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ABSTRACT 

 

 

With the rise of (semi)autonomous vehicles and continuum robotics technology and 

applications, there has been an increasing interest in controller and haptic interface designs. 

The presence of nonlinearities in the vehicle dynamics is the main challenge in the selection 

of control algorithms for real-time regulation and tracking of (semi)autonomous vehicles. 

Moreover, control of continuum structures with infinite dimensions proves to be difficult 

due to their complex dynamics plus the soft and flexible nature of the manipulator body. 

The trajectory tracking and control of automobile and robotic systems requires control 

algorithms that can effectively deal with the nonlinearities of the system without the need 

for approximation, modeling uncertainties, and input disturbances. Control strategies based 

on a linearized model are often inadequate in meeting precise performance requirements. 

To cope with these challenges, one must consider nonlinear techniques. Nonlinear control 

systems provide tools and methodologies for enabling the design and realization of 

(semi)autonomous vehicle and continuum robots with extended specifications based on the 

operational mission profiles. This dissertation provides an insight into various nonlinear 

controllers developed for (semi)autonomous vehicles and continuum robots as a guideline 

for future applications in the automobile and soft robotics field. A comprehensive 

assessment of the approaches and control strategies, as well as insight into the future areas 

of research in this field, are presented. 

First, two vehicle haptic interfaces, including a robotic grip and a joystick, both of 

which are accompanied by nonlinear sliding mode control, have been developed and 

studied on a steer-by-wire platform integrated with a virtual reality driving environment. 
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An operator-in-the-loop evaluation that included 30 human test subjects was used to 

investigate these haptic steering interfaces over a prescribed series of driving maneuvers 

through real time data logging and post-test questionnaires. A conventional steering wheel 

with a robust sliding mode controller was used for all the driving events for comparison. 

Test subjects operated these interfaces for a given track comprised of a double lane-change 

maneuver and a country road driving event. Subjective and objective results demonstrate 

that the driver’s experience can be enhanced up to 75.3% with a robotic steering input when 

compared to the traditional steering wheel during extreme maneuvers such as high-speed 

driving and sharp turn (e.g., hairpin turn) passing.  

Second, a cellphone-inspired portable human-machine-interface (HMI) that 

incorporated the directional control of the vehicle as well as the brake and throttle 

functionality into a single holistic device will be presented. A nonlinear adaptive control 

technique and an optimal control approach based on driver intent were also proposed to 

accompany the mechatronic system for combined longitudinal and lateral vehicle 

guidance. Assisting the disabled drivers by excluding extensive arm and leg movements 

ergonomically, the device has been tested in a driving simulator platform. Human test 

subjects evaluated the mechatronic system with various control configurations through 

obstacle avoidance and city road driving test, and a conventional set of steering wheel and 

pedals were also utilized for comparison. Subjective and objective results from the tests 

demonstrate that the mobile driving interface with the proposed control scheme can 

enhance the driver’s performance by up to 55.8% when compared to the traditional driving 

system during aggressive maneuvers. The system’s superior performance during certain 
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vehicle maneuvers and approval received from the participants demonstrated its potential 

as an alternative driving adaptation for disabled drivers. 

Third, a novel strategy is designed for trajectory control of a multi-section 

continuum robot in three-dimensional space to achieve accurate orientation, curvature, and 

section length tracking. The formulation connects the continuum manipulator dynamic 

behavior to a virtual discrete-jointed robot whose degrees of freedom are directly mapped 

to those of a continuum robot section under the hypothesis of constant curvature. Based on 

this connection, a computed torque control architecture is developed for the virtual robot, 

for which inverse kinematics and dynamic equations are constructed and exploited, with 

appropriate transformations developed for implementation on the continuum robot. The 

control algorithm is validated in a realistic simulation and implemented on a six degree-of-

freedom two-section OctArm continuum manipulator. Both simulation and experimental 

results show that the proposed method could manage simultaneous extension/contraction, 

bending, and torsion actions on multi-section continuum robots with decent tracking 

performance (e.g. steady state arc length and curvature tracking error of 3.3mm and 

130mm-1, respectively). 

Last, semi-autonomous vehicles equipped with assistive control systems may 

experience degraded lateral behaviors when aggressive driver steering commands compete 

with high levels of autonomy. This challenge can be mitigated with effective operator 

intent recognition, which can configure automated systems in context-specific situations 

where the driver intends to perform a steering maneuver. In this article, an ensemble 

learning-based driver intent recognition strategy has been developed. A nonlinear model 
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predictive control algorithm has been designed and implemented to generate haptic 

feedback for lateral vehicle guidance, assisting the drivers in accomplishing their intended 

action. To validate the framework, operator-in-the-loop testing with 30 human subjects was 

conducted on a steer-by-wire platform with a virtual reality driving environment. The 

roadway scenarios included lane change, obstacle avoidance, intersection turns, and 

highway exit. The automated system with learning-based driver intent recognition was 

compared to both the automated system with a finite state machine-based driver intent 

estimator and the automated system without any driver intent prediction for all driving 

events. Test results demonstrate that semi-autonomous vehicle performance can be 

enhanced by up to 74.1% with a learning-based intent predictor. The proposed holistic 

framework that integrates human intelligence, machine learning algorithms, and vehicle 

control can help solve the driver-system conflict problem leading to safer vehicle 

operations.
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CHAPTER ONE 

 

INTRODUCTION 

 

 

A control system uses sensory measurement of the plant’s behavior to influence the 

input for the realization of an altered response. Both linear and nonlinear control methods 

exist for the underlying mathematical model that describes the dynamics. Governed by 

nonlinear differential equations, nonlinear control theory applies to more real-world 

systems, as they tend to be nonlinear. A variety of nonlinear controller designs exist 

including gain scheduling, backstepping, and robust control. Two significant areas for 

nonlinear control applications are semi-autonomous ground vehicles and continuous 

robotic systems. While linear controllers may be typically adequate for these systems, it is 

often found that the underlying dynamics are nonlinear, and a linear controller will not 

satisfy the performance requirements. This research focuses on feedback nonlinear control 

of alternative driving interface and continuum robots through mathematical modeling, 

numerical simulation, and experimental testing. The proposed approach utilizes several 

nonlinear control methodologies including sliding mode control, adaptive control, 

switched system control, and feedback linearization. Model-free control and the 

corresponding deep reinforcement learning algorithms are also implemented and integrated 

with the model-based approach to achieve intelligent semi-autonomous ground vehicle 

control.  Four thrust areas, shown in Figure 1.1 have been identified, namely alternative 
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steering devices with haptic feedback, use of portable HMI as driver inputs, driver intent-

based autonomous driving, and control of continuum robots. 

 

Figure 1.1 Four Research Thrust Areas Identified 

1.1 Dynamic Systems 

To comprehend the ground vehicle and continuum robot movements, a 

mathematical model may be constructed. Such a dynamic model lays the foundation for 

designing control algorithms and is vital for the practical implementation of semi-
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autonomous features and continuum robot hardware. The vehicle dynamics model 

describes the longitudinal and lateral vehicle platform characteristics. Robot dynamics are 

concerned with the relationship between the forces and torques acting on a robot 

mechanism and the accelerations they produce resulting in motion. This section introduces 

the formulation of the dynamic systems for both ground vehicles and continuum robots. 

1.1.1 Chassis and Steering Systems 

A two-track seven-degree-of-freedom (7-DoF) vehicle chassis model, as shown in 

Figure 1.2, was used for the controller development presented in this dissertation. The 

lateral and longitudinal velocities of the vehicle (𝑣𝑥 and 𝑣𝑦, respectively) and the yaw rate 

�̇�  constitute three degrees-of-freedom (DoF) related to the vehicle body. The wheel 

velocities of four wheels (𝜔𝑓𝑙, 𝜔𝑓𝑟, 𝜔𝑟𝑙, and 𝜔𝑟𝑟) constitute the other four DoF. Note that 

the first subscript in the symbols for the wheel velocities is used to denote the front or rear 

wheel, and the second subscript is used to denote the left or right wheel. Similar to the 

models considered in Alleyne (1997), Dugoff et al. (1970), and  Rajamani (2006), roll and 

pitch motions were neglected while still accommodating the steering and individual wheel 

braking. The vehicle model contains nonlinear and coupled dynamics that make it 

unsuitable for linear controller development. The presence of nonlinearities in the vehicle 

model is the main factor in the selection of control algorithms for their real-time regulation 

and tracking. Liner control is often inadequate in meeting precise performance 

requirements, and one must resort to nonlinear techniques. 
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Figure 1.2.  Parameter and variable definitions for the vehicle model. 

The vehicle simulation requires the tire/road interface forces and moments for the 

wheels. In this study, the Dugoff tire model is used. This analytical tire model is presented 

in Dugoff et al. (1969), and has been updated for combined wheel slip in Gunta and Sankar 

(1980). Dugoff's model provides for the calculation of forces under combined lateral and 

longitudinal tire force generation. It assumes a uniform vertical pressure distribution on the 

tire contact patch (Rajamani, 2006a). In this simplified model the effects of camber and 

turn slip are neglected, and a uniform vertical pressure distribution is assumed in the tire. 

The advantage of this model is that it does not demand many parameters. Moreover, since 

it is an analytical model, these parameters can be derived intuitively. However, the 

drawback of this method is that the gradient cannot be computed directly since there are 

different equations for sliding and pre-sliding. Furthermore, the model is a relatively 

simplified representation. Therefore the shape of the tire curve is limited, such that a peak 

in the tire curve cannot be modelled (van Ginkel, 2014). 
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Vehicle steering systems translate the driver’s steering commands into the rotation 

of the steered wheels about their kingpin axes. In this study, a steer-by-wire (SBW) 

configuration is considered for steering system dynamics. In a conventional steering 

system, the front road wheels are turned using a handwheel via the steering column, bevel 

gearbox, and rack. In steer-by-wire systems, the steering wheel is mechanically decoupled 

from the road wheels. The driver’s steering commands are delivered electronically to an 

electric motor to actuate the wheels. As innovative driving interfaces can leverage drive-

by-wire technology, an analytical mathematical model should be developed to describe the 

steering subsystem. To facilitate the investigation of a vehicle’s lateral responsiveness and 

power consumption for SBW configuration, a suite of lumped parameter nonlinear steering 

system mathematical models developed by Mills and Wagner (2003) will be used. 

1.1.2 Continuum Robot System 

Incorporating the dynamics of the continuum robot is vital for model-based 

dynamic control of continuum structures. The dynamic equations of motion, which provide 

the relationships between actuation and the acceleration, form the basis for several 

computational algorithms that are fundamental in control and simulation. In this work, we 

propose a novel approach to model continuum robot by reducing computational complexity 

using a virtual, conventional rigid link robot with discrete joints. Specifically, the above 

approach is validated from model development to hardware implementation for control of 

a multi-section spatial continuum robot. The continuum robot is approximated as a serial 

rigid-link Revolute-Revolute-Prismatic-Revolute (RRPR) joint spatial robot with an out-

of-plane rotation, two in-plane rotations, and a translation in the same plane to create a 3D 
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virtual rigid-link robot (see Figure 1.3). For motion control, the dynamic model of a virtual 

RRPR mechanism is conveniently described by Lagrange dynamics represented in the 

joint-space formulation. Similarly, the dynamic model for a two-section continuum robot 

can be modeled by combining two virtual RRPR robots into an 8-DoF RRPRRRPR rigid-

link robot. The task space to joint space inverse kinematics are obtained via a desired virtual 

joint vector which forms the error vector with the actual virtual joint space variables 

derived from the continuum robot configuration space. The approach mentioned above 

assumes the constant curvature (CC) approximation (Hannan and Walker, 2003) for the 

configuration space model. 

 

Figure 1.3: Three-dimensional constant curvature section geometry obtained via rotation 

about initial tangent based on virtual RRPR discrete-jointed robot model. 

1.2 Model and Control Strategies 

In recent years, there has been a resurgence of interest in developing improved 

control and identification strategies for nonlinear ground vehicle and continuum robot 

systems. The renewed interest has been motivated by several developments: 
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1. Advances in nonlinear systems theory which has led to controller design 

methods that are applicable to broad classes of nonlinear control problems. 

2. The developments of efficient identification methods for empirical nonlinear 

models and their widespread availability in software packages like MATLAB. 

3. Continued improvements in the capability of computer-controlled hardware and 

software, making it feasible to incorporate complex nonlinear models in control 

systems synthesis. 

4. Need for enhanced safety and operation for autonomous vehicles. 

In this section, the nonlinear control strategies utilized for the four research thrust 

areas are introduced.  

1.2.1 Sliding Mode Control (Thrust 1: Alternative Steering Devices with Haptic 

Feedback) 

A nonlinear higher-order sliding-mode controller (SMC) will be considered for the 

steering system to provide lateral feedback to the driver and assist lane-keeping. Sliding 

mode theory provides a methodology to design trajectory tracking and control systems for 

ground vehicle systems with all of their associated features. Sliding mode control 

algorithms ensure that the desired system dynamics is insensitive to parameter variations, 

system perturbations and external disturbances (Vepa, 2017). The motivation of using 

sliding mode control is to achieve the ability to guarantee the control robustness against 

the system uncertainties and varying road conditions (Freeman et al., 2015). Sliding mode 

control remains the most successful approach in handling bounded 

uncertainties/disturbances and parasitic dynamics (Davila et al., 2005). The control concept 
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is based on the introduction of a sliding variable function which is designed to become 

equal to zero. The main features of the sliding mode are its insensitivity to external and 

internal disturbances matched by the control, ultimate accuracy, and finite-time 

convergence of the sliding variable to zero. However, chattering is a problem impeding its 

implementation. The modified sliding mode control with boundary layer undergoes the 

degradation of tracking performance and robustness while reducing the chattering effect. 

Second-order sliding mode control is a viable solution to reduce the chattering effect 

without affecting the tracking accuracy and robustness. For higher-order systems a super-

twisting algorithm can address the chattering problem. 

1.2.2 Adaptive Control (Thrust 2: Use of Portable HMI as Driver Inputs) 

Adaptive control provides such nonlinear class of techniques that are particularly 

suitable for application in ground vehicle applications. Adaptive control refers to a set of 

techniques that provide a structured or systematic approach for automatically and 

continuously adjusting the parameters of a controller in real-time (Vepa, 2017). When the 

parameters of the plant dynamic model are unknown or change in time, adaptive control 

achieves or maintains a certain desired level of system performance. An adaptive controller 

is one that can modify the system’s closed-loop behavior in response to changes in the 

dynamics of the manipulator due to changes in the configuration, external constraints, and 

disturbances. In this study, an adaptive variable steering ratio control strategy will be 

proposed that provides lateral compensation to the driver and assists with lane-keeping 

(Shimizu et al., 1999; Heathershaw, 2000; Nozaki et al., 2012). Specifically, a gain-

scheduling PID controller is developed as the feedback control for the portable HMI-
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steered vehicle to accomplish this task. The gain scheduling technique, an adaptive control 

method, is based on the adjustment of controller parameters in response to the vehicle’s 

longitudinal speed and portable HMI steer angle variations. 

1.2.3 Model-Free and Model-Based Control (Thrust 3: Driver Intent-Based 

Autonomous Driving) 

Autonomous and semi-autonomous electric robotic platforms represent the next 

generation of military vehicles with the challenge for seamless control switching 

(Kalinowski et al., 2014; Mandhata et al., 2012; Setlur et al., 2006; Stanton et al., 1997). 

Although these vehicles can undertake most driving tasks autonomously, the ability to infer 

operator intent and hence switch among different levels of autonomy (LoAs) is highly 

demanded, especially under complex urban or off-road circumstances. Advanced 

modalities of interaction such as a haptic interface that map operator commands to actions 

can be deployed to assist driver intervention in the vehicle cockpit. In this study, a haptic 

assisted vehicle control strategy enhanced by learning-based operator intent inference is 

introduced. The shared control strategy is capable of adapting vehicle behaviors to 

corresponding operators’ preferences. The proposed operator intent inference algorithm for 

asset-level decision-making will exploit model-free deep reinforcement learning (DRL) 

techniques (Kim et al., 2017a; Kumar et al., 2013a; Li et al., 2016a; Polling et al., 2005). 

The DRL algorithm also serves as a logical rule that orchestrates switches among distinct 

LoAs, which forms a switched system (Lin and Antsaklis, 2009) for intelligent alteration 

of powertrain dynamics. 
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1.2.4 Feedback Linearization and Computed Torque Control (Thrust 4: Control of 

Continuum Robots) 

The dynamic system of section 1.1.2 forms the basis for control approaches needed 

for continuum robots. We seek and exploit simple, relatively computationally inexpensive 

control methods used in (rigid-link) robot control systems to design the controller in the 

virtual RRPR robot coordinates (Webster and Jones, 2010). Multiple control methods, such 

as adaptive control (Frazelle et al., 2018), optimal and robust control (Kapadia et al., 2010), 

and learning control (Braganza et al., 2007), are widely used in robotics. Each control 

method has advantages and disadvantages. However, the main aim of the system is to 

provide stability and high-frequency updates. In this work, we adopt the computed-torque 

(Middletone and Goodwin, 1986), feedback linearization plus PID control, approach for 

the virtual robot. Specifically, sensing and actuation transformed from and to the 

continuum robot. The computed-torque control consists of an inner nonlinear 

compensation loop and an outer loop with an exogenous control signal, 𝑢. This control 

input converts a complicated nonlinear controller design problem into a simple design 

problem for a linear system consisting of several decoupled subsystems. One approach to 

the out-loop control 𝑢 is the proportional–integral–derivative (PID) feedback. The reason 

why the PID controller is preferred in this article over the proportional-derivative (PD) 

controller is that the PID controller eliminates the steady-state error caused by 

environmental disturbances. In the PID control, the chosen parameters, 𝐾𝑝 , 𝐾𝑖  and 𝐾𝑑 

remain constant during the process. Therefore, such a controller is inefficient because the 

controller contains ambiguity when environmental conditions or dynamics change. In 
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addition, it is inefficient because of time delays and nonlinearity conditions. Hence, we 

include the dynamics to linearize prior to the PID control. 

1.3 Dissertation Objectives 

Research activities focus on the nonlinear control of alternative driving interface 

and continuum manipulators for enhanced tracking performance. The main objective of 

this first set of investigations is to improve the driver’s confidence and driving safety in 

semi-autonomous vehicles. It will develop three vehicle driving interfaces, including a 

robotic grip, a joystick, and a portable HMI, which are accompanied by nonlinear control, 

and studied them on a steer-by-wire platform integrated with a virtual reality driving 

environment (see Figure 1.4). On the other hand, the innovative continuum robot control 

design, second set of study, aims to enhance robot configuration space tracking 

performance and deliver accurate, reliable, and energy-efficient control. Both quantitative 

and qualitative measures will be used to gain in-depth insight into the effectiveness and 

performance of the designed nonlinear controllers.  

This research intends to achieve the following research objectives: 

1. Develop three driving interfaces for physical and cognitive interaction of 

humans with (semi)autonomous vehicles. 

2. Create a mathematical model for ground vehicle and continuum robot 

kinematics and dynamics. 

3. Design appropriate nonlinear control strategies for the trajectory tracking and 

control of semi-autonomous vehicles and continuous robotic systems 
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4. Validate models and nonlinear controls through laboratory testing on three 

alterative driving interfaces and “OctArm”. 

 

Figure 1.4: Laboratory Driving Simulator Schematic 

1.4 Innovation 

To improve vehicle lateral performance, multiple latera control strategies has been 

proposed by many researchers like Baviskar et al. (2009), Jensen et al. (2011), Mandhata 

et al. (2010), Petermeijer et al. (2015), and Shakeri et al. (2016). While this study provides 

insights on the lateral controller, especially in regard to nonlinear adaptive and sliding 

mode control, it devotes a large amount of attention to evaluating the performance of three 

alternative driving interfaces, including the portable HMI, joystick, and robotic grip, all of 

which provide nonlinear lateral feedback to the driver and assist in lane-keeping. In 

particular, research on alternative steering devices for semi-autonomous vehicles is notably 
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lacking. The replacement of the steering wheel on semi-autonomous vehicles is 

conceptually intriguing, and this project seeks to fill this gap by examining various 

potential haptic driving paradigms and benchmarking their performances against the 

steering wheel under different road scenarios and speed conditions. These hand-operated 

interfaces incorporate the directional control as well as the brake and throttle functionality 

into a single holistic device. Therefore, they broaden opportunities for people with 

disabilities to operate vehicles. These alternative driving devices also serve as a 

contingency when semi-autonomous vehicles encounter extreme maneuvers that are 

otherwise unable to be handled solely by the automated system without human intervention. 

Thus, their performances in aggressive driving conditions are investigated to determine the 

most applicable device for semi-autonomous vehicles. 

Previous research has also examined the possibility of controlling a continuum 

structure via exploiting a “virtual” rigid link robot model. However, the methodologies 

were either applied only to the bending of a planar continuum section (Tang et al., 2019), 

or formulated using an under-parameterized model which involves merely bending and 

twisting without considering continuum robot extension/contraction (Katzschmann et al., 

2019; Greigarn et al., 2019). In contrast, the work in this dissertation is the first attempt to 

accomplish three-dimensional control of continuum robots whose configuration space is 

parameterized by arc length, curvature, and rotational orientation. Such comprehensive 

parameterization accounts for simultaneous extension/contraction, bending, and torsion 

actions of continuum robots, therefore fully matching the control capability and motion 

complexity of continuum robots. In addition, we extend model-based dynamic control 
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research through the application of the computed torque approach that provides virtual 

rigid link robot dynamics decoupling for the control of multi-section continuum robots. 

1.5 Dissertation Organization 

This document is organized into six chapters. Chapter 1 introduces the background 

of this study. Chapter 2 presents the evaluation of three alternative steering devices with 

adjustable haptic feedback for semi-autonomous and autonomous vehicles. Chapter 3 

proposes a robust haptic interface for three alternative steering devices proposed in Chapter 

2. A nonlinear and robust sliding mode controller is used to maintain the vehicle on the 

desired trajectory while minimizing the vehicle lateral and heading error. Chapter 4 

demonstrates the use of portable HMI as alternative driver input device. Chapter 5 proposes 

a model-based dynamic feedback control architecture that has been specifically designed 

for controlling multi-section three-dimensional continuum robots. Lastly, Chapter 6 cover 

the study of haptic assistive control with learning based driver intent recognition for semi-

autonomous vehicles. 
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CHAPTER TWO 

 

EVALUATION OF ALTERNATIVE STEERING DEVICES WITH 

ADJUSTABLE HAPTIC FEEDBACK FOR SEMI-AUTONOMOUS AND 

AUTONOMOUS VEHICLES 

 

Emerging autonomous driving technologies, with emergency navigating 

capabilities, necessitates innovative vehicle steering methods for operators during 

unanticipated scenarios. A reconfigurable “plug and play” steering system paradigm 

enables lateral control from any seating position in the vehicle’s interior. When required, 

drivers may access a stowed steering input device, establish communications with the 

vehicle steering subsystem, and provide direct wheel commands. Accordingly, the 

provision of haptic steering cues and lane keeping assistance to navigate roadways will be 

helpful. In this study, various steering devices have been investigated which offer 

reconfigurability and haptic feedback to create a flexible driving environment. A joystick 

and a robotic arm that offer multiple degrees of freedom were compared to a conventional 

steering wheel. To evaluate the concept, human test subjects interacted with the 

experimental system featuring a driving simulator with target hardware, and completed 

post-test questionnaires. Based on the data collected, drivers’ lane keeping performance 

was superior using a haptic robotic arm with haptic feedback to the joystick and steering 

wheel with an improvement of up to 70.18% during extreme maneuvers. Haptic feedback, 
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with a lane keeping algorithm, can assist the operator in steering the vehicle given the likely 

deterioration of driving skills when autonomous vehicles become prevalent.   

2.1 Introduction 

The growing emphasis on autonomous vehicles and driver assistance subsystems 

have elevated the need for improved human-vehicle interfaces (Jensen et al., 2011). The 

introduction of haptic feedback in driver system can introduce greater road awareness and 

accommodate emergency scenarios that may arise in all ground transportation systems 

(Andonian et al., 2003). Future autonomous vehicles will have different interiors, refer to 

Figure 2.1, that enables the steering control device to be placed anywhere in the vehicle. If 

the driver can access the steering device, then alternative design can be readily considered. 

More importantly, the steering device could be stored while needed and simply plugged 

into a connector in the passenger pod. A robotic interface steering controller could provide 

benefits to the driver such as enhanced safety during a crash, greater vehicle control and 

steering ratio flexibility, and a more robust steering feel. The goal of this paper is to study 

the feasibility of replacing the current steering wheel with a new robotic interface device 

that can provide adjustable force feedback to the driver and a user-friendly experience for 

future autonomous and semi-autonomous vehicles. 

In literature, various approaches have been presented within the scope of lane 

keeping assistance control and force feedback steering. In Saleh et al. (2011), a new model 

structure with inputs considering visual, haptic and kinesthetic perception, and 

neuromuscular dynamics was proposed. The model considers the torque applied to the 
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steering wheel as output and the steering angle in terms of driver intention. A model based 

predictive controller is developed for lane keeping assistance by Hwang et al. (2008) to 

minimize the effect of system overshoot caused by the time delay from the vision-based 

lane detection system. In a previous study, Black et al. (2011) used an advanced steering 

simulator to introduce supplemental haptic feedback for roadway avoidance notification 

and proposed a way to calculate the steering effort as a function of tire contact path friction 

torque. Ancha et al. (2007) validated the use of a chassis dynamic model to collect 

experimental data, model and compare steering systems. A Haptic intervention system for 

avoidance of lane departure was introduced by Pohl and Ekmark (2003). Chan (2011) has 

built a simulation analysis implementing electronic stability control that can help drivers 

maintain control in oversteer or understeer situations. Dadras (2017) has developed a 

control algorithm that helps the system converge to desired paths for autonomous vehicles. 

These methods described have proved their success in many aspects including consistency 

and precision.  

Previous researchers have investigated various vehicle steering force feedback and 

feedforward steer assistance strategies. Mehdizadeh et al. (2011) proposed a novel 

approach for making force feedback which made use of virtual vehicle states through a 

linear vehicle model as the reference model. Vaddi et al. (2014) presented a vehicle steer 

assistance system based on yaw moment control. The feedforward steer assistance control 

with input of steering angle and vehicle speed is considered. Fahami et al. (2015) designed 

a LQR controller with gain scheduling based on steering wheel angle and vehicle speed 

function. The controller also provided better torque control that allowed rejection of the 
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uncertainty torque from a road condition. To improve the lane keeping performance on a 

curved road, Kang et al. (2016) developed a linear quadratic state feedback control using 

both the lateral offset error at the look-ahead distance and the integral of the lookdown 

lateral offset error.  Katzourakis et al. (2011) developed a system that allowed the force 

feedback to be delivered to the driver through a speed-controlled three-phase brushless 

servomotor with a torque sensor on the motor shaft. 

 

Figure 2.1: Top view of vehicle configurations - (a) standard with five seats; and (b) 

autonomous with two benches 

In this study, a vehicle dynamics mathematical model that includes the vehicle 

body, wheel, and trajectory kinematics is presented. The model serves as a keystone for 

the computer simulation created in MATLAB/Simulink that provides the vehicle’s 

longitudinal and lateral velocities, and yaw rate. Several customizable steering algorithms 

are implemented into the system that provided operators with not only varied levels of 

haptic steering “feel”, but more importantly, a force-feedback control design that enables 
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the steering device to provide a force feedback to the driver when they deviated from the 

lane. A feedback and pursuit behavior feedforward controller are established for the 

system. A high-level diagram of a vehicle’s haptic force feedback steering system is shown 

in Figure 2.2. Several different steering devices, a few functionalities of which are 

compared in Table 1, are utilized in this research. The main steering device studied is a 

robotic interface grip device, the Novint Falcon, which is a three degree-of-freedom (DOF) 

haptic device that uses a delta-robot configuration with three servo-actuated parallel links 

connected to a moving plate. The delta configuration provides a mechanism with three 

rotational actuators mounted to the base plate, and a series of kinematic parallelograms to 

constrain the motion plate to three translational DOF only. The torques applied at the input 

link by the actuators to achieve proper haptic feedback may be calculated. All joints in the 

Falcon are one DOF revolute joints. The information between the device and the 

controlling computer is handled via USB connection. The Falcon sends the position data 

to the computer that returns a force vector. Position is measured using encoders and the 

force vector is created by feeding the supplied currents to the servomotors in each parallel 

link (Rodríguez and Velàzquez, 2012). Fu et al. (2016) created a mathematical model for 

a Falcon device which led to dynamic equations that allowed the design of an adjustable 

haptic experience. Vehicle driving visualization is also realized thanks to the MATLAB 

3D Animation toolbox. Case studies on two different driving environments, a straight 

highway and a meandering path of country road, were conducted to validate the fidelity of 

the lane keeping assistance control.  
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Table 2.1: Comparison of ground vehicle steering device functionality assuming a steer-

by-wire configuration 

Devices 

Function 

Traditional 

Steering 

Wheel 

Joystick 

Robotic 

Interface 

Grip 

Cellphone 

Installation Fixed Portable 

Safety 
Airbag 

Needed 

Eliminate driver contact with steering 

wheel during crash 

Feedback 

Tire/Road 

Interface 

Feel 

Maybe Yes No 

ADA 

Accommodating 
Limited High High 

Limited 

(Voice) 

Space Required High Low Low Very low 

This paper evaluated three different steering devices for future use by autonomous 

vehicles through quantitative and qualitative measures. The proposed system architecture 

has been assessed in a laboratory environment using a hardware-in-the-loop vehicle with 

steering devices, graphical display, and human subjects. The research hypothesis was: Can 

robotic steering input devices outperform the traditional steering wheel in terms of vehicle 

lane keeping control? The remainder of the article is organized as follows. The 

mathematical formulation and control structure are presented in Sections 2 and 3. The 

experimental setup and two case studies are described in Section 4, with the accompanying 

operator-in-the-loop test results summarized in Section 5. Finally, Section 6 offers the 

conclusion. A complete Nomenclature List exists in the Appendix. 
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Figure 2.2: Close-loop system design for human/machine steering interface 

2.2 Steering System Model 

The steering system provides lateral control for ground vehicles using a dedicated 

steering assembly which turn the front wheels. For convenience, a single-track model will 

be considered. The chassis, wheel, and trajectory kinematics will be discussed in this 

section. 

2.2.1 Ground Vehicle Body Modeling 

To formulate the equations of transient motion for a vehicle body during a turning 

maneuver, it is essential to describe the absolute acceleration of the vehicle’s center of 

gravity (CG) using the reference frame attached to the body. 

A body fixed coordinate system will be considered to describe the longitudinal, 

lateral, and yaw motion of the chassis. Referring to Figure 2.3, for a vehicle having plane 
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motion, the equations of motion with respect to the axis fixed to the vehicle body are given 

by (Freeman et al., 2016) 
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where δ is the front wheel steering angle. The longitudinal and lateral velocities, and the 

yaw rate were obtained by integrating Eq. (2.1) - (2.3). 

 

Figure 2.3: Diagram to illustrate vehicle body forces 

2.2.2 Ground Vehicle Wheel Modeling 

The simulation of vehicle dynamics for four wheels vehicle demands details of 

relating forces acting on the wheel. Dugoff’s model is used in this paper. The analytical 

model in (Dugoff et al., 1969) has been altered for combined slip (Gunta and Sankar, 1980).  
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In Figure 2.4, the system variables and parameters are displayed to describe the wheel 

motions. 

The longitudinal slip ratio for four wheels during braking and acceleration, 𝑠𝑥 may 

be expressed as 
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The subscripts 𝑓𝑙, 𝑓𝑟, 𝑟𝑙, and 𝑟𝑟 refer to the front left, front right, rear left, and rear 

right wheels, respectively. 

The slip angles for front and rear tires, 𝛼𝑓 and 𝛼𝑟, are 

 ,  
y f y r

f r

x x

v l v l

v v

 
  

+ −
= − = −   (2.3) 

where 𝑙𝑓 and 𝑙𝑟 correspond to the distance from the front and rear axles to the center of 

vehicle gravity. 

The longitudinal and lateral tire force, 𝐹𝑥𝑖 and 𝐹𝑦𝑖, may now be written as 
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where 𝐶𝛼 and 𝐶𝜎 are the cornering and longitudinal tire stiffness. The variable 𝜆𝑖 is given 

by 
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and the function, 𝑓(𝜆𝑖), may be stated as 
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The term 𝐹𝑧 denotes the vertical force on the tire while the symbol 𝜇 is the tire-road friction 

coefficient. The index 𝑗 = 𝑓, 𝑟 corresponds to the front and rear wheels. 

The relationship between the drive and braking torques, 𝑇𝑑𝑖 and 𝑇𝑏𝑖, and the wheel 

rotation, 𝜔𝑖, of the four wheels can be written as. 

 ( ) , , ,w wi di bi eff xiI T T r F i fl fr rl rr = − − =   (2.7) 

where 𝐼𝑤 is the wheel inertia, 𝑇𝑑 is the drive torque of the wheel, 𝑇𝑏 is the brake 

torque of the wheel, and 𝑟𝑒𝑓𝑓 is the effective wheel radius. 

 

Figure 2.4: Single wheel with applied longitudinal and lateral tire forces, as well as tire 

rotation 
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2.2.3 Ground Vehicle Trajectory Kinematics 

A vehicle trajectory calculation method is provided to estimate the planar response 

of the platform. The vehicle path is determined based on the vehicle’s longitudinal velocity, 

𝑣𝑥, yaw angle 𝜓, and yaw rate �̇�. To express the vehicle motion in global coordinates, the 

global frame must be considered. The vehicle velocities, 𝑉𝑋 and 𝑉𝑌, can be represented as 

 cos sin ,  sin cos
2 2

X x Y x

L L
V v V v     = − = +   (2.8) 

The position of vehicle in global-frame coordinates, 𝑋(𝑡) and 𝑌(𝑡), can be obtained 

by integrating Eq. (2.8) so that 

 0 0( ),  ( )X YX V dt X t Y V dt Y t= + = +    (2.9) 

2.3 Steering System Control Design 

In this study, the steering system controller encompasses feedforward and feedback 

components. The feedforward controller includes the pursuit behavior of human driver and 

the feedback controller is comprised of the compensate behavior. The input of feedforward 

component is longitudinal velocity and curvature. Feedback controller is a lane keeping 

compensation controller that applies correction to the vehicle’s lateral position error and 

heading error based on the road conditions. Both feedforward and feedback controllers are 

summed up as steering signal that is received by haptic steering device to provide intuitive 

haptic cues to the driver. A high-level block diagram is presented in Figure 2.5. 
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Figure 2.5: Block diagram of classical controller for vehicle lane keeping 

2.3.1 Lanekeeping Feedback Force 

For this study, a customizable steer-by-wire system is offered to the operator. The 

Falcon offers a haptic steering device input that provides the operator with direct force 

feedback when the vehicle is off the road. This not only warns the driver when the offset 

is small, but also assist them in restoring the vehicle to a safe position in its lane by 

adjusting the steering device to ensure safety. By introducing an underlying mathematical 

model, the feedback force may be properly estimated. The feedback controller is based on 

a proportional-derivative (PD) structure. PD control creates a virtual spring and damper 

between the estimated and reference vehicle positions. The reference trajectory includes 

the road center coordinate and ideal vehicle heading. Measured trajectory information, 
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calculated by sensors on the vehicle, include the current coordinate and heading of the 

vehicle.  

The total force, 𝐹𝑡, applied to the robotic grip system is a combination of the driver 

and the electric motor in the lateral direction (e.g., steering commands occur in lateral 

manner while stop/go are communicated in longitudinal manner) so that 

 ( )t fb dr c l drF F F F F F= + = + +   (2.10) 

where 𝐹𝑑𝑟 is the force actively given by the driver and is zero if the driver’s hands 

are off the interface. The term 𝐹𝑓𝑏 is the summation of forces from two force feedback 

sources; a self-centering force 𝐹𝑐 , and a lane keeping assistance force 𝐹𝑙 . This research 

assumes that the robotic interface is linear. 

Self-Centering Force: To recreate the feel of a traditional steering system, a self-

centering force, 𝐹𝑐, can be added to match that of a mechanical steering system such that 

 , ,c p c fal d c falF k y k y= − −   (2.11) 

where 𝑦𝑓𝑎𝑙 is the measured robotic grip’s lateral position coordinate, while 𝑘𝑝,𝑐 and 𝑘𝑑,𝑐 

are the proportional and the derivative gains.  

Lane Keeping Force: The lane keeping assistance system is associated with the 

lateral error, 𝑒𝑙𝑎𝑡 , and the heading error, 𝑒ℎ , of the vehicle. These two errors can be 

expressed as 

 ,  lat ref h refe Y y e  = − = −   (2.12) 
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where 𝑌  and 𝜓  are the measured or estimated lateral position and vehicle heading, 

respectively. The terms 𝑦𝑙𝑎𝑡  and 𝜓𝑟𝑒𝑓  denote the desired lateral position and heading 

setpoint. The lane keeping assistance force, 𝐹𝑙, is equal to 

 ( ) ( ), , , ,l lat h p l lat d l lat p h h d h hF F F k e k e k e k e= + = − + − +   (2.13) 

with proportional gains 𝑘𝑝,𝑙  and 𝑘𝑝,ℎ . Similarly, the derivative gains are 𝑘𝑑,𝑙  and 𝑘𝑑,ℎ . 

Although a force feedback controller functions smoothly and effectively, it may have a 

time delay. In general, the effect of delays in closed-loop feedback systems resemble the 

impact of lowering the sampling frequency. To compensate for this scenario, a feedforward 

steering controller will be introduced. 

2.3.2 Feedforward Force 

Feedforward steering predicts the steering input to minimize tracking error. If a 

controller only includes feedback steering, the vehicle has to deviate from the path before 

the lane keeping system starts to drag the vehicle back to its lane. Thus, the addition of 

feedforward steering into the system will improve the performance since feedforward 

steering will steer the vehicle before it departs from the lane.  

The expression for the feedforward steer angle, 𝛿𝑓𝑓, required to negotiate a given 

curve (Wong, 2008) may be expressed as 
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where 𝐿 is the vehicle length, 
1

𝑅
 is the curvature of the target path, and 𝐾𝑢𝑠is the vehicle 

understeer gradient. The feedforward force, 𝐹𝑓𝑓 ,may be represented by introducing a 

stiffness gain, 𝑘𝑓𝑓, that multiplies the feedforward steer angle, 𝛿𝑓𝑓 so that 

 ff ff ffF k =   (2.15) 

2.4 Hardware-in-the-Loop Platform 

To explore the real-time performance of operators using all three steering input 

device studied in this paper, a fixed based hardware-in-the-loop experimental test bench 

was created. The components included the haptic steering devices, a high-resolution image 

projector, and a Honda CR-V. Mathematical models, simulating the target vehicle 

dynamics and tire/road interactions, were integrated into the system through 

MATLAB/Simulink. The test bench core was the driver/haptic interface architecture and 

dedicated controller. The visual environment, created using the V-Realm Builder 2.0, was 

rendered by the Simulink 3D Animation toolbox. The resulting images were projected on 

a large screen for the devices. The Simulink environment recorded the vehicle behavior in 

real-time and simultaneously controlled the steering wheel actuator. The software package 

used to communicate with Falcon was the QUARC® Real-Time Control Software which 

includes a Simulink library block. The position readings are used in vehicle dynamics 

model. 

The test bed functionality, shown in Figure 2.6, was presented to the human 

subjects in the laboratory (Mandhata et al., 2012). After evaluating the vehicle’s current 

trajectory in vehicle dynamics block, the operator delivers the necessary force command 
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through the driver interface to guide the vehicle lane control tasks. The steering angle of 

the vehicle, recorded by the haptic steering device, was transmitted to the vehicle dynamics 

block theoretically corresponding to the remote vehicle. The embedded system model 

evaluates vehicle longitudinal velocity, vehicle heading, and vehicle steering angle to 

compute the resulting tire/road interface forces and moments, and update the trajectory and 

orientation in real-time. The test bed utilized in this study is a static driving simulator. 

Results may differ if a dynamic driving simulator is used. The average speed driving on a 

dynamic driving simulator will be lower than the average speed driving on a static driving 

simulator, because the driver will adapt to a more conservative driving style under the 

dynamic motion feedback. Also, the driver may experience more motion sickness such as 

cold sweat, dizziness, nausea and eye strain due to vertical head dynamics on a dynamic 

driving simulator. 

The force feedback/feedforward measure block uses the simulated vehicle 

information such as vehicle lateral location and velocity to compute the steering feedback 

and feedforward forces, which then actuated the robotic grip’s end effector by providing 

corresponding commands to the device motor. In the meantime, the virtual reality generator 

in MATLAB 3D Animation processed the vehicle information to represent a three-

dimensional driving environment that was rendered on the screen by the image projector. 

This enables the operator to visualize the environment during the driving process. After 

receiving the visual feedback from the image projector in front of the driver, the driver can 

send his input force to the haptic steering device to get involved into system. The throttle 
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signal and brake signal of the robotic grip and joystick is delivered through the longitudinal 

push and pull of their end effector. 

 

Figure 2.6: Hardware-in-the-loop haptic interface schematic 

2.5 Operator-in-the-Loop Evaluation  

To evaluate the practicability and performance of the alternative steering systems, 

eight human test subjects drove the experimental system and completed post-test 

questionnaires. A summary of the system parameters and their respective values are listed 

in Table 2. The test subjects first drove on the given roadways (refer to Figure 2.7) at the 

target speed with each steering device for several minutes to practice. The two different 

road profiles consisted of a highway and country road scenario. A Latin square design was 

used to ensure a randomized order of testing the different steering devices and road 

scenarios. A tradeoff exists between model sophistication and execution speed, so the 

scenery is somewhat limited. The operator is asked to use the respective steering devices 
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to drive on the divided road and maintain a position in the right lane. A questionnaire was 

completed after each test to offer feedback. 

Table 2.2: Summary of hardware and model parameters 

Symbol Value Units Symbol Value Units 

𝐶𝛼𝑓 5.04
× 104 

N/rad 𝑘𝑝,ℎ 2.50 N/rad 

𝐶𝛼𝑟 3.36
× 104 

N/rad 𝑘𝑝,𝑙 8.60 N/m 

𝐶𝜎 1.42
× 104 

N 𝐾𝑢𝑠 0.027 Rad 

𝑔 9.80 m/s2 𝐿 3 m 

𝐼𝑤 2.70 𝑘𝑔
∙ 𝑚2 

𝑙𝑓 1.40 m 

𝐼𝑧 1.89
× 103 

𝑘𝑔
∙ 𝑚2 

𝑙𝑟 1.60 m 

𝑘𝑑,𝑐 0.17 N/rad 𝑚 1500 Kg 

𝑘𝑑,ℎ 0.03 N/rad 𝑅 10.82 m 

𝑘𝑑,𝑙 0.10 N/m 𝑟𝑒𝑓𝑓 0.41 m 

𝑘𝑓𝑓 -23.34 N/rad 𝜇 0.70  

𝑘𝑝,𝑐 2.10 N/rad    

To investigate the performance of each steering device and the effects of haptic 

feedback, five configurations were considered as shown in Table 3. Each participant was 

asked to operate the vehicle using a joystick, steering wheel, and robotic interface. Coupled 

with self-centering force feedback, the steering wheel, C2, has a OEM steering feel tuning. 

Two different cases, C3 and C4, were proposed for the robotic interface. Similar to C2, C3 

also has a self-centering feedback force added to the grip to compare with the steering 

wheel under same control condition. Design of configuration C3 and C4 differs in the lane 

keeping feedback and forward controller discussed in Section 3. Design of steering wheel 

case C5 also includes the lanekeeping feedback and feedforward controller to study the 

impact of lanekeeping algorithm on the steering wheel. 
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(a) 

(b) 

Figure 2.7: Haptic steering visualization environment - (a) straight highway; and (b) 

country road 

During each test, the recorded crucial measurements included the vehicle lane 

position data (i.e., longitudinal and lateral coordinates), yaw angle and rate, longitudinal 

velocity, and driver input steering wheel angle.  The driving trajectory of the operator was 

used to evaluate the performance of each participant. Following the test, the operators’ 

actual trajectory is recorded and compared to the desired trajectory. The root mean square 

(RMS) of lateral error, 𝑒𝑙𝑎𝑡 , between the recorded and desired trajectory is calculated for 

each human subject. The RMS level of the lateral error in the case of a set of 𝑁 values is 

𝑒𝑙𝑎𝑡
𝑅𝑀𝑆 = √

1

𝑁
∑ |𝑒𝑙𝑎𝑡|

2𝑁
𝑗=1 . 
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Table 2.3: Summary of steering device and feedback conditions 

Case Description Control Scenario 

C1 Joystick None 

C2 
Steering 

Wheel 
Self-Centering 

C3 

Robotic 

Interface 

Falcon 

Self-Centering 

C4 

Robotic 

Interface 

Falcon 

Self-Centering+ 

Lane keeping 

Feedback and 

Feedforward Forces 

C5 
Steering 

Wheel 

Self-Centering+ 

Lane keeping 

Feedback and 

Feedforward Forces 

As mentioned above, the goal of the highway drive test was to assess the lane 

keeping performance when driving on a straight road. The results of these tests are 

summarized according to steering input device and control scenario (refer to Figure 2.8a 

and 2.8b). For the eight different drivers using the joystick with no force feedback 

algorithm (C1), the average lateral error was 35.50 centimeters (50kph) and 40.04 

centimeters (100kph). This average error was greater than that of the steering wheel (C2) 

which has the average lateral error of 27.48 centimeters (50kph) and 31.24 centimeters 

(100kph), and robotic grip (C3) which has the average lateral error of 27.40 centimeters 

(50kph) and 28.75 centimeters (100kph). After the addition of lanekeeping feedback and 

feedforward forces to both steering wheel and robotic grip, a dramatic lateral error decrease 

of 10.99 (50kph) and 12.91 (100kph) centimeters for robotic grip (C4) and 12.07 (50kph) 

and 11.2 (100kph) centimeters for steering wheel (C5) is observed. This decrease in lateral 

error indicates that the driver safety is significantly improved with some level of force 

feedback when driving with the steering wheel and the robotic grip. Furthermore, the 
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steering wheel with feedback C5 has a better performance than robotic grip C4 in low speed 

condition while robotic grip C4 exhibit superior lanekeeping than steering wheel C5 under 

high speed. Also, because there was no noticeable variation in terms of the RMS lateral 

error after an increase of speed, the effect of speed change on steering devices’ performance 

on highway road scenario is inconclusive. The force applied to the robotic grip C4 ranged 

from -2.81N to 2.43N on highway. 

The country roadway allowed the driver to perform on multiple curves to be 

evaluated at low and high speeds. The ability to steer the vehicle while maintaining a 

constant speed for maneuvers enabled human-machine interface to be better understood. 

Figures 2.8c and 8d display the results for cases C1-C5 on the country road under low and 

high speeds. As expected, the robotic interface and steering wheel steering cases with 

lanekeeping forces C4 & C5 displayed in Figure 2.8(c) has the highest level of 

performances. Joystick case C1’s performance varied considerably among all the drivers. 

Driver 1,3, and 5 performed better than the other drivers while driver 2 and 4’s performance 

was relatively deficient. Although the overall RMS lateral error raised due to an increase 

of speed from 50kph to 100kph in Figure 2.8(d), robotic grip C4’s lateral error was not 

substantially affected by the speed change due to lane keeping control while C1-C3’s 

performance was considerably deteriorated. The robotic grip and steering wheel with 

lanekeeping forces, C4&C5, delivers similar tracking performance in low speed condition. 

But when the speed reaches 100kph, the robotic grip C4 is far superior than steering wheel 

C5 given that C4 has 10 centimeters less average RMS lateral error. The recorded feedback 
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force applied to the robotic grip C4 ranged from -5.69N to 5.31N on country roadway 

scenario. 

The improvement rate for the joystick, C1, and the robotic grip, C3&C4, compared 

to a traditional steering wheel, C2, derived from operator’s driving path can be seen in 

Table 4. The red font indicates deteriorated performance and green font represents an 

improvement compared to the steering wheel. The performance of the joystick, C1, in all 

road scenarios and speed conditions is worse than the steering wheel. The performance of 

robotic grip with the self-centering feedback, C3, does not improve at low speed condition 

compared to steering wheel, C2, with an improvement rate of only -3.16% and -5.26% on 

straight road and country sinuous road respectively. But when the driver increases the 

speed to 100 kph, C3, delivers better results than C2 with an improvement of 10.28% and 

14.87%. This is because the robotic grip’s superior maneuverability to the steering wheel 

is more apparent when driving at unstable high-speed conditions. Steering wheel case C5 

displays a tremendous enhancement in lanekeeping capability comparing to traditional 

steering wheel C2, with an astounding improvement rate of 42.77% on average thanks to 

the addition of lanekeeping feedback and feedforward forces. Robotic grip with both the 

self-centering and the lane keeping algorithms applied, C4, shows dominating performance 

over all the other conditions averaging 70.18% improvement on the lateral error with 

respect to tradition steering wheel, C2. This improvement is more apparent on a sinuous 

country road scenario than a straight road. 

There are three key findings learned from the operator-in-the-loop evaluation. First, 

some level of force feedback was required with the steering controller to successfully 
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complete the lanekeeping maneuver. Most of the drivers performed the worst with joystick 

that has no force feedback. Second, drivers used robotic interface differently than the 

steering wheel to steer the vehicle on sinuous country roads. The robotic grip required 

much less physical movement, and therefore less expended energy to steer the vehicle 

during this lanekeeping maneuver. Consequently, the robotic grip may allow for a faster 

response to emergency and extreme maneuvers from driver with slowed reflexes. This 

finding explains the why robotic grip offer superior performance than steering wheel 

during high speed (100kph) driving shown in Table 4. Last but not the least, steering wheel 

maintains a certain level of dominance in low and moderate speed conditions. Another 

significant observation can be made is that during the country road driving scenario, most 

drivers would perform fast, small amplitude movements with the robotic grip versus 

gradual, large amplitude movement with the steering wheel. This further indicate potential 

safety benefits of robotic interface in driving situations like sharp turn and lane change that 

require extreme maneuvering. 

Table 2.4: Average performance improvement for alternative devices when compared 

with traditional steering wheel (C2). 

Road 

Scenario 

Speed 

(kph) 

C1 

(Joystick) 

C3 

(Robotic) 

C4     

(Robotic w/ 

Lanekeeping) 

C5    

(Steering 

Wheel w/ 

Lanekeeping) 

Highway 
50 -35.01% -3.16% 35.94% 40.97% 

100 -33.69% 10.28% 45.49% 33.50% 

Country 
50 -51.32% -5.26% 44.23% 48.90% 

100 -22.06% 14.87% 70.18% 47.72% 
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Figure 2.8: Lateral RMS error for cases C1 to C5 - (a) Highway at low speed (50kph), (b) 

Highway at high speed(100kph), (c) Country road at low speed (50kph), (d) Country road 

at high speed (100kph) 

2.6 Conclusion 

The growth in semi-autonomous and autonomous ground vehicles around the world 

has created a need for alternative steering input devices. The project objective was to 

compare driver performance when using a robotic interface mechanism versus a steering 

wheel and joystick in a driving simulator environment. The robotic interface was tested at 

two force feedback levels, while the steering wheel was used with self-centering feedback 

tuning. Human test subjects operated these interfaces for two road scenarios and two speed 

conditions. Subjective and objective results from the test demonstrate that the driver’s 

experience can be enhanced up to 70.18% with a robotic steering input (e.g., Falcon) when 
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compared to the traditional steering wheel during extreme maneuvers. Laboratory results 

indicate that lane keeping efficacy is further boosted with the help of compensation 

feedback and preview feedforward forces added to the grip. The answer to the hypothesis 

put forth regarding the impact of robotic steering devices is: yes, the lane keeping 

performance of the robotic steering input device surpasses that of the joystick and the 

steering wheel during emergency and extreme maneuvers. The robotic interface steering 

devices, with adjustable feedback for future semi-autonomous and autonomous vehicle 

proposed in this study, falls in the Level 1 range of SAE’s autonomy level definitions 

shown in Figure 2.9. Future work will include improving the control system design so that 

the execution of both vehicle steering and acceleration/deceleration through system alone 

can meet the Level 2 requirement.  

 

Figure 2.9: SAE (J3016) autonomy levels 
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CHAPTER THREE 

 

EVALUATION OF A ROBUST HAPTIC INTERFACE FOR SEMI-

AUTONOMOUS VEHICLES 

 

The advent of steer-by-wire technologies has changed the driving paradigm for 

drivers and vehicle autonomy. Such technologies integrate electric motors to actuate the 

tire-road plus human-machine interfaces. Steer-by-wire vehicles can benefit from haptic 

concepts through the provision of tunable force feedback, coupled with nonlinear control, 

to introduce lane keeping and pathway following technologies that minimize and possibly 

eliminate driver actions. In this paper, two vehicle haptic interfaces, including a robotic 

grip and a joystick, both of which are accompanied by nonlinear sliding mode control, have 

been developed and studied on a steer-by-wire platform integrated with a virtual reality 

driving environment. An operator-in-the-loop evaluation that included 30 human test 

subjects investigated these haptic steering interfaces over a prescribed series of driving 

maneuvers through real time data logging and post-test questionnaires. A conventional 

steering wheel with the robust sliding mode controller was used for all the driving events 

for comparison. Subjective and objective results from the tests demonstrate that the driver’s 

experience can be enhanced by up to 75.3% with a robotic grip steering input when 

compared to the steering wheel during extreme maneuvers. The robotic grip’s superior 

performance in certain vehicle maneuvers indicates its potential as an alternative haptic 

steering adaptation for future semi-autonomous vehicles. 
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3.1 Introduction 

Lane departure crashes are one of the deadliest types of motor vehicle incidents. 

The U.S. Federal Highway Administration reports that such events account for 51% of 

motor vehicle deaths (U.S. Federal Highway Administration, 2018). A lane departure crash 

occurs when the vehicle leaves its lane, either moving into another lane or off the roadway 

itself. Although both automotive manufacturers and government agencies recognize the 

safety improvements needed for unintentional lane departures, relief may be offered 

through alternative steering devices that provide the driver with haptic cues such as lane 

departure warning vibration and lane keeping force feedback. The advent of haptic 

feedback steering in driver systems has the capacity to anticipate and compensate lane 

departure failures (which can be due to the driver, the vehicle, or the environment). 

Furthermore, the technology offers a pathway for autonomous vehicle operations. In this 

study, various steering devices have been investigated which provide haptic cues and 

reconfigurability to generate a flexible driving environment. The research goal is to replace 

the conventional steering wheel with a robotic interface device that provides adjustable 

haptic force feedback to the driver. 

The ground vehicle SAE autonomy level with steering progression pathway has 

been displayed in Figure 3.1. The traditional steering wheel is the main device for Level 0 

that offers no automation to the driver. After the development of drive-by-wire (DBW) 

technology (e.g. brake-by-wire, throttle-by-wire, steer-by-wire), autonomy levels 1 and 2 

for driver assistance and partial automation are realized. The proposed alternative steering 

device, the robotic grip, is aimed at SAE autonomy level 3. It is designed to handle the 

situation that calls for an immediate response, such as evasive maneuvering. Such a device, 
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coupled with haptic feedback, provides immediate benefits to the driver, including 

enhanced safety during a crash with no risk of direct contact with a steering device, steering 

flexibility, and greater vehicle control (Andonian et al., 2003). The robotic grip naturally 

applies to levels 4-5 autonomy as well.  When levels 4-5 suffer a fault and limp home 

operation is needed, the driver is responsible for the fallback performance of the dynamic 

driving tasks in which the operational envelope of the automated system is exceeded (Joshi, 

2018). Assisting the human driver through haptic feedbacks, the robotic interface serves as 

a fallback steering controller which enables the avoidance and the mitigation of lane 

departure accidents (Wang et al., 2018b). 

 

Figure 3.1: Progression pathway of steering devices for ground vehicles along the SAE 

autonomy level; emergency operation of level 4 and 5 vehicles accommodated with a 

“plug & play” steering interface 

An extensive body of haptic force feedback steering research exists. Enriquez et al. 

(2001) proposed warning signals via pneumatic balloons on the steering wheel which 

inflated underneath the driver’s hand. Their approach had limitations: the pneumatic 

balloons were 10 cm long and thus provided only binary warnings. As observed by 

Beruscha et al. (2011), force (torque) feedback can remain unnoticed since it can be 

mistaken for driving related or “natural” torque caused by the tire/road interface. Medeiros-

Ward et al. (2010) investigated the usability of a “sandpaper-like rubber tractor” on the 
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steering wheel under the index finger. They compared the effectiveness of auditory vs. 

tactile navigational instructions to the operator of a moving vehicle. Tactile shear cues were 

provided to the participants’ index fingers as they gripped the steering wheel. Shakeri et 

al. (2016) conducted a user study to investigate the effectiveness of different haptic 

patterns. These patterns were presented on the outer rim of the steering wheel using three 

solenoids under each palm. They established a relationship between number of actuated 

solenoids and pattern identification rate. Wang et al. (2018) investigated various haptic 

steering devices and tested them on two road scenarios under two speed conditions. Results 

from the test indicated that the driver’s performance can be improved with the haptic 

steering input when compared to the traditional steering wheel. Previous researchers have 

also investigated various force feedback steering assistance control strategies (Freeman et 

al., 2015; Jensen et al., 2013). For this paper, a sliding mode controller has been selected 

based on robustness and non-linearity. 

The use of laboratory-based driving simulators as an alternative to field testing 

provides a safe, repeatable, and quick pathway to evaluate steering concepts. Despite these 

advantages, a laboratory-based driving simulator possesses several drawbacks. For 

instance, simulator discomfort such as motion sickness among certain groups may 

undermine training effectiveness and negatively impact the usability of simulators. Also, 

the physical and perceptual fidelity of a driving simulator is limited compared to a real 

vehicle. Zhang and Wang (2005) designed a hardware-in-the-loop steering simulator to 

study the effect of physical components, steering system dynamics, and other features such 

as soil stiffness on off-road vehicles. Setlur et al. (2003) assessed a hybrid vehicle steer-
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by-wire system using hardware-in-the-loop and virtual reality environments. Most of the 

investigations involving human-subject simulators have focused more on driver behavior 

and performance instead of steering system design preferences. Norfleet et al. (2009) 

investigated three driving simulators in terms of their hardware and software, as well as 

their applications. The simulator capabilities reviewed varied from a fixed base to motion 

platform, desk top interface to in-vehicle cabin, and single to multiple computers to execute 

the software. Black et al. (2014) developed a high-fidelity steering simulator to support 

driver preference studies. The simulator SUV utilized features an electric power steering 

rack and pinion system and was validated using in-vehicle test data and two pilot studies. 

Andonian et al. (2003) created a fixed-base driving simulator with a 14-degree of freedom 

vehicle dynamics model to compare the lane tracking performance of test subjects using a 

joystick steering controller against a conventional steering wheel. They discovered that 

driver performance using a joystick was improved with the addition of force feedback. 

To date, a considerable body of research has sought to develop lateral control 

strategies implemented in the form of steering torque to improve vehicle lateral 

performance. While this paper provides insights on the lateral controller, especially in 

regard to robust sliding mode control, it devotes a large amount of attention to evaluating 

the performance of three haptic steering interfaces, including the steering wheel, joystick, 

and robotic grip, all of which provide nonlinear lateral force feedback to the driver and 

assist in lane keeping. In particular, research on alternative steering devices for semi-

autonomous vehicle is notably lacking. The replacement of the steering wheel on semi-

autonomous vehicles is conceptually intriguing and this project seeks to fill this gap by 
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examining various potential haptic driving paradigms and benchmarking their 

performances against the steering wheel under different road scenarios and speed 

conditions. These haptic driving devices also serve as a contingency when semi-

autonomous vehicles encounter extreme maneuvers that are otherwise unable to be handled 

solely by the automated system without human intervention. Thus, their performances in 

aggressive driving conditions are investigated to determine the most applicable device for 

semi-autonomous vehicles. 

This paper evaluated three potential steering devices for implementation on Level 

3 autonomous vehicles through quantitative and qualitative measures. These three steering 

systems have been procured from vendors in that they offer integrated feedback that may 

be computer controlled in real time. The steering wheel (Logitech G27) was secured from 

Logitech and offer a realistic experience with a known vehicle steering wheel device, 

throttle and brake pedal. On the other hand, the joystick (Logitech Wingman Force 3D) 

and robotic grip (Novint Falcon) are more modern and provided multi-channel for haptic 

feedback. The operation map for the three devices is shown in Figure 3.2. Steered in a one-

handed manner with simpler functionality, the joystick and robotic grip devices require 

less effort and smaller motion from the driver compared to a traditional steering wheel. In 

addition, the joystick and robotic grip require much less space than a steering wheel. This 

size advantage leads to a more flexible steering device arrangement inside a semi-

autonomous vehicle. The main steering device studied is a three degree-of-freedom (DOF) 

haptic robotic interface that uses a delta-robot configuration with three servo-actuated 

parallel links connected to a moving plate. The torques applied at the input link by the 
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actuators to achieve proper haptic feedback may be calculated. All joints in the robotic grip 

are one DOF revolute joints. The information between the device and the controlling 

computer is handled via USB connection. The robotic grip sends the position data to the 

computer that returns a force vector. Position is measured using encoders and the force 

vector is created by feeding the supplied currents to the servomotors in each parallel link 

(Rodríguez and Velàzquez, 2012). A detailed forward and inverse kinematics model of the 

robotic grip can be found in (Fu et al., 2016).  

 

Figure 3.2: Haptic steering device operation map - (a) steering wheel with brake and 

acceleration pedals, (b) joystick, (c) robotic grip. 

To evaluate vehicle handling performances, a nonlinear vehicle dynamics model 

implemented in the driving simulator includes the chassis dynamics and tire kinematics. 

The model generates the chassis response (e.g., longitudinal, lateral, and yaw velocities) 

and tire response (e.g., tire forces, moments, and slip angles). A high-level diagram of the 

system is shown in Figure 3.3. A human-in-the-loop study, involving 30 human subject 

(a) 
(b) 

(c) 
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participants who are experienced drivers aged 18-30, was conducted to evaluate the 

effectiveness of the three haptic steering devices under different road scenarios.  

Research Objective: Can robotic inspired steering input devices with robust 

nonlinear control outperform the traditional steering wheel in terms of vehicle lane 

keeping?  

The remainder of the paper is organized as follows. The mathematical formulation 

and control structure are presented in Sections 2 and 3. The experimental setup with the 

accompanying operator-in-the-loop test results are summarized in Section 4. Finally, 

Section 5 offers the conclusion. The vehicle model and control parameter table, the test 

subject questionnaire, and a complete Nomenclature List appear in Appendices A, B, and 

C. 

 

Figure 3.3: Closed-loop system design for human/machine steering interface 

3.2 Steering System Model 

The lateral characteristics of a semi-autonomous vehicle are influenced by the 

chassis dynamics and the front tires. The steering system provides lateral vehicle control 
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using a dedicated steering assembly which traditionally turns the front wheels. For 

convenience, a 7 DOF model that involves the longitudinal, lateral, and yaw motions, plus 

the four wheels rotations will be considered. The chassis, wheel and tire load interface, and 

lateral dynamics will be discussed in this section.  

3.2.1 Vehicle Chassis 

A nonlinear vehicle dynamic model has been implemented to evaluate control 

system performance. The three model states are the longitudinal velocity 𝑣𝑥, the lateral 

velocity 𝑣𝑦 , and the yaw rate �̇�. Referring to Figure 3.4, the chassis dynamics may be 

expressed as (Freeman et al., 2016) 

 ( ) ( )cos sinx y xfl xfr xrl xrr yfl yfrmv m v F F F F F F  = − + + + + − +   (3.1) 

 ( ) ( )sin cosy x xfl xfr yrl yrr yfl yfrmv m v F F F F F F  = − + + + + + +   (3.2) 
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= + + + − +

 + − + − + −
 

  (3.3) 

where 𝛿 denotes the front wheel steering angle, 𝑚 is the vehicle mass, and 𝐼𝑧 is the vehicle 

yaw moment of inertia. The longitudinal tire forces at the front left, front right, rear left 

and rear right tires are 𝐹𝑥𝑓𝑙, 𝐹𝑥𝑓𝑟, 𝐹𝑥𝑟𝑙, and 𝐹𝑥𝑟𝑟, respectively. Similarly, the lateral forces 

at the front left, front right, rear left, and rear right tires are by 𝐹𝑦𝑓𝑙, 𝐹𝑦𝑓𝑟, 𝐹𝑦𝑟𝑙, and 𝐹𝑦𝑟𝑟. 

The terms 𝑙𝑓, 𝑙𝑟, and 𝑙𝑤 refer to the distance from the center of gravity to the front wheels 

and rear wheels, as well as between the left and right wheels. 
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Figure 3.4: Diagram to illustrate vehicle chassis dynamics 

3.2.2 Tires and Wheels 

The vehicle simulation requires the tire/road interface forces for the four wheels. A 

general analytical tire model (Dugoff et al., 1969) has been altered for combined slip 

(Gunta and Sankar, 1980). The longitudinal wheel slip ratio during braking and 

acceleration, 𝑠𝑥𝑖, may be expressed as 

 

,  v ; brake

,  v ; traction

eff wi x

x eff wi

x

xi

eff wi x

x eff wi

eff wi

r v
r

v
s

r v
r

r









−



= 

− 



  (3.4) 

where the 𝑖 subscript represents 𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟. This notation refers to the front left, front 

right, rear left, and rear right wheels, respectively. The term 𝜔𝑤𝑖  represents the four 

wheels’ rotational speed and 𝑟𝑒𝑓𝑓 is the effective tire radius. 

The slip angle, 𝛼𝑖, for the tires becomes 
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The longitudinal and lateral tire forces, 𝐹𝑥𝑖 and 𝐹𝑦𝑖, may now be written as 
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where 𝐶𝛼𝑖 and 𝐶𝜎𝑖 are the cornering and longitudinal tire stiffness. The variable 𝜆𝑖 and the 

function 𝑓(𝜆𝑖)  are given by 
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The term 𝐹𝑧𝑖 denotes the vertical force on the 𝑖th tire while the symbol 𝜇 denotes the tire-

road friction coefficient. The governing equation for the rotational speed of the wheels may 

be written as 

 w wi di bi eff xiI T T r F = − −   (3.8) 

In this expression, 𝐼𝑤 is the wheel inertia. The drive and braking torques are denoted as 𝑇𝑑𝑖 

and 𝑇𝑏𝑖. 

A summary of the vehicle and control model parameters is listed in Table A1 in the 

Appendix A. 

3.3 Control System Design 

A nonlinear higher order sliding-mode controller (SMC) will be considered for the 

steering system to provide lateral feedback to the driver and assist lane keeping. The 

nonlinear control structure designed to be integrated into all three haptic steering interfaces 

used in this study is shown in Figure 3.5. The motivation of using sliding mode control is 
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to achieve the ability to guarantee the control robustness against the system uncertainties 

and varying road conditions (Freeman et al., 2015).  

The lane keeping assistance system considers the vehicle’s lateral error, 𝑒𝐿, and the 

heading error, 𝑒𝐻, which may be defined as 

 
2

,  ,  x
L des L y x H des

v
e y y e v v e

R
  = − = + − = −   (3.9) 

As shown in Figure 3.6, 𝑦 is the measured or estimated vehicle lateral position. The term 

𝜓𝑑𝑒𝑠 is the desired yaw angle derived from the tangent of the road centerline.  Similarly, 

𝑦𝑑𝑒𝑠 is the desired lateral position which is the lateral coordinate of the road centerline.  

 

Figure 3.5: Sliding mode and classical control structures for vehicle lane keeping 

controllers   

3.3.1 Sliding Mode (SMC) 

Sliding mode control remains the most successful approaches in handling bounded 

uncertainties/disturbances and parasitic dynamics (Davila et al., 2005). The control concept 

is based on the introduction of a sliding variable function which is designed to become 

equal to zero. The main features of the sliding mode are its insensitivity to external and 

internal disturbances matched by the control, ultimate accuracy, and finite-time 

convergence of the sliding variable to zero. However, chattering is a problem impending 
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its implementation. The modified sliding mode control with boundary layer undergoes the 

degradation of tracking performance and robustness while reducing the chattering effect. 

Second order sliding mode control is a viable solution to reduce the chattering effect 

without affecting the tracking accuracy and robustness. For higher order systems a super-

twisting algorithm can address the chattering problem.  

 

Figure 3.6: Lane keeping control system kinematics 

Super-twisting sliding mode control begins with the dynamic system problem 

statement  

 ( ) ( ) ( ), ,x f t x g t x u t= +   (3.10) 

where 𝑥 is the state vector, 𝑓, 𝑔 are continuous functions, and 𝑢 is the control input. The 

sliding variable 𝑠 may be defined so that the first-order time derivative of 𝑠 yields 

 ( ) ( ), ( , ) ( , )s t s t s t s u t = +   (3.11) 

The control authority (Alt et al., 2013; Kamal et al., 2014) may be written as 

 ( ) ( )
1

2 ;  a bu k s sign s v v k sign s= − + = −   (3.12) 



 53 

which drives the sliding variable 𝑠 and its derivative �̇� to zero in finite time. The terms 𝑘𝑎 

and 𝑘𝑏 represent the sliding surface function gains and are positive constants. 

Substituting Eq. (3.2) into Eq. (3.9) and simplifying yields 
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The control input is the steering wheel angle, 𝑢 = 𝛿, and the control output is the lateral 

displacement, 𝑦. The objective of the control law is to eliminate the lateral displacement 

error, 𝑒𝐿. Select the sliding variable, 𝑠, as  

 L Ls e e= +   (3.14) 

with a first-order time derivative �̇� = �̈�𝐿 + 𝜆�̇�𝐿. Now substitute �̈�𝐿 per Eq. (3.9) so that  
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By correlating Eq. (3.11) and (3.15), 𝜙(𝑡, 𝑠) and 𝜑(𝑡, 𝑠) can be represented as 
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Applying the super-twisting algorithm in Eq. (3.12), the control input becomes 
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To obtain a best estimate of the equivalent control for the sliding mode controller and to 

avoid important peaks in transient phases, a feedforward equivalent command 𝛿𝑒𝑞 obtained 
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by solving �̇� = 0 that brings the system near to the sliding surface may be added to the 

control input (Tagne et al., 2016), and is given by 
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Thus, the final steering angle representing the control input of the system should be 

 net SM eq  = +   (3.19) 

3.4 Operator-in-Loop Evaluation 

An operator-in-loop (OIL) driving simulator environment has been created to 

assess the efficacy of the three haptic devices with accompanying controllers. In this 

section, the virtual environment, testing methodology, and experimental results will be 

presented.  

3.4.1 Test Environment 

To explore the real-time performance of each operator using the steering input 

devices, a fixed-base hardware-in-the-loop experimental test bench was created. The 

driving simulator involves the synchronized operation of specialized hardware and 

software. The components included the haptic steering devices, a high-resolution image 

projector, and a Honda CR-V static vehicle. The visual environment, created using the V-

Realm Builder 2.0, was rendered by the 3D Animation toolbox and projected on a large 

screen. The vehicle model, including wheels and chassis, and robust nonlinear controllers 

have been implemented in the MATLAB/Simulink environment [4]. All the steering 

devices are connected via USB to the main PC and communicate through QUARC® Real-

Time Control Software to maintain timing and steering commands during the simulation. 
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The driving scenario selected for this study targeted influential sensory aspects of the lane 

keeping process, such as visual, audio, and steering feel, that could offer feedback and a 

sense of realism (refer to Figure 3.7). The vehicle speed was displayed on the screen, and 

the audio feedback played through the cabin speakers. The test bed utilized in this study is 

a static base driving simulator. Results may differ if a dynamic platform driving simulator 

is used. The average speed driving on a versus static driving simulator will be lower, since 

the driver will adapt to a more conservative driving style with dynamic motion feedback 

(Wang et al., 2018b).  

 

Figure 3.7. Operator with robotic haptic interface 

3.4.2 Test Methodology 

A total of 30 human subjects test drove the experimental system; they completed 

pre-test questionnaires that sought knowledge on operator’s driving behavior 

characteristics and post-test questionnaires (refer to Table B1) after each scenario (Freeman 

et al., 2013). The research objective was to investigate the effects of three different steering 

devices, with integrated nonlinear sliding mode controller, on driver preference and 

performance. The test track profiles consisted of both straight and winding country roads; 

the latter features two circular paths with a radius of 200 and 100 meters as shown in Figure 
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3.8(a). A straight path was used to investigate the double lane-change maneuver, while the 

country road examines the curved path navigation capability. All 30 human subjects 

repeated these driving maneuvers for each of the three haptic steering interfaces. The 

drivers were requested to maintain the vehicle in the lane center. A slalom maneuver that 

is composed of a 300m straight road and 6 marking cones was also conducted to study the 

on-center handling behavior of the steering devices as shown in Figure 3.8(b). To control 

for learning that may arise from repeated activities, the sequence of scenarios was varied 

for each driver. A Latin square design ensured a randomized order of testing for the haptic 

steering devices.  During each test, such objective measures as the vehicles lane position 

data (i.e., longitudinal and lateral coordinates), yaw rate, and lateral acceleration, along 

with the driver’s input steering wheel angle, were recorded. After driving through each 

event, the drivers were requested to complete the post-test questionnaire and quantify the 

subjective measures of control and confidence, ease of driving, and safety.  

The three different steering configurations, C1 = Steering Wheel, C2 = Joystick, 

and C3 = Robotic grip, all of which are integrated with the robust sliding mode control, 

were studied. All configurations are equipped with a self-centering mechanism to emulate 

original equipment manufacturer (OEM) steering feel. A tradeoff exists between model 

sophistication and execution speed, so the scenery is limited. The best performance 

corresponds to the case when an operator completes an assigned task with the smallest 

lateral position and heading error, and ideal handling performance (e.g., lateral acceleration, 

yaw rate). According to these criteria, the steering wheel that drivers are most familiar with 

may offer improved operation in comparison to the joystick and robotic grip at which 
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drivers are novice [4]. Based on these factors, three hypotheses have been proposed for the 

various steering configurations: 

H1: The operator should be more confident in using the steering wheel, C1, due to 

familiarity. 

H2: The joystick, C2, will require the least amount of physical driving efforts yet 

yield the highest lateral position tracking error. 

H3: The robotic grip, C3, should offer higher lateral position error than the steering 

wheel, C1, but lower than the joystick, C2. 

 

Figure 3.8. Virtual roadway with (a) lane change, and (b) slalom test. 

3.4.3 Test Results 

Double Lane Change Results 

An aggressive double-lane-change maneuver per ISO 3888-1 (shown in Figures 3.9 

and 3.10) was used to evaluate the effectiveness of each candidate steering device (ISO 

3888–1, 1999) . In this test, the vehicle enters the course at a speed of 50 kph and the 
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accelerator pedal is released. The driver then attempts to negotiate the course without 

striking the cones. The ISO double-lane-change maneuver is typically performed as a 

closed-loop driving test and is used to adjust the dynamics of a vehicle based on the 

subjective evaluations of professional drivers.  

 

Figure 3.9. ISO 3888-1 double-lane-change maneuver test track [26] 

The vehicle trajectories, steering angle, and lateral (y position) error of the 16th 

operator with steering devices and sliding mode feedback at 50kph, C1-C3, when driving 

through the double-lane-change maneuver are shown in Figure 3.11. The desired vehicle 

trajectory is shown in black dash-dotted line in Figure 3.11(a) (Jalali et al., 2013). The 

maneuver was successfully completed by the drivers using all steering devices, indicating 

the robustness and proficiency of the nonlinear haptic feedback. The steering wheel, C1, 

and the robotic grip, C2, understeered at the lane sections 2 and 4. The steering device 

steering angle response with respect to time is depicted in Figure 3.11(b). The steering 

angle for joystick and robotic grip was lower than the steering wheel, indicating that the 

steering efforts from the joystick are the lowest among all steering devices followed by the 

robotic grip. The steering wheel requires the largest steering effort during a double lane 
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change, a fact confirmed by the operators who were overwhelmed by the intensity of 

steering torque exertions they experienced from the sliding mode feedback. The lateral 

tracking error of the robotic grip, C3, was the lowest overall followed by steering wheel as 

shown in Figure 3.11(c). The joystick’s lateral error is the highest, indicating the 

unreliability of the such devices in aggressive driving conditions. It is also clear that the 

robotic grip is an ideal steering device for the double lane-change maneuver. 

 

Figure 3.10. Double lane change simulator scene in software animation 

The front and rear tire slip angle responses with respect to time in the driving 

environment during the double lane-change test at 50kph are displayed in Figures 3.11(d) 

and (e). The front tires generate a maximum 0.02-0.03 (rad) slip when entering the first left 

manuver, and repeat again when returning to neurtral yaw and vice versa. The deformation 

in the tire tread supports the vehicle dynamics through appropriate lateral force. The larger 

tire slip angle of the steering wheel indicates a higher tire lateral force, which in turn 

maximizes the vehicle’s ability to grip. Thus, it can be deduced that the vehicle operated 

by the joystick has the worst traction during a double lane-change, due to the relatively 

lower tire slip angle. When the vehicle is entering the last straight road section (at 15s), the 

robotic grip and the steering wheel’s front tire slip angles both settled from the overshoot 
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relatively fast. On the other hand, the joystick’s settling time is the longest, indicating that 

the vehicle operated by the joystick recovers slower to a stable condition after the lane-

change than the vehicles operated by the steering wheel and robotic grip. 
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Figure 3.11. Human subject #16 data for three steering configurations, C1-C3, during a 

double-lane-change maneuver starting at 50kph- (a) vehicle trajectories, (b) steer angle, 

(c) lateral position error, (d) front tire slip angle, and (e) rear tire slip angle. 

Country Road Driving Results 

After the completion of the double lane change maneuver, the drivers then traveled 

on a 200m radius curve before entering the country road driving sections which consisted 

of a 100m radius curve and two straight roads (refer to Figure 3.8(a)). This portion of the 

track served as a demonstration of the operators’ ability to drive on a winding roadway 

under conditions C1-C3 at both 50kph and 80kph.  

The country road driving vehicle responses from human subject #22 are presented 

in Figure 3.12. The vehicles’ steering angle responses under low and high speed were 

plotted in Figure 3.12(a) and (d). Consistent with the trend from the double lane change 

maneuver, the joystick steering angle is the lowest during the circular path negotiation. 

This finding means that the driver’s joystick steering effort is the lowest while more 

steering exertion needs to be applied to the steering wheel to navigate the same curve. 

When the vehicle is passing through the circular track, the steer angle response of the 

joystick is chattering severely. The main reason is that the sliding mode controller innate 

chattering feature is amplified by the fast steering response from the joystick. The vehicle 
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steer angle under 80kph in Figure 3.12(d) further verified excellent performance delivered 

by the robotic grip under both low and high-speed conditions. Not only was the robotic 

grip’s steering angle the most stable during the whole navigation, but also its steer angle 

overshoot was the lowest at junction between 100-m radius circular path and straight road, 

a fact that ensures the best handling at the sacrifice of higher lateral acceleration. 

Formed by the error between the actual heading angle of the vehicle and the 

tangential direction of the desired path, the vehicle heading error from human subject #22 

under 50kph and 80kph can be found in Figures 3.12(b) and (e). During the cruising of two 

straight road segments (60s-68s and 92s-100s), the steering wheel, C1, exhibits the most 

stable condition followed by robotic grip, C3, whereas the joystick, C2, oscillates 

irregularly and reaches a marginally stable condition. On the circular path section (69s-
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Figure 3.12. Human subject #22 data for three steering configurations, C1-C3, during the winding country road 

scenario at 50 and 80kph: (a, d) steer angle, (b, e) heading error, and (c,f) lateral error. 
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91s), both robotic grip and steering wheel devices reached a stable condition while the 

joystick reached a marginally stable condition. It is also noteworthy that the robotic grip 

has the lowest settling time from among all three devices, indicating its superior recovery 

capability from disturbances compared to other steering devices. Further, the robotic grip 

generated the lowest heading error overshoot during the junction between straight and 

circular path under both low and high speed conditions, guaranteeing a safer driving 

experience under high speed aggressive maneuvering.  

The lateral error, which is the orthogonal distance from the center of gravity (CG) 

of the vehicle to the desired lane center, is depicted in Figures 3.12(c) and (f). Under the 

low speed condition displayed in Figure 3.12(c), all steering devices negotiate this segment 

efficaciously with lateral errors of 0.12m (C2), 0.04m (C1), and 0.06 (C3) at the first 

junction between the straight road and the circular path at 68s. At the second junction 

between the circular path and the straight road at 90s, only the robotic grip successfully 

completed this intense maneuver with maximum lateral error of merely 0.05m. During the 

circular path phase (70s-90s), the steering wheel and robotic grip exhibit a relatively steady 

error fluctuation, whereas the joystick did not reach a stable steady state condition, meaning 

that the vehicle operated by joystick experiences a lot of swaying. Under high speed 

condition in Figure 3.12(f), the robotic grip, C3, maintained its good performance, as its 

lateral error at the junction between straight road and circular path was the lowest among 

all three steering devices. The steering wheel, C1, also maintained a low lateral error on 

the straight path (41s-46s and 60s-65s), but its lateral error deteriorated at the junction 

between straight road and circular (46s and 60s) and became 0.17m and 0.05m at both 
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junctions respectively. The joystick, C2, continues its inferior performance, oscillating 

irregularly during all phases of the curve path navigation.  

To further comprehend the vehicle handling performance under high speed country 

road driving, the vehicle’s front and rear tire slip angle responses of the 22th operator 

driving at 80kph on the country road are displayed in Figure 3.13. With larger slip angles 

from the steering wheel, C1, during the junction (46s) between the straight road and the 

circular path, it will require more steering angle to sustain the desired path through the 

corner. Smaller slip angles on the front tires from the joystick, C2, and robotic grip, C3, 

will require less steering angle to maintain the desired cornering line. Unlike the rear tires, 

if the front tires develop a larger slip angle, the operator is free to turn the steering wheel a 

little farther and still maintain the desired direction of travel, a situation which is considered 

understeer. With the robotic grip, the driver operated the tires with the smallest slip angles 

and hence avoided the saturation of the front wheel lateral forces and excessive understeer. 

During the 100meter radius curve path driving (46s-58s), the front and rear tire slip of the 

steering wheel and robotic grip maintained a steady response while the joystick’s front tire 

slip angle fluctuated in the latter half section, indicating that the front tire operated under 

joystick assisted by sliding mode controller will wobble during circular track negotiating 

that can cause severe tire damage.  Finally, all three steering devices’ front tire slip angles 

overshoot at the junction between circular track and straight road (60s). The robotic grip 

not only has the smallest overshoot, but also the least amount of settling time (1.2seconds), 

indicating the strong tire deformation recovery capability from the robotic interface. The 

steering wheel also recovered relatively fast (1.6 seconds) whereas the joystick’s recovery  
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time is 5.1 seconds.  

 

 

Figure 3.13. Human subject #22 data for three steering configurations, C1-C3, during 

country road driving at 80kph- (a) front, and (b) rear tire slip angles. 

Following the completion of human subject tests, all 30 operators’ actual 

trajectories are recorded and compared to the desired trajectory. The root mean square 

(RMS) of the heading error, 𝑒𝐻𝑅𝑀𝑆, lateral error, 𝑒𝐿𝑅𝑀𝑆, and lateral acceleration, �̈�𝑅𝑀𝑆, are 

calculated and recorded for each human subject under low and high-speed conditions 

(50kph and 80kph) in Table 1. Along with the RMS values, the maximum value of heading 

error, 𝑒𝐻𝑚𝑎𝑥, lateral error, 𝑒𝐿𝑚𝑎𝑥, and lateral acceleration, �̈�𝑚𝑎𝑥 are also recorded for all 

configurations and speed conditions. Under the robust sliding mode controller, the robotic 

grip, an ideal steering device for extreme maneuvers, exhibited the lowest mean lateral 

error under both low and high-speed conditions at the sacrifice of relatively large lateral 

acceleration. The mean lateral error improvement of the robotic grip compared to the 

steering wheel is 75.3% under 80kph. The robotic grip presented the lowest average and 
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maximum lateral acceleration followed by the steering wheel under 50kph, indicating that 

the drivers’ comfort during extreme maneuver can be guaranteed driving with robotic grip 

under low speed. The joystick, however, appears to produce the highest lateral acceleration 

among all three steering devices. The steering wheel, instead, outputs the lowest chassis 

lateral acceleration under 80kph, assuring the most comfortable ride for the driver at the 

expense of minor lateral deviation. The joystick delivers the poorest results in almost all 

variables that are recorded in the table, making it a highly undesirable steering device in 

most driving conditions.  

Table 3.1: Average of all N=30 human subjects heading error, lateral error, and lateral 

acceleration results for three steering configurations, C1-C3, at 50 and 80 kph (highest 

value highlighted in bold, lowest value is underlined). Note that 𝑒𝐻𝑅𝑀𝑆, 𝑒𝐿𝑅𝑀𝑆 and �̈�𝑅𝑀𝑆 

are the root mean square values, while 𝑒𝐻𝑚𝑎𝑥, 𝑒𝐿𝑚𝑎𝑥 and �̈�𝑚𝑎𝑥 are the maximum values 

for test subjects. 

Test 

No. 

Control 

Algorithm 

Speed 

(kph) 

Config 𝑒𝐻𝑅𝑀𝑆 

(rad) 

(×10-3) 

𝑒𝐻𝑚𝑎𝑥 

(rad) 

(×10-2) 

𝑒𝐿𝑅𝑀𝑆 

(m) 

(×10-2) 

𝑒𝐿𝑚𝑎𝑥 

(m) 

(×10-1) 

�̈�𝑅𝑀𝑆 

(m/s2) 

(×10-2) 

�̈�𝑚𝑎𝑥 

(m/s2) 

(×10-1) 

1 Sliding 

Mode 

Control 

50 C1 8.50 2.14 0.69 0.36 0.57 0.81 

2 C2 9.50 3.55 3.91 1.97 1.48 1.27 

3 C3 8.60 2.47 1.26 0.60 0.44 0.56 

4 80 C1 8.50 2.99 1.90 1.64 0.66 0.48 

5 C2 9.30 3.77 4.86 1.88 2.01 1.11 

6 C3 8.40 1.88 0.45 0.24 0.77 1.07 

Some conclusions may be put forth based on the test results as follows: 

1) The test condition associated with joystick, C2, exhibits an unfavorable handling 

performance compared to the steering wheel and the robotic grip. The corresponding 

heading error, lateral error, and lateral acceleration were highest in all test cases. 
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2) The steering wheel, C1, offers better performance than the robotic grip, C3, 

under low speed condition (50kph). Case C1 reduced the position tracking error by 45.2% 

when compared to C3. The robotic grip, C3, offers better performance than the steering 

wheel (C1) under high speed condition (80kph). Case C3 reduced the position tracking 

error by 75.3% when compared to C1. 

3) The robotic grip, C3, is the most comfortable steering device to operate under 

low speed condition as its lateral acceleration is the lowest among all three devices. The 

steering wheel, however, becomes the ideal steering device under high speed condition in 

which its lateral acceleration is the lowest. It is important to stress that the lateral 

acceleration produced by all three steering devices under all speed conditions is less than 

0.4g, which is the limit for ensuring driver’s comfort during cornering, mainly thanks to 

the robustness of the sliding mode controller. 

Slalom Event Results 

A slalom event, whose snapshot is displayed in Figure 3.14, was adopted to 

evaluate the on-center handling behavior of the three haptic steering devices. The slalom 

test is an open-loop procedure conducted on a test track that follows a straight-line path. 

The on-center handling represents that part of the straight-line directional stability 

characteristic of the vehicle existing at low lateral acceleration levels. In the slalom 

scenario, the drivers were requested to complete a weaving roadway at a constant speed of 

50kph. A 300m long track with two 2.2m wide lanes was selected; 6 cones were placed at 

the intervals of 30m starting at 100m. A subset of 10 individuals in the test pool drivers 

were requested to complete this driving scenario. 
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Figure 3.14. Snapshot of the vehicle on the slalom course 

The vehicle trajectories, and yaw rate versus steer angle response of driver #16 with 

the haptic steering devices and sliding mode feedback at 50kph, C1-C3, when driving 

through the slalom maneuver are shown in Figure 3.15. The maneuver was successfully 

completed by the driver using all steering devices, indicating the trustworthiness and 

effectiveness of the nonlinear haptic feedback from the sliding mode control. As can be 

seen in Figure 3.15(a), although driver #16 is able to steer the vehicle through the slalom 

maneuver with the joystick, C2, the vehicle trajectory obtained from the joystick steering 

is uneven. On the other hand, the driver was able to negotiate the same maneuver much 

more easily and smoothly when steering with the steering wheel, C1 and the robotic grip, 

C3. This fact is confirmed in Figure 3.15(b), which illustrates the vehicle yaw rate with 

respect to steer angle. The closer this plot is to a straight narrow line, the more steering 

linearity the vehicle demonstrates, which indicates the best on-center handling performance 

driving with the steering wheel, C1. In addition, for on center steering, the joystick, C2, 

has a significantly faster response and higher yaw rate than the steering wheel, C1, and the 

robotic grip, C3. Consequently, the vehicle steered by the joystick is more responsive than 

the vehicle operated by the steering wheel and robotic grip. The high steering sensitivity 
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also explained the joystick-driven vehicle nonlinearity and deteriorated performance in the 

slalom test. 

 

 

Figure 3.15. Human subject #16 data for three steering configurations, C1-C3, during a 

slalom maneuver starting at 50kph, (a) vehicle trajectories, and (b) yaw rate vs steer 

angle, the red asterisks represent slalom test marking cones. 

Post-Test Questionnaire Results 

This section summarizes the information collected in both the initial demographic 

questionnaire and the post-task evaluation of the driving experience from each participant. 

The total number of participants for the study was 30, all of whom are students in the age 

range of 18 to 30 years, with the majority being between 18 to 21. Of the participants, 16 

were male, and 14 were female. Self-identified as excellent drivers who have been driving 

for at least 3 years, all test subjects indicated they have used the cruise control feature in a 

(a) 

(b) 
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vehicle before. Only 11 individuals stated that they have driven in a driving simulator prior.  

When asked whether they had driven an autonomous or semi-autonomous vehicle that has 

been sold on the market, only 2 were noted to have any experience at all. Also, no driver 

has ever attended an advance driver training program that focused on safe driving practices. 

Subjective reactions to the steering system feedback settings were evaluated 

through a questionnaire (refer to Table B1 in Appendix B) developed by factor-analyzing 

a set of nine questions, each rated by the test subjects, on a scale of 1 to 7 (Mandhata et al., 

2012). The questions were grouped to evaluate three factors: (i) degree to which 

participants felt a sense of confidence and control over the steering system (Questions 1-4, 

symbol O1), (ii) perceived ease-of-use of the steering system (Questions 5 and 6, symbol 

O2), and (iii) perceived safety of the vehicle (Questions 7-9; symbol O3). 

The subjective reaction measures for the three steering devices, C1-C3, and the 

driver observations, O1-O3, have been displayed in Figure 3.16 radar plot. It can be noticed 

that for the confidence and control measure, O1, the participants gave the highest rating to 

the steering wheel, C1, due to familiarity. Results also shows that the comfort for the 

robotic grip, C3, is the lowest mainly because the claw grip holding style from the robotic 

interface can be tiring for long-term driving. Additionally, the ease-of-use factor, O2, 

exhibited a novel pattern with joystick, C2, being most preferred followed by robotic grip, 

C3, and steering wheel, C1. The novel pattern of ease-of-use may be explained by the 

single-handed operation of joystick and robotic grip that demanded much less physical 

effort from the operator during both regular driving and evasive maneuvering. Lastly, a 

detail worth mentioning is that most operators rated high scores on the steering wheel, C1, 
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for being able to drive the vehicle safest at low speeds and also rated high scores on the 

robotic grip, C3, for being able to drive the vehicle safest at high speeds. 

 

Figure 3.15. Nine subjective measures for three steering devices based on human 

subjects’ responses to the questionnaire in Table B1 normalized to 10. 

ANOVA Statistical Analysis Results 

Analysis of variance (ANOVA) is common technique adopted to examine a 

hypothesis concerning the means of multiple populations. A two-way repeated measure 

analysis of variance was used to separately analyze and determine whether there was a 

statistically significant effect by the two treatment factors studied in the Hypotheses H1-

H3: speed and devices. The ANOVA results for the lateral error and the human subject 

confidence level for the road course are shown in Table 2. The first observation is that the 

steering devices and vehicle speed both individually had a significant effect on the lateral 

error magnitude generated by the participants. This result matches the expectation that the 

generated lateral error should increase with more speed and inferior steering devices as the 

lane keeping process becomes more difficult under these conditions. For interaction of the 
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speed and steering devices (Speed×Devices), it can be concluded that interaction between 

those two factors have a significant effect (p-value=0.0288). Moreover, the steering 

devices significantly impacted the confidence level of the participant drivers. This was 

another expected result as the different characteristics of the three steering devices created 

drastic variations in driving styles among the operators who expressed notably distinct 

confidence levels. Interestingly, the speed did not have a statistically significant impact on 

the drivers’ confidence level during country road driving. Although initially unexpected, 

this lack of significant impact may result because the steering devices assisted by the 

sliding mode control feedback were robust against speed variations, causing the impact of 

speed to go unnoticed. Similarly, it can also be concluded that interaction Speed×Devices 

is significant on the driver’s confidence level. 

Table 3.2. ANOVA results for road course lateral error and questionnaire responses on 

confidence level; bold entries indicate statistically significant results. 

 

Factors 

Lateral Error Confidence 

Level 

F-ratio p-value F-ratio p-value 

Speed 4.8482 0.0369 1.9942 0.1564 

Devices 7.7443 0.0162 8.6784 0.0188 

Speed×Devices 5.7849 0.0288 7.3645 0.0488 

3.4.3 Summary 

The main objective of this study was to evaluate not only the tracking capability of 

three haptic steering devices in both straight-line and winding road driving, but also the 

on-center handling behavior of these devices. There are three key findings inferred from 

the operator-in-the-loop evaluations. First, tracking capability with the steering wheel and 
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robotic grip was superior to that of any of the joystick settings in both the double lane 

change and curve path navigation maneuvers. Second, drivers used the robotic grip 

differently than the steering wheel to steer the vehicle during extreme maneuvers. The 

robotic grip required much less physical movement, and therefore less expended energy to 

steer the vehicle during the lane change and curve path navigation maneuver. 

Consequently, the robotic grip may allow for a faster response to emergency and extreme 

maneuvers from driver with slower reflexes. This finding explains why the robotic grip 

offers superior performance than the steering wheel during high speed (80kph) driving in 

Table 1. Finally, the steering wheel maintains a certain level of dominance in low and 

moderate speed conditions and outperforms the joystick and robotic grip in terms of on-

center handling linearity. Another significant observation can be made is that during the 

curve path navigation scenario, most drivers would perform fast, small amplitude 

movements with the robotic grip versus gradual, large amplitude movement with the 

steering wheel. This further indicates potential safety benefits of robotic interface in driving 

situations like sharp turn and lane change that require extreme maneuvering. Table 3 

summarizes the advantages and disadvantages of each haptic steering device in detail. 

In terms of hypotheses H1 through H3, these experimental results support that H1 

and H2 are true within the 30 participants. However, H3 cannot be fully settled. Even 

though the steering wheel has lower RMS lateral error than the robotic grip under low 

speed conditions, the RMS lateral error of the robotic grip is still lower than that of the 

steering wheel under high speed conditions. More tests and statistical analysis are needed 

to prove the effectiveness of the haptic feedback device with different control strategies. 
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The test data from human subject #16 and #22 were selected and analyzed because these 

two drivers were most representative in terms of performance and demographic to display 

the data. All 30 drivers completed the double lane change maneuver, country road driving 

event, and slalom scenario successfully through the nonlinear robust haptic interfaces 

without severe hardware operation error or phycological discomfort.  

3.5 Conclusion 

The growth in semi-autonomous and autonomous ground vehicles around the world 

has created a need for alternative steering input devices. The main objective of this paper 

was to compare driver performance when using a robotic interface mechanism versus a 

steering wheel and joystick in a driving simulator environment. All three haptic steering 

devices were tested under the robust sliding mode controller. Human test subjects operated 

these interfaces for a given track comprised of a double lane-change maneuver and a 

country road driving event under two speed conditions. Subjective and objective results 

from the test demonstrate that the driver’s experience can be enhanced up to 75.3% with a 

robotic steering input when compared to the traditional steering wheel during extreme 

maneuvers such as high-speed driving and sharp turn (e.g., hairpin turn) passing.  

The answer to the objective puts forth regarding the impact of robotic steering 

devices is:  

Yes, the lane keeping performance of the robotic steering input device with robust 

nonlinear control surpasses that of the joystick and the steering wheel during emergency 

and extreme maneuvers.  
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One of the major challenges today for this growing area of research is semi-

autonomous driving at high speed. The advent and implementation of robotic grip can 

increase the accuracy and tracking performance of semi-autonomous driving as an 

alternative steering device other than steering wheel. 

Table 3.3: Comparison of different steering devices 

Steering 

Device 

Advantages Drawbacks 

Steering 

Wheel, 

C1 

• Dominant in low and moderate speed 

conditions 

• Superior steering linearity during on-

center handling 

• Drivers are familiar with the device 

• Comfortable to drive during extreme 

maneuvers due to low lateral 

acceleration 

• Slow response and more 

physical effort from the 

driver during extreme 

maneuvers. 

Joystick, 

C2 
• Driver’s find the joystick easy to grab 

• Lightweight and easy to carry around 

• Worst tracking 

performance driving 

along a pre-defined 

trajectory 

• Can cause serious 

human discomfort due 

the unstable and high 

lateral acceleration 

Robotic 

Interface, 

C3 

• Dominant in high speed extreme 

maneuvers. 

• Best tracking performance driving along 

a pre-defined trajectory 

• Faster response to emergency and 

extreme maneuvers from driver with 

slowed reflexes. 

• Might cause human 

discomfort during 

extreme maneuvers due 

to relatively high lateral 

acceleration 

A tremendous amount of future research must be conducted before the robotic grip 

interface can be adopted as an alternative steering input device in industrial applications. 

First, the robotic interface must be tested in an actual vehicle to further validate the efficacy 

of driving with a robotic grip on semi-autonomous vehicles. Second, the robotic grip 
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biomechanics must be investigated to explore the effects of long-term robotic grip usage 

in terms of wrist injuries, etc. Third, steer-by-wire failsafe measures should be carefully 

investigated to ensure driver and occupant safety. Before the robotic grip, which relies 

heavily on steer-by-wire technology, may be used to operate a vehicle, advances in the 

digital technology and security protocol must occur. Fourth, the robotic grip needs to be 

evaluated under various road environments such as wet condition, whose friction 

coefficient might be as low as 0.1, to ameliorate the steering feel when the driver is assisted 

by the nonlinear haptic feedback.  Last, additional robust control strategies such as 𝐻∞ 

commands need to be implemented on the robotic grip to corroborate the effectiveness of 

the alternative haptic device. 
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CHAPTER FOUR 

 

USE OF CELLPHONES AS ALTERNATIVE DRIVER INPUTS IN 

PASSENGER VEHICLES 

 

Automotive drive-by-wire systems have enabled greater mobility options for 

individuals with physical disabilities. To further expand the driving paradigm, a need exists 

to consider an alternative vehicle steering mechanism to meet specific needs and 

constraints. In this study, a cellphone steering controller was investigated using a fixed-

base driving simulator. The cellphone incorporated the direction control of the vehicle 

through roll motion, as well as the brake and throttle functionality through pitch motion, a 

design that can assist disabled drivers by excluding extensive arm and leg movements. 

Human test subjects evaluated the cellphone with conventional vehicle control strategy 

through a series of roadway maneuvers. Specifically, two distinctive driving situations 

were studied: a) obstacle avoidance test, and b) city road traveling test.  A conventional 

steering wheel with self-centering force feedback tuning was used for all the driving events 

for comparison. Based on the lane position and vehicle response data collected, the 

operators’ lane tracking capability during city road traveling was slightly inferior using a 

cellphone compared to traditional steering wheel. However, in extreme maneuvers like 

obstacle avoidance and sharp right turn, the lateral tracking performance of the cellphone 

was up to 12.07% better than that of the steering wheel. The cellphone’s superior 
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performance during certain vehicle maneuvers indicates its potential as an alternative 

steering adaptation for disabled drivers. 

4.1 Introduction 

According to the World Health Organization, approximately 190 million people in 

the world live with a severe disability such as quadriplegia. Such disabilities and the 

resulting impairments present great challenges for operating a motor vehicle. With 

emerging technologies, it is possible to improve mobility and motor vehicle safety for 

people with disabilities (World Heath Organization, 2011). 

The introduction of computer controlled electro-mechanical systems in ground 

vehicles has fostered semi-autonomous operation which promotes greater availability, 

usability, and mobility options for disabled drivers (Elvin and Gambrell, 2002). Drive-by-

wire systems including steering (Gambrell and Elvin, 2002), braking, and throttle offer a 

pathway from drivers to computer commanded inputs as well as performance 

improvements. Of interest is the integration of those three functions each operated with 

independent human-machine interface into a simple holistic device; a cellphone. The 

cellphone may feature steering through clockwise and counter-clockwise rotation for left 

and right turns. Similarly, throttle occurs by forward rotation of the phone while braking 

happens with backward rotation (refer to Figure 4.1). The amount of angular rotation in 

these two coordinates represents the value of steering angle, throttle, and brake input 

signals. As the mechanical connections between the input devices and vehicle is eradicated 

in drive-by-wire, the driver controls may be situated virtually anywhere in the vehicle 
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within the driver’s grasp. The possibility exists then of substituting the traditional vehicle 

control system with a driving paradigm more applicable to all drivers. 

A cellphone controller, whose comparison with traditional devices is listed in Table 

1, could present advantages to the driver such as: more room, controller arrangement 

flexibility, enhanced safety during a car crash, and more accurate direction control. 

Moreover, the cellphone integrates the steering mechanism with throttle and brake control, 

thus eliminating the leg usage during longitudinal maneuvers, benefiting disabled drivers 

who could not maneuver their feet onto the gas and brake pedal. Despite these advantages, 

a cellphone-based driving scenario possesses several drawbacks. For instance, accidental 

or unintended cellphone deflections may occur while navigating a corner in addition to 

vertical and roll inputs from road disturbances as the driver must support the device with 

their hands. Such deflections can lead to unwanted longitudinal and lateral vehicle motion. 

Similarly, wrist fatigue may be experienced by drivers who must handle the device for long 

time periods.  

 

Figure 4.1. Evaluation of vehicle control – traditional steering wheel w/ brake and throttle 

pedal to cellphone. 

Several studies have explored the drivers’ response to a variety of steering system 

and driver input designs. Matsuura et al. (2004) developed a driver’s joystick that was 
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compared with a conventional steering wheel by in-vehicle tests. The vehicle’s motion was 

filmed by cameras and the driver’s heart rate measured to examine their mental load while 

maneuvering. Shaw et al. (1999) designed a new steering control device, which included 

replacing the unyielding metal projections into the cabin with compliant plastic ones. This 

design produced lower peak contact pressure and less damage to the human chest, while 

maintaining sufficient rigidity to be useful. Zheng et al. (2016) investigated the difference 

between a joystick and steering wheel-based steer-by-wire (SBW) system. They 

discovered an angle transmission ratio with a constant yaw rate suitable for the steering 

wheel could not meet the requirement of the joystick steering. Nahak and Kota (2013) 

modeled, simulated, and analyzed the dynamic behavior of a joystick type articulated 

machine hydraulic steering system. Wang et al. (2018) investigated various steering 

devices (e.g. steering wheel, joystick, robotic grip) which offer lane keeping haptic 

feedback for the driver. The results demonstrated that the robotic arm was generally 

superior to the joystick and steering wheel. 

The advancement in digital technology enables automotive systems to be studied 

in the laboratory using driving simulators. Ellensohn et al. (2018) applied a global 

optimization method to find the optimal motion for a nine degree-of-freedom (DOF) 

driving simulator. Freeman et al. (2013) developed an automotive simulator-based run-off-

road (ROR) training program to instruct drivers on how to perform safe and effective 

vehicle recovery. Zhang and Wang (2005) created a hardware-in-the-loop steering 

simulator to study hydraulic power steering system with variable ratio rack and pinion 

gears.  Setlur et al. (2003) presented an experimental hardware-in-the-loop steer-by-wire 
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real time simulator test environment to evaluate various human-machine interface designs. 

Black et al. (2014) developed a high-fidelity steering simulator to support driver steering 

preference studies with human subjects. Andonian et al. (2003) compared the lane tracking 

performance of test subjects using a joystick against a conventional steering wheel using a 

fixed-based driving simulator with a 14-degree of freedom vehicle dynamics model. 

Table 4.1. Comparison of traditional steering wheel and cellphone functionality assuming 

a drive-by-wire configuration. 

    Devices                    

Function 
Traditional Vehicle 

Control 

Cellphone Control 

Directional 

Control 

Steering Wheel Roll Left and Right 

Throttle Control Gas Pedal Pitch Forward 

Brake Control Brake Pedal Pitch Backward 

Safety Airbag Needed Eliminate Driver Contact with 

Steering Wheel during Crash 

Installation Fixed Portable 

Space Required High Very Low 

Cost $$$ $ 

In this study, a nonlinear vehicle description has been implemented that includes 

the chassis, wheel, tire, and steering dynamics. The models generate the chassis (e.g. 

longitudinal, lateral, and yaw velocities) and tire (e.g. tire forces, moments, and slip angles) 

responses. Two different steering devices (e.g. conventional steering wheel, cellphone) are 

studied. The emulated cellphone consists of a 3-axis accelerometer with communication 

link. The cellphone’s real-time roll and pitch data, which serves as directional and throttle-

brake control, can be determined from the raw acceleration data. An immersive virtual 

reality driving environment occurs using the Matlab 3D Animation toolbox. Case studies 



 83 

on two different driving environments, including an obstacle avoidance, and a city roadway 

driving, were conducted in a driving simulator on 15 human subjects to explore the 

cellphone driving. 

This study investigated the feasibility of using a cellphone as an alternative driver 

input device in passenger vehicles through quantitative and qualitative measures. The 

research hypothesis can be stated as:  

Can cellphone-inspired driving input devices outperform the traditional steering 

wheel in terms of driver performance and safety? 

The remainder of the paper is organized as follows. The cellphone human-vehicle 

interface design is discussed in Section 2. The vehicle dynamics mathematical formulation 

is contained in Section 3. The experimental methods are introduced in Section 4, followed 

by operator-in-the-loop test results and discussion in Section 5. Finally, Section 6 offers 

the conclusion. Additionally, a complete Nomenclature List can be found in the Appendix. 

4.2 Cellphone Vehicle Control 

The emulated cellphone driving device features a 3-axis accelerometer for motion-

sensing (refer to Figure 4.2). The cellphone is capable of ±90° in each of its three axes. 

For this research, only the pitch and roll are used. Communication between the cellphone 

and computer is accomplished through a USB interface, although a wireless link may be 

established readily. A cellphone interface program reads the 𝑋, 𝑌, and 𝑍 axis acceleration 

raw data, and converts it to roll and pitch motion. The roll and pitch signals serve as the 

steer angle and throttle-brake signal which are supplied to the vehicle dynamics model. 

The mapping of the commanded cellphone actions must now be established. 
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Figure 4.2. Cellphone driving device with Arduino sensor support. 

The accelerometer can be used to determine the pitch and roll orientation angles 

(Pedley, 2013). The cellphone acceleration components 𝐺𝑥, 𝐺𝑦, and 𝐺𝑧 for the 𝑋, 𝑌, and 𝑍 

axes, then the pitch, 𝜃𝑝, and roll, 𝜃𝑅, angles to be expressed as 

 
2 2

arctan ,  arctan
yz

P R

xy x

GG

GG G
 

   − = =  
 +   

  (4.1) 

The pitch and roll angles, in the range of ±90° , are transformed into vehicle 

commands to operate specific actuators. The conversion of the pitch and roll angles into 

the steering, brake, and throttle signals becomes 

 in in Pk =   (4.2) 

 ;  for 0bi B B B BT R RT k k k  = =    (4.3) 

 ;  for >0di D T D BT R RT k k k  = =   (4.4) 

where 𝜃𝑖𝑛 is the actual steering angle of the cellphone, 𝑘𝑖𝑛 and 𝑘𝐵𝑇  is cellphone 

steering angle and brake throttle level gain, respectively. The variables 𝛽𝐵 and 𝛽𝑇 denote 
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the brake and throttle level percentages used in the respective brake, 𝑇𝑏𝑖, and drive, 𝑇𝑑𝑖 

torques. The terms 𝑘𝐵 and  𝑘𝐷 represents the brake and drive torque gain. 

4.3 Vehicle Dynamics 

A numerical vehicle dynamics model simulates the longitudinal and lateral 

platform characteristics. The steer-by-wire system provides lateral vehicle control using a 

dedicated front wheel steering assembly. The model variables are defined in Figure 4.3. 

 

Figure 4.3. Parameter definitions for the vehicle model. 

4.3.1 Chassis Model 

The governing equations of motion for the longitudinal velocity, 𝑣𝑥 , lateral 

velocity, 𝑣𝑦 , and yaw rate, �̇�, can be expressed as (2016) 

 ( ) ( )cos sinx y xfl xfr xrl xrr yfl yfrmv m v F F F F F F  = − + + + + − +   (4.5) 
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 ( ) ( )sin cosy x xfl xfr yrl yrr yfl yfrmv m v F F F F F F  = − + + + + + +   (4.6) 
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  (4.7) 

where 𝛿 denotes the front wheel steering angle.  

The longitudinal tire forces at the front left, front right, rear left, and rear right tires 

are 𝐹𝑥𝑓𝑙 , 𝐹𝑥𝑓𝑟 , 𝐹𝑥𝑟𝑙 , and 𝐹𝑥𝑟𝑟 , respectively. Similarly, the lateral forces at the front left, 

front right, rear left, and rear right tires are by 𝐹𝑦𝑓𝑙, 𝐹𝑦𝑓𝑟, 𝐹𝑦𝑟𝑙, and 𝐹𝑦𝑟𝑟. The terms 𝑙𝑓, 𝑙𝑟, 

and 𝑙𝑤 refer to the distance from the center of gravity to the front wheels and rear wheels, 

as well as between the left and right wheels.  

4.3.2 Vehicle Wheels and Tires 

The vehicle simulation requires the tire/road interface forces and moments for the 

wheels. A general analytical tire model (Dugoff et al., 1969) has been updated for 

combined slip (Gunta and Sankar, 1980). The longitudinal wheel slip ratio, 𝑠𝑥𝑖, becomes 
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  (4.8) 

where the 𝑖 subscript represents 𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟. This notation refers to the front left, front 

right, rear left, and rear right wheels, respectively. The term 𝜔𝑤𝑖  represents the four 

wheels’ rotational speed. 

The tire sideslip angle, 𝛼𝑖, becomes 
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The longitudinal and lateral tire force, 𝐹𝑥𝑖 and 𝐹𝑦𝑖, may be written as 

 ( ) ( )
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where 𝐶𝛼 and 𝐶𝜎 are the cornering and longitudinal tire stiffness. Using the wheel 

slip ratio, 𝑠𝑥𝑖, and tire sideslip angle, 𝛼𝑖, the variable 𝜆𝑖 and the function 𝑓(𝜆𝑖)  are given 

by 
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The term 𝐹𝑧𝑖 denotes the vertical force on the 𝑖th tire while the symbol 𝜇 denotes the tire-

road friction coefficient. 

The governing equation for the rotational wheel speed, 𝜔𝑤𝑖, may be written as 

 ( ),  , , ,w wi di bi eff xiI T T r F i fl fr rl rr = − − =   (4.12) 

where 𝐼𝑤 is the wheel inertia, and 𝑟𝑒𝑓𝑓 is the effective tire radius. The drive and braking 

torque are denoted as 𝑇𝑑𝑖 and 𝑇𝑏𝑖.  

4.3.3 Steering System Dynamics 

 

In a conventional steering system (refer to Figure 4.4a), the front road wheels are 

turned using a handwheel via the steering column, bevel gearbox, and rack. In steer-by-

wire systems, the steering wheel is mechanically decoupled from the road wheels. The 

driver’s steering commands are delivered electronically to an electric motor to actuate the 

wheels. As a cellphone-based steering device can leverage drive-by-wire technology, an 
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analytical mathematical model should be developed to describe the steering subsystem 

shown in Figure 4.4b (Mills and Wagner, 2003).  

 

 

Figure 4.4. (a) Conventional hydraulic steering system with steering wheel, and (b) Steer-

by-wire steering system with cellphone. 

Unlike a conventional rack and pinion system, the directional control assembly of 

the steer-by-wire system replaces the steering column with a high torque servo-motor. The 

differential equation that describe the electric motor displacement, 𝜃𝑀, becomes 
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  (4.13) 
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where 𝐼𝑀 is the electric motor moment of inertia, 𝑏𝑀 is the motor damping coefficient, 𝑘𝑆 

denotes the lumped stiffness of motor shaft and the torque sensor inserted between the rack 

and the motor, and 𝑟𝑃 is the pinion gear radius. The torque produced by motor 𝑇𝑀 = 𝑘𝑡𝑖𝑎 

where the armature current, 𝑖𝑎, may be expressed as 

 ( )
1a

a M M

di
Ri k V

dt L
= − − +   (4.14) 

where 𝐿 is the motor electrical inductance, 𝑅 is the motor electrical resistance, and 𝑘𝑀 is 

the motor electromotive force (e.m.f.) constant. The supply voltage, 𝑉, for this motor may 

be expressed as 𝑉 = 𝑓(𝜃𝑖𝑛, 𝛿). The term 𝜃𝑖𝑛 denotes the steering angle of input driving 

device (cellphone and steering wheel in this paper). The rack displacement, 𝑦𝑅, differential 

equation may be expressed as 

 ( ) ( )
1

2R L R L S R P M

R

y k y r k y r
m

 = − − − −     (4.15) 

where 𝑚𝑅 is the rack-piston lumped mass, 𝑘𝐿 is steering linkage stiffness, 𝑟𝐿 is the offset 

of kingpin axis at applied force. 

The front wheel steering angle, 𝛿, second-order differential equation becomes 

 
1 R

L L R

w L

y
k b T

I r
  

  
= − − − −  

  
  (4.16) 

where 𝑏𝐿 is the front wheel assembly damping coefficient, and 𝑇𝑅 is the aligning torque at 

the road-tire interface. 

A summary of the vehicle and control model parameters is listed in Table 4.2. 
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Table 4.2: Summary of vehicle and control model parameters. 

Sym

bol 

Value Units Symbol Value Units 

𝑏𝐿 900 𝑘𝑔 ∙ 𝑚/𝑠 𝑘𝑀 1.05 × 10−3 𝑉𝑠/𝑟𝑎𝑑 

𝑏𝑀 1.432 𝑘𝑔 ∙ 𝑚/𝑠 𝑘𝑆 33.9 𝑁𝑚/𝑟𝑎𝑑 

𝐶𝛼𝑓 5.04 × 10−4 𝑁/𝑟𝑎𝑑 𝑘𝑡 2.65 × 10−3 𝑁𝑚/𝐴 

𝐶𝛼𝑟 3.36 × 10−4 𝑁/𝑟𝑎𝑑 𝑙𝑓 1.18 𝑚 

𝐶𝜎𝑖 1.42 × 104 𝑁 𝑙𝑟 1.77 𝑚 

d 1.1 × 𝑊 + 0.25 𝑚 𝑚 1500 𝑘𝑔 

e 𝑊 + 1 𝑚 𝑚𝑅 29.4 𝑘𝑔 

f 1.3 × 𝑊 + 0.25 𝑚 𝑟𝑒𝑓𝑓 0.41 𝑚 

𝑔 9.80 𝑚/𝑠2 𝑟𝐿 0.118 𝑚 

𝐼𝑀 0.075 𝑘𝑔 ∙ 𝑚2 𝑟𝑃 7.37 × 10−3 𝑚 

𝐼𝑤 2.7 𝑘𝑔 ∙ 𝑚2 𝑊 1.91 𝑚 

𝐼𝑧 1.89 × 10−4 𝑘𝑔 ∙ 𝑚2 𝜇 0.85  

𝑘𝐿 48.8 × 10−3 𝑁 ∙ 𝑚    

4.4 Control Strategies for Portable HMI 

4.4.1 Longitudinal Control Design (Cruise Control) 

Accurate throttle and brake control play an essential role to ensure that the 

automatic vehicle driving system achieves the desired longitudinal dynamic performance. 

To allow a portable HMI driven vehicle operating at a desired velocity setpoint, an optimal 

preview control which serves as a longitudinal speed-tracking controller based on reference 

and feedback velocities is introduced. The technique was first proposed by MacAdam in 

(MacAdam, 1980) for synthesizing closed-loop control of dynamic systems during 

tracking of previewed inputs is presented and was used to represents driver steering control 

behavior during path-following and obstacle avoidance maneuvers in (MacAdam, 1981). 
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The proposed control strategy is governed by the properties of the controlled vehicle 

longitudinal system and is obtained by elimination of the previewed velocity error at a 

single point ahead in time. 

4.4.1.1 Vehicle Longitudinal Dynamics 

The longitudinal control aim is to minimize the vehicle longitudinal velocity 

concerning a given reference velocity. To implement the optimal preview control to the 

longitudinal vehicle dynamics, the vehicle longitudinal dynamics can be represented as 

 sinx x aero Rxmv F F F mg = − − −   (4.17) 

where 𝐹𝑥 = 𝐾𝑝𝑡𝑢 is the total longitudinal tire force, 𝐹𝑎𝑒𝑟𝑜 is the aerodynamics resistance 

force, 𝐹𝑅𝑥 is the total rolling resistance force, and 𝜃 is the road inclination angle. The term 

𝐾𝑝𝑡  is the effective vehicle total tractive force and 𝑢  is the commanded throttle/brake 

control signal. 

The total rolling, driveline, and aerodynamic resistance 𝐹𝑟 = 𝐹𝑎𝑒𝑟𝑜 + 𝐹𝑅𝑥  can be 

modeled as 

 ( )tanh r

r x r x r

x

a
F v c v b

v

 
= + + 

 
  (4.18) 

where 𝑎𝑟 is the rolling resistance coefficient, 𝑏𝑟 is the driveline resistance coefficient, and 

𝑐𝑟 is the aerodynamic drag coefficient.  

The state space model can be written as 

 
( ), sinptz Az Bu u u m K g

y Cz

 = + = −


=

  (4.19) 
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Define the longitudinal position, 𝑥, and longitudinal velocity, 𝑣𝑥, so that the model states, 

 , can be expressed as 

  
00 1

, , , 0 1
0 ptx r

x
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K mv F m

    
= = = =    

    
  (4.20) 

4.4.1.2 Optimal Preview Control Design 

The optimal preview control is implemented to find the optimal control, 𝑢 (𝑡), 

which minimizes a local performance index (MacAdam, 1988) 

 ( ) ( )
21 t T

xref
t

J v y d
T

  
+

 = −    (4.21) 

over the current preview interval (𝑡, 𝑡 + 𝑇)  where 𝑣𝑥𝑟𝑒𝑓  is the previewed velocity 

reference input. The previewed output, 𝑦(𝑡 + 𝑇), is related to the current state,  (𝑡), and 

fixed control, 𝑢(𝑡), over the previewed interval (𝑡, 𝑡 + 𝑇), by 

 ( ) ( ) ( )* *y t T b z t a u t+ = +   (4.22) 

where 𝑎∗ and 𝑏∗ are the driver prediction scalar and vector gain, respectively, and can be 

found as 
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   (4.24) 

The term 𝑇  is the preview time window, 𝐼  is the identity matrix, and 𝑛  is the 

number of states. Thus, the necessary condition that the derivative of 𝐽 with respect to the 

control variable, 𝑢, be zero, offer the optimal control, 𝑢 , as 

 ( ) ( )
( )0

*

e t T
u t u t

a

+
= +   (4.25) 
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where 𝑒(𝑡 + 𝑇) = 𝑣𝑥𝑟𝑒𝑓(𝑡 + 𝑇) − 𝑦(𝑡 + 𝑇)is the previewed velocity error, which is being 

minimized in the original performance index in (21). 

In order to account for the known neuromuscular delay of the driver, the resulting 

optimal control, 𝑢 (𝑡) , is assumed to be delayed an amount 𝜏  seconds. Thus, the 

commanded throttle/brake control input, 𝑢(𝑡), becomes (MacAdam, 1981) 

 ( ) ( )0 su t u t e −=   (4.26) 

where 𝑒−𝑠𝜏 is the driver transport time delay, and 𝑢 (𝑡) is given in (25). 

4.4.2 Lateral Control Design (Lane Keeping Control) 

A variable steering ratio control strategy will be proposed that provides lateral 

compensation to the driver and assists with lane keeping (Shimizu et al., 1999; 

Heathershaw, 2000; Nozaki et al., 2012). The steering ratio reflects the ratio between the 

portable HMI steering angle 𝜃𝑝𝐻 the front wheel steering angle 𝛿. The vehicle steering 

lightness may be directly tuned given the absence of a mechanical connection in the steer-

by-wire system. For instance, low and high-speed steering sensitivity can be adjusted to 

enhance the vehicle overall handling performance. The steering system lateral controller 

encompasses feedforward and feedback components. The feedforward element considers 

human driving behavior while the feedback action corrects for vehicle lateral placement in 

the roadway lane. Both control actions are summed to determine the steering ratio based 

on vehicle speed and position, commanded steering angle, and lane position desires. A 

high-level block diagram is presented in Figure 4.5.  
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Figure 4.5.  Lateral control design featuring feedforward and feedback actions embedded 

in the portable HMI 

4.4.2.1 Adaptive Feedback Control 

The main task of the lateral control is to adjust the steering angle such that the 

deviation between the desired and actual vehicle speeds is compensated. Unlike the 

steering wheel which can regulate its wheel steering angle through force feedback to the 

driver, the emulated cellphone driving device can change the steered wheel direction by 

adjusting the steering ratio which in turn modifies the steering angle. A gain-scheduling 

PID controller is developed as the feedback control for the portable HMI-steered vehicle 

to accomplish this task. The gain scheduling technique, an adaptive control method, is 

based on the adjustment of controller parameters in response to the vehicle’s longitudinal 

speed and steering angle variations.  

The steering ratio feedback output, 𝐾𝐹𝐵(𝑡) , of the gain-scheduling classical 

controller is given by 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 3FB y y yK t K t e t K t e t K e t= + +   (4.27) 
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where 𝑒𝑦(𝑡) = 𝑦𝑎𝑐𝑡 − 𝑦𝑟𝑒𝑓  denotes the vehicle lateral error which is the orthogonal 

distance from the center of gravity (CG) of the vehicle to the desired lane center. The 

proportional, 𝐾1(𝑡), integral, 𝐾2(𝑡), and derivative, 𝐾3(𝑡), gains of the gain scheduling 

controller have been determined to be time-varying parameters as follows 

 ( )( )tanh ,  1,2,3j j j s j jK k t j    = − + =
 

  (4.28) 

where 𝜌  is the sigmoid logistic growth rate, and the 𝑗  subscript represents each time-

varying gain in the steering ratio output.  

The speed sensitive steer ratio, 𝑘𝑠(𝑡), is a function of portable HMI steering angle, 

𝜃𝑝𝐻(𝑡), and vehicle longitudinal velocity, 𝑣𝑥(𝑡), so that 
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=   (4.29) 

The terms 𝜎𝑗 =
𝐾𝑗𝑚𝑎𝑥−𝐾𝑗𝑚𝑖𝑛

2
, 𝜂𝑗 =

𝐾𝑗𝑚𝑎𝑥+𝐾𝑗𝑚𝑖𝑛

2
, and 𝜉𝑗 = 𝜂𝑗 𝜎𝑗⁄  are positive 

constants. The parameters 𝐾𝑗𝑚𝑎𝑥 , and 𝐾𝑗𝑚𝑖𝑛  are the upper and lower thresholds of the 

proportional, integral, and derivative gains. Note that by defining 𝑘𝑠(𝑡)  directly 

proportional to the mobile interface steering angle 𝜃𝑝𝐻 and inversely proportional to the 

vehicle longitudinal velocity 𝑣𝑥(𝑡), the gain scheduler can adjust the gain to adapt to the 

variations of driver steering behavior and current vehicle state.  

4.4.2.2 Steering Ratio Feedforward Control 

A feedforward steering ratio which varies according to the vehicle longitudinal 

speed as a fundamental characteristic is first considered. Then, compensation varying 
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according to the portable HMI steering angle is incorporated in the feedforward control to 

attain a desirable steering ratio level (Wu et al., 2018). 

The adaptive steering ratio feedforward control features a standard steering ratio 

during medium speed driving. The steering sensitivity declines as the vehicle speed 

increases and vice versa while the vehicle is deaccelerating. Such design guarantees a 

steering sensitivity level to ensure turning flexibility during low-speed driving (e.g., 

parking). Also, at high road speeds, a much lower road wheel steering angle input is 

required than at low speeds. Thus, a limited steering sensitivity is desired to provide 

steering stability during highway driving. To satisfy those design objectives in different 

speed conditions and to secure a smooth transition between each speed range, a logistic 

function with an increasing value of the steering ratio growth factor up to a desired steering 

stability level has been implemented in this study.  

The steering ratio, 𝐾𝑣, which is shown in Figure 4.6(a) is computed as a logistic 

function of the vehicle longitudinal velocity, 𝑣𝑥, as 
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=

+
  (4.30) 

where 𝑎 and 𝑑 are the maximum and minimum steering ratio, 𝑏 is the curve logistic growth 

rate, and 𝑐 is the vehicle speed of the sigmoid midpoint. 

The steering ratio feedforward control also features a decelerated gear ratio near 

the straight-ahead position with the steering ratio quickening as the portable HMI steering 

angle increased further. On the road, this translates into smooth, confidence building lane 

changes and increased maneuverability when parking. On the other hand, such a design 
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reduces steering sensitivity and enhances lateral stability during straight road driving. To 

accomplish such steering ratio changes concerning the portable HMI steering angle, a 

corner correction factor has been introduced. The corner correction factor, 𝐹𝐶, shown as 

Figure 4.6(b), is defined as a function of the portable HMI steering angle, 𝜃𝑝𝐻, using the 

Gaussian distribution or 

 

2 2

1 2

pH pHp q

s w

CF h e h e

 + −   
− −      
   = +   (4.31) 

where 𝑒 is the natural logarithm base, and the terms ℎ1, ℎ2, 𝑝, 𝑠, 𝑤, and 𝑞 are constants. 

To obtain the best estimate of the feedforward control for the adaptive controller to 

account for the variation in longitudinal vehicle velocity and portable HMI steering angle, 

the feedforward steering ratio (displayed in Figure 5(c)) that considers human behavior 

may be added to the control input  

 FF C vK F K=   (4.32) 

Thus, the final steering ratio representing the control input of the system should be 

 SR FF FBK K K= +   (4.33) 
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Figure 4.6.  Variable Steering ratio feedforward control: (a) Steering ratio of full-speed 

section varies with speed, (b) Corner correction factor change with the portable HMI 

steer angle, and (c) The corrected steering ratio with the vehicle speed and mobile control 

interface angle changes 

4.4.3 State Flow Controller (Adaptive Cruise Control) 

State flow control is a powerful logical strategy that utilizes state machines and 

flow charts to model reactive systems and control complex nonlinear systems (Freeman et 

al., 2015). A state flow controller observes certain system states and discretely switches 

between pre-programmed control outputs. In this study, the state flow controller applies 

differential braking to help control the vehicle’s longitudinal dynamics. The state transition 

logic expressions also incorporated driver operating parameters to reflect real-time driver 

intentions. The inclusion of driver prediction is indispensable for the successful 

development of an intelligent driver assistance systems. 
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To develop the driver intention algorithm for portable HMI steering, a set of 

steering and vehicle system parameters were selected (𝛿, �̇�, 𝑣𝑥, �̇�𝑦, �̇�). In other words, the 

requested front wheel steering angle, front wheel steering angle speed, vehicle speed, 

vehicle lateral acceleration, and vehicle yaw rate. Collectively, this information serves as 

a significant reflection of the driver’s intention. Steering angle—Zero to small steering 

angle typically indicates a pursue of lane keeping while large steering angle deflection 

marks the cornering or obstacle avoidance intent from the driver. Steering angle speed—

High steering angle speed suggests that an extreme maneuver is ongoing while small 

steering angle speed hints the driver is performing a low-speed cornering or switchback. 

Yaw rates and lateral acceleration— Large values result of controlled steering maneuvers 

such as turning, which signify the need for increased cornering ability. Small yaw rates and 

lateral acceleration imply a lack of need for cornering capability and occur during lane 

keeping or obstacle avoidance.  

Based on these discussions above and experimental results completed by Wang et 

al. (2019a), three firing conditions for select driver intention states derived from the 

iterative experimental process are displayed in Figure 4.7(a). 

A state flow braking controller, based on driver intention prediction, was designed 

to help reduce vehicle speed during turning maneuvers and to maintain stability. The state 

flow braking controller coordinated with the other vehicle controllers by monitoring 

vehicle parameters and adjusting the brake torque, 𝑇𝑏𝑖(𝑖 = 1,2,3,4), accordingly. These 

individual wheel brake torques were constrained conforming to physical limitations 

appropriate for each individual system. Additionally, the firing condition for different 
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driver intention in Figure 4.7(b) serves as a transition condition that enables switching 

between different driving states while traveling various roadways. This strategy was 

implemented to help reduce controller complexity and mitigate the potential for instability 

at high speeds and large steering angles (Freeman et al., 2015).  

The state flow braking controller consisted of three states, i.e., 𝑆𝑏𝑟𝑎𝑘𝑒 =

{Zero, Obstacle, Cornering}, with the decision-making framework described below and 

shown in Figure 4.7(b) as a Finite State Machine (FSM). 

 

 

Figure 4.7.  (a) Firing Conditions for three driver intention states: lane keeping, obstacle 

avoidance, and cornering/turning, and (b) Logic flow for the SF braking control; 

controller state transitions based on comparison of vehicle states with firing condition 

4.5 Experimental Methods 

To explore the real-time performance of human subjects driving using the steering 

wheel and cellphone, a realistic fixed-base experimental simulator was created (refer to 

Figure 4.8). The simulator comprised the steering devices, a high-resolution image 

projector, and a Honda CR-V. To simulate the target vehicle dynamics and tire/road 
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interactions, mathematical models were integrated using MATLAB/Simulink®. In 

addition, the software handles the input/output from various systems (operator driving 

input, display output, chassis kinematics, and steering wheel self-centering feedback). The 

immersive virtual reality driving environment was created using the V-Realm Builder 2.0, 

imported, and rendered by the Simulink 3D Animation toolbox. The resulting road scene 

were projected on a large screen to provide the operators with visual feedback. 

 

Figure 4.8. Driving simulator driving scene using cellphone. 

The test bed functionality, shown in Figure 4.9, was experimented by the human 

subjects in the laboratory. The commanded roll and pitch data from cellphone were 

converted into the vehicle’s steer angle (roll data) and throttle/brake signals (pitch data). 

The signals from either the steering wheel, throttle, brake, or cellphone were transmitted 

to the vehicle dynamics block. The virtual reality generator processed the vehicle 

information to represent a three-dimensional driving environment rendered on the 

projector.  
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Figure 4.9. Fixed-base driving simulator schematic 

A total of n=15 subjects participated ranging in age from 18 to 31, with eleven 

males and four females. The concentration in age demographic corresponds to the 

university campus location. The average driving experience was 3.6 years. Ten subjects 

revealed that they have played racing games on a cellphone platform. In response to 

whether they had driven a semi-autonomous vehicle, only one subject was noted to have 

related experience. To control for learning that may arise from repeated activities, the 

driving sequence was varied for each driver. A Latin square design ensured a randomized 

order of testing the cellphone and steering wheel. Each test subject adhered to the following 

procedure: 

1. Complete a demographic questionnaire to understand where each subject fit in 

the general population. 

2. Subject practiced driving at the target speed for several minutes to familiarize 

themselves with the system. 
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3. Run a test and record steer angle, vehicle velocity, vehicle coordinate, lateral 

acceleration, yaw rate, four-tire slip angles. 

4. Asked the subject to complete a post-test questionnaire for the specific driving 

event. 

5. Change steering device and/or driving scenario and repeat. 

4.6 Test Results 

In this section, three studies including bandwidth, obstacle avoidance, and city road 

driving tests, were conducted to investigate the efficacy of the cellphone as an alternative 

driving device. The best performance was considered to correspond to when the operator 

completed the designed task with the smallest heading and lateral error. Intuitively, the 

steering wheel, to which operators are more familiar, should outperform the cellphone in 

terms of daily routine city driving. Moreover, the steering wheel is coupled with original 

equipment manufacturer (OEM) self-centering feedback. This means that the steering 

wheel can automatically return to its original state after a turning maneuver. On the other 

hand, cellphone steering requires less physical movement that may result in faster steering 

response. The driver’s quicker response time can improve vehicle action during extreme 

maneuvers. Based on these factors, two hypotheses have been proposed for the driving 

configurations: 

H1: The steering wheel will produce lower heading and lateral error than the 

cellphone in city road driving test. 

H2: The cellphone will deliver the better performance during the obstacle 

avoidance driving test. 
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4.6.1 Bandwidth Test 

Bandwidth is the difference between the upper and lower frequencies in a 

continuous set of frequencies and is typically measured in Hertz (Hz). To examine the 

maximum speed that a cellphone and a steering wheel can be rotated during vehicle 

directional control, a bandwidth test of each steering configuration was conducted. In the 

driving simulator environment, the operator accelerated the vehicle to a speed of 20kph on 

a straight path, before they began to rotate the steering device in a sinusoidal manner with 

an amplitude of 90°. Meanwhile, the operator was slowly increasing the frequency of the 

rotation such that the steering angle input to the vehicle resembles a chirp sine wave signal. 

After the driver their steering devices’ rotational limit, the test was terminated, and the 

steering angle response displayed (refer to Figure 4.7). The maximum and minimum 

frequencies of the steering wheel and the cellphone, 𝑓𝑠𝑤 and 𝑓𝑐𝑝, are: 

 0.55 1.2 ,  0.42 2.5sw cpf Hz f Hz      (4.34) 

The wider cellphone bandwidth indicates a unique property this new steering paradigm has 

over the conventional steering wheel: a faster steering direction adjustment speed by the 

human operators. This property enables the driver to react and respond more quickly in 

extreme emergency driving situations such as evasive maneuvering. As the steering wheel 

tends to be larger than a cellphone, difference in driving behavior were observed. 

Specifically, driver tended to have more gradual steering commands with the wheel while 

driver steering was more abrupt per Figure 4.10. Coupled with self-centering feedback, the 

steering wheel requires more efforts from the driver to turn compared to the cellphone, 

resulting in a slower device turning rate. 
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Figure 4.10. Bandwidth test for driving controllers – (a) Steering wheel, (b) Cellphone. 

4.6.2 Obstacle Avoidance Event 

To determine the evasive maneuver performance of the cellphone, an obstacle 

avoidance driving event, ISO 3888-2 (2011) commonly known as the moose test, has been 

tested in the driving simulator (refer to Figure 4.11(a)). The dimensions for the track and 

cone placement are shown in Figure 4.11(b); the total track length is 61m. This maneuver 

is a dynamic process which involves driving from the original lane to a parallel lane, and 

then returning to the original lane without displacing the cones positioned alongside the 

track. After entering the track with an initial speed, the operator released the throttle and 

driver the remaining track with no throttle input or brake application. The intention of the 

obstacle avoidance is to allow the vehicle to attain a series of alternating high lateral 

accelerations such that the vehicle’s lateral dynamics can be readily evaluated. The test 

results of Driver #3, who did not hit or bypass any cones driving with the cellphone or the 

steering wheel, will be discussed. 
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Figure 4.11. (a) Three-dimensional virtual driving space featuring the obstacle avoidance 

event, and (b) ISO 3888-2 obstacle avoidance track and placing of cones (detailed lane 

width in Table 2) (Jalali et al., 2013). 

The performance of the cellphone driving controller will be presented by examining 

Driver #3 who entered the obstacle avoidance maneuver at an initial speed of 40 kph. As 

shown in Figure 4.12, the maneuver was successfully completed using both cellphone and 

steering wheel. The driver traveled the desired path (Jalali et al., 2013) successfully from 

139m to 168m for the two steering devices. Once vehicle placement has been accomplished 

in the adjacent lane, the driver must begin returning to the original lane. During the return 

sequence (168m-190m), a noticeable steering difference between the steering wheel and 

the cellphone was observed. Specifically, the steering wheel-controlled vehicle’s pathway 

(a) 

(b) 
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was above the ideal trajectory while the cellphone-controlled vehicle was marginally 

below. This difference can be explained through the discovery of the bandwidth test 

conducted prior. The cellphone has a faster steering directional adjustment speed than the 

steering wheel. Thus, when the cellphone and the steering wheel were performing an 

aggressive steering maneuver (168m-190m), the cellphone could accomplish it quicker in 

comparison to the steering wheel. Consequently, the commanded steer angle for the front 

wheel resulted in a sharp lane return. In extreme driving scenarios such  as obstacle 

avoidance, both brake and steering action should be considered to return the vehicle to its 

original lane safely and smoothly. 

 

Figure 4.12. Driver #3 desired and actual vehicle trajectories when driving through the 

obstacle avoidance using the cellphone and steering wheel (steering wheel in solid line, 

cellphone in dashed line, desired trajectory in dotted line, and cones in asterisk). 

The fast ±90°  traditional steering wheel action is performed quicker with a 

cellphone as shown in Figure 4.13(a) per the steering device angle versus the longitudinal 

distance traveled. While the steering wheel-controlled vehicle traveled 14m (173m-187m), 
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the cellphone-controlled vehicle traveled only 11m (170m-181m). Also, to drive the 

vehicle through the obstacle avoidance event, the driver used the steering wheel more 

aggressively, and at some points applied up to 1.61 rad (92 degrees). In contrast, cellphone 

driving required less effort as noted by 0.7 rad (40 degrees), resulting an easier and more 

comfortable steering experience. The lateral error, lateral acceleration, and the front tire 

slip angle are shown in Figure 4.13(b)-(d) for the same scenario. The steering wheel has a 

larger maximum lateral error of 0.758m compared to the 0.6891m of the cellphone. On the 

other hand, the cellphone ensured a lower lateral error at the expense of a much greater 

lateral acceleration. The maximum lateral acceleration the driver felt steering with the 

cellphone reaches 0.57g, which surpassed the lateral acceleration limit to assure driver 

comfort, 0.4g. When the driver operates the vehicle with the cellphone, the front tires 

generate a larger maximum 0.04-0.05 (rad) slip when entering the first left manuver, and 

repeat again when returning to neurtral yaw and vice versa. The larger tire slip angle of the 

cellphone indicates a higher tire lateral force, which in turn maximize the vehicle’s ability 

to grip. Overall, the cellphone controlled vehcile offers better lateral performance and 

undemanding steering experience during the obstacle avoidance. 
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Figure 4.13. Driver #3 performance for the obstacle avoidance maneuver - (a) Steer 

angle, (b) Lateral error, (c) Lateral acceleration, and (d) Front tire slip angle (steering 

wheel in solid line, and cellphone in dashed line). 
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4.6.3 City Road Driving Event 

To measure the cornering capability of the cellphone driving device, a city roadway 

has been created as shown in Figure 4.14(a). This track environment features sharp curves 

which emphasizes vehicle handling. In Figure 4.14(b), the road features a 200m straight 

section to achieve an initial speed of 30kph (a common city street speed limit) and 

maintained throughout the event. The driver then encounters a 15m radius right turn, a 25m 

radius left turn, and a 20m radius switchback. Each turn is followed by a straight path 

section. The straight path sections serve two functions: (1) An assessment of the vehicle’s 

traction and stability on the straight road after a turn, and (2) A buffer zone for the driver 

to recover before the next turn maneuver. The total distance traveled by the driver 

throughout the track has been displayed on the map.  

Right Turn Maneuver (distance 200-323.6m)  

The first roadway encountered by the driver is a 15m radius right turn maneuver, 

which is the sharpest turn in the city road driving event. Considering the driver is 

negotiating the turn at a speed of 30kph, this cornering maneuver is relatively extreme with 

a centrifugal acceleration of 0.472g and requires aggressive driving. To evaluate the lateral 

and yaw performance differences between the cellphone and the steering wheel, the 

vehicle’s lateral and heading error for Driver # 8 are depicted in Figures 4.15(a) and (b). 

The heading error, actual heading angle of the vehicle vs the tangential direction of the 

desired path, of both the cellphone and the steering wheel peaked at 0.2rad at the end of 

the right turn (223.6m) and converged to zero on the straight section (223.6m-323.6m), 

indicating a decent yaw motion recovery. The steering wheel, with an absolute maximum 
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0.93m lateral error, has lower lane keeping performance than the cellphone during the turn 

(200m-223.6m). However, on the straight road following the turn (223.6m-323.6m), the 

steering wheel lateral error is much lower than the cellphone, suggesting that the steering 

wheel’s self-centering feedback ensures that the vehicle will re-align with the road on the 

straight path section after a sharp turn. The front tire slip angle response, in Figure 4.15(c), 

show that the cellphone-operated vehicle required more cornering capability to the driver 

as requested.  

 

 

Figure 4.14. (a) Three-dimensional city road driving scenario, and (b) City road driving 

event track with distance travel markers displayed. 

(a) 

(b) 
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Figure 4.15. City roadway 15m radius right turn - Driver #8 performance for (a) Heading 

error, (b) Lateral error, and (c) Front tire slip angle (steering wheel in solid line, and 

cellphone in dashed line). 

Left Turn Maneuver (distance 323.6-462.9m) 

After a sharp right turn, the human subjects then encountered a 25m radius left turn. 

The heading error of both controller devices is relatively similar in Figure 4.16(a). Their 
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lateral performance, on the other hand, is drastically distinct per Figure 4.16(b). During the 

left turn maneuver, the steering wheel not only outperformed the cellphone during the 

cornering (323.6m-362.9m), but also dominated the succeeding straight road, with an 

overall maximum lateral error of merely 0.24m against the cellphone’s 0.64m. Considering 

the discussion of the cellphone in the previous section, it can be deduced that during a low 

radius moderate turn, the cellphone cannot accomplish the maneuver as effectively as the 

steering wheel since the vehicle driven by the cellphone is more responsive. However, such 

a quick vehicle response can lead to temporary chassis instabilities which is highly 

undesirable when a steady steering angle input is required during a moderate turn. The 

vehicle’s instability is further evident by the unsettled front tire slip angle response in 

Figure 4.16(c). Another possible cause for the fluctuating tire slip angle is that the driver’s 

hands tremor more when holding a cellphone compared to interacting with the steering 

wheel, an observation that needs to be considered when designing a cellphone driving 

controller. 
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Figure 4.16. City roadway 25m radius left turn - Driver #8 performance for (a) Heading 

error, (b) Lateral error, and (c) Front tire slip angle (steering wheel in solid line, and 

cellphone in dashed line). 

Switchback Maneuver (distance 462.9-575.7m) 

The last road feature is a switchback, which is a 20m radius bend for vehicles to 

turn approximately 180° to continue on the path. As depicted in Figure 4.14(a), the heading 
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errors for the cellphone and steering wheel controller remain nearly the same across the 

180° turn (462.9m-525.7m) and eventually converge to zero on the subsequent 50m 

straight path section (525.7m-575.7m). These results indicate a stable yaw motion for both 

controllers. When considering the lane keeping capability, the steering wheel controller 

outperforms the cellphone with lower average and maximum lateral error per Figure 

4.14(b). Another notable observation is that the cellphone controller again exhibits some 

fluctuation in the front tire slip angle as shown in Figure 4.14(c). 

4.6.4 Summary of Findings 

After completing the human subject tests, all 15 operators’ actual trajectories in the 

city road driving event are recorded and compared to the desired trajectory. The root mean 

square (RMS) and the maximum average value of the heading error, 𝑒𝐻𝑅𝑀𝑆, 𝑒𝐿𝑀𝐴𝑋, lateral 

error, 𝑒𝐿𝑅𝑀𝑆, 𝑒𝐿𝑀𝐴𝑋, for all 15 human subjects is calculated and recorded in Table 3. The 

cellphone, an ideal steering device for extreme maneuvers, exhibited the lowest mean 

lateral error and heading error during the sharp right turn, with a mean lateral error 

improvement of 12.07% compared to the steering wheel.  The steering wheel, on the other 

hand, appears to produce the lower errors during the left turn and switchback than the 

cellphone, assuring the minimal lateral and heading deviation during moderate driving 

conditions. 

Three studies, including bandwidth test, obstacle avoidance test, and city road 

cornering operation, were performed and may be summarized as follows: 

1) The cellphone steering bandwidth is larger than the traditional steering wheel, 

guaranteeing a faster steering response and more responsive vehicle handling. 
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2) Drivers utilized the cellphone device differently than the steering wheel during 

evasive maneuvers; the cellphone demanded less physical movement. 

3) The traditional driving system maintains a certain level of dominance in 

cornering maneuvers; the gradual movement of the steering wheel ensures 

vehicle stability. 

Table 4.3: Summary of driver averaged performance for 15 subjects with cellphone 

device and steering wheel on city roadway. Note that 𝑒𝐻𝑅𝑀𝑆, and 𝑒𝐿𝑅𝑀𝑆 are the root mean 

square values, while 𝑒𝐻𝑀𝐴𝑋, 𝑒𝐿𝑀𝐴𝑋 are the maximum values for test subjects (lower 

values in bold font). 

Road 

Scenario 

Driving 

Device 
𝑒𝐻𝑅𝑀𝑆 

(rad) 

𝑒𝐻𝑀𝐴𝑋 

(rad) 

𝑒𝐿𝑅𝑀𝑆 

(m) 

𝑒𝐿𝑀𝐴𝑋 

(m) 

Right Turn 

(15m 

radius) 

Steering 

Wheel 

0.116 0.196 0.806 0.926 

Cellphone 0.102 0.185 0.295 0.446 

Left Turn 

(25m 

radius) 

Steering 

Wheel 

0.065 0.108 0.196 0.28 

Cellphone 0.069 0.128 0.462 0.623 

Switchback 

(20m 

radius) 

Steering 

Wheel 

0.077 0.141 0.425 0.617 

Cellphone 0.081 0.143 0.631 0.812 
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Figure 4.17. City roadway 20m radius switchback - Driver #8 performance for (a) 

Heading error, (b) Lateral error, and (c) Front tire slip angle (steering wheel in solid line, 

and cellphone in dashed line). 

To investigate the vehicle’s handling performance using the cellphone and the 

steering wheel, the yaw rate was plotted against the steering device angle in Figure 4.15. 

Both the cellphone and the steering wheel display a linear relationship, indicating decent 
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handling performances during cornering. For on center steering, the cellphone has a 

significantly faster response and higher yaw rate than the steering wheel. Consequently, 

the vehicle steered by the cellphone is more responsive than the vehicle operated by the 

steering wheel. This correlation also explained the cellphone-driven vehicle’s faster 

response and higher controllability in the obstacle avoidance test.  

 

Figure 4.18. Yaw rate vs steering angle of steering wheel and cellphone during city road 

driving event. 

The two hypotheses posed for the pilot studies have been answered. For H2, the 

experimental results support that it is true within the 15 participants. However, H1 cannot 

be fully settled. Although the steering wheel performed better in larger turning radius turns 

(e.g., left turn and switchback) in the city road driving event, the cellphone has a slight 

advantage in terms of lower lateral error compared to the steering wheel during sharp right 

turns. Therefore, further experimentation on different road conditions is required to explore 

the cellphone performance in a variety of driving environments. The steering wheel and 

cellphone used in this study governed the vehicle lateral motion with different steering 

ratios of 15:1 and 5:1 respectively due to rotational limitations (e.g., 225° vs 90°). More 
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tests and analysis are needed to investigate the effectiveness of cellphone driving through 

variable steering ratios.  

4.7 Conclusion and Future Study 

The global transportation industry needs to consider the widely accessible social 

media devices such as cellphone for vehicle control. Vehicle dynamics model that involves 

the chassis, tire and steering dynamics has been formulated and served as a cornerstone for 

the driving simulator designed for the operator-in-the-loop tests. Three studies, including 

bandwidth test, obstacle avoidance, and city road driving, have been conducted and the 

cellphone configurations effects on driver performance have been investigated and 

compared with traditional driving systems. Results from the pilot tests demonstrated that 

the cellphone has a 108.3% wider steering bandwidth, plus 9.1% less lateral error in 

extreme obstacle avoidance and 12.07% less lateral error during sharp right turn than the 

traditional driving system. The answer to the hypothesis puts forth regarding the impact of 

the cellphone driving devices is:  

Yes, the cellphone inspired driving input devices using a lower steering ratio can 

outperform the traditional driving system during evasive maneuvers and sharp turns.  

Fast growing semi-autonomous vehicles that use the human driver as the fallback 

system have created a need for alternative driving input devices. With its portability, 

compactness, and superior performance during extreme maneuvers, the cellphone driving 

device serves as a contingency driving device when semi-autonomous vehicles encounter 

situations that the automated system cannot handle and require human intervention. Also, 
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the integration of directional and propulsion control could largely solve most driving 

difficulties encountered by disabled drivers by excluding extensive arm and leg movements. 

A tremendous amount of future research must be conducted before any cellphone-

driven vehicle would be released to consumers. First, human factors studies shall be 

conducted to optimize cellphone placement, size, shape, as well as the safety features and 

the secondary functions that should be included on the device. Second, cellphone 

sensitivity tuning at various speeds, roadways and weather conditions need to be examined. 

For instance, the driver could benefit from a high steering sensitivity during low-speed 

driving (e.g., parking). Third, cellphone biomechanics must be investigated to explore the 

effects of long-term cellphone usage in terms of wrist injuries, etc. Last, steer-by-wire 

failsafe measures should be carefully investigated to ensure driver and occupant safety. 

Before a mobile telecommunication device may be used to operate a vehicle, advances in 

the digital technology and security protocol must occur. 
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CHAPTER FIVE 

 

DYNAMIC CONTROL OF MULTI-SECTION THREE-DIMENSIONAL 

CONTINUUM MANIPULATORS BASED ON VIRTUAL DISCRETE-JOINTED 

ROBOT MODELS 

 

 

Despite the rise of development in continuum manipulator technology and 

application, a model-based feedback closed-loop control appropriate for continuum robot 

designs has remained a significant challenge. Complicated by the soft and flexible nature 

of the manipulator body, control of continuum structures with infinite dimensions proves 

to be difficult due to their complex dynamics. In this paper, a novel strategy is designed for 

trajectory control of a multi-section continuum robot in three-dimensional space to achieve 

accurate orientation, curvature, and section length tracking. The formulation connects the 

continuum manipulator dynamic behavior to a virtual discrete-jointed robot whose degrees 

of freedom are directly mapped to those of a continuum robot section under the hypothesis 

of constant curvature. Based on this connection, a computed torque control architecture is 

developed for the virtual robot, for which inverse kinematics and dynamic equations are 

constructed and exploited, with appropriate transformations developed for implementation 

on the continuum robot. The control algorithm is validated in a realistic simulation and 

implemented on a six Degree-of-Freedom two-section OctArm continuum manipulator. 

Both simulation and experimental results show that the proposed method could manage 
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simultaneous extension/contraction, bending, and torsion actions on multi-section 

continuum robots with decent tracking performance (steady state arc length and curvature 

tracking error of merely 3.3mm and 0.13m-1, respectively). 

5.1 Introduction 

 

A continuum robot (Robinson and Davies, 1999) is a bio-inspired slender hyper-

redundant manipulator with theoretically infinite degrees-of-freedom (DoF) which 

provides remarkable capabilities for reach, manipulation, and dexterity in a cluttered 

environment. Recent progress toward biological systems has enabled continuum robotics 

research to expand rapidly, promising to extend the use of continuum robots into many 

new environments and providing them with capabilities beyond the scope of their rigid-

link counterparts (Webster and Jones, 2010), (Trivedi et al., 2008). Long-term success for 

the practical application of continuum robots heavily relies on the development of real-

time controllers that deliver accurate, reliable, and energy-efficient control. However, the 

development of high-performance model-based control strategies for continuum robots 

proves to be challenging due to multiple reasons. Since the manipulators must be modeled 

as continuous curves, the kinematic and dynamic models are difficult to derive. Also, 

control of continuum structures is complicated by the intrinsic underactuated nature of the 

backbone. Additionally, non-collocation of actuators with configuration space variables 

impedes the closed-loop control design (error calculation) in either space. The current 

scarcity of suitable local sensor technologies also contributes to the difficulty of direct 

internal sensing of backbone shape, which, in turn, hinders the control of continuum 

structures (Walker, 2013). 
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Figure 5.1: Dynamically controlled OctArm, a pneumatically actuated continuum 

manipulator with three sections, following a desired configuration trajectory. 

Over the years, extensive model-based static control strategies have been proposed 

to design better and more reliable controllers for the continuum robots. Camarillo et al. 

proposed a closed loop configuration (D.B. Camarillo et al., 2009) and task space (David 

B. Camarillo et al., 2009) controller for tendon-driven continuum manipulators, 

experimentally validated with a 5-DoF per section kinematic model. Bajo et al. realized a 

configuration space controller which utilizes extrinsic sensory information about 

configuration and intrinsic sensory information about joint space (Bajo et al., 2011). An 

adaptation of the classic hybrid motion/force controller for continuum robots is presented 

and evaluated in both (Bajo and Simaan, 2016) and (Mahvash and Dupont, 2011). More 

complex kinematic formulations for continuum robots such as variable constant curvature 

(VCC) approximation were used by Mahl et al. for kinematic control of three-section 

manipulator with a gripper in (Mahl et al., 2014). Wang et al. presented visual servo control 

of a 2D image feature point in 3D space using the VCC model for a cable-driven soft 

conical manipulator (Hesheng Wang et al., 2013). Conrad et al. applied a closed-loop task 
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space controller on an interleaved continuum-rigid manipulator (Conrad and Zinn, 2015). 

Marchese and Rus achieved kinematic control of a pneumatic-actuated soft manipulator 

that is made from low durometer elastomer (Marchese and Rus, 2016). 

Widely considered the most challenging field in the control of continuum robots 

(George Thuruthel et al., 2018), model-based dynamic controllers that consider the 

complete kinematics and dynamics of the whole manipulator have been explored by 

previous researchers. Gravagne and Walker validated feedforward and feedback 

proportional-derivative (PD) controller through simulations of a planar single multi-section 

continuum robot (Gravagne and Walker, 2002). Falkenhahn et al. implemented optimal 

control strategies that consider both the mechanical dynamics and the pressure dynamics 

to achieve trajectory optimization of continuum manipulators (Falkenhahn et al., 2014). 

Marchese et al. described a trajectory optimization scheme and dynamic model for a soft 

planar elastomer manipulator (Marchese et al., 2015). Falkenhahn et al. developed a 

dynamic controller in actuator space that provides actuator decoupling in combination with 

feedforward and feedback strategies (Falkenhahn et al., 2017).  

In this work we propose a model-based dynamic feedback control architecture that 

has been specifically designed for controlling continuum robots, extending our previous 

work (Wang et al., 2018a) not only from two to three dimensions but also from one to two 

sections. The novel approach to continuum robot control discussed in this paper is 

motivated by reducing computational complexity using a virtual, conventional rigid link 

robot with discrete joints. The control strategy is developed in the virtual robot coordinates, 

taking advantage of the well-understood nature of conventional robot dynamics. The 
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virtual robot is selected such that its degrees of freedom are directly mapped to those of the 

real continuum robot for which control is desired. 

Specifically, the above approach is validated from model development to hardware 

implementation for control of a multi-section spatial continuum robot. The continuum 

robot is approximated as a serial rigid-link Revolute-Revolute-Prismatic-Revolute (RRPR) 

joint spatial robot with an out-of-plane rotation, two in-plane rotations, and a translation in 

the same plane to create a 3D virtual rigid-link robot (Walker, 2013). A block diagram of 

the joint space dynamic controller by feedback linearization for closed-loop configuration 

space control is depicted in Figure. 5.2. The control attempts to achieve tracking of 

configuration space variables using a proportional integral derivative (PID) computed-

torque controller in the joint space to calculate virtual torques that are translated into 

pneumatic pressure in the actuator space. The task space to joint space inverse kinematics 

are obtained via a desired virtual joint vector which forms the error vector with the actual 

virtual joint space variables derived from the continuum robot configuration space. The 

approach mentioned above assumes on the constant curvature (CC) approximation 

(Hannan and Walker, 2003) for the configuration space model. 

Previous research has also examined the possibility of controlling a continuum 

structure via exploiting a “virtual” rigid link robot model. However, the methodologies 

were either applied only to the bending of a planar continuum section (Tang et al., 2019), 

or formulated using a under-parameterized model which involves merely bending and 

twisting without considering continuum robot extension/contraction (Katzschmann et al., 

2019), (Greigarn et al., 2019). In contrast, the work in this paper is the first attempt to 
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accomplish three-dimensional control of continuum robots whose configuration space is 

parameterized by arc length 𝑠 , curvature 𝜅 , and rotational orientation 𝜙 . Such 

comprehensive parameterization accounts for simultaneous extension/contraction, 

bending, and torsion actions of continuum robots, therefore fully matching the control 

capability and motion complexity of continuum robots. In addition, we extend model-based 

dynamic control research through the application of the computed torque approach that 

provides virtual rigid link robot dynamics decoupling for the control of multi-section 

continuum robots. 

 

Figure. 5.2.  Block Diagram for Continuum robot control based on virtual robot models. 

This virtual discrete-jointed robot model-based controller for continuum 

manipulators is developed and applied and tested on the octopus biology inspired OctArm 

(Grissom et al., 2006), a three-section intrinsically pneumatic-actuated continuum 

manipulator with nine DoF (depicted in Figure. 5.1). Each OctArm section is constructed 

using pneumatic “McKibben” muscle extensors (Walker et al., 2005) with three control 

channels per section that provide bending, extension, and 360° of 3D rotation. A closed-

loop task space dynamic controller (Kapadia and Walker, 2011) and a closed-loop 

configuration space control using a sliding mode controller (Kapadia et al., 2010),(Kapadia 

et al., 2014) were implemented on the OctArm. More recently, an adaptation-based 
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nonlinear control strategy was adopted for the OctArm (Frazelle et al., 2018), but until 

now, a dynamic controller based on virtual discrete-jointed robot model proposed in this 

paper remains undeveloped for the OctArm. 

1.6 5.2 Mathematical Model 

5.2.1 Spatial Continuum Robot Forward Kinematics 

In order to comprehend the continuum robot movements, a forward kinematic 

model, which relates the configuration space (backbone shape) variables and task (e.g., tip) 

space variables, needs to be constructed. Such a model lays the foundation for designing 

control algorithms and is vital for the practical implementation of continuum robot 

hardware. 

The approach to continuum robot forward kinematics in this article heavily exploits 

the CC sections feature. The CC feature assumes that the configuration space of a three-

dimensional (3D) continuum architecture can be parameterized by three variables: arc 

length 𝑠, the curvature 𝜅 = 1 𝑟⁄  as related to the radius r of a curve, and orientation 𝜙 of 

the curve plane in space. The CC continuum bending can be decomposed into four discrete 

motions: (1) a rotation to “point” the tangent at the curve’s  origin to the curve’s end point; 

(2) a translation from curve origin to end; (3) a second rotation identical with the first to 

realign with the tangent at the curve’s end; and (4) a rotation about the initial tangent; see 

Figure. 5.3. Given this observation, a “virtual” 3D four-joint rigid-link RRPR manipulator 

can be used to model the kinematic transformation along any CC backbone (Hannan and 

Walker, 2001). Consequently, the corresponding continuum robot forward kinematics 

model can be found using the conventional Denavit-Hartenberg (D-H) [29] convention for 
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the virtual robot; see Table I. The associated homogeneous transformation matrix of the 

virtual RRPR robot model is given as 
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where 𝑠𝑙 and 𝑐𝑙 (𝑙 = 1,2,4) denote sin(𝜃𝑙) and cos(𝜃𝑙) for the three revolute joints in the 

RRPR model, respectively and 𝑑3 is the length of the third, prismatic, joint in the RRPR 

model. The continuum robot kinematics can be readily developed by substituting the joint 

variables of the virtual robot with the corresponding configuration space variables of a 

continuous curve.  Specifically (see Figure. 5.3), 
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where 𝑐𝑚 and 𝑠𝑚 (𝑚 = 𝑠, 𝜅, 𝜙, 𝑠𝜅), denote cos(𝑚) and sin(𝑚), respectively. The model 

(5) describes the forward kinematic relationship (3 by 3 orientation, top left of (5), and 3 

by 1 translation, top right) between continuum curve shape (arc length 𝑠, curvature 𝜅, and 

orientation 𝜙) and task space (𝑥, 𝑦, and   coordinates). 

The forward kinematics for a 𝑛-section manipulator can then be generated by the 

product of 𝑛 matrices of the form given in Eq. (5). For example, the forward kinematics 

for the continuum robot with its two sections can be calculated as 

 3 2 3

1 1 2T T T=   (5.6) 

where 𝑇𝑎
𝑎+1 = 𝐻4

  for section 𝑎 of the manipulator. 
TABLE 5.1 

Link Parameters for Virtual RRPR Robot Manipulator 

Link 𝜃 𝑑 𝑎 𝛼 

1 * 0 0 90 

2 * 0 0 -90 

3 0 * 0 90 

4 * 0 0 -90 

 

  

Figure. 5.3.  Three-dimensional constant curvature section geometry obtained via rotation 

about initial tangent based on virtual RRPR discrete-jointed robot model. 
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5.2.2 Virtual Robot Inverse Kinematics 

The inverse kinematics of the continuum robot can be approximated by that of the 

spatial RRPR virtual robot. After the task space coordinates of the continuum robot are 

derived from the continuum robot forward kinematics in (5), the 𝑥, 𝑦, and   coordinates 

can then be substituted into the inverse kinematics of the RRPR robot model to obtain the 

desired joint space vector 𝑞𝑑 = [𝜃1 𝜃2 𝑑3 𝜃4]
𝑇. From (1) we obtain 

 3 1 2 3 1 2 3 2,   ,   x d c s y d s s z d c= − = − =   (5.7) 

Since 

 ( ) ( ) ( )
2 2 22 2 2 2 2

3 1 2 1 2 2 3x y z d c s s s c d + + = + + =
 

  (5.8) 

Thus 
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The rotation 𝜃2 and 𝜃4 can be obtained from 
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The rotation 𝜃1 can also be derived as 
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For a two-section continuum robot which can be modeled as an 8-DoF RRPRRRPR 

rigid-link robot, derivations of analytical inverse kinematics solutions can be extremely 

burdensome. Due to the high order polynomial nature of expressions and high redundancy, 

obtaining analytical inverse kinematic solutions for the full task space position for the two-
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section continuum arms is computationally infeasible. Therefore, in this article, we apply 

the pseudoinverse solution to the virtual robot model to relate the rigid-link robot joint 

space to the continuum robot task space. After the Jacobian matrix 𝐽 of an RRPRRRPR 

robot has been derived, the Moore-Penrose pseudoinverse of the Jacobian matrix 𝐽  is 

readily defined as 𝐽+ = 𝐽𝑇(𝐽𝐽𝑇)−1  (Siciliano, 1990). Therefore, the joint space can be 

solved as 

 ( )des desq J q x+=   (5.12) 

where �̇�𝑑𝑒𝑠 ∈ ℝ3𝑥1  is the desired Cartesian coordinate vector [𝑥 𝑦  ]𝑇  and 

�̇�𝑑𝑒𝑠 ∈ ℝ8𝑥1 is the derived desired joint velocities vector. The inverse kinematic problem 

can then be readily solved through the integration of �̇�𝑑𝑒𝑠 in (12).  

5.2.3 Virtual Robot Dynamics 

Incorporating the dynamics of the continuum robot is vital for model-based 

dynamic control of continuum structures. The dynamic equations of motion, which provide 

the relationships between actuation and the acceleration, form the basis for several 

computational algorithms that are fundamental in control and simulation. In this article, the 

virtual RRPR rigid-link robot dynamics is derived and exploited to approximate the 

dynamics of a 3D continuum architecture. For motion control, the dynamic model of a 

virtual RRPR mechanism is conveniently described by Lagrange dynamics represented in 

the joint-space formulation.  

The Euler-Lagrange dynamics equations of the virtual RRPR manipulator can be written in 

a matrix form as 

 ( ) ( ) ( ),D q q C q q q g q + + =   (5.13) 



 132 

where 𝑞 ∈ ℝ4𝑥1 is the joint variable vector for the virtual RRPR robot, the joint 

variables are 𝑞1 = 𝜃1, 𝑞2 = 𝜃2, 𝑞3 = 𝑑3, and 𝑞4 = 𝜃4. The vector 𝜏 ∈ ℝ4𝑥1 is the torque 

applied to each joint variable.  Specifically, the term 𝜏1 is the applied torque at the first 

revolute joint which drives the orientation of the continuum robot, 𝜏2 and 𝜏4 are the applied 

torques at the second and fourth revolute joints which form the shape (curvature) of the 

continuum robot, and 𝑓3  is the applied force at the third prismatic joint which 

elongates/shrinks the continuum robot. The detailed derivation process and derived terms 

of the inertia matrix 𝐷(𝑞), centrifugal and Coriolis matrix 𝐶(𝑞, �̇�) and gravity matrix 𝑔(𝑞) 

in (13) can be found via the link https://urlzs.com/wuEWb for reference.  

Similarly, the dynamic model for a two-section continuum robot can be modeled 

by combining two virtual RRPR robots into an 8-DoF RRPRRRPR rigid-link robot. The 

kinematics of this virtual robot is constructed in a way so that the interface between the 

two RRPR robots aligns the last/first z-axes (see Figure. 5.3), as the 8-DoF virtual robot 

needs to model the continuum case where the tangent between two sections are aligned. 

The authors have derived the dynamics model for the virtual 8-DoF robot model via the 

Euler-Lagrange approach to compute torques for continuum architecture control. For the 

sake of space and conciseness, the inertia matrix 𝐷(𝑞), centrifugal and Coriolis matrix 

terms in 𝐶(𝑞, �̇�), as well as the gravity matrix 𝑔(𝑞), as derived by the authors for the 8-

DoF virtual robot dynamics, is stored in the link https://urlzs.com/vSmxy for reference.  

5.3 Control Systems Design 

The modeling strategies of the previous section form the basis for control 

approaches needed for continuum robots. We seek and exploit simple, relatively 

https://urlzs.com/wuEWb
https://urlzs.com/vSmxy
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computationally inexpensive control methods used in (rigid-link) robot control systems [2] 

to design the controller in the virtual RRPR robot coordinates. Multiple control methods, 

such as adaptive control (Frazelle et al., 2018), optimal and robust control (Kapadia et al., 

2010), and learning control (Braganza et al., 2007), are widely used in robotics. Each 

control method has advantages and disadvantages. However, the main aim of the system is 

to provide stability and high-frequency updates. In this work, we adopt the computed-

torque (Middletone and Goodwin, 1986) (feedback linearization plus PID control) 

approach for the virtual robot, with the sensing and actuation transformed from and to the 

continuum robot, respectively. 

  

Figure. 5.4.  Block diagram for PID computed-torque controller designed for virtual 

RRPR robot. 

The computed-torque control consists of an inner nonlinear compensation loop and 

an outer loop with an exogenous control signal 𝑢. This control input converts a complicated 

nonlinear controller design problem into a simple design problem for a linear system 

consisting of several decoupled subsystems. One approach to the out-loop control 𝑢 is the 

proportional–integral–derivative (PID) feedback. The reason why the PID controller is 

preferred in this article over the proportional-derivative (PD) controller is that the PID 

controller eliminates the steady-state error caused by environmental disturbances. In the 

PID control, the chosen parameters, 𝐾𝑝 , 𝐾𝑖  and 𝐾𝑑  remain constant during the process. 
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Therefore, such a controller is inefficient because the controller contains ambiguity when 

environmental conditions or dynamics change. In addition, it is inefficient because of time 

delays and nonlinearity conditions. Hence, we include the dynamics to linearize prior to 

the PID control. 

The dynamic model of the virtual robot arm is given in (13). The errors of the robot 

variables are 

 ,  ,  d d de q q e q q e q q= − = − = −   (5.14) 

where 𝑒, �̇�, �̈� express the position, velocity, and acceleration error vectors and 𝑞𝑑, 𝑞�̇� , 𝑞�̈� 

expresses the desired position, velocity, and acceleration of the variables. The torques 

required for each joint of the virtual robot arm are calculated from (13) and the errors from 

(14). The linearization is achieved as follows 

 ( ) ( ) ( ) ( ),dD q q u C q q q g q = − + +   (5.15) 

The control signal that is obtained from (15) is expressed as follows 

 ( ) ( ) ( )1 ,du q D q C q q q g q −= + + −     (5.16) 

If the signal 𝑢 is selected as the PID feedback controller, the torque value of each 

joint will be obtained from (17) and (18). 

 d p iu K e K e K edt= − − −    (5.17) 

 ( )( ) ( ) ( ),d d p iD q q K e K e K edt C q q q g q = + + + + +   (5.18) 

where 𝐾𝑑 is the derivative gain, 𝐾𝑖 is the integral gain, and 𝐾𝑝 is the proportional gain. 

The overall controller of the virtual robot is shown in Figure. 5.4. The values of the 

controller gains, i.e., 𝐾𝑑 , 𝐾𝑖 , and 𝐾𝑝 , were determined according to an iterative 
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experimental process to maximize controller performance. The input desired trajectory was 

represented in terms of Cartesian coordinates 𝑥, 𝑦, and  , and was calculated from the 

continuum robot arc length 𝑠, curvature 𝜅, and orientation 𝜙 using the forward kinematics 

discussed in Section II. Subsequently the virtual robot variables: rotation 𝜃1, 𝜃2, 𝑑3, and 

𝜃4 were derived from the inverse kinematics in section II and fed into the control system 

as a desired reference input signal. Their derivatives and double derivatives were calculated 

and served as the inputs to the controller through ℝ4×1 vectors 𝑞𝑑, �̇�𝑑, and �̈�𝑑. The output 

of the controller, 𝑢, is then used to establish the torque signal 𝜏 along with systems 𝐷(𝑞), 

𝐶(𝑞, �̇�), and 𝑔(𝑞) matrices. The torque 𝜏 was then converted to actuation space in the 

pressure form and applied to the physical continuum robot system which feeds back the 

current continuum robot shape configuration, subsequently converted to virtual robot 

rotation and translation ℝ4×1 signal vectors 𝑞 and �̇� which then input to the PID controller 

to form the error and drive the control action. 

5.4 Controller Simulation Results 

A simulation study has been conducted to investigate the validity of the proposed 

control strategy based on the virtual rigid-link model. Simulations of the virtual robot 

computed torque control were executed in the Simulink environment. The input of the 

system is three reference signals in configuration space: the arc length 𝑠, curvature 𝜅, and 

orientation 𝜙, which were fed into the continuum robot forward kinematics in (5) to form 

Cartesian coordinates 𝑥, 𝑦, and  . In the simulation presented here, an OctArm-emulated 

reference arc length 𝑠 is designated as a sinusoidal wave with range [0.35m, 0.41m] and 

frequency 3 rad/s as shown in Figure. 5.5. The continuum robot curvature 𝜅 reference is a 
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chirp signal in which the frequency increases with time to increase the control complexity. 

To simulate the full 360° rotation of the continuum robot, a ramp signal is assigned to the 

reference orientation 𝜙. 

The comparison between desired and actual 𝑥 and 𝑦 coordinates of the continuum 

robot end effector is depicted in Figure. 5.5. There is a large overshoot observed when the 

end effector is attempting to reach the first desired 𝑥 , 𝑦, and   locations, but then the 

system becomes stabilized before following the desired task space successfully. The 

desired and actual joint space variables  𝜃1, 𝜃2, 𝑑3, and 𝜃4 of the virtual RRPR robot can 

be observed in Figure. 5.7. All signals eventually reach an optimal stable condition. The 

corresponding torques/force applied to each joint, namely 𝜏1, 𝜏2, 𝑓3, and 𝜏4 can be found 

in Figure. 5.8. Collectively, the convergence to reference values in both task and joint space 

not only marks decent accuracy of the virtual RRPR robot approximation model, but also 

reflect the effectiveness of the computed-torque approach in reaching desired continuum 

robot configuration. 

  

Figure. 5.5.  Desired configuration variables arc length 𝑠, curvature 𝑘, and Orientation 𝜙 

for simulation of the virtual robot computed torque control. 
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Figure. 5.5. Desired and actual continuum robot end-effector X, Y, and Z coordinates 

during simulation of the virtual robot computed torque control. 

  

Figure. 5.7.  Desired and actual virtual RRPR robot joint variables 𝜃1, 𝜃2, 𝑑3, and 𝜃4 

during simulation of the virtual robot computed torque control. 

5.5 Experimental Implementation 

5.5.1 Experimental Setup 

To further demonstrate the validity of the proposed controller based on the virtual 

rigid-link dynamics model, the experiments are conducted on the tip and mid-sections of 

the OctArm continuum manipulator (Grissom et al., 2006), (Walker et al., 2005). The 

OctArm, whose structure is shown in Figure. 5.9, is a 9-DoF pneumatically actuated, 

extensible, continuum robot capable of motion in three dimensions. The kinematically 

redundant manipulator is comprised of three serially connected sections: base, mid, and 

tip-section. Each of the three sections can extend (with arc length 𝑠) and bend in any 

direction (with curvature κ and orientation 𝜙), providing three DoF for each section. The 

OctArm is constructed using compressed air-actuated McKibben extension muscles with 
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three control channels per section; see Figure. 5.10 (Grissom et al., 2006). The mid-section 

has three pairs of McKibben actuators spaced radially at 120° intervals, forming one 

control channel per pair. Such mid-section design leads the muscle actuators to be designed 

for a larger radius and results in higher stiffness and load capacity, though at the expense 

of manipulability. The tip-section of the device is comprised of three single McKibben 

actuators arranged radially at 120° intervals, resulting in greater manipulability as 

compared to the mid-section. 

  

Figure. 5.8.  Torques and force applied to each virtual RRPR robot joint - 𝜏1, 𝜏2, 𝑓3, and 

𝜏4 are the torques/force applied to 𝜃1, 𝜃2, 𝑑3, and 𝜃4 during simulation. 

A set of experiments utilizing the OctArm and the described model were 

implemented. The model and controller were implemented in MATLAB/Simulink 

environment (“Simulink - Simulation and Model-Based Design,” n.d.). Interfacing with 

the OctArm was accomplished using two Quanser Q8-USB data acquisition boards (“Q8-

USB Data Acquisition Device - Quanser,” n.d.). State estimation of the system was 

provided through internal measurements of the OctArm via a series of string encoders that 

run along the length of each section muscle. After output torques and forces are computed 

from the proposed controller, they are converted to pneumatic pressures via a series of 

pressure regulators using an output voltage from the Quanser boards. The pressures are 

then applied onto the corresponding McKibben extension muscles, where one regulator is 
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assigned to one muscle or one muscle pair in the case of the mid-section. A full torque/force 

to pneumatic pressure conversion technique is formulated and discussed in Section V.B. 

Experiments on both one section (tip-section, 3-DoF) and two sections (tip and mid-

sections, 6-DoF) are conducted in three-dimensional space to examine configuration space 

tracking performance of the proposed control method for multi-section continuum robots. 

Results of experiments are presented in Sections V.C and V.D and, with discussions and 

future research contained in Section V.E. 

 

Figure. 5.9.  The OctArm manipulator with base, mid, and tip sections. 

5.5.2 Torque to Pressure Conversion 

To facilitate the implementation of the proposed controller into pneumatically 

actuated continuum architectures like the OctArm, the computed torques 

[𝜏1 𝜏2 𝑓3 𝜏4] 
𝑇  for controlling the virtual rigid-link robot model in (21) must be 

converted into applied pneumatic pressures onto each of the pneumatic “McKibben” 

muscles in the single tip-section. Such conversions can be inspired by the movements of 

the OctArm which can be categorized into three distinct motions: (1) extension/contraction 

which determines the continuum robot arc length 𝑠; (2) bending which accounts for the 

OctArm curvature 𝜅; and (3) torsion which translates to continuum robot orientation 𝜙.  
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Figure. 5.10.  OctArm actuator cross-section configurations for (a) tip (left), (b) mid 

(right) sections (Dotted lines show three control channels) 

For pure extension/contraction motion, the calculated extension force 𝑓3 that results 

from the RRPR model is equally applied to the three muscles to achieve balanced pure 

extending movement. In order to generate simultaneous extending, bending, and torsion 

motions at the single tip-section of the OctArm shown in Figure. 5.10a, the controller 

generated torques 𝜏1 , 𝜏2 , and 𝜏4  which are responsible for driving the rotation 𝜙  and 

curvature 𝜅 need to be incorporated. Therefore, the pressure applied to the three McKibben 

muscle control channels can be represented as 
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where Δ𝜏 = (𝜏2 + 𝜏4) 2⁄ , 𝜙  denotes the current rotation of the OctArm, 𝑘𝑝  is the 

conversion gain from torque to pressure, and 𝑏 is a constant. In (19), the terms 𝑓3, Δ𝜏, and 

𝜏1 account for extending, bending, and torsion maneuvers, respectively. The difference of 

pressure given to three distinct sets of control channels will generate a bending effect of 

constant curvature that matches the continuum robot kinematics model. From the iterative 

experimental experiences, we identified a sinusoidal offset between the desired curvature 

𝜅𝑑𝑒𝑠 and actual curvature 𝜅, which occurs due to the OctArm tip-section inborn stiffness. 

Therefore, to compensate for this offset, the compensated pressure applied to the three 

muscles to achieve simultaneous extending, bending, and torsion are 
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where 𝐶(𝜙) = 𝛼 sin𝜙 + 𝛽 is the curvature compensator, and 𝛼 and 𝛽 are both constants.  

Pressure conversion of the two section OctArm which can be modeled as a virtual 

RRPRRRPR robot is achieved similarly to that of the one section. After the derivation of 

the torque vector [𝜏1 𝜏2 𝑓3 𝜏4 𝜏5 𝜏6 𝑓7 𝜏8]
𝑇, whose first four terms model the 

mid-section and last four terms model the tip-section, the pressures on three mid-section 

control channels 𝑃4, 𝑃5, and 𝑃6 (shown in Figure. 5.10b), are determined by substituting 

𝑃4, 𝑃5, and 𝑃6 for 𝑃1, 𝑃2, and 𝑃3, respectively, in (20). The pressures of the three tip-section 

control channels, 𝑃1, 𝑃2, and 𝑃3, are computed by substituting 𝜏5, 𝜏6, 𝑓7, and 𝜏8 for 𝜏1, 𝜏2, 

𝑓3, and 𝜏4, respectively, in (20). 

5.5.3 One-section OctArm Experiment 

The first experiment conducted on the OctArm manipulator reported here is 

simultaneous extension/contraction, bending, and torsion on one OctArm section. Detailed 

video footage of the experiment can be found via the link https://urlzs.com/HiYMH. In this 

experiment, the system is fed desired arc length 𝑠 a sinusoid with an amplitude 0.03m and 

a frequency of 0.08Hz, as shown in Figure. 5.11. The desired curvature 𝜅  is also a 

sinusoidal signal with an amplitude of 1𝑚−1 and a frequency of 0.08Hz while the desired 

orientation 𝜙 is a ramp function with a slope of 0.3 (rad/s) to generate a full 360° rotation 

on the tip-section. During the experiment, the OctArm initiated from its natural 

unpressurized length of 0.34m and rapidly converged to the desired arc length with minor 

https://urlzs.com/HiYMH
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error in the crest of the sine wave. The actual arc length 𝑠 and curvature 𝜅 settle relatively 

fast and no obvious overshoot or oscillations are detected. Possibly due to intrinsic settling 

nature of the PID controller, the high-frequency oscillatory motion observed in the first 

cycle of arc length and curvature sinusoid terminates after 7 seconds before the system 

reaches a steady state. Also, the robot accomplishes three full 360° rotations in conjunction 

with the sinusoidal arc length and curvature variations. Highlighting the effectiveness of 

the controller, the arc length and curvature error plot illustrated in Figure. 5.12 show that 

the control algorithm implemented on the OctArm only outputs arc length and curvature 

error of ±5mm and ±0.35 𝑚−1, respectively, which is considered within a reasonable 

range for such a complex maneuver with this robot.  

  

Figure. 5.11.  One section experiment (OctArm tip section) — Desired and actual arc 

length 𝑠, curvature 𝑘, and orientation 𝜙 in configuration space 

  

To further demonstrate the control performance of the one section continuum robot 

during concurrent extending, bending, and rotation in joint space, the virtual RRPR joint 

variables and their corresponding applied torques/force responses of the OctArm tip-

section are displayed in Figure. 5.13 & 14. Directly derived from the encoder generated 

OctArm configuration space variables, the joint space variables not only demonstrate the 
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efficacy of the controller but also reflect the accuracy of the proposed continuum 

architecture approximation using virtual RRPR rigid-link model. The actual joint variable 

values from the OctArm encoders track the desired joint variables from the virtual RRPR 

robot inverse kinematics relatively well. The oscillation at the beginning of the experiment, 

and minor error at the sinusoid crest observed in the configuration space occurred in the 

joint space as well. The torques/force depicted in Figure. 5.14 further confirms the source 

of the OctArm oscillatory motion at the beginning: all torques/force experience a high-

frequency phase before following a stable sinusoidal pattern. 

  

Figure. 5.12.  One section experiment (OctArm tip section) — Arc length 𝑠, and 

curvature 𝑘 error on OctArm in configuration space 

  

Figure. 5.13.  One section experiment (OctArm tip section) — Desired and actual 𝜃1, 𝜃2, 

𝑑3, and 𝜃4 of the virtual RRPR rigid-link model in OctArm joint space. 
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Figure. 5.14.  One section experiment (OctArm tip section) — Actuation torques/force 

𝜏1, 𝜏2, 𝑓3, and 𝜏4, applied to the corresponding joint space variables 𝜃1, 𝜃2, 𝑑3, and 𝜃4 in 

virtual RRPR model. 

5.5.4 Two-section OctArm Experiment 

The models for the complete, two-section continuum robot are formed in the 

previous sections by deriving the forward kinematics, inverse kinematics, and dynamics 

for the virtual RRPRRRPR rigid-link robot. After implementing the models into the system 

described in Figure. 5.2, the computed torques applied on all eight virtual joints are 

converted to six pressure signals which are used to actuate the OctArm mid and tip-

sections. However, such an approach identifies several major drawbacks which lead to our 

eventual termination of controlling the two-section OctArm with the 8-DoF virtual robot 

model. First, compiling the experiment program in Simulink environment can consume 

approximately 90 minutes due to the size and complexity of the 8-DoF robot dynamics. 

Second, the inverse kinematics, which utilizes the pseudoinverse of the Jacobian matrix, 

fails to determine joint parameters that provide a valid constant curvature configuration for 

both mid and tip-sections. Specifically, the virtual robot joint variable pairs 𝜃2 and 𝜃4, as 

well as 𝜃6 and 𝜃8 are not equal. Third, the inverse kinematics solutions are occasionally 

unreachable due to limitations on joint angles/length.  



 145 

  

Figure. 5.15.  Experimental control loop block diagram for two section OctArm 

decoupled virtual discrete-jointed model dynamics control. 

Due to these three hindrances mentioned above, an alternative modeling approach 

for two section continuum robots is established: the 8-DoF RRPRRRPR rigid-body model 

is decoupled into two separate 4-DoF virtual discrete-jointed RRPR models whose 

effectiveness has been validated previously in both simulation and experiment. After the 

decoupling of the 8-DoF model, each of the two 4-DoF models received control input from 

separate controllers and generated two unique 4 × 1 computed torque vectors to actuate 

each individual section; see Figure. 5.15. Two laboratory experiments on two-sections of 

the OctArm, each with distinct configuration space settings, are presented here to validate 

the effectiveness of the new approach in controlling multi-section continuum robots.  

5.5.4.1 Two section experiment 1 

The desired and configuration space variables for the first experiment, whose video 

footage link is https://urlzs.com/BLzyj, is shown in Figure. 5.15. The tip-section arc length, 
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which is desired as a constant 0.38m, demonstrates a 5% overshoot before it immediately 

reaches steady state with a 3.1 second settling time; the tip-section curvature shows a 

similar pattern. As for the mid-section, due to the changing center of mass of the tip-section 

during the experiment, a sawtooth shape of the curvature is observed while the arc length 

yields a sinusoidal error of ±3.3𝑚𝑚 with the frequency of orientation 𝜙 shown in Figure. 

5.17. The full 360° torsional displacement of the mid-section is accomplished smoothly 

whereas the tip-section orientation shows small sinusoidal fluctuation around the set point 

due to mid-section rotation. Collectively, the decoupled dynamics model controller 

demonstrates excellent performance with decent error convergence and fast response in the 

configuration space. 

  

Figure. 5.15.  Two section experiment 1 (OctArm tip and mid sections) — Desired and 

actual arc length 𝑠, curvature 𝑘, and orientation 𝜙 in configuration space. 
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Figure. 5.17.  Two section experiment 1 (OctArm tip and mid sections) — Arc length 𝑠, 

and curvature 𝑘 error in configuration space. 

The desired and actual joint space variables of the decoupled virtual robot model 

can be observed in Figure. 5.18. The variables 𝜃1, 𝜃2, 𝑑3, and 𝜃4 represent the joint space 

of the mid-section while 𝜃5, 𝜃6, 𝑑7, and 𝜃8 denotes that of the tip-section.  All the joint 

variables converge to the desired set-point successfully thanks to the overwhelming 

tracking performance of the curvature and arc length. The resulting computed torques for 

each joint variable in the decoupled virtual robot model are illustrated in Figure. 5.19. 

5.5.4.2 Two section experiment 2 

After the successful completion of experiment 1, a more complicated two section 

OctArm maneuver, whose video footage link is https://urlzs.com/k7C98, is tested to 

examine the control method resilience against demanding robot operations. The desired 

and actual configuration space variables are exhibited in Figure. 5.20. The arc length for 

both tip and mid-section display outstanding performance with minor overshoot on the tip-

section. On the other hand, the mid-section curvature exhibits not only oscillatory motion 

but also high overshoot due to higher stiffness, which leads to mediocre manipulability. 

The tip-section arc length also experiences intense oscillations at the first sine wave trough 

and a major overshoot before it reaches a steady state after 22 seconds. Both the tip and 

https://urlzs.com/k7C98
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mid-section track the desired orientation well. Collectively, the performance of experiment 

2 deteriorated compared to that of experiment 1, as shown in Figure. 5.21, where errors of 

both section configurations increased by a noticeable amount.  

  

Figure. 5.18.  Two section experiment 1 (OctArm tip and mid sections) — Desired and 

actual 𝜃1, 𝜃2, 𝑑3, 𝜃4, 𝜃5, 𝜃6, 𝑑7, and 𝜃8 of the virtual  discrete-jointed model in the joint 

space; the variables 𝜃1, 𝜃2, 𝑑3, 𝜃4 represents the mid-section virtual RRPR model and the 

variables 𝜃5, 𝜃6, 𝑑7, 𝜃8 represents the tip-section virtual RRPR model.  

  

Figure. 5.19.  Two section experiment 1 (OctArm tip and mid sections) — Actuation 

torques/force applied to the corresponding joint space variables: 𝜏1 to 𝜃1, 𝜏2 to 𝜃2, 𝑓3 to 

𝑑3, 𝜏4 to 𝜃4, 𝜏5 to 𝜃5, 𝜏6 to 𝜃6, 𝑓7 to 𝑑7, and  𝜏8 to 𝜃8. 

The joint space variables and the corresponding torques/forces responses can be 

found in Figure. 5.22 and 23. Due to the high-frequency torques 𝜏2, 𝜏4, 𝜏6, and 𝜏8 being 

computed, shown in Figure. 5.23, some oscillatory tracking behavior on the robot curvature 
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related to revolute joints 𝜃2, 𝜃4, 𝜃6, and 𝜃8 is observed before the systems reaches steady 

state at 22 seconds and follows the desired joint space trajectories decently; see Figure. 

5.22. Like the arc length 𝑠 behavior, the prismatic joints 𝑑3 and 𝑑7 demonstrate excellent 

tracking performance.  

5.5.5 Discussion and Future Research 

The main objective of the experiments was to evaluate the tracking capability of 

the proposed controller for multi-section continuum robots in configuration space. There 

are three critical findings inferred from the experimental evaluations on the OctArm. First, 

the virtual discrete-jointed robot model-based controller accomplishes the configuration 

space tracking for both the single section and two section OctArm trajectories 

satisfactorily. Second, the complicated 8-DoF dynamics model built for the two section 

OctArm proved to be infeasible to implement. Consequently, a decoupled dynamics model 

composed of two 4-DoF dynamic models, each responsible for formulating the control 

strategy for one of the two sections, was exploited. Finally, the configuration space errors 

exhibit sequential and cyclical nature in both one section and two section experiments. The 

cyclical pattern observed is likely due to unmodeled dynamics and the discrepancies 

between the physical system and the ideal model used. Corrections made to the model as 

well as compensation to the physical system could reduce or eliminate these behaviors.  

Further studies should investigate the disturbance rejection capabilities of the 

proposed control method. Also, the proposed decoupling of virtual discrete-jointed 

dynamics model for the two-section OctArm control may seamlessly apply to continuum 

dynamics (Tatlicioglu et al., 2007) as well. The possibility of decoupling continuum 
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dynamics for the multi-section continuum robot control is conceptually fascinating and 

should be explored. 

  

Figure. 5.20.  Two section experiment 2 (OctArm tip and mid sections) — Desired and 

actual arc length 𝑠, curvature 𝑘, and orientation 𝜙 in configuration space. 

5.5. Conclusion 

In this paper, a novel model-based dynamic feedback control architecture was 

introduced for spatial multi-section continuum robots. Inspired by conventional rigid link 

robot computed-torque control techniques, the control law utilizes the model of a virtual, 

conventional rigid link robot with discrete joints, in whose coordinates the controller is 

developed, to generate real-time control inputs for the continuum robot. The computed-

torque input was translated to pneumatic pressures applied to each pneumatic artificial 

muscle in the actuator space of the continuum robot through a carefully designed converter. 

This controller was implemented on the OctArm—a pneumatically actuated spatial 

continuum manipulator with three sections—using a control architecture with both 

feedback linearization and PID controller. The forward and inverse kinematics, as well as 

dynamics model approximated by a virtual discrete-jointed robot model, are derived for 
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both single and two-section continuum robots. An alternative dynamic modeling approach 

based on the decoupling of the complex virtual discrete-jointed model was proposed to 

facilitate the implementation of the proposed controller on a two-section continuum robot. 

The proposed controller was successfully simulated and experimentally validated on both 

single and two sections of the OctArm. Accompanying this paper is video footage showing 

the configuration space tracking motion of the OctArm in 3D space as reported in the 

experimental results. 

  

Figure. 5.21.  Two section experiment 2 (OctArm tip and mid sections) — Arc length 𝑠, 

and curvature 𝑘 error in configuration space. 
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Figure. 5.22.  Two section experiment 2 (OctArm tip and mid sections) — Desired and 

actual 𝜃1, 𝜃2, 𝑑3, 𝜃4, 𝜃5, 𝜃6, 𝑑7, and 𝜃8 of the virtual  discrete-jointed model in the joint 

space; the variables 𝜃1, 𝜃2, 𝑑3, 𝜃4 represents the mid-section model and the variables 𝜃5, 

𝜃6, 𝑑7, 𝜃8 represents the tip-section model. 

  

Figure. 5.23.  Two section experiment 2 (OctArm tip and mid sections) — Actuation 

torques/force applied to the corresponding joint space variables: 𝜏1 to 𝜃1, 𝜏2 to 𝜃2, 𝑓3 to 

𝑑3, 𝜏4 to 𝜃4, 𝜏5 to 𝜃5, 𝜏6 to 𝜃6, 𝑓7 to 𝑑7, and  𝜏8 to 𝜃8. 
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CHAPTER SIX 

 

HAPTIC ASSISTIVE CONTROL WITH LEARNING BASED DRIVER 

INTENT RECOGNITION FOR SEMI-AUTONOMOUS VEHICLES 

 

 

Semi-autonomous vehicles equipped with assistive control systems may experience 

degraded lateral behaviors when aggressive driver steering commands compete with high 

levels of autonomy. This challenge can be mitigated with effective operator intent 

recognition, which can configure automated systems in context-specific situations where 

the driver intends to perform a steering maneuver. In this article, an ensemble learning-

based driver intent recognition strategy has been developed. A nonlinear model predictive 

control algorithm has been designed and implemented to generate haptic feedback for 

lateral vehicle guidance, assisting the drivers in accomplishing their intended action. To 

validate the framework, operator-in-the-loop testing with 30 human subjects was 

conducted on a steer-by-wire platform with a virtual reality driving environment. The 

roadway scenarios included lane change, obstacle avoidance, intersection turns, and 

highway exit. The automated system with learning-based driver intent recognition was 

compared to both the automated system with a finite state machine-based driver intent 

estimator and the automated system without any driver intent prediction for all driving 

events. Test results demonstrate that semi-autonomous vehicle performance can be 

enhanced by up to 74.1% with our proposed learning-based intent predictor. The proposed 
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holistic framework that integrates human intelligence, machine learning algorithms, and 

vehicle control can help solve the driver-system conflict problem leading to safer vehicle 

operations. 

6.1 Introduction 

The introduction of computer-controlled electro-mechanical systems into ground 

vehicles has fostered semi-autonomous operation. Drive-by-wire systems, including 

steering, braking, and throttle, offer a pathway from driver to computer commanded vehicle 

inputs which promotes performance improvements. These mechatronic systems offer the 

potential to enhance steering functionality by enabling advanced driver-assistance features 

such as lane-keeping (LKA) that augment the interaction and collaboration between the 

human-vehicle to simplify the driving task and improve safety (Penmetsa et al., 2019). 

When the vehicle drifts towards the lane markers, LKA uses steering and/or selective 

braking to center the vehicle and prevent unattended single-vehicle lane departure events 

(Freeman et al., 2016). Advanced human-machine interaction modalities such as haptics 

can assist drivers in the vehicle cockpit (Wang et al., 2019b). Haptic assisted driving 

interfaces can provide tunable force feedback that meets the operator’s need for vehicle 

steering while tailoring the driving experience. By integrating a robust haptic force 

feedback system into the drive-by-wire system, lane departure events can be anticipated 

and compensated within the LKA systems. 

In general, lane keeping assistance technology operates efficiently for mild driving 

conditions. However, such systems can fail to respond to increased environment 

complexity and emergency situations. Furthermore, LKA sensors may have difficulty 
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recognizing fading lane markings and lanes changes due to construction, resulting in an 

undesirable actions or feature disabling. Human drivers, on the other hand, tend to solve 

complex problems, interpret emergency situations, and respond to uncertain settings better 

than automation (Cummings, 2017; Li et al., 2018). Therefore, haptic assistive control 

offers the opportunity to retain human abilities while leveraging the capacities of automatic 

vehicle systems through human-automation synergies. 

Literature on haptic assistive control tends to emphasize control authority 

arbitration and transition between human and automation (D.A. and M., 2010). Muslim 

and Itoh (Muslim and Itoh, 2017) examined human-machine interactions during lane 

change with two levels of automation authority: sharing of steering control that provides 

haptic control guidance, and an automatic cooperative system that acts autonomously. 

Bhardwaj et al. (Bhardwaj et al., 2020) implemented three control authority schemes, 

namely, autopilot, active safety, and haptic shared control, and compared their performance 

by analyzing obstacle hits and metrics related to obstacle avoidance maneuvers. Boehm et 

al. (Boehm et al., 2016) constructed a system model that hybridizes power and information 

flow between the driver and steering wheel to describe modulating mechanical impedance 

to dynamically allocate authority. Various haptic control sharing paradigms have been 

proposed to combine human and automation control. Ghasemi et al. (Ghasemi et al., 2019) 

developed two sharing methods, input mixing and haptic shared control, to describe the 

communication channels open to the driver for monitoring automation behavior. Sentouh 

et al. (Sentouh et al., 2018) designed a two-level haptic shared control approach which 

offered a smooth switching between multiple controllers. Nishimura et al. (Nishimura et 
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al., 2015) evaluated the cooperative status between the human and automation within 

haptic shared control to solve intent inconsistency during lane-keeping. 

The majority of haptic assistive control studies fall into two broad categories: (a) 

exploring communication, negotiation, and transition of control authority between human 

and automation, and (b) studying various control sharing paradigms that manage the 

changing roles for automation through various interfaces. However, the literature is short 

on considering intention recognition techniques to enable haptic assisted automated 

vehicles to generate human-like decision-making systems. For semi-automated vehicles, 

as categorized by SAE J3016 Automation Level 3, operators are typically required to 

intervene when unexpected conditions occur (On-Road Automated Driving (ORAD) 

committee, n.d.). Intent recognition enables haptic assistance to be allocated to maneuvers 

relevant to the driving situation and can help to avoid mismatches between the operator 

intention and the system’s reaction. The incorporation of the driver intent recognition 

technique into haptic assistive control framework is conceptually intriguing, and this 

project seeks to fill this gap by examining the haptic assistive driving interface with 

learning-based driver intent recognition in the drive-by-wire setting. Such a driving 

interface naturally applies to the teleoperation of autonomous ground vehicles, which has 

become the essential and safe enabler of the new mobility in the foreseeable future. 

Driver intent recognition (DIR) is a concept that contributes to a decision decision-

making framework and plays a significant role in determining the appropriate state and 

subsequent course of driving actions when coping with different situations (Xing et al., 

2019). Generative models like Hidden Markov Models (HMM) are widely used in existing 
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DIR studies. Li et al. (Li et al., 2016b) developed an integrated intention inference 

algorithm based on HMM and a Bayesian Filtering (BF) technique. Li et al. (Li et al., 2014) 

proposed a driver lane change/keep intention inference method based on a dynamic 

Bayesian network (BN). Kasper et al. (Kasper et al., 2012) designed a lane change detection 

method based on the object-oriented BN. Discriminative models such as Support Vector 

Machine (SVM) provide memory efficiency and effectiveness in high dimensional spaces 

(Doshi et al., 2011). Kumar et al. (Kumar et al., 2013b) constructed a multinomial classifier 

by combining SVM and BF. Kim et al. (Kim et al., 2017b) inferred driver intent by 

deploying artificial neural network (ANN) models to feed augmented information into a 

SVM. Human cognitive models were also adopted in the past. Salvucci et al. (Salvucci, 

2006) introduced a real-time DIR system based on mind tracking architecture. Prior 

research mainly utilizes individual learning techniques to develop a single classification 

model for DIR. 

In this study, a novel haptic assistive vehicle control strategy enhanced with 

machine learning-based operator intent recognition has been investigated (refer to Figure 

6.1). The new control framework adjusts the vehicle desired trajectories based on the 

monitored drivers’ preference. An ensemble meta-algorithm learning method determines 

the driver’s intention. This approach generates and combines multiple machine learning 

models into a high quality prediction with more stable performance and decreased variance, 

bias, and standard deviation per an individual learner (Lessmann et al., 2015; Utami et al., 

2014). The recognition results are used for path re-planning to match the driver’s intention. 

The updated vehicle path is provided to the nonlinear model-predictive path-following 
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longitudinal and lateral controllers. To assess the assistive control framework, human 

subjects driving performance on four road scenarios has been evaluated in an immersive 

driving simulator environment. 

The remainder of the article is organized as follows. The mathematical formulation 

and control structure are presented in Sections II and III, respectively. The driving intention 

recognition module and path planning algorithm are introduced in Section IV. The 

experimental setup with the accompanying operator-in-the-loop test results are 

summarized in Section V. Finally, Section VI offers the conclusion.  

 

Figure 6.1.  The illustration of the haptic assistive control framework with learning-based 

intent recognition. 

6.2 Vehicle Dynamics 

The remainder of the article is organized as follows. The mathematical formulation 

and control structure are presented in Sections II and III, respectively. The driving intention 

recognition module and path planning algorithm are introduced in Section IV. The 
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experimental setup with the accompanying operator-in-the-loop test results are 

summarized in Section V. Finally, Section VI offers the conclusion.  

6.2.1 Chassis Dynamics 

The governing equations of motion for the longitudinal velocity, 𝑣𝑥 , lateral 

velocity, 𝑣𝑦 , and yaw rate, �̇�, can be expressed as (Freeman et al., 2016) 
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   (6.1) 

where 𝛿 denotes the front wheel steer angle, 𝑚 represents the vehicle total mass, and 𝐼𝑧 is 

the vehicle yaw moment of inertia.  

The longitudinal tire forces at the front left, front right, rear left, and rear right tires 

are 𝐹𝑥𝑓𝑙, 𝐹𝑥𝑓𝑟, 𝐹𝑥𝑟𝑙, and 𝐹𝑥𝑟𝑟, respectively. Similarly, the lateral forces may be stated as 

𝐹𝑦𝑓𝑙, 𝐹𝑦𝑓𝑟, 𝐹𝑦𝑟𝑙, and 𝐹𝑦𝑟𝑟. The terms 𝑙𝑓, 𝑙𝑟, and 𝑙𝑤 refer to the distance from the center of 

gravity to the front wheels and rear wheels, as well as between the left and right wheels.   

6.2.2 Wheel and Tire Dynamics 

The vehicle simulation requires the tire/road interface forces and moments for the 

wheels. A general analytical tire model (Dugoff et al., n.d.) has been updated for combined 

wheel slip (Guntur and Sankar, 1980). The longitudinal wheel slip ratio, 𝑠𝑥𝑗, becomes 
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where the 𝑗  subscript represents 𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟 . The term 𝜔𝑤𝑗  denotes the 𝑗 th wheel’s 

rotational speed. 

The front and rear tire sideslip angles, 𝛼𝑗, become 

 ,  
y f y r

fl fr rl rr

x x

v l v l

v v

 
    

+ −   
= = − = = −   

   
  (6.3) 

The longitudinal and lateral tire force, 𝐹𝑥𝑗 and 𝐹𝑦𝑗, may be written as 
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where 𝐶𝛼𝑗 and 𝐶𝜎𝑗 are the cornering and longitudinal tire stiffnesses. Using the wheel slip 

ratio, 𝑠𝑥𝑗, and tire sideslip angle, 𝛼𝑗, from (2) and (3), the variable 𝜆𝑗 and the function 𝑓(𝜆𝑗)  

in Eq. (6.4) are given by 
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(6.5) 

The term 𝐹𝑧𝑗 denotes the vertical force on the 𝑗th tire while the symbol 𝜇 represents the 

tire-road friction coefficient. 

The governing equation for the rotational wheel speed, 𝜔𝑤𝑖, may be written as 

 ( ),  , , ,w wj dj bj eff xjI T T r F j fl fr rl rr = − − =   (6.6) 

where 𝐼𝑤 is the wheel inertia, and 𝑟𝑒𝑓𝑓 is the effective tire radius. The drive and braking 

torques are denoted as 𝑇𝑑𝑗 and 𝑇𝑏𝑗.  
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6.3 Vehicle Control Methodologies 

A fundamental component of the haptic assisted control system is an autonomous 

path-following controller. Over the years, the control of longitudinal and lateral dynamics 

of autonomous ground vehicles has been studied. Katriniok et al. (Katriniok et al., 2013) 

proposed a model-based predictive control approach for combined longitudinal and lateral 

vehicle guidance. Xu et al. (Xu et al., 2016) integrated adaptive and robust control 

algorithms for Kuafu-II autonomous vehicle. Guo et al. (Guo et al., 2016) constructed a 

coordinated steering and braking control strategy based on nonlinear backstepping and 

adaptive fuzzy sliding-mode control. Chebly et al. (Chebly et al., 2017) covers a coupled 

longitudinal and lateral dynamics control algorithm using Lyapunov functions. Guo (Guo, 

2016) designed an adaptive coordinated control scheme to manage longitudinal and lateral 

motion using adaptive backstepping sliding mode control. Fergani et al. (Fergani et al., 

2017) designed lateral/longitudinal flatness and H∞ vertical dynamics control for 

coordination of suspension and steering/braking. Previous works have identified that the 

nonlinear control strategies are superior to linear controllers regarding the vehicle 

trajectory tracking capacities (Kayacan et al., 2018).  

A nonlinear model predictive controller (NMPC) will be designed for the combined 

vehicle longitudinal and lateral dynamics (Findeisen and Allgower, 2002). NMPC 

accommodates fast-dynamic nonlinear systems by incorporating constraints on the state 

and control variables into the online optimization problem (refer to Figure 6.2). In this 

section, a reduced-order nonlinear vehicle model will be presented. The optimal control 

problem will be formulated as NMPC and solved. Finally, a nonlinear state estimator will 

be implemented to provide smooth filtered state estimation.  
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Figure 6.2.  NMPC closed-loop control structure. 

6.3.1 Nonlinear Vehicle Model for Control Synthesis 

The vehicle dynamics model presented earlier is relatively complicated for control 

synthesis. This complexity results from the coupled vehicle dynamics and tire-road 

behavior. An alternative two-wheeled vehicle model is utilized to describe the longitudinal, 

lateral, and yaw motion dynamics. The lateral and yaw motion dynamics can be expressed 

as (Freeman et al., 2016) 
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The longitudinal motion dynamics which directly maps the electric motor torque, 

𝑇𝑒𝑚, to the change in vehicle speed, �̇�𝑥, becomes (Rajamani, 2006b) 
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where 𝑅𝑔 is the gear ratio, 𝑐𝑎 is the aerodynamic drag coefficient, 𝐼𝑒𝑚 is the electric motor 

moment of inertia, 𝐹𝑅𝑥 is the tires rolling resistance which is proportional to the vehicle 

mass 𝑚. The electric motor torque, 𝑇𝑒𝑚, is dependent upon commanded electric power 

which is not addressed in this article. The electric motor angular speed, 𝜔𝑒𝑚 , can be 

represented as 

 em em emT I =  (6.10) 

The lateral and heading error, 𝑒𝑦 and 𝑒ℎ, are defined as 

 y y x he v v e= +  (6.11) 

 h xe v = −  (6.12) 

where 𝜌 represents the road curvature. 

The nonlinear vehicle dynamics model (7)-(12) can be expressed in state-space 

representation as 

 ( ) ( ) ( )( ) ( ) 0, ,  0x t f x t u t x x= =  (6.13) 

where 𝑥(𝑡) ∈ ℝ6 and 𝑢(𝑡) ∈ ℝ3 become 
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Note that the road curvature is not controllable since 𝜌 depends on the road geometric 

design. However, the road curvature can describe the desired yaw rate, �̇�𝑑𝑒𝑠 = 𝜌𝑣𝑥, as a 

known or measured disturbance. Only 𝑇𝑒𝑚 and 𝛿 are the controllable variables. 
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6.3.2 Nonlinear Model Predictive Control 

The set of admissible states, control inputs, and control input rates are denoted by 

𝑋, 𝑈, and ∆𝑈 and assumed to satisfy the following assumptions: 

A1. 𝑋 ⊆ ℝ6 is connected, 𝑈 ⊆ ℝ3 is compact and (0,0) ∈ 𝑋 × 𝑈. The sets 𝑈 and ∆𝑈 are 

given by box constraints of the form 
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min max

min max
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U u u u u

=   

=   

 =   

 (6.15) 

where 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥, �̇�𝑚𝑖𝑛, and �̇�𝑚𝑎𝑥 are given constant vectors. 

A2. The vector field 𝑓:ℝ6 × ℝ3 → ℝ6 is continuous and satisfies 𝑓(0,0) = 0. 

A3. The system (13) has a unique continuous solution for any initial condition in the region 

of interest and any piecewise continuous and right continuous input function 

𝑢(∙): [0, 𝑇𝑝] → 𝑈. 

The NMPC uses a predication model to calculate future system control on a finite 

prediction horizon, 𝑇𝑃. The cost function, 𝐽, minimizes the output errors and penalizes the 

electric motor torque and steer angle change for smooth driving experience. The cost 

function may be formulated as 

 ( ) ( ) ( ) ( ) ( ) ( )
p

Tt T T

t
J r y Q r y u Ru d      

+

= − − +         (6.16) 

where 𝑦 = [𝑣𝑥 𝑒𝑦 𝑒ℎ]𝑇  and 𝑟 = [𝑣𝑥𝑟𝑒𝑓 0 0]𝑇  are the predicated and reference 

outputs. The term 𝑣𝑥𝑟𝑒𝑓 denotes the reference longitudinal speed. To avoid a drastic control 

input change, the control input rates may be expressed as �̇�. The weighting matrices, 𝑄 and 

𝑅, represent the tracking errors and control input variations. 



 165 

A sequential quadratic programming (SQP) algorithm was selected for this 

nonlinear MPC application. The NMPC problem may be formulated as (Findeisen and 

Allgower, 2002) 
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( ) ( )( )arg min     , ; ,c p
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J x t u T T


   (17a) 

 ( ) ( ) ( )( )subject to ,x f x u  =  (6.17b) 
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 ( )  ,  , cu U t t T    +  (6.17d) 

 ( ) ( ) ,  ,c c pu u t T t T t T   = +   + +   (6.17e) 

 ( ) ,  , px X t t T      +   (6.17f) 

where 𝑇𝑐  is the control horizon with 𝑇𝑐 ≤ 𝑇𝑝 . The function 𝑓(𝑥(𝜏), 𝑢(𝜏))  denotes the 

continuous state space representation given by (13) and the term 𝑢(∙) is the optimization 

vector. 

Let 𝑢∗(∙; 𝑥(𝑡)): [𝑡, 𝑡 + 𝑇𝑝] → 𝑈 represent the optimal solution to the optimization 

problem. The open-loop optimal control problem will be solved repeatedly at the sampling 

instances 𝑡 = 𝑠𝜙, 𝑠 = 0,1, … , once new measurements are available. The closed-loop 

control is defined by the optimal solution at sampling instants 

 ( ) ( )( )*: ;u t u t x t=   (6.18) 

To implement the NMPC to the combined vehicle longitudinal and lateral control 

design, the predicated and reference outputs terms of the nonlinear vehicle model in (16) 

can be substituted by 𝑦 and 𝑟. 
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6.3.3 Nonlinear Estimation 

An extended Kalman filter (EKF) estimates the state vector, 𝑥 , of the nonlinear 

vehicle system. The nonlinear vehicle system in (13) can be rewritten in the following 

state-space form 

 
( ) ( ) ( )( ) ( )

( ) ( ) ( )

ˆ ˆ ,

ˆ

x t f x t u t w t

y t y t v t
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= +

  (6.19) 

where 𝑤(𝑡)  and 𝑣(𝑡)  are the process and measurement noises respectively and the 

estimated output 𝑦 (𝑡) = 𝑔(𝑥 (𝑡), 𝑢(𝑡)). Both 𝑤(𝑡) and 𝑣(𝑡) are assumed to be the non-

intercorrelated, stationary Gaussian white noise processes with mean and covariance, 

𝑤(𝑡)~(0, 𝑄(𝑡))  and 𝑣(𝑡)~(0, 𝑅(𝑡)) . The state estimation vector 𝑥 (𝑡) =

[𝑣 𝑦, �̂̇�, 𝑣 𝑥, �̂�𝑒𝑚, �̂�𝑦, �̂�ℎ]
𝑇

, includes the five estimated states. The output vector, 𝑦 (𝑡), is 

composed of the measured longitudinal velocity, 𝑣 𝑥, as well as measured vehicle lateral 

and heading error with respect to the road, �̃�𝑦 and �̃�ℎ. 

6.4 Driver Intent Recognition 

During extended driving periods, the human operator may experience multiple 

driving condition changes in which emergency situations occur. To prevent potential traffic 

accident when completing lane change and obstacle avoidances, predicting the human 

driver’s intention is critical. In this section, an ensemble learning based driver intent 

recognition method with verification will be presented.  
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6.4.1 Feature Selection 

The process of selecting a subset of driving variables and their attributes that are 

most relevant to the predictive model construction problem is called feature election. Four 

driver actions/behaviors are key: 

1. Driver head orientation or eye movement by camera. 

2. Secondary driver operation actions (e.g., controlling infotainment system) by camera 

or sensors. 

3. Driver’s operation behaviors (e.g., steering, throttle, brake patterns) by vehicle 

sensors. 

4. Vehicle responses (e.g. vehicle speed, yaw rate) by vehicle sensors. 

The driver-in-the-loop platform (shown in Figure 6.3) used in this study enables 

the collection of the driver’s operation behavior and vehicle response information per the 

third and fourth methods. 

 

Figure 6.3. Driver-in-the-loop simulation platform with joystick for throttle, brake, and 

steering commands. 

The vehicle operating variables (F1-F15) and the driver behavior indicators (F16-

F22) are listed in Table I. The maneuvers considered include lane keeping, lane change, 
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obstacle avoidance, highway exit, intersection turn, and inconsistent driving. All features 

are used to identify driver intention and a code may be assigned for each feature. F1-F15 

are vehicle response related variables, and F16-F22 are driver operation behavior related 

features. To help the ensemble model distinguish between lane change and intersection 

turn/highway exit maneuvers, the current lane information, 𝐿𝑐𝑡, is also considered. This 

information will record the lane in which the driver initiates a vehicle maneuver. With this 

information, the trained ensembled model can further classify a right lane change like 

maneuver as a highway exit maneuver should the current lane is the highway exit only 

lane. Similarly, the model can separate intersection turns from lane change by knowing 

whether the vehicle is in the turn lanes at an intersection. 

6.4.2 Ensemble Learning Based Intent Recognition 

Ensemble learning is the technique by which multiple classifiers are combined to 

solve a computational intelligence problem. In machine learning, ensemble methods use 

several models to improve the final predictive performance. One common type of 

ensembles is Boosting, which employs models of the same type that complement one 

another. These models are obtained in an iterative way and their individual outputs are 

combined using a weighted vote scheme. Adaptive Boosting (AdaBoost) is a widely used 

boosting method and encompasses three major variants: AdaBoost.M1 for binary 

classification, AdaBoost.M2 for multi-class classification, and AdaBoost.R for regression 

problems. In this study, we propose to use the multi-class method for the driver intent 

recognition problem. 
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The AdaBoost.M2 algorithm takes as input a training set of 𝑁  examples 𝑆 =

〈(𝑜1, 𝑝1), … , (𝑜𝑁, 𝑝𝑁)〉 where 𝑜𝑖 is an instance draw from feature space 𝑂 and represented 

in a vector of feature attribute values, and 𝑝𝑖 ∈ 𝑃 = {1, … , 𝑘} is the class label associated 

with  𝑜𝑖. In this study, we assume that the set of possible labels 𝑃 is of finite cardinality 

𝑘 = 5: lane keeping (LK), left lane-change (LLC), right lane-change (RLC), left obstacle 

avoidance (LOA), and right obstacle avoidance (ROA).  

The multi-class algorithm has access to multiple weak learning algorithms. The 

weak learner generates hypotheses which have the form ℎ: 𝑂 × 𝑃 → [0,1]. The hypothesis 

ℎ(𝑜, 𝑝) measures the degree to which it is believed that 𝑝 is the correct label associated 

with instance 𝑜. In this study, a decision tree has been selected as the weak learner that will 

be combined with the other decision tree learners to predict driver intention. To formalize 

Table 6.1. Vehicle Operating variables and driver behavior indicators with 

corresponding feature code 

Vehicle 

Operating 

Variable 

Variable 

Description 

Feature 

Code 

Vehicle Operating 

Variable 

Variable 

Description 
Feature Code 

𝑒𝑦 
Lateral 

Error 
F1 

𝜔𝑤𝑓𝑙, 𝜔𝑤𝑓𝑟, 𝜔𝑤𝑟𝑙, 

𝜔𝑤𝑟𝑟 

Tire Rotational 

Speed 
F12-15 

𝑣𝑦 
Lateral 

Velocity 
F2 𝛿 Steer Angle F16 

�̇�𝑦 
Latera 

Acceleration 
F3 �̇� Steer Angle Speed F17 

𝑣𝑥 
Longitudinal 

Velocity 
F4 𝑝𝑡 Throttle Position F18 

�̇�𝑥 
Longitudinal 

Acceleration 
F5 𝑝𝑏 Brake Position F19 

𝜓 Yaw Angle F6 �̇�𝑡 
Throttle Position 

Change Rate 
F20 

�̇� Yaw Rate F7 �̇�𝑏 
Brake Position 

Change Rate 
F21 

𝛼𝑓𝑙, 𝛼𝑓𝑟 
Front Tire 

Slip Angle 
F8-F9 𝐹𝐻 

Applied Human 

Force 
F22 

𝛼𝑟𝑙, 𝛼𝑟𝑟 
Rear Tire 

Slip Angle 
F10-F11    
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the goal of each weak learner, a pseudo-loss 휀 of weak hypothesis ℎ on training instance 𝑖 

which measures the goodness of the weak hypothesis is defined as 

 ( ) ( ) ( ) ( )
1

, 1 , , ,
2

i

i i i

p p

h i h o p q i p h o p


 
= − +  

 
  (6.20) 

where the function 𝑞 = {1,… ,𝑁} × 𝑃 → [0,1]  is the label weighting function which 

assigns to each instance 𝑖 in the training set a probability distribution. The terms ℎ(𝑜𝑖 , 𝑝𝑖) 

and ℎ(𝑜𝑖 , 𝑝) are the hypotheses generated by the weak learner with the correct label 𝑝𝑖 and 

the incorrect label 𝑝 associated with  feature 𝑜𝑖. The weak learner’s goal is to minimize the 

expected pseudo-loss for given distribution 𝐷 and weighting function 𝑞. 

The multi-class method can be initialized with the weight vector 𝑤𝑖,𝑝
1 =

𝐷1(𝑖) (𝑘 − 1)⁄  for each instance 𝑖 = 1,… ,𝑁 and each incorrect label  𝑝 ∈ 𝑃 − {𝑝𝑖}. The 

algorithm is then executed for 𝑡 = 1,2,… , 𝑇 iterations with the following steps:  

First, the weighting function 𝑞𝑡 is set as 
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w
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= =  (6.21) 

for mislabels 𝑝 ≠ 𝑝𝑖. The mislabel distribution 𝐷𝑡 may be set as 
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 (6.22) 

The mislabel distribution is a distribution defined over the set of all mislabels. 

Second, the mislabel distribution 𝐷𝑡  and weighting function 𝑞𝑡  is supplied to a 

decision tree that is selected as the weak learner. In response, the decision tree will compute 

a hypothesis ℎ𝑡: 𝑂 × 𝑃 → [0,1].  

Third, the pseudo-loss of the hypothesis, ℎ𝑡, is calculated as 
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The decision tree’s goal then is to minimize the pseudo-loss 휀𝑡.  

Fourth, the weights are then updated for the next iteration to be 

 ( ) ( ) ( )( ) ( )
1 2 1 , ,1

, , ,  1t i i t ih o p h o pt t

i p i p t t t tw w    
+ −+ = = −  (6.24) 

for each instance 𝑖 = 1,… ,𝑁 and each incorrect label  𝑝 ∈ 𝑃 − {𝑝𝑖}.  

Last, for a given instance 𝑜 , the final hypothesis, ℎ𝑓 , outputs the label 𝑝  that 

maximizes a weighted average of the weak hypothesis values ℎ𝑡(𝑜, 𝑝) 
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1
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6.4.3 Training and Validation 

To prepare a model that recognizes the driver’s intentions based on the scanned 

vehicle sensor signals, the training and validation process will be discussed. The ensemble 

learning method will be applied to classify the human and vehicle behaviors. As shown 

Figure 6.4, the two main phases are offline training and online validation. The offline 

training phase begins by collecting the training samples from the driver-in-loop platform 

(refer to Figure 6.3). The sample data set contains 233,101 observations of five different 

driver activities: LK, LLC, RLC, LOA, and ROA. Each observation has 22 features 

extracted from the human behaviors and the vehicle responses data measured by the vehicle 

sensors. A total of 209,791 observations are used for model training, while the other applied 

for model verification. All the data are preprocessed before training to improve 

computational efficiency. 
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To evaluate whether an ensemble complies with the user-defined classification 

error and training time specification, the trained ensemble model is verified using a test 

dataset that provide an unbiased evaluation of a final model fit on the training dataset. The 

ensemble model accuracy is influenced by the values of number of decision trees, and the 

weak learner selected for the proposed ensemble. Noticing there is a tradeoff between 

training error and decision tree size, the trained ensemble should achieve a low training 

error with a tree that is not too large. We present a methodology for selecting a favorable 

accuracy-complexity tradeoff: grow the tree more carefully and try to end the growing 

process at an appropriate point early on. The test classification error and training time are 

plotted as a function of the number of trained trees in the ensemble in Figure 6.5. The 

ensemble achieves a classification error of under 1% using 44 or more trees. For 45 or more 

trees, the classification error decreases at a much slower rate. Considering that further 

expanding the tree size beyond 45 would not improve the ensemble accuracy significantly 

and that the additional training time due to increase in model complexity is undesirable, 

the number of trees selected is 45. 

 

Figure 6.4. Driving intent recognition process implemented using ensemble learning 

approach. 
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The verification results of the driver intent detection for the proposed ensemble 

model are shown on a confusion matrix plot in Figure 6.6. The rows correspond to the true 

class and the columns correspond to the predicted class. The diagonal cells correspond to 

observations that are correctly classified. The off-diagonal cells correspond to incorrectly 

classified observations. These metrics are often called the precision (or positive predictive 

value) and false discovery rate, respectively. The results show that the average recognition 

accuracy is about 98.9%, and each categories recognition accuracy is more than 95%; 

therefore, the ensemble model achieves a great performance of driver intention recognition. 

 

Figure 6.5. Misclassification of the test data (left vertical axis) and training time of 

209,791 observations (right vertical axis) as a function of the number of trained trees in 

the ensemble. 

The second phase, online validation, examines the ensemble model performance in 

a real-time operator-in-the-loop driving simulator. To assess the driver intent recognition 

accuracy, a real-world three-lane highway scenario is selected. On the test track, the driver 

performs obstacle avoidance and lane change maneuvers about traffic cones and slow-

moving surrounding vehicles. In Figure 6.7, there are the LOA actions on the highway in 

(a), the RLC actions in (b), the ROA action in the (c), and the LLC action on in (d). The 

Selected Number of Trees: 45
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driver intention recognition results for these maneuvers actions is plotted in the right-hand 

column. The step functions in these subplots indicate that the driver’s intention shifted from 

one class to the other in the designed road scenario. From Figure 6.7, when the driver 

initiates the lane-change/obstacle avoidance maneuver, the step function accurately reflects 

where the intention change occurs. The online testing results apparently proves that the 

proposed ensemble model accomplishes a remarkable driver intent recognition 

performance. 

 

Figure 6.6. A confusion matrix from true labels and predicted labels with number of trees 

𝑁 = 45. Class labels: 1=Lane keeping (LK), 2=Left lane change (LLC), 3=Right lane 

change (RLC), 4=Left obstacle avoidance (LOA), and 5=Right obstacle avoidance 

(ROA). 

 

 

Predicted Class
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Figure 6.7. Ensemble model recognition result in the design scenario: vehicle trajectory 

on the left column and lane changing intention recognition result on the right column. 

Recognition Intent labels: 1=Lane keeping (LK), 2=Left lane change (LLC), 3=Right 

lane change (RLC), 4=Left obstacle avoidance (LOA), and 5=Right obstacle avoidance 

(ROA). 

6.4.4 Finite State Machine Based Intent Recognition 

A finite state machine (FSM) based driver intent recognition technique was also 

designed for comparison purposes. The FSM uses predefined operating conditions to 

(a)

(b)

(c)

(d)
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classify vehicle behavior which is then selected based on real time driving events. For 

instance, the Stanford Racing Team used FSM to switch between 13 driving states 

(Montemerlo et al., 2009). Hülnhagen et al. (Hulnhagen et al., 2010) proposed a 

probabilistic FSM to capture the driving maneuver sequences. In this project, the FSM used 

four elements (𝑊, 𝐸, 𝑒 , 𝐴) . The first element, input set 𝑊 =

[�̇�𝑦 �̇� 𝛿 �̇� 𝑝𝑡 𝑝𝑏 𝐹𝐻 𝐿𝑐𝑡], is a set of variables concerning driver and vehicle 

response from Table I. The second element are all the driving state set 𝐸 which divides the 

continuous driving task into a finite set of discrete lateral and longitudinal guidance states. 

These states correspond to all the maneuvers considered in this study. The third element 𝑒  

is the initial state Lane Keeping. The fourth element, 𝐴: 𝐸 × 𝑊 → 𝐸, denotes the state 

transition function that is represented by a set of state switch conditions based on the truth 

values of the Boolean variables from the input set. Due to space limitations, detailed state 

transition function and FSM diagram is omitted from the article. 

6.4.5 Path Update 

The path update function, which generates new vehicle trajectories to comply with 

the inferred driver’s intention, serves two purposes. First, the utility should accurately 

describe the evasive steering maneuvers that fulfills a comfortable, feasible, and safe lane 

change. In the presence of obstacles, it generates a new path description to overcome the 

event. Second, the path update algorithm should also generate the reference input for the 

vehicle control systems that provide driver assistive feedback. Many motion planning 

techniques have been investigated; a sigmoid polynomial function is selected to model lane 

change and obstacle avoidance. These trajectories generate optimal evasive path in terms 
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of vehicle constraints, speed, and comfort with low computational cost. A polynomial 

approach also supports the continuous concatenation of curves, which in turn, guarantees 

driver comfort. 

The desired vehicle lane change trajectory, 𝑦𝐿𝐶, which is shown in Figure 6.8a, is 

a fifth-degree polynomial model 
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where 𝑥𝑜 is the longitudinal offset from the starting point of the lane change maneuver. To 

ensure feasibility and driver comfort, the determination of polynomial coefficients 𝑎𝑛 is 

based on several constraint equations which limit the lateral offset derivatives.  

The polynomial parameters  𝑎𝑛 are determined by applying the following boundary 

conditions to the splines, 
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where 𝑑𝐿𝐶 is the required distance to complete a lane change maneuver and 𝑦𝑇 is the target 

lateral offset at the end of the maneuver. 

The desired vehicle obstacle avoidance trajectory, 𝑦𝑂𝐴, which is shown in Figure 

6.8b, is defined as a function of two fifth order polynomials concatenated together, 
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where 𝑥𝑜  is the longitudinal offset from the starting point of the obstacle avoidance 

maneuver, and 𝑑𝑂𝐴 denotes the distance between the obstacle and the obstacle avoidance 

maneuver starting location. The polynomial coefficients 𝑏𝑛  and 𝑐𝑛  are derived by 

imposing the following boundary conditions, 
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Figure. 6.8. Updated vehicle trajectory for driver intended maneuvers on three-lane 

highways: (a) lane change, and (b) obstacle avoidance. The red circle and asterisk are the 

start and the end of the maneuver. 

 

The desired vehicle trajectory for right turn, left turn, and highway exit are designed 

to be circular segment of radius 15m, 25m, and 70m. The drivers are asked to follow the 

planned quarter circle track when passing through these maneuvers. 

(b)

(a)
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6.5 Experimental Results and Discussion 

An operator-in-the-loop driving simulator environment has been created to assess 

the efficacy of the proposed learning-based driver intent recognition with accompanying 

controllers. In this section, the virtual environment, testing methodology, and experimental 

results will be presented. 

6.5.1 Test Environment 

To explore the real-time performance of each operator using the steering input 

devices, a fixed-base hardware-in-the-loop experimental test bench was created (refer to 

Figure 3). The driving simulator involves the synchronized operation of specialized 

hardware and software. The components included the haptic steering device with two force 

sensors, a high-resolution image projector, and a Honda CR-V static vehicle. The visual 

environment, created using the V-Realm Builder 2.0, was rendered by the 3D Animation 

toolbox and projected on a large screen. The vehicle model, including wheels and chassis, 

and nonlinear MPC controllers have been implemented in the MATLAB/Simulink 

environment (Wang et al., 2019b). The haptic steering device is connected via USB to the 

main PC and communicate through QUARC Real-Time Control Software to maintain 

timing and steering commands during the simulation. Attached to the haptic steering device 

were two force sensing resistors that measuring human forces applied to the driving 

interface through Arduino. The vehicle speed and recognized driver intent were displayed 

on the screen, and the audio feedback played through the cabin speakers.  

A portable test environment was created in response to the COVID-19 pandemic 

which limited laboratory access. A laptop computer with integrated speaker system and 
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USB connected Joystick enabled outdoor testing. The primary difference between the two 

systems is the vehicle cabin vs bench, ambient light conditions, and size of the screen. 

6.5.2 Test Methodology 

A total of 25 human subjects drove the experimental system and completed pre- 

and post-test questionnaires (refer to Table B.1) (Wang et al., 2019b). The effects of FSM 

and learning based intent recognition models, with integrated NMPC, on driver preference 

and performance were investigated on highway and city road scenarios per Figure 6.9. The 

highway test track consisted of a series of lane keeping, obstacle avoidance, and lane 

change maneuvers. The urban roadway involved turns, intersections, and traffic 

characteristic of a populated city. To control for learning that may arise from repeated 

activities, a Latin square design ensured a randomized order of testing. After driving 

through each event, the drivers were requested to complete the post-test questionnaire and 

quantify the subjective measures of control and confidence, ease of driving, and safety. 

The three driving configurations, C1 = No DIR, C2 = FSM DIR, and C3 = EL DIR 

were integrated with NMPC and coded in MATLAB. All configurations are equipped with 

a self-centering mechanism to emulate original equipment manufacturer (OEM) steering 

feel. A tradeoff exists between model sophistication and execution speed, so the scenery is 

limited. The best performance corresponds to the case when an operator completes an 

assigned task with the highest intent recognition accuracy and ideal handling performance 

(e.g., lateral and heading error, lateral acceleration, yaw rate).  
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6.5.3 Test Results 

To evaluate the performance of the haptic assistive control system, two different 

roadways were considered. 

6.5.3.1 Highway Results 

A highway scenario which features two obstacle avoidances, two lane changes, and 

one exit maneuver was initially considered as shown in Figure 6.9. The driver accelerates 

to a speed of 90 kph and then attempts to negotiate the course without striking the colored 

cones and/or other roadway vehicles.  

  

 

Figure 6.9. Highway scenario — (a) Test track, and (b) Animated simulator scene 

To provide insight into the drivers’ understanding and execution of the highway 

maneuver for each driving configuration, the overall RMS and maximum lateral 

acceleration (F3), �̅̇�𝑦  and �̇�𝑦𝑚𝑎𝑥 , applied human force (F22), �̅�𝐻  and 𝐹𝐻𝑚𝑎𝑥 , and intent 
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recognition accuracy, �̅�% and 𝑅%𝑚𝑎𝑥 , are listed in Table II. Configuration C1 offered 

decreased lateral accelerations of 44.4% and 10.7% when compared to C2 and C3, thus 

ensuring superior vehicle lateral stability and driver comfort. However, drivers exhibited 

poor steer angle actions and subsequent vehicle placement on the road during obstacle 

avoidance with C1 due to lack of supplemental vehicle control. The greater applied human 

force, as evident by the RMS value, for C1 indicated that the drivers operated the joystick 

with more effort than C2 and C3. Configuration C3 offered a higher level of driver intent 

recognition accuracy than C2 for this scenario by 38.9% with low driver workload. 

Configuration C2 proved to be marginally acceptable and led to misclassification of driver 

intent. Such misclassification can initiate unintended maneuvers that conflict with the 

driver’s true intention and prompt safety concerns. 

 

To demonstrate and compare the performance for C1-C3 during a left obstacle 

avoidance, the vehicle paths and optimal ISO 3888-2 trajectory are plotted in Figure 6.10a. 

Driver #12, who successfully completed this maneuver using both C1 and C3 traveled from 

the original to adjacent lane (450-500m) with minor lateral deviations. During the return 

sequence (500-530m), a noticeable steering difference between C1 and C3 was observed 

Table 6.2. Average of all 𝑁 = 25 human subjects’ lateral acceleration �̇�𝑦, 

applied human force 𝐹𝐻, and intent recognition accuracy  𝑅% for driving 

configurations, C1-C3, on highway scenario. Note that the bar represents the 

RMS value, while subscript 𝑚𝑎𝑥 is the maximum value 

Config 

�̅̇�𝑦 

(deci-

g’s) 

�̅�𝐻 

(N) 

�̅�% 

(%) 

�̇�𝑦𝑚𝑎𝑥 (deci-

g’s) 

𝐹𝐻𝑚𝑎𝑥 

(N) 

𝑅%𝑚𝑎𝑥 

(%) 

C1 0.50 1.53 N/A 7.21 7.05 N/A 

C2 0.90 1.26 70.35 7.61 9.68 100 

C3 0.56 0.94 97.72 7.28 8.15 100 
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with C3 outperforming C1 (e.g., maximum lateral error of 0.47m vs 2.27m). This 

difference indicates the proficiency of the nonlinear haptic feedback, C3, in recognizing 

obstacle avoidance intent. During the steering operation of C2 in Figure 6.10c, the driver 

applied a 2.3N force on the joystick at 457.9m. However, the FSM did not recognize the 

operator’s intent until 469.8m when the driver increased the applied force to 9N which 

triggered the state transition, causing lateral instability and deteriorated performance. In 

comparison with C1, C2 and C3 actuated the joystick more aggressively, yielding the larger 

front wheel steer angle outputs shown in Figure 6.10b. In contrast, C1 required less effort 

as noted by the small steer angles, resulting in an easier and more comfortable steering 

experience. In general, C3 with accurate learning-based intent recognition and effective 

vehicle control, guaranteed the best vehicle lateral performance during highway obstacle 

avoidance. 
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The 5th operator’s response during a left lane change is shown in Figure 6.11. The 

configuration C1 completed the maneuver effectively thanks to the familiarity with the 

classical driving techniques. Noticeably, configuration C2 again failed to recognize the 

driver’s left lane change intent in Figure 6.11a in time, leading to an unintended weaving 

behavior from 730 to 760m. In contrast, configuration C3 accurately recognized the driver 

lane change intent at 750m, which ensured minimal lateral deviations and lateral 

acceleration for both lane changes. Moreover, the steering operation of C1 requires the 

driver to apply force to the joystick throughout the lane change maneuvers (Figure 6.11c). 

On the other hand, C3 perform the maneuver without much human intervention, as evident 

by the zero applied human force yielded after the haptic assistive control system take over. 

When driving with C2 and C3, the lateral accelerations are generally larger than those 

 

Figure 6.10.  Driver #12 response — (a) Desired and actual vehicle 

trajectories, (b) Wheel steer angle, (c) Applied human force onto the 

joystick, and (d) Lateral acceleration when driving through the highway 

track with speed of 90kph under configurations C1-C3 for vehicle left 

obstacle avoidance of highway roadway. 
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(c) (d)
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driving with C1 as shown in Figure 6.11d. The maximum lateral acceleration the driver felt 

steering with configuration C2 reached up to 0.68g, which can lead to motion discomfort. 

Overall, the lateral performance of C1 during moderate highway lane change maneuvers 

can be improved by C3 with learning-based haptic assistive control.  

 

6.5.3.2 City Road Results 

After the completion of the highway scenario, the driver then traveled on a city 

roadway which consisted of a 300m straight section with an initial speed of 30kph (a 

common city street speed limit) as shown in Figure 6.12. The driver then encounters a 15m 

radius right turn and a 25m radius left turn at two intersections. Each road feature contains 

a straight path section that allows the driver to change to the dedicated turn lane. The total 

distance traveled by the driver throughout the roadway has been marked on the map. The 

 

Figure 6.11.  Driver #5 response — (a) Desired and actual vehicle trajectories, 

(b) Wheel steer angle, (c) Applied human force onto the joystick, and (d) 

Lateral acceleration when driving through the highway track with speed of 

90kph under configurations C1-C3 for left lane change of highway roadway. 

  

(a) (b)

(c) (d)
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city road design requires somewhat aggressive driving as evident by quick actions and 

higher lateral acceleration to better illustrate steering impact. 

The 25 drivers’ RMS and maximum lateral acceleration (F3), applied human force 

(F22), lateral error (F1), and intent recognition accuracy for all configurations on the city 

road are listed in Table III. Configuration C3 offered the best performance per trajectory 

tracking capability, higher intent recognition accuracy, and lowest driver workload. The 

performance of configuration C1 in a moderate left turn is acceptable, outperforming C2 

and C3 for lateral stability and driver comfort. However, owing to inadequate vehicle 

control, drivers displayed weak paths with C1, as evident by the largest RMS and 

maximum lateral error. Configuration C2 offered a 23.59% lower level of intent 

recognition accuracy than C3. The C2 (FSM based intent recognition model) approach 

relies on the state transition function, which specifies the conditions under which the driver 

intent transition occurs. Drivers operated their vehicles in different ways, causing the state 

transition function to be effective in inferring intent for some people but ineffective for 

others. On the other hand, the C3 (ensemble learning based approach) method used the 

collected driving data to train the intent recognition model. Therefore, C3 achieved a higher 

accuracy than C2 by capturing important regularities inherent in the driving data. 
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After moving into the right lane on the straight road, the driver faced two 

intersections at which the 15m radius right (300-323.6m) and the 25m radius left (523.6-

562.9m) turn maneuvers were performed. The right turn required aggressive driving, 

considering the driver was tracking at 30kph with a centrifugal acceleration of 0.47g. The 

vehicle’s lateral error, which is the orthogonal distance from the CG of the vehicle to the 

desired lane center, for Driver #8 is depicted in Figure 6.13a for C1-C3. Equipped with 

 

 

Figure 6.12. City road scenario — (a) Test track, and (b) Animated simulator 

scene. 
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Table 6.3. Average of all 𝑁 = 25 human subjects’ lateral acceleration �̇�𝑦, 

applied human force 𝐹𝐻, intent recognition accuracy  𝑅%, and lateral error 𝑒𝑦 

for driving configurations, C1-C3, on city road scenario. Note that the bar 

represents the RMS value, while subscript 𝑚𝑎𝑥 is the maximum value 

Config 

�̅̇�𝑦 

(deci-

g’s) 

�̅�𝐻 

(N) 

�̅�% 

(%) 

�̅�𝑦 

(m) 

�̇�𝑦𝑚𝑎𝑥 

(deci-

g’s) 

𝐹𝐻𝑚𝑎𝑥 

(N) 

𝑅%𝑚𝑎𝑥 

(%) 

𝑒𝑦𝑚𝑎𝑥 

(m) 

C1 0.66 2.63 N/A 0.64 6.48 12.35 N/A 0.85 

C2 0.75 1.03 72.89 0.22 6.04 5.91 100 0.58 

C3 0.67 0.90 95.39 0.20 6.78 4.87 100 0.47 
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basic self-centering and lane-keeping functionality, C1 demonstrated poor performance 

given the large lateral error. Meanwhile, C2 and C3 with the DIR based haptic assistive 

control lowered the maximum lateral error by 71.7% and 74.1% when negotiating the 

circular path in comparison to C1. Moreover, without proper vehicle control, C1 started to 

oversteer after entering the turn while braking and turning too much. With the addition of 

the intent recognition in the haptic assistive control, C2 and C3 eliminated any oversteer. 

The adoption of C2 and C3 also relieved the driver’s burden as shown in Figure 6.13b; 

decreasing the maximum joystick applied force by 85.3% and 76.5%. Collectively, the 

FSM and learning-based DIR adopted in C2 and C3 improved the vehicle tracking 

performance and reduced the operator workload during these maneuvers.  

 

6.5.3.3 Post-Test Questionnaire Results 

The human driver subjective reactions to the three driving configuration were 

evaluated through a questionnaire. As shown in Table A.I, nine questions requested 

 

Figure 6.13.  Driver #8 response — (a) Lateral error, (b) Applied 

human force on joystick, and (c) Lateral acceleration when driving 

through the city with a speed of 30kph for configurations C1-C3.  

(a)

(b)

(c)
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responses on a Likert scale of 1 to 7 in three aspects: (i) Degree to which participants felt 

a sense of confidence and control over the driving system (Questions 1-4, symbol O1), (ii) 

Perceived ease-of-use of the driving system (Questions 5 and 6, symbol O2), and (iii) 

Understood safety of the vehicle (Questions 7-9; symbol O3). 

The normalized subjective reaction measures for the five driving configurations, 

C1-C3, and the driver observations, O1- O3, have been displayed in Figure 6.14. For the 

confidence and control measure, O1, the participants gave the highest rating to the driving 

system without DIR, C1, due to its familiarity. Results also show that C3 received 

complimentary remarks from the drivers for its operational comfortableness and additional 

safety assurance during obstacle avoidance. One crucial observation found in the analysis 

of ease-of-use, O2, was that C2 and C3 were significantly preferred over C1. Such a novel 

pattern may be explained by the proposed advanced haptic assistive control systems with 

DIR that demanded much less physical effort from the operator during both regular driving 

and evasive maneuvering. Finally, it was observed that the safety, O3, rating was inversely 

correlated with lane deviations. Consequently, most operators rated high scores on C2 and 

C3 for the capability of driving the vehicle safest during moderate turns/cornering and 

sharp intersection turns, respectively. There was also a significant positive correlation 

between safety ratings and intent recognition correctness, as the safety ratings given to the 

FSM based configuration, C2, which yields lower intention prediction precision, was less 

than those given to the learning based configuration, C3. 
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6.6 Conclusion 

The worldwide growth in semi-autonomous ground vehicles necessitates intelligent 

driving interfaces for the development of safety and situational awareness systems. In this 

study, a learning-based driver assistance system that combines path-planning, vehicle 

control, and intent recognition in a holistic haptic assistive control framework was designed 

and numerically evaluated for ground vehicles. A nonlinear model predictive controller 

was developed for the haptic driving interface longitudinal and lateral functionalities. 

Using ensemble methods, a machine learning based model was trained to utilize the driving 

data for predicting driver behavior transitions. Validation results by human subject testing 

indicated that the trained model can recognize driver intent transition patterns and predict 

with high accuracy. Furthermore, the comparison study with a finite state machine based 

model demonstrated the machine learning-based model superiority in intent prediction 

 

Figure 6.14.  Nine subjective measures for three driving configurations C1-

C3 based on human subjects’ responses to the questionnaire in Table III 

normalized to 10. Symbols O1 to O3 correspond to Table III and capture the 

steering characteristic behind driver assessment. 
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accuracy. The learning-based model development cycle can be quite long, as the DIR 

model must be trained and validated. On the other hand, the state machine based model has 

the advantage of implementation simplicity and time-efficiency when driving data is 

unavailable. Overall, the proposed learning-based haptic assistive control system elevated 

the driver performance and reduced the operator burden during select maneuvers. In future 

work, the proposed system can migrate from on-board operation to the teleoperation of 

ground vehicles. 
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APPENDIX 

 

Appendix A 

Publications List (as First-Author) 

Journal Articles 

 

• C. Wang, Y. Wang, and J. Wagner, “Evaluation of Robust Haptic Interface for Semi-

Autonomous Vehicles”, SAE International Journal of Connected and Automated Vehicles, 

vol. 2, no. 2, pp. 99-114, May 2019. 

 

• C. Wang, C. Frazelle, J. Wagner, and I. Walker, “Dynamic Control of Multi-Section Three-

Dimensional Continuum Manipulators Based on Virtual Discrete-Jointed Robot Models”, 

IEEE/ASME Transactions on Mechatronics, June 2020. 

 

• C. Wang, K. Alexander, P. Pidgeon, and J. Wagner, “Design and Evaluation of a Driver 

Intent Based Mobile Control Interface for Ground Vehicles”, submitted to International 

Journal of Vehicle Design, October 2019. 

 

• C. Wang, F. Li, Y. Wang, and J. Wagner, “Haptic Assistive Control with Learning Based 

Driver Intent Recognition for Semi-Autonomous Vehicles”, submitted to IEEE 

Transactions on Haptics, November 2020. 

 

Conference Proceedings 

 

• C. Wang, Y. Wang, and J. Wagner, “Evaluation of alternative steering devices with 

adjustable haptic feedback for semi-autonomous and autonomous vehicles”, in 

Proceedings of SAE World Congress and Exhibition, SAE Technical Paper 2018-01-0572, 

Detroit, MI, April 2018. 

 

• C. Wang, J. Wagner, C. Frazelle, and I. Walker, “Continuum Robot Control Based on 

Virtual Discrete-Jointed Robot Models”, IECON 2018 - 44th Annual Conference of the 

IEEE Industrial Electronics Society, pp. 2508-2515, Washington, DC, October 2018. 

 

• C. Wang, K. Alexander, P. Pidgeon, and J. Wagner, “Use of Cellphones as Alternative 

Driver Inputs in Passenger Vehicles”, in Proceedings of SAE World Congress and 

Exhibition, SAE Technical Paper 2019-01-1239, Detroit, MI, April 2019. 

 

• C. Wang, C. Frazelle, J. Wagner, and I. Walker, “A Discrete-Jointed Robot Model Based 

Control Strategy for Spatial Continuum Manipulators”, IECON 2020 - 46th Annual 

Conference of the IEEE Industrial Electronics Society, pp. 543-549, Singapore, October 

2020. 
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