which has guidelines and documentation to allow users to add robots
Critical

Interoperability between Raspberry Pi, Intel Edison, and other processors with Linux

Recommended | Achieve least amount of latency and quick response times

Design Constraints

Must integrate with Matlab, Pozyx, and Dataturbine

2.2.3 Use Case: Switch Between Manual and Waypoint Modes

The user should be able to switch between the controllers that we have implemented in our system. We

developed this use case to allow the system to switch between manual and waypoint modes. It is important

Multi-bot Easy Control Hierarchy

Manual Con-
trol of Robot

Set Waypoint
for Robot

Switch Between
Manual and Way-
point Modes

Roboticist

Figure 2.1: Use Case for Multi-bot Easy Control Hierarchy

for the user to have to ability to change control configurations on the fly in order to effectively utilize the

switching architecture.

Table 2.7: Use Case: Manual Control of Robot

Use Case Name Manual Control of Robot

Goal Be able to control the robot with a controller.
Actor(s) Roboticist
Precondition(s) Setting is on manual mode.

Postconditions(s) | Robot moves according to the input depending on the controller

configuration.
Step(s) Input direction and velocity using controller.
Exception(s) Robot does not follow directions from controller

Table 2.8: Use Case: Set Waypoint for Robot

Use Case Name

Set waypoint for robot

Goal Robot moves to the desired location of the waypoint specified by
the UI
Actor(s) Roboticist
Setting is on waypoint mode
Precondition(s)
Location is reachable by robot
Postconditions(s) | Robot arrives at the specified location
Step(s) Input desired location on the communication system
Exception(s) Robot’s path is blocked by obstacle

Table 2.9: Use Case: Switch Between Manual and Waypoint Modes

Use Case Name

Switch between manual and waypoint modes

Goal Be able to switch between manual control and waypoint control
Actor(s) Roboticist
Function is assigned in the controller configuration
Precondition(s)
Have different types of movement information depending on the
current setting
Postconditions(s) | Robot switches between the modes
Step(s) Click assigned button on user interface
Exception(s) N/A

2.3 Technologies Used

Table 2.10 shows the various software technologies that were used to create the system. Table 2.11

shows the hardware technologies present on our prototype robot.

10

Table 2.10: Software Technology Used

GitHub Version Control

Matlab Controllers

Java Dataturbine, Jmatlab

Python Robot Software

HTML UI Layout

CSS UI Styling

Javascript | UI Logic

Node.js UI Backend

Table 2.11: Hardware Technology Used

Raspberry Pi Zero

Robot Controllers

Intel Edison

Robot Controllers

Pozyx UWB

Indoor Positioning System

2.4 Physical Depiction

Figure 2.2 depicts what a typical use of Multi-bot Easy Control Hierarchy (MECH) would look like.
Figure 2.2 shows the different methods of control in our system. Navigation mode A is manual drive with
joystick control. Mode B is waypoint navigation by specifying points through the user interface. Mode C is
waypoint navigation with cluster control. The user, depicted by the stick figure, has configured MECH and is
monitoring its operation. The computer has the ground control version of MECH that allows for the user to
configure the robots with a GUI The computer is also connected to a communication device that allows it to
connect to the robots. This communication device receives information about the positions of the robots and
routes the control information to the robots. The computer runs a control algorithm in Matlab or is connected

to a controller to control the robots. Each of the robots can controlled by their own unique control algorithm,

or one algorithm can make a group of robots move in a formation.

11

Figure 2.2: Physical Depiction

2.5 Flow Diagram

Figure 2.3 depicts how data travels through MECH, and how onboard calculations mode differs from
offboard mode. Data is generated at the ground control through the user interface. This information makes its
way to the controller through several communication layers. The boxes with disconnected sinusoidal waves
show that information is transmitted wirelessly in that mode. The onboard mode also depicts the controller
to be part of the robot. This is different from offboard mode, where the controller is part of ground control.
When in offboard mode, data is sent to the robot for the actuators through the communication layers, and

sensor data is transmitted back to ground control the same way.

e e e e T e R T R T R R R o e e e

R Ground Control RS e Robot ~
Y L
e e e e emmmmmmr e e mememeEmem e v e e e e e e e
L ~ . - v ! ~.
N Ground Control o Robot 1 .
i 1
' v
1
Is . 1 A I LN | ;
User Interface F' < Controller f 2] Actator —

| |CF'\""‘OQ| l_ Sensors =

I]
P e e el e e e e T T R R .
R T R e e e e e e

e I e e e e e T T T T T e e e e e e e e e

Figure 2.3: Data Flow Diagram

12

2.6 Ground Control System Architecture

Figure 2.4 depicts what MECH looks like on the ground control server. The controller is generated
from Simulink and fed to Matlab. Matlab handles the parsing of the control data and sends it to JMatlab. The
controller could be a joystick of some kind or an algorithm made by researchers. The only control scheme
we were able to implement was a joystick controller that converted the raw joystick values into motor level
commands for the robot. Even though we only implemented one controller, our software architecture is able
to support different Simulink controllers.

The control data is sent to Dataturbine via JMatlab. Since Matlab is a single threaded process, it could
not natively support asynchronous communication. JMatlab is necessary for asynchronous communication
for Matlab and Dataturbine. Sensor data from the robot is sent to Matlab via Dataturbine. The sensor data is
published to a Dataturbine channel that follows the naming convention of “robot_X_source”, where X is the
robot number. The sensor data, such as position and heading, allows a researcher to create closed loop control
algorithms to operate the robot.

When sensor data is sent through Dataturbine, the user interface picks up on it and displays it to the
user. The UI also allows the user to remotely configure the robots to listen to a connected controller. This
reconfiguration is done on a specific UI channel called ”_Ul_source”. Every robot and controller subscribes to
this channel for when the UI sends out a reconfiguration request. A reconfiguration request can ask a specific

controller or robot to reconfigure its sinks to listen to a specific channel.

Command Packet Command Packe

Dataturbine

Robot &
Control Controller
Information

Simulink
Controllers

Figure 2.4: Architecture Diagram for Ground Control System

13

2.7 Robot Software Architecture

Control Command

GPIO Driver

Dataturbine Motor Controller Motor Driver

>

Electric
Filtered signals
Position

Data

Hardware

Pozyx Position Driver

Raw Position Data

Figure 2.5: Architecture Diagram for Robot Software

Figure 2.5 depicts the high level software architecture that handles the data flow of MECH on the robot.
The robot runs a Linux operating system that has Python 2.7 and Java 8 installed. A Java process handles the
communication with Dataturbine and reconfiguration of which controller the robot is listening to when the
Ul requests the robot to reconfigure. Java also communicates with the Python code via a unix domain socket.
Python handles all of the data parsing and control of the hardware. Each ellipse in Figure 2.5 represents a
python process that runs on the robot. The python process are started by DDStarter.py. DDStarter.py and the
Java process on the robot are started with StartRobot.sh

Dataturbine sends control data to the motor controller which determines how to handle the data. The
motor controller parses the command packet to determine what control scheme the packet requests the robot
be controlled in and then uses the rest of the packet accordingly.

The command packet consists of four fields as shown in Figure 2.6. Src is where the packet came
from. The Dst field is where the packet is intended to be decoded. The robot checks this field to see if the
packet was for it, and then it checks the Src field to see if the packet came from the UI or from the controller
it is listening to. If the packet was not for the robot or is not from UI or the controller the robot is listening
to, it discards the packet. This reduces the amount of time wasted on packets that aren’t for the robot. The
control field is used to determine how to interpret the data field to control the robot. The control field is
discussed in greater detail in Section 5.2.3. Depending on the control field, the data field may have further
divisions that signify the left motor and right motor values, the steering and throttle values, the velocity and
heading values, or a waypoint. The size of each field and the packet as a whole was optimized to transmit the
minimum required information to have the robot execute the correct action. To allow the software to be used
reliably with communication infrastructures that have a low bandwidth, the packet size was minimized.

The motor controller has support for vehicle-level control specified by a velocity and heading, or throt-

14

Command Packet

Src | Dst Control Data
Bits 4 4 8 32 48 in total

Figure 2.6: Command Packet

tle and steering values. It also supports actuator level commands which are represented by raw PWM values
for the motors, and waypoint navigation commands which are represented as a list of Euclidean coordinate
waypoints.

Onboard controllers can operate on a set of waypoints from the waypoint navigator or vehicle-level
commands, whereas off-board controllers can be implemented to handle either vehicle-level commands or
actuator-level commands. Onboard waypoint navigation is achieved by using the position data from the posi-
tion driver to create a closed-loop control algorithm.

The position driver filters the raw Pozyx data and sends it to Dataturbine and the motor controller. The
motor driver and the GPIO driver are abstraction layers that facilitate the code to run on multiple platforms
(the Intel Edison and Raspberry Pi for this project). These abstraction layers convert generalized control
signals into the specific pin values required to operate the robot as desired. These specific pin configurations
and specifications are defined in a configuration file. It is expected that a user will update the configuration
file with their pin configurations when they want to use our software. The hardware shown in Figure 2.5 is an

L298 dual H-bridge motor driver.

2.8 Matlab Controller

Matlab is one of the most used software suites in the field of control systems. As such, it is the preferred
language used at Santa Clara University’s Robotic Systems Lab. The RSL students, staff, and professors have
created over fifteen years worth of control algorithms in Matlab.

Matlab has a block diagram environment for facilitating the development and simulation of control
algorithms called Simulink. Simulink is able to interface with various types of controllers such as a joystick.
The Robotic Systems Lab also has been developing control algorithms in Simulink for many years. Our
project hopes to integrate the technology that the Robotic Systems Lab deems familiar.

Using JMatlab, an interface between Java and Matlab, we connected the Matlab component of our
system with Dataturbine. This allowed for asynchronous communication with the Matlab component and the
rest of our system.

When testing the Matlab / Simulink controller, we found that the latency between the controller and

15

the robot executing the command was high. The commands coming from the controller were flooding the
robot. By reducing the message rate with the introduction of a 100ms delay, we were able to resolve the

latency issue.

2.9 Dataturbine

Dataturbine is a publisher/subscriber software architecture, and for this project robots, controllers, and
the UT are all publishers and subscribers on Dataturbine. Dataturbine can be polled for information about who
is on the turbine. The UI uses this information to reconfigure the robots and controllers. We integrated with
Dataturbine by communicating with it over a TCP connection.

Dataturbine is the communication manager for our project. It was a design constraint for our project
because the SCU RSL has been using it in projects for the last ten years and wanted to continue using it. It
also kept track of what was connected to the network and allowed for us to change the routing of data on the
fly.

Software integrated with Dataturbine and made use of its utilities to get information to the UI and to
reconfigure controllers and robots. This was done using TCP connections for inter-process communication

between processes that communicated with Dataturbine.

2.10 Risk Table

In order to gain awareness of some problems that might arise during development, we created Ta-
ble 2.12, to analyze such risks. It tells us the consequences of each risk as well as its impacts. The impacts are
calculated by multiplying the probability and severity of each event. Probability is represented by “P” and is
on a scale of 0 to 1. Severity and impact is represented by “S” and “I” respectively. Severity and impact are

on a scale of 1 to 10. We also created mitigation strategies to help us avoid each event.

16

Table 2.12: Risk Analysis Table

Name of Risk

Consequences

Probability [0-1]

Severity [1-10]

Impact [1-10]

Mitigation Strategies

Destruction of equipment

Rebuild/reorder robot

0.6

42

Be careful with
robot. Do not exceed
limits

Conflicting Schedules

Cannot meet to work together to meet deadlines

Schedule meetings
well in advance. Be
open to inconvenient
times. Schedule
meetings with only
part of the group
present

Illness

fall behind, reassign tasks

0.7

2.8

Maintain proper
health. Sleep well

Too many features

Necessary features are overlooked

24

Prioritize features in

order of importance.

Limit the number of
features

Miscommunication

Improper implementations, missed expectations

0.6

Use descriptive
words. make sure
both parties
understand what is
expected before they
part ways

Run out of time

Cut features

0.2

Follow development
timeline. Ask for
help before deadlines

17

Chapter 3

User Interface

3.1 Description

This project required an interface to support all of the functionality of the architecture, while allowing
the user to easily interact with, and configure various settings for the system. The solution was a graphical user
interface (GUI) implemented as a website written for Google Chrome utilizing HTML, CSS, and Javascript.

No frameworks were used, all the code was written by hand from the ground up.

3.2 Front-end Design

As the system evolved, and as more features got added, the design of the GUI changed substantially
to better accommodate these new elements.

Our initial design shown in Figure 3.1, consisted of a total of three panels: one containing a list of
the robots, one for a visual display, and one for the system settings. At that time, our robots had to be added
manually to the system, so a model overlay was used to configure the initial settings of the robots as is shown
in Figure 3.2. The design later was updated as the architecture evolved to utilize Dataturbine to automatically
add robots to the system.

After the controllers and waypoint navigation were added to the architecture, the design changed yet

again, into its final version as shown in Figure 3.3.

3.2.1 Settings

Configuration

The settings panel was split into three parts to account for the changes. The leftmost area became the
configuration menu, where the user is able to opt to either group selected robots into clusters, or make them

single as shown in Figure 3.4. The state of the robots is saved until they are disconnected.

18

Multi-bot Easy Control Hierarchy

Robot Container + Graphics Container

Settings Container

Figure 3.1: Initial Design

Add New Robot
Name of Robot
Communication Protocol

Type of Robot

Add Robot!

Figure 3.2: Model Overlay to Configure Initial Robot Settings

Controllers

The middle area became the Controllers menu. The request button in the top right corner sends a

packet to JMatlab requesting all available Dataturbine channel information:

requestDTConfig()

19

Multi-bot Easy Control Hierarchy

Robots Remove Disconnected Graphics

Robot 0

Robot ID 0

Type dd
Color

Position X 985

nY 1612

0

0

158

Connected

Robot 1

Robot ID 1
Type dd
Color

Position X 1755
Position Y 748
P

0
Velocity 0
Heading 4472
Status Connected

Configuration Controllers

Single Controllers Robots
‘Waypoint 3: [1642 ,1187] [513 ,225]

Waypoint 2 [2583 ,2063 1 [807,391]

‘Waypoint 1: [810, 1994][253,378]

Figure 3.3: Overview of the User Interface

Single

Single

Cluster

Figure 3.4: Single and Cluster Configuration Options

The return packet is the following ASCII string:
DTConfig: robotl _name type, controllerl_name type, robot2_name type, controller2_name type;

The javascript code listening to the websocket communication filters out the necessary information and pop-
ulates the dropdowns accordingly as shown in Figure 3.5. The robots are then assignable to controllers as the
user wishes.

Currently waypoint and Simulink joystick controllers are implemented. Waypoint information origi-
nates from the GUI itself, and is set the default controller for any new robot. All the active joysticks’ infor-
mation is received from Dataturbine through JMatlab, and shows up visually in the dropdown, ready to be

paired with the robots.
Waypoints

The rightmost panel is the home of waypoint coordinates. It has three notable features: the two text
boxes to specify x and y coordinates, the coordinates list, and the send button as shown in Figure 3.6. The

text boxes offer an alternative to specifying waypoints through the graphical area, and allow for the selection

20

Controllers Robots

Waypoints

matlab/commands

Figure 3.5: Populated Controller and Robot Dropdowns

of precise coordinates. Whenever a waypoint coordinate is added on either the graphical area, or through the
text boxes, it shows up in the list below the text boxes. It displays the most recently added waypoint first, so
that the user is able to keep track of the waypoints they added. Finally, the send button sends all the currently
active waypoints to all the selected robots. The button only appears when there is at least one robot selected
that has its controller type set to waypoints.
Waypoints
X: Ve
Waypoint 5: [2000 ,2000][625,162]
Waypoint 4: [1000 ,2000][312,162]

Waypoint 3: [2999 , 1889] [937,358]
Waypoint 2: [2819 ,1219] [881,231]

Waypoint 1: [1117 ,1994] [349,378]

Figure 3.6: Waypoint Settings

3.2.2 Robots

The panel for the robots displays numeric information received through Dataturbine, from the robots.
The information we’re currently providing the user with includes: Name, ID, Type, Color, Position X, Position
Y, Position Z, Velocity, Heading, Status, as shown in Figure 3.7. Each one of the robots has its own unique
card with the aforementioned information. The card values update whenever a new packet is received through
the websocket that corresponds to the appropriate robot. If no packet is received for a certain amount of time,
the status of the robot changes to disconnected automatically as shown in figure 3.8. A javascript timer
function keeps track of the last received packet for each one of the robots.

The robots are also selectable through these cards. By holding down the SHIFT key, the user is able

to select more than one.

21

Robot ID

Type dd
Color

Position X 1670

Position Y 2121
Position Z 0
Velocity 0
Heading 29.64
Status Connected

Figure 3.7: Connected Robot

Robot 0
Robot ID
Type
Color
Position X

Position Y
Position Z
Velocity
Heading
Status

Figure 3.8: Disconnected Robot

3.2.3 Graphics
Robots

The graphical area consists of an HTMLS canvas. The canvas can be used to generate graphical prim-
itives, such as circles and squares. It is also possible to create custom shapes. The robots are represented as
little circles, with a line through it to mark the heading as can be seen in Figure 3.9. A robot can be selected
either through the robot panel as mentioned earlier or by clicking on the little circles representing them in
the graphical area. Whenever a robot is selected, its outline changes color from white to green to indicate the
selection. If multiple robots selected, their outline changes, and a dashed line connects them all to indicate a

cluster, as shown in Figure 3.10. The center of a cluster is marked with a smaller yellow circle.

Figure 3.9: Unselected Robot with Heading

Waypoints

Waypoints can also be specified in the graphical area. If the user clicks the waypoint flag located in
the top right corner, then waypoint selection will activate, and a little flag will be displayed above the cursor

of the user. Wherever a user clicks while waypoint selection is active, a waypoint coordinate will be marked

22

Figure 3.10: Selected Robots with Center of Cluster

with a flag in that spot as shown in Figure 3.11. Waypoint selection can also be activated by pressing the key
”f’. Waypoint selection can be deactivated by clicking the waypoint flag in the top right corner or by pressing

the escape key.

Figure 3.11: Waypoint

3.3 Back-end Design
3.3.1 Server

The backend of the user interface consists of a server written in Node.js. Node.js is the perfect pro-
gramming language for such a server, as it allows for bidirectional and asynchronous flow of information.
The purpose of the back-end server is to relay information between the website and JMatlab. The server com-
municates with the website through a websocket. A websocket library called ”ws” was used. The connection
to JMatlab is through TCP, which is natively supported by Node.js, so no external libraries were utilized. The

information forwarding and flow is shown in Figure 3.12.

3.3.2 Logger

The server utilizes a logger to keep track of information about the server. The logger is also written
in Node.js, and has both synchronous and asynchronous versions. The synchronous version of the logger has
to be used to log information when the server is shutting down, otherwise the program would quit before the

data is saved, however it is used all throughout. The kind of information saved is presented in the list below.

23

User Interface Dataturbine

(Chrome)

Websocket

Waypoint Information
Cluster Configuration
Controller Configuration
uoljew.oju| 10qoy

Y

Server TCP JMatlab

A

Figure 3.12: Data Flow Diagram of the User Interface

Time and date of when the back-end server started

Time and date of when a TCP client connected

Time and date of when a TCP client disconnected

Time and date of when a websocket client connected

e Time and date of when a websocket client disconnected
e Time and date of when the back-end server shut down
It is also possible to save data of varying degrees with the logger. It supports four levels:
e Debug
e Info
e Warning
e Error

10:04:14 : Server started.
10:04:18 : TCP client has connected.
10:04:20 : Websocket client has connected.

10:43:18 : Websocket client has disconnected.
10:43:49 : TCP client has disconnected.
10:44:36 : Server shut down.

Figure 3.13: Log file

The level of data saved is also recorded in the log file, along with the time and date, as shown in Figure

3.13.

24

3.4 Testing and Results
3.4.1 Robots

The GUI had to be tested when there weren’t any robots attached, so that consistent progress could be
made. A program was developed to imitate information provided by robots, as well as respond to the informa-
tion given by the website. The program connects to the TCP connection that normally JMatlab connects to.
It has the ability to randomly generate heading for each robot, and it stores their current and future positions.
It can also store waypoint information given to a robot, which is then able to complete the course if given the

instruction. It has been a significant contribution to the development of the website.

3.4.2 Server

The bandwidth and packet handling ability of the server also had to be benchmarked initially. A
program was written to provide a varying throughput of data to test the capabilities of the server. Some of
the packets were sent with such little interval that the server received the packets merged. To combat such
situations, packets are parsed, and only the first part of a merged packet is used. The tests below show on
average how many packets are usable out of ten thousand. It should be kept in mind that the program sends
packets very quickly, and that the real robot only sends its information about 3 times a second, as opposed

to 40 times a second. As can be seen from Figure 3.1, about 88% of the packets are usable from the test

Table 3.1: User Interface Throughput Test

Test Number | Usable Packets | Total Packets

1 8957 10000
2 8796 10000
3 8746 10000

program.

The throughput of the test program is around 2.1025 bytes / millisecond, which is achieved by send-
ing an average of 52 byte strings every 25 milliseconds. The actual robot sends an approximately 52 byte
string every 333 milliseconds, which is a throughput of 0.1562 bytes / millisecond. Due to maintaining its
performance under heavy load in the benchmark tests, we concluded that the GUI will be able to perform

with larger fleets under normal use.

25

Chapter 4

Robot Prototype

Al =
%

rY % . o
@GEIL!ENERGV

ey

Nickel-Metal Hydride Battey
2 ba recyied of Gaposed o

2000mAh

MUST READ NSTRUCTIONS BEFORE USE

Figure 4.1: Robot Prototype

4.1 Overview

We designed the robot that we used to test our software. Most of the components on the robot are
depicted in Figure 4.1. The components were a 6V 2000mAh NiMH battery(A), power switch(B), two pow-
ered wheels(C), a 5V 3A UBEC voltage regulator(D), a L298 dual H-bridge motor controller(E), 8 washers
for counterweight(F), Pozyx position tag(G), XBee communication module(H), optical motor encoders(l), a
microprocessor, in this case an Intel Edison with Arduino breakout board(J), and an acrylic chassis(K). The
components missing from Figure 4.1 are a caster wheel, and a 6V to 9V boost converter. Even though only

one set of components was used, the software on the robot was designed to abstract with a hardware abstrac-

26

tion layer. Although we did not demonstrate that the software works for a different mode of communication

or using a different motor driver, it was written to be extensible to different hardware.

Motors
. Power

Motor Driver
(L298)

Fositioning
— System
(Fozyx)

Communication
Module

Battery BV 3AUBEC |

Optical Motor
Encoders

Intel Edison

6V to 9V Boost
Converter

Figure 4.2: Edison Component Block Diagram

4.2 Requirements

We set out to build a robot that would be able to support all of the functionality that we planned
our system would have. Since we needed to support a variety of different robot designs and purposes, the
robot needed to support different communication, localization, and motor control hardware. Additionally,
we needed the robot to be big enough to mount all of the hardware in an easily serviceable way, so that if

something were to break we could easily replace it. The robot also needed a method of actuation that was

27

Motors
. Power

Maotor Driver
(L298)

Positioning
— System
(Pozyx)

Communication
Module

Battery 8V 3A UBEC |

Optical Motor
Encoders

— Haspberry Fi

Figure 4.3: Raspberry Pi Component Block Diagram

capable of demonstrating different controllers. The microprocessors needed to be able to run the same code
so that we did not waste time on different versions of the code for the different robots. Our components were

selected to fulfill these requirements.

4.3 Components of Prototype

The XBee module and optical motor encoders were unused and removed from the scope of the project,
as we determined they were not critical components for the success of our project and our time was better
spent tackling other problems. Instead of communicating via the XBee, we used the built-in WiFi that came
on the Raspberry Pi and the Intel Edison. The XBee would have been our proof that the software supports

different communication hardware and protocols.

28

One voltage regulator was used to provide 5V to the L298, XBee module, and Raspberry Pi, while the
other was used to provide 9V to the Intel Edison, which powered Pozyx over a USB connection. They were
chosen for their efficiency, price, and form factor.

The 2000mAh battery was used to power the system. It was chosen because it was estimated that the
battery would power the system for roughly and hour if the robot was moving at full throttle the whole time,
and it was realtively cheap compared to other battery options.

The 1298 was the hardware motor driver, which was chosen because of its ease of use, price, and
our familiarity with how to use it. Pozyx was used for determining the location and orientation of the robot.
Pozyx was chosen for this project because the technology was new to the lab and they wanted to see how

well it could perform.

Table 4.1: Bill of Materials

Item Quantity | Unit Cost
Intel Edison and Arduino Breakout 1 $100
Raspberry Pi 2 1 $35
Geilienergy 2000 mAh NiMH Battery | 4 $9.99
L298N Motor Driver 3 $3.23
Switch Mode UBEC DC-DC Regulator | 3 $5.80
Boat Rocker On/Off Switch 3 $0.94
2.1 x 5.5 mm DC Power Converter 2 $0.47
Photoelectric Encoders 3 $6.78
Robot Car Chassis Kit 3 $12.73
Pozyx “Ready to Localize” Kit 1 $675.82

The chassis of the robot was selected because it provided enough surface area for all of the components
to be mounted with ease, had a simple design, and was fairly cheap. When controlling the robot after it was
built, we noticed that the Intel Edison robots had a tendency to tip forward because of the weight of the

battery on the front. To remedy this problem, washers were used to weight the backend of the Intel Edison

29

robots down.

The software for the robot was written in Python, which was chosen because of its ease of testing
new iterations of the code. Python allowed us to save time by not compiling our code after every change.
Additionally, Python can be installed on any Linux OS, so it allowed us to have one version of code that
worked on all platforms. See Table 4.1 for a bill of materials which lists out the components of the prototype

robot along with their quality and cost.

30

Chapter 5

Switching Architecture

5.1 Design

One of the main features of our architecture is the ability to seamlessly switch the controller of a robot,
or a cluster, to another. Even though the switching architecture is extensive and involves code in three different
layers - Matlab, jMatlab, and the user interface - the user of the system is easily able to use this functionality
through the GUI. With the push of a button, the website updates the list of available controllers and robots
in the system, and populates two dropdown menus. The list can be refreshed any time by performing the
same actions. The user is then able to mix and match controllers and robots as they please. Once the desired
configuration has been set, the user presses another button which sends the configuration over to jMatlab,
through Dataturbine, and to Matlab when in manual control mode or to the robot when in waypoint navigation

mode.

5.2 Implemented Controllers

In Multi-bot Easy Control Hierarchy, our team implemented two modes of control. The first one is
off-board manual control with a joystick and the second one is onboard waypoint navigation via the graphical
user interface. The architecture - with the user’s input - is able to switch between these two modes of control

using the user interface.

5.2.1 Manual Control

The joystick control was implemented in Simulink. A joystick Simulink block reads in data from a
physical joystick. This logic is stored in JoystickControl_v2.mdl. Our Simulink model adjusts the gains of
the input to fit our prototype robot. It also translates the joystick’s raw values into motor values. The re-
sulting output is sent to a Matlab function called MECH_send, referenced from MECHDTConnection.m.

MECHDTConnection.m takes in a robot name, an IP address, and TCP port, which are all specified by the

31

user. A variable named connect is assigned to a controller made from the IP address and the TCP port.
The controller is a Matlab function called controller.m. controller.m takes three arguments: dataturbineip,
dataturbineport, controllername. This connect is registered to the function MECHDataParser with the func-
tion called registerfunction which is found in registerfunction.m. This Matlab function takes three parameters:
controller, functionname, channelname. A variable called channelidx is assigned the return value of the func-
tion addcommandchannel.m. addcommandchannel takes two parameters: controller, channelname. It adds
the command channel to the controller. The controller is started with the function called start.m. It takes in
the controller variable and starts it.

The input is formatted into a unsigned integer vector with the source and destination ID, the control
scheme, and the motor value vector. The command packet is sent to Dataturbine with the Matlab file send-
command.m. The Matlab file sendcommand.m sends the command packet on the Dataturbine channel on the

specified controller. sendcommand.m takes three parameters: controller, channelidx, data.

5.2.2 Waypoint Navigation

Waypoint navigation is implemented on the robot in a Python function called waypointNavigation()
which is contained in the file MotorController.py. waypointNavigation() uses the the robot’s heading, position
data, and the waypoint location. The waypoint’s theta value, the radian offset of the robot’s location compared
to the waypoint location, is calculated with the arc tangent of the difference between waypoint location and
the robot’s location. Phi, the radian offset of the robot’s heading compared to the waypoint’s location, is
calculated with the difference between the theta and the robot’s heading. The motor speeds are calculated to
reduce phi to zero and then to reduce the difference of the waypoint location and the robots current location.

If the difference between the waypoint’s location and the robot’s location is under a threshold, the

robot will register that it successfully reached a waypoint.

5.2.3 Switching Implementation

Every command packet that the robot receives has a control field for the controller algorithm that the
robot uses to interpret the packet. Packets are parsed every 100ms, therefore the minimum latency to switch
to a different controller is 100ms. The robot’s current state for which controller it is being controlled by is
controlled by this command packet. What ever value the control field of the last packet was is the current state
of the robot. The robot’s software only has four different controllers: waypoint navigation, velocity-heading,
steering-throttle, and raw motor values. Using these four control modes, any off-board controller could be
implemented by future engineers.

The user interface is the only part of our system that was made to switch between controller sources. It

32

does so by changing which channel on Dataturbine that the robot is listening to, not by changing the control
field. An overview of what this looks like is depicted in Figure 5.1. On the channel that the robot is listening
to, the controller could change the field in the command packet to alter how the packet is being interpreted,
but we did not implement a controller with that functionality. We were able to test that functionality before
we integrated with Dataturbine and Matlab through some scripts that interacted with the robot, but these were
just for testing. This attribute could be very useful in the future because it does not require the robot to change
which Dataturbine channel it is listening to for switching between different controllers. Changing channels
is quite a bit slower than changing the control field in the command packet, but we were unable to test how

much slower.

33

4
4
Waypoint——>{ GUI |—>

Legend

Waypoint Coordinates
Joystick Commands
Controller Selector
PWM Signal

Position Information

Joystick

Vehicle

JoyStick

Simulink

(i

Matlab
Dataturbine

jMatlab

I

[

A

Waypoint
Control

Velocity
Control

1
1
1
1
1
1
1
1
"
1
_ Pozyx 1
1
1
1
1
1
1
1
1
1
1

Wheels

Figure 5.1: Implemented Controller Switching Overview

34

Chapter 6

Pozyx

Pozyx is a positioning system that uses ultra-wideband technology to wirelessly provide positioning
and motion data. It also contains a 9-DoF inertial measurement unit, consisting of accurate motion sensors
such as an accelerometer, gyroscope, and magnetometer. As we were performing small-scale testing indoors,
GPS was unsuitable both due to its unrelability in indoor environment as well as its lack of accuracy: a GPS
measurement has an average error of 6-10m, larger than our entire test area. We used the Pozyx’s tutorial code
and adapted it to work with our system. For our testing area, we set up four Pozyx anchors at four corners of
a rectangle to create a test reference frame. Each of our robots has a Pozyx tag on it in order to get heading of
each robot and compare distances relative to each anchor to obtain each robot’s position within this reference

frame.

6.1 Testing

Our team created several testing procedures to understand Pozyx’s functionalities and their limitations.
In order to test Pozyx claim of 10 cm accuracy, the steps to determine the accuracy is shown in Table 6.1.
Because Pozyx is a 3D positioning system, it could be potentially affected by the heights of the Pozyx anchors.
We tested this by observing the output change as a result of height, shown in Table 6.2. One of our algorithms
and modes of control depends on the accuracy of Pozyx. Waypoint navigation needed to be tested with our
software. The steps required to test waypoint navigation with the Pozyx are shown in Table 6.3. The robot
needs to come close to the waypoints to determine the effectiveness of our algorithm and our implementation

of the positioning system.

6.2 Results

During initial testing shown in Figure 6.1, we have noticed frequent outliers from the actual point

ranging from 100mm to S00mm resulting in a standard deviation of x and y to be 189 and 182 respectively

35

Table 6.1: Position Accuracy

Position Accuracy

1 | Set up Pozyx anchors

2 | Measure and mark a known point inside the grid

3 | Set robot at known point

4 | Run program that collects 100 positioning data

5 | Calculate the average of the data

6 | Calculate the standard deviation of the data

Table 6.2: Grid Offset

Grid Offset

1 | Setup Pozyx anchors

2 | Measure and mark a known point inside the grid

3 | Set robot at known point

4 | Run program that prints position of robot infinitely

5 | Increase one of the anchor’s height

6 | Observe outputs of program

7 | Decrease the same anchor’s height that is lower than the original height

8 | Observe outputs of program

9 | Repeat 5-8 for rest of the anchors

which is undesirable. To solve this problem, we implemented a moving median filtering algorithm to remove
position outliers from robots. After filtering, the measured points from actual position are all within 100 mm

resulting in a standard deviation of x and y to be 4 and 9 respectively which is reliable enough for our testing

36

Table 6.3: Waypoint Navigation Accuracy

Waypoint Navigation Accuracy

1 | Set up Pozyx anchors

2 | Measure and mark a known point inside the grid

3 | Set robot at known point

4 | Observe how close the robot stops near each waypoints

purposes. The results of that test are shown in Figure 6.2.

During initial testing, the height of each anchor played an important factor to the xyz-offset of the
grid. Because we have only implemented ground robots, we switched the Pozyx readings to a 2D mapping
rather than a 3D space. While changing each of the anchor’s height, we noticed that each of them followed a
different pattern.

When heights are decreased the opposite pattern shown in Table 6.4 occurs for each anchor. The Pozyx
anchor position is shown in Figure 6.3. Since these changes can affect accuracy of marked waypoints through
days of repeated testing and that we are sharing these anchors with other groups who are testing with different
height specifications, we decided to put all the anchors on the ground because it easier to setup because it

requires zero to minimal amount of remeasurements for height.

Table 6.4: Increasing Height of Pozyx Anchor

Pozyx Anchor Position | X Offset Y Offset
A No change | Increase
B Decrease Increase
C No change | Decrease
D Decrease Decrease

For moving to multiple waypoints, because of the filtering, the robots do recognize when it is within

100mm from the actual point and will move on to the next waypoint as shown in Figure 6.4.

37

Before Filtering

1500
1000 &
g 500
>
R
0
L]
L]
-500
0 600 1200 1800 2400
X (mm)
Figure 6.1: Pozyx Position Distribution Before Filtering
After Filtering
240
L]
220
L]
e o .
L]
L] L]
L L] .
E L]
£ 200 .
L]
> s ‘ ' ’ LI ' ® * o L]
LR
. ® ! L] L L
. L] . L] ‘ : L] L)
180 . L .
[] L
160
1780 1790 1800 1810 1820
X (mm)

Figure 6.2: Pozyx Position Distribution After Filtering

38

C (0,2579) D (3921, 2579)

..

A (0,0) B (3921,0)

Error (mm)

Figure 6.3: Pozyx Anchor Layout

1200

900

600

300

Time

Figure 6.4: Pozyx Waypoint Error

39

Chapter 7

Societal Issues

Our team created a control architecture to aid engineers in the operation and creation of robots. The
project spans interdisciplinary studies from computer engineering to electrical and mechanical engineering.
Because of this, the ethical components of our architecture will include the components from the electrical
and mechanical engineering field. We must consider the ethics behind robots and their interactions with
humans, the environment, and other robots. Multi-bot Easy Control Hierarchy (MECH) aims to alleviate the

problems that engineers face when using and creating a robot.

Ethical We believe that our team does not need to consider ethical ramifications of how a user will pur-
posely use their robot with MECH as its platform. MECH is just an architecture of communication to aid
operators in controlling their robot with any control scheme. It is the responsibility of the operator to use their
robot in an ethical way. We do not plan to have software that ensures the robot is used in an ethical way. We
do, however, hope that the students at the RSL may use our project in their robots in a way that provides great

benefit.

Social The students in the Robotics Systems Lab (RSL) at Santa Clara University research the different ap-
plications of robots and how robots can benefit humans and the environment. This includes research in space,
environmental monitoring, rescue rovers, and others at the RSL. We hope that the engineers creating such
robots will use our architecture in their creations. Often times, the students create entirely new communica-
tion protocols for each new platform. The mechanical engineers at the RSL may not have a strong computer
engineering background and make mistakes when programming their robots. MECH will make it easier for
the mechanical engineers to establish a communication protocol by providing most of the code excluding
robot-specific algorithms. The engineers have more time to complete their projects that could have a benefit
to humanity and the world. This can result in more features, better safety, and more optimization in the robots

produced.

40

Political Multi-bot Easy Control Hierarchy serves a purpose for a small community. The Robotic Systems
Lab consists of students, staff, and professors of Santa Clara University. We hope our project can make an
impact on their work and lives. But we do not expect MECH to affect a larger society outside Santa Clara

University.

Economic As the advances in robotics and computers increase exponentially, countless jobs will be re-
placed with technology. Our project aids in the development of robots by giving engineers more time to

create.

Health and Safety The software that we create can have errors and bugs. This will not be a problem in
small, wheeled robots used for fun. In a quadcopter, however, there are blades that pose a danger to the
surroundings because of its high rotational speeds. If the operator lost control of the quadcopter because of
errors in our architecture, there could be damage to the robot, people in the vicinity, and the environment.
Crashing the robot is expensive because of its parts and the long replacement time for the drone. The blades
of the quadcopter can easily harm a person, resulting in hospitalization and injuries. Flying robots have a
possibility to collide with aircraft such as passenger planes and helicopters which have a much larger impact

in losses.

Manufacturability Since MECH is mostly software-based, there is not much of a need to manufacture our
project. But the robots using our architecture must be manufactured. We have included a tutorial on how to
build the robot prototype our team has used for testing. Robots ranging from simple hobby level to more
professional level can be integrated with our system. The equipment used to build these robots could range

from cheap to expensive depending on their respective level.

Sustainability Our system allows for additional types of robots and controllers to be implemented. It can be
expanded to other platforms and the different levels of control. MECH also helps engineers use their resources

wisely by taking the heavy work of establishing a switching architecture and communication protocol.

Environmental Impact Our project does not impact the environment directly but there is potential in the
projects that use our architecture. As an example, we will use a previous project of the RSL. Many of the
projects focus on environmental studies, and in this case, a cluster of kayaks equipped with sensors are used
to monitor pollution in a lake. This potential application of our system and the robots can impact the fight

against pollution and climate change.

41

Usability When adding new robots to our platform, users of the Multi-bot Easy Control Hierarchy must
implement their own algorithms specific to their robot. We minimize user-caused errors with our well-written
documentation that helps the user implement correct code. We have an ethical duty to ensure that our docu-

mentation and product is easy and safe to use for the customer, thus guaranteeing an efficient use of time.

Lifelong learning This project helped inspire us to seek new knowledge about unfamiliar fields of study.
An example is that we needed an indoor positioning system to showcase our project. So after considering
several options, we settled with using Pozyx. It is relatively new so we needed to learn how it operates
by reading through its online documentation and performing unit testing to understand its capabilities and
limitations. Because there were several other teams also testing with Pozyx, our group is able to get some
previous testing data and assistance from them when we run into problems. This experience has strengthen
our idea that information is always available somewhere and that peers and mentors can help guide us towards

the right direction.

Compassion Building robots is a time-consuming task. Every project usually requires different specifica-
tions and functionalities for their robots so roboticists would need to rebuild them and redesign their code.
Most of the time, they spend the majority of their time working on their robot rather than performing with it
because they need to reconfigure or revise their code whenever they want to make adjustments or alterations.
We made our project with the intention of reducing time spent on changing controller codes by allowing the
user to be able to seamlessly switch between any type of controllers they wish to use for their robots. This
would relieve some of the pressure from deadlines and investors by allowing the user to be able to allocate

more time on accomplishing their project objectives rather than on readjusting their robot.

42

Chapter 8

Summary

8.1 Project Overview

Our team’s objective was to make an architecture that makes it easy to seamlessly switch between
controllers and various types of control signals such as actuator, velocity, and fleet levels. Extra precaution
had to be taken during the reconfiguration of our system as the different controllers need to be synchronized
and the communication between controllers and robots needs to be correctly routed.

Our team developed an architecture that afforded roboticists the ability to change the configuration of
their robots’ controller. The user can configure and monitor their robots through a web-based graphical user
interface (GUI). Various changes can be made to the Matlab controllers, Python algorithms, and Simulink
blocks to obtain the desired setup. The Pozyx indoors positioning system tracks the location of the robot
and allows the user to employ waypoint navigation if needed. We have successfully demonstrated controlling
two differential-drive robots individually and simultaneously with either waypoint navigation or joystick
controller while also being able to switch between these two forms of control through the graphical user

interface.

8.2 Future Work

Due to time limitations, we were unable to implement off-board waypoint calculations in Matlab.
There were also plans to implement more advanced forms of cluster control, such as follow-the-leader and
various pattern formations.

In the future, we hope to implement additional key features into our architecture, as well as run tests
that incorporate a more extensive set of hardware in order to ensure cross-platform compatibility. Our imme-
diate attention is focused on adding off-board calculations in Matlab and later creating more complex cluster
control algorithms. A good starting point to ensure cross-platform compatibility would be to incorporate GPS

and XBee technology into newly built robots utilizing our architecture.

43

We are currently testing the Multi-bot Easy Control Hierarchy (MECH) with land-based differential-
drive robots. Our team hopes to test our system with any type of ground, aerial, or marine robot in the future.

Our vision is for MECH to support numerous different controllers, platforms, and communication
protocols. We also hope to provide a library of the different control algorithms with our system.

As we have developed the architecture, we have faced a number of challenges in the implementation
of the system. As our prototype robots were ran by an Intel Edison, the optical encoders on the wheels
couldn’t be utilized. The processing power of the Intel Edison was limited, and an Arduino Nano would’ve
been required to process the encoder information in a timely manner. We opted The optical encoders in our
robot prototype were not compatible with the Intel Edison. We wanted to add another component to handle
the encoder, but opted not to in favor of developing more important features.

We made major changes to our technology after the fourth month of development. Matlab was required
to be the language used for the controllers instead of Python. This caused some confusion because our team
was not proficient in Matlab.

Pozyx is a newer technology, recently being used by the Robotic Systems Lab. Because of that, we

needed to research and experiment with the software and the beacons.

44

References

[1] C. A. Kitts and 1. Mas, “Cluster space specification and control of mobile multirobot systems,” Mecha-
tronics, IEEE/ASME Transactions on, vol. 14, no. 2, pp. 207-218, April 2009.

[2] Azevedo, Drew; Beltram, Sam; DelVecchio, Gregorio; and Hopner, Ben, "MARV: Marine Autonomous
Research Vessel” (2016). Interdisciplinary Design Senior eses. Paper 20.

[3] H. Ishidaa, K. Suetsugua, T. Nakamotoa, T. Moriizumia, ”Plume- Tracking Robots: A New Application of
Chemical Sensors”, Faculty of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-
ku, Tokyo 152, (Apr. 2001). Available online.

[4] T. Adamek, C. A. Kitts and 1. Mas, ”Gradient-Based Cluster Space Navigation for Autonomous Surface
Vessels,” in IEEE/ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 506-518, April 2015.

[5]I. Mas, S. Li, J. Acain, C. A. Kitts, “Entrapment/escorting and patrolling missions in multi-robot cluster
space control”, Intelligent Robots and Systems,” IEEE/RSJ International Conference on, IROS 2009,
pp- 5855-5861. St. Louis, MO, Oct. 2009.

[6] A. Westgate, "Dynamic control migration between a base station and a remote robot”, Santa Clara Uni-

versity, School of Engineering, 2010

45

Appendix A

Appendix

A.1 Annotated Bibliography

Dong, Xiwang, et al. ”Time-Varying Formation Control For High-Order Swarm Systems With Switch-
ing Directed Topologies.” Information Sciences 369.(2016): 1-13. Academic Search Complete. Web. 6 Oct.
2016

In this article, researchers put forth a formation control protocol that they use to control a
swarm of robots. Using an approach that listens to the feedback of each robot in the swarm, the researchers
could move the robots into certain patterns in a specified amount of time. They defined the time-varying
formation reference function mathematically and proved that using a switching interaction topology has no
effect on their mathematical model. In concluding their research, they set forth a way to expand upon the
possible formations of that their model can support, and showed the data they collected from simulations to

prove their theoretical model.

Lacroix, Philippe, et al. "Decentralized Control Of Cooperative Multi-Robot Systems.” Integrated
Computer-Aided Engineering 6.4 (1999): 259. Academic Search Complete. Web. 6 Oct. 2016.

This article details how researchers devised a way for robots to work together to complete a
task that a single robot could not do. Specifically they looked at two nonholonomic robots working to move
a beam to a specified location. They described a two stage control structure that uses only the position of the
robot and how the task has evolved to determine what the robots should do next. The higher level of control
lays out what changes need to be made to complete the task, and the lower level of control determines what
the robots should do to make the changes the high level described. The researchers provided how they set
up experiments and their simulated results to show that their control scheme can complete tasks and work

around obstacles, even if only a single robot detects the obstacle.

46

Tang, Qirong, et al. “Relative Observation For Multi-Robot Collaborative Localisation Based On
Multi-Source Signals.” Journal Of Experimental & Theoretical Artificial Intelligence 26.4 (2014): 571-591.
Business Source Complete. Web. 23 Oct. 2016.

Researchers used a distributed extended Kalman filter (EKF) that used robot odometry and a
technology that’s best described as indoor GPS to accurately track the pose (location and heading) of a robot.
In addition to those localization strategies, they also used IR sensors and gyroscopes to discover the error of
their EKF technique and to produce more accurate localization readings. They analyze results from exper-
iments to predict how quickly an error in the system propagated and to determine the steady state error of
their sensors. Using their analysis of their experiments, they created a collaborative localisation strategy for

a multi-robot system. Data from simulations were provided to demonstrate their work.

”Control Architecture For Multi-Robot System.” (2014): USPTO Patent Applications. Web. 23 Oct.
2016.

This is a patent that describes a way to control the positions of robots that alter the geography
of the site they are working on in a cluster. It describes a centralized control scheme where all the robots
communicate with a single server that processes the input and transmits to the robots where to move next.
The patent also covers a display that shows operators the relative positions of the robots and the areas the
robots are working on. The patent allows for coordination of the robots to help each other complete larger
tasks by completing smaller tasks. The ground control station utilizes a database that can be accessed from
multiple systems at once, which allows for multiple operators in different locations to view the work of the
robots. Most of the patent is dedicated to describing how the database is kept up to date by various systems

on the robot.

Qian, Dianwei, et al. “Leader-Following Formation Control of Multiple Robots with Uncertainties
through Sliding Mode and Nonlinear Disturbance Observer.” ETRI Journal 38, no. 5: 1008-1018. Applied
Science & Technology Source, EBSCOhost (accessed October 24, 2016).

This paper describes a control scheme for controlling multiple robots in a follow the leader
control scheme. The researchers used a sliding mode control method with a nonlinear disturbance observer
(NDOB) technique to add uncertainties to the robot cluster. Essentially, they moved the surface that the robots
were on and used the NDOB to measure the uncertainties the researchers created. First order and second order
sliding mode control methods are compared to demonstrate their effectiveness under certain uncertainties. The
first order was good at estimating position inaccuracies, and the second order was better at estimating velocity

inaccuracies. During the research for this paper, the authors proved a condition for the Lyapunov theory to

47

be sufficient for a asymptotically stable formation of the robots. Unfortunately, the Lyapunov theory was not
described in this paper, and further research is needed validate their control scheme on more general robot

formations other than leader-follower formations.

A.2 Literature Review

A.2.1 Proposed Objectives

The main objectives of the Multi-bot Easy Control Hierarchy were defined by Dr. Christopher
Kitts, our senior design project advisor. Kitts wants the purpose to be reducing workload and time needed for

the robot implementation process.

A.2.2 Previous Work

Basics of Design Controllers for Industrial Robots

Although the students at the Robotics Systems Lab (RSL) mainly construct robots that are
able to transport themselves, there is no reason that we can extend the Multi-bot Easy Control Hierarchy to
industrial robots. Industrial robots, as described by Tihomir Latinovic and his group', are robots that imitate
human motions to provide safety and precision in industrial applications. Latinovic and his group have written
about the basics of designing a controller for these types of robots in the journal Acta Technica Corviniensis.
They test each axis of the IRB 2000 robot from ABB. This results in the details of the robot’s workspace angle
and maximum speeds. They also include the components of the control panel which needs control methods
such as joystick, terminal, or programmed motions.

Our project will include the control of robots that are not limited to stationary robots. Lati-
novic’s proposed controller will be processed on a computer separate from the robot. Our project, however,

will be able to calculate motion off or on board the robot.
Control Architecture for Multi-Robot System

John Posselius and his group patented an architecture? to control how the robots in a multi-robot
system is positioned. Their architecture controls agricultural robots in a cluster based on their geography.
Posselius’ architecture is based on a centralized server architecture. The robots communicate with this server
to determine the locations and positions of the robots in the system. The centralized server is able to process

and send out commands that the robots in the system are able to follow. The patent also allows the operator to

ILatinovic, Tihomir, et al. “The Basics Of Designing Controllers For Industrial Robots (Eg. Robots Abb Irb 2000).” Acta Technica
Corvininesis - Bulletin Of Engineering 4.3 (2011): 101-104. Academic Search Complete. Web. 23 Oct. 2016
2Control Architecture For Multi-Robot System.” (2014): USPTO Patent Applications. Web. 23 Oct. 2016.

48

monitor the agricultural robots by sending back the speed and location of the robots. The centralized server
has the capability to allow multiple operators to simultaneously view the process of the robots.

Our system will have similar functionalities as the architecture described by Posselius. How-
ever, they have described only a centralized point of control in their system. Our project will allow for cal-
culations to be performed on-board the robot. The operator of our system will be able to switch between
calculations from ground control and on the robots themselves. We would also have a graphical user interface
for our operators to monitor the robots in the system. In addition to a multi-robot system, the Multi-bot Easy
Control Hierarchy is able to switch between fleet, vehicle, and actuator modes. The architecture described by

Posselius cannot switch between these modes.
Feedback Control Strategies for Quadrotor-type Aerial Robots

Ozbek, Onkol, and Efe® have developed strategies that would help in the operation of un-
manned aerial vehicles (UAV). They describe how these UAVs can be operated autonomously or by a person.
Our architecture will not have autonomous capacities, but the team can learn from the research that these
engineers have done in aerial robots. Ozbek and his team describe the approach of using a proportional-
integral-derivative (PID) control, sliding mode control, feedback control, and fuzzy control in the field of
aerial vehicles. They have developed the math used in these control schemes which we can implement when
testing our architecture with quadcopters. Much of the math involved in aerial robots is probably familiar
with the engineers in the RSL. The concepts can also be used in ground or water based vehicles.

Ozbek’s work only concerns the controls in aerial robots. Our system will be able to handle

different types of robot which can be operated and controlled at the same time.
Decentralized Control of Cooperative Multi-Robot Systems

Philippe Lacroix and his group devised a decentralized approach for the control of cooperative
multi-bot system performing a task such as navigation through obstacles to a goal*. Their design consisted of
two robots that are four-wheeled front-steering vehicles equipped with a frontal one-degree-of-freedom lift
and two modules: a task-oriented beam controller that determines the motion of the beam that would bring it
closer to the goal and a robot based low-level controller that computes a desirable motion for the center of the
beam based on the robot’s position and orientation relative to the goal. Their robots also do not communicate
with each other as both the robots are computing their own path based on what each of them see with their

frontal camera. This might be useful to us in learning how to create a follow the leader function where we

30zbek, Necdet Sinan, et al. ”Feedback Control Strategies For Quadrotor-Type Aerial Robots: A Survey.” Transactions Of The
Institute Of Measurement & Control 38.5 (2016): 529-554. Academic Search Complete. Web. 23 Oct. 2016.

“4Lacroix, Philippe, et al. “Decentralized Control Of Cooperative Multi-Robot Systems.” Integrated Computer-Aided Engineering 6.4
(1999): 259. Academic Search Complete. Web. 6 Oct. 2016.

49

only communicate to the lead robot and the other one will follow the lead.

Leader-Following Formation Control of Multiple Robots with Uncertainties through Sliding Mode and
Nonlinear Disturbance Observer

Dianwei Quan, Shiwen Tong, and Chengdong Li created a control scheme for the leader-
following function of multiple robots that combines the sliding mode control method with the nonlinear
disturbance observer technique. They broke down the multi-bot system into several leader-follower pairs
where all followers share one leader. The leader follows a predetermined path while the followers continu-
ously maintains desired positions relative to the leader. While their project used a predetermined path, our
group plans to allow the leader to be either controlled with a controller or follow a waypoint-based path.
They also created several algorithms® for their control scheme on calculating the distance and angles between

followers and leader which may be useful for our own follow-the-leader function and fleet control.

While they used sliding mode control method and nonlinear disturbance observer technique
as their implementation, they have also listed several more alternatives such as robust control, predictive
control, adaptive control, decentralized control, and feedback linearization. We plan to research further into
which control scheme is most suited for our project.

5Qian, Dianwei, et al. ”Leader-Following Formation Control of Multiple Robots with Uncertainties through Sliding Mode and Non-
linear Disturbance Observer.” ETRI Journal 38, no. 5: 1008-1018. Applied Science & Technology Source, EBSCOhost (accessed October
24, 2016).

50

A.3 Source Code
A.3.1 Robot

H#H AR A
MotorController.py
HE#HHHRSHHH

#!/usr/bin/env python

This file was created by Ryan Cooper in 2016 for a Raspberry Pi

This class controls the motors for the robot which are configured as
a differential drive, this code is written for a raspberry pi,

TODO but should be reworked to load a driver that drives the motors
import time

import sys

import math

from multiprocessing import Process
from multiprocessing import Queue
from multiprocessing import Pipe

import util

#WARNING: calling print too frequently will cause high latency from control input to
reaction

class MotorController(Process):
possible states
STEERING_THROTTLE_OFFBOARD = 1
STEERING_THROTTLE_ONBOARD = 2

TANK = 3
VELOCITY_HEADING = 4
WAYPOINT = 5

ENCODER_TEST = 6
state = STEERING_THROTTLE_OFFBOARD

possible velocity heading states
TURNING
DRIVING =1

velocity heading state
vhState = TURNING

LEFT = 0
RIGHT =1

mPowers = [0, 0]
direction = [0, 0] # forward or backward

set by time.time(), used to stop bot when dced
lastQueue = 0

go = True

for vel/heading mode
desiredHeading = 0

should be in mm/sec
desiredVel = 0
currentHeading
requiredCounts

0
0

51

motorOffValue = 1024
motorHighValue = 2048
motorLowValue = 0

waypointTravelSpeed = 75 # out of 100
waypointThresh = 5 # centimeters

def __init__(self, motorDriver):
super (MotorController, self).__init__(Q)
self.driver = motorDriver()
self.driver.setDC([0,0],[0,0])

vel in m/s
def setDCByVel(self, vel):
if vel > 0:
self.direction = [0, 0]
else:
self.direction = [1, 1]
for i in range(0®, 2):
if abs(vel) > util.maxVel:

self.mPowers[i] = self.driver.maxDC

elif abs(vel) < util.minVel:
self.mPowers[i] = 0
else:

experimenal, play with minDC, and minVel because maxVel was observerd at

maxDC

self.mPowers[i] = util.transform(vel, util.minVel, util.maxVel,
self.driver.minDC, self.driver.maxDC)
self.driver.setDC(self.mPowers,self.direction)

def exitGracefully(self):
self.mPowers = [0, 0]

self.driver.setDC(self.mPowers, self.direction)

go = False

def steeringThrottle(self, data):

steering = util.transform(data[1], self.motorLowValue, self.motorHighValue, -1, 1)

throttle = util.transform(data[2], self.motorLowValue, self.motorHighValue,
used in steering to change motor velocities

maxSp = 35

maxSm = 220

max possible speed when moving forward
maxMove = 220

minMove = 0

sp is what will get added (plus) to t (which is the throttle value)

sp = util.transform(abs(steering), 0, 1, 0, maxSp)

sm is what will get subtracted (minus) to t (which is the throttle value)
sm = util.transform(abs(steering), 0, 1, 0, maxSm)

t = util.transform(abs(throttle), 0, 1, minMove, maxMove)

L=t
R=1t
end = self.motorOffValue
if throttle < 0:
if steering < 0:

right motor should slow down, left motor should speed up

L += sp
R -= sm
else:

left motor should slow down, right motor should speed up

52

-1,

D

L -= sm
R += sp
end = self.motorHighValue
else:
if steering < 0:
left motor should slow down, right motor should speed up

L -= sm
R += sp
else:
right motor should slow down, left motor should speed up
L += sp
R -= sm

end = self.motorLowValue
mL = util.transform(util.clampToRange(L, O, 255), 0, 255, self.motorOffValue, end)
mR = util.transform(util.clampToRange(R, O, 255), 0, 255, self.motorOffValue, end)
#sys.stdout.write(str(mL) + " " + str(mR) + "\n")
self.changeMotorVals(mL, mR)

this function will consume the controllerQueue, which was filled by DDMCServer
and will change the motors powers and directions according to what was in the queue
it also will monitor that the bot is still receiving commands, and if it isn’t, it
will stop the bot
def handleControllerQueue(self):
#print self.state
if there hasn’t been anything in the queue in half a second
if self.state != self.VELOCITY_HEADING and time.time()-self.lastQueue > .5 and
util.controllerQueue.empty():
stop the bot
self.direction = [0, 0]
self.mPowers = [0, 0]
self.lastQueue = time.time()
else:
while not util.controllerQueue.empty(): # this is a while so that the most
recent thing in the queue is the resultant command that is done
good = True
try:
nowait because this process was called from the main loop which
controls the self.motors
so we don’t want this function to block.
data = util.controllerQueue.get_nowait()
except Queue.Empty as msg:
realistically this should never happen because we check to see that the
queue is not empty
but it is shared memory, and who knows?
good = False
if good:
mL = self.motorOffValue
mR = self.motorOffValue
if data[0] == self.STEERING_THROTTLE_OFFBOARD or data[®] == self.TANK: #
recieved motor level commands
self.state = data[0]
mL = data[l]
mR = data[2]
self.changeMotorVals(mL, mR)
elif data[®] == self.STEERING_THROTTLE_ONBOARD: # recieved joystick
information (throttle, steering)
print data
self.state = data[0]
self.steeringThrottle(data)# this calls changeMotorVals()

53

elif data[0®] == self.VELOCITY_HEADING:
print "velHeading entered"
self.state = data[0]
self.vhState = self.TURNING
self.desiredVel = util.transform(data[l], self.motorLowValue,
self.motorHighValue, -util.maxVel, util.maxVel)
if abs(self.desiredVel) >= .1:
self.mPowers = [0, 0]
self.driver.setDC(self.mPowers, self.direction)
self.desiredHeading = data[2]
self.goToHeading(self.desiredHeading)
elif data[0®] == self.WAYPOINT:
self.waypointNavigation(data[l], data[2])
if data[0] !'= self.WAYPOINT:
consume the queue so that way when the robot is switched to
waypoint, it gets fresh data
while not util.positionQueue.empty():
util.positionQueue.get_nowait()
self.lastQueue = time.time()

this sets up the values used to drive the motors
it does not drive the motor because this function is tied to the queue
and only gets executed when something is in the queue
yet we want the motors to be constantly receiving contol information
motorLowValue <= mL,mR <= motorHighValue, motorOffValue means the wheels wont turn
def changeMotorVals(self, mL, mR):
if mL > self.motorOffValue:
self.direction[self.LEFT] = 1
self.mPowers[self.LEFT] = util.clampToRange(util.transform(mL,
self.motorOffValue, self.motorHighValue, 0, 100), self.driver.minDC-1,
self.driver.maxDC)
else:
self.direction[self.LEFT] = 0
self.mPowers[self.LEFT] = util.clampToRange(util.transform(mL,
self.motorOffValue, self.motorLowValue, 0, 100), self.driver.minDC-1,
self.driver.maxDC)
if self.mPowers[self.LEFT] < self.driver.minDC:
self.mPowers[self.LEFT] = 0

if mR > self.motorOffValue:
self.direction[self.RIGHT] = 1
self.mPowers[self.RIGHT] = util.clampToRange(util.transform(mR,
self.motorOffValue, self.motorHighValue, 0, 100), self.driver.minDC-1,
self.driver.maxDC)
else :
self.direction[self.RIGHT] = 0
self.mPowers[self.RIGHT] = util.clampToRange(util.transform(mR,
self.motorOffValue, self.motorLowValue, 0, 100), self.driver.minDC-1,
self.driver.maxDC)
if self.mPowers[self.RIGHT] < self.driver.minDC:
self.mPowers[self.RIGHT] = 0
#print self.mPowers

if self.state != self.VELOCITY_HEADING:
self.driver.setDC(self.mPowers,self.direction)
VELOCITY_HEADING mode calls setDC from either goToHeading, or setDCbyVel
def goToHeading(self, h):
if abs(self.currentHeading-h) > .01:

54

if h > 2*math.pi:

make h < 2pi

h = h-(2*math.pi*math.floor(Ch/(2*math.pi)))
elif h < -2*math.pi:

make h > -2pi

h = h+(2*math.pi*math.floor(Ch/(2*math.pi)))
angDiff = h-self.currentHeading
self.changeHeadingByRadians(angDiff)

def changeHeadingByRadians(self, h):
if abs(h) > .01:
self.resetEncoders()
if h > 0:
self.direction = [1, 0]
else:
self.direction = [0, 1]
angle*radius=arclen
sys.stdout.write("Moving by radians: ")
sys.stdout.write(str(h))
sys.stdout.write("\n")
dist = h*util.botWidth/2.0
sys.stdout.write("dist=")
print dist
self.requiredCounts = int(abs(dist/util.distPerBlip))
sys.stdout.write(" requiredCounts ")
print self.requiredCounts
self.mPowers = [50, 50]
self.driver.setDC(self.mPowers,self.direction)

def resetEncoders(self):
self.gpioQueue.put([’resetEncoders’])

PID part of the wheel controller loop
def controlPowers(self, vel, pin): #TODO possible use mm/sec instead of m/s because it
will be more accurate because floating point is bad
if vel != -1:
if self.desiredVel != 0:
p = self.desiredVel-vel
sys.stdout.write("Vel difference: ")
sys.stdout.write(str(p))
pPWM = 0
if abs(p) >= util.minVel:
if p> 0:
pPWM = util.transform(p, util.minVel, util.maxVel, self.driver.minDC,
self.driver.maxDC)
else:
pPWM = -util.transform(-p, util.minVel, util.maxVel,
self.driver.minDC, self.driver.maxDC)
sys.stdout.write("PWM effort: ")
print pPWM
if(pin == util.leftEncPin):
self.mPowers[self.LEFT] = util.clampToRange(self.mPowers[self.LEFT]+pPWM,
0, 100)
elif(pin == util.rightEncPin):
self.mPowers[self.RIGHT] =
util.clampToRange(self.mPowers[self.RIGHT]+pPWM, 0, 100)
else:
print "Encoder is reading data to an unexpected pin"
else:

55

self.mPowers = [0, 0]
self.driver.setDC(self.mPowers, self.direction)

def handleEncoderQueue(self):
while not util.encQueue.empty():
good = True
try:
nowait because this process was called from the main loop which controls
the motors
so we don’t want this function to block.
data = util.encQueue.get_nowait()
except Queue.Empty as msg:
realistically this should never happen because we check to see that the
queue is not empty
but it is shared memory, and who knows?
good = False
if good:
if self.state == self.VELOCITY_HEADING:
if self.vhState == self.TURNING:
note, does not check which motor moved the desired amount, possible
change this
print data
if data[l] >= self.requiredCounts:
self.vhState = self.DRIVING
self.currentHeading = self.desiredHeading
self.setDCByVel(self.desiredVel)
else:
data[2] = seconds/blip
convert to rotations per second
then multiply by distance wheel travels in one rotation
result is mm/second
vel = -1
if data[2] > -1:
vel = util.stateChangesPerRevolution/data[2]
sys.stdout.write("vel=")
print vel
sys.stdout.write("desiredVel=")
print self.desiredVel
calls setDCQ)
pid part of the loop
self.controlPowers(vel, data[0])
elif self.state == self.ENCODER_TEST:
print data
if data[®] >= self.requiredCounts:
print "wtf"
self.mPowers = [0, 0]
self.driver.setDC(self.mPowers, self.direction)
time.sleep(1)
self.mPowers = [35, 35]
self.requiredCounts = util.stateChangesPerRevolution
self.driver.setDC(self.mPowers, self.direction)

def waypointNavigation(self, wx, wy):
mPos = None
while not mPos:
consume queue until we get newest data
while not util.positionQueue.empty():
mPos = util.positionQueue.get_nowait()
mPos[0] = mPos_x, mPos[1] = mPos_y, mPos[2] = mPos_heading

56

X = wx-mPos[0]
y = wy-mPos[1]
if x > self.waypointThresh or y > self.waypointThresh:
d = math.sqrt(x*x+y*y)
theta = math.atan2(y,x)
phi = theta-(mPos[2]-math.pi)
if phi < 0 :
rm = self.waypointTravelSpeed
Im = self.waypointTravelSpeed*math.cos(phi)
elif phi > 0:
rm = self.waypointTravelSpeed*math.cos(phi)
Im = self.waypointTravelSpeed
else:
Im = self.waypointTravelSpeed
rm = self.waypointTravelSpeed
self.mPowers = [math.fabs(rm), math.fabs(lm)]
self.direction = [0 if rm > ® else 1, O if 1Im > 0 else 1]
else:
self.mPowers = [0, 0]
self.direction = [0, 0]
self.driver.setDC(self.mPowers, self.direction)

def run(self):
self.go = True
try:
while self.go:
print self.mPowers
print self.direction
self.handleControllerQueue()
self.handleEncoderQueue ()
except KeyboardInterrupt as msg:
print "KeyboardInterrupt detected. MotorContoller is terminating"
self.go = False
except Exception as msg:
print "Motor controller"
print msg
self.mPowers = [0, 0]
self.driver.setDC(self.mPowers, [0, 0])
finally:
self.exitGracefully(Q

#H### AR ARHH
Encoder.py
##H#BHRHARHH

import sys, time
import util
the fastest I have seen it move is 0.511192102610497 m/s

class Encoder:
count = 0
pSize = 10
periods = [-1.0]*pSize
periodIndex = 0
timeout = .1
lastEdge = 0

57

def __init__(self):
pass

def edgeDetected(self, pin):

self.count += 1

ctime = time.time()

elapsedTime = ctime-self.lastEdge

if elapsedTime <= self.timeout:
self.periods[self.periodIndex] = elapsedTime

increment self.periodIndex and keep it within range of self.pSize =
len(self.periods)
self.periodIndex = (self.periodIndex+1)%self.pSize;

self.lastEdge = ctime

util.encQueue.put([self.count])

def resetPeriod(self):
self.periods = [-1]*self.pSize
self.periodIndex = 0

returns seconds/blip
def getAveragePeriodBetweenBlips(self):

ave = 0.0
i=20
for i in range(®, self.pSize):
if self.periods[i] == -1: # invalid period, therefore return what is got
break
else:

ave += self.periods[i]
return average of valid periods, i+1 because i will never equal self.pSize
if i < 10:
return -1
else:
return ave/(i+1l)

if level = None a stall occured
def waitForEdgeResponse(self, level, elapsedTime):
if elapsedTime >= self.timeout: #Stall occured
#TODO handle stall
print "OH NO! A STALL"
self.count = 0
self.resetPeriod()
else:
self.count += 1
self.periods[self.periodIndex] = elapsedTime
increment self.periodIndex and keep it within range of self.pSize = len(self.periods)
self.periodIndex = (self.periodIndex+1)%self.pSize;
util.encQueue.put([self.pin ,self.count, self.getAveragePeriodBetweenBlips()])

H#H AR A
util.py
HE#HHHRHHHH

utility functions
diameterOfWheel = 65.087 # mm

radiusOfiiheel = 32.5435 # mm
circumferenceOfWheel = 204.476841044199 # mm diameterofWheel*pi

58

stateChangesPerRevolution = 40.0 # there are 20 slots, but 40 state changes

cirDivChanges = circumferenceOfWheel/stateChangesPerRevolution

distPerBlip = 5.11192102610497 # mm circumfrenceOfWheel/stateChangesPerRevolution

maxVel = 511.92102620497 # mm/s distPerBlip/getAverageBlip() when pwm = 100

minVel = .1 # mm/s just a guess //TODO make not a guess

botWidth = 139.7 #mm distance from middle of tire to the other wheel’s middle of its tire

this is different for both RPi and Edison

TODO, needs to be in encoder file or config.txt
leftEncPin = 11

rightEncPin = 12

microcontroller = None

used to change pin or pwm values, or to request an input or analog read
controllerQueue = None

gpioQueue = None

encQueue = None

#gcsDataQueue = None

positionQueue = None # TODO

positionTelemQueue = None

returns a unique identifier for a process
def getIdentifier(process):
return str(process).split(’ (’)[1].split(’,’)[0]

def clampToRange(x, lower, upper):
if x < lower:
return lower
elif x > upper:
return upper
else:
return x

maps x which is in the range of in_min to in_max to x’s corresponding
value between out_min and out_max
def transform(x, in_min, in_max, out_min, out_max):

in_max = float(in_max)

return (x - in_min) * (out_max - out_min)/(in_max - in_min) + out_min

H##HHHHR A
config.txt
#EH##HBH#H#H#

This file is used to tell the code what the system configuration is

The microcontroller, and the motor driver should be specified

see DDStarter.determineDriver() for how to use comments and what keywords are used
remember to comment out the unused configuration lines

config for Raspberry pi using L298 and a USB wifi dongle
#microcontroller = RPi

#driver = L298

#commDriver = Wifi

config for Intel Edison using L298

microcontroller = Edison
driver = L298

59

commDriver = UnixSocket
#commDriver = Xbee
positionDriver = Pozyx

Hit### SRS
DDStarter.py
HAHHHHRRHHH

#!/usr/bin/env python

This file was created by Ryan Cooper in 2016

to control a raspberry pi that is hooked up to motor controls

that control motors that create a differential drive

it can be controlled by keyboard or by an commProcess controller (possibly any HCI
controller)

from multiprocessing import Pipe

from multiprocessing import Queue

from multiprocessing import Manager

import time, sys, argparse, signal

from MotorController import MotorController
import util

class DDStarter:

encQueue in makeClasses() is filled by both Lencoder and Rencoder, and is consumed by
motorController

the array in encQueue is of the form [pin, count, timeSinceLast]

controllerQueue in makeClasses is filled by DDMCServer, and is consumed by
motorController

commands in the queue come from a DDMCClient

a manager creates Queues that are safe to share between processes

motorController = None

Differential Drive Motor Controller (DDMC)

commProcess None

gpioProcess = None

positionerProcess = None

pipes are used to terminate processes

ePipeLeft = None

ePipeRight = None

var that holds microcontroller info from config.txt

microcontroller = ""

def __init__(self):
parser = argparse.ArgumentParser(description="Arguments are for debuggin only.")
parser.add_argument (' --encoders’, dest=’testEncoder’, action="store_true",
help="Starts encoder system test")
args = parser.parse_args()
self.setupIPCQ)
if args.testEncoder:
self.runEncoderTest()
else:
self.runNormally()
Catch SIGINT from ctrl-c when run interactively.
signal.signal(signal.SIGINT, self.signal_handler)
Catch SIGTERM from kill when running as a daemon.
signal.signal(signal.SIGTERM, self.signal_handler)
This thread of execution will sit here until a signal is caught
signal.pause()

60

def signal_handler(self, signal, frame):
self.exitGracefully()

def setupIPC(self):
used to create multi-process safe queues
manager = Manager()
queues for interprocess communication
util.encQueue = manager.Queue()
util.controllerQueue = manager.Queue()
util.gpioQueue = manager.Queue()
util.positionQueue = manager.Queue()
util.positionTelemQueue = manager.Queue()

TODO

def runEncoderTest(self):
(motorDriver, commDriver, encoderDriver, gpioDriver) = self.determineDrivers()
passing arguments to processes
self.gpioProcess = gpioDriver([util.leftEncPin, util.rightEncPin])
self.motorController = MotorController(motorDriver)
self.motorController.state = self.motorController.ENCODER_TEST
self.motorController.requiredCounts = 20
have to setup pins afterward because gpioProcess needs to be setup first
self.gpioProcess.start()
self.motorController.start()
self.motorController.driver.setDC([30,30], [0,0])

def runNormally(self):

(motorDriver, commDriver, encoderDriver, gpioDriver, positioner) =
self.determineDrivers()

passing arguments to processes

self.gpioProcess = gpioDriver([util.leftEncPin, util.rightEncPin])

self.motorController = MotorController(motorDriver)

self.commProcess = commDriver()

self.positionerProcess = positioner()

have to setup pins afterward because gpioProcess needs to be setup first

self.gpioProcess.start()

self.motorController.start()

self.commProcess.start()

self.positionerProcess.start()

def determineDrivers(self):
sys.path.append(’drivers/’)
sys.path.append(’GPIO/’)
sys.path.append(’ Comm/’)
sys.path.append(’Positioner/’)
used to pull configuration from file
util.microcontroller = ""
driver = ""
commDriver =
positionDriver =
conf = open(’config.txt’, ’r’)
line = conf.readline()
while line != "":
if the first character is ’#’, this line is a comment
if line[0] != "#’:
words = line.split()
if len(words) > 0:
in all cases words[l] == "=’

61

if words[0®] == ’'microcontroller’:
util.microcontroller = words[2]

elif words[0] == ’driver’:
driver = words[2]

elif words[0] == ’commDriver’:
commDriver = words[2]

elif words[®] == ’positionDriver’:

positionDriver = words[2]
line = conf.readline()
conf.close()
motorDriver = None
comm = None
enc = None
gpio = None
postioner = None

if util.microcontroller == ’RPi’:
try:
import RPiGPIODriver
except ImportError as err:
print err
print "Could not import RPiGPIODriver"
sys.exit(1)
gpio = RPiGPIODriver.RPiGPIODriver
elif util.microcontroller == ’Edison’:
try:
import EdisonGPIODriver
except ImportError as err:
print err
print "Could not import EdisonGPIODriver'
sys.exit(1)
gpio = EdisonGPIODriver.EdisonGPIODriver

if driver == ’'L298’:
try:
import L298Driver
except ImportError as err:
print "Could not import L298Driver"
sys.exit(1)
motorDriver = L298Driver.L298Driver
if commDriver == ’Wifi’:
try:
import WifiComm
except ImportError as err:
print "Could not import Comm/WifiComm"
sys.exit(1)
comm = WifiComm.WifiComm
elif commDriver == ’Xbee’:
try:
import XbeeComm
except ImportError as err:
print "Could not import Comm/XbeeComm"
sys.exit(1)
comm = XbeeComm.XbeeComm
elif commDriver == ’UnixSocket’:
try:
import UnixSocketComm
except ImportError as err:

print "Could not import Comm/UnixSocketComm"

62

sys.exit(1)
comm = UnixSocketComm.UnixSocketComm
if positionDriver == ’'Pozyx’:
try:
import PozyxPositioner
except ImportError as err:
print "Could not import Positioner/Pozyx"
sys.exit(1)
positioner = PozyxPositioner.PozyxPositioner
return (motorDriver, comm, enc, gpio, positioner)

def exitGracefully(self):
try:
print "Program was asked to terminate."
print "Waiting for processes to exit..."
if self.commProcess:
self.commProcess. join()
if self.motorController:
self.motorController. join()
if self.gpioProcess:
self.gpioProcess.join()
if self.positionerProcess:
self.positionerProcess.join()
print "Done"
sys.exit(0)
except Exception as msg:
print "An exception occured while trying to terminate"
print msg
sys.exit(1)

if ’__main__’ == __name__:
r = DDStarter()

H#HH AR A
Positioner/Positioner.py
HE#HHHRSHAH

#!/usr/bin/env python

from multiprocessing import Process
from multiprocessing import Queue

import signal, time, sys, os
sys.path.append(os.path.abspath(’..’))
import util

class PositionerBaseClass(Process):

def __init__(self):
super (PositionerBaseClass, self).__init__(Q)

def getPosition(self):
raise NotImplementedError("Override getPosition in class that inherits

PositionerBaseClass")

def getHeading(self):

63

raise NotImplementedError("Override getHeading in class that inherits
PositionerBaseClass")

def sendError(self):
raise NotImplementedError("Override sendError in class that inherits
PositionerBaseClass")

def run(self):
try:
while self.go:
pos = self.getPosition()
mag = self.getHeading()
if pos:
util.positionQueue.put((pos, mag))
util.positionTelemQueue.put((pos, mag))
else:
print "pos undef"
time.sleep(.01)
except KeyboardInterrupt as msg:
print "KeyboardInterrupt detected. CommProcess is terminating"
self.go = False
finally:
self.exitGracefully()

H#H#t#H#HH# AR A
Positioner/PozyxPositioner.py
#H##BHAHARHH

#!/usr/bin/env python

Heavily based upon the Pozyx ready to localize tutorial (c) Pozyx Labs
Documentation on the code used here can be found at:
https://www.pozyx.io/Documentation/Tutorials/ready_to_localize/Python
from time import sleep

import sys, os

from pypozyx import *
import __future__
from Positioner import PositionerBaseClass

sys.path.append(os.path.abspath(’..’))
import util

class PozyxPositioner(PositionerBaseClass):
go = True

def __init__(self):
super (PozyxPositioner, self).__init__(Q)
shortcut to not have to find out the port yourself
serial_port = None
try:
serial_port = get_serial_ports()[0].device
except IndexError as msg:
print("Could not find serial connection to pozyx. Positioner will be turned off
for this run")
if serial_port is not None:
remote_id = 0x6069 # remote device network ID

64

remote = False # whether to use a remote device
if not remote:
remote_id = None

necessary data for calibration, change the IDs and coordinates yourself
anchors = [DeviceCoordinates(0x6019, 1, Coordinates(®, 0, 196)),
DeviceCoordinates(0x6049, 1, Coordinates(3874, 0, 232)),
DeviceCoordinates(0x6044, 1, Coordinates(®, 2451, 174)),
DeviceCoordinates(0x607F, 1, Coordinates(3874, 2775, 155))]
algorithm = POZYX_POS_ALG_UWB_ONLY # positioning algorithm to use
dimension = POZYX_3D #POZYX_3D # positioning dimension
height = 1000 # height of device, required in 2.5D positioning
pozyx = PozyxSerial(serial_port)
self.initializePozyx(pozyx, anchors, algorithm, dimension, height, remote_id)
else:
self.go = False

def initializePozyx(self, pozyx, anchors, algorithm=POZYX_POS_ALG_UWB_ONLY,
dimension=P0ZYX_3D, height=1000, remote_id=None):
self.pozyx = pozyx
self.anchors = anchors
self.algorithm = algorithm
self.dimension = dimension
self.height = height
self.remote_id = remote_id
self.pozyx.clearDevices(self.remote_id)
self.setAnchorsManual ()

def getPosition(self):
if not self.go:
return None
position = Coordinates()
status = self.pozyx.doPositioning(position, self.dimension, self.height,
self.algorithm, remote_id=self.remote_id)
if status == POZYX_SUCCESS:
return str(position.x) + ", " + str(position.y) + ", " + str(position.z)
else:
return None

def getHeading(self):
if not self.go:
return "0.0"
orientation = EulerAngles()
status = self.pozyx.getEulerAngles_deg(orientation)
return str(orientation.heading)

def publishPosition(self, position):

network_id = self.remote_id

if network_id is None:
network_id = 0

position.x = position.x / 25.4

position.y = position.y / 25.4

position.z = position.z / 25.4

print "POS ID {}, x(mm): {pos.x} y(mm): {pos.y} z(mm): {pos.z}".format(
"0x%0.4x" % network_id, pos=position)

util.positionQueue.put(position)

def sendError(self, operation):
error_code = SingleRegister()

65

network_id = self.remote_id
if network_id is None:
self.pozyx.getErrorCode(error_code)
print "ERROR %s, local error code %s" % (operation, str(error_code))
util.positionQueue.put(str(error_code));
return
status = self.pozyx.getErrorCode(error_code, self.remote_id)
if status == POZYX_SUCCESS:
print "ERROR %s on ID %s, error code %s" % (operation, "0x%0.4x" % network_id,
str(error_code))
util.positionQueue.put(str(error_code));
return
else:
self.pozyx.getErrorCode(error_code)
print "ERROR %s, couldn’t retrieve remote error code, local error code %s" %
(operation, str(error_code))
util.positionQueue.put(str(error_code));
return
should only happen when not being able to communicate with a remote Pozyx.

def setAnchorsManual (self):
"""Adds the manually measured anchors to the Pozyx’s device list one for one.
status = self.pozyx.clearDevices(self.remote_id)
for anchor in self.anchors:
status &= self.pozyx.addDevice(anchor, self.remote_id)
if len(self.anchors) > 4:
status &= self.pozyx.setSelectionOfAnchors(POZYX_ANCHOR_SEL_AUTO,
len(self.anchors))
return status

nmun

def publishAnchorConfiguration(self):
for anchor in self.anchors:
print "ANCHOR,O0x%0.4x,%s" % (anchor.network_id, str(anchor.coordinates))

def exitGracefully(self):
pass

if __name__ == "__main__":
p = PozyxPositioner()
while True:
pos = p.getPosition()
head = p.getHeading()
if pos:
print(pos)
print Chead)
sleep(.5)

#H#t## AR

GPIO/GPIOBaseClass.py

##H#BHAHARHH

#!/usr/bin/env python

from multiprocessing import Process
from multiprocessing import Queue

import time, os, sys

sys.path.append(os.path.abspath(’..’))

66

import util
from Encoder import Encoder

class GPIOBaseClass(Process):

OUTPUT = "Override in inherited class"

INPUT = "Override in inherited class"

PWM = "Override in inherited class"
ANALOG_INPUT = "Override in inherited class"

encDict = {}

childs init should call the super constructor
and things like
GPIO.setmode() if raspberry pi
or GPIO(debug=False) if edison
def __init__(self, encoderPins):
super (GPIOBaseClass, self).__init__(Q)
for p in encoderPins:
e = Encoder()
self.encDict[p] = e
a = Process(target=self.setupWaitForEdgeISR, args=(self.edgeDetected, p))
a.start(Q)

pins should be a tuple of which pins to setup
modes should be the corresponding mode for each pin in pins
should do something like
if len(pins) > 1:

for i in range(®, len(pins)):

GPIO.setupPin(pins[i], modes[i]) # or respective code for platform

elif len(pins) == 1:

GPIO.setupPin(pins, modes)
def setup(self, pins, modes):
raise NotImplementedError("Override setup in class that inherits GPIOBaseClass")

#
#
#
#
#
#
#
#

pins should be a tuple of which pins to use for pwm
frequencies should be the corresponding PWM wave frequencies in herts for each pin
should be very similar to setupPins
def setupPWM(self, pins, frequencies):
raise NotImplementedError("Override setupPWM in class that inherits GPIOBaseClass")

args should be tuples, lists or a single int
changes the frequencies of the pwm signals on pins
def changeFrequency(self, pins, frequencies):
raise NotImplementedError("Override changeFrequency in class that inherits
GPIOBaseClass")

args should be tuples, lists or a single int

sets the duty cycle of the pwm signal on the pwm pins based on powers

value should be between 0-100, but some implementations may have an actual resolution
of 255

def setDC(self, pins, values):
raise NotImplementedError("Override setDC in class that inherits GPIOBaseClass")

args should be tuples, lists or a single int
writes the values in levels to the corresponding pin in pins
def write(self, pins, levels):
raise NotImplementedError("Override writeToPin in class that inherits
GPIOBaseClass")

67

pin is not a list, or tuple! It is a single pin
_read should return the digital value of the pin, do a digitalRead()
def _read(self, pin):
raise NotImplementedError("Override _read in class that inherits GPIOBaseClass")

pin is not a list, or tuple! It is a single pin
_analogRead should return the analogReading of the pin, doesn’t make sense with RPi,
need adc
def _analogRead(self, pin):
raise NotImplementedError("Override _analogRead in class that inherits
GPIOBaseClass™)

should still override this function to cleanup gpio and pwm stuff
but also make sure to call this function from the super class
def exitGracefully(self):
this is done to break out of the while loop in run so process terminates
util.gpioQueue = None
#for p in self.waitingProcs:
p.join(Q)

def consumeQueue(self):
while not util.gpioQueue.empty():
a = util.gpioQueue.get_nowait()
if a:
if a[0®] == ’setup’:
a[l] is pins
a[2] is modes
self.setup(al[l], a[2])
elif a[0®] == ’setupPWM’:
a[l] is pins
a[2] is frequencies
self.setupPWM(al[1], a[2])
elif a[0] == ’changeFrequency’:
a[l] is pins
a[2] is frequencies
self.changeFrequency(a[1], a[2])
elif a[0] == ’'setDC’:
a[l] is pins
a[2] is values
self.setDC(a[1], a[2])
elif a[0] == ’'write’:
a[l] is pins
a[2] is levels
self.write(a[l], a[2])

elif a[0@] == ’exitGracefully’:
self.exitGracefully()
elif a[0] == ’analogRead’:

a[l] = uniqueProcessIdentifier
a[2] = pin to read
raise NotImplementedError("analogRead is unsupported™)
elif a[0] == ’'resetEncoders’:
for key in encDict:
encDict[key].resetPeriod()

it is assumed that the pin is already setup
def setupWaitForEdgeISR(self, callback, pin):
raise NotImplementedError("Override _setupWaitForEdgeISR in class that inherits
GPIOBaseClass")

68

def edgeDetected(self, pin):
print "hello"
self.encDict[pin].count += 1
ctime = time.time()
elapsedTime = ctime-self.encDict[pin].lastEdge
if elapsedTime <= self.encDict[pin].timeout:
self.encDict[pin].periods[self.encDict[pin].periodIndex] = elapsedTime
increment self.encDict[pin].periodIndex and keep it within range of
self.encDict[pin].pSize = len(self.encDict[pin].periods)
self.encDict[pin].periodIndex =
(self.encDict[pin].periodIndex+1)%self.encDict[pin].pSize;
self.encDict[pin].lastEdge = ctime
util.encQueue.put([self.encDict[pin].count])

def resetPeriod(self):
self.encDict[pin].periods = [-1]*self.encDict[pin].pSize
self.encDict[pin].periodIndex = 0

returns seconds/blip
def getAveragePeriodBetweenBlips(self):

ave = 0.0
i=20
for i in range(0, self.encDict[pin].pSize):
if self.encDict[pin].periods[i] == -1: # invalid period, therefore return what
is got
break
else:

ave += self.encDict[pin].periods[i]
return average of valid periods, i+1 because i will never equal self.pSize
if i < 10:
return -1
else:
return ave/(i+1l)

def run(self):
try:
a = None
while util.gpioQueue:
self.consumeQueue ()
except KeyboardInterrupt as msg:
print "KeyboardInterrupt detected. GPIOProcess is terminating"
finally:
self.exitGracefully()

H#H#H#HA#ARHH
GPIO/EdisonGPIODriver.py
#H#t## AR

#!/usr/bin/env python

from GPIOBaseClass import GPIOBaseClass
import mraa

import sys, os

class EdisonGPIODriver(GPIOBaseClass):

OUTPUT = mraa.DIR_OUT
INPUT = mraa.DIR_IN

69

PWM = ""
ANALOG_INPUT = ""
gpioDict = {}
pwmDict = {}

def __init__(self, encoderPins):
super (EdisonGPIODriver, self).__init__(encoderPins)

args should be tuples, list, or a single int
def setup(self, pins, modes):
if type(pins) is list or type(pins) is tuple:
for i in range(®, len(pins)):
if modes[i] == ’INPUT’:
self.gpioDict[pins[i]] = mraa.Gpio(pins[i])
self.gpioDict[pins[i]].dir(self.INPUT)
elif modes[i] == ’OUTPUT’:
self.gpioDict[pins[i]] = mraa.Gpio(pins[i])
self.gpioDict[pins[i]].dir(self.OUTPUT)

elif modes[i] == ’ANALOG_INPUT’:
pass
elif modes[i] == ’'PWM’:
self.setupPWM(pins[i], 60)
else:
if modes == ’INPUT’:

self.gpioDict[pins] = mraa.Gpio(pins)
self.gpioDict[pins].dir(self.INPUT)
elif modes == ’'OUTPUT :
self.gpioDict[pins] = mraa.Gpio(pins)
self.gpioDict[pins].dir(self.OUTPUT)

elif modes == ’'ANALOG_INPUT’:
pass
elif modes == 'PWM’:

self.setupPWM(pins, 60)

args should be tuples, lists, or a single int
def setupPWM(self, pins, frequencies):
if type(pins) is list or type(pins) is tuple:
for i in range(0, len(pins)):
self.pwmDict[pins[i]] = [mraa.Pwm(pins[i]), False]
self.pwmDict[pins[i]][0].period(1.0/frequencies[i])
else: # must be an int
self.pwmDict[pins] = [mraa.Pwm(pins), False]
self.pwmDict[pins][0].period(1l.0/frequencies)

args should be tuples, lists, or a single int
it is assumed that the entries of pins are already setup as PWM outputs
def changeFrequency(self, pins, frequencies):
if type(pins) is list or type(pins) is tuple:
for i in range(0, len(pins)):
self.pwmDict[pins[i]][0].period(1.0/frequencies[i])
else: # must be an int
self.pwmDict[pins][0].period(1l.0/frequencies)

args should be tuples, lists, or a single int
it is assumed that the entries of pins are already setup as PWM outputs
def setDC(self, pins, values):
if type(pins) is list or type(pins) is tuple:
for i in range(®, len(pins)):
if values[i] >= 0 and values[i] <= 100:

70

if values[i] != O:
if not self.pwmDict[pins[i]][1]:
self.pwmDict[pins[i]][0].enable(True)
self.pwmDict[pins[i]][1] = True
self.pwmDict[pins[i]][0] .write(values[i]/100.0)
else:
self.pwmDict[pins[i]][0].write(0.0)
#self.pwmDict[pins[i]][0].enable(False)
self.pwmDict[pins[i]][1] = False
else:
print "Incorrect duty cycle value was provided"
else: # must be an int
if values >= 0 and values <= 100:
if values != 0:
if not self.pwmDict[pins][1]:
self.pwmDict[pins] [0].enable(True)
self.pwmDict[pins][1] = True
self.pwmDict[pins][0].write(values/100.0)
else:
self.pwmDict[pins][0] .write(0.0)
#self.pwmDict[pins] [0].enable(False)
self.pwmDict[pins][1] = False

args should be tuples, lists, or a single int
it is assumed that the pins are already setup to be outputs
def write(self, pins, levels):
if type(pins) is list or type(pins) is tuple:
for i in range(0, len(pins)):
self.gpioDict[pins[i]].write(levels[i])
else: # must be an int
self.gpioDict[pins].write(levels)

def setupWaitForEdgeISR(self, callback, pin):
g = mraa.Gpio(pin)
g.dir(self.INPUT)
g.isr(mraa.EDGE_BOTH, self.edgeDetected, self.edgeDetected)

ait is assumed that the pin was setup to be a self._gpio.INPUT before this is called
def _read(self, pin):
return self.gpioDict[pin].read()

ait is assumed that the pin was setup to be a self._gpio.ANALOG_INPUT before this is
called

def _analogRead(self, pin):
pass

def exitGracefully(self):
super (EdisonGPIODriver, self).exitGracefully()

if __name__ == ’__main__’:

from multiprocessing import Manager

from multiprocessing import Queue

import time, sys, os
sys.path.append(os.path.abspath(’..’))
import util

m = Manager()

util.gpioQueue = m.Queue()

e = EdisonGPIODriver([])
e.start()

71

util.gpioQueue.put(["setup", [5, 6, 7, 8], ["OUTPUT", "OUTPUT", "OUTPUT", "OUTPUT"]])
util.gpioQueue.put(["setup", [3, 91, ["PWM", "PWM"]1])
util.gpioQueue.put(["write", [5, 6, 7, 8], [0, 1, O, 11D
util.gpioQueue.put(["setDC", [3, 9], [25,50]11)
time.sleep(l)
util.gpioQueue.put(["setDC", [3, 9], [0,0]])

time.sleep(1)

util.gpioQueue = None

BB
GPIO/RPiGPIODriver.py
BB

#!/usr/bin/env python

from GPIOBaseClass import GPIOBase(Class
import RPi.GPIO as GPIO

remember this is a Process
class RPiGPIODriver (GPIOBaseClass):
OUTPUT = GPIO.OUT
INPUT = GPIO.IN
PWM = GPIO.OUT
ANALOG_INPUT = "Raspberry pi doesn’t have analog in"

dictionary of pins and pwmObjs
_pwmObjs is of the form {pin: (pwmObj, pwmStarted), ...}
_pwmObjs = {}

def __init__(self, encoderPins):
GPIO.setmode (GPIO.BOARD)
GPIO.setwarnings(False)
super (RPiGPIODriver, self).__init__(encoderPins)

args should be tuples, lists, or a single ints
def setup(self, pins, modes):
if type(pins) is list or type(pins) is tuple:
for i in range(®, len(pins)):

if modes[i] == ’'INPUT’:
GPIO.setup(pins[i], self.INPUT, pull_up_down=GPIO.PUD_DOWN)
elif modes[i] == ’OUTPUT’ or modes[i] == ’'PWM’:
GPIO.setup(pins[i], self.OUTPUT)
elif modes[i] == ’ANALOG_INPUT’:

GPIO.setup(pins[i], self.ANALOG_INPUT)
else: # must be ints

if modes == ’INPUT’:

GPIO.setup(pins, self.INPUT, pull_up_down=GPIO.PUD_DOWN)
elif modes == 'OUTPUT’ or modes == ’PWM’:

GPIO.setup(pins, self.OQUTPUT)
elif modes == ’ANALOG_INPUT’:

GPIO.setup(pins, self.ANALOG_INPUT)

args should be tuples, lists, or a single ints
def setupPWM(self, pins, frequencies):
if type(pins) is list or type(pins) is tuple:
create a pwmObj for every pin in pins that does not have one associated with it
for i in range(0, len(pins)):
if not pins[i] in self._pwmObjs:

72

self._pwmObjs[pins[i]] = [GPIO.PWM(pins[i], frequencies[i]), False]
else: # must be ints

if not pins in self._pwmObjs:
self._pwmObjs[pins] = [GPIO.PWM(pins, frequencies), False]

args should be tuples, lists, or a single ints
def changeFrequency(self, pins, frequencies):
if type(pins) is list or type(pins) is tuple:
for i in range(®, len(pins)):

highly frowned upon if trying to change frequency of a pwm obj that hasn’t
been made yet

yet still acceptable, but is redundant and slow
if not pins[i] in self._pwmObjs:
self.setupPWM(pins[i], frequencies[i])
else:
self._pwmObjs[pins[i]][0].ChangeFrequency(frequencies[i])
else: # must be ints
if not pins in self._pwmObjs:
self.setupPWM(pins, frequencies)
else:

self._pwmObjs[pins][0].ChangeFrequency(frequencies)

args should be tuples, lists, or a single ints
def setDC(self, pins, values):
if type(pins) is list or type(pins) is tuple:
for i in range(0, len(pins)):
if pins[i] in self._pwmObjs:
if values[i] ==
self._pwmObjs[pins[i]][0].stop()
self._pwmObjs[pins[i]][1] = False
if values[i] is valid
elif values[i] > 0 and values[i] <= 100:
if pwm is active/not stopped/ started
if self. pwmObjs[pins[i]][1]:
self._pwmObjs[pins[i]][0].ChangeDutyCycle(values[i])
else:
self._pwmObjs[pins[i]][0].start(values[i])
self. pwmObjs[pins[i]][1] = True
else:

print "Incorrect duty cycle value was provided"
else:

print "Process tried to set pin that was not setup as a PWM pin to have a
duty cycle"
else: # must be ints
if pins in self._pwmObjs:
if values ==
self._pwmObjs[pins] [0].stop()
self._pwmObjs[pins][1] = False
if values is valid
elif values > 0 and values <= 100:
if pwm is active/not stopped/ started
if self._pwmObjs[pins][1]:
self._pwmObjs[pins][0] .ChangeDutyCycle(values)
else:
self._pwmObjs[pins] [0].start(values)
self._pwmObjs[pins][1] = True
else:

print "Incorrect duty cycle value was provided"
else:

73

print "Process tried to set pin that was not setup as a PWM pin to have a
duty cycle"

args should be tuples, lists, or a single ints
it is assumed that the pins are already setup to be outputs
def write(self, pins, levels):
if type(pins) is list or type(pins) is tuple:
for i in range(0, len(pins)):
GPIO.output(pins[i], levels[i])
else: # must be ints
GPIO.output(pins, levels)

def setupWaitForEdgeISR(self, callback, pin):
GPIO.setup(pin, self.INPUT, pull_up_down=GPIO.PUD_DOWN)
GPIO.add_event_detect(pin, GPIO.BOTH, callback=callback)

it is assumed that pin is setup to be GPIO.INPUT
def _read(self, pin):
return GPIO.input(pin)

def _analogRead(self, pin):
print ANALOG_INPUT
return -1

def exitGracefully(self):
super (RPiGPIODriver, self).exitGracefully()
GPIO.cleanup()

#H#H AR A
drivers/L298Driver.py
HE#HHHRSHAH

#!/usr/bin/env python

import sys, os
sys.path.append(os.path.abspath(’..’))
import util

class L298Driver:
pwmPins = []
dirPins= []
maxDC = 100
minDC = 20

def __init__(self):
TODO replace this with a read from a file
if util.microcontroller == ’Edison’:
self.pwmPins = [3, 9]
self.dirPins = [[5, 6], [7, 8]]
elif util.microcontroller == ’RPi’:
self.pwmPins = [38, 37]
self.dirPins = [[31,32], [33,35]]
util.gpioQueue.put([’setup’, self.pwmPins, ['PWM’, 'PWM’]])
util.gpioQueue.put([’setupPWM’, self.pwmPins, [60, 60]1])
util.gpioQueue.put([’setup’, self.dirPins[0], [’OUTPUT’, ’OUTPUT’]])
util.gpioQueue.put([’setup’, self.dirPins[1], [’OUTPUT’, ’OUTPUT’]])

def setDirection(self, direction):

74

for i in range(0, 2):
if direction[i]:
util.gpioQueue.put([’'write’, self.dirPins[i][0], 11)
util.gpioQueue.put([’'write’, self.dirPins[i][1], 0])
else:
util.gpioQueue.put([’'write’, self.dirPins[i][0], 01)
util.gpioQueue.put([’'write’, self.dirPins[i][1], 1])

set PWM duty cycle
powers should be an array with 2 indexes [mLeftPower, mRightPower]
direction should be an array with 2 indexes [mLeftDir, mRightDir]
def setDC(self, powers, direction):
self.setDirection(direction)
for i in range(®, len(powers)):
util.gpioQueue.put([’setDC’, self.pwmPins[i], powers[i]])

H#HHAHRHH A
Comm/CommBaseClass.py
##H#HHHARHH

#!/usr/bin/env python

from multiprocessing import Process

from multiprocessing import Queue

import signal so that main threads try except statement will catch keyboard interrupt
import thread, signal, struct, time, sys, os

sys.path.append(os.path.abspath(’..’))

import util

class CommBaseClass(Process):
This queue is filled with the data that is sent from ground control to the robot
it is consumed by the pilot (whenever that gets written)
recvQueue = None
This is the queue that gets filled by the position process.
it is consumed in this process and the data is sent to what is sending commands
to the robot
sendQueue = None
This is to terminate the threads that are started
go = True
This is to know how many bytes to read in recv(). recv() is implemented in child class
can also be set in handleIncomingData()
#bytesToRead = 12
bytesToRead = 6

def __init__(self):
super (CommBaseClass, self).__init__()
self.recvQueue = util.controllerQueue
self.sendQueue = util.positionTelemQueue

def waitForConnection(self):
raise NotImplementedError("Override waitForConnection in class that inherits
CommBaseClass")

override this function in inherited class, but make sure to call this function in
the beginning. For example:

def resetClient(self, waitForReconnect = True):

super (ChildClass, self).resetClient(waitForReconnect)

somecodes ()

75

def resetClient(self):
print "Controller disconnected!"
Stop the bot
self.recvQueue.put([3,1500,1500])
remember to inherit, override, and call super class function!!!

should be blocking
returns a list of the bytes recieved from a connection in the child class
def recv(self):
raise NotImplementedError("Override recv in class that inherits CommBaseClass")

don’t override this unless necessary
This is called from run()
def handleIncomingData(self):
self.waitForConnection()
while self.go:
data = self.recv()
if len(data) == 0:
self.resetClient()
self.waitForConnection()
elif len(data) == self.bytesToRead: # fill recvQueue for pilot to consume
srcdstids = struct.unpack(’<B’, data[0])[0]
controlScheme = struct.unpack(’<B’, data[1])[0]
if controlScheme != 4: # defined as VELOCITY_HEADING in MotorController.py
Im = struct.unpack(’<h’, data[2:4])[0] # left motor,
steering, or velocity
rm = struct.unpack(’<h’, data[4:])[0] # right motor, throttle, or
heading
self.recvQueue.put ([
controlScheme, # control scheme
Im,
rm])
elif False:
vel = struct.unpack(’i’, data[4:8])[0]
heading = struct.unpack(’<f’, data[8:12])[0]
self.recvQueue.put([
controlScheme,
vel,
heading])

sends data across the connecion in the child class
def send(self, data):
raise NotImplementedError("Override send in class that inherits CommBaseClass")

def handleOutgoingData(self):
while not self.sendQueue.empty():
d = self.sendQueue.get_nowait()
a="’
for i, p in enumerate(d)
if p is not None:
a+=p
if i !'= len(d)-1:

a += n’ n
n;u

a +=
self.send(a)

def exitGracefully(self):

raise NotImplementedError("Override exitGracefully in class that inherits
CommBaseClass'™)

76

def run(self):
try:
t = thread.start_new_thread(self.handleIncomingData, ())
while self.go:
self.handleOutgoingData()
time.sleep(.01)
except KeyboardInterrupt as msg:
print "KeyboardInterrupt detected. CommProcess is terminating"
self.go = False
finally:
self.exitGracefully()

H#HHAHRHHAH
Comm/UnixSocketComm.py
##H##HHH AR

#!/usr/bin/env python
#DDMC=Differential Drive Motor Control

This file was created by Ryan Cooper in 2016

This class starts a server to listen to an xbox controller which is plugged into a
client computer that can connect to the robot

import socket, time, sys

from multiprocessing import Process
from multiprocessing import Queue
from multiprocessing import Pipe

from CommBaseClass import CommBaseClass

class UnixSocketComm(CommBaseClass):
sock = None
connected = False

def __init__(self):
super (UnixSocketComm, self).__init__()
self.sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
#self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # TODO figure out
if this is necessary
listen for only one connection

def waitForConnection(self):
while not self.connected:
try:
self.sock.connect(’uds_socket’)
self.connected = True
except socket.error, msg:
print "couldn’t connect to unix domain socket. Is the java server running?"
print >>sys.stderr, msg

def resetClient(self):
super (UnixSocketComm, self).resetClient()
self.sock.close()
self.sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)

def recv(self):

77

if self.connected:
return self.sock.recv(self.bytesToRead)
else:
return 0

def handleIncomingData(self):
try:
super (UnixSocketComm, self).handleIncomingData()
except socket.error as msg:
self.resetClient()
self.waitForConnection()

def send(self, data):
if self.connected:
self.sock.sendall(data)

def exitGracefully(self):
if self.sock:
self.sock.close()

#H#HB AR AR
Comm/WifiComm.py
H##BH RS

#DDMC=Differential Drive Motor Control

This file was created by Ryan Cooper in 2016

This class starts a server to listen to an xbox controller which is plugged into a
client computer that can connect to the robot

import socket, time, sys

from socket import error as socket_error

from multiprocessing import Process
from multiprocessing import Queue
from multiprocessing import Pipe

from CommBaseClass import CommBaseClass

class WifiComm(CommBaseClass):
serversocket = None
clientsocket = None

def __init__(self):
super (WifiComm, self).__init__Q)
self.serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.serversocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.serversocket.bind((’’, 12345))
listen for only one connection
self.serversocket.listen(1)
print "Wifi server started"

def waitForConnection(self):
if self.clientsocket == None:
connected = False
while not connected:
try:
sys.stdout.write(’Waiting for DDMCClient connection... ’)

78

sys.stdout. flush()
(self.clientsocket, address) = self.serversocket.accept()
connected = True
print ’DDMC controller connected’
except Exception as msg:
print ’Client connection failed with message:’
print msg
print I will retry connecting in one second.’
time.sleep(l)

def resetClient(self):
super (WifiComm, self).resetClient()
if self.clientsocket:
self.clientsocket.close()
self.clientsocket = None

def recv(self):
if self.clientsocket:
return self.clientsocket.recv(self.bytesToRead)
else:
return 0

def handleIncomingData(self):
try:
super (WifiComm, self).handleIncomingData()
except socket_error as msg:
self.resetClient()
self.waitForConnection()

def send(self, data):
data = data + '\n’;
if self.clientsocket:
self.clientsocket.send(data)

def exitGracefully(self):

if self.clientsocket:
self.clientsocket.close()

if self.serversocket:
self.serversocket.close()

#AH##HBH#H#H#
Comm/XbeeComm. py
HE#HHHRSHHH

#!/usr/bin/env python

to install xbee:

wget
https://pypi.python.org/packages/53/13/c3£53a63b5a9d8890e7911580c466b25a90b732a500d437a1205fef47a68/XBee-2.

tar -xvf Xbee-2.2.3.tar

cd Xbee-2.2.3

python setup.py install

from xbee import XBee

install with:

pip install pyserial

import serial

from CommBaseClass import CommBaseClass

79

import threading
class XbeeComm(CommBaseClass):

ser = None

xbee = None

variable used to make sure there is no race condition on recvData
dataCondition = None

recvData = None

Hopefully this is the coordinator

dest_addr = 0

def __init__(self):
super (XbeeComm, self).__init__(Q)
self.ser = serial.Serial(’/dev/ttyAMA®’, 9600)
self.dataCondition = threading.Condition()
self.xbee = XBee(self.ser, callback=self.fillRecv)

def waitForConnection(self):
pass

def resetClient(self):
pass

I decided to make use of an asychronous callback to recieve data instead
of the xbee.wait_read_frame() because I wanted this process’s thread to wait
not the Xbees thread to wait
def fillRecv(self, data):
self.dataCondition.acquire()
self.recvData = data
self.dataConditon.release()

def recv(self):
possible use this function for synchronous mode. Will it work in threads?
return self.xbee.wait_read_frame()

wait until self.fillRecv(data) fills recvData
self.dataCondition.wait()
self.dataCondition.acquire()

d = self.recvData

self.recvData = None
self.dataCondition.release()

return d

’77 Put here for reference, taken from python module xbee.ieee.Xbee
#Format:
{name of command:

[{name: field name, len:field length, default: default value sent}

-

1

R

3

api_commands = {"at":
[{’name’:’id’, "len’:1, "default’:b’\x08’},
{’name’:’frame_id’, ’len’:1, ’default’:b’\x00’},
{’name’ : ’command’, ’len’:2, ’default’:None},
{’name’: 'parameter’, ’len’:None, ’default’:None}],

"queued_at":

[{’name’:’id’, "len’:1, "default’:b’\x09’},

80

{’name’:’ frame_id’, ’'len’:1, ’default’:b’\x00’},

{’name’:’command’, ’len’:2, ’default’:None},
{’name’ : 'parameter’, ’len’:None, ’default’:None}],
"remote_at":
[{’name’:’id’, "len’:1, "default’:b’\x17’},
{’name’:’ frame_id’, "len’:1, "default’:b’\x00’},
dest_addr_long is 8 bytes (64 bits), so use an unsigned long long
{’name’:’dest_addr_long’, ’len’:8, "default’:struct.pack(’>Q’, 0)},
{’name’ :’dest_addr’, "len’:2, "default’ :b’\xFF\XFE’},
{’name’:’options’, "len’:1, "default’:b’\x02’},
{’name’ :’command’, "len’:2, "default’:None},
{’name’ : ’parameter’, "len’ :None, "default’:None}l],
"tx_long_addr":
[{’name’:’id’, "len’:1, "default’:b’\x00’},
{’name’:’ frame_id’, "len’:1, "default’:b’\x00’},
{’name’:’dest_addr’, "len’:8, "default’ :None},
{’name’ : options’, "len’:1, "default’:b’\x00’},
{’name’:’data’, "len’ :None, "default’:None}l],
"tx":
[{’name’:’id’, "len’:1, "default’:b’\x01’},
{’name’:’ frame_id’, "len’:1, "default’:b’\x00’},
{’name’:’dest_addr’, "len’:2, "default’ :None},
{’name’ : options’, "len’:1, "default’:b’\x00’},
{’name’:’data’, "len’ :None, "default’ :None}]
3

def send(self, d):
self.xbee.send("tx", data=d, dest_addr=self.dest_addr)

def exitGracefully(self):
need to halt to stop process that is listening for data
self.xbee.halt()
self.ser.close()

def testControllerQueue():
while not util.controllerQueue.empty(): # this is a while so that the most recent thing
in the queue is the resultant command that is done
good = True
try:
nowait because this process was called from the main loop which controls the
motors
so we don’t want this function to block.
data = util.controllerQueue.get_nowait()
except Queue.Empty as msg:
realistically this should never happen because we check to see that the queue
is not empty
but it is shared memory, and who knows?

good = False
if good:
print data
if __name == '__main__’:

from multiprocessing import Manager

manager = Manager()

util.controllerQueue = manager.Queue()
util.gcsDataQueue = manager.Queue()

xb = XbeeComm()

xb.start(Q)
thread.start_new_thread(testControllerQueue, ())

81

time.sleep(5)
for i in range(3):

util.gcsDataQueue.put([’derp’])
time.sleep(10)

H##HHH R
DataturbineExporter. java
###BHA#ARHH

// Written by Scot Tomer
package edu.scu.engr.rsl.deca;

import
import

import
import

public
/7‘: *

java.io.File;
com.rbnb.sapi.SAPIException;

com.etsy.net.JUDS;
com.etsy.net.UnixDomainSocketServer;

class DataturbineExporter {

* Sets up the send and receive threads based on arguments passed in. Expected
* to be run from the command line.
* @param arg

:‘:/
pub

An array of three Strings, containing the full path to the unix
domain socket to listen on, the dataturbine server host and port,
and the name of the robot (for setting up the dataturbine source and
sink).

lic static void main(String[] arg) throws Exception {
try {
File danglingSock = new File(arg[1l]);
danglingSock.delete();
// If this fails due to permissions error, the socket constructor will
// raise an exception, so just gobble all exceptions here.
} catch (Exception error) { }

UnixDomainSocketServer server = new UnixDomainSocketServer(arg[1l],
JUDS.SOCK_STREAM);
Runtime.getRuntime().addShutdownHook(new SocketCleanup(server));

Sender sender;
Receiver receiver;
try {
sender = new Sender(arg[®], arg[2], server.getInputStream());
receiver = new Receiver(arg[®], arg[2], server.getOutputStream());
} catch (SAPIException error) {
System.out.println("Could not connect to dataturbine.");
return;

sender.start();
receiver.start();

sender. join();
receiver.join();

82

#H#t##HHA# AR
Receiver. java
###HH# RS

package edu.scu.engr.rsl.deca;

import
import

import
import
import

java.io.IOException;
java.io.OutputStream;

com.rbnb.sapi.Sink;
com.rbnb.sapi.ChannelMap;
com.rbnb.sapi.SAPIException;

public class Receiver extends Thread {
private Sink internalSink;
private OutputStream client;

public Receiver(String dataTurbine, String botName , OutputStream out) throws

Exception {

internalSink = new Sink();

internalSink.OpenRBNBConnection(dataTurbine, botName + "-sink");
ChannelMap watchList = new ChannelMap();

watchList.Add("controller/" + botName);

internalSink.Subscribe(watchList);

client = out;

@Override
public void run () {
while (true) {

}

// The argument to Fetch is read timeout in ms. If there is no data,
// it will eventually time out and return an empty channel map. I
// actually have no idea what circumstances it will throw an
// SAPIException under, because killing rbnb causes it to throw
// java.lang.IllegalStateException.
ChannelMap getmap;
try {
getmap = internalSink.Fetch(1000);
} catch (SAPIException error) {
System.out.println("SAPIException: " + error.getMessage());
break;
} catch (IllegalStateException error) {
// this occurs if the rbnb server shuts down while we are waiting for
// a client read.
System.out.println("Dataturbine has vanished.");
break;
}
if (getmap.NumberOfChannels() > 0) {
byte[] message = getmap.GetDataAsByteArray(0)[0];
try {
client.write(message);
} catch (IOException error) {
System.out.println("Client write error:
break;

+ error.getMessage());

System.exit(1);

83

#H#t##HHA# AR A
Sender. java
##t R H RS

package edu.scu.engr.rsl.deca;

import java.util.HashMap;
import java.io.IOException;
import java.io.InputStream;

import com.rbnb.sapi.Source;
import com.rbnb.sapi.ChannelMap;
import com.rbnb.sapi.SAPIException;

public class Sender extends Thread {
// private int channel;
private HashMap<String, Integer> chanMap;
private Source internalSource;
private ChannelMap outputChannels;
private InputStream client;

public Sender(String dataTurbine, String botName, InputStream in) throws Exception {
internalSource = new Source();
outputChannels = new ChannelMap();
chanMap = new HashMap<String, Integer>();
chanMap.put("states", outputChannels.Add("states"));
internalSource.OpenRBNBConnection(dataTurbine, botName);
client = in;

@Override
public void run () {
while (true) {
byte[] message = new byte[512];
try {
int bytesRead;
try {
bytesRead = client.read(message);
} catch (IllegalStateException error) {
// this occurs if the rbnb server shuts down while we are waiting for
// a client read.
System.out.println("Dataturbine has vanished.");
break;
}
if (bytesRead < 0) {
System.out.println("client disconnected.");
break;
} else if (bytesRead > 0) {
String packet = new String(message, 0, bytesRead);
try {
outputChannels.PutDataAsString(chanMap.get("states"), packet);
internalSource.Flush(outputChannels, true);
} catch (SAPIException error) {
System.out.println("barf: " + error.getMessage());
break;

84

}

} catch (IOException error) {
System.out.println("dang" + error.getMessage());
break;

}
System.exit(1);

HEHHHBHRR#H
SocketCleanup. java
#H#H###BH#R#H#

package edu.scu.engr.rsl.deca;

import com.etsy.net.UnixDomainSocketServer;

class SocketCleanup extends Thread {
UnixDomainSocketServer server;

public SocketCleanup(UnixDomainSocketServer server) {
this.server = server;

}
@Override
public void run() {
if (server != null) {
System.out.println("Cleaning up socket...");
server.unlink();
}
}
}
HAHBHBHBHBH
InstallPrerequsites.sh
#A#HHHHRHRH

#!/bin/bash
cd ../
pip install pyserial

git clone https://github.com/pozyxLabs/Pozyx-Python-library.git && cd Pozyx-Python-library
python setup.py install
cd ../

git clone Pillager225@gitlab.com:DecaBot/JUDS.git && cd JUDS
./autoconf.sh & & JAVA_HOME=/usr/lib/jvm/java-8-openjdk ./configure
make -j2 & & mv juds-*.jar juds.jar

cd ../

git clone https://Pillager225@gitlab.com/DecaBot/DataturbineExporter.git
cp JUDS/juds.jar DataturbineExporter

cd DataturbineExporter

make -j2 JAR=/usr/lib/jvm/java-8-openjdk/bin/jar

85

cd ../

cp DataturbineExporter/build/DataturbineExporter.jar DifferentialDrive/
cp JUDS/juds.jar DifferentialDrive/

#A#H#HHRHRH
StartRobot.sh
HAHBHBHBHBH

#!/bin/bash
java -jar DataturbineExporter.jar 192.168.43.38:3333 uds_socket robot_1&
./DDStarter.py

A.3.2 WebUl

HAHHHHRRHH
ui/index.html
HHHRHHHHRRHAH

<!DOCTYPE html>
<html>
<head>
<title>MECH</title>
<link rel="stylesheet" type="text/css" href="main.css">
</head>
<body>
<div id="title-div" class="unselectable">Multi-bot Easy Control Hierarchy</div>
<div id="page_table-div">
<table id="page-table" class="page-table">
<tr id="page_table_row_1">
<td id="page_table_col_11" rowspan="2">
<div id="robot-container">
<div id="robot-container-title" class="generic-title-with-button
unselectable">Robots
<button type="button" onclick="removeDisconnected()" id="add-robot-button'
class="generic-button unselectable">Remove Disconnected</button>
</div>
<div id="robot-item-container"></div>
</div>
</td>
<td id="page_table_col_12">
<div id="graphics-container">
<div id="graphics-container-title" class="generic-title
unselectable">Graphics</div>
<div id="canvas-container">
<canvas id="canvas" class="unselectable"> </canvas>
</div>
</div>
</td>
</tr>
<tr id="page_table_row_2">
<td id="page_table_col_21">
<div id="configuration-container">
<div id="configuration-container-title" class="generic-title
unselectable">Configuration</div>
<div id="configuration-dropdown-div" class="dropdown unselectable">

86

<button id="configuration-button"
onclick="toggleDropdown(’configuration-dropdown’)" class="dropbtn
unselectable">Configuration</button>
<div id="configuration-dropdown" class="dropdown-content unselectable">
<div onclick="setDropdown(’configuration-button’,’Single’)">Single</div>
<div onclick="setDropdown(’configuration-button’,’Cluster’)">Cluster</div>
</div>
</div>
</div>
<div id="waypoint-container">
<div id="waypoint-container-title" class="generic-title unselectable">Waypoints
<button type="button" onclick="sendWaypoints()" id="waypoints-button"
class="generic-button unselectable">Send</button>
</div>
<div id="coordinates-list" class="flx">
<div id="waypoint-holder-div">
X: <textarea id="textarea-x" rows="1" cols="4"
onkeypress="submitTextWaypoint()'"></textarea>
Y: <textarea id="textarea-y" rows="1" cols="4"
onkeypress="submitTextWaypoint()'"></textarea>
</div>
<div id="coordinates-list-actual" class="flx">
</div>
</div>
</div>
<div id="settings-container">
<div id="settings-container-title" class="generic-title-with-button
unselectable">Controllers
<button type="button" onclick="requestDT()" id="request-dt-button"
class="generic-button unselectable">Request</button>
</div>
<div id="settings-container-content" class="unselectable">
<div class="dropdown unselectable">
<button id="controllers-button"
onclick="toggleDropdown(’controllers-dropdown’)" class="dropbtn
unselectable">Controllers</button>
<div id="controllers-dropdown" class="dropdown-content unselectable">
<div
onclick="setDropdown(’controllers-button’,’Waypoints’)">Waypoints</div>
</div>
</div>
<div class="dropdown unselectable">
<button id="robots-button" onclick="toggleDropdown(’robots-dropdown’)"
class="dropbtn unselectable">Robots</button>
<div id="robots-dropdown" class="dropdown-content unselectable">
</div>
</div>
<div id="send-button-div" class="dropdown unselectable">
<button id="send-button" onclick="reconDT()" class="dropbtn
unselectable">Send</button>
</div>
</div>
</div>
</td>
</tr>
</table>
</div>
<script src="main.js"></script>
</body>

87

</html>

#A#H#HHRHRH
ui/main.css
HA#HHBHBHBH

.dropbtn {

background-color: #222222;
color: #c9c9c9;

padding: 10px;

font-size: 13px;

border: none;

cursor: pointer;

outline: none;

}
.dropdown {
position: relative;
display: inline-block;
}

.dropdown-content {
color:#c0®c0cO;
min-width:150px;
display: none;
position: absolute;
background-color: #333333;
z-index: 1;

}

#configuration-button{
display:none;

}

#configuration-dropdown-div {
margin:® auto;
position:relative;
top:10px;
left:172px;

}

textarea {
display:inline-block;
resize:none;
margin:® auto;
width:50px;
border:1px solid #111111;
outline:none;
background-color:#222222;
color:#F9F9F9;
font-size:14px;
height:19px;
padding: 2px;
position:relative;
top:7px;

}

#waypoint-holder-div {
margin:5px auto;
margin-top:-10px;
height:25px;

}

.dropdown-content div {
font-size: 14px;
color: #c0cOcO;

}

padding: 10px 10px;
text-decoration: none;
display: block;
margin:® auto;

.dropdown-content div:hover {

}

background-color: #111111;

.show {

}

display:block;

flx {

}

display:flex;

width:100%;

overflow:auto;
height:210px;
flex-direction:column;
flex-wrap:nowrap;
justify-content:flex-start;
margin:0;

padding: 5px;

.generic-button {

}

background-color:#222222;
color:#COCOCO;
float:right;
position:relative;
left:-10px;

border:none;
outline:none;
cursor:pointer;

#waypoints-button {

}

display:none;

.generic-button:hover {

}

color:#00FF00;

.coordinates {

}

color:white;
min-height:20px;
/*width:90%;*/
display:flex;
overflow:auto;
margin:4px;
margin-right:23px;
margin-bottom: -1px;
padding: 5px;
background-color:#333333;

.page-table {

}

width:100%;

height:100 %;

margin:® auto;
border-collapse: separate;
border-spacing: 10px;

.display-field {

height:18px;

89

text-align:left;
margin:none;
float:left;
padding-left:10px;
display:block;

}

.display-value {
height:18px;
text-align:right;
/*margin:® auto;*/
display:block;
float:right;
padding-right: 10px;

}

.field-flex-container {
display:flex;
float:left;
flex-direction:column;

}

#canvas-container {
height:95%;
width:100%;
border:0px solid black;
min-width:635px;

}

.value-flex-container {
display:flex;
float:right;
flex-direction:column;

}

#title-div {
margin: Opx auto;
height: 7vh;
min-height: 7vh;
text-align: center;
font-size: 30px;

}

#robot-container-helper {
height: 18px;

}

#robot-item-container {
display:flex;
flex-direction:column;
overflow: auto;
width: 100%;
min-width:200px;
background-color: #222222;

}

.generic-title {
padding: 5px;
width: 100%;
text-align:center;
height: 18px;

}

.generic-title-with-button {
padding: 5px;
width: 100%;
text-align:center;

90

text-indent: 50px;
height: 18px;

}

.unselectable {
-webkit-user-select:none;

}

.status-disconnected {
color:red !important;

}

.status-connected {
color:#00FF00 !important;

}

.robot-item-div {
width:90%;
margin:0 auto;
border:1px solid #111111;
outline:none;
margin-top: 10px;
min-width:175px

}

.dropdown {
margin:®px auto;
margin-left:50px;
margin-right:50px;
margin-top:10px;
margin-bottom: 10px;
background-color:#222222;
color:rgb(192, 192, 192);
outline:none;
border:1px solid #111111;

}

.robot-item-caption {
height:18px;
text-align:center;
border:none;
/*border-bottom: 1px solid black;*/
width:100%;

}

.remove-robot-button {
cursor:pointer;
position:relative;
top:-18px;
height:18px;
width:18px;
text-align:center;
vertical-align:middle;
padding:0;
border:none;
/*border-bottom: 1px solid black;*/
outline:none;
background-color:#222222;
float:right;
color:rgb(192, 192, 192);
z-index:1;

}

#page_table-div {
position:absolute;
top:5vh;
right:0;

91

left:0;

bottom: 10vh;
height:90vh;
width:100%;

}

#page_table_col_11 {
width:15.23vw;
height:100%;
border:1px solid #111111;
background-color:#111111;

}

#page_table_col_12 {
/*width:75%;*/
height:70%;
border:1px solid #111111;
background-color:#111111;

}

#page_table_col_21 {
width:75%;
height:30%;
border:1px solid #111111;
background-color:#111111;

}

#heading {
width:708px;
text-align:center;
margin-top:-5px;
margin-left:-5px;
margin-bottom: 10px;
border-bottom: 1px solid black;

}

#send-button-div {
position:relative;

left:120px;
top:100px;
}
#robot-container {
width:100%;
height:100%;
background-color:#222222;
}

#configuration-container {
float:left;
width:32%;
height:100%;
background-color:#222222;

}

#waypoint-container {
float:right;
width:32%;
height:100%;
background-color:#222222;
margin-left:10px;

}

#settings-container {
margin:® auto;
width:32%;
height:100%;
background-color:#222222;

92

}

#graphics-container {
width:100%;
height:100%;
background-color:#222222;

}

body {
/*height: 100%;%*/
width: 100%;
-webkit-overflow-scrolling: touch;
overflow: auto;
height:96vh;
background-color:#111111;
color:rgb(192, 192, 192);

}

html {
height: 100%;
width: 100%;
overflow: auto;

}

HAHRHHHHRHHA

ui/main.js

HHBHHHHHRHH

var number_of_fields =

var field_line_height = 18;

var single_robot_string = false;
var ws;

var current_robot_list = [];

var selected_robots = [];

var data_timeout = 1000;

var removal_timeout = 100000000000;
var pozyx_xX_max = 3946;

var pozyx_y_max = 2854;

var canvas_flag_active = false;

var canvas_flag_position = {x:undefined,y:undefined};
var current_coordinate_list = [];
var number_of_coordinates = 0;

var number_of_robots = 0;
9!

var current_clusters = [];
var current_sinks = [];
var current_channels = [];

var current_sources = [];
var manual_control = false;

function submitTextWaypoint() {

var key = window.event.keyCode;

var canvas = document.querySelector(’#canvas’);

if(key == 13) {
number_of_coordinates++;
var x_actual = document.querySelector(’#textarea-x’).value;
var y_actual = document.querySelector(’#textarea-y’).value;
document.querySelector(’#textarea-x’).value = "";
document .querySelector(’#textarea-y’).value = ""
document . querySelector (’#textarea-x’).blur(Q);
document . querySelector(’#textarea-y’).blur(Q;
var x = Math.round((x_actual * canvas.width) / pozyx_x_max);

s

var y = Math.round(((pozyx_y_max - y_actual) * canvas.height) / pozyx_y_max);

93

current_coordinate_list.push({x:x,x_actual:x_actual,y:y,y_actual:y_actual}l);

var coordinates = document.createElement(’div’);

coordinates.innerHTML = ‘Waypoint ${number_of_ coordinates}: [${x_actual} , ${y_actual}
1 [${x}, ${y}r 1%

coordinates.classList.add(’coordinates’);

var parent = document.getElementById(’coordinates-list-actual’);

parent.insertBefore(coordinates,parent.firstChild);

if(document.querySelector (’#waypoints-button’).style.display != ’inline’ &&
selected_robots.length > 0)
document.querySelector (’#waypoints-button’).style.display = ’inline’;
drawRobots();
}

}
/* set the canvas’ size once the page has loaded (js gets executed afterward) */
setCanvasDimensions();
/* adjust canvas size if window is resized */
window.onresize = setCanvasDimensions;
/% toggles the shown content of a div dropdown */
function toggleDropdown(dropdown) {
document.getElementById(dropdown) .classList.toggle("show");
}
/* removes all currently timed out robot cards */
function removeDisconnected() {
current_robot_list. forEach((robot) => {
if(robot.status === ’'Disconnected’) {
removeRobot (robot);
}
b
drawRobots();
}
/* if a robot has been set to be in a cluster, it removes it */
function removeRobotFromCluster(robot) {
for(var i = 0; i < current_clusters[robot.cluster].length; i++) {
if(current_clusters[robot.cluster].robotNumber === robot.robotNumber) {
current_clusters[robot.cluster].splice(i,1);
}
}
}
/% adjusts the cluster dropdown accordingly, pushes all robots in a cluster to an array */
function setDropdown(dropdown,option) {
document .getElementById(dropdown) .innerHTML = option;
var clstr = [];
selected_robots. forEach((robot) => {
/% we have specified that the robot is not in a cluster with the dropdown */
if(robot.configuration === ’Cluster’) {
if(option != ’'Cluster’) {
removeRobotFromCluster (robot);
}
}
/% set the new configuration option */
robot.configuration = option;
/* add to list of clusters if the configuration is a cluster */
if(option === ’Cluster’) {
robot.cluster = current_clusters.length;
clstr.push(robot);
}
b
if(option === ’'Cluster’)
current_clusters.push(clstr);

94

}
/% if we click on the dropdown */
window.onclick = function(event) {
/% if we clicked on the button, show all the content */
if (levent.target.matches(’.dropbtn’)) {
document .querySelectorAll(’ .dropdown-content’) . forEach((dropdown) => {
if(dropdown.classList.contains(’show’))
dropdown.classList.remove(’show’)
B
}
}
/% function to recognize key events */
document .addEventListener(’keydown’, function(e) {
/% if escape is pressed, we deactivate the waypoint flag, and unselect any selected

robots */
if(e.key === ’'Escape’ || e.keyCode === 27) {
if(canvas_flag_active) {
escapeFlag(Q);
} else if(!canvas_flag_active && selected_robots.length > 0) {
unselectAll();
drawRobots();
} else {
}
/* we remove the last active waypoint */
} else if(e.key === ’'Backspace’ || e.keyCode == 8) {
if(document.activeElement.id != "textarea-x" && document.activeElement.id !=

"textarea-y") {
removeLastWaypoint();
}

} else if(e.key === "f’ || e.keyCode === 70) {
var canvas = document.getElementById(’canvas’);
canvas.addEventListener ('mousemove’, showFlag);
canvas_flag_active = true;

} else if(e.key === 'm’) {
if(manual_control)

manual_control = false;

else
manual_control = true;
} else if(manual_control && e.key === ’"ArrowUp’) {

console.log(’yep’);
controlRobots(’u’);
} else if(manual_control && e.key === ’ArrowDown’) {
controlRobots(’d’);
} else if(manual_control && e.key === ’ArrowLeft’) {
controlRobots(’1");
} else if(manual_control && e.key === ’ArrowRight’) {
controlRobots(’r’);
} else {
console.log(e.key, e.keyCode);
}
b
function controlRobots(key) {
selected_robots. forEach((robot) => {
if(key === "u’) {
var vars = [];
vars.push(‘${robot.robotNumber} ‘) ;
vars.push(‘ dd‘);
vars.push(‘ 0°);

95

]

—

—

vars.push(‘ ${robot.x}‘);
var y = parselnt(robot.y) + 20;
if(y > pozyx_y_max)

y = 0;
else if(y < 0)

y = pozyx_y_max - 1;
vars.push(‘ ${y}*);
vars.push(‘ 0°);
vars.push(‘ 0°);
vars.push(‘ ${robot.heading}‘);
updateRobot (vars);
else if(key === ’'d’) {
var vars = [];
vars.push(‘${robot.robotNumber}‘);
vars.push(‘ dd‘);
vars.push(‘ 0°);
vars.push(‘ ${robot.x}‘);
var y = parselnt(robot.y) - 20;
if(y > pozyx_y_max)

y = 0;
else if(y < 0)

y = pozyXx_y _max - 1;
vars.push(‘ ${y}“);
vars.push(‘ 0°);
vars.push(‘ 0°);
vars.push(‘ ${robot.heading}‘);
updateRobot (vars);
else if(key === ’1’) {
var vars = [];
vars.push(‘${robot.robotNumber}‘);
vars.push(‘ dd‘);
vars.push(‘ 0°);
var x = parselnt(robot.x) - 20;
if(x > pozyx_x_max)

x =0;
else if(x < 0)

X = pozyxXx_Xx_max - 1;
vars.push(‘ ${x});
vars.push(‘ ${robot.y}‘);
vars.push(‘ 0°);
vars.push(‘ 0°);
vars.push(‘ ${robot.heading}‘);
updateRobot (vars);
else if(key === 'r’) {
var vars = [];
vars.push(‘${robot.robotNumber} ‘) ;
vars.push(‘ dd‘);
vars.push(‘ 0°);
var x = parselnt(robot.x) + 20;
if(x > pozyx_x_max)

x =0;
else if(x < 0)

X = pozyXx_x_max - 1;
vars.push(‘ ${x}*);
vars.push(‘ ${robot.y}‘);
vars.push(‘ 0°);
vars.push(‘ 0°);
vars.push(‘ ${robot.heading}‘);
updateRobot (vars);

96

}
s
}
/* reset the background on the robot cards, reset outline of robots on canvas, empty
selected robots array */
function unselectAll() {
resetAllStrokes();
resetAllBackgrounds();
selected_robots = [];
}
/% send waypoints over websocket */
function sendWaypoints() {
for(var i = 0; i < current_coordinate_list.length; i++) {
selected_robots. forEach((robot) => {
var send_string = ‘robot_${robot.robotNumber} w
${current_coordinate_list[i].x_actual} ${current_coordinate_list[i].y_actual}‘;
ws.send(send_string);
send_string = ‘robot_${robot.robotNumber} s ${i+1}
${current_coordinate_list[i].x_actual} ${current_coordinate_list[i].y_actual}‘;
ws.send(send_string);
console.log(send_string);
1
}
}
/* removes the little flag that accompanies the cursor when it’s active */
function escapeFlag() {
canvas.removeEventListener ('mousemove’, showFlag);
canvas_flag_active = false;
canvas_flag_position = {x:undefined,y:undefined};
}
/% removes the last active waypoint from both the canvas, and the waypoints container */
function removelLastWaypoint() {
if(number_of_coordinates > 0) {
number_of_coordinates--;
if(number_of_coordinates == 0) {
document.querySelector(’#waypoints-button’).style.display = 'none’;
}
current_coordinate_list = current_coordinate_list.slice(0,-1);
document.querySelector(’#coordinates-list-actual’).removeChild(document.querySelector(’#coordinates-list-acH
> div’));
}
}
/% removes all waypoints, both from the container and canvas, currently unused */
function removeAllWaypoints() {
if(!canvas_flag_active) {
number_of_coordinates = 0;
current_coordinate_list = [];
canvas_flag_position = {x:undefined,y:undefined};
var coordinates = document.querySelectorAll(’#coordinates-list > div’);
coordinates. forEach((coordinate) => {
document.querySelector(’#coordinates-1list’).removeChild(coordinate);
s
}
}
/* original flag style, currently unused */
function actualFlag(x,y) {
var ctx = canvas.getContext(’2d’);
ctx.lineTo(x+21,y+22);
ctx.lineTo(x+28,y+22);

97

ctx.lineTo(x+28,y+25);
ctx.lineTo(x+12,y+25);
ctx.lineTo(x+12,y+22);
ctx.lineTo(x+19,y+22);
ctx.lineTo(x+19,y+8);
ctx.lineTo(x+12,y+4);
ctx.lineTo(x+21,y+0);

}

/% alternate flag style */
function alternateFlag(x,y) {

var ctx =

canvas.getContext(’2d’);

ctx.lineTo(x+21,y+25);
ctx.lineTo(x+19,y+25);
ctx.lineTo(x+19,y+12);
ctx.lineTo(x+8,y+8);
ctx.lineTo(x+21,y+0);

}

/% draws the flag on the canvas at x,y and includes a counter i */
function drawFlag(x,y,i) {

var canvas = document.getElementById(’canvas’);

if (canvas.getContext) {

var ctx

= canvas.getContext(’2d’);

ctx.fillStyle = ’#FFFFFF’;
ctx.strokeStyle = ’#FFFFFF’
ctx.font = "10px Arial"

if(d)

ctx.fillText(i.toString(),x+27,y+27);
ctx.lineWWidth = 2;
ctx.beginPath();
ctx.fillStyle = ’'#FF0000’;
ctx.strokeStyle = ’#FFFFFF’
ctx.moveTo(x+21,y+0);
alternateFlag(x,y);
ctx.closePath()
ctx.stroke();
ctx.£fill1Q;

}
}

/* draw all currently active flags at their respective locations on the canvas */
function drawFlags() {

var canvas = document.getElementById(’canvas’);

var context = canvas.getContext(’2d’);

for(var i

= 0; i < number_of_coordinates; i++) {

if(i > 0) {
context.setLineDash([5]);
context.beginPath();
context.lineWWidth = 2;
context.strokeStyle = '#FFFFFF’;
context.moveTo(current_coordinate_list[i].x,current_coordinate_list[i].y);
context.lineTo(current_coordinate_list[i-1].x,current_coordinate_list[i-1].y);
context.stroke();
context.setLineDash([]);

}
}

for(var i = 0; i < number_of_coordinates; i++) {
drawFlag(current_coordinate_list[i].x-20,current_coordinate_list[i].y-35,i+1);

}
}

/% connects selected robots together with a line, also shows central point */

98

function connectSelected() {
var canvas = document.getElementById(’canvas’);
var context = canvas.getContext(’2d’);
var width = canvas.width;
var height = canvas.height;
var mid_x = undefined;
var mid_y = undefined;
context.setLineDash([5]);
if(selected_robots.length > 1) {
mid_x = 0;
mid_y = 0;
for(var i = 1; i < selected_robots.length; i++) {
var current_x = Math.round((selected_robots[i].x / pozyx_x_max) * width);

var current_y = Math.floor(height - ((selected_robots[i].y / pozyx_y_max) * height));

s

var prev_x = Math.round((selected_robots[i-1].x / pozyx_x_max) * width);

var prev_y = Math.floor(height - ((selected_robots[i-1].y / pozyx_y_max) * height));

mid_x += prev_x;
mid_y += prev_y;
if(i === (selected_robots.length - 1)) {
mid_x += current_x;
mid_y += current_y;
}
context.beginPath();
context.lineWWidth = 3;
context.strokeStyle = '#0000FF’;
context.moveTo(current_x,current_y);
context.lineTo(prev_x,prev_y);
context.stroke();
if((i === (selected_robots.length - 1)) && selected_robots.length != 2) {

s

var prev_x = Math.round((selected_robots[0].x / pozyx_x_max) * width);

var prev_y = Math.floor(height - ((selected_robots[0].y / pozyx_y_max) * height));

context.beginPath();
context.lineWidth = 3;
context.strokeStyle = '#Q000FF’;
context.moveTo(current_x,current_y);
context.lineTo(prev_x,prev_y);
context.stroke();

}
}
mid_x /= 1i;
mid_y /= 1i;

context.moveTo(mid_x, mid_y);
context.setLineDash([]);
context.fillStyle = ’#FFFFQO’;
context.arc(mid_x, mid_y, 5, 0, 2 * Math.PI);
context.fill(Q);
}
context.setLineDash([]);
}
/* sends a request message to dataturbine for sources, sinks, and channels */
function requestDT() {
if(ws.readyState == 1) {
ws.send(’requestDTconfig()’);

console.log(’Requesting channels and sinks from DataTurbine...’);
} else {

window.alert(’Not connected to server.’);
}

}

function reconDT() {

99

controller_name = document.querySelector(’#controllers-button’).innerHTML;
robot_name = document.querySelector(’#robots-button’).innerHTML;
reconfigureDT (robot_name,controller_name);
}
/* sends reconfigured settings to dataturbine */
function reconfigureDT(sinkName,chanName) {
if(ws.readyState == 1) {
ws.send(’reconfSink2Chan(’ + sinkName + ’, ’ + chanName + ’)’);
console.log(’Sending updated configuration to DataTurbine.’);
} else {
window.alert(’Not connected to server.’);
}
}
/% parses info received from datatubine for sources, sinks, channels, sets dropdown
accordingly */
function setDT(message) {
message = message.substring(10);
var m = message.split(’,’);
current_channels = [];
current_sinks = [];
current_sources = [];
document . querySelectorAll (’#controllers-dropdown>div’).forEach((element) => {
if(element.innerHTML != ’Waypoints’)
document.querySelector(’#controllers-dropdown’) .removeChild(element);
s
document . querySelectorAll (’#robots-dropdown>div’).forEach((element) => {
document . querySelector (’#robots-dropdown’) .removeChild(element) ;
s
m. forEach((msg) => {
if(msg.includes(’Channel’)) {
var msg = msg.split(’ ’)[0];
current_channels.push(msg);
if(!msg.includes(’robot’)) { /* controller */
var parent = document.querySelector(’#controllers-dropdown’);
var child = document.createElement(’div’);
child.addEventListener(’click’, function() {
setDropdown(’controllers-button’, msg);
B
child.innerHTML = msg;
parent.appendChild(child);
console.log(‘Controller: ${msg}‘);
} else { /* robot */
msg = msg.split(’-’)[0];
var non_duplicate = true;
document.querySelectorAll (’#robots-dropdown>div’) . forEach((element) => {
if(elemnent.innerHTML === msg) {
non_duplicate = false;
}
s
if(non_duplicate) {
var parent = document.querySelector(’#robots-dropdown’);
var child = document.createElement(’div’);
child.addEventListener(’click’, function() {
setDropdown(’ robots-button’, msg);
b
child.innerHTML = msg;
parent.appendChild(child);

100

} else if(msg.includes(’Sink’)) {
var msg = msg.split(’ ’)[0];
current_sinks.push(msg);
} else if(msg.includes(’Source’)) {
var msg = msg.split(’ ’)[0];
current_sources.push(msg);
} else {}
s
}
/* sets the robot card fields to 0 */
function resetValues(r) {
r.values. forEach((value,i) => {
if(r.fields[i]!="Robot ID’)
value.innerHTML = ’0’;
b
}
function drawCornerFlag() {
var canvas = document.querySelector(’canvas’);
var context = canvas.getContext(’2d’);
var canvas_container = document.getElementById(’canvas-container’);
var width = canvas_container.offsetWidth;
var height = canvas_container.offsetHeight;
context.beginPath();
context.lineWidth=2;
context.rect(width-50,10,40,40);
context.strokeStyle = ’#FFFFFF’;
context.stroke();
}

function drawGrid() {

}
/* draws all active robots on the canvas */
function drawRobots() {
var bound_x = pozyx_x_max;
var bound_y = pozyx_y_max;
var canvas = document.getElementById(’canvas’);
var context = canvas.getContext(’2d’);
var canvas_container = document.getElementById(’canvas-container’);
var width = canvas_container.offsetWidth;
var height = canvas_container.offsetHeight;
context.clearRect(®, 0, width, height);
drawFlag(width-48,18);
if(canvas_flag_active) {
drawFlag(canvas_flag_position.x,canvas_flag_position.y);
}
drawFlags(Q);
connectSelected();
current_robot_list. forEach((robot) => {
context.beginPath();
var current_x = Math.round((robot.x / bound_x) * width);
var current_y = Math.floor(height - ((robot.y / bound_y) * height));
context.lineWidth = 3;
context.arc(current_x, current_y, robot.radius, 0, 2 * Math.PI);
context.moveTo(current_x, current_y);
context.lineTo(current_x + ((robot.radius) * Math.cos(2*Math.PI -
robot.heading)),current_y + ((robot.radius) * Math.sin(2*Math.PI - robot.heading)));
context.strokeStyle = robot.color_stroke;
context.fillStyle = robot.color_fill;
context.fill(Q);

101

context.stroke();
drawCornerFlag(Q);
b
}
window.setInterval (drawRobots, 50);
/% sets the canvas dimensions */
function setCanvasDimensions() {
var canvas = document.getElementById(’canvas’);
var width = window.innerWidth * 0.73408;
var height = window.innerHeight * 0.58378;
canvas.width = width;
canvas.height = height;
}
/* generates a random number number between low and high, used in color generation for
robots */
function generateRandom(low,high) {
return Math.random() * (high - low) + low;
}
/* creates a robot object with the array of variables supplied in the argument */
function createRobot(vars) {
var r_f = Math.round(generateRandom(0,255));
var g_f = Math.round(generateRandom(0,255));
var b_f = Math.round(generateRandom(0,255));
var r_s = Math.round(generateRandom(0,255));
var g_s = Math.round(generateRandom(0,255));
var b_s = Math.round(generateRandom(0,255));
var fill_color = ‘rgb(${r_f}, ${g_£f}, ${b_£f})*;
var stroke_color = ‘rgb(${r_s}, ${g_s}, ${b_s})‘;
var robot = {
fields: [],
values: [],
robotNumber: undefined,
timeRemainingDisconnect: O,
timeRemainingRemoval: 0,
status:’Connected’,
x: undefined,
y: undefined,
heading: 0, /* radians */
radius: 15,
color_£fill: fill_color,
color_stroke: ’#FFFFFF’,
configuration: ’'Single’,
controller: ’Waypoint’,
cluster: undefined
1
for(var i = 0; i < number_of_fields; i++) {
var current_field = document.createElement(’div’);
current_field.classList.add(’display-field’);
current_field.classList.add(’robot_item-’ + vars[0]);
current_field.classList.add(’unselectable’);
var val_id;
/* sets the robot card fields */
switch(i) {

case 0:

current_field.innerHTML = ’Robot ID’; val_id = ’robot_id’; break;
case 1:

current_field.innerHTML = ’Type’; val_id = ’type’; break;
case 2:

current_field.innerHTML = ’Color’; val_id = ’color’; break;

102

case 3:

current_field.innerHTML = ’Position X’; val_id = ’position_x’; break;
case 4:

current_field.innerHTML = ’Position Y’; val_id = ’'position_y’; break;
case 5:

current_field.innerHTML = ’Position Z’; val_id = ’position_z’; break;
case 6:

current_field.innerHTML = ’Velocity’; val_id = ’velocity’; break;
case 7:

current_field.innerHTML = ’Heading’; val_id = ’heading’; break;
case 8:

current_field.innerHTML = ’Status’; val_id = ’status’; break;
default:

current_field.innerHTML = ’N/A’; break;
}
var current_value = document.createElement(’div’);
current_value.classList.add(’display-value’);
current_value.classList.add(robot_item-’ + vars[0]);
current_value.classList.add(’unselectable’);
if(val_id === ’status’) {
current_value.classList.add(’status-connected’);
current_value.innerHTML = robot.status;
} else if(val_id === ’color’) {
current_value.style.backgroundColor = fill_color;
} else {
current_value.innerHTML = vars[i];
}
robot. fields.push(current_£field);
robot.values.push(current_value);
}
robot.robotNumber = parseInt(robot.values[0].innerHTML);
return robot;
}
/* handles robot timeout */
function timer(r) {
clearTimeout (r.timeRemainingDisconnect);
clearTimeout (r.timeRemainingRemoval);
r.timeRemainingDisconnect = setTimeout(() => {
r.status = ’Disconnected’;
r.values[number_of_fields-1].innerHTML = r.status;
r.values[number_of_fields-1].classList.remove(’status-connected’);
r.values[number_of_fields-1].classList.add(’status-disconnected’);
}, data_timeout);
r.timeRemainingRemoval = setTimeout(() => {
removeRobot (r);
}, removal_timeout);
}
/* updates existing robots with provided variables, otherwise creates them */
function updateRobot(vars) {
var add_robot_flag = true;
if(vars.length < 8) { // probably no velocity, so we pad
vars[7] = vars[6];
vars[6] = 0;
}
if(current_robot_list.length) {
for(var i = 0; i < current_robot_list.length; i++) {
if(current_robot_list[i].values[0].innerHTML == vars[0]) {
add_robot_flag = false;
for(var j = 0; j < number_of_fields; j++) {

103

if(current_robot_list[i].fields[j].innerHTML === ’Status’) {

current_robot_list[i].status = ’Connected’;

current_robot_list[i].values[j].innerHTML = current_robot_list[i].status;
current_robot_list[i].values[j].classList.remove(’status-disconnected’);
current_robot_list[i].values[j].classList.add(’status-connected’);

else if(current_robot_list[i].fields[j].innerHTML === ’Position X’') {

current_robot_list[i].x = vars[j];

current_robot_list[i].values[j].innerHTML = vars[j];

} else if(current_robot_list[i].fields[j].innerHTML === ’'Position Y’) {
current_robot_list[i].y = vars[j];
current_robot_list[i].values[j].innerHTML = vars[j];

} else if(current_robot_list[i].fields[j].innerHTML === ’'Heading’) {
current_robot_list[i].heading = parseFloat(vars[j]);
current_robot_list[i].values[j].innerHTML = Math.round(((parseFloat(vars[j])) *

180 / Math.PI) * 100)/100;

5]

} else if(current_robot_list[i].fields[j].innerHTML === ’Color’) {
} else {
current_robot_list[i].values[j].innerHTML = vars[j];
}
}
timer (current_robot_list[i]);
}
}
drawRobots();

if(add_robot_flag) {
addRobot (createRobot(vars));
}
} else {
addRobot (createRobot(vars));
}
}
/* parses message received from websocket */
function checkMessage(m) {
if(m.includes(’DTConfig: ’)) {
console.log(’Received channels and sinks from DataTurbine.’);

setDT(m);

} else if(m.includes(’Source’) || m.includes(’Sink’) || m.includes(’Channel’)) {
setDT(m) ;

} else if(manual_control == false && m.includes(’robot_’)) {

// var robots_ = m.split(’;’);
// robots_.forEach((message) => {
// if(message.length > 0) {
// var robot_vars = message.split(’,’);
// robot_vars[0] = message.split(’,’)[0].slice(6);
// updateRobot (robot_vars);
//}
/! 1)
var robot_id = m.split(’,’)[0].slice(6).split(’-’)[0];
var robot_vars = m.split(’;’)[0].split(’,’);
robot_vars[0®] = robot_id;
updateRobot (robot_vars);
} else {
// console.log(m);
}
}
/* adds a new robot card */
function addRobot(r) {
number_of_robots += 1;

104

var container = document.getElementById(’robot-item-container’);

var rc = document.createElement(’div’);

rc.style.height = (((number_of_fields + 1) * field_line_height) + 2)+ ’px’;

rc.id = 'rc-’ + r.robotNumber;

rc.classList.add(’robot-item-div’);

rc.classList.add(’robot-item-’ + r.robotNumber);

rc.addEventListener (’mousedown’, displaySettings);

var cap = document.createElement(’div’);

cap.id = ’cap-’ + r.robotNumber

cap.classList.add(’robot-item-caption’);

cap.classList.add(’robot-item-’ + r.robotNumber);

cap.classList.add(’unselectable’);

cap.innerHTML = ’'Robot ’ + r.values[0].innerHTML;

var field_flex_container = document.createElement(’div’);

field_flex_container.id = ’robot_item_field_flex_container-’ + r.robotNumber;

field_flex_container.classList.add(’field-flex-container’);

field_flex_container.classList.add(’robot-item-’ + r.robotNumber);

var value_flex_container = document.createElement(’div’);

value_flex_container.id = ’robot_item_value_flex_container-’ + r.robotNumber;

value_flex_container.classList.add(’value-flex-container’);

value_flex_container.classList.add(’robot-item-’ + r.robotNumber);

rc.appendChild(cap);

rc.appendChild(field_flex_container);

rc.appendChild(value_flex_container);

for(var i = 0; i < number_of_fields; i++) {
field_flex_container.appendChild(r.fields[i]);
value_flex_container.appendChild(r.values[i]);

}

current_robot_list.push(r);

container.appendChild(rc);

timer(r);

}
/* removes a robot */
function removeRobot(r) {
if(r.configuration === ’'Cluster’) {
removeRobotFromCluster(r);
}
number_of_robots--;
for(var i = 0; i < current_robot_list.length; i++) {
if(r.robotNumber === current_robot_list[i].robotNumber) {
current_robot_list.splice(i,1);
}
}
r.fields[0].parentElement.parentElement.parentElement.removeChild(document.getElementById(’rc-’
+ r.robotNumber));
}
/* sets robot card background color, canvas robot outline color, brings up cluster
information */
function displaySettings(event, id, graphics) {
if(current_coordinate_list.length > ®)
document .getElementById(’waypoints-button’).style.display = 'block’;

var rnumber = 0;
var container;
var selection_flag = false;
if(id) {
rnumber = id

}

105

current_robot_list. forEach((robot) => {
if(!graphics)
rnumber = this.id.slice(this.id.index0f(’-’)+1)

if(robot.robotNumber == rnumber) {
if(robot.color_stroke != ’#OOFFQO’) {
if(!event.shiftKey)
resetAllStrokes();
robot.color_stroke = ’#OOFFQO’;
} else {
resetAllStrokes();
robot.color_stroke = ’#OOFFQO’;
}
if(robot.configuration === ’Cluster’) {

if(!event.shiftKey) {
selected_robots = [];
resetAllStrokes();
resetAllBackgrounds();
}
current_clusters[robot.cluster].forEach((robot) => {
selected_robots.push(robot);
robot.color_stroke = ’#QO000FF’;
document .getElementById(’rc-’+robot.robotNumber).style.backgroundColor = ’rgh(24,

24, 24)7;
selection_flag = true;
b
} else {
selected_robots.push(robot);
}

document.getElementById(’ configuration-button’).style.display = ’block’;
document.getElementById(’ configuration-button’).innerHTML = robot.configuration;
drawRobots();
3
s
if(!selection_flag) {
if(!graphics)
container = this;

else
container = document.getElementById(’rc-’+id);
if(container.style.backgroundColor != 'rgb(24, 24, 24)’) {

if(!event.shiftKey)
resetAllBackgrounds();
container.style.backgroundColor = 'rgb(24, 24, 24)’;
} else {
resetAllBackgrounds ()
container.style.backgroundColor = 'rgb(24, 24, 24)’;

3
}
if(current_coordinate_list.length > ®)
document .querySelector(’#waypoints-button’).style.display = 'inline’;

}

/* resets the background color of the robot cards */
function resetAllBackgrounds() {
document.querySelectorAll(’ .robot-item-div’).forEach((robot_item) => {
robot_item.style.backgroundColor = ’'rgh(34, 34, 34)’;
s
}

/* gets the mouse position relative to the canvas */
function getMousePos(canvas, evt) {
var rect = canvas.getBoundingClientRect();

106

return {
x: evt.clientX - rect.left,
y: evt.clientY - rect.top
3
}
/% sets the flag to follow the cursor */
function showFlag(evt) {
var pos = getMousePos(canvas, evt);
canvas_flag_position.x = pos.x - 20;
canvas_flag_position.y = pos.y - 27;
drawFlag(pos.x - 20,pos.y - 27);
canvas_flag_active = true;
}
/* resets the outline of the robots on the canvas */
function resetAllStrokes() {
document.getElementById(’waypoints-button’).style.display = 'none’;
selected_robots = [];
document.getElementById(’ configuration-button’).style.display = ’none’;
current_robot_list. forEach((robot) => {
robot.color_stroke = ’#FFFFFF’;
b
}
/* creates a new websocket */
ws = new WebSocket('"ws://127.0.0.1:9002/");
/* listen to clicks on canvas, determine if robot was clicked */
document .getElementById(’canvas’).addEventListener(’mousedown’, function canvasClick(e) {
var canvas = document.getElementById(’canvas’)
var canvas_coord = canvas.getBoundingClientRect();
var x = parselnt(e.clientX) - parselnt(canvas_coord.left);
var y = (canvas_coord.bottom - canvas_coord.top) - (parseInt(e.clientY) -
parselnt(canvas_coord.top));
x_actual = Math.round((x / canvas.width) * pozyx_x_max);
y_actual = Math.round((y / canvas.height) * pozyx_y_max);
var canvas_container = document.getElementById(’canvas-container’);
var width = canvas_container.offsetWidth;
var height = canvas_container.offsetHeight;
var shiftFlag = false;
var onRobot = false;
/* flag box */
if((x > (width - 50) && x < (width - 10)) && (y > (height - 50) && (y < height-10))) {
if(!canvas_flag_active) {
var canvas = document.getElementById(’canvas’);
canvas.addEventListener(’mousemove’, showFlag);
canvas_flag_active = true;
} else if(canvas_flag_active) {
canvas.removeEventListener (’mousemove’, showFlag);
canvas_flag_active = false;
3
else if(canvas_flag_active) {
current_coordinate_list.push({x:x,y:height-y,x_actual:x_actual,y_actual:y_actual});
var coordinates = document.createElement(’div’);
coordinates.innerHTML = ‘Waypoint ${++number_of_coordinates}: [${x_actual} ,
${y_actual} 1 [${x} , ${y} 1%;
coordinates.classList.add(’coordinates’);
var parent = document.getElementById(’coordinates-list-actual’);
parent.insertBefore(coordinates,parent.firstChild);

]

if(document.querySelector(’#waypoints-button’).style.display != ’'inline’ &&
selected_robots.length > 0)
document.querySelector(’#waypoints-button’).style.display = ’inline’;

107

} else {
current_robot_list.forEach((robot) => {
if(Math.abs(robot.x - x_actual) < 80 && Math.abs(robot.y - y_actual) < 80) {
displaySettings(e, robot.robotNumber, true);
onRobot = true;
} else {

}
B
if(!'onRobot && !e.shiftKey) {
resetAllStrokes();
resetAllBackgrounds();
}
}
b
/* websocket connection is active */
ws.onopen = function() {
console.log("Connection established!");
}
/* websocket connection is closed */
ws.onclose = function() {
console.log("Connection closed!");
}
/% whenever there’s a message received over the websocket */
ws.onmessage = function(m) {
/% handle message */
if(typeof m.data === ’string’) {
checkMessage(m.data);
} else if(m.data instanceof Blob) {
var reader = new FileReader();
reader.onload = function() {
checkMessage(reader.result);
}
reader.readAsText(m.data);
} else if (m.data instanceof ArrayBuffer) {
console.log(m.data instanceof ArrayBuffer);

}
}

/* clear the console of all text */
function clearConsole() {
console.API;

if (typeof console._commandLineAPI !== ’'undefined’) {
console.API = console._commandLineAPI;
} else if (typeof console._inspectorCommandLineAPI !== ’'undefined’) {
console.API = console._inspectorCommandLineAPI;
} else if (typeof console.clear !== ’undefined’) {
console.API = console;
}
console.API.clear();
}
HAHRHHHRRHHAH
server/server.js
HHAHRHH SRR

chalk = require(’chalk’);

ws = require(’ws’);

net = require(’net’);

logger = require(’./logger.js’);

108

const info = ’info’;
const debug = ’debug’;
const warning = ’'warning’;

logger.log.info(’Server started’);

color_error = chalk.bold.red;
color_packet = chalk.cyan;
color_connect = chalk.green;
color_disconnect = chalk.red;
color_websocket = chalk.yellow;
color_tcp = chalk.magenta;

websocketClient = undefined;
wsPort = 9002;

tcpClient = undefined;
tcpPort = 9001;

const wss = new ws.Server({
perMessageDeflate: false,
port: wsPort

b;

/* websocket server */
wss.on(’connection’, (ws) => {
/* message received */
ws.on(’'message’, (m) => {
console.log(‘Received on ${color_websocket(’Websocket’)}: ${color_packet(m)}*);
if(tcpClient) {
tcpClient.write(m);
console.log(‘Sent on ${color_tcp('TCP’)}: ${color_packet(m)}‘);
}
B
/* websocket closed */
ws.on(’close’, O => {
console.log(‘${color_websocket(’Websocket client’)} has
${color_disconnect(’disconnected’)}.*);
logger.log.info(’Websocket client has disconnected’);
websocketClient = undefined;
b
/% websocket error */
ws.on(’error’, (e) => {
console.log(‘An ${color_error(’error’)} has occured: ${color_error(e.message)}‘);
logger.log.error(e.message);
websocketClient = undefined;
s
console.log(‘${color_websocket(’Websocket client’)} has ${color_connect(’connected’)}.
logger.log.info(’Websocket client has connected’);
websocketClient = ws;
b
/% tcp server */
const nss = net.createServer((c) => {
tcpClient = c;
console.log(‘${color_tcp('TCP client’)} has ${color_connect(’connected’)}.*);
logger.log.info('TCP client has connected’)
/% tcp closed */
c.onC’end’, O => {

109

console.log(‘${color_tcp(’TCP client’)} has ${color_disconnect(’disconnected’)}.*);
logger.log.info(’TCP client has disconnected’);
tcpClient = undefined;
s
/¥ tcp message */
c.on(’data’, (m) => {
console.log(‘Received on ${color_tcp('TCP’)}: ${color_packet(m)}‘);
if(websocketClient) {
if (websocketClient.readyState === 1) {
websocketClient.send(m) ;
console.log(‘Sent on ${color_websocket(’Websocket’)}: ${color_packet(m)}‘);
}
3
B
/* tcp error */
c.on(’error’, (e) => {
console.log(‘An ${color_error(’error’)} has occured: ${color_error(e.message)}‘);
logger.log.error(e.message);
tcpClient = undefined;
B
b
/* tcp server listening for a connection */
nss.listen(tcpPort, (O => {
console.log(‘${color_tcp(’TCP server’)} listening on port ${color_tcp(tcpPort)}.*);
s

/* exit on SIGINT */
process.on(’SIGINT’, () => { process.exit() 1});

/* log server shutdown */

process.on(’exit’, O => {
process.stdout.write("\033[2K\033[200D");
logger.logSync.info(’Server shut down’);
console.log(’Shutting down server.’);

b;

HAHHHBHBHBH
server/robot-test.js
HAHRHHHHRRHA

var net = require(’net’);
var timers = require(’timers’)

var nss = new net.Socket();
var number_of_robots = 1;
var robots = [];

var current_waypoints = [];
var stop = false;

var tcpClient;
nss.connect (9001, '127.0.0.1°, function() {
tcpClient = nss;

console.log(’Connected to TCP server.’);

b;

nss.on(’data’, function(data) {
if(data == ’requestDTconfig()’) {

110

try{
tcpClient.write(’DTConfig: matlab/commands Channel,robot_1 Sink,robot_l-source/states
Channel’);
} catch(e) {}
} else if(data.includes(’s’)) {
var msg = data.toString().split(’robot_’);
msg.forEach((message) => {
if(message.includes(’s’)) {
var robot_id = parseInt(message.split(’ ’)[0]);
var waypoint_number = parselnt(message.split(’ ’)[2]);
var waypoint_x = parselnt(message.split(’ ’)[3]);
var waypoint_y = parselnt(message.split(’ ’)[4]);
while(current_waypoints.length < robot_id + 1) {
current_waypoints.push({id:undefined,num:undefined,waypoints:[]});
}
var max_num = 0;
if(current_waypoints[robot_id].num != undefined) {
if(waypoint_number < current_waypoints[robot_id].num) {
max_num = current_waypoints[robot_id].num;
} else {
max_num = waypoint_number;
}
}
if(waypoint_number === 1) {
beginRoute(robot_id) ;
}
current_waypoints[robot_id].id = robot_id;
current_waypoints[robot_id].num = max_num;
if(current_waypoints[robot_id].waypoints.length > waypoint_number - 1) {
current_waypoints[robot_id].waypoints[waypoint_number-1] =
{num:waypoint_number, x:waypoint_x,y:waypoint_y}
} else if(current_waypoints[robot_id].waypoints.length === max_num + 1) {
current_waypoints[robot_id].waypoints[waypoint_number-1] =
{num:waypoint_number,x:waypoint_x,y:waypoint_y};
} else {
current_waypoints[robot_id] .waypoints.push({num:waypoint_number,x:waypoint_x,y:waypoint_y})
}
console.log(current_waypoints);
}
1
}
b
function beginRoute(id) {
robots. forEach((robot) => {
if(robot.number === id) {
robot.waypoint = true;
robot.waypoint_number = 0;
robot.stop = false;

}
b
}
function endRoute(id) {
robots. forEach((robot) => {
if(robot.number === id) {
robot.waypoint = false;
robot.waypoint_number = undefined;
3
s
}

111

function loopRoute(robot) {
robot.waypoint = true;
robot.waypoint_number = 0;
}
function stopRoute(robot) {
robot.stop = true;
}
nss.on(’close’, function() {
console.log(’TCP connection closed.’);
s
nss.on(’error’, (error) => {
console.log(‘An error has occured: ${error.message}‘);
process.exit(1);
b
function generateRandom(low,high) {
return Math.round(Math.random() * (high - low) + low);
}
function advanceRobot(robot) {
robot.x_present = robot.x_future;
robot.y_present = robot.y_future;
robot.z_present = robot.z_future;
}
function advanceWaypoint(robot) {
if(withinThreshold(robot)) {
if(robot.waypoint_number++ < current_waypoints[robot.number].num) {
try {
robot.x_end = current_waypoints[robot.number].waypoints[robot.waypoint_number].x;
robot.y_end = current_waypoints[robot.number].waypoints[robot.waypoint_number].y;
robot.z_end = current_waypoints[robot.number].waypoints[robot.waypoint_number].z;
} catch(e) {
stopRoute (robot) ;
}
} else {
stopRoute (robot);
}
}
}
function withinThreshold(robot) {
var threshold = 10;
var x_squared = Math.pow((robot.x_end - robot.x_present),2);
var y_squared = Math.pow((robot.y_end - robot.y_present),2);
var distance = Math.sqrt(x_squared + y_squared);
if(distance < threshold) {
console.log(‘Finished Waypoint ${robot.waypoint_number}‘);
return true;
}
return false;
}
function setFuture(robot) {
if(!robot.waypoint) {
var robot_heading_delta = generateRandom(-180,180);
var heading_offset = 0.04;

if(robot_heading_delta < 0)

robot.heading_degrees -= (heading_offset * Math.abs(robot_heading_delta));
if(robot_heading_delta > 0)

robot.heading_degrees += (heading_offset * Math.abs(robot_heading_delta));
if(robot.heading_degrees < -180)

robot.heading_degrees += 360;

112

if(robot.heading_degrees > 180)

robot.heading_degrees -= 360;
robot.heading = robot.heading _degrees * Math.PI / 180;
var speed_offset = 10;

robot.y_future = Math.round(robot.y_present + (speed_offset * Math.sin(robot.heading)));
robot.x_future = Math.round(robot.x_present + (speed_offset * Math.cos(robot.heading)));

if(robot.x_future > 3946)
robot.x_future = 0;
else if(robot.x_future < 0)
robot.x_future = 3946;
if(robot.y_future > 2854)
robot.y_future = 0;
else if(robot.y_future < 0)
robot.y_future = 2854;
} else {
try {
robot.x_end = current_waypoints[robot.number].waypoints[robot.waypoint_number].x;
robot.y_end = current_waypoints[robot.number].waypoints[robot.waypoint_number].y;
robot.z_end = current_waypoints[robot.number].waypoints[robot.waypoint_number].z;
} catch(e) {}
advanceWaypoint (robot);
calculateFuture(robot);
b
3
function calculateFuture(robot) {
var heading = calculateHeading(robot.x_present,robot.y_present,robot.x_end,robot.y_end);
robot.heading_delta = heading - robot.heading_degrees;
if(robot.heading_delta < -180)
robot.heading_delta += 360;
if(robot.heading_delta > 180)
robot.heading_detla -= 360;

var heading_offset = 0.1;

if(robot.heading_delta <)

robot.heading_degrees -= (heading_offset * Math.abs(robot.heading_delta));
if(robot.heading_delta >)

robot.heading_degrees += (heading_offset * Math.abs(robot.heading_delta));
if(robot.heading_degrees < -180)

robot.heading_degrees += 360;
if(robot.heading_degrees > 180)

robot.heading_degrees -= 360;
robot.heading = robot.heading_degrees * Math.PI / 180;

var speed_offset = 10;

robot.y_future = Math.round(robot.y_present + (speed_offset * Math.sin(robot.heading)));
robot.x_future = Math.round(robot.x_present + (speed_offset * Math.cos(robot.heading)));

if(robot.x_future > 3946)
robot.x_future = 0;

else if(robot.x_future < 0)
robot.x_future = 3946;

if(robot.y_future > 2854)
robot.y_future = 0;

else if(robot.y_future < Q)
robot.y_future = 2854;

113

}
function generateRobots() {
for(var i = 0; i < number_of_robots; i++) {

robots.push({
name: ‘robot_${i}"*,
number:i,
type:’'dd’,
x_present:generateRandom(100,2900),
y_present:generateRandom(100,2800),
z_present:0,
x_future:0,
y_future:0,
z_future:0,
x_end:0,
y_end:0,
z_end:0,
color:0,
velocity:0,
heading:Math.PI/2,
heading_degrees: 90,
heading_delta:0,
waypoint:false,
waypoint_number:undefined,
timer:undefined,

stop:false
B
}
}
function sendRobot(robot) {
var send_string = ‘${robot.name}, ${robot.type}, ${robot.color}, ${robot.x_present},

${robot.y_present}, ${robot.z_present}, ${robot.velocity}, ${robot.heading};‘;
try {
tcpClient.write(send_string);
} catch(e) {
console.error(‘An error has occured: ${e.message}‘);
process.exit(1l);
}
}
function setUpdates() {
robots. forEach((robot) => {
var t = timers.setInterval (function() {
if(!robot.stop) {
setFuture (robot) ;
advanceRobot (robot) ;
}
sendRobot (robot);
},25);
s
}
generateRobots();
setUpdates();
function calculateHeading(current_x,current_y,waypoint_x,waypoint_y) {
var theta_radians = Math.atan2((waypoint_y - current_y), (waypoint_x - current_x));
var theta_degrees = theta_radians * 180 / Math.PI;
return theta_degrees;

}

H##HHHRHHAH
server/logger.js

114

##H#BHRHHARHA
const fs = require(’fs’);

/* async logger */
exports.log = {
/% message level */
error(message) {
this.writeFile(message, ’ERROR’);
1,
warning(message) {
this.writeFile(message, 'WARNING’);
1,
debug(message) {
this.writeFile(message, 'DEBUG’);
1,
info(message) {
this.writeFile(message,’INFO’);
1,
/% write to server.log */
writeFile(message,level) {
if(process.platform === ’darwin’) {
var _path = __dirname + ’/server.log’;
var _time = Date().split(’ ’).slice(®,-2).join(’ ’);
var _lineending = '\n’;
} else if(process.platform === ’win32’) {
var _path = __dirname + ’\\server.log’;
var _time = Date().split(’ ’).slice(0,-4).join(’ ’);
var _lineending = ’'\r\n’;
}
fs.open(_path, ’a’
if (error)
return console.error(‘Couldn’t open log file: ${path}‘);
var log_message = ‘${_time} - ${level}: ${message}.${_lineending}‘;
var buffer = new Buffer(log_message);
fs.write(fd, buffer, 0, buffer.length, null, function(error) {
if (error)
return console.error(‘Couldn’t write to log file: ${path}‘);
fs.close(fd, O => { buffer = null; });
b
B
}
}
/% synchronous logging */
exports.logSync = {
/% message level */
error(message) {
this.writeFile(message, 'ERROR’);
1,
warning(message) {
this.writeFile(message, 'WARNING’);
1,
debug(message) {
this.writeFile(message, 'DEBUG’);
1,
info(message) {
this.writeFile(message, INFO’);
1,

/* write to server.log */

, function(error, fd) {

115

writeFile(message,level) {

if(process.platform === ’darwin’) {
var _path = __dirname + ’/server.log’;
var _time = Date().split(’ ’).slice(0,-2).join(’ ’);
var _lineending = '\n’;
} else if(process.platform === ’win32’) {
var _path = __dirname + ’\\server.log’;
var _time = Date().split(’ ’).slice(0,-4).join(’ ’');
var _lineending = ’\r\n’;
}
var log_message = ‘${_time} - ${level}: ${message}.${_lineending}‘;
var buffer = new Buffer(log_message);
try {

var fd = fs.openSync(_path, ’'a’);
} catch(e) {
return console.error(‘Couldn’t open log file: ${path}‘);
3
try {
fs.writeSync(fd, buffer, 0, buffer.length, null);
} catch(e) {
return console.error(‘Couldn’t write to log file: ${path}‘);
3
b
}

HHBRAHREA AR
server/server-test.js
###BHA#ARHH

var net = require(’net’);
var timers = require(’timers’)

var nss = new net.Socket();
var tcpClient;

nss.connect (9001, '127.0.0.1’°, function() {
tcpClient = nss;
console.log(’Connected to TCP server.’);

b;

nss.on(’data’, function(data) {
console.log(’Received on TCP: ’ + data);

b;

nss.on(’close’, function() {
console.log(’TCP connection closed.’);

b

nss.on(’error’, (error) => {
console.log(‘An error has occured: ${error.message}‘);
process.exit(1l);

1))

function generateRandom(low,high) {
return Math.random() * (high - low) + low
}

var t = timers.setInterval(() => {

116

var val_0 = Math.round(generateRandom(0,4));;

var val_1 = Math.round(generateRandom(0, 100));

var val_2 = Math.round(generateRandom(®,500));

var val_3 = Math.round(generateRandom(0,500));

var val_4 = Math.round(generateRandom(0, 100));

var val_5 = Math.round(generateRandom(®,100));

var val_6 = Math.round(generateRandom(0, 100));

var val_7 = Math.round(generateRandom(0, 100));

try {
tcpClient.write('robot_” + val_® + ’,’ + val_1 + ’,” + val_2 +

val_4 + ’,’ + val_5 +

} catch(e) {
console.error(‘An error has occured: ${e.message}‘);
process.exit(1);

)+ val_3 + 7,7 o+

+val_6 + ', +val_7 + ’;’);

}
1, 100);
HAHRHHHHRRHAH
server/package.json
#A#H#HHRHRH
{
"name": "mech_server",
"version": "1.0.0",
"description": "Senior Design Project",
"main": "server.js",
"dependencies": {
"chalk": ""1.1.3",
"ws": "72.2.0"
1,
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",
"start": "node server.js"
1,
"repository": {
"type": "git",
"url": "git+https://github.com/KittsSeniorDesign/WebUI.git"
1,
"author": "Marton Demeter",
"license": "ISC",
"bugs": {
"url": "https://github.com/KittsSeniorDesign/WebUI/issues"
1,
"homepage": "https://github.com/KittsSeniorDesign/WebUI#readme",
"devDependencies": {}
}

A.3.3 Ground Control

##RAH# RS

DTtoTCP. java

H#RHHH R

package edu.scu.engr.rsl.util;

import java.io.BufferedInputStream;
import java.io.IOException;

import java.io.PrintWriter;

import java.net.Socket;

117

import java.net.UnknownHostException;
import java.util.Iterator;

import java.util.Observable;

import java.util.Observer;

import java.util.Vector;

import com.rbnb.sapi.ChannelMap;
import com.rbnb.sapi.ChannelTree;
import com.rbnb.sapi.SAPIException;
import com.rbnb.sapi.Sink;

import com.rbnb.sapi.Source;

import edu.scu.engr.rsl.dataturbine.DataClient;

public class DTtoTCP implements Observer {
protected DataClient dataClient;
protected Thread DTThread;
protected Vector<String> channellList = new Vector<String>(Q);
protected Socket socket;
protected PrintWriter sockout;
protected SockInThread sockinThread;
protected String tcpIP = "localhost", DTIP = "localhost", sinkName = "_UI_Sink",
sinkChannelName = "*/states", sourceName = "_UI_Source", sourceChannelName = "_UI";
protected int tcpPort = 9001, DTPort = 3333;
protected ChannelMap sourcelMap;
protected Source source;

public static final String requestDTconfig = "requestDTconfig()", reconfSink2Chan =
"reconfSink2Chan(";

class SockInThread extends Thread {

protected BufferedInputStream sockin;

protected String catchpattern = "[0-9]+[a-zA-Z]";

SockInThread (BufferedInputStream sockin) {
this.sockin = sockin;

}

// public so that this can be tested
public void handleReconfRequest(String str) {
String[] splitStrings = str.substring(reconfSink2Chan.length()).split(" ");
// do this to remove the , at the end of the sink argument
String sinkName = splitStrings[0].substring(®, splitStrings[0].length()-1);
// removes trailing)
String sourceChannelName = splitStrings[1].substring(®,
splitStrings[1].length()-1);
String outData = sinkName + " r " + sourceChannelName;
try {
sourceMap.PutDataAsByteArray (0, outData.getBytes());
source.Flush(sourceMap) ;
System.out.println("Supposedly asked to reconfigure " + outData);
} catch (SAPIException e) {
e.printStackTrace();

}

@Override
public void run() {
int avail = 0;

118

while(!isInterrupted()) {
try {
avail = sockin.available();
if(avail > 0) {
byte[] data = new byte[avail];
sockin.read(data, 0, avail);
String str = "";
for(int i = 0; i < data.length; i++) {
str += (char)data[i];
}
if(str.equals(requestDTconfig)) {
sockout.println("DTConfig: "+getChansAndSinks());
} else if(str.length() > reconfSink2Chan.length() &&
str.substring(0,
reconfSink2Chan.length()).equals(reconfSink2Chan)) {
handleReconfRequest(str);
} else {
System.out.print("sending to DT as bytes:");
System.out.println(str);
String[] strs = str.split(" ");
String outputStr = "";
for(int i = 0; i < strs.length; i++) {
if(i > 0) {
outputStr += " ";
}
if(strs[i] .matches("[0-9]+[a-zA-Z]+_[0-9]+")) {
String pos = strs[i].split("[a-zA-Z]+_[0-9]+")[0];
String roboNum = strs[i].split("[a-zA-Z]+_")[1];
String roboName = strs[i].split("[0-9]+")[1];
outputStr += pos + ";" + roboName + roboNum;
} else {
outputStr += strs[i];
}
}
String[] dataStr = outputStr.split(";");
for(String s : dataStr) {
System.out.println(s);
sourceMap.PutDataAsByteArray (0, s.getBytes());
source.Flush(sourceMap);

}

} catch (IOException e) {
e.printStackTrace();

} catch (SAPIException e) {
e.printStackTrace();

}

}

DTtoTCP() {
initializeQ);
}
DTtoTCP(String tcpIP, int tcpPort) {

this.tcpIP = tcpIP;
this.tcpPort = tcpPort;

119

initializeQ);

DTtoTCP(String DTIP, int DTPort, String sinkName, String sinkChannelName, String
sourceName, String sourceChannelName, String tcpIP, int tcpPort) {
this.DTIP = DTIP;
this.DTPort = DTPort;
this.sinkName = sinkName;
this.sinkChannelName = sinkChannelName;
this.sourceName = sourceName;
this.sourceChannelName = sourceChannelName;
this.tcpIP = tcplP;
this.tcpPort = tcpPort;
initializeQ);

protected void initialize() {
setupDataTurbineSource();
setupSocket();
startDataClient();

protected void setupSocket() {

try {
socket = new Socket(tcpIP, tcpPort);
socket.setTcpNoDelay(true);
sockout = new PrintWriter(socket.getOutputStream(), true);
sockinThread = new SockInThread(new

BufferedInputStream(socket.getInputStream()));

sockinThread.start();
System.out.println("Web Talker started.");

} catch (UnknownHostException e) {
System.err.println("Don’t know about host " + tcpIP);
System.exit(1l);

} catch (IOException e) {
System.err.println("Couldn’t get I/0 for the connection to " + tcpIP);
System.exit(1l);

protected void startDataClient() {
dataClient = new DataClient(DTIP, Integer.toString(DTPort),sinkName);
dataClient.addObserver(this);
dataClient.addSinkChannel (sinkChannelName) ;
channelList.add(sinkChannelName) ;
dataClient.connect();
dataClient.subscribe();
DTThread = new Thread(dataClient);
DTThread.start();

protected void setupDataTurbineSource() {
sourceMap = new ChannelMap();
sourceMap.PutTimeAuto("timeofday");
try {
sourceMap.Add (sourceChannelName) ;
} catch (SAPIException e) {
e.printStackTrace(Q);
}

120

source = new Source();

try {
source.OpenRBNBConnection(DTIP + ":" + DTPort, sourceName);
source.Register(sourceMap) ;

} catch (SAPIException e) {
e.printStackTrace();

}
}
@Override
public void update(Observable o, Object arg) { // MatlabController update in Scot’s
stuff
if(o instanceof DataClient) {
if(channelList.size()>0) {
//Get data out of the ChannelMap
ChannelMap v_map = (ChannelMap)arg;
for(int i=0; i<channelList.size(); i++) {
byte[] v_data = v_map.GetData(i);
System.out.println(v_map.GetName(i));
if(v_data != null && v_data.length>0) {
String data = "";
for(int j = 0; j < v_data.length; j++) {
data += (char)v_datal[j];
}
// prepends the data being sent to the UI with the name of the source
it came from
data = v_map.GetName(i).split("/")[0]+", 0, 0, "+data;
sockout.println(data);
System.out.println("sending to UI:" +data);
}
}
}
}
}

protected String getChansAndSinks() {
ChannelMap cm = new ChannelMap();

try {
cm. Add (" /*");
Sink sink = new Sink();
sink.OpenRBNBConnection((DTIP + ":" + DTPort), "_DTConfigViewer");

sink.RequestRegistration(cm);
ChannelMap resultcm = sink.Fetch(-1, cm);
ChannelTree ct = ChannelTree.createFromChannelMap(resultcm);
@SuppressWarnings ("unchecked™)
Iterator<ChannelTree.Node> it = ct.iterator();
String dtconf = "";
while(it.hasNext()) {
ChannelTree.Node n = it.next();
System.out.print(n.getFullName()+ + n.getType() + ", ");
if(In.getType().toString().equals("Source") &&
In.getType() .toString() .equals("Folder") && n.getFullName().charAt(®) !=
BB R
dtconf += n.getFullName() + " " + n.getType(Q);

dtconf += ",";

}
}
if(dtconf.length() > 0) {
// substring removes the trailing comma

121

return dtconf.substring(®, dtconf.length()-1);
} else {
return dtconf;
}
} catch (SAPIException e) {
e.printStackTrace();
}

return

}

// sampleUIData should be of the form "reconfSink2Chan(sinkName, channelName)" without
the quotes

public void testSinkReconfiguration(String sampleUIData) {
sockinThread.handleReconfRequest (sampleUIData);

}

// args should be = [v_hostIP, v_hostPort, v_sourceName] referencing the class
constructor
public static void main(String[] args) {
DTtoTCP d = new DTtoTCP("localhost", 9001);
//System.out.println("\nDTConfig: "+d.getChansAndSinks());
try {
System.in.read();
} catch (IOException e) {
e.printStackTrace(Q);
}

d.testSinkReconfiguration("reconfSink2Chan(robot_2, matlab/commands)");

#A##HBHBHY
MECHDTConnection.m
HAHRHHHHRHH

function self=MECHDTConnection(robotName,ipAddress, tcpPort)

self.MECH_send = @MECH_send;

connect = controller(ipAddress,tcpPort, matlab’);

funct = registerfunction(connect,’MECHDataParser’,’*/MECHdata’);

channelidx = addcommandchannel (connect,’commands’);

start(connect);

scrdstid = 1;

controlschem = 2;

function funct = datamap(inp, in_min, in_max, out_min, out_max)
funct = (inp - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;

end

position = [0 O O 0];

sendCounter = 0;

function MECH_send(inputVector)
sendCounter = sendCounter+1;
disp(sendCounter);

inputVector = uintl6([datamap(inputVector(1l), -1.0, 1.0, 0.0, 2048.0)
datamap(inputVector(2), -1.0, 1.0, 0.0, 2048.0)]1);

topleft = uint8(bitshift(inputVector(l), -8));
botleft = uint8(bitshift(bitshift(inputVector(l), 8), -8));

122

topright = uint8(bitshift(inputVector(2), -8));
botright = uint8(bitshift(bitshift(inputVector(2), 8), -8));

%disp(inputVector);
A = uint8([scrdstid controlschem botright topright botleft topleft]);
disp(position);
sendcommand (connect, channelidx, A);
end

end

HH#HH RS
MECHDataParser.m
#HHHH R RS

% This code was written in order to test DataTurbines upload and download
% capability on XBees, Arduinos, etc. It is called by testScript.m.

%

% Written by: Jasmine Cashbaugh

% Written on: August 19, 2011

%

% deddn
0

function dataOut = MECHDataParser(dataln)
byte_array = dataln.getArray;
dataOut = char(java.lang.String(byte_array)); % Converts the byte
% array to a string.

% The following two lines are not needed to use dataParser. I kept them
% in for debugging purposes as they display the data to the screen.

% disp(’This is called and the data is: ’);

% disp(dataOut);

% Run the command.
% global connect % In the code for debugging. Will be removed in final
% % version.
% global connectl
% global connect2
% global connect connectl connect2 connect3

assignin(’base’,’position’, dataOut);
end

123

	Santa Clara University
	Scholar Commons
	6-15-2017

	Multi-bot Easy Control Hierarchy
	Ryan Cooper
	Marton Demeter
	Jonathan Ho
	Alan Nguyen
	Recommended Citation

	Multi-bot Easy Control Hierarchy Thesis_COEN
	Signed front page

