285 research outputs found

    Methods for constraint-based conceptual free-form surface design

    Get PDF
    Zusammenfassung Der constraint-basierte Entwurf von Freiformfl„chen ist eine m„chtige Methode im Computer gest�tzten Entwurf. Bekannte Realisierungen beschr„nken sich jedoch meist auf Interpolation von Rand- und isoparametrischen Kurven. In diesem Zusammenhang sind die sog. "Multi-patch" Methoden die am weitesten verbreitete Vorgehensweise. Hier versucht man Fl„chenverb„nde aus einem Netz von dreidimensionalen Kurven (oft gemischt mit unstrukturierten Punktewolken) derart zu generieren, dass die Kurven und Punkte von den Fl„chen interpoliert werden. Die Kurven werden als R„nder von rechteckigen oder dreieckigen bi-polynomialen oder polynomialen Fl„chen betrachtet. Unter dieser Einschr„nkung leidet die Flexibilit„t des Verfahrens. In dieser Dissertation schlagen wir vor, beliebige, d.h. auch nicht iso-parametrische, Kurven zu verwenden. Dadurch ergeben sich folgende Vorteile: Erstens kann so beispielsweise eine B-spline Fl„che entlang einer benutzerdefinierten Kurve verformt werden w„hrend andere Kurven oder Punkte fixiert sind. Zweitens, kann eine B-spline Fl„che Kurven interpolieren, die sich nicht auf iso-parametrische Linien der Fl„che abbilden lassen. Wir behandeln drei Arten von Constraints: Inzidenz einer beliebigen Kurve auf einer B-spline Fl„che, Fixieren von Fl„chennormalen entlang einer beliebigen Kurve (dieser Constraint dient zur Herstellung von tangentialen šberg„ngen zwischen zwei Fl„chen) und die sog. Variational Constrains. Letztere dienen unter anderem zur Optimierung der physikalischen und optischen Eigenschaften der Fl„chen. Es handelt sich hierbei um die Gausschen Normalgleichungen der Fl„chenfunktionale zweiter Ordnung, wie sie in der Literatur bekannt sind. Die Dissertation gliedert sich in zwei Teile. Der erste Teil befasst sich mit der Aufstellung der linearen Gleichungssysteme, welche die oben erw„hnten Constraints repr„sentieren. Der zweite Teil behandelt Methoden zum L”sen dieser Gleichungssysteme. Der Kern des ersten Teiles ist die Erweiterung und Generalisierung des auf Polarformen (Blossoms) basierenden Algorithmus f�r Verkettung von Polynomen auf Bezier und B-spline Basis: Gegeben sei eine B-spline Fl„che und eine B-spline Kurve im Parameterraum der Fl„che. Wir zeigen, dass die Kontrollpunkte der dreidimensionalen Fl„chenkurve, welche als polynomiale Verkettung der beiden definiert ist, durch eine im Voraus berechenbare lineare Tranformation (eine Matrix) der Fl„chenkontrollpunkte ausgedr�ckt werden k”nnen. Dadurch k”nnen Inzidenzbeziehungen zwischen Kurven und Fl„chen exakt und auf eine sehr elegante und kompakte Art definiert werden. Im Vergleich zu den bekannten Methoden ist diese Vorgehensweise effizienter, numerisch stabiler und erh”ht nicht die Konditionszahl der zu l”senden linearen Gleichungen. Die Effizienz wird erreicht durch Verwendung von eigens daf�r entwickelten Datenstrukturen und sorgf„ltige Analyse von kombinatorischen Eigenschaften von Polarformen. Die Gleichungen zur Definition von Tangentialit„ts- und Variational Constraints werden als Anwendung und Erweiterung dieses Algorithmus implementiert. Beschrieben werden auch symbolische und numerische Operationen auf B-spline Polynomen (Multiplikation, Differenzierung, Integration). Dabei wird konsistent die Matrixdarstellung von B-spline Polynomen verwendet. Das L”sen dieser Art von Constraintproblemen bedeutet das Finden der Kontrollpunkte einer B-spline Fl„che derart, dass die definierten Bedingungen erf�llt werden. Dies wird durch L”sen von, im Allgemeinen, unterbestimmten und schlecht konditionierten linearen Gleichungssystemen bewerkstelligt. Da in solchen F„llen keine eindeutige, numerisch stabile L”sung existiert, f�hren die �blichen Methoden zum L”sen von linearen Gleichungssystemen nicht zum Erfolg. Wir greifen auf die Anwendung von sog. Regularisierungsmethoden zur�ck, die auf der Singul„rwertzerlegung (SVD) der Systemmatrix beruhen. Insbesondere wird die L-curve eingesetzt, ein "numerischer Hochfrequenzfilter", der uns in die Lage versetzt eine stabile L”sung zu berechnen. Allerdings reichen auch diese Methoden im Allgemeinen nicht aus, eine Fl„che zu generieren, welche die erw�nschten „sthetischen und physikalischen Eigenschaften besitzt. Verformt man eine Tensorproduktfl„che entlang einer nicht isoparametrischen Kurve, entstehen unerw�nschte Oszillationen und Verformungen. Dieser Effekt wird "Surface-Aliasing" genannt. Wir stellen zwei Methoden vor um diese Aliasing-Effekte zu beseitigen: Die erste Methode wird vorzugsweise f�r Deformationen einer existierenden B-spline Fl„che entlang einer nicht isoparametrischen Kurve angewendet. Es erfogt eine Umparametrisierung der zu verformenden Fl„che derart, dass die Kurve in der neuen Fl„che auf eine isoparametrische Linie abgebildet wird. Die Umparametrisierung einer B- spline Fl„che ist keine abgeschlossene Operation; die resultierende Fl„che besitzt i.A. keine B-spline Darstellung. Wir berechnen eine beliebig genaue Approximation der resultierenden Fl„che mittels Interpolation von Kurvennetzen, die von der umzuparametrisierenden Fl„che gewonnen werden. Die zweite Methode ist rein algebraisch: Es werden zus„tzliche Bedingungen an die L”sung des Gleichungssystems gestellt, die die Aliasing-Effekte unterdr�cken oder ganz beseitigen. Es wird ein restriktionsgebundenes Minimum einer Zielfunktion gesucht, deren globales Minimum bei "optimaler" Form der Fl„che eingenommen wird. Als Zielfunktionen werden Gl„ttungsfunktionale zweiter Ordnung eingesetzt. Die stabile L”sung eines solchen Optimierungsproblems kann aufgrund der nahezu linearen Abh„ngigkeit des Gleichungen nur mit Hilfe von Regularisierungsmethoden gewonnen werden, welche die vorgegebene Zielfunktion ber�cksichtigen. Wir wenden die sog. Modifizierte Singul„rwertzerlegung in Verbindung mit dem L-curve Filter an. Dieser Algorithmus minimiert den Fehler f�r die geometrischen Constraints so, dass die L”sung gleichzeitig m”glichst nah dem Optimum der Zielfunktion ist.The constrained-based design of free-form surfaces is currently limited to tensor-product interpolation of orthogonal curve networks or equally spaced grids of points. The, so- called, multi-patch methods applied mainly in the context of scattered data interpolation construct surfaces from given boundary curves and derivatives along them. The limitation to boundary curves or iso-parametric curves considerably lowers the flexibility of this approach. In this thesis, we propose to compute surfaces from arbitrary (that is, not only iso-parametric) curves. This allows us to deform a B-spline surface along an arbitrary user-defined curve, or, to interpolate a B-spline surface through a set of curves which cannot be mapped to iso-parametric lines of the surface. We consider three kinds of constraints: the incidence of a curve on a B-spline surface, prescribed surface normals along an arbitrary curve incident on a surface and the, so-called, variational constraints which enforce a physically and optically advantageous shape of the computed surfaces. The thesis is divided into two parts: in the first part, we describe efficient methods to set up the equations for above mentioned linear constraints between curves and surfaces. In the second part, we discuss methods for solving such constraints. The core of the first part is the extension and generalization of the blossom-based polynomial composition algorithm for B-splines: let be given a B-spline surface and a B-spline curve in the domain of that surface. We compute a matrix which represents a linear transformation of the surface control points such that after the transformation we obtain the control points of the curve representing the polynomial composition of the domain curve and the surface. The result is a 3D B-spline curve always exactly incident on the surface. This, so-called, composition matrix represents a set of linear curve-surface incidence constraints. Compared to methods used previously our approach is more efficient, numerically more stable and does not unnecessarily increase the condition number of the matrix. The thesis includes a careful analysis of the complexity and combinatorial properties of the algorithm. We also discuss topics regarding algebraic operations on B-spline polynomials (multiplication, differentiation, integration). The matrix representation of B-spline polynomials is used throughout the thesis. We show that the equations for tangency and variational constraints are easily obtained re-using the methods elaborated for incidence constraints. The solving of generalized curve-surface constraints means to find the control points of the unknown surface given one or several curves incident on that surface. This is accomplished by solving of large and, generally, under-determined and badly conditioned linear systems of equations. In such cases, no unique and numerically stable solution exists. Hence, the usual methods such as Gaussian elimination or QR-decomposition cannot be applied in straightforward manner. We propose to use regularization methods based on Singular Value Decomposition (SVD). We apply the so-called L-curve, which can be seen as an numerical high-frequency filter. The filter automatically singles out a stable solution such that best possible satisfaction of defined constraints is achieved. However, even the SVD along with the L-curve filter cannot be applied blindly: it turns out that it is not sufficient to require only algebraic stability of the solution. Tensor-product surfaces deformed along arbitrary incident curves exhibit unwanted deformations due to the rectangular structure of the model space. We discuss a geometric and an algebraic method to remove this, so-called, Surface aliasing effect. The first method reparametrizes the surface such that a general curve constraint is converted to iso-parametric curve constraint which can be easily solved by standard linear algebra methods without aliasing. The reparametrized surface is computed by means of the approximated surface-surface composition algorithm, which is also introduced in this thesis. While this is not possible symbolically, an arbitrary accurate approximation of the resulting surface is obtained using constrained curve network interpolation. The second method states additional constraints which suppress or completely remove the aliasing. Formally we solve a constrained least square approximation problem: we minimize an surface objective function subject to defined curve constraints. The objective function is chosen such that it takes in the minimal value if the surface has optimal shape; we use a linear combination of second order surface smoothing functionals. When solving such problems we have to deal with nearly linearly dependent equations. Problems of this type are called ill-posed. Therefore sophisticated numerical methods have to be applied in order to obtain a set of degrees of freedom (control points of the surface) which are sufficient to satisfy given constraints. The remaining unused degrees of freedom are used to enforce an optically pleasing shape of the surface. We apply the Modified Truncated SVD (MTSVD) algorithm in connection with the L-curve filter which determines a compromise between an optically pleasant shape of the surface and constraint satisfaction in a particularly efficient manner

    Smooth quasi-developable surfaces bounded by smooth curves

    Full text link
    Computing a quasi-developable strip surface bounded by design curves finds wide industrial applications. Existing methods compute discrete surfaces composed of developable lines connecting sampling points on input curves which are not adequate for generating smooth quasi-developable surfaces. We propose the first method which is capable of exploring the full solution space of continuous input curves to compute a smooth quasi-developable ruled surface with as large developability as possible. The resulting surface is exactly bounded by the input smooth curves and is guaranteed to have no self-intersections. The main contribution is a variational approach to compute a continuous mapping of parameters of input curves by minimizing a function evaluating surface developability. Moreover, we also present an algorithm to represent a resulting surface as a B-spline surface when input curves are B-spline curves.Comment: 18 page

    08221 Abstracts Collection -- Geometric Modeling

    Get PDF
    From May 26 to May 30 2008 the Dagstuhl Seminar 08221 ``Geometric Modeling\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Structural Response Analyses of Piezoelectric Composites using NURBS

    Get PDF
    Variational method deduced on the basis of the minimum potential energy is an efficient method to find solutions for complex engineering problems. In structural mechanics, the potential energy comprises strain energy, kinetic energy and the work done by external actions. To obtain these, the displacement are required as a priori. This research is concerned with the development of a numerical method based on variational principles to analyze piezoelectric composite plates and solids. A Non-Uniform Rational B-Spline (NURBS) function is used for describing both the geometry and electromechanical displacement fields. Two dimensional plate models are formulated according to the first order shear deformable plate theory for mechanical displacement. The electric potential varies non-linearly through the thickness, this variation is modelled by a discrete layer-wise linear variation. The matrix equations of motion are reported for piezoelectric sensors, actuator, and power harvester. Normal mode summation technique is applied to study the frequency response of displacement, voltage and the power output. A full three dimensional model is also developed to study the dynamics of piezoelectric sandwich structures. Simulations are provided for thick plates using plate theory and three dimensional models to verify the applicability of those theories in their regime. Newmark’s direct integration technique and a fourth order Runge-Kutta method were used to study the transient vibration. The variational method developed in this thesis can be applied to other structural mechanics problem

    A sharp interface isogeometric strategy for moving boundary problems

    Get PDF
    The proposed methodology is first utilized to model stationary and propagating cracks. The crack face is enriched with the Heaviside function which captures the displacement discontinuity. Meanwhile, the crack tips are enriched with asymptotic displacement functions to reproduce the tip singularity. The enriching degrees of freedom associated with the crack tips are chosen as stress intensity factors (SIFs) such that these quantities can be directly extracted from the solution without a-posteriori integral calculation. As a second application, the Stefan problem is modeled with a hybrid function/derivative enriched interface. Since the interface geometry is explicitly defined, normals and curvatures can be analytically obtained at any point on the interface, allowing for complex boundary conditions dependent on curvature or normal to be naturally imposed. Thus, the enriched approximation naturally captures the interfacial discontinuity in temperature gradient and enables the imposition of Gibbs-Thomson condition during solidification simulation. The shape optimization through configuration of finite-sized heterogeneities is lastly studied. The optimization relies on the recently derived configurational derivative that describes the sensitivity of an arbitrary objective with respect to arbitrary design modifications of a heterogeneity inserted into a domain. The THB-splines, which serve as the underlying approximation, produce sufficiently smooth solution near the boundaries of the heterogeneity for accurate calculation of the configurational derivatives. (Abstract shortened by ProQuest.

    Parametric Interpolation To Scattered Data [QA281. A995 2008 f rb].

    Get PDF
    Dua skema interpolasi berparameter yang mengandungi interpolasi global untuk data tersebar am dan interpolasi pengekalan-kepositifan setempat data tersebar positif dibincangkan. Two schemes of parametric interpolation consisting of a global scheme to interpolate general scattered data and a local positivity-preserving scheme to interpolate positive scattered data are described

    تمثيل الإطار الخارجي للكلمات العربية بكفاءة من خلال الدمج بين نموذج الكنتور النشط وتحديد ونقاط الزوايا

    Get PDF
    Graphical curves and surfaces fitting are hot areas of research studies and application, such as artistic applications, analysis applications and encoding purposes. Outline capture of digital word images is important in most of the desktop publishing systems. The shapes of the characters are stored in the computer memory in terms of their outlines, and the outlines are expressed as Bezier curves. Existing methods for Arabic font outline description suffer from low fitting accuracy and efficiency. In our research, we developed a new method for outlining shapes using Bezier curves with minimal set of curve points. A distinguishing characteristic of our method is that it combines the active contour method (snake) with corner detection to achieve an initial set of points that is as close to the shape's boundaries as possible. The method links these points (snake + corner) into a compound Bezier curve, and iteratively improves the fitting of the curve over the actual boundaries of the shape. We implemented and tested our method using MATLAB. Test cases included various levels of shape complexity varying from simple, moderate, and high complexity depending on factors, such as: boundary concavities, number of corners. Results show that our method achieved average 86% of accuracy when measured relative to true shape boundary. When compared to other similar methods (Masood & Sarfraz, 2009; Sarfraz & Khan, 2002; Ferdous A Sohel, Karmakar, Dooley, & Bennamoun, 2010), our method performed comparatively well. Keywords: Bezier curves, shape descriptor, curvature, corner points, control points, Active Contour Model.تعتبر المنحنيات والأسطح الرسومية موضوعاً هاماً في الدراسات البحثية وفي التطبيقات البرمجية مثل التطبيقات الفنية، وتطبيقات تحليل وترميز البيانات. ويعتبر تخطيط الحدود الخارجية للكلمات عملية أساسية في غالبية تطبيقات النشر المكتبي. في هذه التطبيقات تخزن أشكال الأحرف في الذاكرة من حيث خطوطها الخارجية، وتمثل الخطوط الخارجية على هيئة منحنيات Bezier. الطرق المستخدمة حالياً لتحديد الخطوط الخارجية للكلمات العربية تنقصها دقة وكفاءة الملاءمة ما بين الحدود الحقيقية والمنحنى الرسومي الذي تقوم بتشكيله. في هذا البحث قمنا بتطوير طريقة جديدة لتخطيط الحدود الخارجية للكلمات تعتمد على منحنيات Bezier بمجموعة أقل من المنحنيات الجزئية. تتميز طريقتنا بخاصية مميزة وهي الدمج بين آلية لاستشعار الزوايا مع آلية نموذج الكنتور النشط (الأفعى). يتم الدمج بين نقاط الزوايا ونقاط الأفعى لتشكيل مجموعة موحدة من النقاط المبدئية قريبة قدر الإمكان من الحدود الحقيقية للشكل المراد تحديده. يتشكل منحنى Bezier من هذه المجموعة المدمجة، وتتم عملية تدريجية على دورات لملاءمة المنحنى على الحدود الحقيقية للشكل. قام الباحث بتنفيذ وتجربة الطريقة الجديدة باستخدام برنامج MATLAB. وتم اختيار أشكال رسومية كعينات اختبار تتصف بمستويات متباينة من التعقيد تتراوح ما بين بسيط إلى متوسط إلى عالي التعقيد على أساس عوامل مثل تقعرات الحدود، عدد نقاط الزوايا، الفتحات الداخلية، إلخ. وقد أظهرت نتائج الاختبار أن طريقتنا الجديدة حققت دقة في الملائمة تصل نسبتها إلى 86% مقارنة بالحدود الحقيقية للشكل المستهدف. وكذلك فقد كان أداء طريقتنا جيداً بالمقارنة مع طرق أخرى مماثلة

    Sensitivity Analysis and Optimization of Aerodynamic Configurations With Blend Surfaces

    Get PDF
    A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. A graphic interface software is developed which dynamically changes the surface of the airplane configuration with the change in input design variable. The software is made user friendly and is targeted towards the initial conceptual development of any aerodynamic configurations. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an Automatic Differentiation precompiler software tool ADIFOR. Aerodynamic shape optimization of the complete aircraft with twenty four design variables is performed. Unstructured and structured volume grids and Euler solutions are obtained with standard software to demonstrate the feasibility of the new surface definition

    ShapeWright--finite element based free-form shape design

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1990.Includes bibliographical references (p. 179-192).by George Celniker.Ph.D
    corecore