Methods for Constraint-based Conceptual
Free-form Surface Design

Dissertation
zur Erlangung des akademischen Grades
Doktoringenieur (Dr.—Ing.)

vorgelegt der Fakultat fur Informatik und Automatisierung
der Technischen Universitat lImenau

vorgelegt von Dipl.—Inf. Pavol Michalik
geboren am 18. 07.1971 in Trnava

vorgelegt am 16. 08. 2003
Verteidigung am 6. 11. 2003

Gutachter 1. Prof. Dr. Beat Bruderlin
2. Prof. Dr. Guido Brunnett
3. Prof. Dr. Hans Hagen

Abstract

The constrained-based design of free-form surfaces is currently limited to tensor-
product interpolation of orthogonal curve networks or equally spaced grids of
points. The, so-called, multi-patch methods applied mainly in the context of scat-
tered data interpolation construct surfaces from given boundary curves and deriva-
tives along them. The limitation to boundary curves or iso-parametric curves con-
siderably lowers the flexibility of this approach. In this thesis, we propose to
compute surfaces from arbitrary (that is, not only iso-parametric) curves. This
allows us to deform a B-spline surface along an arbitrary user-defined curve, or,
to interpolate a B-spline surface through a set of curves which cannot be mapped
to iso-parametric lines of the surface. We consider three kinds of constraints: the
incidence of a curve on a B-spline surface, prescribed surface normals along an ar-
bitrary curve incident on a surface and the, so-called, variational constraints which
enforce a physically and optically advantageous shape of the computed surfaces.
The thesis is divided into two parts: in the first part, we describe efficient meth-
ods to set up the equations for above mentioned linear constraints between curves
and surfaces. In the second part, we discuss methods for solving such constraints.
The core of the first part is the extension and generalization of the blossom-based
polynomial composition algorithm for B-splines: let be given a B-spline surface
and a B-spline curve in the domain of that surface. We compute a matrix which
represents a linear transformation of the surface control points such that after the
transformation we obtain the control points of the curve representing the polyno-
mial composition of the domain curve and the surface. The resultis a 3D B-spline
curve always exactly incident on the surface. This, so-called, composition ma-
trix represents a set of linear curve-surface incidence constraints. Compared to
methods used previously our approach is more efficient, numerically more stable
and does not unnecessarily increase the condition number of the matrix. The the-
sis includes a careful analysis of the complexity and combinatorial properties of
the algorithm. We also discuss topics regarding algebraic operations on B-spline
polynomials (multiplication, differentiation, integration). The matrix represen-
tation of B-spline polynomials is used throughout the thesis. We show that the
equations for tangency and variational constraints are easily obtained re-using the

methods elaborated for incidence constraints.

The solving of generalized curve-surface constraints means to find the control
points of the unknown surface given one or several curves incident on that sur-
face. This is accomplished by solving of large and, generally, under-determined
and badly conditioned linear systems of equations. In such cases, no unique and
numerically stable solution exists. Hence, the usual methods such as Gaussian
elimination or QR-decomposition cannot be applied in straightforward manner.
We propose to use regularization methods base8iogular Value Decomposi-
tion (SVD). We apply the so-called-curve which can be seen as an numerical
high-frequency filter. The filter automatically singles out a stable solution such
that best possible satisfaction of defined constraints is achieved. However, even
the SVD along with the L-curve filter cannot be applied blindly: it turns out that it
is not sufficient to require only algebraic stability of the solution. Tensor-product
surfaces deformed along arbitrary incident curves exhibit unwanted deformations
due to the rectangular structure of the model space. We discuss a geometric and
an algebraic method to remove this, so-call®drface aliasing effectThe first
method reparametrizes the surface such that a general curve constraint is converted
to iso-parametric curve constraint which can be easily solved by standard linear
algebra methods without aliasing. The reparametrized surface is computed by
means of the approximated surface-surface composition algorithm, which is also
introduced in this thesis. While this is not possible symbolically, an arbitrary ac-
curate approximation of the resulting surface is obtained using constrained curve
network interpolation. The second method states additional constraints which
suppress or completely remove the aliasing. Formally we solve a constrained
least square approximation problem: we minimize an surface objective function
subject to defined curve constraints. The objective function is chosen such that
it takes in the minimal value if the surface has optimal shape; we use a linear
combination of second order surface smoothing functionals.

When solving such problems we have to deal with nearly linearly dependent
equations. Problems of this type are caliégposed Therefore sophisticated nu-
merical methods have to be applied in order to obtain a set of degrees of freedom
(control points of the surface) which are sufficient to satisfy given constraints. The
remaining unused degrees of freedom are used to enforce an optically pleasing
shape of the surface. We apply thedified Truncated SVIMTSVD) algorithm
in connection with the L-curve filter which determines a compromise between an
optically pleasant shape of the surface and constraint satisfaction in a particularly
efficient manner.

Zusammenfassung

Der constraint-basierte Entwurf von Freiformflachen ist eine machtige Methode
im Computer gestitzten Entwurf. Bekannte Realisierungen beschranken sich je-
doch meist auf Interpolation von Rand- und isoparametrischen Kurven. In diesem
Zusammenhang sind die sog. “Multi-patch” Methoden die am weitesten verbreite-
te Vorgehensweise. Hier versucht man Flachenverb&nde aus einem Netz von drei-
dimensionalen Kurven (oft gemischt mit unstrukturierten Punktewolken) derart zu
generieren, dass die Kurven und Punkte von den Flachen interpoliert werden. Die
Kurven werden als Rander von rechteckigen oder dreieckigen bi-polynomialen
oder polynomialen Flachen betrachtet. Unter dieser Einschrankung leidet die
Flexibilitat des Verfahrens. In dieser Dissertation schlagen wir vor, beliebige, d.h.
auch nicht iso-parametrische, Kurven zu verwenden. Dadurch ergeben sich fol-
gende Vorteile: Erstens kann so beispielsweise eine B-spline Flache entlang einer
benutzerdefinierten Kurve verformt werden wéhrend andere Kurven oder Punkte
fixiert sind. Zweitens, kann eine B-spline Flache Kurven interpolieren, die sich
nicht auf iso-parametrische Linien der Flache abbilden lassen. Wir behandeln drei
Arten von Constraints: Inzidenz einer beliebigen Kurve auf einer B-spline Flache,
Fixieren von Flachennormalen entlang einer beliebigen Kurve (dieser Constraint
dient zur Herstellung von tangentialen Ubergangen zwischen zwei Flachen) und
die sog. Variational Constrains. Letztere dienen unter anderem zur Optimierung
der physikalischen und optischen Eigenschaften der Flachen. Es handelt sich hi-
erbei um die Gausschen Normalgleichungen der Flachenfunktionale zweiter Ord-
nung, wie sie in der Literatur bekannt sind.

Die Dissertation gliedert sich in zwei Teile. Der erste Teil befasst sich mit der
Aufstellung der linearen Gleichungssysteme, welche die oben erwahnten Con-
straints reprasentieren. Der zweite Teil behandelt Methoden zum Lésen dieser
Gleichungssysteme. Der Kern des ersten Teiles ist die Erweiterung und Gener-
alisierung des auf Polarformen (Blossoms) basierenden Algorithmus fur Verket-
tung von Polynomen auf Bezier und B-spline Basis: Gegeben sei eine B-spline
Flache und eine B-spline Kurve im Parameterraum der Flache. Wir zeigen, dass
die Kontrollpunkte der dreidimensionalen Flachenkurve, welche als polynomiale
Verkettung der beiden definiert ist, durch eine im Voraus berechenbare lineare

iv

Tranformation (eine Matrix) der Flachenkontrollpunkte ausgedrtickt werden kon-
nen. Dadurch kénnen Inzidenzbeziehungen zwischen Kurven und Flachen exakt
und auf eine sehr elegante und kompakte Art definiert werden. Im Vergleich zu
den bekannten Methoden ist diese Vorgehensweise effizienter, numerisch stabiler
und erhoéht nicht die Konditionszahl der zu I6senden linearen Gleichungen. Die
Effizienz wird erreicht durch Verwendung von eigens dafur entwickelten Daten-
strukturen und sorgféaltige Analyse von kombinatorischen Eigenschaften von Po-
larformen. Die Gleichungen zur Definition von Tangentialitdts- und Variational
Constraints werden als Anwendung und Erweiterung dieses Algorithmus imple-
mentiert. Beschrieben werden auch symbolische und numerische Operationen auf
B-spline Polynomen (Multiplikation, Differenzierung, Integration). Dabei wird
konsistent die Matrixdarstellung von B-spline Polynomen verwendet.

Das Losen dieser Art von Constraintproblemen bedeutet das Finden der Kon-
trollpunkte einer B-spline Flache derart, dass die definierten Bedingungen er-
fullt werden. Dies wird durch Lésen von, im Allgemeinen, unterbestimmten
und schlecht konditionierten linearen Gleichungssystemen bewerkstelligt. Da in
solchen Fallen keine eindeutige, numerisch stabile Losung existiert, fiihren die
Ublichen Methoden zum Ldsen von linearen Gleichungssystemen nicht zum Er-
folg. Wir greifen auf die Anwendung von sog. Regularisierungsmethoden zurtick,
die auf der Singuléarwertzerlegung (SVD) der Systemmatrix beruhen. Insbeson-
dere wird dieL-curveeingesetzt, ein “numerischer Hochfrequenzfilter”, der uns in
die Lage versetzt eine stabile Lésung zu berechnen. Allerdings reichen auch diese
Methoden im Allgemeinen nicht aus, eine Flache zu generieren, welche die er-
wunschten &sthetischen und physikalischen Eigenschaften besitzt. Verformt man
eine Tensorproduktflache entlang einer nicht isoparametrischen Kurve, entstehen
unerwinschte Oszillationen und Verformungen. Dieser Effekt wird “Surface-
Aliasing” genannt. Wir stellen zwei Methoden vor um diese Aliasing-Effekte
zu beseitigen: Die erste Methode wird vorzugsweise flr Deformationen einer ex-
istierenden B-spline Flache entlang einer nicht isoparametrischen Kurve angewen-
det. Es erfogt eine Umparametrisierung der zu verformenden Flache derart, dass
die Kurve in der neuen Flache auf eine isoparametrische Linie abgebildet wird.
Die Umparametrisierung einer B-spline Flache ist keine abgeschlossene Opera-
tion; die resultierende Flache besitzt i.A. keine B-spline Darstellung. Wir berech-
nen eine beliebig genaue Approximation der resultierenden Flache mittels Inter-
polation von Kurvennetzen, die von der umzuparametrisierenden Flache gewon-
nen werden. Die zweite Methode ist rein algebraisch: Es werden zusatzliche Be-
dingungen an die Losung des Gleichungssystems gestellt, die die Aliasing-Effekte
unterdriicken oder ganz beseitigen. Es wird ein restriktionsgebundenes Mini-
mum einer Zielfunktion gesucht, deren globales Minimum bei “optimaler” Form
der Flache eingenommen wird. Als Zielfunktionen werden Glattungsfunktionale
zweiter Ordnung eingesetzt. Die stabile Lésung eines solchen Optimierungsprob-

\Y

lems kann aufgrund der nahezu linearen Abhéangigkeit des Gleichungen nur mit
Hilfe von Regularisierungsmethoden gewonnen werden, welche die vorgegebene
Zielfunktion bertcksichtigen. Wir wenden die sog. Modifizierte Singularwertzer-
legung in Verbindung mit dem L-curve Filter an. Dieser Algorithmus minimiert
den Fehler fur die geometrischen Constraints so, dass die Losung gleichzeitig
maoglichst nah dem Optimum der Zielfunktion ist.

Vi

Ccontents

(1__Introduction| 1
.1 Goalsofthethesis. 2
[1.2__Structure and contents of thethesis 3
[Methods for free-form surface design 5
2.1 Parametric methodsforCAD 5
[2.2° Known methods for free-form surface design 6
[2.2.1 Warpingmethofls 8
222 Constraint-basedmethbds 12
[2.3" Generalized constraint-based surface modeling 17
[2.3.1 Thedesignexample 18
[2.3.2 Design with Free-form Features 21
[3__Linear curve constraints 23
B.1 Relatedresearch. 23
[3.1.1 Formulating the equatians 24
[3.1.2 Obtaining a stable solution 26
[3.2 Generalizing the composition method 27
3.21 Curve-surface incidence consfrdints 27
[3.2.2 Tangencyconstraipts 28
3.3 Variational constraints oL 29
|4 Computing the incidence constraints 31
[M.1 Theblossomingkernel 31
[4.1.1 The Blossoming princigle 31
[4.1.2 Blossoming principle for Bezier polynomials 32
[4.1.3 BlossomingB-Splines 34
[4.1.4 Blossoming tensor-product B-Splihes 37
4.1.5 Unevaluated formulafion ofa blossom 38
(4.2 Unevaluated polynomial composition 41
[4.2.1 Revisiting the DeRose et al. algorifhm 42

Vil

CONTENTS

viii
[4.2.2 Computing the Bezier composition mdtrix 43
4.2.3 Unevaluated composition for B-splihes 45
(4.5 Efciency and Data structutes 51
4.5.1 Thecombinatorics 52
4.3.2 TheproducCls 55
433 Theblossoms 59
4.3.4 Implementation: the Multi-indextiee 61
4.4 Practicalnotesandsomeresults 64
4.4.1 Run-time performance 65
[4.4.2 Numerical stability and shape of the composition matrix . 66
[5 Tangency constraints 71
0.1 Problemdefinitian00 71
[2.2 Difterentiation operator in matrixfojm 72
5.3 Computing the scalar product 73
[>.4 Practical notes on implementation 76
(06 Variational constraints| 79
6.1 Quadratic error functionals for surfaces 79
[6.2 Matrix notation for surface functionals 80
[6.3 Implementatign 82
[6.3.1 Computing two-variate integrals of B-splines 83
[6.3.2 Hierarchical decomposition of B-spline derivatives 83
[6.3.3 Integrating productsofB-splines 85
[6.4 Results and practicalnotes 86
[/ Linear constraint solving || 89
FINofafioh v v e 89
[7.2 1ll-posed problems 90
(/.21 ThePicardcondition 92
[/.2.2 Regularization of ill-posed problems 93
(/.3 ThetruncatedSVID 94
731 TheSVD 94
[7.3.2 Therankrevealing effectofSYD 95
74 Thel-curvemethod 96
[/.4.1 Thesingularvaluesplot 96
[/.4.2 Determining the optimal truncation parameter 97
[7.4.3 Demonstrating the Picard condition 100
[7.4.4 The "aliasing effect” of the truncated SVD solution 101

[/.5 Thesurface aliasingefféct 101

CONTENTS IX

[8 Linear constraint solving Il| 105
[8.1 Introduction: Anti-aliasing 105
[6.2 Surface reparametrizationo 106
[8.2.1 Reparametrization of tensor-product B-splines 106
[8.2.2 Solving a constrained curve network interpolation proplem 108
[8.2.3 Adesignexamgle. 110
[8.2.4 Summary ofthemethod 112
[6.3 Constrained leastsquares, 112
[6.3.1 The constrained regularization 112
6.5.2 Modified truncated SMD 113
[8.3.3 More results and selected problems 115
[8.3.4 Summary ofthemethod 118
[9 Conclusions and Acknowledgments 121
I/A_Notations and Definitions 133
Al B-Splines 133
ALl Definitiono 134
[A.1.2 B-Splinecurves, 138
[A.1.3 B-Splinesurfacés 138

IA.2 Bezier basis as special case of B-Splinebhasis 140

Chapter 1

Introduction

In the last two decades, computer-aided design systems have developed to power-
ful 2D and 3D modeling tools. Nevertheless, the use of a state-of-the-art modeler
is still far from simple and intuitive. It requires a lot of learning and preparation
before the intention of the design is met. The weak point of current systems is the
way the models are constructed: the designer has to define a sequence of mod-
eling operations which generate the model. This, so-called, design history has
to be carefully planned before the actual design work starts. As a consequence,
the designer must posses a relatively detailed a-priori knowledge about the model.
Modern systems aid the user with sophisticated interfaces which significantly sim-
plify the design work. For example, the concept of parameterizable features has
become ale factostandard in computer-aided-engineering. However, the depen-
dency of the model on a predetermined sequence of operations remains.
Recently, a new paradigm to geometric design the, so-called constraint-based
design, has been proposed. Important design decisions and consistency condi-
tions are expressed by relations (constraints) among the geometric elements of the
model. The design work proceeds in a interactive manner: the designers explore
new variations of shapes by interactive manipulations. There is no fixed order
of design operation; instead, based on specified constraints and the intention of
the user, the built-in logic of the modeling system derives the shape of the model.
The major difficulty of constraint-based approaches icthestraint solving This
means to compute the values of degrees of freedom such that defined constraints
are satisfied. For this reason, the set of supported geometric elements is usually
restricted to points, line segments and circular arcs in 2D and to points and regu-
lar surfaces such as planes, spheres or cylinders in 3D. Although this is sufficient
for many applications, concentrating the effort on these cases hinders the exten-
sion of this paradigm to other areas, specifically, to free-form surface modeling.
We claim, that in the context of surface modeling the power of constraint-based
methods have not yet been fully exploited.

2 CHAPTER 1. INTRODUCTION

1.1 Goals of the thesis

The experience we have gained from investigating methods for interactive ma-
nipulations of solids with constraints for planar and analytic surfaces [8,]7, 21]
has led to the idea to extend the constraint-based approach to free-form sur-
face models. The fundamental idea remains: points, curves and surfaces are
related to each other by geometric relations, particularly, incidence and conti-
nuity constraints. The designer selects curves, points or regions on the surface
and changes their shape or position. In order to satisfy the specified constraints
the surface has to follow these modifications. Some results of these efforts were
published in[[54, 55, 56]. The, so-called, constructive constraint solving meth-
ods, [43] 42, 44], satisfy the constraints using a sequence of construction steps. At
each step a geometric or algebraic operation is applied which determines the un-
known objects. Roughly, modeling systems of this type consist of two substantial
components:

1. A set of “constructors” (shape operators) which determine unknown de-
grees of freedom of an object from constraints and objects which are already
known

2. A constraint solving engine which determines the order in which these
constructors should be invoked and resolves potential conflicts.

It is not the intention of this thesis to present a complete modeling system.
Rather, we are concerned with fundamental shape operators which can be used for
constraint based design of free-form surfaces, especially, in a conceptual design
phase. We will break down a construction step to interpolation of a B-spline
surface from one or several arbitrary 3D curves or points and their representation
in the parametric space of the surface. We are concerned with following topics:

e Definition of constraint-based shape operators for conceptual design of B-
spline surfaces

e Efficient and numerically stable methods for setting up of equations for fol-
lowing linear constraint problems:

o Incidence of a non iso-parametric curve on a B-spline surface

o Fixed normals of a B-spline surface along a non iso-parametric curve
(or tangent plane continuity of two B-spline surfaces along such curve)

o Enforcing of a smooth or “visually fair” shape of a curve or surface

e Numerical solving of the resulting interpolation problems. Generally, such
problems are under-determined and ill-posed, thus special numerical meth-
ods have to applied in order to obtain a numerically stable and esthetically
pleasing solution

1.2. STRUCTURE AND CONTENTS OF THE THESIS 3

1.2 Structure and contents of the thesis
The thesis is divided into seven subsequent chapters as follows:

Chapter |2 reviews state-of-the-art free-form surface design methods. We de-
scribe the concept of an interactive sketch- and constraint-driven modeling
system. The central operation is the interpolation of B-spline surfaces from
arbitrary curves; we discuss known approaches and introduce our method
to solve this problem.

Chapter[3 The constraints, expressed by systems of linear equations, are cat-
egorized with regard to the method how the equations are obtained. We
consider incidence, tangency and variational constraints.

Chapter[4 describes an efficient algorithm to formulate equations which con-
strain the incidence of an arbitrary curve on a B-spline surface. We intro-
duce the concept of “unevaluated” polynomial composition: We general-
ize the blossom based algorithm for composing Bezier polynomials [18]
to B-splines and show that a so-called composition matrix can be obtained
that transforms the control points of the surface to the control points of
the incident curve. We use this matrix to formulate linear equations for
curve-surface incidence. We analyze the combinatorial properties of the al-
gorithm, discuss efficient methods for computing products of B-splines and
present an efficient data structure for storing the intermediate results of the
algorithm so that optimal run-time behavior is achieved.

Chapter[5 We derive linear equations which enforce tangent plane continuity of
two surfaces along an arbitrary curve incident on both surfaces. We as-
sume that the surface normals along an arbitrary curve on that surface are
known and extract the necessary and sufficient conditions for the degrees of
freedom of the surface by symbolically computing the scalar product of the
normal and the tangent fields of the incident curve.

Chapter[g demonstrates that the framework of methods elaborated so far, is per-
fectly suited to efficiently compute the normal equations of the so-called
guadratic surface fairing functionals.

Chapter[7] The problem which is addressed in this chapter is that the inverse lin-
ear problem associated with generalized curve-surface incidence constraints
belongs to the category of the so-called ill-posed problems which cannot be
solved in the usual straight-forwvard manner. We consridgularization
methods based on Singular Value Decomposition (SVD). The “L-curve”

4 CHAPTER 1. INTRODUCTION

method discussed here provides a generic and reliable tool to select a numer-
ically stable solution best satisfying the defined constraints. It turns out that
an algebraically stable solution is not satisfactory with regard to the quality
of the so obtained surfaces. Tensor-product surfaces deformed along arbi-
trary incident curves exhibit unwanted deformations due to the rectangular
structure of the model space. We name this the “Surface-aliasing effect”
and identify reasons for that.

Chapter[§ discuss a geometric and an algebraic method to remove the aliasing-
effect: The first method reparametrizes the surface such that a general curve
constraint is converted to iso-parametric curve constraint which can be eas-
ily solved by standard linear algebra methods without aliasing. For that
purpose, a method is introduced, to approximate a surface resulting from
polynomial composition of two B-spline tensor-product surfaces. The so
obtained surface locally reparametrizes the original surface according to
stated curve incidence constraints. The second approach circumvents the
reparametrization by stating additional constraints which suppress or com-
pletely remove the aliasing. Formally we solve a constrained least square
problem which minimizes a surface fairing functional (a technique elabo-
rated in chaptefr]6) subject to defined curve constraints. We apply an L-
curve based method to solve the ill-posed variational problem: a regular-
ization method called “Modified Truncated Singular Value Decomposition”
is used to obtain a surface which compromises the satisfaction of defined
constraints and the visual quality of the surface.

Chapter[9 summarizes the results of the thesis.

Appendix[A] contains the definitions and notations used throughout the thesis

Chapter 2

Methods for free-form surface
design

The objective of our approach is to develop a surface modeling method which
satisfies following criteria:

e Easy intuitive handling: Designers are usually not experts in surface math-
ematics. Thus, shape design operations should be decoupled from the inter-
nal mathematical description of the model.

e Flexibility: Design is an iterative process. The design intention will be
rarely met by the first sketch. It should be possible to change previously
made design decisions easily, without too much additional effort.

e Efficiency: Shape design operations must be performed rapidly, if possible
in real-time.

In the following section we briefly describe two fundamental approaches to com-
puter aided design. Sectipn P.2 reviews the currently applied free-from surface
design methodologies with regard to the above criteria. We introduce an alterna-
tive to standard surface modeling methods in se¢tion 2.3: interactive sculpting of
B-spline surfaces by free-hand sketches under the maintenance of curve-surface
incidence and tangency constraints.

2.1 Parametric methods for CAD

Basically, two approaches to computer aided design (CAD) can be identified: the
history based and the non-history based approach. The history based approach de-
scribes model by a sequence of geometric shape operations ordered in a tree or a

6 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

directed acyclic graph. This, so-calletgsign histonjhas to be prescribed by the
user. Usually, the shape operatorsaieameterized- the model is determined af-

ter specific values are assigned to external parameters of the operator. This depen-
dency of the model on a sequence of operations and external parameters is called
parameterized design histaryhe constraint-based approach describes the model
by a set of geometric elements and a set of relations (or geometric constraints)
among the elements — tlwenstraint graph The nodes of the graph correspond

to variables (degrees of freedom) which determine each geometric element, the
edges of the graph correspond to geometric constraints. Any element (its degrees
of freedom) in the graph can be modified: the satisfaction of constraints is estab-
lished in theconstraint solvingrrocess where the degrees of freedom of influenced
elements are recomputed such that all constraints are satisfied.

The fundamental difference between the two approaches is that editing of
models is restricted to changes of the parameters of the fixed design history. In
other word, the shapes which can be generated are restricted by given design his-
tory and parameterization. With constraint-based approach, a change can be ap-
plied to any element of the model within the defined constraints. The order of
required operations is determined automatically during constraint solving. Thus,
the possible shapes are determined entirely by defined constraints and degrees of
freedom in the constrained objects. Constraints can be added or deleted as re-
quired. Therefore, this approach is occasionally called “constraint-driven”. Con-
straint solving can be approach in different ways, seele.g. [71] for an overview of
currently applied methods. For example the, so-called, constructive approaches,
[43,42,[44] 7| 21], satisfy the constraints using a sequence of construction steps.
This “construction plan” is determined automatically, based on information avail-
able from the constraint graph. At each step geometric or algebraic operations are
applied which determine the unknown degrees of freedom.

The power of a constructive constraint-driven modeling system depends on
the set of available shape operators and the ability to determine the construc-
tion plan from given constraint graph. We will concentrate on the definition of
constraint-based shape operators for free-form surfaces suited for application in a
constructive constraint-based modeling system.

2.2 Known methods for free-form surface design

The goal of free-form surface design is to obtain a surface the shape of which
satisfies given design criteria. In this section we look at a particular design prob-
lem which demonstrates the difficulties of this task. Without loss of generality,
we will consider B-Spline surfaces as defined[in §A.1. Note that all the alterna-
tive free-form surface representations, e.g. Bezier or Coons-patéisgdines or

2.2. KNOWN METHODS FOR FREE-FORM SURFACE DESIGN 7

v-splines, see [41, 25, 61], can be expressed in terms of B-Splines.

B-spline surfaces and the various related surface representation schemes have
gained a large popularity in computer aided design of sculpted shapes. This re-
sults mainly from the property that the degrees of freedom (DOFs) inherent to the
chosen surface representation scheme, i.e. the control points, vectors, or various
auxiliary parameters have (at least to some extent) a predictable influence on the
shape of the surface. Therefore, the dominant approach to interactive free-form
surface sculpting is a direct manual modification of DOFs. Although, theoreti-
cally, an arbitrary shape can be modeled by re-positioning the control points of a
B-spline surface, in practice, the types of changes one can achieve are quite lim-
ited. An attempt to deform a B-Spline surface this way, beyond making a few
bumps or dents on it, is usually quite de-motivating:

Consider figurg 2]1. The goal is to create a “dome” shaped susfatewn in
fig.[2.3(b) by editing the control mesh of an planar surfadey.[2.1(a) such that
the surface passes through a given cutvéhe shape of’ must remain fixed).

It would be difficult, if not impossible, to design such surface by manual reposi-
tioning of the control points. The number of degrees of freedom is usually not
a problem: one can insert arbitrary many control points into a B-spline surface.
For example, a B-spline surface with:200 control points already has 100 inde-
pendent degrees of freedom in each spatial dimension. However, for this purpose,
the large amount of DOFs is not really helpful: it is not obvious which control
points and how should be changed in order to achieve the desired shape. Thus,
this approach does not meet the criteria of intuitive and easy handling. Also, its
flexibility is limited: the effort of introducing a change to the dome surface (e.qg.
changing the shape @6f) equals the effort of sculpting the surface from scratch.

Hence, we need a mathematical definition of the relationship between the
DOFs (control points) of the curve and the DOFs of the surface: the change of
DOFs on either side, causes the change of dependent DOFs of the other object.
Basically, there are two approaches to establish this relationship described in the
literature:

e the “Warping” or Free-Form deformation (FFD) methods and

e Constraint-based approaches, particularly, the so-called surface skinning
and multi-patch methods

Both methods pursue the same goal: determine the degrees of freedom of the mod-
ified object such that the curve or surface takes in the desired shape. They differ in
the way how the determination of DOFs is realized. Also, the philosophy behind
both approaches is different: FFD methods pursue the modification as a primary
goal — already deformed or otherwise “fixed” parts of the surface cannot be con-
sidered. The constraint-based methods proceed exactly the opposite way: they

8 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

(@) (b)

Figure 2.1: The “dome” surface example: it is not obvious how to change the con-
trol mesh, shown by straight lines in fig. (a), of the planar surface in fig. (a) such
that the dome-shaped surface passing through cuyeee fig. (b), is obtained.

implement shape operators which create a new surface from constraints defined
between the surface and previously determined (“fixed”) elements. In general,
it is not assumed that once determined surfaces will be further modified. In the
following we will describe both approaches in more detail.

2.2.1 Warping methods

The idea of Warping methods is to embed the modified free-form shape in the,
so-called, deformation space. If the deformation space is modified, the embedded
shape “warps” according to the changes applied to the deformation space. The
most commonly used analogy for FFD is to consider an object embedded in a
parallelepiped of clear, flexible plastic. If the lattice structure is deformed, the
object inside the lattice will also be deformed,|[59].

The technique proposed by Sederberg and Party in [73] embeds the modified
free-form surface ir?® in a tri-variate Bezier volume

Vi Quow — E3 V= V(u,v,w), Quayw R?

defined by tensor product of three Bezier spaces of dimensgiond) x (m +

1) x (n+ 1). The shape of/ is determined byl + 1)(m + 1)(n + 1) lattice of
control points inE3. The domain spac®, ., of V is a paralellpiped region of
R3 with dimensionga, b) x (c,d) x (e, f). The deformation proceeds as follows:

1. Let{S;; : 0 <i < p,0 < j < ¢} be the set of control points of the B-
Spline surface5(s, t). Apart from the change in the names of the variables

2.2. KNOWN METHODS FOR FREE-FORM SURFACE DESIGN 9

(@) (b)

Figure 2.2: The Warping-methods embed the deformed suffae® a deforma-
tion space: (a) Sederbergs approach uses a tri-variate Bezier volu@iganging
V to V' *warps” S to S’. (b) The Axial-Free-form deformations use an “axis”
curve to deform a surface. The dome-shape is created by deforming &xid’
yielding a deformation of to S’

the notation remains the same as[in §A.1

2. Compute the embedding 6fin the domain space df: impose a local
coordinate system of1, , ., by specifying any control point of as.S; ; =
um[j + Ui,j‘? + ’lU,L'JW with [j = (b — a, 0, 0), ‘7 = (C — d, O, 0) andW =
(f —e,0,0). Thew,;,v;;,w,;; coordinates are found by solving the linear
system of equations for knows} ; andU/, V, .

3. Deform the control points df

4. There are two possibilities how to obtain the control points of the deformed
surface:

(@) Compute the deformed surfageby settingS; ; = V' (u;;, v 5, w; ;).
This is only an approximative method and may exhibit undesirable
distortions ofS, see([59].

(b) Recognize that the deformed surface is a composition of the two map-
pingsV andS and exactly compute the higher degree B-Spline surface
S'=V oS =V (ulst)v(s,1),w(s,1))

This technique and its clones or extensions!([33], for example) is widely used
because of its power to create interesting shapes easily and with low computa-
tional effort, if the method 4(a) is used. The method 4(b) is computationally more

10 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

involved. However, we will show in chaptelr 4 that with certain computational pre-
processing effort the exact control points¥ifcan be computed very efficiently.

It has been recognized by Coquillart et. al, that one limitation of Sederberg’s
and Parry’s method is the restriction on the parallepiped topology of the defor-
mation space. In [13] Coquillart et al. have proposed using free-form volumes
of arbitrary topology; this technique is known as Extended-Free-form deforma-
tions (EFFD). This extension allows a more flexible definition of the deformation
space and enlarges the inventory of types of deformations introduced to a surface.
However, the simplicity of Sederberg’s approach is lost: the embedding of the
modified surface in the deformation space, i.e. determination of.thew co-
ordinates for each control point 6f from step 2, requires solving of non-linear
systems of equations. Also, computing the exact control points as pointed out
in 4(b) becomes very difficult, if not impossible.

Another interesting extension to FFD-techniques are the so-called Axial-Free-
form deformations (AFFD), introduced by Lazarus et all in [49]. The deformation
space is not defined as an tri-variate free-form volume. Instead, a user defined
“axis”, a parametric curve in 3D, serves as a deformation tool:

1. Let the axis be defined as an 3D B-Spline cuA{e) with control points
{4, : 0 <i < n}andletS be the deformed surface.

2. Define a local coordinate system at each poird @f by introducing three
vector field curved/(t), V' (t) andW (t) which must be linearly independent
for all t. A good choice for the local coordinate system is the Frenet-frame
of A(t).

3. Associate each control point 6f ; with a point onA(t; ;) and determine

ValueSum», V5 5, Wi j SO thaTSZ»J- = A(tm-)+ui,jUﬁ(ti,j)+v,»7j‘7(ti7j)—i—wml/f/(ti’j)
4. Deform the control points of, yielding a deformed curvel’ and new
vector field curved/’, V' andW’

5. Compute the deformed surfagéby settingS; ; = A'(t; ;) + ui,j(?’(ti,j) +
Ui,j‘?,(ti,j> + ’IUZ'JW/(QJ).

Since AFFD are conceptually similar to EFFD, the main difficulty of AFFD-
methods is the step 3: to find the relationship between the “deformation space” (in
this case the axid) and control points of the deformed surfageThe parameter
valuest; ; are usually determined by computing a point4such that the Euclid-

ian distance between the poins¢; ;) and.S; ; is minimal, which also requires
numerical methods.

2.2. KNOWN METHODS FOR FREE-FORM SURFACE DESIGN 11

The axial FFD allow to deform a surface locally, according to the position
of the axis curve relative to the deformed surface:[1d [79], Singh and Fiume de-
termine the amount of change of each surface control point by an user-defined
potential field function (the, so-called, density function)

f:RY—(0,1), f=F(Si;— Alti;)])

emanating at the axis curve (the authors use the term “wire curve”). The inten-
sity of the field is maximal at the wire curve and decays gradually with growing
distance from it. The amount of change of edth (determined as outlined in
step 5) is weighted by the value gfwhich restricts the influence of a wire to a
region of £3 around the axis. Sing and Fiume have also discussed how to con-
trol the deformation induced by several wire-curves with overlapping regions of
influence: the resulting deformation for a control po#t is proportional to the
algebraic combination of all deformations appliedStg: let A’“ be the amount

of displacement of control poirtl; ; induced by the:-th of n W|res and letf, be

the density function associated witith wire. The resulting deformation fdf; ;

is then proportional to

f1(5i,j)&ij +eee 4 fn(Si,j)&?,j

Summarizing all Warping methods and with regard to the criteria listed in the
beginning of chaptér|2 we note:
Easy handling the deformation process proceeds interactively via suited graph-
ical user interface. The users do not have to deal with internal surface represen-
tation: the shape of the surface follows the changes of the deformation space. A
great advantage is that instead of dealing with hundreds or thousands of control
points which determine the surface, one only has to deal with relatively few con-
trol points which determine the shape of the deformation space. In case of the
traditional FFD methods, the users have to be aware of the restriction on the par-
alellpiped topology of the deformation space.
Flexibility : the warping methods are well suited for design of shapes which do
not have to satisfy some additional exact criteria. Consequently, while introduc-
ing new modifications is easy and intuitive, it is not possible to keep previously
designed parts of the model unchanged. Consider the dome-shaped surface ex-
ample from figur¢ 2]1: we have required that the modified surface passes through
given curveC. This is hard to achieve by warping the surfagdy means of
FFD; The deformation of is determined solely by the deformation space — there
are no additional restrictions which assure thastays incident ort (therefore
the curveC' is not shown in figurep 2/2(a) and P.2(b). Also, the Axial FFD or
the wires-method do not guarantee incidence of the edited curve on the surface.
The surface only roughly approximates the changes of the edited curve: Although

12 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

several deformations induced by several “wire curves” can be applied simultane-
ously, keeping some wires fixed and changing the others does not guarantee that
the surface stays locally unchanged.

Efficiency: One needs to distinguish between Sederberg’s original version of FFD
and the extended FFD methods (Axial-FFD, Wires). The first allow very efficient,
real time modifications. The second may require considerable time to compute
the embedding of the modified shape in the deformation space. Then, however,
the modifications proceed at interactive speed.

2.2.2 Constraint-based methods

The goal of constraint-based surface design is to obtain a surface which satisfies
some specified geometric properties. For example, it should pass through a set
of 3D curves or points, or it should be smoothly connected to another surface.
These properties represent geometric constraints on the shape of a curve or sur-
face, we speak of incidence constraints or geometric (or polynomial) continuity
constraints. In this context, the class of linear interpolation methods is most fre-
quently applied. There are two main families of interpolation methods which are
considered standard in CAGD: (1) tensor-product interpolation (so-called “surface
skinning”) and (2) multi-patch methods.

2.2.2.1 Tensor product interpolation

The simplest interpolation scheme seeks a B-Spline surface which interpolates a
lattice of 3D points{H,; : 0 < i < m,0 < j < n}. Assume that the set of
two-variate B-Spline basis functiod;"” (u)b;"(v) : 0 < i < m, 0 < j < n}

is given. The interpolation problem consists of finding the control pdihsof a
B-Spline surface

n—1m—1

ZZO Fy b7 ()b (v)

and parameter valudsy;, 3;) such thatf'(«;, 5;) = H; ;. For that one proceeds
as follows:

1 Set(o{z, 6]) ((7—1+1—]L'7—z+k) , (Uj+1?”vj+l))

2. We use the fact that a two-variate B-Spline consists of tensor-product of two
univariate B-Splines and subsequently solve two one-dimensional interpola-
tion problems. First, interpolaieB-Spline curves?; (u) = 15! E; ;b7 (u)
through pointsy ;, - - -, Hy,—1;: Setdofs(E;(u)) = E;. Denote byb, |, the

2.2. KNOWN METHODS FOR FREE-FORM SURFACE DESIGN 13

vector of B-Spline functions evaluateday i.e. {07 (a;) : 0 < i < m}.
Set up matrices

Hy,; bul,—,
H‘7 g ’A_ = ’:E)‘7 g
Hm—l,j bu|

Eo ;

Em—l,j

U=0m—1

and solven linear systems of equations
obtaining the control points of eadh(u), 0 < j < n.

3. Interpolate the control points df;(u) in the other parametric direction:
One assumes that the curvBg«) are mapped ta iso-parametric curves
F(u,v = const. = f3;). Then, the control points of the surfa¢gu, v)
which satisfied”(«;, 5;) = H; ; are obtained by solving: linear systems

E.=BF,0<i<m
where

- Eio B b, |v:ﬁo . Fio

Ei,n—l bv| E,n—l

v=Pn—1
It can be shown, see e.@. [68], that if one choggess;) as in step 1 the matrices
A andB are always invertible and both equation system always have one unique
solution.

The popular “surface skinning” is a special case of the above procedure: Given
a set ofm 3D curves{E;(u) = X" Ei ;b7 (u) : 0 < j < n} and set of
parameter valuefs; : 0 < j < n} one seeks a B-Spline surfag€u, v) such that
F(u,v = ;) = E;(u). Basically, one performs only the 3rd step of the procedure
described above. The literature describes various extensions or modifications of
this method. For example, one can prescribe more (or less)thapoints and
solve overdetermined (or under-determined) linear systems. It is also possible to
prescribe derivatives of arbitrary order at each point or curve and consider these
constraints when solving for control points 6f The skinning method can be
generalized to an interpolation of compatible curve network. Given two sets of
curves

{E;(u):0<j<n}, {Ej(v):0<i<n}

intersecting at 3D pointg/; ; find a B-Spline surfacé’(u,v) such thatF'(v =
a;,v) = El(v), Flu,v = ;) = E;(u) and F(«y, 5;) = H,;;, seel30] and
chaptef ¥ of this thesis which contains a detailed description and a generalization
of this interpolation scheme. For further references see, for exarplée, [61, 25, 41].

14 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

2.2.2.2 Multi-patch methods

The skinning method and its clones deliver one B-spline surface which interpo-
lates a set of iso-parametric curves or a rectangular lattice of 3D points. These
methods are simple and efficient but they fail in two cases:

1. The set of interpolated points is unstructured, i.e. no lattice structure of
fixed size exists

2. The curves cannot be mapped to a set of parallel iso-parametric lines in the
domain of the surface

In this case one has to turn to the, so-callayjti-patchmethods. This class of
surface interpolation methods is concerned with methods for filling a 3D curve
network by 4-sided tensor-product surface patches. Alternatively, 3-sided poly-
nomial patches are used to fill triangular holes in the curve neﬂvoﬂ&on-
rectangular (-sided”) holes are segmented into 3-sided or 4-sided regions and
filled with surfaces based on the assumption that given 3D curves or their parts are
the boundaries of the patch. Usually, the surfaces are required to meet with certain
order of geometric continuity (usualty' or G?) along their boundary curves. We
point to Peters’ paper [60] which contains a detailed overview about multi-patch
methods; many details, algorithms and problems are also discussed in [41, Sec.
7.5].

Multi-patch methods are applied mainly in the context of surface reconstruc-
tion from unstructured point and/or curve data (“Reverse Engineering”). Multi-
patch models resulting from Reverse engineering (RE) may consist of several
thousands of patches. Often, the result of the surface interpolation is of bad qual-
ity: the choice of the wrong segmentation or a un-advantageous distribution of the
point data causes unwanted “wiggles” or jumps in the resulting surfaces. Then,
the process needs to be restarted with a new segmentation or point distribution.
Experience shows, that from a designer’s point of view, it is simpler to change the
surface model interactively, inside restricted areas or near characteristic points or
curves such that the overall shape of the model is kept. However, it usually not
possible to manually improve the shape of RE-surfaces because there is no pre-
defined dependency between suitable design parameters and the surface patches.
Furthermore, multi-patch models are often generated “off-line”, even on a differ-
ent CAE platform. This introduces another problem: after re-importing the data
into modeling system no editing is possible because there is no “design history”
that describes the dependency of the surface patchwork on the input data.

Iwe will not further consider this kind of surfaces, see any standard book concerned with
CAGD methods for details (e.d. [61,125,/41]).

2.2. KNOWN METHODS FOR FREE-FORM SURFACE DESIGN 15

Figure 2.3: Design of “dome” surface using the multi-patch approach.

On the other hand, when a multi-patch surface model is created “from scratch”,
the designer has the full freedom to choose a design history. Here, the problem is
to create a model flexible enough to meet all specifications of the design. Mod-
ern surface modeling systems usually provide some kind of visual programming
interface to build such multi-patch models. However, in most cases one has to
create the surfaces “patch by patch” in certain order. Usually, shape operations
which fill an n-sided hole given by its boundary curves, or solve the, so-called,
“vertex enclosure problem”, [41, §7.5.1 and §7.5.2] are available. The user has to
apply them in correct order.

For example, in order to create an editable model of the “dome”-shaped sur-
face one could proceed as demonstrated in figuie 2.3: The dyieandC were
chosen to control the the shape of the surface[Fig. 2.3(a). The segmentation into

16 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

3 and 4-sided patches is shown in the left lower corner of each figure. The curves
need to be split at points where they intersect; if no 3-sided patches are supported
the triangular regions need to be further subdivided into 4-sided regions shown by
the thin lines in triangles; and.S;. The “holes” of the curve network are filled

by surface patches, FigJre P.3fbyhe order in which the design operations were
applied is stored in a design history with the cud/eB andC' as “parameters” of

the model: a modification of the curves causes re-evaluation of the design history
yielding a new shape of the surface. Now consider the case that the three curves
are not sufficient to control the shape — one would like to insert a new “parameter”
curve, D, as demonstrated in Fig. 2.3(c). Since a different curve network arises
(left lower corner of the figure) the old segmentation is no more valid and the
design history of the entire model needs to be created from scratch.

For completeness we note that there are other surfaces representation schemes
which allow to define surfaces on arbitrary topological domains, e.g. Seidel’'s
B-patches![7[7] or Loop’s generalization of B-splines to arbitrary domains [51].
However, they are not that well understood as the tensor-product representations
which can be considered a de-facto standard in all common modeling systems.
Thus, usage of one of these alternative surface representations causes considerable
compatibility problems.

With regard to the criteria for a user-friendly surface modeling tool defined at
the beginning of the chapter we conclude:

Easy handling Surface design be means of skinning methods is relatively easy to
understand even for less experienced users. However, one has to keep in mind the
restrictions on the topology of the interpolated data. On the other hand, as even
the simple example from figufe 2.3 demonstrates, design of surface patch works
requires a lot of experience, planning and relatively deep knowledge of surface
mathematics; hence, we conclude that the intuitiveness and easy handling criteria
are not satisfied.

Flexibility : The example from figure 2.3(c) shows that a slight correction of the
design may have severe consequences, hence, the flexibility of the multi-patch
method is low. However, in contrast to FFD methods, the constraints provide an
exact way to control the shape of the surface; For instance, if the cumdig-

ure[2.3 is fixed, its incidence of\is guaranteed for any modification dfand B

(under the assumption that the necessary compatibility conditions are satisfied).
Efficiency: The skinning methods are generally very efficient. One only has to
evaluate the matrices and solve well-determined (and sparse) linear systems of
equations as sketched in previous paragraph. The evaluation of a B-Spline func-

2In fact, the curves have to satisfy strict compatibility conditions; in this exanl& andC
have to intersect at fixed points. The sufficient compatibility conditions (esp. the “vertex enclo-
sure” conditions) are more complicated and require reparametrization of the curves, dee€ e.g. [60]
or[41, §7.5.1 and §7.5.2].

2.3. GENERALIZED CONSTRAINT-BASED SURFACE MODELING 17

tion has quadratic run-time complexity in the degree of the used B-Spline space.
Therefore, usually, a low degree (such as quadratic or cubic) B-Spline basis is
chosen. In order to satisfy the compatibility conditions the multi patch methods
require reparametrization of the curves which may result in high-degree B-Spline
spaces (see e.g. [60]). One has to consider that the segmentation into many sur-
faces requires solving of many high-degree interpolation problems. In addition,
determination of a surface from its boundary curves usually results in an under-
determined problem, hence more sophisticated methods are required to solve the
linear equation systems. For this reason, interpolation of large curve networks of
complicated topology may take considerable time.

2.3 Generalized constraint-based surface modeling

One possibility to remove the disadvantages of previously described standard
constraint-based methods is to remove the restriction that an interpolated curve
must be mapped to an iso-parametric line. Assuming that the interpolation of B-
spline surfaces from non iso-parametric curves is available, arbitrary 3D curves
incident on a surface can be used as design parameters for surface sculpting: The
designer inputs the curves directly in 3D. For that purpose, we have investigated
free-hand sketching methods, see! [47] end [57] for details: Each input curve is
interpreted as a curve-surface incidence constraint. The user modifies the curves
by free-hand pen strokes which yields a new shape of the surface every time a
sketch transaction is finished. The model may consist of several surfaces which
are connected to each other by curve incidence and tangency constraints. Inter-
nally, a sequence of shape operators is applied which determine each surface from
given curves.

Proceeding this way, we combine the advantage of the FFD-approach (easy
intuitive handling) with the advantages of constraint-based methods (precise con-
trol over the modified shapes). There is a direct algebraic relationship between
the surface and the constraint-curves, hence, the previously designed surface can
be preserved.

Non-rectangular surface patches can be simulated by, so-called, trimmed B-
spline tensor-product surfaces: here, the extent of the surface is specified by a
set of loops in the parametric domain of a B-spline surface. The regions defined
by the loops are mapped to regions of the same topological shape on the surface.
This allows to “simulate” non-rectangular surfaces of the same overall continuity
as the underlying B-spline surface: arsided patch can be obtained by inter-
polatingn 3D curves by one B-spline surface. On the resulting surface only the
region restricted by the known curves in the domain of the surface is considered.
Visualization and handling of trimmed tensor product surfaces is supported by

18 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

() (d)

Figure 2.4: Sketch- and constraint-based design of the “dome” surface.

all common modeling systems, thus, no compatibility problems arise if trimmed
surfaces are used.

In the following three paragraphs we will demonstrate this concept on design
examples. We will demonstrate how the design of the dome-shaped surface used
for demonstration purposes in previous paragraphs proceeds with a sketch- and
constraint-based system. We will also address the creation of so-called free-form
features.

2.3.1 The design example

Assume, one wishes to create the dome shaped surface, figures 2.4(a)-(d). The
user sketches the closed cumtdirst. A curve-incidence constraint is automati-

2.3. GENERALIZED CONSTRAINT-BASED SURFACE MODELING 19

r r
r,or, r, r, roor, _,4\\
i
ot
— P S
r /

2
r5

(@) (b)

~
-
-
-

Figure 2.5: Constraint-graph and construction plan for the cap surface example.
ElementsA, P, and P, are fixed,B is selected for change. At the last stage the
surfaceS is determined from the curve4 and B, and from integral constraint
f(S). If errors at constraints; (B, S) andry(A, S) are larger than a prescribed
tolerance the surface is refined and the last construction step is repeated.

cally generated. If desired, the region outside the closed curve can be trimmed
from the surface. Since we want to preserve the shapé afis marked as
“fixed”. In order to generate the dome shape of the surface, the &iiselrawn,
fig. [2.4(b). The methodology for sketching 3D curves on surfaces was defined
in [47] and [57].

The user modifie$3 by further pen strokes inside the so-calatchspace
which is defined as an auxiliary free-form surface locally orthogonal to the mod-
ified surface, see [57]. In our example the sketch space is denoted by the hatched

20 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

region in figurg 2.4(b). The curve @ is checked for interference with other el-
ements. In this casd} intersects withA at pointsP;, and P,. It is necessary to
capture these conditions by additional constraints. Here, 4 point-curve incidence
constraints among both curves and points are recognized and generated automati-
cally which yields a constraint-graph shown in fig.]2.5(a): the lower set of nodes
denoted by upper case letters represent the objects (curves, points, surface), the
upper row represent the incidence constraints, denoted.byhe edges of the
graph connect a constraint node with related object nodes.

The order of evaluation is determined from current distribution of degrees of
freedom in the constraint graph: in our example, the construction plan is as shown
in fig. [2.4(b): the curved is fixed which enforces fixed point3, and P,. These
consistency constraints consume 2 degrees of freedomMenthus, the depen-
dent control points of3 must remain fixed. Every sketched input curve needs to
be checked against these conditions.

Finally, the surface is determined from curvésand B. The resulting shape
of S will depend on its initial parameterization, polynomial degree and number
of DOFs; we will return to this topic in chaptef 7. A good idea is to start with
relatively simple surface and insert new DOFs at appropriate positions if errors at
the constraints exceed defined limits. The error for each constraint is measured by
back-substitution of the pre-image curve irffaand evaluation of the difference
among this exactly incident curve and the curve present in the model. In the
following |r;| will denote this error for a specific constraint. At the last stage of
the construction plan, shown in figyre 2.5(c), the surface is determined (possibly
in several iterations) as a solution of a constrained variational problem

msinf(S) subject to |ra] =0 A |r| =0

wheref(.S) is a “smoothness” constraint which regulates the overall shape of the
surface. Here, the objective functigitS) is a convex combination of quadratic
surface functionals which minimize the area, thin-plate energy and variation of
curvature of a tensor-product surface (secfion 3.3 and chapter 6). Following the
experience of many researchers who have investigated variational problems of
this kind (e.g. Brunnett, Greiner, Hagen, Hoschek, Seidel and othérs,[[9, 5, 31,
48]), minimization of these expressions has been shown an effective approach
to determine an optically pleasing surface with slowly varying curvature; more
details are found in chaptey 7.

The so determined construction plan stays valid as long as the user does not
change the distribution of DOFs (i.e. does not fix or free an element). A new plan
needs to be evaluated if elements are created and inserted into the model, or if
existing elements are removed. This is illustrated in Fig. 2.4(d). Another curve,
C, is introduced. New consistency conditions arise, if the user decides to keep

2.3. GENERALIZED CONSTRAINT-BASED SURFACE MODELING 21

the shape of3: sinceB intersects withC' in Ps and A remains fixed, the number
degrees of freedom in curé is a-priori reduced by 3.

In summary we note: the model is represented by a constraint-graph which is
updated depending on user’s design actions. The construction plan is determined
after an element of the graph (curve, surface, or point) has undergone a change
of the state. This means that the user has marked an element as one of “fixed”,
“free” or “changed”. Algorithms to obtain a construction plan from steady-state
constraint graph have been proposed, seele.g.[7, 21]. However, these algorithms
rely on the a-priori knowledge of how many DOFs of an object are consumed
by a specific constraint. Since this is impossible to predict in case of ill-posed
linear problems, see chapjéer 7, these methods have to be modified or completely
re-evaluated which is one of the primary topics of our future work.

2.3.2 Design with Free-form Features

Often, only a part of a surface should be modified such that other regions are not
influenced. The methods discussed so far, don’t provide that possibility. Suppose,
that a region on a B-spline surface is identified by sketching a loop (a loop is one
closed or several connected curves), as demonstrated in Kig. 2.6(a). If we modify
the surface only outside the lodp, there is no guarantee, that the shape of the
shaded part of the surface will stay constant. This can be achieved only if the sur-
face is split into two separate surfaces which share only a common boundary. This
introduces additional objects into the model, therefore, we use the term “feature”.
We propose two methods:

The first is illustrated in figurgs 3.6(a)-(b): the user draws a ldam surface
S1. The initial surfaces; is cloned intaS; and incidence constraints are generated
between both surfaces and the cuA/eNote that the loop may consist of several
curves; then, an incidence constraint is generated for each curve. If the shape
and position of the boundary curve is fixed, the user can&dity sketches as
discussed above, figure 2.6(b). Since the surfaces are only related via their fixed
boundaries no changes are carried ove$;to

The second method differs in the way how the surface is cloned. Instead
of creating a copy of current surface, a new surface is computed such that it
reparametrizes the original surface inside a specified four-sided region. This
is demonstrated in figur¢s 2.6(c)-(d). The advantage of this method is that the
reparametrized surface can be adjusted such, that it reacts very well to changes
of a specific curve, or family of curves; the limitation is that the region must be
rectangular. The surfaces andS; are connected by incidence and continuity
constraints. Note that the boundary curvgsare all mapped to iso-parametric
lines of Sy which makes the formulation of the respective constraints easier. This
method is described in chapfgr 8.

22 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

(©) (d)

Figure 2.6: Creation of a trimmed “surface feature”. Tdfy:is cloned intoS,

and both surfaces are constrained to meet along the @urvéhen, if B is fixed,

S,y (or S1) can be modified independently from the other surface. Bottom: Region
of interest created by application of surface-surface compositinis locally
reparametrized by,. The surfaces meet witli' continuity alongB, to B,.

The outline of arelational surface modeling platform as discussed above shows
the advantages for conceptual design. Much less mathematical knowledge is re-
quired to implement a design intention compared, e.g., to the multi-patch meth-
ods. Also, the design and re-design cycles shorten considerably: the intention
of the designer is immediately confirmed, or, rejected if the requirement is not
compatible with specified constraints.

Chapter 3

Linear curve constraints

The central operation required in previous section is the interpolation of a sur-
face from one or several arbitrary curves. Although, in principle, the approach is
the same as described jn §2]2.2, interpolation of surfaces from non iso-parametric
curves is considerably more complicated. In addition, as it is commonly done for
iso-parametric curves, we wish to enforce tangent plane continuity of two surfaces
along an arbitrary curve incident on both surfaces. In the following section we re-
view the methods known from the literature to approach both types of constraints.
In sectior] 3.R we outline our approach to formulate the linear equations for these
constraints. It turns out that the effort does not end with a numerically stable and
efficient algorithm for formulating the equations. Solving of generalized curve in-
cidence and tangency constraints requires so-called variational methods: We need
to state additional conditions on the shape of the interpolated surface. These con-
ditions are called variational constraints for B-Spline surfaces and are introduced
in section 3.B. Although the former two types and the latter type are concep-
tually different, technically, their implementation requires the same set of basic
operations: above all sparse matrix operations and symbolic computations with
B-spline polynomials. The implementation of either constraint category is easy,
once this “kernel” is available. In the remaining chapters of the thesis we will
refer to this classification.

3.1 Related research

The problem is defined as follows: We seek a B-Spline surface which interpolates
a given 3D B-Spline curv& (t). Assume that the set of two-variate B-Spline basis
functions

(B8 ()b (v) 1 0 <i<m, 0< 5 <n}, (u,v) € Quy = (a,b) x {c,d)

23

24 CHAPTER 3. LINEAR CURVE CONSTRAINTS
and a B-Spline curve if, ,
Z: R — B2, Z(t) = (u(t), v(t)) , u(t) € {a,0) Av(t) € (c,d)

are given. The interpolation problem consists of finding the control painsof
a B-Spline surface

S X) e

S
N
I
S
E
0

TM|

such thatX (u(t),v(t)) = Y(). As long as the curve(t) = (u(t),v(t)) does
not change, the termis™ (bl“((t)) are constants. Hence the non-linear
part of the surface representatlon is eliminated and the problem becomes linear in
the control pointsX; ; of the surface. Thus it is possible to obtain a linear system
of equations

AX =Y

which restrict the incidence &f (t) on X (u, v).

The problems are two-fold: first, itis not straight-forward how to formulate the
equations which define the relationship between the surface control points and the
control points of the interpolated curve. Second, obtaining a numerically stable
solution of the above linear system of equations is a subtle procedure: The inverse
problem

A Y =X

generally belongs to the class of so-calikghosed problems Simply stated, it

is not possible to determine the status of the problem by counting the number of
equations and unknowns; in some sense, the problem is simultaneously under-
and over-determined. The following two paragraphs review the approaches to
both problems known from literature.

3.1.1 Formulating the equations

The first problem can be approached in three different ways:
1. The discretization method
2. Continuous approximation

3. The Composition method

3.1. RELATED RESEARCH 25

3.1.1.1 The discretization method

The first method proceeds as follows: the continuous curve-surface incidence
problem is discretized by considering many point-surface constraints ordered along
given 3D curve, see [20]. This approach is often satisfactory, however, it does not
provide a closed formulation of the curve-surface incidence, i.e. there is no direct
relationship between the control points of the incident curve and the control points
of the surface. Also, the condition (or, the so-called, ill-posedness, discussed in
chaptef) of the associated inverse linear problem worsens — the equations con-
tain too much noise (we have to postpone the definition of noise in this context to
chaptef) which makes obtaining a suitable solution harder.

3.1.1.2 Continuous approximation

The second approach was pursued by Welch et al._in [83]land [11]. Given

Z andY as above a continuous approximation problem is formulated: the linear
system of equations in the unknown control points of the surface can be set up by
minimizing the quadratic distance functionflY (t) — X (Z(t))|> which yields

a square matrix of equations linear in the unknown control pointX of The
disadvantage of this approach is that the computation of the associated matrices
is inefficient and numerically not stable (esp. because of the integration of high
degree splines). Furthermore, the system matrix is obtained by formulating the
normal equations. It is known, that the condition number of normal equations is
the square of the actual condition of the probleni [29].

3.1.1.3 The composition method

The third approach uses the fact that a 2D cuivés mapped to a 3D surface
curveY incident onX by taking linear combinations aX's control points. In
other words, each control point &f can be written as a linear combination of
control points ofX yielding a linear system of equations in unknown DOF<of

In [24] Elber and Cohen have shown how to obtain the equations for the special
case whenX is a Bezier patch and is one or several (arbitrarily oriented) line
segments. This method is more efficient and numerically more stable. In our
previous work[[54, 55, 56] we have generalized this approach to B-spline surfaces
and arbitrary domain curves. These papers do not contain all details; the complete
description, examples and further improvements are described in chppter 4 of this
thesis.

The composition method (if implemented carefully) is more efficient and nu-
merically much more stable than the approachin [83] and [11]. It delivers a matrix
with smaller overall errors and, in general, of smaller size. Furthermore it can be
easily extended to obtain equations for other linear curve-surface constraints as

26 CHAPTER 3. LINEAR CURVE CONSTRAINTS

we will demonstrate below. Also note that constraints such as curve-surface inci-
dence or continuity of two surfaces along an arbitrary curve need to be evaluated in
both directions. For example, given several curves incident on a B-spline surface,
maybe not all of them are initially selected as design parameters. l.e., after the sur-
face is determined from given curves, the remaining curves must be recomputed.
The composition method expresses a curve-surface incidence as a matrix equation
in control points of that curve and surface. Then, in the “surface-curve” direction
the constraint reduces to computing a matrix-vector product. This is one of the
advantages of the composition approach. The alternative methods, [20} 83, 11] do
not foresee that the constraints will be ever evaluated this way.

3.1.2 Obtaining a stable solution

Nevertheless, the inverse problem, obtaining the surface control points given the
curve on surface, is still ill-posed — one has to turn to sophisticated methods to
obtain a reasonable solution. Although the authors of [83, 11] have recognized
that the linear systems of equations may be ill-conditioned, it is not clear how
they remedy this. They have proposed to extract the null-space of the interpola-
tion matrix by means of pivoted Gaussian elimination. It is known, seele.g. [36],
that for ill-posed problems this method is not sufficient — we discuss this topic in
more detail in chaptgr] 7. When only Bezier patches with carefully chosen num-
ber of degrees of freedom are considered, as ih [24], the ill-posedness is not that
serious problem — and in most cases no particularly sophisticated equation solver
IS necessary.

The approaches [20, 83,111] utilize the variational approach to surface de-
sign, seel[9, 15, 48, 31]: generally, the incidence and continuity constraints are not
sufficient to determine all DOFs of the surface. The undetermined DOFs of the
surface are a solution of constrained variational problem which minimizes a given
objective function with respect to specified constraints: A closely related topic
is the, so-called, surface “fairing”, very often applied in the context of scattered
data interpolation. In fact, we will deal with this kind of problems, but in a more
general setting: we will not restrict ourselves to iso-parametric or boundary lines
of B-spline surfaces.

Our approach combines (improves and generalizes) several of the ideas: we
formulate curve-surface incidence constraints in the style of [24] and solve varia-
tional problems as in [20], [83] or [11]. However, none of the mentioned publica-
tions have accessed the problem of obtaining a numerically stable solution from
the ill-posed equations. For iso-parametric curve no ill-posedness occurs. Welch
et al. have proposed to use pivoted Gaussian elimination. However, in most cases
Gaussian elimination is not sufficient to reveal the rank of the matrix. One has to
apply more sophisticated numerical methods to determine the optimal numerical

3.2. GENERALIZING THE COMPOSITION METHOD 27

rank of the problem. Methods for solving ill-posed problems are known in linear
algebra, see e.g. [36] for further backgrounds and a profound overvieegan
larization methods. An application of so-called “L-curve”-method, see [37, 10],
based on Truncated Singular Value decomposition (TSVD) [35] and modified
TSVD [38] is described in chaptg} 7.

3.2 Generalizing the composition method

3.2.1 Curve-surface incidence constraints

We use a generalized version of the composition method to approach the problem
of obtaining the equations for curve-surface incidence. We generalize the results
of DeRose and DeRose et al. [17] 18] which can be summarized as follows:

The so-called simploids:fvariate tensor-product of polynomial vector spaces,
including the case = 1) are always closed under polynomial composition. De-
note byR' the affine space of dimensiserassociated with the linear spagé A
simploid is a mappind/ : R? — R’. DeRose has shown that given three Bezier
simploids

Z:R-RI,.X:R -RF,Y R -RF i<y (3.2)

itis possible to obtain the Bezier control pointssoby computing the polynomial
composition ofX andZ which we denote by

Y=X(Z)=XoZ

A similar statement applies to piecewise polynomial B-spline simploids with the
restriction that if the outer simploid is a tensor-product of B-Splines no closed
solution exists fory” in cases ot > 2 andj > 2, [18]. In this paper, the composi-
tion of B-splines was not performed directly: first, the B-spline was converted to
Bezier representation and the composition was computed segment-wise for each
Bezier simploid.

Each control point ot” is obtained by computing linear combinations of con-
trol points of X. We introduce the, so-callednevaluated compositioof two
B-splines (with the restriction that< 2 andj < 2) withoutthe intermediate con-
version to Bezier basis: Givek andZ as above we compute the matrix which
transforms the control points df to control points oft” yielding a matrix equa-
tion

Y = AX

The matrix A is calledcomposition matrix.The composition matrix is used in
two ways:

28 CHAPTER 3. LINEAR CURVE CONSTRAINTS

e if X is known one obtains the control points Bf = X o Z simply by
performing a matrix multiplication

e for givenY solving this linear system of equations one obtains the control
pointsX such thatr” is incident onX

An efficient algorithm to compute the composition matrix is described in chapter
4.

3.2.2 Tangency constraints

We require that two surfaces join with continuous tangent planes along an arbi-
trary curve incident on both surfaces. Figfire| 3.1 demonstrates the problem: As
for the incidence case, we assume that cués = (u(t),v(t)) and Z'(t) =
(u'(t),'(t)) in the domain spaces of both surfaces are given. Both domain space
curve are rendered into a 3D curve incident on both surfaces. Assume, that the
control points of one of the surfaces, eX.(v/,v’), are known. We seek control
points of the second surfacé(u, v) such that

1. The curveY () is incident onX (u, v):

2. The tangent planes of both surfaces albiig) are coplanar

The sufficient and necessary condition for coplanar tangent planes is that the
normals of both surfaces along(t) are collinear. This is equivalent to the con-
dition that the normals alony (¢) are orthogonal to the tangent planes of the
unknown surfaceX (u, v) alongY (t), seel[24].

Denote byN () the vector field curve which renders the normals\dfalong
the curveY'(¢). If the control points ofX’ are known the curveV(t) can be
computed symbolically or numerically, see elg. [23]. The relation betwégn
and the unknown surfack (u, v) is established by requiring that the tangent field
of the incident curve, denoted B{Y'(¢), is orthogonal taV(¢). Two vectors are
orthogonal if their scalar product is zero, that is:

<N(t), C‘im)> _ <N(t), CZX (u(t),v(t))> ~0

The above equation needs to be resolved for the unknown control poikits.0f).
The equations can be formulated very elegantly if the composition matrix for the
incident curve is known, as demonstrated in chggter 5.

3.3. VARIATIONAL CONSTRAINTS 29

Figure 3.1: Enforcing th&" continuous join of two surfaces along an arbitrary
curve incident on both surfaces.

3.3 Variational constraints

The goal is to construct curves or surfaces having optically pleasant shape that
satisfy given curve or tangency constraints. The area of CAGD which deals with
this problem is called variational design [9,/5,) 31| 48, 32]. The problem is to
define a mathematical criterion for “optically pleasing shape” of a surface. A
commonly used approach is to define the so-called fairness functionals which take
in minimal values for surfaces of optimal shape. Formally, for a B-spline surface
S(u,v) : ., — R, Q,., C R? one defines a scalar valued functional

d:R*— R, ®=d(S(u,v))

with the property that small value df indicates that’ has a more pleasant shape.
The solution of a variational problem then consist of finding the control p&ints
such that the surface satisfies given constraints and the functional takes in minimal
value over the entire domain 6f

rngn@ (S(u,v)), Y(u,v) € Quy (3.3)

30 CHAPTER 3. LINEAR CURVE CONSTRAINTS

Hence, unlike the former constraint categories, variational constraints restrict the
degrees of freedom aneobject to take in such values that a property defined in
terms of the functional is satisfied.

We will discuss surface functionals which minimize curvature, energy, length,
area or similar properties. This selection arises from the observation that a curve
or surface has an optically pleasing shape, if the functional of this type is near
the global minimum. Exact formulation of these conditions results in large non-
linear problems, therefore a variety of simplified functionals were proposed which
provide good approximations, see e.g.[32]. What is common to all of them is that
they depend on product of partial derivatives of the optimized surface and are
guadratic in the degrees of freedom of the surface. Hence, they posses one well
defined global minimum which can be computed efficiently by means of Gaussian
normal equations. The normal equations are linear in control points of the surface,
the system matrix is symmetric and, in general, sparse.

Although the usage of these constraints is frequently mentioned in the litera-
ture, not much information is available about an efficient and simple computation
of matrices representing the normal equations for this type of surface functionals.
We will describe a unified and efficient approach for symbolic computing of these
matrices in chapter 6.

Chapter 4

Computing the incidence constraints

In previous chapter we have sketched a new application of polynomial composi-
tion: given a B-spline surface and a curve in the domain space of that surface, it
is possible to obtain the control points of B-spline curve incident on the surface
by a linear transformation of the control points of the surface. We use the result-
ing matrix equation as a constructor which determines the incident curve from
known surface and vice-versa. This chapter presents an efficient method to gen-
erate the linear transformation in matrix form. Internally, a generalized version
of the blossom based polynomial composition algorithm developed by DeRose et
al. [18] is applied. Irf 4]1 we briefly review the concept of blossoming and in-
troduce blossoms in so-called “unevaluated” form. In sedtioh 4.2 we derive the
straight forward version of unevaluated composition for Bezier and B-splines. The
complexity issues and efficient versions of the algorithm are investigated in sec-
tion[4.3. Finally, if 4.4 some results are presented regarding run-time performance
of the algorithm and the numerical stability of the composition matrix.

4.1 The blossoming kernel

4.1.1 The Blossoming principle

In a 1987’s technical report [65], Ramshaw has introduced a new approach to
polynomial functions in Bezier or B-spline form: the so-callddssomingprin-

ciple. It uses the duality of a univariate polynomial of degfeand its polar form,

or, in Ramshaws terminology a blossom. A blossom is a multi-affine, symmetric
form in d variables. A magf(t) : R' — R" is affine if it preserves affine combi-
nations of its arguments: i.e. it satisfies>"; a;t;) = >, i f(¢;) for a set of real

31

32 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

scalar valuego; : 0 <i < m}suchthat,o; = 1. Amapf: R" — R!, f =

f (to, ..., t,—1) is said to be multi-affine if it is affine in each of its variables when
the others are kept fixed: Let dlto, ..., %,—1} \ ¢;, 0 < j < n have fixed values.
Then the multi-affinity means that

(t(),.. ZO&Z Giy e _> ZO(Z to,..]“'--tn—l)

with 3,0, = 1. Amapf : R* — R!is said to be symmetric if it does not depend
on the ordering of variables), ...t,_;. Based on these properties of symmet-
ric multi-affine maps Ramshaw has stated the so-c@ledsoming principléor
polynomials se€ [65, 64, 66]:

Associated with each polynomial: R — R, p = p(t), p(t) € P, there is
a symmetric multi-affine mag : R* — R, f = f(to,...,tq 1) called a polar
form, or blossom op with following properties:

1. Identity between the polynomial and thiagonalof the blossom:

if t=t,0<i1<d then f(to,...,tdfl):p(t)

2. Symmetry: the value of the blossom is invariant under permutations of its
arguments.

3. Multi-affinity : f is affine in each of its arguments, or simply multi-affine

The blossoming principle applies for general vector-valued polynomial rRaps

R — RP P = P(t) whereD denotes the dimension of the image space. One
simply considers each of thHe polynomials separately. Thus itis possible to blos-
som polynomial curves i-dimensional space in the same manner as polynomial
functions. In order to simplify notation the following paragraphs demonstrate ev-
erything on univariate one-dimensional Bezier and B-Spline functions without
loss of generality.

4.1.2 Blossoming principle for Bezier polynomials

Blossoming is very useful when dealing with polynomials expressed in terms
of Bezier or B-Spline basis. Consider a degre8ezier functionc(t) € Py,

c(t) = 254 ¢;bd(t) defined on intervat € (a,b). By propertyD. of blossoms
c(t) corresponds to the value of the blossom at its diagonal. Writagyan affine
combination ofu anb, t = zl;-;fla + =%b and using the proper@ 3 of blossoms we

4.1. THE BLOSSOMING KERNEL 33

express, for example, the last argument of the blossom as an affine combination

of a andb:
ct)y = f(t,...,1t)
N——
i b—t t—a
= f<t7”‘7t7ma’+ﬁb> (41)
(d—1)x)
= ZLft, . ta)+ELf(t,. ..t b)
N—_—— N—_——
(d—1)x (d—1)x

This can be done recursively for all remaining blossom arguments yielding

_ d—1 (d+1\ (b=t \H17 (_a)?
C<t) - Zi:O (i) (b—a) (b—a) f(a,...,a,b,...,b)
(d—i)x X
Zf;&b?(t)f(a,,a,b,,b)
(d—i)x X
It follows immediately that; = f(a,...,a,b,...,b). Thus, each control point
N — N——
(d—i)x 7%
has a blossom formulation.

4.1.2.1 Affine and multi-affine de Casteljau algorithm

It is possible to approach formyla 4.1 in the opposite direction and obtain a blos-
som evaluation algorithm from given control points. Suppose that the control
points{c; : 0 < ¢ < d} are given as blossoms. An affine combination of two
consecutive control points andc;,, yields

Building affine combinations of ali consecutive control points yields a set of
d — 1 points{c! = f(a,...,a, t ,b,...,;b) : 0 <1 < d— 1}. Repeating this
—— N ———
(d—i-1)x 1% ix
procedure with the intermediate poirtg : 0 < i < d — 1} yieldsd — 2 points
{Z = fla,...,a, t ,b,....b): 0<1i<d— 2} and finally, after the recurrence
—— N e —
(d—i—2)x 2% ix
was executed-times, one obtains a poift? = f(¢,...,t) : i = 0} such that
N——

dx
c(t) = cd. This leads to a recurrence formula which provides an efficient way to

34 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS
evaluate a blossom (and thus the value of a Bezier function) for givgnepeated
affine interpolation between two consecutive control points:

, b—t . t—a
c = At
' b—a ' b—a

i (4.2)

or, equivalently, in blossom format

INIL 4.3)
(d—(i+1)—j)x (j—1)x ix

=a fla,. .. a,t, - b, ..., b)

—— N — ——

(d—i—j)x (G-1)x (i+1)x

This recurrence is known ate Casteljau algorithminvestigated by de Casteljau

in [15] and [16]. The Blossoming principle provides a mathematical method to
access the intermediate points of the de Casteljau scheme. Moreover, a slight
modification of e3 can be used to compute arbitrary blosgdtgs - - ,t4_1):

f(a,...,a,to,"',t]‘,b,...,b) =
b(dt_i_j)x JX tX
— a,...,a ,to,~--,ti_1,b,...,0)+
b—a f(0 j—1) (44)
(d—(i+1)—j)x (G—-1)x X
tg__gf(a,...,a,,to,---,tj_l,b,...,b)
—_— — —— ——
(d—i—j)x (G—1)x (i4+1) %

This is the so-called multi-affine version of the de Casteljau algorithm. One com-
putes an affine combination of consecutive blossoms with respect to the current
argument of the blossom. It can be easily verified by inspection that the blossom
f(to, -+, tq_1) is symmetric: the valug(to,---,ts_1) is the same for each per-
mutation of arguments,, - - -, t;_1. In contrast to the affine version, afiésteps

of the multi-affine de Casteljau algorithm one obtains a pefint f(t, -, t4 1)

which is not incident or(¢). These points are of interest in theoretical consider-
ations, as will be demonstrated in following paragraphs.

4.1.3 Blossoming B-Splines

The blossoming principle for B-Splines is slightly more complicated. Consider
a B-Spline functionc(t) € Py, c(t) = S ¢;bf" (¢) defined on knot vector
7+ 0 <4 < n+ d. By properties 1-2 of B-Splines, sefe §A.1]1:@,) consists of
polynomial segments defined at intervajs< ¢ < 7;,1, d < i < n. Therefore,

4.1. THE BLOSSOMING KERNEL 35

in order to compute a blossom of a B-Spline we need to select an interval of the
knot vectorr. In the following we will denote a B-Spline blossom fef, 7, 1) by
fi(to, ..., tq—1). At that intervalc(t) is a polynomial, hence, blossom properties
[1{3 apply tof;i(to, - - - , ta—1).

It can be shown by a similar reasoning as for Bezier functions in previous
paragraph that each B-Spline control pairttas a blossom formulation. Consider
blossomf;(¢, ..., t). First, we writet as an affine combination of andr;

dx
Tit1 — 1 t—m
b= ———T+ ———Tiq1
Ti+1 — Ti Tit1 — Ti

Second, we expand the last argument of the blossom as follows:

ct) = filt,....t)

= f(t ... Tit1—t =Ty
- fz(tv atv Tit1—Ti T; "’ Tit1—Ti 7-1-1-1)

(d—1)x
= ZHEL R tT) ST filt T
R/—/ —

Ti+1—T; Ti4+1—T4

(d=1)x (d—1)x

In the second step of the expansion one considers the left and right neighboring
spans of the knot vector and expands the left and right terms of the above affine
combination with respect to intervals;_,, ;1) and(r;, 7;,2) yielding

fi(t,---,t,ﬂ') = fl(t, , L, 7-1 L+ t=Ti-1 Tz')
N—— N— __/ Tz Ti— Ti—Ti—1
(d—1)x (d—2)x

_ ifi(u’ Tio1,Ti)+

Ti—Ti—1
(d—2)x
t—Ti—1
+77’i—7?i—1 fl(t, Ce ,t, Tis Ti+1)

(d—2)x
and

filt, o tmi) = fill, S Tit2)

) ,7—'L+2 Ti+1
(d—1)x (d—2)x
_ Tiy2—t
- > fz(. '7t77_i+1a7—i)+
AR

Ti+2—Ti+1
(d=2)x

Ty))
Tz+2 Titl fz(s 7t77-z+2a7—z+1)
(d—2) %

Ti+2— Tz+1

Continuing this expansion for all remaining blossom arguments one obtains a tri-
angular scheme first three stages of which look as follows:

36 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

dx
f7<t7at7TZ) fi(tv"'7ta7—i+1)
S~—— ~——
(d—1)x (d—1)x
filt, o i1,) filt, ot Tis Tign) Jilt, oot T, Tig2)
S~—— S~—— S——

(d—2)x (d—2)x (d—2)x

(4.5)
On the way from top to the bottom of the triangle one multiplies the left lower
term by — “*j ' and the right lower term byﬂ wherej denotes the current
“stage” of the trlangle counted from The bottom line reached aftéexpansions
contains exactlyl + 1 blossoms with arguments consisting entirely of entries of
the knot vector. These blossoms have the format

{fi(Th -+ Thwam1) i —d < k < i}

It can be shown by collecting and multiplying the terrﬁ% and —7— F— for
1 <j <dthat
fl(ta s 7t) = Z;{;:i—d bz’Tfi(Tkv e aTk—i-d—l) (46)

dx

see e.g.[[65] or [76]. l.e., in front of the blossom the recurrence for B-Spline
basis functions is recovered. It follows that the blossom representation for control
points of the B-Spline segmentt), 7, < t < 111 iS¢;i_q = fi(Ticar1, 7).

These points are calladke Boorpoints due to Carl de Boor who discovered this
expansion. Though there are different approaches to derive the B-Spline basis
functions, see e.g. [68], we see that using blossoms and their properties this can
be accomplished easily. In [65] Ramshaw uses the Blossoming principle to derive
properties of the B-spline basis listed jn §A.1]1.3.

4.1.3.1 Affine and multi-affine version of the de Boor algorithm

The procedure sketched above can be approached from the opposite direction
which leads to an evaluation algorithm for B-Splines: Suppose the de Boor points
are given in blossom-format. Given a parameter const. = p such that

7. < p < 741 One needs to go up the triangle building the affine combination
of intermediate points w.ri. This yields a set offl + 1 — j intermediate points
{ci—d+j<k<i} atj -th stage. At the top of the triangle a poittis com-

puted which satisfieg! = ¢(u). This is the well known affine version oe Boor
algorithm for evaluating B- Spllne [66,41,176]. In the following we will use a

4.1. THE BLOSSOMING KERNEL 37

generalized multi-affine version of the de Boor algorithm. For that we change the
notation as follows:

Let be given a set of B-spline basis functiofl§”” : 0 < i < n} and
de Boor points{c? : 0 < i < n}. We wish to compute the value of a blossom
fr(to, ..., tq—1) for the interval(r;, 771) such thatr; < 7;,,. The intermediate
de Boor points aj-th stage are computed by the recursion

d=1-alty) di+allt)d T—d+j<i<I

| 4.7)
with o (t;) = 47

The recurrence is executed for< j < d obtaining a point? afterd steps that
corresponds to the blossofi(t, . . ., t4—1). The multi-affine de Boor algorithm

is also “triangular”, each intermediate point is the the linear combination w.r.t.
current blossom argument of its two predecessors on the left:

0
Crd+1
: 1
Cr—d

(4.8)

A cl v = fr(to, .o tast)

The multi-affine de Boor algorithm generalizes the multi-affine version of de Castel-
jau algorithm in previous paragraph. Itis possible to write the multi-affine de Boor
recurrence in blossom format see e.g. [76] — however, the notation which uses in-
termediate de Boor pointg : 0 < j < d is easier to handle in practical applica-
tions.

4.1.4 Blossoming tensor-product B-Splines
Let be defined a two-variate B-spline function
5: Oy — RY, s =s(u,v), s(u,0) € Prr X Pry

with (u,v) € Q,, C R? Q,, = Q, x Q,. In order to establish the blossoming
principle for tensor-products of B-Splines one has to apply the univariate blossom-
ing principle to each parametric direction separately [65) 64, 66]. The resulting
blossom of a tensor-product is a map

fLJ : Rk X Rl — Rl, f]’J = f[,,](uo, ey Uk—1;V0, - - - ,Ul,l)

where/ and.J denote the interval&;, 7,.1) and(v;, vy,) selected for blossom-
ing s(u,v) in each parametric direction. The properties of blossoms of univariate
polynomials apply to each parametric direction separately:

38 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

1. Identity between and the diagonal of the blossom:

if wy=u0<i<kandv,=v,0<i<l
then f],-](u(b'-"uk—l;v()?"'avl—l> - S(U7U)

2. Symmetry: the blossomyf; ; is symmetric in variables,;, 0 < ¢ < k and
vj, 0 < j < [l separately

3. Multi-affinity : f; ; is affine in each of its arguments, 0 < ¢ < k£ and
vj, 0 < j < [l separately

Based on these properties one can derive the blossom representation for de Boor
points of a tensor-product B-Spline and de Boor evaluation algorithm for tensor-
products of B-Splines, see [76], for example.

4.1.5 Unevaluated formulation of a blossom

It is easy to compute the value a blossom, once the connection between blossom-
ing and de Boor algorithm is established. Two famous algorithms for B-splines
can be formulated in terms of blossoms: the knot insertion algorithm (the “Oslo”
or “Béhm”-algorithm, see [74]) and degree raising, as Seidel has shownlin [75].
Another operations frequently needed in free-form modeling can be expressed
in terms of the Oslo-algorithm and thus, in terms of blossoming, for example:
evaluation of the function value or its derivatives (this follows from Progdgrty 1),
splitting of a curve or surface at a particular parameter value, extraction of a spec-
ified interval from curve or surface, and conversion between B-spline and Bezier
bases. In[[50] Liu has pursued an idea of writing a software library for CAGD
based solely on blossoming. In the following, we generalize this approach by
introducing unevaluated blossoms.

4.1.5.1 The polarized basis functions

The multi-affine version of the de Boor algorithm delivers a value of a blossom by
recursively computing affine combinations of de Boor control points. For that the
values of the control points must be known. In the following we assume that the
structure of the B-spline vector space (i.e. knot vector and degree) are known but
the values of the control points are not. Analogously to the definition of B-spline
basis functions (eq. Al1) we seek a formula which delivers the multi-affine, or,
“polarized” basis functions such that the value of the blossom is computed the
same way as the value of a B-spline function for any control point values.
The value of a blossom of a B-splin&) € P, ., c(t) = X" ¢:bd7 (1) is:

4.1. THE BLOSSOMING KERNEL 39

I
frto, ... tat) = > a7 (to,. .. ta_1)ci
i=I—d

where .
a;”" (to, ..., tg_1) =
(1= il (tar)) af (o, - taa)+ (4.9)
ad(ty) a?_l’T(to, ooy ta2)

with o
@ (to) = { é ! étie[rwise
The functions/ (t,) are defined as in e@.?. We call the set
{a¥(tg, .. ta1) T —d<i<I}

the polarized basis functionef P, .. Equation 4.p results from collecting and
multiplying the o] (¢;) and1 — o] (¢;) terms at each stage of the de Boor algo-

rithm (eq[4.7).
In order to compute all non-zero value’ (o, . . ., t,_1) efficiently for given
I andt,, ...ty 1 consider the following triangular scheme:
CLCIlid@Q, . ,td,1>
af~i(to, 1) (4.10)
a?(to,...,td_l) acli_l(toﬂfl) a?(to) =1

This time the recursion starts on the right lower vertéX#,) = 1) of the trian-

gle. We compute affine combination with respect to the current argument of the
blossom moving from right to left until aftef steps alkl+ 1 non-zero coefficients

are computed. In each column we move from bottom to top reusing the values
computed in previous steps. The computational costs of the algorithm are not
higher than the costs of the de Boor algorithm: There are tofadhages. Atj-th
stagej linear combinations need to be computed. Hence the cost of obtaining all
non-zerou{”” is O(d?) linear combinations.

4.1.5.2 Properties

The so obtained polarized basis functions posses the following properties:

40 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

1. ift;=t, 0 <i<dwehave! (t,...,t) = b>"(t)andc(t) = fi(t,...,1).
This follows from the diagonal property of the blossom.

2. Z?:_OI &?’T(to, R ,tdfl) =1

i £0if[—d<i<I
3. a; (tOw--atd—l){ —0 otherwise

4. a(to,.. .t 1) > 0iff 77 <t; <7y foro<j<d

The property 4 contains an important difference to the properties of B-spline ba-
sis functions, (seg 8A.1.1.3): We are free to select blossom arguments which are
spread over several intervals of the knot vector. Then, although property 2 still
applies, notalt®" (to, ... ,ts_1) : I —d < i < I are positive: Hence, the blossom
value is not necessarily a conﬁ]axombination of the de Boor points. Thus the
value of a blossom depends on the interval selected for blossoming. It is easy
to see thatf;(to,...,ta—1) # fs(to,...,ta1) if I # J. Consequently if not all
arguments stem from the same interval of the knot vector and the interval is not
given explicitely the value of a blossom is not uniquely defined; In order to cir-
cumvent that Ramshaw has defined conventions how to determine a valid interval
for blossoming given the blossom arguments the, so-called, argument overload-
ing [65,/64/66]. However, as we will see in sectjon|4.2, in our application (com-
position of two B-splines) the intervals follow from the structure of the problem
and cannot be selected by the overloading conventions.

4.1.5.3 Scalar product notation:a-vectors

In order to simplify notation, we introduce a vector notation for polarized basis
functions in the same manner as for regular basis functions in s¢ctipn A.1. We
denote the set of polarized basis functions by a vector

a? = |: ag’T(to, e ,tdfl) s ag’zl(to, e ,tdfl) :|

and write a blossom of a B-spling€t) as a scalar product:

fr(to, .. ta1) = [@g’T(tow--,tdq) ai’L(to,---,tdq)}
Cn—1

_ T
= a,c

1A “convex” combination is a special case of affine combination such that for some real values
v and> 7~ vic; we havey "' = 1 A {7; > 0: 0 < i < n}. Then the result lies inside the
convex hull spanned by the points: 0 < i < n.

4.2. UNEVALUATED POLYNOMIAL COMPOSITION 41

For simplicity, such vectors containing the values of polarized basis functions are
calleda-vectors.

The notation for two-variate polarized basis functions is the same as for two-
variate B-spline basis functions: Given a two- variate tensor product of B-spline
spacess(u,v) € Prr X Pro, Xig Xy L b (u)b “(v) we introduce two-
variate polarized basis functions

al}f{ﬂ'l lI(ILO7 ey U130, - 7Ul—1) — afﬂ—(uo, e ,uk—l) CL‘l]fv('UO; [P 7/Ul—1)

with integer indices< such that
K=i+mj,0<i<mA0<j<n=0<K<(m—-1)(n—-1)

In full analogy to 8A.1.1.4 we define @ — 1)(n — 1)-size vector of polarized
basis functions denoted fay , such thati-th entry of the vector is

k,1lv i
ag =ag’ (Uo, S >uk71a7}0>--'7vlfl)

We expand the matrix of tensor-product control points in row major order as

in §A.1.1.4 yielding

I—-k J—l
lev
fI,J(qu-wukfl;UOa---7'0171) = Z SKag’ qu--vukfl;UOa---;Ulfl)
i=1 j=J
= agvs

with K =i+ mj.

4.1.5.4 Summary

In summary, we note: there is the same scalar product notation for a blossom of a
B-spline function (curve, surface) as we have already defined for values of func-
tions (curves, surfaces) in sectioh A. A scalar product of the vector of polarized
basis functions multiplied with the control points of the B-spline yields the value
of the blossom. This is called thmevaluatedormulation of a blossom expressed

in terms of thea-vector.

4.2 Unevaluated polynomial composition

In the 1988 paper [17], DeRose has introduced a new approach to polynomial
composition of Bezier simplices of arbitrary dimension based on blossoming. The
continuation work published in 1993 [18] extends the algorithm to rational func-

tions and tensor products. The complexity of the algorithm was analyzediin [53],

42 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

where a modified version with optimal run-time complexity was described. We
want to generalize this algorithm in two ways: First, we introduce unevaluated
version of polynomial composition algorithm for both Bezier and B-splines. The
term “unevaluated” was chosen because the algorithm delivers the so-called com-
position matrix which transforms the control points of the outer function to con-
trol points of the result. Second, we show how to obtain the result in irreducible
B-spline form when both, inner and outer functions, are B-Splines (curve and sur-
face, with restrictions from sectign 8.2). We will first derive the algorithm for
computing the composition matrix for Bezier surface-curve case since it is more
straight-forward and better suited to demonstrate the concept. We first consider
the straight-forward algorithm and show how to reduce the complexity later on.

For sake of generality, in [18] and [53] a new versatile notation for indices,
basis functions and control points was used. Since we only intend to cover the
curve-surface case we use our own notation which is simpler. However, we will
not get around “multi-indices” used in [18]: they improve the readability of for-
mulas and are well suited to derive the implementation of the algorithms. The
original hyper-indices and multi-indices are not very advantageous when the inner
and outer functions are B-splines. Therefore we use a modified, more comprehen-
sive, version of a multi-indices, the so-called, v-index and c-index which will be
introduced below.

4.2.1 Reuvisiting the DeRose et al. algorithm

We start with a brief review of De Rose’s algorithm for Bezier surface and Bezier
curve. LetF(u,v) be a tensor product Bezier patch of polynomial degremd

[in each parametric direction. Furthermoredgt) be a degree Bezier curve

in the domain ofF'(u,v). The starting point of the algorithm is to represent the
outer functionf’ in blossom notation and to substitute the inner functibmto

the blossom expression. Spli(¢) into its coordinate polynomials:

T

610 = (ul0) o) = (S0, 3 uit0)

Here (u;,v;) denotes the coordinates of th¢h control point of the curves ().

Using diagonality of blossoms (propefty 1, §4]1.1) the componeitisanduv(t)
are inserted into the surface blossom yielding

H(t) = F (u(t), o)) = fu(®), ..., ult);v(t), ... o)) (4.11)

4.2. UNEVALUATED POLYNOMIAL COMPOSITION 43

SinceX>¢b¢(t) = 1, by blossom propert@3 we may expand the above blossom
into an affine combination of blossoms

H(t) = ba(t) f(ug, u(t), ..., ult);v(t),...,v(t)) +...

o B fug, u(t), .. u(t);v(t), ... u(t)

This expansion is done for all remaining blossom arguments in both parametric
directions of F' until the argument bags consist only of coordinates of control
points of G yielding

d d
H(t) = Z be[)(t) b;lk+l(t> f(ulo,,u%,vjkﬂ,,vjk”)

) Jk+1

The 1stterm in the above formula iga-[fold product of Bernstein polynomials,
result of which is a Bernstein polynomial of degr&é+1) times an rational factor
(seel[17], for example). The coefficientsandv; are constant, hence, the second
term reduces to a 3D point obtained by applying the generalized de Boor algorithm
directly to control points of". The control pointd H; : 0 < i < d(k + 1)} of the
curve H(t) are obtained by collecting the compatible terms on both sides of the
equality

d(k+1) 17 1d(k+1)
Zi:() Hibz‘d :d
d d .
Zio e ij-H b'LO R bjk'+l f(uz()’ . e 7Uik7 /Ujk+17 o e 7Ujk+l)

(4.12)

4.2.2 Computing the Bezier composition matrix

The generalization to unevaluated form is achieved by using the polarized basis
functions introduced in[84.1.5 and rewriting the equaftion]4.12 with regard to this
new notation. How this is accomplished is shown in the next paragraphs.

4221 Thev-index

First, we introduce a new notation for tuples of integer indiges . j..; from
eq.[4.12. Consider an ordered get= {0,...,d}. As the summation in for-
mula[4.12 goes on the subscripgs. . . , i, andjy1, . . ., jr+, take in values which
are permutations of entries frof. More specifically, the tuple§,, . .., i) and
(Jk+1, - - -, Jes) @re variations with repetition of sizeand! from the setP. The
notation for a set of all variations with repetition of sizérom d + 1 elements is
V'(d+1,k). An element froml’ (d + 1, k) is ak-tuple of integergio, . .., ix)

44 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

such that,, € P : 0 < n < k. We will refer to such tuples as/*indexX and de-
note them by’ V' (d + 1, k) or simply#,., x). We define following operations
on v-indices:

1. Concatenatiorof several v-indices is denoted BBy j. If ¥ € V' (d, k) and
7eV'(d,l)then?| 7€ V' (d, k +1).
2. “Absolute value 7] is defined a$i] = ig + ... + ix_1.

In order to simplify notation we write a nested iteration as ineq.|4.12 directly in
terms of v-indices: for exampl&;? ... 3¢ becomes ey (-

4.2.2.2 The composition matrix

The first term behind the summation from €q. 4.12 iga+ {) fold product of
Bernstein polynomials. l.e. we have

d(k+1) Akt))
+ 2050+
b?o (t) T b;ik+z(t) = z% b’L (t)pzo T

polynomials with indices,, . . ., jx+1 = %(ak) |4 DY @ vector

f— 10 .« ..
pi’(d,k) 17, — [Do d(k+1)

Note that according to product formula for Bernstein polynomials only the entry
Pliamliia| is non-zero. Now denote the degréé 1) Bezier basis of the product
by '
d(k+l1 d(k+l1
be=[6" (0) - i)]

and write the product in matrix format:

d d T
bio (t) T bjk_H (t) - bn Pt)7

Analogously, we write the blossom term from £q. 4.12 in scalar product notation
introducing a vector of generalized two-variate basis functions such that the blos-
som arguments are the variations of control pointsv;) according to current

v-indices. The vector is denoted Iafyf(d.k);j(d , SO that the-th entry ofa is

_ kil .
a; = a;" (Uigs - Wiy i Vg ys - Vg yy)

4.2. UNEVALUATED POLYNOMIAL COMPOSITION 45

This yields

“ay. . T
f (uio, UGSV ,vij) = a;(dﬁk);]q(deF

Rewriting eq[4.12 in terms of these new conventions we get

bl H = > b? pﬂfang (4.13)
Ve V' (d, k) N
V7e V' (d,l)

The under braced term in Hq. 4]13 is an outer product of two vectors with dimen-
sionsd(k + 1) x 1 andkl x 1. The result of this operation is a matrix with size
d(k+1) x ki, denoted byA ;. The basis of the produt, does not change during
the iteration, hence, we may take it in front of the summation obtaining

b’H = bl > Ay F
Ve V' (d, k)
v7ie V' (d,1)

In each iteration step the non-zero part of current marix (recall that always
only one entry ofp is non-zero) is added to the matrix from previous step. This
yields after(d + 1)**! steps:

bIH = bLAF

with
A= > Ay
VIlFEV (d,k+1)
The Bezier bases on both sides of the equation cancel out and we obtain a matrix
equation
H=AF

4.2.3 Unevaluated composition for B-splines

As already pointed out in_[18], composing B-splines is considerably more com-

plicated than composing Bezier polynomials. DeRose proposes to convert the
B-splines to composite Bezier format and apply the algorithm as described above
for each Bezier segment. The result is a 3D composite Bezier curve which can be
reduced to B-spline form by removing all unnecessary knots. We could proceed
in exactly the same manner and compute composition matrices for each Bezier
segment as explained in previous paragraph. Basically, conversion of mutually
continuous Bezier segments to a B-spline of the same parametric continuity re-
quires extrapolation between neighboring control points. This way one removes

46 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

redundant coefficients from the Bezier representation. This is known as “knot
removal’, seel[52], for example. Though knot removal tends to be numerically
unstable for irregular and dense knot vectors it is usually sufficient if the con-
trol points of the resulting curve are known. If, however, only the composition
matrix is known, the extrapolation has to be performed between the rows of the
composition matrix. Here the issue of numerical stability becomes more involved
because it enlarges the (albeit small) errors accumulated in composition matrix
(numerical analysis of the algorithm for B-splines is postponed to s€ctipn 4.4) In
addition, for efficiency reasons, a careful implementation of sparse matrix prod-
ucts is necessary. On the other hand, the full-size composition matrix (with all
Bezier knots unremoved) has approximatétiymes (is the degree of the inner
function) more rows than actually required. As will be shown in chdpter 7 this has
dramatic influence on efficiency when solving the inverse problem. Therefore, we
develop the composition of B-splines without this intermediate conversion: we
compute the B-spline composition matrix which contains no redundant rows.

4.2.3.1 Preparing the B-spline composition

Let G(t) = Y2} G;b%7(t) be a B-spline curve in the domain of the B-spline
surfaceF (u,v) = 0= Yot b8 (w)b§ (v). Denote the components 6ft)

by (u(t),v(t)). The starting point for computing the control points of the B-spline
curve H(t) = F(u,v) o G(t) is to select the intervals and.J for blossomingF’
and insert the curve into the blossom representatiafi: of

H(t) = F (u(t),v(t)) = frs(u), ..., u);v(t),... (1)

k l

Assume for the moment that the surface consists only of one B-spline patch. Then
we may proceed in the same way as|in 84.2.2 obtaining a decomposition of the
above equation into

d d
Hty =Y ... bf(;T(t)---b;»ll;:l(t)f(uio,...,uik;vjk+1,...,vjw) (4.14)

0 T+t

The indices/ and J of the surface blossom may be skipped because the two-
variate B-spline basis consists only of one segment in each parametric direction.
For a general B-spline surface consisting of several polynomial patches, some pre-
processing and additional notation are required as will be shown in the following
paragraphs.

4.2.3.1.1 Merging the knot vectors of" and G The first subtlety with com-
posing general B-splines is that a knot vector sufficient to repreSemiust be

4.2. UNEVALUATED POLYNOMIAL COMPOSITION 47

constructed from the knot vectors 6fandG. Therefore, one cannot write the
formulas in the straightforward manner as for Bezier surfaces and curves. Before
the composition starts, the knot-vectors of B-splidésnd G must be merged

as follows: We compute the parameter values whichG(t) intersects the knot
lines of F. Letz be an ordered set of all real solutions to polynomial equations
pi =u(t):k—1<i<mandy; =v(t) : l —1 < i < n. Following De
Rose’s terminology we refer to these knotshasakpoint knots We introduce

new terminology:

e The curveG'(t) obtained by inserting the new knatsnto the original knot
vector is calleccompatiblewith F. Its knot vector is the union of original
knots and the breakpoint knots§ = 7 U 7. The compatible knot vectar
has the format = {...,7,..., 74,1, ...}, Where the dots symbolize that
there may be several knots from the original knot vectbefore, after and
in-betweenr, andz,, ;.

e The segments of”'(¢) such thatt € (r,,7,,,) are calledbreakpoint seg-
ments

This has two consequences: First, the breakpoint knots mark locations @Where
enters a new B-spline patch &éf and we need to select blossoming intervals
and J accordingly (see also the example in figlire] 4.1; here, the intervals will
change three times). Second, the restriction to intefmalr,, ;) limits the range

for iterating over the indiceg, . . ., ji4; in €q.[4.14 and it determines the indices
of the control points for current breakpoint segmentiof

4.2.3.1.2 Determining the B-spline basis off The second difficulty is that

the result of multiplying the B-spline basis function (first term in[eq. 4.14) is a
general B-spline function and there is no such simple formula as for Bernstein
polynomials to obtain its coefficients. As in the Bezier case, the B-spline basis of
the product determines the basis for the composed clrv&herefore, in order

to extract the composition formulae we need to determine the degree and knot
vector of the B-spline function resulting from ¢g. 4.14. Obtaining the coefficients
efficiently is more involved and we defer it tp 84.3.2. However, the sufficient B-
spline basis to represent the product can be determined a-priori: The degree of the
B-spline is the product of degree Gfand sum of degrees @f in each parametric
direction: d(k +). The knot vector needs to reflect the fact that the degree of
the product is higher then the degree of the original B-spline, yet the continuity is
the same. The resulting knot vector will contain only knots from the merged basis
of G’ with multiplicities determined as follows: let,; be the multiplicity ofi-th

48 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

distinct knot in7’. The continuity at a knot is degree minus multiplicity, hence,
following identity must hold for the new multiplicity,:

d—m; =d.(k+1)—n; =>n; =m; +d.(k —1—1)

This yields the smallest possible knot vector with sufficient support of the product
B-spline, in the following denoted byr”. The size of the product B-spline is
determined as the size @#fminus polynomial order of the product.

Note thatr is the “worst-case” knot vector; the actual continuityfbfcan be
larger. Consider figue 4.1: the cur@gs linear with no internal knots ané is bi-
cubic with two internal knotg,; andv;. Hence, the curvél will have polynomial
degrees and will be C? continuous at both breakpoint knots. However the basis
of G’ consists of piecewise linear polynomials which are, theoretically, 6y
as demonstrated by the figure on the right. Since the continuity of the product
cannot be higher than the continuity of the operands, the product will be also only
C° at both breakpoint knots, as the figure demonstrates (the product is shown in
bright gray). This means that the multiplicity of knots will be higher than really
required. This can be avoided be raising the degree ¢ cubic for the price of
higher degree of the resulting curve. Alternatively, one can apply “unevaluated”
knot removal to rows of the composition matrix, as mentioned above.

4.2.3.2 The B-spline composition formula

After the B-splinesF’ andG were made compatible and the basis for the B-spline
H was constructed we can start with computing the composition of B-splines. We
seek the control points of the curve

H(t) =F (U, U) © G/(t)v S <Iivzi+1)

We use the notation from previous paragraph: wedenotes the knot-vector of
H and7’ is the merged knot vector @ which already contains all breakpoint
knots:

1. Determine the indices of influenced control pointd&f), ¢ € (7;, 7;.1);
this is accomplished by locating knats andng such that

p < 1; < p1 ATQ < (Ti1) < TQi1

Then, by local property of B-splines, the breakpoint segment{r;, 7, ;)
is determined by control points with indicés— d(k + 1) to Q

2. Determine the indices of control points of all internal segmentg @fhich
contribute to desired breakpoint segment. Locate knots ffomith indices
R andS such that following relations apply:

! / / /
TR < T < Tri ANTe < (Tig1) < Toyy

4.2. UNEVALUATED POLYNOMIAL COMPOSITION 49

»
>

o Lo t

Figure 4.1: Left: the B-splines’ andG. WhereverG crosses a knot-line of’

a new knot must inserted intG@. Right: the symbolic computation of products
causes redundant factorsifi The surface i€? continuous at knot lineg; and

v; but the worst-case basis féf is apparently only° continuous.

It follows that we consider the control points Gf with indicesk — dto S

3. Finally, determine the intervalsand.J for blossomingF'. Since each break-
point segment is completely inside one interval from knot-vectoasid v
the blossoming intervals and.J must satisfy following relations:

pr < u(z;) < pry Avy <o) <vip
With so determined ranges, the composition formula is:

Q d-(k+1),m .
2= pd. (k1) Hib; (t) =

S d d d, d, .
Zs:R—d Zf;r:s T Zj:H:S bioT(t) T bjk:_l (t> fI,J<ui07 cey Wiy Uggyqy - - 7vjk+l)
(4.15)

The iteration ranges follow from the local support properties of B-splifes (8A[1.1.3)
and can be derived from the B-spline definition and from the de Boor algorithm.

50 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

The first “Y"" with iteration variables symbolizes the segment-wise composition
of internal segments a&’. Note that it is not necessary to iterate overgation-
trol points of G’, since at most/ + 1 subsequent B-spline basis functions can be

simultaneously non-zero, sefe 8A.1]1.3.

4.2.3.3 The B-spline composition matrix

Analogously to the Bezier surface-curve composition, the B-spline composition
matrix is obtained by rewriting ef). 4]15 in matrix notation. One distinction to the
Bezier case is the new iteration variablevhich represents the current segment
of G'(t). For thes-th segment the variations @f, . . ., j.,; are taken from the
ordered seP, = {s,s+1,...,s+ d}. The set of all possible variations of size
k from the setP; containingd + 1 elements is denoted by (d + 1, k). This
generalization of v-indices tB; (d + 1, k) is calledshifted v-indexand is denoted
by, € V! (d+ 1, k).

In order to obtain the matrix representation we proceed as follows: Let the
size of thek + (-fold product of B-splines from ef. 4.15 ke The product of; +{
B-splines is a B-spline of degre&k + [) with coefficientsp; : 0 <i < ¢:

q—1

bil(;ﬂ'(t) . bd,T (t) _ Zp’;o ----- Jk41 b?(k-ﬁ-l)ﬂr (t) (416)

Jk+1
=0

For a fixed breakpoint segment only the coefficienjts /**" with indices P —
d(k +1) <i < @ are considered. Recall that we have restricted the composition
to one breakpoint segment, thus only the coefficient according to current range
for the control points offf are of importance. Hence we ggt /"' = 0 for
Q < i< P —d(k+1). Denote the size vector containing these coefficients by
Pz,|7.- Then the product in scalar product notation is

b7 (t) -+ U7, (1) = b p

Jk+1

(4.17)

7s|7s
The B-spline blossonfi j(w,, - - -, Ui, V.., - - -, Vj,,,) IS expressed as a scalar

product of polarized basis functions and the control pdiht§Ve denote the vec-
tor of polarized basis functions ka?j so that the-th entry ofa is

R k7T7l7U
a; = q, (10

i ...,uik;vjkﬂ,...,vjk“)

The a; are computed as irff §4.1.5 with respect to blossoming intefvalsd .J.
This yields

T
fro(igy o WiV s Vg,,) = ag 5 F (4.18)

4.3. EFFICIENCY AND DATA STRUCTURES 51

Substituting 4.1]7 and 4.1.8 info 4]15 we obtain
S
b'H= > > bl pial; F (4.19)
s=h=d 7 e V! (d+1,k)
Js € Vi(d+1,1)

Evaluating the outer products of the two vectors yields
Arg = Prprasg,

The composition matrix is obtained by iterating overall 7, € V! (d + 1,k + 1)

S
A=Y > Ay (4.20)
s=R—d 75eV!(d+1,k)
Js€VI(d+1,0)

Note that only that rows of the composition matrix which correspond to non-
zero entries of the current vectpg, ;; will be computed. In order to obtain the
completecomposition matrix one needs to repeat this procedure for all pairs of
breakpoint knots in. SinceC" continuous segments of a B-spline curve share
r 4+ 1 control points care has to be taken that rowsAo€orresponding to these
common control points off are not overwritten.

4.3 Efficiency and Data structures

The procedure described in previous section is well suited for demonstration pur-
poses. However, the iteration over all variations of indices in eq.] 4.20 would
be extremely inefficient: obtaining the complete composition matrix requires ap-
proximately(p — d).(d + 1) iterations. For example, if the surface is of degree

k =1 = 3 and the curves has degre@ = 3 andp = 20 the algorithm termi-
nates afters 69000 iterations. In[[18] and [53] several methods were proposed to
reduce the complexity of the composition algorithm for Bezier simplices. There-
fore, in the following we will concentrate only on composition of B-splines. The
objective is to show that similar statements as in the before mentioned papers
about “one-permutation” and “optimal” algorithm for Bezier simplices are also
possible for unevaluated composition of B-splines.

Paragraph 4.3]1 is an excursion to combinatorics: we show how many unique
products and blossoms are necessary to compute the composition of two B-splines.
Furthermore in[84.3]2 an efficient procedure to obtain the coefficient of B-spline
product function is described which utilizes the local properties of B-splines. Us-
ing the results gained iff 84.8.1 ih 84]3.4 we describe an efficient data-structure
for storage of intermediate results of the algorithm.

52 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

4.3.1 The combinatorics

Analysis eq[4.14-4.20 reveals two possibilities for decreasing the number of eval-
uations:

1. The(k + [)-fold product of B-spline basis functions (¢q. 4.17) does not de-
pend on the ordering of indices if | ;. This follows from the commuta-
tivity and associativity of productsi-b-c=a-c-b=b-a-c=....

2. Similarly the blossom properity 4, 84.]1.1 states that inside of one breakpoint
segment the value of the blossom term in[eq.}4.18 does not depend on the
ordering of entries i, and;.

This leads to following consideration: first, compute and store only unique non-
zero products and blossoms and second, expand the stored values into the matrix
A such, that the occurance of each particular combination is taken into account
appropriately many times. This raises two questions:

e How many unique product and blossom expressions exist?

e How many times each combination appears in the nested iteratior{ in €q. 4.20?

4.3.1.1 The c-index

We need an iteration scheme which ignores the ordering of entries in a v-index. In
other words, in all formulae derived in 84.R.2 and §4.2.3 all permutations of fixed
1S andys yield the same product and, inside of one breakpoint segment, the same
value of a blossom. For example, consider all prodb@f@f) e bfj(t) such that

2 <i4; < 4forl < j < 5: The indices in the tuplé¢i,, . .., i5) take in values

from the setP, = {2, 3,4} which we denote by a v-index € V; (3,5). Iterating

over all v-indices inVj (3, 5) yields all variations of sizé out of the3 elements

in P,. However, since the ordering of entriesinis not of importance, many of

the products are identical, e.g.:

bababsbsby = bobsbabsby = bybabobsbs = . ..

In order to identify a unique product we only need to know how many times
a specific entry appears . In the above example the indices3, 4 appear
(2x,2x, 1x) in different order but for each permutation of twas, two '3’s, two

'4’s we obtain the same result. The 3-tupie2, 1) which contains the number
of occurancies of elements frof, in 7, represents a siz& partitioning of the
numbers = 2 + 2 + 1. Generally, all v-indices; € V! (m,n) (in this casen =

d+ 1, n = k + 1) which contain the same number of the same elements from

4.3. EFFICIENCY AND DATA STRUCTURES 53

can be compactly represented in terms of a sizgartition of number. All such
partitionings belong to the class of combinations with repetition frarof sizen
which we denote by, (m, n). We call one such partition@mbinatorial indeor
justc-indexand denote it by, € C’ (m,n), or justz; whenm andn are fixed. For
fixeds andP; = {s,...,s +m — 1} the c-indices correspond to “hyper-indices”
used in [18] and [53]. In these papers a recurrence was defined to compute all
c-indices givenn andn. This allows to write iteration formulae fron §4.2.2 and,
with slight modifications also the B-spline formulae from §4.2.3, directly in terms
of c-indices (for B-splines we need to consider that iteration needs to be performed
over all subsequent segments). We define following operations on c-indices:

1. Component-wise summatiohc-indicesi, € C’ (m,n) andi; € C’ (m, o)
yielding k, = 7, + 7, wherek, € C’ (m,n + o)

2. Absolute valuef a c-index isfz; € C. (m,n)| =ig+ ... + ip_1 = n.
In the following a summation overall € C; (d + 1,k + 1) is denoted b¥_ e s (441,41 -

4.3.1.2 The relation between v-indices and c-indices:
“The c-number”

The c-index notation considerably reduces the number of necessary iterations.
Note that the number of v-indices I/ (m, n) is m" compared to number of c-
indices inC! (m,n) which is q’”n '). However, in order to compute the com-
position matrix, in ed. 4.20 al varlatlons of indices (all v-indices) must taken into
account. Thus, we need to know how many times a particular v-index will appear
during the iteration. In other words we need to know how many v-indices are
mapped to a particular c-index. This is a nice exercise in combinatorics: as above,
consider, for example, the c-indexe C% (3,5) = (2,2,1). Each corresponding
v-indexi, € Vj (3,5) has five positions containing 5 numbeizs< 2', 2x’3 and

1x’4’. Take 5 positions of a v-indeX (3,5) and place the "2’ in two of them.

This gives(g) possibilities. Next, place the two ’'3’s in the remaining free posi-
tions which is possible itﬁ"’f) ways, since two positions are already occupied by

the '2’s. At last, place the *4’ for which there afé~) possibilities. This gives
a total of

5 5—2 5—-2-2\ 5l 3! 15l 0
2 2 1 3.2l 1.2 ore1 2121

possibilities to expand the c-index = (2,2, 1) into v-indices. We call this a-
numberof a c-index a denote it by z,. The above procedure can be generalized
for any c-index fromC", (m, n) yielding

n!
#i1, € Cl (m,n) = (4.21)

Zo! . 'Z'mfl!

54 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

In the nominator we have the size of the v-index, the entries of the c-index appears
in the denominator. Thus with each c-index there associated a c-number that deter-
mines the number of v-indices which can be mapped to a particular c-index. Now
we see that in eq. 4.P0 it suffices to compute only products and blossoms corre-
sponding to all;, € C%.(d+ 1,k +1). If eachi, is multiplied by its c-number

(i.e. it is added#z,-times) all variations which are necessary for the composition
matrix will be automatically considered.

4.3.1.3 The total number of unique c-indices

Consider ed. 4.15: in order to compute all segments of the dififvgwe need to
iterate over all segments of the inner B-spliEét). Denote the number of control
points of G’(t) by p and its degree by. Then the indices,, .. ., jr; will take in
values fromP; = {s,s + 1,s+d} for0 < s < p—d + 1. Hence, we need to
determine the total number of unique c-indices for all segments contained in the
setP ={0,1,...,p— 1}.

For simplicity in the following we setn = d + 1 andn = k + [. Since
eachP;-set has the same size there will be the same number of c-indices for each
segment which ig™ "~ 1). Recall that although corresponding c-indices from
different segments have the same entries they are mapped to different v-indices:
for examplez, € Cj(3,3) = (0,1,2) is mapped to all v-indices of size 3 from
Py, ={0,1,2}, 7, = (0,1,2) is mapped to v-indices fron?, = {1,2,3} and so
on. Note that there are redundant c-indices in neighboring segments, every two
neighboring segments overlapqim — 1 entries. For exampley, = (0, 1,2) and
71 = (1,2,0) are mapped to the identical set of v-indices:

70 =(0,1,2)
(1,2,2),(2,1,2),(2,2,1)
71 =(1,2,0)

In general, all c-indices which have a '0’ at the right-most boundary already ap-
pear in the previous segment. Therefore, for each segment such thdt the

size of candidate sé&t, is reduced by one and we may skip the right-most entry
which appears 0’ times. This yleld@“” 1) — ("”:‘2) unique c-indices for

each segments, except the first one — which has full numk(é’i‘bfl) c-indices.
There argp — m) segments, hence, total number of unique siz®mbinations
of “bandwidth” m from p elements is

(p_m+1)'<m+n—1>_(p_m).<m+n—2> (4.22)

n n

4.3. EFFICIENCY AND DATA STRUCTURES 55

4.3.2 The products

Next we discuss the problem of multiplying B-splines. This operation is re-
quired in equation§ 4.15-4.20. We wish to compute the coefficigntiven

k + l-fold product of B-spline basis functions which define the cui@¥/¢) =
S Gibi™ (0):

k41 q—1 L
BT () - BT () = T 087 (1) = D0 bt pio et (4.23)
7=0

Jk+1
=0

4.3.2.1 Determining the number of unique products

Armed with the combinatorics from previous paragraph we can easily count the
number of unique B-spline products givenk, [andd: The number of unique
non-zero products required foompletecomposition matrix is given by the num-
ber of shifted c-indices which is determined by gqg. #.22. For comparison, if
p =20, k+1 =6 andd = 2 the economy-factor compared to the straight-
forward algorithm is69000 : 385 ~ 180. The c-number (equatign 4]21) defines
how many times a specific combinationisfwill be encountered during the sum-
mation. Hence, re-writing ef]. 420 in this “economy” c-index notation yields

A=) > #1185,) (4.24)

s=R—d VieC!(d+1,k+1)

The subscript — (u,v) denotes a conversion of current c-index to a pair of c-
indices which determine arguments of the unevaluated surface blossom. We leave
this conversion open unti[§4.3.3 where an algorithm for obtaining the matching
blossom is described.

4.3.2.2 Multiplying B-splines

The vectorp;, contains coefficients of the B-spline function from feg. 4.23. There
are three possibilities to compute the coefficients:

1. Convert each operand B-spline basis function to composite Bezier form,
multiply the corresponding Bezier segments obtaining a composite Bezier
function of degreel(k + [). Since it is known in advance which knots are
redundant (refer tg 84.2.3) these knots may be removed yielding the desired
coefficients of the product. This method was used, for example, by Kazinnik
and Elber in[[45].

2. Use Mgrken’s symbolic method [58] and recursively multiply each pair of
operands

56 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

3. Interpolate the product. Determine the degree and knot vector of the prod-
uct B-spline as explained i 84.2.3, evaluate the basis functions and values
of the operands yielding a well-determined linear system of equations in
unknownsp;,. Then solve the system obtaining the desired values

Although we don't have the ambition to prove that, it appears that the first two
methods are equivalent. [0 [58] Magrken has shown how to express a product
of two B-splines recursively as a linear combination of the coefficients of the
operands. The recursion is quite complex and we will not rewrite it here. It
was designed to compute a product of two general B-spline functions; hence, we
would have to multiply the operands of thket (-fold product recursively. With
regard to equivalence of the first two methods note that if the minimum support
B-spline basis of the product is known in advance then following quantities can
be precomputed:

¢ Knot insertion matrices for B-splireBezier conversion,[§4.1.5

e Factors resulting from multiplying Bernstein polynomials, seé [41, 84.1, eq.
4.2d]

e Knot removal matrices (for the BezierB-Spline conversion, se¢ §4.]1.5)

Then, using matrix multiplications, a concatenation of following operations yields
a closed formula for multiplying B-splines:

1. Transform the B-spline operands to Bezier format
2. Multiply the Bezier segments

3. Remove the unnecessary knots

We conclude that if a tough algebraist undergoes that task Mgrkens formula is
revealed. The amount of work required by Mgarken’s algorithm is, in general
setting,0O ((d(k: + l))4) linear combinations per B-spline segment, see alsb [81].
Similar result should be obtained for the “Bezier-conversion” algorithm. Keeping
track of the sparsity of the operands (note that we multiply only B-spline basis
functions, not general dense B-splines) and intermediate result should improve the
run-time behavior of the algorithm. However, the implementation is very sensitive
to programming errors and requires a considerable effort. Therefore we have used
the third method which is easy to implement and more efficient — if the properties
of the interpolation matrix and the sparsity of the product B-spline are taken into
account. Since this is essential for an efficient implementation, we will discuss it
in more detail.

4.3. EFFICIENCY AND DATA STRUCTURES 57

4.3.2.3 Determining non-zero coefficients of the product

In the resulting product function (elg. 4]23) the degree of the original B-sgline
is increased by the factdk + [). Accordingly, the number of coefficients in the
product function (and in the resulting B-splifig) increases approximately of the
same factor. Fortunately, not ajlcoefficients of the product function will be
non-zero and the sparsity pattern is easy to predict: The non-zero interval of a
B-spline basis functioh?” (t) ist € (r;, 7;+a41), See e.g[J41]. Hence, the product
H?if) bi]?T(t) will be non-zero only at the intersection of the support intervals of the
operands. Since a B-spline function is zero if and only if its coefficient are zero
we conclude that the non-zero coefficients of the product function will appear only
inside of certain band-width.

Recall that the knot vector of the product function, contains only knots
contained in the knot vector of the operands, hence a knot framl also occur
in 7. Let iy, andiy.. be indices such that,.. — inin < d. Then the non-
zero interval for the product ise (7; . . Ti....+d+1). It follows that the non-zero
indices of the product must be inside of the rangg — d(k + [) tO jmax Where
Tmin < Timin < Tjmint1 @A, <7y <oy .

To see the effect of that, consider a B-spline bdsis2, p = 6 and knot-vector
T = {0,0.3,0.4,0.7, 1} shown in figurd 42(a). The knots with multiplicities
m, = {3,1,1,1,3} are marked by dots. Consider a 3-fold produgisb; for
i,j € P =A{0,...,5}. bo(t) # 01if t € (1, 73) = (0,0.3). The 3-fold product
bob;b; # 0iff ¢ < 2 A j < 2, because fot € (0,0.3) only b; andb, (colored
bright in the figure) are simultaneously non-zero. figuré 4.2(b) shows the product
bob1bo in bright gray and the operands in black. The product B-splinelhass,
q = 22, knot vectorr with m,, = {7,5,5,5, 7} and the non-zero coefficients are
aggregated in interval < i < 6.

4.3.2.4 Optimizing the product interpolation

The interpolation of products was applied for example by G. Elber_ in [23] for
computing products of two B-splines and can be very simply extendedHiold
products of basis functions as follows: We state the interpolation problem with
the system matriMl

Mp;, =vi,;Vis € Ci(d+ 1,k + 1) (4.25)

The rows of the matriXVI contain basis functions of the product basis evaluated
at the Greville abscissae of the product B-spline. l.e.jtlieelement in the-th
row of is /"7 (&) whereg, = ;7 1., The vectorv;, contains values of

G's basis functions evaluatedé@tand multiplied according to current c-index, i.e.

58 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

(@) (b)

Figure 4.2: Demonstrating the economy of utilizing the predicted bandwidth of
a B-spline product: The-fold product of B-splines is non-zero only at the in-
tersection of support intervals of its operands. Here, we multiply the first three
basis functions (colored bright gray in the left figure). The right figure shows the
operands and the result (colored bright gray); The resulting B-spline function has
only 7 non-zero coefficients out @p.

thei-th entry ofv is b3:7 (&) ... b (&). The solution of the inverse problem

T+l
h/_[i1 Vi, = Pa, (426)

yields the coefficients of the product function for the current c-index.

The complexity of this method is influenced by the size and shape of the matrix
M and by the number of right sides in ¢q. 4.25, i.e. by the number of unique
products. Giverp, k, [andd as above ang as the size of the producM is
a banded matrix of size x ¢ and with maximum upper and lower bandwidth
l=u=(d+1).(k+1). It will be close to be diagonally dominant and, typically,
no pivoting will be necessary. We compute banded LU-decompositidvd ahd
solve the system for all right sides simultaneously. LU decomposition for banded
matrices can be computed in cir€a2.q.l.u) operations, seé [29]. If no pivoting
is applied, the triangular factors of sigex ¢ inherit the lower L) and upper ()
bandwidth fromM. The solution for each; is obtained by forward and backward
substitution inO (2.¢.1) + O (2.q.u) operations. We have tested this method with
large and high degree B-splines. The performance is satisfactory for middle-sized

4.3. EFFICIENCY AND DATA STRUCTURES 59

data sets (see sectipn}4.4), for large data sets the back-substitution unacceptably
slows down the execution of the algorithm. This happens if the number of “right-
hand sides” is much larger then the size of the matrix. In this case, it is more
efficient to compute the inverse &f and obtain the coefficients of the product
B-spline by means of efj. 4.26. Note that in this case the complexity of computing
M~ is only only as large as computing the banded LU-decompositidv pfus
computing the solutions fay right-hand sides (initially set to unity matrix). We
utilize the knowledge about the predicted bandwidth of the rggulind multiply
only a sub matrix oM ~! and subvector of;. For very irregular and dense knot
vectors pivoting becomes necessary in order to stabilize the LU-decomposition.
Then, no prediction on bandwidth &fcan be made; However, the predictions on
maximum number of non-zero entrieslvis columns still apply.

A great advantage is a simple implementation once a LU decomposition is
available; a good implementation of banded LU-decomposition is, for example,
GDBLU in LAPACK, see [2].

4.3.3 The blossoms

In this paragraph we discuss efficient evaluation of all unique blossoms required
in equation 4.24. When counting the number of unique blossoms we need to
consider that new set of blossoms is computed for each breakpoint segment. Also
we need to consider that blossoms of a tensor-product B-spline are not invariant
under permutation of variables from different parametric directions.

More specifically, in the following we seek unique vectcﬂ%;j. in equa-
tion[4.24 for alli, € C'(d + 1,k) andj, € C’(d + 1,1). Furthermore, given
a non-zero product corresponding to a concatenation of c-indigesve need to
identify all compatible blossom corresponding to a decompositigne C(d +
1,k +1) — (us,vs) whereu, € C!(d+ 1,k) andvs € CL(d+ 1,1)

4.3.3.1 Determining the number of unique blossoms

The total number of unique blossoms is determined by the number of unique non-
zero products. Inside of one breakpoint segment a blossom does not depend on
the ordering of arguments, s€e §4]2.3; hence, the total number of unique blossoms
per breakpoint segment of size= S — (R —d)+1 (S andR are defined in[§4.2,3)

is given by eq| 4.72:

-2 (1) (4] -
o= ae) [)

60 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

4.3.3.2 Obtaining the compatible blossoms

We need to consider a decomposition of c-index which identifies a product into all
c-indices which identify all compatible tensor-product blossoms. The subtlety is
that one cannot mix the variables throughout the argument bags of tensor-product
blossoms. Consider, for example a c-index CY (3,6) = (3,2, 1). One v-index
corresponding ta, = (3,2,1) is#% € V!(3,6) = (2,2,2,3,3,3,4). This permu-

tation of indices has to be distributed throughoutdlendv-argument bags of the
blossom. In contrast to product terms which are independent under variations of
their arguments the blossoms of a tensor product are not. E.g., we have

f (U27U2au2;v37v3av4) =f (U27U2,U2;U4,U37U3)
but
[(ug, ug, ug; vs, v3,v4) # f (U3, us, Us; V2, V2, V2)

From this we conclude that only blossoms corresponding to special combinations
of arguments will match one product. All such compatible combinations are ob-
tained from current c-index as follows: given

s €C(d+1,k+1)
each decomposition — u,, 7, such, that
Is =Us + Vs ANTUs € CL(d+ 1,k) ANvs € CL(d+ 1,1) (4.27)

delivers a valid blossom. For example, settingandd as above, the c-index =
(3,2,1) is decomposed into all matching c-indices as follows (the '2’ subscripts
are omitted):

€ CH(3,6)=(3,2,1) - u,v

ueCi(3,3)| veli(33)
(0,2,1) (3,0,0)
(1,1,1) (2,1,0)
(1,2,0) (2,0,1)
(2,0,1) (2,0,1)
(2,1,0) (1,1,1)
(3,0,0) (0,2,1)

Note, that not all c-indices frord’, (3, 3) appear in the above table: e.g., for
(0,1,2) + (i, 7, k) = (3,2,1) no compatible, j andk exist. Since each product
which corresponds to c-indexappears only once during the summation, we need
to consider all matching blossoms, otherwise, certain blossoms are missed and the

4.3. EFFICIENCY AND DATA STRUCTURES 61

composition matrix would be incomplete. Thus, the curve-surface composition
matrix is computed as:

S

A= #1s - pra; o o (4.28)
Z Z s Tl Us,VUs

s=R—d Vi,cCL(d+1,k+1)
denotes a sum:
a{"ﬂs 755 = Z a%jais
us € CL(d+1,k)
v, € CL(d+ 1,1)

s = Ug + Ug

whereal

Ts— s, Vs

4.3.4 Implementation: the Multi-index tree

On-the-fly computation of blossoms in ¢g. 4.28 would be extremely inefficient.
To see this recall that the tensor-produaetectors arise from concatenation of
a-vectors for each parametric dimension of the tensor product. An inspection
of formulas 4.2 an{l 4.28 reveals that the samectors will appear in the de-
composition of different c-indices. If the blossoms were computed on the fly, we
would have to compute identicak several times. The evaluation of afvector

for a degreel B-spline require® (d?) linear combinations for B-spline of degree

d. For a tensor-product of B-splines with degréeand! the concatenation re-
quiresO (k + 1) multiplications, thus, we have complete cost of building ane
circaO (k* + 1?). Clearly, the performance is improved if all uniqavectors are
computed only once, stored in a suitable data structure and retrieved on demand.
In the next two paragraphs we introduce:

1. The, so-called, Multi-index tree — a data container which allows to insert and
retrieve a B-spline blossom (tlevector) identified by a c-index i steps where

d is the degree of the B-spline.

2. An algorithm using the Multi-index tree which is optimal according to Mann’s
definition, [53]: among all algorithms it requires the minimal number of linear
combinations to compute the value of a blossom

4.3.4.1 Storing the blossoms in a tree

Design of a “suitable” data structure which stores all unique blossoms is a trade-
off between storage requirements, fast access and re-usability of the implemented
data structure. Given a c-index we must be able to insert or retrieve a precom-
puted entry fast, possibly without any kind of preprocessing, sorting or ordering.
DeRose et al. and S. Mann [18], [53] have used a lexicographic ordering of hyper-
indices (c-indices). While this is easy to implement for Bezier polynomials (or for

62 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

n
§

[2,0,1,1], = [2,2,4,5]

EN) 4—

/) P

1234/|/2345].. . S+ p-m p-1p .|| p

23

A

W

NN
U1 «
(e}
~

—

e=[2,2,4,5]

Figure 4.3: Accessing an entry in the Multi-index tree

B-splines converted to Bezier format), it becomes difficult when dealing with B-

splines directly. We did not succeed to find an ordering which would reflect the

concept of shifted c-indices as described in paragraph|4.3.1. Hence, we propose

to store entries which can be uniquely identified by a c-index in a tree structure.
We want to storea-vectors which are uniquely identified by a c-indexe

C’ (m,n). Recall that a c-index represents unordered combinationsragegers

from P, = {s,s + 1,...,s + m} such thatz;| = n. Each c-index is mapped to

#7, v-indices of sizé;. Representatively, one v-index can be obtained from given

c-index by counting the number of entrigdor 1 < r < m. This corresponds to

component-wise expansion @finto v-index;j of sizen:

nx
Ts = (i1, yim) = (8,...,8, s+ 1,...,s4+1, -, s+m,....,s+m)
————

i1 X 19 X T X

The so-calledvulti-index treemaps this conversion to a tree structure organized as
in figure[4.3: each node, except of the root node, consists of an array of dimension

4.3. EFFICIENCY AND DATA STRUCTURES 63

m with links to its children nodes. The array of the root node has size of the the
total number of control points in the current breakpoint segment, here denoted
by p. Leaf nodes contaia-vectors corresponding to given c-index. As a query,
c-indexi, is passed to the tree. Depending on the entrigstbie tree is traversed
according to v-index expansion as described above. For example: assume that
we want to store blossoms of degree 4 B-spline. The c-index C(4,4) =
(2,0,1,1) is expanded into v-inde® € V;(4,4) = (2,2,4,5). We enter the tree

at the root node ond position of the array. We descend into the child node
which represents the entry “2”. Proceeding this way after four steps we arrive at
the leaf node which corresponds to c-indéxo, 1, 1), or equivalently, the sorted
v-index(2,2,4,5). Atthe leaf nodes, the-vector that corresponds to the blossom
with argumentgu,, us, ug, us) is found and returned as an answer to the query.
Note that the tree is initialized by simply allocating the root nodepf@ntries.

The figurg 4.8 shows the traversal of the C-Treerfor= n = 4 ands = 2, the

solid arrows mark the way along the tree.

The storage requirements for a Multi-index tree are as follows: we need an ar-
ray of sizep at the root node, which haschildren each of size:. All subsequent
nodes haven children, i.e. there are roughpy+ pm + pm? + pm3 + ... + pm™
entries, thus, there are cir€a(p.m" ') auxiliary “administration” elements in ad-
dition to the intrinsic entries. This applies if we pre-compute and store all unique
products and blossoms ever required. However, we only need to store products
and blossoms for two neighboring segments at a time: this reduces the memory
cost to approximately) (m™~!) which is acceptable for small numbersandn.

Recall thatn equals the degree of the inner B-spline curandn is the sum of
the polynomial degrees of the surface. These values are typically small, such as
m = 3 andn = 6, for example.

4.3.4.2 Optimal utilization of Multi-index trees

We use the internal (administration) nodes of the Multi-index tree to speed up the
computation of blossoms: Assume that we wish to compute and store all unique
blossomsf;(u;,, ..., u;,), such that <i; < mfor1 < j < 4. Further assume,
without loss of generality, that the blossom arguments are sorted in ascending
orderi.e.u;, <w;, <u; < u;,. Consider the triangular scheme for evaluation of
a-vectors containing the generalized B-spline basis functi¢ns, §4.1/5, ey. 4.10:

64 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

n—1
ar_p—1 (ui1 y Uiy s Uiy s uzy>

a}—l (uh) uiz)

a?il (uil y Wigy Wiy uly) U a’} (uil) uiz) CL(} (ull) =1
! ! !
anfl al aO

Generally, the entries &j + 1)-th level are computed as a linear combination of
coefficients fromj-th level. At each level an intermediadevector is computed,;

its entries are the-coefficients in the current column of the triangle. Since we
iterate over all combinations of the blossom arguméajs . . ., u;,) many iden-

tical intermediate:-coefficients are computed more than once. For example the
coefficients in the first two columns of the triangle are required for all blossom
J (Wi, wiy, i, u;,) Wherel < z,y < 4. Therefore, we store the intermediate
a-coefficients at the corresponding internal nodes of the Multi-index tree. All
children of an internal node re-use the precomputed coefficient from their parent
node.

We conclude that this leads to the same result as Mann’s optimal version of
the composition algorithm for Bezier polynomials, seel [53]. Translated to our
terminology, he used a specific ordering of c-indices in order to achieve an optimal
utilization of intermediatea-vectors. The term “optimal” was interpreted in the
sense that there is no other algorithm which would compute all required blossoms
with less linear combinations.

4.4 Practical notes and some results

The formulg 4.28 can be directly converted into computer code. Although in both
cases the products can be computed on the fly, it is not always the best choice.
It depends on the product computation method: if “direct” methods (1. and 2.
from sectior] 4.3]2) are applied then there is no need for a temporary storage of
the products. If the 3rd method is used, we need to choose from the inverse-
matrix method and the back-substitution method. The former case requires only
storage of the inverse matrix, the values of the products can be computed on the
fly. In the latter case, the LU back-substitution must be applied to all right-sides
simultaneously; therefore, one has to store all unique products in a column-major
matrix along with corresponding v-indices and the bandwidth information.
With regard to blossoms, we compute all unigueectors for each parametric

direction and store them in two Multi-index trees. According td eq.]4.28, for each

4.4. PRACTICAL NOTES AND SOME RESULTS 65

pz., We compute valid pairs af, andw, for currentz;. Then trees is queried for
a-vectors corresponding to currentandw. Finally, the outer product update

T
A — Aiold + pinew " g

Tnew —U,U

is performed; note, that the effort of explicit concatenatioapéndaz into az 5
can be saved if it is built implicitly during the outer product update.

4.4.1 Run-time performance

The algorithm consists of three significant components:
1. computation of products, denoted by
2. computation of blossom&y)

3. the outer products updateg)

In the following we will consider the run-time performance of the curve-surface
composition. LetF’ be a B-spline surface ard the domain curve. The algorithm
has following parameters:

variable | meaning
P size of G’
d degree of
k,l degrees of' in v andv parametric directions
m,n sizes off’ in v andw

The effort required fofl; and7, can be estimated according to the analysis
from sectiorn 4.3; Note, that andn do not appear in the combinatorial formulae —
the computation of B-spline blossoms is always local and depends only on the
polynomial degree of the surface. The knot-line density, and thus, the size of
the surface is indirectly reflected by the factorit increases with the number of
knot-lines intersections with the domain cuie as described in84.2.3. Results
for typical values of, k, [andd are shown in figur@ﬂﬂf as expected, the run-
time of the algorithm depends almost linearly pnas eq[4.22 predicts. The
number of unique products per segment is determined by the binomial coefficient
(dﬁjl); i.e. it grows dramatically with growing degrees of the inner and outer
functionsd andk + [, as illustrated by the graphs in f{g. #.4(b)-(c). Fortunately,
in practical applicationgs and F’ will rarely have degree higher than cubic. On

2All performance test in this thesis were executed on a 750 Mhz Athlon PC with 128 MB
dynamic memory available.

66 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

the other handy can grow very rapidly; note that the surfages refined in order

to generate new degrees of freedom for the surface. By the variation diminishing
property of planar B-spline curves, in worst case, each new knot-liné odn
introduce order ofl new knots per segment .

Compared to the DeRose’s original composition algorithm, the only additional
operation is the summation of outer products in equation 4.28. An outer product
update involves an amount of work which is quadratic in number of non-zeros
in both vectors. The number of required outer product updates is determined by
number of unique products. As we have shown, the density (humber of non-
zero entries compared to the size of the vector) of both argument vectors will
be, typically, small: The density af is proportional to the ration%. Similarly
density ofp is proportional to;‘—j. We stress that using this sparsity information is
essential, otherwise the cost for comporiEnbecome intractable. An interesting
insight into the run-time behavior of the algorithm is given by comparing the ratio
of time spent for each component. Figure 4.5 demonstrates the dependéhcy of
T, : T3 on growingp. 17 (product computation) is the most expensive component,
followed by the blossom computatiofy). In all run-time test we have used the
interpolation method to compute the products. Largaplicates large size of the
product B-spline and thus a large (but sparse) interpolation problem. Thus, the
most time is spent by LAPACKsDBLU which delivers the LU decomposition
and performs the back-substitution.

If G is converted to Bezier format before the composition starts, evaluation of
one product is actually a constant time operation — under the assumption that the
factors required to computefold product of Bernstein polynomials are precom-
puted. However, there will be approximately factbmore blossom and outer-
product updates necessary. In addition, as mentioned in §4.3.2, in this case the
unevaluated” is obtained in composite Bezier format. The consequence is an
factord higher composition matrix which considerable slows down solving of the
inverse problem, see chapjigr 7 for more details.

4.4.2 Numerical stability and shape of the composition matrix

The numerical stability of the algorithm is influenced by the errors caused in its
three components. The error in the coefficients of the progut#pends on the
method chosen for products computation; since the former two methods include
knot removal, their numerical stability will depend on the density and regularity of
the merged knot vector @f. Basically the same applies to the third method — the
overall precision of the interpolation matrix is also influenced by the regularity
of the knot vector. The blossom evaluation is as stable as the de Boor algorithm
itself; there is a danger of number cancellation when computing the fagtors
formula[4.7 for irregular knot vectors. The third component are the outer product

4.4. PRACTICAL NOTES AND SOME RESULTS 67

updates. This operation accumulates the product of errogs &mda; in the
elementc;;. Though the errors are small, consider, that there are thousands of
outer product updates even for moderate values, df £ and!. In general, the
error in each entry in the composition matrix will be proportional to how many
times it was updated.

It follows from the above considerations that the numerical precision is primar-
ily influenced by the parametrization and shape of the “merged” aGrvRecall
that each intersection @ with a knot-line of I’ generates a breakpoint knot in
G. SinceG may cross the knot lines df in arbitrary ways it is not possible to
avoid irregular knot intervals. To see the influence on the numerical stability of
the algorithm, let us review the concept of “composition matrix” from a different
perspective:

Recall that the linear transformatidh = AF delivers the control points of
the curveF' (G(t)) = F (u(t),v(t)) for arbitrary values oF'. As above, let the
sizes of the surface be andn. Introducem x n vectorsf; of sizem x n such, that
I-th vector has zero entries everywhere except at positawhere f; = 1. Then
eachf; corresponds to coefficients of a 2-dimensional basis functidr(afv):

e () b () = by (u,v) = b fr T =i+ jm

u,v

The multiplication ofA by vectorf; yieldsa; — the/-th column ofA.. It follows
that each column oA contains control points of the B-spline:

b5 (u(t), v(t)) = bla;

In other words, each column of matri represents a decomposition Gfonto

basis functions ofr'. Each basis function is non-zero only in certain interval of
the domain rectangle. From this we conclude that the number of outer-product up-
dates involving one; will be proportional to the number d@fs segments which

lie in the non-zero interval o} (u) b}" (v). Therefore, in order to avoid accu-
mulation of errors one should choose the cutvas simple as possible. Figlre}4.6

on the right shows the graph of the error function

€;5(t) = /t

for the domain curvé& shown in figur¢ 46 on the left; We see that even for such
“unreasonable” curves the errors stay inside of acceptable limits. The sparsity
pattern of the matrix can be predicted from this consideratiori; trosses the
region where a particular basis function has influence, the corresponding column
will have non-zero elements. Note that the non-zeros in each column will always
occur in strips of certain lengthG(can “leave and enter” non-zero interval of a
basis function several times).

bYT (u(t)) b5 (u(t)) — blay|dt; T =i+ jm (4.29)

68 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

35

25

Time [s]

15F

051

500 -

400 -

Time (s)
w
o
o

200

100 -

45

40

35

30

25

Time (s)

20

15

10

k+l

Figure 4.4: The time in seconds spent for computing the composition matrix in
dependency on factors (top figurg) (d = 2,k + 1 = 6), (middle)d, (p =
11,k 4+ 1 = 6), (bottom)k + [, (d = 2, p = 10).

4.4. PRACTICAL NOTES AND SOME RESULTS 69

35 T

251

+T2+T3

05

50 70 90 110 130 150 170 190
p

Figure 4.5: Comparison of run-times spent for computation of prodiig}siflos-
soms (), and outer product updates;].

Figure 4.6: Element-wise error plot of the functiey(t); Vi, j, as defined in
eq.[4.29, for a cubic curve in the domain of a bi-cubic regularly parametrized
B-spline surface witl20 x 20 control points. The upper Figures shows the curve
G in the domain of the surface; the grid symbolizes the knot-lines of the surface.
The errors are larger (but acceptable) at positions which are influenced by the
rapidly varying part of the curve.

70 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

Chapter 5

Tangency constraints

This chapter covers tangency constraints with emphasis on efficient algorithmic
implementation. We show how to enforce the tangent plane continuity of two
surfaces meeting at an arbitrary curve incident on both surfaces. The coefficients
of the system of linear equations in the unknown degrees of freedom of the surface
are obtained using the curve-surface composition matrix.

5.1 Problem definition

The problem is illustrated in figufe 5.1: given are the cue) = (u(t), v(t)) in
the domain of the B-spline surfa¢g(u, v), and the vector field curv&'(¢) which
represents the required direction of the surface normals. The task is to determine
the dependent control points of the surfdcsuch that the surface normals along
F (G(t)) are collinear withV (t).

The sufficient condition for a surface to interpolate the direction of given nor-
mals is that the scalar product of the following two curves is zero:

d .
<th(G(t)) : N(t)> =0;Vt (5.1)
Here £ " (G(t)) denotes the differentiation w.rtt The first derivative function

of a parametric curve the, so-called, hodograph and is obtained by applying the
chain rule for differentiation td” (G(t)):

d d 0 d

The hodograph curve a linear combinations of partial derivativéswhich con-
stitute the tangent plane at that position. Therefore, each vector perpendicular to
the hodograph of” (G(t)) will also be perpendicular to the tangent planeFof

v(t) - ;}F(u, v)

71

72 CHAPTER 5. TANGENCY CONSTRAINTS

F(G()

Figure 5.1: The tangency constraint: The task is to enforce orthogonality of the
surface normals (this arrow) and the tangent of the surface duf€&t)) shown
as dotted thick arrow.

Two vectors are perpendicular if their scalar product is zero, thus, the above con-
dition will enforce the surface to take in desired direction alénh@~(¢)). Scalar
product of two B-spline curves is a B-spline function, see [23] or [24], for exam-
ple. A B-spline function is zero everywhere, if all its coefficients are zero, hence,
on the right-hand side of efj. 5.1 we must have a B-spline polynomial with all
coefficients equal zero. We need to extract the relationship between thee control
points of £ and the zero coefficients of the scalar product function. Thus, we are
looking for a matrixB such, that

<§tF (G(t)), N(t)> =0« BF =0

5.2 Differentiation operator in matrix form

The first task is to express the hodograph cufs€ (G(t)) as a function of the
control points of surfacé’. We have shown in previous chapter that given the
composition matrix fot” andG the control points off = F' (G(t)) can be found
by H = AF. B-splines are closed under differentiation, i.e. a derivative of a (non-
rational) B-spline curve or is again a B-spline curve of lower degree. Let be given

5.3. COMPUTING THE SCALAR PRODUCT 73

a B-spline basid, = {b7"" () : 0 < i < n} for the curveH (t) = ", b{" (t) H;.

After few manipulations of the de Boor formula [41] the following recurrence
yields the control point:Hi(” of the orderr hodograph of:

H" =4 (HI,(S” - Hi(r_l)) 0<i<n-—r
(5.2)

5T = d—r+1
¢ Titd+1—Titr

We write the first differentiation step (i.e: = 1) in matrix format as follows:
we set up an — 1) x n matrix DY) containing the coefficients-§! andé} in
thei-th row at positions — 1 and: and apply it to the control poinfd. This is
done recursively times, using the result from previous step yielding a sequence
of matrices such that
H” =D® ...DOUH
D(")
For univariate B-splines the differentiation matiiX”) hasr + 1 entries in each
row.
MatricesD(") and A have compatible sizes; hence we can write:

H" = D"WH = D"AF

which yields the required dependency between:ttle derivative of a surface
curve H = F'(G(t)) and DOFs of the surface. The degree and the size of the
derivative curve reduces by one with each differentiation, i.e. the resulting B-
spline has the the degrde-r and sizex —r. The knot vector of-order derivative
is obtained by truncating knots at the beginning and at the end of the original
knot vector. Hence the basis for the¢h order hodograph of the B-splinebé’") =
{627 (t) : 0 < i < n — r} wherer’ denotes the “truncated” knot vector.
Differentiation in matrix form is also possible for B-spline surfaces. One pro-
ceeds exactly as in univariate case by differentiating each parametric direction
separately. Two-variate differentiation matrices will be required in chapter 6.

5.3 Computing the scalar product

The symbolic scalar product of two curves, one in “evaluated” the other in “un-
evaluated” format is more difficult: given the vector fields curigs) andZ'(¢) =

4F (G(t)) = DYAF we need to extract the dependency of their scalar prod-
uct on the control points of the surfa¢é In the following, we assume without

loss of generality, that both curves are defined on the same B-spline basis, i.e.

74 CHAPTER 5. TANGENCY CONSTRAINTS

they have the same size, degree and knot vE|cfﬁIne basis is denoted by the
set of basis functiofb{""(t) : 0 < i < n}, or in vector formatb such that
b; = b4 (t) : 0 < i < n.

First, we split both operands into their components in each spatial dimension;
this yields in matrix notation

N(t) = [na(t) ny(t) na(t)]

= bT[nx n, nz]
and

T(t)=4F(G@t) = [t(t) t,(t) ()]
= b [t t, t.|

b'DWA[f, f, f.]

According to previous paragraph the above formula applies the differential oper-
ator D to establish the connection between the derivative curve and the DOFs
of the surface. The inner product of two curves is in this expanded notation:

—

(N(0), T()) = nalt) - ta(t) 4y (8) - £, () +na(t) - £:(2) (5.3)
sa(t)

Since we already have the dependency between the control points of the hodo-
graph curve and the control points of the surface, the next step will be to express
a product of two B-spline functions in unevaluated format - as a functian ,of
t, andt, . We will consider only the under braced tesp(t) from the above
equation. Note that, formally, a curve in matrix notation represents a product of
two matrices. We can transpose this matrix product which yields
T

(anx) = ngb
This allows us to write the term,(¢) in tensor product form which nicely sepa-
rates the parameters, and the unknowns,:

s:(t) = nI (bb?)t,
(5.4)

= anttx

n principle, the procedure described here also works for different B-spline bagé(s)oénd
T'(t), with a slightly more complicated notation.

5.3. COMPUTING THE SCALAR PRODUCT 75

The termP is a square symmetric maﬁXNith polynomial entriesp;;(t) =
bIT(t) - b7 (t) 1 0 < 4,5 < m; i.e. the elemeng;;(¢) is the product of-th and;-th
basis function ofV (¢) andT'(¢). Since entries of the vectax, are constant scalar
values we carry out the multiplicatian’ P;. This requires additional notation:
the product of two B-spline basis function is a B-spline function of polynomial
degree2d. Denote the coefficients afi-th product byp* and its B-spline basis
by bZ. The degree of the product B-spline2g. In the following we denote the
knot vector of the product by; it is determined as described in §4]2.3. Then the
ij-th entry of P, is a B-spline", pi/b:*™ (t) = bTp"”. Letm, be the size of
the product B-spling;;(¢) and denote the size of the operand B-splinds) and
T'(t) by ms. The product expands into

[bIp! o bIp
n’P, = n? : .
bIp™! b p™™
(5.5)
| St S
s o g
= bI'X h o

The matrixX consists ofn, column vectors; : 1 < ¢ < ms. Inserting the above
result into eq. 5}4 and comparing compatible terms yields the control points of the
x-component of the scalar product:

S,(t) = bls, = bIXt, =
s, = Xt,

The termss,(t) ands.(t) in eq.[5.3 are obtained in exactly the same manner;
we only replacen, by n, andn, which yields the matrice¥ andZ. s,(¢), and
the corresponding terms,(¢) and s.(¢), are B-spline polynomials on badis
with scalar control points,, s, ands.. Hence, we can write ef]. $.3 in matrix
notation
<]\7t,ﬁ> =bl [s,+s,+s.]=bl s (5.6)

™

According to the stated orthogonality condition the veestanust have all entries
equal zero. Thus, the equations which connect the control points of the tangent

2If N, andT; have different B-Spline bases the mafBx is neither square nor symmetric

76 CHAPTER 5. TANGENCY CONSTRAINTS

curveT and the scalar product are:

0=s = [s;+s,+5s,]
= [Xt,+ Yt, +Zt

8

]

T
Yy
z

After replacingt, (and, accordinglyt, andt.) in the above equation b, =
DM Af, we obtain the relationship between control points of the surface and the
scalar product:

= [X Y 2z

o+ o+ o+

0=[X Y Z|

f,
f,] (5.7)

5.4 Practical notes on implementation

We see that the mathematical tools used in this section perfectly match our pre-
vious efforts. What remains, are, mainly, matrix operations. This part should not
be ignored. Consider that the matricd€s Y, Z and consequently the matrix of

the resulting linear system can be quite large: the sizes of exact cﬁr(\téaand

T'(t) are in the order of the “height” of the composition matrix. The size of their
product (reflected by the size of matidX) is order of2d larger, whered is the
degree ofV andT'. The height of composition matriX usually varies in order of
several hundred rows, the number of columns is determined by the size of the sur-
face. In eq[5]7, the degrees of freedom of the surface in each spacial dimension
are no longer independent — the height of the resulting matrix is, in general, factor
3. (2d) larger than the “usual” sizes of the composition matrix. If incidence and
normal constraints are stated simultaneously — and in the most cases they are — the
coordinates in each spacial dimensions have to be separated in both constraints.
The full size of such systems quickly reaches thousand and more rows for one
curve constraint. In order to speed up the computation we exploit the following
properties:

Properties of B-spline products: When evaluating matricd3; andX, Y, Z we
utilize the properties of B- spllne products analyzed|[in §4.3.2d i§ the
polynomial degree oN() andT() then the matrixP; is symmetric with
upper bandwidthl — all products;;(¢) such, thati — j| > d + 1 are zero.
The vectorgp¥ are also sparse with predictable bandwidth which consider-
able accelerates the evaluation of linear combinations in eg. 5.5.

5.4. PRACTICAL NOTES ON IMPLEMENTATION 77

Approximation of]\7(15) by a lower degree curve: The polynomial degree of the
exact normal curve is quite high, in general, higher than the degree of ex-
actT. In practice,]\7 can be usually approximated by a lower degree curve
with less knots without significant loss of accuracy. Therefore, we apply
degree reduction and knot removal]ffc(t) before entering the algorithm.

Faster implicit evaluation of auxiliary matrices: The matricesA,, A,, A, and
DM (eq.) need not to be computed explicitly. Instead we have hard
coded the evaluation of matrix products

(XD“)) A

from eq.[5.7 such, that all three blocks of the final matrix are obtained si-
multaneously.

78

CHAPTER 5. TANGENCY CONSTRAINTS

Chapter 6

Variational constraints

In this chapter we discuss efficient methods to obtain the Gaussian normal equa-
tions resulting from the, so-called, quadratic surface functionals. The most fre-
guently used surface functionals are listed. The structure of these expressions is
analyzed which results in a unified algorithmic approach to obtaining the Gaussian
normal equations for all types of functionals in an elegant and efficient manner. In
particular, we discuss hierarchical decomposition of derivatives of B-splines and
fast methods for integrating products of B-splines. Results regarding the run-time
performance are presented.

6.1 Quadratic error functionals for surfaces
The problem is stated as follows: given is a B-spline surface
S(u,v) : Q— R QC R’
determined by its control poin € R™*3. One considers an objective function
f:R = R f=f(S(uv))

and seeks values for the control points such fhigtkes in minimal value over the
entire domain of the surface. This is achieved by minimizing a surface functional

o(S) = /Q £ (S(u,v)) dudv

with respect to degrees of freedom of the surface. Generally, one proceeds as
follows:

e Select an appropriate type of functigr(see below)

79

80 CHAPTER 6. VARIATIONAL CONSTRAINTS

e Set up the equations which restrict the functiohab take in minimal value;
We require that the derivatives ®fwith respect to the degrees of freedom of
the surface must equal zero. This yieldequations im unknown control
points:

0

0S;

¢ Find the zero set ¢f 6.1 yielding the required control points of the surface.

®(Sp,...,8,)=00<i<n (6.1)

A frequently used approach is to minimize functionals consisting of squared sums
of mixed surface derivatives, see [32], for example. These so-cglladratic
surface functionaltiave the advantage that the normal equafiorjs 6.1 are linear in
the control points of the surface.

The most frequently used functionals are shown in table 6.1. In the table and
throughout the following text we use a simplified notation for partial derivatives
of a B-spline surfaces. We define a differentiation operator

ar-i—s
ou" Qv®
with the convention that for = s = 0 the differential operatoD® equals the
identity transformation, i.e. it has no effect 6ttu, v). Using this notation, the
left column of tablg 6]1 shows the orders of required surface derivatives. The

rightmost column describes the property of the surface which is minimized by the
expression in the middle column.

D™ :Q — R D™S(u,v) =

S(u,v)

6.2 Matrix notation for surface functionals

Consider, for example, the functional which minimizes the thin plate energy of a
surfaceS(u, v). The expression to be integrated is:

flu,v) = (DQ’OS(U,U))Q + (Dl’lS(u,v))2 + (DO’ZS(u,v))2 (6.2)

Other quadratic functionals are variations of the above expression: they arise from
the summation of squared partial derivatives of orders 1, 2 or 3. Often, linear
combinations of these expressions are used.
We break down all quadratic functionals of the this type into summations of
terms
/ / (D™*S(u,v))* 0udv; 0 <r <3,0<s<3 (6.3)

We need to compute definite integral of the squareD6fS(u,v) and extract
the relation between its value and the control points of the surface. This can be
accomplished easily if we re-write equatfon]6.3 in matrix format:

6.2. MATRIX NOTATION FOR SURFACE FUNCTIONALS 81

T, s ¢ = [, f(S(u,v)) Oudv Property
TS = {(170)’ (07 1)} f = (DLOS(U7 U))2 + (Do’ls(U, U))2 Area
r,s ={(2,0),(1,1), f=(D*°S(u, v))2 + (D™'S(u, U))2 Tlhitn
(0,2)} (D28 (u, v)) -
’ energy
rs = {(2,0),(0,2)} = (D08 (u,v) + D28 (u, v))? cul\:l\?;;zre
rs = {(3,0),(2,1), = (D*08(u,v) + D>'S(u,v))? + Var:;“"”
(1,2),(0,3)} (D°3S(u,v) + D25 (u, 1)))2 curvature

Table 6.1: Frequently used quadratic surface functionals which can be easily ob-
tained by the presented algorithm.

Let {bf"" (u)b}(v) : 0 < i < m, 0 < j < n} be the set of 2-variate basis
functions of the surfacé&(u,v). The partial derivative of a B-spline surface is
obtained by differentiating each basis function with respect to variabéeslv:

D"*S(u,v) = D" Z Z ST (w)by (v) = 3757 Sy DT (w) DL (v)
=0 i=0 =0 i=0
Next, we define a vectdf;” as follows:
7" (u,0) = Db (w) Db (v) s T =i+ mj, 0 < i <m, 0 < j<n

The square of the surface derivative becomes in matrix format:

T
(D™*S(u,0))* = S"15, (I13) S

N—————

The under braced term in the above equation represents an outer product of two
vectors, which yields a square matrix of the same size. We denote it by

T
rSs __7,S T8
Lu:v - lu:v (lu:v)

82 CHAPTER 6. VARIATIONAL CONSTRAINTS

The entries oL;;; are two-variate B-spline functions
175 (u,v) = (I7%(u,v)) - (15 (u,v)), 0 < T <mn, 0 < J <mn (6.4)
Substituting into ed. 6|3 yields

fu fv (D’I‘,SS(U’ U))Q 8“81} =
fu fv STLZ’ZS> 8'&81} = (65)
ST ([, [, Lgfvauév) S = ST (L") S

The matrixL™* € R™>™" contains the values of definite integrals from [eq] 6.4
evaluated over the domain of the surface. l.e. iligh entry of L™ is obtained
by computing:

Iy = / / 177 (u, v)Oudv (6.6)
Equatior] 6.5 is a quadratic form 8 hence, its normal equations are:
LS =0

Settingr, s = {(2,0),(1,1),(0,2)} yields the terms which are necessary to as-
semble the normal equations for the thin plate energy (TPE) minimizing func-

tional, eq[6.p:

L2’OS + Ll,IS + L0’2S —

(L2’0 —+ Ll’1 + LO,Q) S = LTPES =0 (67)

The other surface functionals are obtained analogously: we just set the values
r and s according to tablgé 6|1, obtaining the matrides’. Hence, an efficient
implementation of this algorithm is required for different values ahds.

6.3 Implementation

Our implementation is based on following ideas:

e We compute all combinations of products of B-splines required if ef. 6.4.
We integrate in each variable separately and multiply the values of univari-
ate integrals according to formula 5.4

e We use the recursive definition of the derivative of a B-spline basis func-
tion which defines a derivative of a B-spline as a linear combinations of
B-splines of lower degree. We decompose each B-spline that way obtain-
ing a closed formula which delivers the product of B-spline derivatives of
required order.

6.3. IMPLEMENTATION 83

e We integrate products of B-splines symbolically: we compute the B-spline
function which represents the product of two B-splines and determine its
antiderivative function. This is not the fastest method, but it is numerically
stable and sufficiently fast for our application.

The advantage of this approach is that the computation all quadratic functionals
IS put on a common basis; basically, we compute the matii¢édor required
order of derivatives, see €. p.5. For example, derivatives of ofders: < 2

and0 < s < 2 are required for the TPE-minimizing functional. Then, the normal
equations of a specific functional are obtained simply by matrix addition, see, for
example, equatidn §.7 in previous paragraph.

6.3.1 Computing two-variate integrals of B-splines

In order to compute the two-variate integrals needed if ef. 6.4, we first compute
the univariate products of the basis functions in each variable. That if, éq. 6.6
decomposes into:

//ZU w,) udv = (/ DB (u) DL (u du) (/ DL (0) D (v)dv>
(6.8)
Thus given the orders of derivatives in each parametric direction the operands of
the above product are computed and stored for all combinations of irjdices :
0<i; <m,0<iy<m,and[j,j]:0<j <n,0<js <n. The value of the
two-variate integral, i.e. théJ-entry of the matrixL.”* is obtained by retrieving
and multiplying the univariate terms corresponding to indites i; + mj; and
J =13 +njs.

6.3.2 Hierarchical decomposition of B-spline derivatives

Next, we will show how to compute the coefficients of-#imes differentiated
B-spline basis function which is required in form{la|6.8. Thih derivative of a
B-spline basis function of degreks defined by the following recurrence:

Db (t) =67 - D) =0T - DT (1), 0<i<n—r (6.9)

where
5 — d—r+1

7
Ti+d+1 — Titr

with the convention that forf — 1 < 0, 6/_; = 0. This can be shown easily by
means of ed. 5|2. To compui@s¢"" () one sets:

dT dT 1 ifi=]
b Zh by’): { 0 otherwise

84 CHAPTER 6. VARIATIONAL CONSTRAINTS

The differentiation formula for B-splines (€. b.2) is applied which immediately
yields eq[6.p. The knot-vector of the differentiated B-spline is determined as
explained in 85]2. Thus a derivative of a B-spline basis function is a B-spline
function with coefficients determined from linear combinations of dtectors;

For example, the first derivative becomes

D' () = 6;_ 6T (1) — 616 (1) Z b

j=i—1

which is a B-spline function fror®,_, , with coefficients
oL ifj=i—1
Y, 0<j<n—1= —(511|fj—z
0 otherwise

The task is to compute the coefficients, : 0 < j < n — r for all basis

functionsb""(t) : 0 < i < n. The following consideration makes this very
efficient: The decomposition advised by the formulg 6.9 yields the a triangular
scheme withr-levels:

1 d—r,T
61 Tb’L r
S D2 T
r r—17d—1,7 r—1 yr—27d— 27’
or_ DTt 5T D2t
_17d-1 — _9,d—2 _
Dbt srDrp T gt pr2pd AT SLpd—rT

The decomposition proceeds from left to right: the left-most vertex of the triangle
is the required B-spline derivative. It decomposes into linear combinations of B-
splines of lower degree as prescribed by[eq. 6.9. We proceed in this manner until
the differentiation stops on the right side of the triangle where the B-spline basis
functions which constitute the basis bf b7 (¢) are found. We see that the terms
from lower levels are re-used for computing several neighboring derivatives. For
example, if one draws the triangle f@’b¢", the termd’ D" '6¢" " and its
ancestors will also be contained in its decomposition. Traversing the triangle in
the other direction (from right to left) we obtain the coefficients of the derivative
B-spline by collecting the appropriateterms. This yields the coefficients of the
derivative B-splineD" %" (¢) defined in terms of basis functions of degrke r:

Drbd Z ,y]zbd 7"

]’LT‘

6.3. IMPLEMENTATION 85

where coefficients/}; are determined for giveny d andr by collecting the cor-
responding factors during the traversal. Finally, the substitution into pq/ 6.8
yields:

J, (D767 (t) - DB () dt =
Sy (Zhss b)) (St A1) dt = (6.10)
i X Ve (L0 @b ()t

6.3.3 Integrating products of B-splines

It remains to mention how to integrate products of B-splines. This is profoundly
discussed in [81], for example. Basically, there are three possibilities:

1. Evaluate the product using one of the three methods from séction 4.3.2,
compute the antiderivative function of the resulting B-spline [68, 23], and
evaluate the definite integral.

2. Use the recurrence for integrating a product of B-splines as described by
De Boor, Lyche and Schumaker In [6].

3. Integrate by parts, as proposed by authors df [81]. This method is the fastest
of the three but it suffers from numerical instability for B-splines with high
degree and dense and uneven knot vectors.

The discussion in the abovementioned papers concludes that the first and second
methods are numerically stable but slow. Our experiments with the third method
(introduced in that work) have shown that the integration by parts tends to be
numerically unstable already for B-splines of relatively low degree (such as 4 or
5) and for B-splines with irregularly spaced knot vectors. Since such B-spline
occur very frequently in our application we have decided to use the first method.

The 1-st method is the easiest from the implementation point of view — if
efficient symbolic computation of B-spline products is available. We apply the
apparatus developed in chagtér B, §4.3.2: the product of B-splines contained in
the last term of eq. 6.10 has following properties:

1. itis symmetric, i.e(J, bf”(t)bf*’"‘(t)dt) = (f, bf*”(t)bi*”(t)dt)

#0if maxk,l —mink, [<d—r

i . d—r,T d—r,T
2. itislocal: [, by "7 (t)b (t)dt{ 0 otherwise

86 CHAPTER 6. VARIATIONAL CONSTRAINTS

Thus only a fraction of all possible combinations of products will need to be com-
puted. We obtain the product B-spline functions, compute their anti-derivative
function according to formula for integration of B-splines (de€ [41,25, 23], for
example) and evaluate the definite integrals. Finally, the matrix representing the
normal equations of a specific surface functional is obtained by back-substitution
into eq[6.8 and addition of the intermediate matricés.

6.4 Results and practical notes

We conclude with an example of the run-time performance of the algorithm for
typical input parameters. Although, theoretically, our method is not the fastest one
using the properties of combinations of B-spline products it performs very well
even for very dense surfaces. Typically, the degrees of the involved B-splines will
be low. The important criterion is how the increasing number of control points
(dimension of the spline spacgs™ (u)b"(v) : 0 < i < m, 0 < j < n}) will
influence the performance of the algorithm; this is shown inffig. 6.1 on the top.
The dependency on the degree of the B-spline basis (the univariate case) is shown
in the lower figur¢ 6.]1 — we see that the consumed time grows very rapidly.

Note: The expressiotf, bf’T(t).b?’T(t)dt represent the algebraic scalar product of
two B-spline functions. In certain applications it is useful to have an ef-
ficient implementation of this operation at hand. For example[in [45],
Kazinnik and Elber have used wavelet-based decomposition of B-splines
in order to get a multi-resolution representation of a curve or surface, for
which scalar products of B-Splines are required. Further applications are
e.g. continuous approximation or symbolic evaluation of continubyus
norms of B-Spline functions.

6.4. RESULTS AND PRACTICAL NOTES 87

10"

10°

log(Time)

107

107

1 1 1 1
0 500 1000 1500 2000 2500

10°

10"

log(Time)
N
o

107

107

Figure 6.1. The upper figure shows the run-time cost for computing the matrix
Lrpr (€9]6.2) in dependency on the size of a b-cubic B-spline surface. The lower
displays the time spent for computing the integrals of univariate producfs (eq. 6.8)
in dependency on the degree of the B-spline basis with constant siz&). The
graphs are plotted in semi-logarithmic scale ongkeis.

88

CHAPTER 6. VARIATIONAL CONSTRAINTS

Chapter 7

Linear constraint solving |

In this chapter we discuss the problem of solving the linear constraint problems
defined in terms of equations obtained in chapters 5, 6 and 7. The problem to
determine a surface from one or several arbitrary curves generally belongs to the
category of, so-calledll-posedinverse linear problems. Although the theory of
ill-posed problems is well developed in the literature, it is rarely applied for solv-
ing surface interpolation problems. One rather avoids to state such problems at
all — which leads to considerable restrictions on surface topology and the shape of
permitted curve constraints. This chapter demonstrates that under certain assump-
tions ill-posed surface interpolation problems can be safely solved. Séction 7.2
briefly reviews the theory of ill-posed problems and introduces the idea of “reg-
ularization”. We have used a powerful algebraic tool for solving ill-conditioned
system of equations, the Singular Value Decomposition (SVD). In s€ctibn 7.3 we
describe a SVD-based method which safely reveals the rank of the ill-conditioned
system. Here, the, so-callesiirface aliasing effeas addressed which occurs
whenever a B-spline surface is deformed along general curves. Two “anti-aliasing
methods” which suppress or completely remove the aliasing are described in chap-
ter[8.

7.1 Notation

In this and the following chapters a slightly different notation for linear systems
of equations will be used. A system of linear equations is defined by a mapping:

A:R"—R'Af=h, Ac R™" fc R", he R" (7.1)
A solution of the linear system is a defined as inverse mapping:

A7 R" > R" A'h=f, A c ™™ (7.2)

89

90 CHAPTER 7. LINEAR CONSTRAINT SOLVING 1

The change consists in using solely vectors to denote the unknowns and the
parameters of a linear system. The reason for this change is to have a unified
notation for all types of constraints: generally, we simultaneously solve systems of
equations consisting of incidence, tangency and variational constraints. Moreover
we wish to solve several curve constraints dole surface simultaneously. Thus
given a surface and constraints affecting it the actual constraint solving is done in
three steps:

1. Compute the matrices for required constraints.

2. Concatenate the matrices and parameters vertically yielding the global ma-
trix A and the global rights hand side vectom eq.[7.].

3. Solve the linear system (€q. [7.2) obtaining the control points of the required
surfacef.

If only incidence constraints are used, the equation system can be solved inde-
pendently for each spacial dimension. l.e., in[eq 7.1 the ve€idisare simply
replaced by the matriceB, H (or the vertical concatenation dfs in case of
several incidence constraints) in our usual notation: each column corresponds to
coordinates in one spacial dimension and the system can be solved for several
parameter vectors (correspondingaztoy and z coordinates) simultaneously. If
tangency and variational constraints are to be solved the spacial dimensions are
no longer independent. Then the vecfarontains ther, y andz coordinates of

the surface control points concatenated vertically as explained in chapter 5.

7.2 lll-posed problems

The properties of aiti-posed inverse linear probleand the difficulties associated
with solving of such problem are easily demonstrated by an example: Consider a
bi-cubic B-spline surface as shown in figire| 7.1 with one curve constraint. The
original shape of the curve is shown in dark color. The curve is modified two
times (the bright curves). We seek the control points of the surface such that the
modified curves are interpolated.

In this example, the surface h&sg 10 DOFs, the curve constraint is defined by
a quadratic B-spline curve with 8 control points in the domain of the surface yield-
ing an exact surface curve of degree 12 and with 72 control points. The equation
system which defines the curve-surface incidence consigsexfuations wittg0
unknowns; The unknowns are the control points of the surface and the parameters
are the control points of the modified curve.

7.2. ILL-POSED PROBLEMS 91

() (b)

Figure 7.1: Demonstrating the ill-posedness of a single curve constraint on a bi-
cubic B-spline surface witB0 DOFs. (a): Initial shape of surface, the surface
curve H (dark) and two request curves shown in bright gray. One of the curve is
varying too rapidly and does not satisfy the discrete Picard condition. (b): The
un-regularized solution. Although the surface satisfies the constraint (the smooth
bright curve in the left figure) from the shown control mesh we conclude that this
surface is useless.

The task to solve the associated inverse linear problem. Clearly, the problem
to compute a surface from this curve will be under-determined regardless of the
actual size of the system matrix. Note that we could have inserted arbitrary many
control points into the domain curve which would have increased the “height” of
the system matrix. These additional equations are superfluous; there is only a cer-
tain number of variables which are determined by this constraint. Thus, the tasks
will be:

(1) To identify the subset of equations which safely render the dependency be-
tween the control points of the curve and the surface
(2) to extract those variables (control points) which can be safely determined.

Thus assume we have set up a linear systei 7.1 and wish to obtain its so-
lution defined by ed. 7]2. The simplest possibility is to apply pivoted Gaussian
elimination to the normal equations of the above system obtaining a generalized
solution

f = £,+1£, (7.3)

92 CHAPTER 7. LINEAR CONSTRAINT SOLVING 1

where the first term denotes the subset of those variables (control points) which are
uniquely determined by the specified curve constraint and the second term denotes
an arbitrary translation factor from the null-spaceaf In practice, the surface
editing process is an ordered sequence of steps with an intermediate surface in
each, thus the terif), can be set according to surface from previous editing step.
The solution resulting from Gaussian elimination with pivoting threshoid*
(which is a very “tolerant” value, much greater than the precision provided by
the floating point unit of the computer) is shown in fig.]7.1(b): Although only
the control mesh of the surface is shown, we may conclude that this surface is
worthless: obviously, we have missed the right moment to stop the elimination
process — the selected pivoting threshold was too small which has caused an un-
proportional growth of certain componentsfin

Although one can experiment with different pivoting strategies or with setting
the pivoting threshold to larger values, in general, Gaussian elimination is not well
suited to solve such sets of equations. Apparently, certain equations are close to be
linearly dependent, but the actual rank of the matrix cannot be reliably determined.
The equation system exhibits the typical features aflgrosedproblem:

e The condition number is higlAlgebraically, the condition of a linear equa-
tion system is expressed as amount of change in the normed salition
in dependence of the changes in parameig&0, Part Ill]: an inverse lin-
ear problem ed. 7]2 is well-conditioned|jiA ~!|| is a continuous function
of h — which means that small perturbationstofead to small changes of
|f|]. Otherwise it is ill-conditioned, or ill-posed. Figure [7.1 demonstrates
that: even a small deformation of the constrained curve, in this case, shown
as the smoother bright curve in figyre|7.1(a), causes randomly occurring
“wiggles” in the control mesh of the surface.

e The rank of the system matrix is a “noisy” numberhis property makes
the difference between just ill-conditioned and an ill-posed problem. E.g.,
when applying pivoted Gaussian elimination one will not encounter a pivot
which is particularly smaller than the pivots in previous elimination steps (in
most cases this would happen when the problem is “only” ill-conditioned).
The values of pivots gradually decay to a small number; hence, there is no
obvious criterion when to stop the elimination.

7.2.1 The Picard condition

The ill-posedness of the linear system is caused by nearly linearly dependent rows
(and columns) in the system matrix; in other words, the chosen linear model,
here obtained from the composition of the B-splines spaces of the surface and

7.2. ILL-POSED PROBLEMS 93

the curve, is not able to safely determine the dependency between the parameters
and the unknown variables. There is a more precise statement than this, the so-
called “Picard condition”, see, e.q. [34], |36]: The modified right-hand side of the
equations system

Af =h', " =h+ Ah

must be “smooth enough to survive the inversiorf't¢36]. It follows that we
cannot expect to obtain a meaningful solution for arbitrary shape of the curve
(determined by its control points). For example, it is very unlikely that a rea-
sonable surface (with given parametrization and number of control points) which
interpolates the rapidly varying curve shown in fighre 7.1(a) will exist. We will
demonstrate the difference between these two cases in more detailjn § 7.4.

7.2.2 Regularization of ill-posed problems

The branch of linear algebra which deals with solving of ill-posed problems is
calledregularization Ill-posed problems occur in many areas of science and engi-
neering; the typical example of anticipated ill-posedness are the Fredholm integral
equations/[34] — the vast majority of available literature concentrates on methods
to solve this type of equations. A book which provides a lot practical examples as-
sociated with practical problems in physics.is![69]; Many researchers have sought
for efficient and secure methods to obtain a solution of ill-conditioned problems;
we name only few: Golub, Stewart, O’Leary et al.[[28} 26, 27] and Hansen et al.,
[35,/12,[38] 37, 10]. One rarely finds a paper which does not deal with Fredholm
equations, nevertheless, the methods are (to certain extent) applicable to arbitrary
ill-posed problems. One reference with connection to CAGD and B-spline surface
interpolation, is Schumaker’s paper [72]. A fabulous reference is Hansen’s survey
on regularization methods [36].

Essentially, ill-posed problems are under-determined due to the uncertainty
about the exact rank of the matrix. The consequence is that that standard methods
for solving inverse linear problems (such as Gaussian elimination or QR factor-
ization) cannot be used in straightforward manner to obtain a solution. The basic
idea of regularization is to remedy this uncertainty by stating an additional con-
dition on properties of the solution in order to improve the rank of the system
matrix. Technically, one selects a so-called “side constraint” which represents
some expected properties of the solution. Then we seek a compromise between
minimizing the residual of the ill-posed equation system and an “optimal” value
of the side constraint. Clearly, once a problem is identified as ill-posed and a side
constraint is introduced, we have to give up the goal to solve the problem exactly,
i.e., we will, in general, not be able to make the residual equal zero. Instead, we
hope to obtain aegularizedsolution which is not too far away from the actual

94 CHAPTER 7. LINEAR CONSTRAINT SOLVING 1

requirement that the residual equals zero.

The main difficulty of regularization is to find a good compromise between
the error in the residual and value of the side constraint. In this thesis we will
apply discrete regularization methods base®&omular Value Decompositioof
the model matrix.

7.3 The truncated SVD

The superior tool for analysis of ill-posed problems is the Singular Value De-
composition (SVD)[[80] 29, 46, 84]. In this section we will briefly review the
properties of SVD. We will explain how the truncation of the SVD helps to reveal
the rank of the degenerate system of linear equations.

7.3.1 The SVD

Let be given a system of linear equations:
A:R" > R'Af=h Ac RV fecR", heR"

The SVD of system matriA has the formaA = UXV”. The matricedJ, V
are orthonormal an®l is a diagonal matrix such that

dIaQXZ) =0; > Oi+1 - - - Omin(m,n) >0

For well-conditioned non-singular problems all singular valaggare non-zero
and the condition number = o1 /0 1in(m) is Small. In case of well-conditioned
singular problem, there is a particularsuch thato, > 04,7 ando; ~ 0 for

i > k + 1. The “truncation” parameter corresponds to the rank of the singular
problem. Consider the following partitioning of the SVD matrices:

U, = [ul...uk] Ek:diag(al,...,ak) V. = [Vl...Vk]

Accordingly, introduce the matri¥ ;. which consists of al{m — k) remaining
columns ofV. The matrix
A, =0, V] (7.4)

represents the closest rakkapproximation of the original matriA, see, the
before mentioned publications for further details. Thus, instead of solving the
original ill-conditioned problenAf = h we solveA .f, = h by computing

f, = VX, 'Ulh (7.5)

7.3. THE TRUNCATED SVD 95

Vv A-f=nh
f "——- oy,

U
‘

~ -
..----—‘

A .h=f

Figure 7.2: Geometric interpretation of Singular Value Decomposiidn =
Ux

for a selected truncation parameterNote thatf, has no component in the null-
space ofA; the generalized solution space (for cakes min (m, n)) is obtained
by adding a translation factor fross null-space

f=f +f, = + Vit (7.6)

wheref;,; are the(m — k) variables which are not determined by given con-
straints. Settind,., = V., (wheref, denotes a previously known solution of
the system (in our application the control points of the previously known surface)
and insertingd, . ; into above equation one obtains a solution which:

1. exactly solves\.f, = UTh
2. minimizes the residual, = ||Af — h|| and

3. minimizes the normed differengg = ||f — fy||

7.3.2 The rank revealing effect of SVD

The rank revealing effect is the most valuable property of the SVD. We utilize
the knowledge that for any numbér < min (m,n), k& > 0 among all size

m X n matrices with rankt the matrix A, is the closest possible approxima-
tion of the original matrixA. The SVD has a geometric interpretation; This is
visualized form,n = 3 in figure[7.2. Again we have a linear transformation

96 CHAPTER 7. LINEAR CONSTRAINT SOLVING 1

Af = h, A € R™", m = n = 3. The matrixA transforms a vectof (left
part of the figure) into a vectdi (right part of the figure). The SVD delivers or-
thonormal bases foR™ and R™ such that the unit (hyper)-sphere ii¥ spanned
by vectorsv, to v,, is transformed by matriA to an (hyper)-ellipsoid ilR™ with
principal axes determined by vectors:; which is expressed by SVRV = X U.
The geometric interpretation of SVD helps to understand the effect of zero singu-
lar valueso; for i < min (m, n): if, for example,o; were zero the ellipsoid ifk?
degenerates to an ellipse with principal axga; andosu,. Due to the relation-
ship among the columns & and the SVD, we may conclude that the matixs
degenerateA transforms one of the vectovsto a zero vector. In other words, its
columns only span a basis f&?, or equivalently, one oAAs columns is linearly
dependent from the others.

We conclude by noting that truncating the SVD can be interpreted in three
different ways:

1. Geometric we ignore the “collapsed” dimensions of the ellipsoid and con-
sider only the (orthogonal) projection hfontoU,, € R¥ c R™.

2. Algorithmic we shift a corresponding vectef from V to V., (from the
first term in Eq[7.5 to the second term)

3. Algebraic by setting a singular value equal zero we enlarge the dimension
of the null-space oA by one and collapse the range-spacAaif the same
amount.

7.4 The L-curve method

The central topic of this section is the algorithm to obtain the optimal truncation
parameter given the Singular value decomposition of a linear systems of equation.
We will refer to the example from sectipn 7.2, fig.|7.1.

7.4.1 The singular values plot

The benefits of SVD become obvious when comparing a singular problem with
well-defined rank and an ill-posed problem. Figures 7.3(a)-(b) show the so-called
singular value plots of two curve-surface incidence constraints:

(a) the pre-image of the 3D curve is a part of iso-parametric line terconst.
andv € (0.25,0.75) treated as a general curve (i.e. equations were set up by the
composition method)

7.4. THE L-CURVE METHOD 97

107°% ——— 1 107

@) (b)

Figure 7.3: Ther-plot of a singular curve constraint with well-determined rank
(a), and an ill-posed curve constraint (b). Tdwplots show the distinct jump in
the former case but gradually decreasing singular values for the latter case.

(b) the constraint from example in figure [7.1, segtiop7.2 (i.e. the pre-image
curve is a general cubic curve)

We draw the dependency of the logarithm of singular valuévertical axis)
on the truncation parametér(horizontal axis). In both cases the surface is bi-
cubic with8x 10 control points. For the iso-parametric curve the problem is under-
determined but “exactly” singular: the jump betwegrandosy has the magnitude
of several exponents, therefore we can safely obtain a solution by mean§ of eq. 7.6
by setting the truncation parameter= 8. Of course, for this particular case, it
is not necessary to employ the composition method. The equations can be set up
directly obtaining a full-rank matrix of siz& x 80 which confirms the result from
the SVD. On the other hand, the singular values plot of the other constraint shown
in fig. [7.3(b) decays gradually to zero without a significant jump in magnitude at
a specifico;,. The problem is ill-posed according to definitior{in]7.2: there is no
obvious choice for the rank.

7.4.2 Determining the optimal truncation parameter

Determining truncation parameters the central difficulty when a linear problem
is ill-posed. The choice of the truncation paramétés apparently not arbitrary:
Choosing too smak will cause large error ip, and too largé: will increaser,,
since computing=~! in eq.[7.5 involves divisions by small numbers. Therefore,

98 CHAPTER 7. LINEAR CONSTRAINT SOLVING 1

10

=10

10 ‘ ‘ ‘
10 10 10 10" 10 10"

100 302]

10

100 298

10°2%)

(b)

Figure 7.4: The L-curve (a) with the magnified “corner” region (b) for the
smoothly varying curve constraint shown in figlire] 7.1.

one seeks a solution which satisfies the criteria defined in §7.3.2: it must minimize
the residuat), and it must possess the minimal nopm

It was observed by several researchers that if the residual of the truncated
problemp, and the norm of the so obtained solutignare plotted versus each
other in logarithmic scale for severak a curve with characteristic “L-shape”
almost always results, see [37] for historical overview and further background of
L-curves.

For the ill-posed constraint — corresponding to the example if fi§. 7.1 and to
singular value plot in fig. 7]3(b) — we obtain the L-curve shown in figuré 7.4(a):
The optimal truncation parameter corresponds to the sharp concave corner em-

7.4. THE L-CURVE METHOD 99

phasized by an arrow: at this point, an attempt to determine another unknown
variable (i.e. increasing the truncation paramefeonly increases the norm of

the solution without a significant improvement of the residual. Thus it is reason-
able to conclude that given a linear system of equatibfis= h, the matrixA,
(equationj 7.]4) is the best possible approximation of the matnissing the criteria

from §7.3.1. It follows that among all surfaces the surface with control péints
(obtained by means of €q. J.5 applied to each spacial coordinate) is optimal in the
sense of criteria stated grandn.

We detect the corner of the L-curve as follows: A magnification of the cor-
ner region shown in figurg 7.4(b) reveals that the “corner” consists of a clus-
ter of rapidly varying value$py, n:). This leads to an idea to approximate the
discrete points of the L-curve by a sufficiently smooth B-spline cur{® and
to locate a parameter valug where the curve exhibits largest negative curva-
ture. Then the point associated with the closest smalisrchosen. Thus, the-
oretically, the optimal truncation parameteis found by solvingmax; (x) and
miny, ||L(tx) — (px, nx)||- In order to detect such points, we start with a piecewise
linear approximation of the discrete point $@%,7x) : kmin < ¢ < kpax. We
increase the polynomial degree of the piecewise linear curve to cubic and apply
a slightly modified version of Lyche-Mgrken algorithm [52] to remove as many
knots as possible. We build a statistics on eregreaused by removal of &th
knot and increase the threshold which regulates the Lyche-Mgrken recursion until
the statistics contains only errors such that

|lmax (log €) — min (log €)|| <1

This heuristics relies on the observation that the L-curve has one (in the optimal
case), or several, distinct regions of large curvature and is relatively smooth else-
where. At the output, we obtain the B-spline representation of the L-curve which
has one (in the optimal case) or severaldiscontinuities in the knot vector. The
curve points corresponding to these discontinuities are (or are close to) the corner
of the L-curve.

The range for tested truncation parametérs., kum.x) is determined based on
the following heuristics: Consider, for example, the L-curve shown in figuie 7.4
on the left. Figurg 7]3(b) shows the singular value plot of the associated linear
problem: there is ajump neass but there are also several jJumps of approximately
the same (or even larger) magnitude betwegrandos, and betweens, andogp.
Thus, one should select such range #gr, and k.., that no large jumps occur
outside ofo,;, t0 0. With a sufficiently large buffer zones at both ends. The
comparison of the two figurgs 7.3(b) and]7.4 also demonstrates how dangerous
it is to rely exclusively on ther-plot: the jump atrs; is larger than the jump at
o3g but the solution becomes unstable already at 40, see also the magnified
L-curve corner in figl 7J4(b).

100 CHAPTER 7. LINEAR CONSTRAINT SOLVING 1

10°F i

S
v

—t

10"
P

Figure 7.5: The L-curve for the rapidly varying curve from figiiref 7.1: the “cas-
cade” shape of the L-curve is characteristic for data which do not satisfy the dis-
crete Picard condition.

7.4.3 Demonstrating the Picard condition

It is interesting to compare the L-curves which result when shape of the con-
strained curve is modified. Again, consider the curve-surface constraint from
fig. [7.]: The figurg 7]4(a) shows the L-curve for the smoothly changing curve
from fig. [7.1 while in figurg 7]5 the L-curve is shown which results from the
rapidly oscillating curve.

If the constrained curve varies too rapidly the L-curve possesses several dis-
tinct corners as shown in figufe 7.5: it moves from one to the next corner in a
“cascade”-like manner. In such cases it is reasonable to select the corner with
smallesty even if the residual does not reach the required threshold. However,
such cascades in the L-curve generally indicate that the data to be interpolated
does not satisfy the discrete Picard condition, §ee §7.2.2. Such input data (i.e. such
shapes of the constrained curve) should be avoided right from the start. Usually,
none of the corners (truncation parameters) will deliver a meaningful solution.
Rather, the presence of several sharp corners signalizes that there is no unique
choice for a closest lower rank approximation of the problem. This is the limi-
tation of all SVD based regularization methods — the parameters of the ill-posed
linear problem must satisfy the Picard condition.

7.5. THE SURFACE ALIASING EFFECT 101

Figure 7.6: The TSVD solution corresponding to the corner of the L-curve from
Fig.[7.4. In order to emphasize the “aliasing” effect the right figure shows a bi-
guadratic surface with the same curve constraint and the same number of DOFs.

7.4.4 The “aliasing effect” of the truncated SVD solution

The procedure described above is known as “Truncated SVD regularization” (TSVD),
see [35]. The solution surface corresponding to the L-curve corner=aBs is

shown in figurg 7J6: observe, that the surface deforms along the curve in a “stair-
case” like manner. It is less apparent in the bi-cubic surface shown on the left
and stronger in bi-quadratic surface on the right. We call thisstivéace alias-

ing effect cf. [55], because of the similarity with aliasing as known in computer
graphics. The resulting surfaces although in algebraic sense correct (the example
in fig.[7.6 on the left renders the residual@f = 10-%%, cf. to figure[7.4, the

more “aliased” bi-quadratic surface on the right has= 10~°) will surely not be
accepted by the designers. Before we approach suitable “anti-aliasing” methods,
in the next paragraph we analyze the reasons for such unwanted deformations of
the surface in more detail.

7.5 The surface aliasing effect

Figure[7.7 shows the result of constraining the incidence of a diagonal, vertical
and horizontal line (in the domain of the surface) of0ax 20 bi-quadratic B-

spline surface. The distribution of the dependent control points of the surface is
shown in the bottom part of the figure: each bright square represents a control
point safely determined by the L-curve method. The aliasing effect in example on
the left is strong — the surface exhibits undesired bumps or wiggles — whereas in

102 CHAPTER 7. LINEAR CONSTRAINT SOLVING 1

] 10 15] 10 15 3 10 15

Figure 7.7: An attempt to constrain a diagonal, vertical and horizontal line on
a 20 x 20 bi-quadratic B-spline surface. The lower part of the figure shows the
distribution of control points determined by the L-curve method

the middle and right examples, no bumps can be observed. A comparison with
the staircase effect when drawing a line on a screen by assigning color values to
a discrete grid of pixels comes to mind immediately. What is the reason for this
“aliasing” and is there a way to remedy it?

The first question can be easily answered: the control points of a tensor prod-
uct surface are aligned on a rectangular grid, the size and density of which de-
pend on the parametrization of the surface (compare with pixel-grid of a monitor
screen). The TSVD method as described in previous sections defines an alge-
braically stable solution by minimizing the norfif — fy||. It discards certain
variables for the prize of this stability. However, this does not mean that the dis-
carded variables are really independent — we just cannot reliably determine the
“amount” of the dependency. Apparently, the transition among dependent and
independent control points is too abrupt which causes undesirable bumps in the
shape of the surface.

The frequency of the bumps depends on the order of polynomial continuity
among the surface patches. The higher order of polynomial continuity, the lower
frequency of the bumps is observed. With growing polynomial degree (and order
of polynomial continuity) the change of a constrained curve propagates through-
out a larger region of the surface and is distributed across more surface patches.
This gives the surface an opportunity to deform more slowly, and thus, more
equally.

7.5. THE SURFACE ALIASING EFFECT 103

Figure 7.8: Influence of polynomial degree and order of continuity to the aliasing
effect: left figure shows a bi-quadrati¢'-continuous B-splines surface, the sur-
face in the middle figure is bi-cubic ari¢f-continuous and the right-most surface
is bi-quintic C*-continuous. Each surface his x 15 control points. In all cases
the same curve constraint and the same deformation was applied.

The effect is illustrated in figure 1.8: a change is applied to the same curve
on bi-quadratic and bi-cubic and bi-quintic B-spline surfaces with« 15 con-
trol points. The aliasing becomes less distinct with growing order of polynomial
continuity of the surfaces. However, increasing the degree of used surfaces is not
the optimal solution since the high order of polynomial continuity restricts the al-
lowed changes of the surface. In other words, the surface becomes more sensitive
to changes of constrained curves. For example, the L-curve for the bi-quadratic
surface in fig[7.8 on the left has only one distinct corner and satisfies the con-
straint with residual errop, = 107° for £k = 80. l.e. from the numerical point
of view the solution is perfect. The L-curve for bi-cubic surface is already more
scattered and we have to truncate the SVR,at= 10~*". The L-curve for the
bi-quintic surface exhibits the first sharp corner alreadysat 10~13. Thus by
increasing the polynomial order of the surface we damp the aliasing effect for
the prize of increasing error in the residual. The flexibility of the surface can be
increased by generating new degrees of freedom (i.e., by refinement of the con-
trol mesh of the surface) at positions where the error between the required curve
and the surface exceeds a prescribed limit. However, then the composition matrix
has to be recomputed from scratch which becomes more expensive with growing
polynomial degrees of the surface, see also seftign 4.4.

104 CHAPTER 7. LINEAR CONSTRAINT SOLVING 1

Chapter 8

Linear constraint solving |

In this chapter two methods are proposed to improve the shape of the constrained
surfaces. We describe tvamti-aliasingmethods: a geometric method using local
reparametrization the of the surface (secfion 8.2) and an algebraic method which
applies regularization with a side-constraint in general form, seftign 8.3. The
sectior] 8.3.3 contains a brief overview about alternatives to SVD and points out
directions for future improvements of the algebraic solver.

8.1 Introduction: Anti-aliasing

The aliasing effect always occurs when using piecewise bi-polynomial tensor-
product surfaces, whenever the constrained curve does not match the rectangular
arrangement of the control points. The problem seems to be known in the field
of data interpolation (cf.[14]). In_[39], Hayes introduced piecewise composite
surfaces witlcurved knot linesvhich cope better with an arbitrary curve. The do-
main of the surface is defined as a curvilinear mesh of knot lines. The parametriza-
tion of the surface can then be better adjusted to match a given curve. Although
very powerful and conceptually simple, in practice, elementary algorithms for tra-
ditional B-splines (for example knot insertion and removal, degree raising and
lowering) become very complicated with Hayes splines, which may be the rea-
son for low acceptance of this type of surfaces. For example, it is not clear if the
polynomial composition can be formulated in similar manner as for “traditional”
B-splines, or even, if the blossoming principle applies at all. Though this could be
an interesting topic to investigate, the practical usability of Hayes-splines in CAD
is questionable — we have not encountered a modeling system which uses this
kind of surfaces, or a scientific publication which further investigates the usage of
Hayes-splines in geometric and solid modeling.

In our effort to remove the “aliasing” effect” we have successfully applied

105

106 CHAPTER 8. LINEAR CONSTRAINT SOLVING II

two approaches: in the first approach we reparametrize the surface such that the
pre-image of an arbitrary curve becomes an iso-parametric line. We convert an
arbitrary shaped ill-conditioned curve constraint to a well-conditioned iso-curve
constraint which can be safely solved with no aliasing. The second method is
comparable to traditional “anti-aliasing” as applied in computer graphics: we find
such values for the remaining degrees of freedom of the surface (i.e. those which
could not be determined by TSVD) that the aliasing effect becomes less apparent
or completely disappears. We define new constraints, working against the aliasing,
in connection with the primary incidence constraint. The following paragraphs
describe these two methods in more detail.

8.2 Surface reparametrization

It follows from the discussion in sectipn 7.5 that the only case of curve constraints

a tensor-product surface can handle without aliasing are iso-parametric lines. In
this case, the influenced control points of the surface lie on (or inside) an axis-

aligned rectangle, cf. figufe 7.7. The question is now, given a surface with one or
several arbitrarily positioned curve constraints, is a conversion to this case possi-
ble, without destroying the appearance of the input data?

8.2.1 Reparametrization of tensor-product B-splines

Suppose the designer wishes to deform the sufdeev) aligned along the curve
shown in figur¢ 8[1(a). We are looking for a surface in the domain of which this
curve can be represented as an iso-parametric line and which is locally identical
to the original surface in the 3D space, see figurg 8.1(b). Obviously, this can only
be done by some kind of re-parameterization of the original surface, as shown in
the figurg 8.1L(c): The lower left figure shows the curve projected into the domain
of the original surfacé” (u, v). We have to find a surfacg (s, t) in the domain of

F, such that the given curve is a line in the domaiitzofais shown in figurg 8.1(c)

on the right. If the surfacé& (s,t) = (u(s,t),v(s,t)) is known, we can locally
replace the surfacg by a new one

H (s,t) = F(u(s,t),v(s,t)) (8.1)
G(s,t)

yielding the reparametrized surfaéé with required properties. There are two
problems to be solved:

1. obtaining the surfacé

8.2. SURFACE REPARAMETRIZATION 107

- — }‘-‘a
= h-._h{' ‘“\}(ﬁhh
@ -_-\-"'-___f i 7 -
- A] = b
e ¥ o ¥ = s
- 5 ,‘H Y -‘h"‘\-. "\-...\
S e --\.f'_'.)" ‘:("\1 fx___\ -
) e 3&':. .8 n
g i b F, g
/ J,{' --"‘“-\.._‘,' ¥ A
Lo KAt
~L)/
e »..,. b J
/ g '
(a) (b)
A A
% t
G(s,t)
. .
» Ll
\ u s

G(s=const., t)
(€)

Figure 8.1: The surface is reparametrized such that a domain curve (shown as a
thick line in the left lower figure) corresponding to the 3D curve shown in figure
(a) becomes an iso-parametric line (right lower figure). For that a new surface
G(s,t) satisfying this property is computed. The (approximate) composition of
the two surfaces yields a surfagg(s, t) = F' (G (s, t)) locally identical with the
original surface which is shown in figure (b).

2. computing the reparametrization surfdé¢drom GG and I’

The surfacez can be obtained by letting the designer sketch the four bound-
ary curves of the new feature (Fig. B.1, left), project them into the domain of

108 CHAPTER 8. LINEAR CONSTRAINT SOLVING II

|
'
|
{
Ch

"y o, b £ \:?\\

Sy
R
T

. mm X [] SR

8
-
e
M : % / /
4 AT
/
/\

e ! F y / —_

Figure 8.2: Left figure: boundary curves of the new reparametrized surface, mid-
dle: derivatives along the boundary curves assu€ihgontinuity to the original
surface. Right figure shows the resulting surface obtained from interpolating the
four boundary curves and derivatives along them.

the surfacel” and compute a 2D boolean-sum surface. Another possibility is a
heuristics utilizing the sketched curve: the curve is projected into the domain of
F', where two offset curves at user-defined distances are computed, which serve
as the boundary curves in one parametric direction. The boundaries in the other
direction are chosen to be linear. The expres§ioh 8.1 is a polynomial surface-
surface composition. Unfortunately, if the outer operand of the composition, the
surfaceF’, is a tensor-product B-spline the result of the composition does not have
a tensor-product representation anymore, as it was already noted by DeRose et
al. in [18]. Consequently, there is no algebraic relationship between the control
points of both surfaces in the style of one-dimensional composition constraints.
To representd would require a surface definition on a non-rectangular domain.
We have not further investigated this alternative; for example, one could try to
formulateH in terms of Seidel's B-Patches, see €.9! [77] or Loop’s generalization
of B-splines to arbitrary domains [51]. Instead, we propose an efficient method
which computes an approximation &f in tensor-product B-spline format up to
arbitrary user defined tolerance. The algorithm is described in the next paragraph.

8.2.2 Solving a constrained curve network interpolation prob-
lem

Consider figure$ 8|1 ar{d 8.2: We can compute arbitrarily many curves repre-
sentingG such thats or t = const. and compute their exact representation on
the surfaceF’ obtaining a network of 3D curves. In the second step we apply
Gordon’s method to interpolate a tensor product surface through a topologically
orthogonal network of 3D curves, see [30]: A set of parallel curves from sur-
faceG(s,t) are scanned at suitable valugsandt;. In the following we denote
them byG (s;,t) = G;(t) andG (s, t;) = G;(s). Such curves intersect at points

8.2. SURFACE REPARAMETRIZATION 109

G (si,t;) = G,j. In addition, the vector field curve3G;(t)/ds = D;(t) and
0G,(s)/0t = D;(s) are computed. Given this data the algorithm to interpolate
the surfacef (s, t) looks as follows:

1. Estimate the numbegs ¢ which determine the number of curves(t) and
G,(s) such that the shape of the surfagés, ¢) is fully determined by that
curve network. After computing’ (G;(t)), 0 <i < pandF (G,(t)), 0 <
j < q we obtain a network of 3D curves incident éhand meeting at
points ' (G;). Figure(a) shows the curve network for the casg
i,7 < 1. The derivative curve®),; and D, transformed to 3D are vector
field curves representing directional derivativesFofvith respect tos and

t, OF (D;(t)/0s) andOF (D;(s)/0t), see fig[8.R(b).

2. We now have enough information to carry out a cubic interpolation among
the curvesF (G;(s)), 0 < ¢ < pandF (G4(t)), 0 < j < g, using the
respective derivative conditions;(¢) and D;(s). Using surface skinning
(c.f. paragraphk 2.2.2 apnd 2.2]2.1), the surfadesnd H, are computed
from this data. The surfacH; is obtained as a result of tensor product in-
terpolation of the values’ (G;;), 0 <i < p, 0 < j < g and the derivatives
at corner vertices and at the intersection points of the scanned curves.

3. According to[30], the surfac# (s,t) = H, + Hy, — Hj interpolates the
given network of curves and points at which they intersect] fig. 8.2(c).

The surfacef (s, t) is exactly identical to the original surfadé(u, v) along
the scanned curves and points and it approximates the original surface in be-
tween. Moreover, due to the derivative information inherited frBmthere is
at least aG!' continuous connection off to F' at prescribed curves. The qual-
ity of the approximation is determined by measuring the maximum(eft) =
|F' (G(s,t)) — H(s,t)|. Whenevere is larger than a prescribed value, the curve
network is refined and the whole process is repeated. The refinement is done by
recursively inserting a new curve in the middle of each interval of the sutface
in each parametric direction. The curve is then composed with the original sur-
face F' and added to the interpolation equations for We recommend to start
with four boundary curves and corner points and refine the curve network itera-
tively. Proceeding this way, the example from figurg 8.2 succeeds after 1 step with
max (€(s, t)) < 1075. A sculpted example which succeeds after 3 such refinement
steps is shown in figufe §.3.

The degree and knot density of the resulting surface depend on:

¢ the degree and parameterization chosen for the initial sufeaed

¢ the degree and knot density of the original surface.

110 CHAPTER 8. LINEAR CONSTRAINT SOLVING II

Iz

L

P

S

By
N
T

ik}
N

Figure 8.3: The left-most figure shows the surfateafter the first interpolation
step. The approximation error falls belaw—2 after twice inserting a curve and
derivatives in the middle of each interval. Interpolation of the curve network in
upper figure leads to the result shown in right-most figure.

The degree of a curve resulting from curve-surface composition is givén byt ()
whered is the degree of the domain curve dndnd! are the degrees in both para-
metric directions off’. The curves are evaluated using the methods from chap-
ter[4 and the skinning problems are solved efficiently with the aid of algorithms
for solving banded linear systems. For further details, examples and a run time
analysis see [55].

8.2.3 A design example

After the reparametrization, the constrained curve is exactly incident on the reparametrized
surface and its pre-image in the domain of the new surface is an iso-parametric
line. Incidence and tangency constraints are stated on the boundaries of the new
surface and their current values are fixed. Any change of the curve is transfered to
the new surface without an interference with the “underlying” original surface.
Figure[8.4 demonstrates a design application of the presented method. Here,
the designer wants to add a “crater” shaped feature to the surface shown in fig-
ure[8.4 on the left: Two closed curves are sketched on the surface. The system

8.2. SURFACE REPARAMETRIZATION 111

(s:0)
A=

Nu
G(s=const., t)

—

Figure 8.4: The reparametrization method completely circumvents ill-
conditioning and aliasing: the surface between the two curve shown in the left
part of the figure is replaced by a new surface which can be safely determined
from the fixed boundary curves, derivatives along boundary curves and a user
specified curve “handle”

projects the curves into the domain of the surface and computes their exact repre-
sentation on the surface. They represent the boundaries of the new feature. The
designer can choose a continuity of the crater feature along the boundary curves.
Here incidence an@' continuity along both boundaries are specified. The system
computes a reparametrization surface from surface curves as described in previ-
ous paragraph. Two tangency and two incidence constraints along the boundary
curves are generated between the new and the original surface. The area covered
by the new surface is trimmed away from the original surface, sep fig. 8.4. The
manipulation tool of the designer will be any iso-parametric curve in either di-
rection on the crater surface, which can now be selected by choosing a direction
and picking a point anywhere on the surface, as demonstrated in[fighre 8.4 on the
right: the surface reacts to changes of any iso-parametric curve as expected: the
incidence and tangency constraints along the boundary and feature curves assure
the proper connection of the new feature to the original surface. No aliasing ef-

112 CHAPTER 8. LINEAR CONSTRAINT SOLVING II

fects occur, since all constrained curves are iso-parametric lines in the domain of
the new surface.

8.2.4 Summary of the method

The disadvantage of this method is that one can adjust the surface only for one se-
lected curve constraint. All other constraints need to be recomputed to match the
new topology of the model which considerably complicates the data-management.
Furthermore, this method guarantees only aliasing-free editing of the reparametrized
surface: if we haven't fixed the boundaries of new surface feature, then the un-
derlying original surface would have to follow the changes of new reparametrized
surface. However, then the new shape of the original surface needed to be com-
puted from general curve constraints which are not aliasing-free.

8.3 Constrained least squares

The idea behind the second approach is to better utilize the degrees of freedom of
the surface which were discarded by the L-curve method. We refer to the notation
used in sectiorfs 7.3[1-T.4: we solve a general linear system of equAtfoash
with knowns and unknowns set as explained[in 87.3.1.

The L-curve algorithm separates the degrees of freedom into two sets: the
dependent ones and the discarded or free ones. Referrind tojeq. 7.6, we:have
k) free parameters and the solution space obtained from the TSVD at our disposal.
Thus, we may use these free parameters for stating additional constraints which
help against the “aliasing” effect and improve the shape of the surface without
destroying the already minimal residual of the TSVD solution. Well-suited for
this purpose are the quadratic surface functionals frequently used in variational
surface design, see [32], for example. We have discussed efficient methods to
obtain the normal equations for all frequently used functionals in chigpter 6. In the
following we will consider a linear combination of matrices

3 3
i=1 =1

whereL; denote the normal equations of area, thin-plate energy and variation of
curvature minimizing functionals far= 1, 2, 3, please refer to tabJe §.1.

8.3.1 The constrained regularization

Formally the so-called regularization methods with general side constraint and
constrained variational problems are equivalent. In both cases a constrained least

8.3. CONSTRAINED LEAST SQUARES 113

square problem is solved [29, Section 12.1]: an objective functiea f”Lf is
minimized subject to a set of linear constraidf = h which is usually denoted
by

mflnf sub mfin |Af — h|| (8.3)

In this contextming f = Lf. There are two possible ways to solve problems of

the typ¢g 8.B:

1. Extract a solution space which satisfies the constraifts= h obtaining
a generalized solution in terms of hyperplane equafica f, + f,,, see
also §7.3.]L. Substituting the generalized solutiorf fiorthe side constraint
yields an unconstrained minimization problem

L(f,+£f,)=0

which is solved foff,,. The solution of the original constrained optimization
is obtained by insertin§j, back intof = f;, + f,,.

2. Use Lagrange method (see elg. [69]): introduce auxiliary variables, the so-
called, Lagrange multiplierA and solve the system:

H AT f 1 |0

A 0| |A] |h
This is easy, if the system matriX has full rank: such variational equations
are commonly solved in the context of multi-patch surface interpolation or scat-
tered data interpolation, see eld.[[9, 5,131,/ 48] 32, 19, 40, 20]. There are efficient
numerical methods to solve (1) and (2) if the mathbhas full rank, e.g. the Gen-
eralized QR-decomposition [29]. A practitioner obtains the solution by calling
LAPACK [2] 4] functionsSDGGLSEOr DGGGLM. If, however, the matripA is rank

deficient or even the problem is ill-posed — as it is the case with our generalized
curve-surface constraints — one has to turn to more sophisticated methods.

8.3.2 Moaodified truncated SVD

If the SVD of A is available, an efficient numerical method to solve such con-
strained approximation problem is the so-called, Modified TSVD (MTSVD)) [38].
It allows to define more general side constraints. Insteaff ef f,|| one mini-
mizes||L (f — f;)|| for some regularization matrik. In our case the selection of
regularization matrix is obvioudL is set as described above. We know that the
linear combination of the surface functionals is minimal at

L(f—f)=0

114 CHAPTER 8. LINEAR CONSTRAINT SOLVING II

with the previously known solutiofy before the deformation. Substituting £q.|7.6
for f in above equation yields

L(f+ Vifii—f) = 0

8.4
IVifin = L(fy—f) 84)

Solving eq[8.)4 foffy,; and substituting back to .6 we obtain a “corrected”
MTSVD solution

fre =1 + Vgt

which in addition to properties 1-2 from §7.B.1 minimizes the ngin{f — f,)]|.

In [38], Hansen proposes to compute the valueg,of= ||Af, ; — h| and
m. = |[frx| for eachk and locate the corner of the “weighted” L-curve as in
the case of TSVD. Consider, that there may be several hundred up to several
thousand truncation parameters, thus, we must be able to obtain the “penalty”
termf,, fast. The linear system in Hg. 8.4 can be solved in a particularly efficient
way by pre-computing the worst case QR-decompositida\of . 1, i.€., for the
smallestk ever used and update it for the edgh, < k accordingly, see [38]
and [29, 812.6] for details. Thus obtaining the proper “correction” térm for
eachk is computationally cheap. Note that the pre-condition for this procedure
is thatL or at leastLVy_. .; must be non-singular. Otherwise, the “trick” of
updating the QR-decomposition does not work and[Ed. 8.4 must be solved for
eachk “from scratch”. Fortunately, ifl. is the linear combination of matrices
as described above, the matfiX’;_. ., tends to be non-singular for at least one
a; > 0, reasonable parametrization of the B-spline surfaemd sufficiently large
kwin, S€€ alsa |19, 40, 20].

Figure[8.% shows three different modifications of the same surface and the
same constraint as in figufe 7.1 after the MTSVD correction was applied. No
aliasing can be observed, the error in the residual is lesstbiah Since the
system matrix in Ed. 8]4 is not particularly well conditioned (the typical condition
numbers obtained in our experiments were betwi@é 0*), the discrete L-curve
points are considerably more “scattered”. Generally, the truncation parameter
obtained by above method is smaller than if no “smoothing” side constraint is
applied. We have found that th& “weighted” L-curve almost always possess
one more corner compared to the L-curve obtained by TSVD method. Typically,
the corner occurs earlier, hence, the usage of a generalized side constraint causes
larger error in the residual but delivers smoother solutions, which is in accordance
with results described in_[38]. Alternatively, one can comptitey the TSVD
method and solve fdf., ; only once. However, in some cases the L-curve corners
which occur earlier if the weighted norffl.f|| is considered could be missed.

8.3. CONSTRAINED LEAST SQUARES 115

Figure 8.5: Bi-cubic surface obtained by the MTSVD method. The modifications
of the surface proceed from left to right, the “next” sketched curve is shown in
darker color. Adding the “smoothing term” to the TSVD solution removes the
aliasing artifacts and delivers an optically and geometrically smooth surface.

8.3.3 More results and selected problems

Based on numerous experiments with the methods described in previous Para-
graphs we conclude that the MSTVD method reliably removes the aliasing effects
and, if SVD of the system matrix is available, efficiently locates the compromise
between constraints satisfaction and the smoothness of the surface. Of course, the
procedure is not limited to single curve constraints. For example, figure 8.6 shows
the creation of the “dome” shaped surface such as we have used for demonstration
purposes in[§2.3]1. The lower row of figures show a dome “feature”: the loop is

116 CHAPTER 8. LINEAR CONSTRAINT SOLVING 11

Figure 8.6: The example shows the design of a “dome” surface with two curve
constraints. The closed loop remains “fixed”, the other curve is modified by sub-
sequent pen-strokes. In the lower figures the bi-cubic surfacel@ith12 DOFs

was trimmed outside of the fixed loop. In this example the MTSVD method deliv-
ers a solution with residuals betwegin>-10~* depending on the change applied
to the straight curve.

constrained on both surfaces. Since its shape and position is fixed no changes are
carried over to the flat surface which allows to create local features inside of a
marked region on the surface, refer also[to §2.3.2.

An attractive application is the creation of “n-sided” surface patches for filling
n-sided holes in solid models the, so-called, surface fillets, see figyre 8.7: The
“traditional” approach is to fill am-sided region with. four-sided patches intro-
ducing a midpoint and splitting curves in a “star” constellation, see elg./[62].
The patches are then computed fromthegoundary and splitting curves with se-
lected order of geometric continuity. The problem is that it is not clear how to
determine the midpoint and the splitting curves, and that complicated “compati-

8.3. CONSTRAINED LEAST SQUARES 117

Figure 8.7: A "5-sided” surface patch simulated by trimming a bi-cubic B-spline
surface with12 x 12 DOFs computed from 5 curve constraints. The lower figure
shows the control mesh of the surface.

bility” pre-conditions for the curves arise, see €.g. [60]. Usage of trimmed Bezier
patches was examined by Cohen and Elbé€r in [24] and an approach similar to ours
was described by Dietz in [20]: here, the boundary curves are given as strips of
points and the B-spline surface is iteratively “shifted” towards the compromise be-
tween minimum thin-plate energy and constraint satisfaction. However, the paper
does not mention ill-conditioning of the point-incidence equations which occurs
if many point constraints are used for discrete approximation of a curve.

The advantage of using generalized curve constraints on arbitrary B-splines is
that a low degree tensor-product B-spline surface which interpolates the boundary
curves with sufficient accuracy can be obtained. Since usage of trimmed B-spline
patches is a de-facto “standard” in almost all modeling systems the method is

118 CHAPTER 8. LINEAR CONSTRAINT SOLVING II

more universal than usage of high-degree Bezier patches or non-rectangular sur-
face patches. Furthermore, there is no need to deal(tbntinuity conditions:

the B-spline surface deforms smoothly inside of the trimmed region, seg Hig. 8.7
on the right. In addition, the normals along the boundary curves can be prescribed
by simply adding the equations set up as described in s€ctipn 5.1. The bottom
figure shows the control mesh of the surface: in this case a bi-cubic surface with
12 x 12 DOFs was used®9 DOFs can be safely determined from the curve con-
straints, the rendered residualgs, ~ 10~7. The figure demonstrates that the
smoothing constraint enforces an overall smooth surface without fast changes in
the curvature. As in the all examples, we have used weight coefficignts0.5,

a =0.5,a3 =0 in Eq@

It is reasonable to assume that the specified curves do not represent contra-
dictory requirements. For example, the endpoints of the modified curve in the
“dome” model in figurg 8J6 must remain fixed. Fat-Sided” constellation of
curves such as in figufe 8.7 all subsequent curves must share a common endpoint.
If more than two curves intersect in one point they must be locally co-planar, and
so on. These are necessary conditions for the theoretical existence of the solution
and have to be derived from the constraint graph depending on current distribution
of DOFs as sketched in section12.3.

8.3.4 Summary of the method

In conclusion, with regard to surface interpolation as proposed above we summa-
rize the problems and subjects to future work as follows:

8.3.4.1 Efficiency

An important topic of future work will be to improve the efficiency of solving
the equation system: Although the SVD provides a perfect insight into an ill-
conditioned system obtaining the SVD for a general matrix is a computationally
expensive procedure. The amount of work required by currently known symbolic
algorithms (the Golub-Kahan method [29, Sec. 5.4 and 8.3]) to perform the SVD
of am x n matrix is approximately) (m? + n?). Note that the SVD needs to be
computed only once in a “life-time” of a system of linear constraints — computing
a surface after a curve modification from available SVD is fast and delivers a new
surface shape in real time. Nevertheless, for large data sets computing the SVD
may cause quite unpleasant delay-times during the design work: for moderate
sizes ofm andn, such as used in above examples, i.e. few hundred columns and
rows the LAPACK functionssESVD or GESDD require about 1-3 seconds on an
750 MHz PC. This is acceptable; however, consider that the model may consist
of several surfaces and many curve constraint. Also, the run-time grows rapidly

8.3. CONSTRAINED LEAST SQUARES 119

for larger examples: for surfaces with about 500 DOFs and more than thousand
constraint equations the SVD already requires prohibitive 15-20 seconds. In addi-
tion, if we consider the “normal” constraints (fixed normal along a surface curve,
see sectiof 5|1 the spacial dimensions of the surface are no longer independent
and need to be treated as separate variables. This further blows up the size of the
system by factor 3 and computing the SVD for even simple examples becomes un-
realistic for usage in an interactive design system. Unfortunately, the alternatives
to SVD are by far not that straightforward and reliable. Other, cheaper to compute,
rank-revealing factorization is for the so-called Rank-revealing QR-factorization
(RR-QR) as proposed by Chan and Hansen in [12]. However, in order to apply
this method, at least approximate guess on the location of the optimal truncation
parameter is required. Otherwise, the effort becomes comparable to computing
the SVD.

An attractive approach appears to be using iterative linear solvers for large
and sparse systems of equations (5ee([70, 82] or [29, chapter 10]) since the ma-
trices in this context are sparse with predictable structure (which is not utilized
when computing SVD). In this case one uses the Lagrangian formulation of the
constrained problem as explained in secfiory 8.3. If the solution converges, the
gain on run-time performance is considerable. Moreover, the so-called “Krylov
subspace” methods exhibit similar behavior as the SVD: they tend to filter out the
stable components of the solution first, thus, the discrete L-curve method can be
applied to obtain the optimal truncation parameter. However, for ill-posed prob-
lems, the convergence of most iterative methods is poor. We conclude by noting
that the selection of the proper iterative method and the suitable “preconditioned”
will be investigated in the scope of future work.

8.3.4.2 Over-smoothing

The “smoothed” MTSVD solution tends to generate “too stiff” surfaces whenever
there are not sufficiently many constraint which restrict the shape of the surface,
for example, such as shown in figufes|7.6 7.8. Considering the previously
known surfacd, when we solve for the penalty terfhin Eq.[8.4 prevents the sur-

face from collapsing into a narrow strip somewhere around the curve constraint.
However, for certain curves, the surface functionals used in this work and the
MTSVD method generate almost “ruled” surfaces and may smooth out “desired”
features of the original surface. This is rarely the shape a designer would ex-
pect. One possibility is to use so-called “data-dependent” functionals introduced
by Greiner in[31]. They take the shape of a reference surface (assumed to be
known) stronger into account than Eq.|8.4 does. The surface sculpting is an it-
erative process, thus, a surface from previous design step is always available and
should be used as such “reference”. If no reference surface is available a-priori

120 CHAPTER 8. LINEAR CONSTRAINT SOLVING II

it can be computed from sketched curves as a “raw” lest square fit to a bi-linear
surface, for example. Another possibility to regulate the influence of the smooth-
ing constraint, is to use incomplete QR-factorization when solving Efy. 8.4 for the
penalty term: this allows to regulate the amount of smoothing by considering only
a “lower energy” factof’. The disadvantage is that the QR-factorization has to
be carried out with pivoting and hence, has to be computed from scratch for each
new shape of the constrained curve.

8.3.4.3 Robust-estimation

The objective of robust estimation is to recognize and filter noise in measurements
based on a-priori known characteristic properties of the input data, seé e.g. [63,
Sec. 15.7]. In our context, the constrained curves can be interpreted as measure-
ments and the DOFs of the surface as the parameters of the mathematical model.
The “noise” corresponds to amount of change required from each curve constraint.
The L-curve method already implements a “filter” which automatically discards
solutions with too large euclidian norm. However, the L-curve corners for too
“noisy” curves (refer to[§87]4) are difficult to locate. Thus filtering the changes of
constrained curves before the L-curve algorithm is entered would result in more
robust estimation of the optimal truncation parameter. Mathematically, the pre-
diction is realized by introducing “a-priori covariances”, [63, Chap. 15], which
express the uncertainty about the exactness of the “measured” value for each con-
straint. Assigning an uncertainty factor to each constraint equation reflects the
fact that an ill-conditioned linear system can be safely solved if the discrete Pi-
card condition is satisfied: i.e., if the perturbation, or noise, compoaAénin

the parameter vectdr’ = h + Ah is reasonably smooth, see secfior] 7.2. Thus,
one could try to determine the uncertainty for each control pirfand for the
respective constraint equation) according to the “amount” of naisginduced

onh;. However, it is not yet clear how to measure the quantity “amount of noise”:
intuitively, the covariances should be set proportional to the change of curvature
in the difference curvé\h — if the edited curve exhibits much more changes than
the initial one, the probability of obtaining a stable solution sinks; hence, a high
uncertainty factors should be used. [In|[67], Rappoport et. al have used robust
estimation of B-spline surfaces from “uncertain” (or noisy) point data. In their
work it is assumed that the uncertainty is assigned to each point constraint by the
user.

Chapter 9

Conclusions and Acknowledgments

In this chapter a summary of the results and contributions of this thesis is given.
Open questions and topics which we have not addressed before are pointed out.
The contributions of this thesis are two-fold: first, in the first part consisting of
chapterg 446 we have proposed efficient methods to set up equations for linear
constraints between curves and surfaces. In the second, part (chaptefs 7 and 8) we
have described several methods for solving of such constraints. The results gained
in both parts are briefly summarized below.

The first part: obtaining the constraint equations

The core of the this part is the extension of the blossom based polynomial com-
position algorithm to unevaluated form: given a B-spline surface and a B-spline
curve in the domain of that surface, we extract a linear transformation (a matrix)
which, applied to the control points of the surface, yields the control points of
the curve exactly incident on the surface as prescribed by the domain space curve.
This allows to formulate linear constraints, especially, incidence of arbitrary curve
on a free-form surface in a very elegant manner. Compared to variational meth-
ods used previously [83, 11] or discrete methads [20] it is more efficient, numer-
ically more stable and does not unnecessarily increase the condition number of
the matrix. We have shown how the result of the curve-surface composition can
be directly expressed in B-spline format. The proposed efficient data structures
(Multi-Index Trees, data structures utilizing the sparsity of the intermediate re-
sults) and careful analysis of the complexity and combinatorial properties of the
algorithm allow to perform the composition in unevaluated form very fast — for
practical sizes of surface and curve we obtain the matrix in fraction of a second
on a standard PC.

The matrices for tangency and variational constraints can be easily obtained

121

122 CHAPTER 9. CONCLUSIONS AND ACKNOWLEDGMENTS

re-using the methods elaborated for composition constraints: We have demon-
strated how to prescribe normals along an arbitrary surface curve using the sym-
bolic unevaluated curve representation; this constraint is used to ensure tangency
of two surfaces meeting along an arbitrary curve. We have also shown how to ob-
tain the Gaussian normal equations of the quadratic surface functionals. They are
used to optimize certain differential surface properties such as curvature, variation
of curvature, area and to compute thin plate energy surfaces.

The practical result of this part of the thesis is a software implementation of
a powerful two-level kernel: The first, low-level level implements basic symbolic
and numeric methods for dealing with B-spline polynomials. The central opera-
tion computes a B-spline blossom in unevaluated format. Based on blossoming,
other B-spline operations, e.g. degree raising, knot-insertion and removal are ex-
pressed in unevaluated format. Also various kinds of B-spline interpolation and
approximation are integrated. In addition the kernel provides very efficient pro-
cedures for computing derivatives, products, integrals, or integrals of products of
B-splines. We have used the matrix based approach in the kernel, which allows
to express most of the abovementioned operations as matrix operations without
the necessity to know the values of the respective control points or the dimension
of a free-form geometry. The second, high-level level implements the procedures
which deliver matrices for composition, tangency and variational constraints. The
interface between our mathematical kernel and the geometric 3D world is built
on top of IRIT — a powerful geometric modeling kernel which contains a lot of
functionality required when dealing with free-form curves and surfaces| see [22].
Wherever possible, we have avoided re-implementation of functionality already
available from IRIT; therefore, in many parts, our kernel depends on IRIT-data
structures and IRIT-libraries.

The second part: numerical methods for constraint--
solving

The central difficulty is that the inverse linear problem associated with generalized
curve-surface incidence constraints is ill-posed. Hence, the usual methods such as
Gaussian elimination or QR-decomposition cannot be applied in straightforward
manner. We have proposed to use regularization based on Singular Value Decom-
position (SVD). The so-called L-curve method discussed here provides a generic
and reliable tool to single out a numerically stable solution such that best possi-
ble satisfaction of defined constraints is achieved. However, even the SVD along
with the L-curve method cannot be applied blindly. Tensor-product surfaces de-
formed along arbitrary incident curves exhibit unwanted deformations due to the

123

rectangular structure of the model space. We have discussed a geometric and an
algebraic method to remove this, so-called, “Surface aliasing effect”. The former
method reparametrizes the surface such that a general curve constraint is con-
verted to iso-parametric curve constraint which can be easily solved by standard
linear algebra methods without aliasing. The reparametrized surface is computed
by means of the approximated surface-surface composition algorithm. While this
is not possible symbolically, an arbitrary accurate approximation can be obtained
using curve network interpolation. This method is used to constrain incidence of a
rectangular region on a surface — the user can add editable features to a free-form
surface. The disadvantage of this approach is that the surface can be “adjusted”
only with regard to one curve constraint. Nevertheless it is an interesting alter-
native whenever a surface should be sculpted inside a topologically rectangular
region. The latter method circumvents this limitation by stating additional con-
straints which suppress or completely remove the aliasing. Formally we solve a
constrained least square problem which minimizes a surface objective function
(expressed by a linear combination of surface smoothing functionals) subject to
defined curve constraints. Because of the inherent ill-posedness of the problem,
sophisticated numerical methods has to be applied in order to obtain a set of de-
grees of freedom which are sufficient to satisfy given constraints. The remaining
free variables are used to enforce an optically pleasing shape of the surface. We
have applied the Modified Truncated SVD algorithm which determines a compro-
mise between an optically pleasant shape of the surface and constraint satisfaction
in a particularly efficient manner. Compared to methods proposed by Gossard,
Welch and Witkin in [[83/ 11] where pivoted Gaussian elimination was used to
single out a numerical rank of the matrix the MTSVD algorithm is much more
reliable. Furthermore, the built in coherence between previously known and cur-
rent solution prevents the surface from collapsing to a point or curve whenever the
constraints do not span a sulfficiently large solution space. A disadvantage of the
method is that a modification of one usually curve influences the whole surface —
thus, introducing local modifications is only possible when the surface is split into
several trimmed parts connected by curve constraints.

In our implementation, we have used the Matrix Template Library (MTL,
see([78]) for storage and manipulation of matrices in both parts. MTL is atemplate-
based software package based on principles of Generic programming [3]. In its
philosophy it is similar to the famous Standard Template Library: it provides a
set of template data-types and procedures for dealing with matrices and vectors
of various formats (e.g. banded, symmetric, general sparse, etc.). Our overall
experience with MTL is good, although the version we have used (2.1.2-19) was
quite buggy. The robust linear solver builds on top of MTL and LAPACK [1], [2].
The part of the software which analyzes the L-curve is quite independent of the
algebraic method chosen to solve the equation system. Hence, the algorithms for

124 CHAPTER 9. CONCLUSIONS AND ACKNOWLEDGMENTS

L-curve interrogation can still be used even if the SVD is replaced by other fac-
torizations (e.g. the faster Rank Revealing QR-decomposition) or by an iterative
method.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

D. C. Anderson and R. H. Crawford. Knowledge management for prelimi-
nary computer aided mechanical design. In T. Sata, ed@anization of
engineering knowledge for product modelling in computer integrated manu-
facturing, pages 15—-34. IFIP, Elsevier, 1989.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide Third EditianSoftware, Environments, and Tools 9.
Society for Industrial and Applied Mathematics, SIAM, 3. edition, 1999.

Matthew H. AusternGeneric Programming and the STL: Using and Extend-
ing the C++ Standard Template Libraryrofessional Computing. Addison-
Wesley, 1999.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R.Pozo, C. Romine, and H. Van der Vor$emplates for the Solu-
tion of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition
SIAM, Philadelphia, PA, 1994.

G. P. Bonneau, H. Hagen, and S. Hahmann. Variational Surface Design and
Surface InterrogationComputer Graphics Forun8(12):447-459, 1993.

C. De Boor, L. Lyche, and L. L. Schumaker. On calculating with B-splines:
Integration. In L. Collatz, H. Werner, and G. Meinardus, edithitsmerische
Methoden der Approximationsthearigages 123—-146. Birkhhauser, Basel,
1976.

B. Bruderlin, U. Déring, R. Klein, and P. Michalik. Declarative geometric
modeling with constraints. In A. Iwainsky, edit@Conference proceedings
CAD 200Q Berlin, March 2000. GFAI.

B. Bruderlin, U. Doring, P. Michalik, D. Beier, and H. Oestreich. Pro-
grammable Features in CAD. Rroceedings, ISATAublin, Ireland, 2000.

125

126 BIBLIOGRAPHY

[9] G. Brunnett, H. Hagen, and P. Santarelli. Variational Design of Curves and
SurfacesSurv. Math. Industry3(27), 1993.

[10] D. Calvetti, P. C. Hansen, and L. Reichel. L-curve curvature bounds via
Lanczos bidiagonalizatiorElectronic Transactions on Numerical Analysis
May 2001. To obtain undewww.imm.dtu.dk

[11] G. Celniker and W. Welch. Linear constraints for deformable B—spline sur-
faces.Computer Graphics25(2):171-174, March 1992.

[12] T. Chan and P. C. Hansen. Computing Truncated Singular Value Decompo-
sition Least Square Solutions by rank revealing QR-Factorizat®i#sv J.
Sci. Stat. Comput11(3):519-530, May 1990.

[13] S. Coquillart. Extended free—form deformation: a sculpturing tool for 3D
geometric modelingComputer Graphics24(4):187-196, August 1990.

[14] M. Cox. Algorithms for spline curves and surfaces. In L. A. Piegl, editor,
Fundamental Developments of Computer—Aided Geometric Modphggs
51-75. Academic Press Limited, 1993.

[15] P. de Casteljau-ormes a PbdlesHermes, Paris, 1985.
[16] P. de Casteljaule Lissage Hermes, Paris, 1990.

[17] T. DeRose. Composing Bézier Simplice&CM Trans. Graph.7(3):198—
221, July 1988.

[18] T. DeRose, R. Goldman, H. Hagen, and S. Mann. Functional composition
via blossoming ACM Transactions on Graphic42(2), April 1993.

[19] U. Dietz. B-Spline Approximation with Energy Constraints. Reverse
Engineering B.G. Teubner, Stuttgart, 1996.

[20] U. Dietz. Creation of Fair B-Spline Surface Fillets. @reating Fair and
Shape Preserving Curves and Surfadg$s. Teubner, Stuttgart, 1998.

[21] U. Doering, P. Michalik, and B. Bruderlin. A constraint—-based shape mod-
eling system. InGeometric Constraint Solving & ApplicationSpringer
Verlag, June 1998.

[22] G. Elber.Users’ Manual — IRIT, A solid modeling Prograniechnion insti-
tute of Technology, Haifa, Israel, 1990-1996.

[23] G. Elber.Free form surface analysis using a hybrid of symbolic and numer-
ical computationsPhD thesis, University of Utah, 1992.

BIBLIOGRAPHY 127

[24] G. Elber and E. Cohen. Filleting and rounding using trimmed tensor prod-
uct surfaces. IrProceedings The fourth ACM/IEEE Symposium on Solid
Modeling and Applicationages 201-216, May 1997.

[25] G. Farin.Curves and Surfaces for CAG@omputer Science and Scientific
Computing. Academic Press, Inc., 3. edition, 1992.

[26] R. Fierro, G. H. Golub, P. C. Hansen, and D. P. O’Leary. Regularization by
Truncated Total Least Squares. In J.G. Lewis, editayceedings of the Fifth
SIAM Conference on Applied Linear Algebpmges 250—-254, Philadelphia,
PA, 1994. SIAM Press.

[27] G. H. Golub, P. C. Hansen, and D. P. O’Leary. Tikhonov Regularization and
Total Least Squares. Journal on Matrix Analysis and Applications, to appear.

[28] G. H. Golub, V. Klema, and G. W. Stewart. Rank Degeneracy and Least
Squares Problems. Technical Report 456, Department of Computer Science,
Institute for Advanced Computer Studies (UMIACS), University of Mary-
land at College Parkyww.cs.umd.edu , 1976.

[29] G. H. Golub and C. E. van LoaMatrix ComputationsJohn Hopkins Series
in the Mathematical Sciences. The John Hopkins University Press, 2 edition,
1989.

[30] W. J. Gordon. Sculptured surface definition via blending—function meth-
ods. In L. A. Piegl, editorFundamental Developments of Computer—Aided
Geometric Modelingpages 117-134. Academic Press Limited, 1993.

[31] G. Greiner. Variational design and fairing of spline surfac&omputer
Graphics Forum (Proc. Eurographics '94(3):143-154, 1994.

[32] G. Greiner and H.-P. Seidel. Automatic modeling of smooth spline surfaces.
In V. Skala N. Magnenat-Thalmann, editéttoc. WSCG '97 pages 665—
675, 1997.

[33] J. Griessmair and W. Purgathofer. Deformation of solids with trivariate b-
splines. In W. Hanmann, F.R.A. Hopgood, and W. Strasser, edEons;-
graphics '89 pages 137-148. Elsevier Science Publishers (North Holland),
1989.

[34] C. W. Groetsch, editoiThe Theory of Tikhonov Regularization for Fredholm
Equations of the First KindPitman, Boston, 1984.

128 BIBLIOGRAPHY

[35] P. C. Hansen. Truncated Singular Value Decomposition Solutions to Dis-
crete lll-posed Problems With lll-determined Numerical Ra8kKAM J. of
Scientific Computingl1(3):519-530, May 1990.

[36] P. C. HansenRegularization ToolsDepartment of Mathematical Modeling,
Technical University of Denmarkyww.imm.dtu.dk , March 1998.

[37] P. C. Hansen. The L-curve and its use in the numerical treatment of inverse
problems. In invited paper for P. Johnston, editdomputational Inverse
Problems in Electrocardiologypages 119-142, Southampton, 2001. WIT
Press.

[38] P. C. Hansen, T. Sekh, and H. Shibahashi. The Modified Truncated SVD
Method for Regularization in General For8lAM J. of Scientific Comput-
ing, 13(5):1142-1150, September 1992.

[39] J. Hayes. Nag algorithms for the approximation of functions and data. In
J. Mason and M. Cox, editorglgorithms for Approximationpages 653—
668. Clarendon Press, Oxford, 1988.

[40] J. Hoschek and U. Dietz. Smooth B-Spline Surface Approximation to Scat-
tered Data. IMAdvanced Course on FAIRSHAPE.G. Teubner, Stuttgart,
1996.

[41] J. Hoschek and D. Lasserrundamentals of Computer Aided Geometric
Design A K Peters Ltd., 2. edition, 1989.

[42] C. Hsu, G. Alt, Z. Huang, E. Beier, and B. Bruderlin. A Constraint—based
Manipulator Toolset for Editing 3D Objects. Bolid Modeling 1997At-
lanta, Georgia, 1997. ACM Press.

[43] C. Hsu and B. Briderlin. A graph-based degree of freedom analysis
algorithm to solve geometric constraint problems. In W. Strasser and
J. Rossignac, editor§heory and Practice of Geometric Modelir§pringer
Verlag, 1997.

[44] C. Hsu and B. Bruderlin. A hybrid constraint solver using exact and iterative
geometric constructions. In D. Roller and P. Brunet, editG&D Systems
Development — Tools and Metho@&pringer Verlag, 1997.

[45] Roman Kazinnik and Gershon Elber. Orthogonal Decomposition of Non-
Uniform Bspline Spaces using WaveletsComputer Graphics forum
16(3):27-38, September 1997.

BIBLIOGRAPHY 129

[46] A. Kielbasinsky and H.SchwetlickiNumerische lineare Algebra, eine com-
puterorientierte Einfuhrung Mathematik fir Naturwissenschaft und Tech-
nik. Deutscher Verlag der Wissenschaften, Berlin, 1988.

[47] D. H. Kim, P. Michalik, and B. Bruderlin. Sketching B-spline curves and
surfaces. In P. Slusallek D. Saupe, editéraphiktag 2001 pages 68-76,
Tubingen, November 2001.

[48] A. Kolb, H. Pottmann, and H.-P. Seidel. Fair surface reconstruction using
guadratic functionals. Ifcurographics Proc. '95 pages 469-479. Euro-
graphics, Blackwell Publishers, 1995.

[49] F. Lazarus, S. Coquillart, and P. Jancéne. Axial deformations: An intuitive
deformation technique.Computer—Aided Desigr26(8):607—613, August
1994.

[50] W. Liu. Programming support for blossoming. Master’s thesis, University
of Waterloo, Waterloo, 1995.

[51] C. T. Loop. Generalized B-spline Surfaces of Arbitrary Topological Type
PhD thesis, University of Washington, 1992.

[52] T. Lyche and K. Mgrken. A Discrete Approach to Knot Removal and De-
gree Reduction Algorithms for Splines. In J. Mason and M. Cox, editors,
Algorithms for Approximatiofpages 67—82. Oxford University Press, 1987.

[53] S. Mann and W. Liu. An analysis of polynomial composition algorithms.
Technical Report CS—95-24, University of Waterloo, Computer Science De-
partment, 1995.

[54] P. Michalik and B. Bruderlin. Computing curve—surface incidence con-
straints efficiently. InProceedings Swiss Conference on CAD/CAlbru-
ary 1999.

[55] P. Michalik and B. Bruderlin. A constraint-based method for sculpting free-
form surfaces. In G. Brunnett and H. P. Bieri, editd@®mputing, special
issue of the Dagstuhl Seminar on Geometric Modelli&gringer Verlag,
2000.

[56] P. Michalik and B. Bruederlin. Introducing parametrization in surface mod-
els by means of geometric constraintsPiioceedings Scanning and Human
Body ModelingParis, France, May. 4-5 2001.

130 BIBLIOGRAPHY

[57] P. Michalik, D. Kim, and B. Bruderlin. Sketch- and Constraint-based Design
of B-spline Surfaces. IRProceedings of International Conference on Solid
Modeling Saarbricken, Germany, 2002.

[58] K. Mgrken. Some identities for products and degree raising of splDes-
structive Approximation7:195-208, 1991.

[59] On-Line Computer Graphics Notes. Free-form deformations.
http://graphics.cs.ucdavis.edu/GraphicsNotes

[60] J. Peters. Geometric continuity. Dept C.I.S.E, University of Florida,
www.cise.ufl.edu/research/SurfLab/papers , February
2001.

[61] L. Piegl and W. Tiller. The Nurbs BookSpringer Verlag, 1995.

[62] L. Piegl and W. Tiller. Fillingn-sided regions with NURBS patche3he
Visual Computer(15):77-89, 1999.

[63] W. Press, S. Teukolsky, W. Vetterling, and B. Flannédumerical Recipies
in C: The art of scientific computingCambridge Unversity Press, 1992.

[64] L. Ramshaw. Beziers and B-splines as multiaffine maps. In R. A. Earnshaw,
editor, Theoretical Foundations of Computer Graphics and CADmber 40
in NATO ASI Series F: Computer and Systems Sciences, pages 757—-776.
Springer-Verlag, 1987.

[65] L. Ramshaw. Blossoming: A connect—the—dots approach to splines. Techni-
cal Report 19, Digital Systems Reaearch Center, Palo Alto CA, June 1987.

[66] L. Ramshaw. Blossoms are polar fornr@mputer Aided Geometric Design
6:323-358, January 1989.

[67] A. Rappoport, Y. Hel-Or, and M. Werman. Interactive design of smooth
objects with probabilistic point constraintaCM Transactions on Graphics
13(2):156-176, April 1994.

[68] J. J. RislerMathematical Methods for CACPress Syndicate of the Univer-
sity of Cambridge, 1991.

[69] B. W. Rust and W. R. BurrusMathematical Programing and the Numerical
Solutions of Linear Equation8/odern Analytic and computational methods
in science and mathematics. American Elsevier Publishing Company, New
York, N.Y., 1972.

BIBLIOGRAPHY 131

[70] Y. Saad.lterative Methods For Sparse Linear Systeritie PWS Series in
Computer Science. PWS Publishing Company, Boston, MA, 1996.

[71] O. W. SalomonsComputer support in the design of mechanichal products
PhD thesis, Universiteit Twente, Groeningen, 1995.

[72] L. L. Schumaker and F. I. Utreras. On Generalized Cross validation for
Tensor Smoothing SplinesSIAM J. Sci. STAT. Computl1(4):713-731,
July 1990.

[73] T. Sederberg and S. Parry. Free—form deformation of solid geometric mod-
els. InProceedings SIGGRAPH '8pages 151-160, 1986.

[74] H. P. Seidel. Knot insertion from a blossoming point of vie@omputer
Aided Geometric Desigrip(1):81-86, 1988.

[75] H. P. Seidel. Computing B-Spline Control Points. In W. Strasser and H. P.
Seidel, editorsTheory and Practice of Geometric Modelingages 17-32.
Springer Verlag, 1989.

[76] H. P. Seidel. An introduction to polar formdEEE Comp. Graph. Appl.
1(13), 1993.

[77] H. P. Seidel, W. Dalmen, and C. A. Micchelli. Blossoming begets B-splines
built better by B-patchedMath. Comp (59), 1993.

[78] J. G. Siek. A Modern Framework for High Performance Numerical Linear
Algebra. Master’s thesis, University of Notre Dame, Notre Dame, Indiana,
April 1999. www.Isc.nd.edu/research/mtl

[79] K. Singh and E. Fiume. Wires: A geometric deformation techinque. In
Proceedings SIGGRAPH '98998.

[80] L. N. Trefethen and D. BauNumerical Linear AlgebraSociaty for Indus-
trial and Applied Mathematics, Philadelphia, PA, 1997.

[81] A. H. Vermeulen, R. H. Bartels, and G. R. Heppler. Integrating Product of
B-Splines.SIAM J. Sci. Stat. Computin@3(4):1025-1038, July 1992.

[82] R. Weiss. Parameter-Free lIterative Linear Solvers Akademie Verlag
Gmbh., Berlin, 1996.

[83] W. Welch and A. Witkin. Variational surface modelingomputer Graphics
26(2):157-165, July 1992.

132 BIBLIOGRAPHY

[84] Todd Will. Introduction to the Singular Value Decomposition.
http://www.davidson.edu

Appendix A

Notations and Definitions

The geometric elements we deal with are B-Spline curves and surfaces in 3-
dimensional Euclidian space (denoted/3). Each geometric element possesses

a defined and fixed number degrees of freedonDegrees of freedom of a ge-
ometric elementX aren x 3 real scalar variables which uniquely determikie

This will be abbreviated by the relationshipfs(X) (read: “degrees of freedom

of elementX”) defined as:

dofs(X): X — RV

Degrees of freedom for each spacial dimension are an element of vector space
over real number&™; we denote vectors i®R™ by lower case bold letters, and
matrices inR™*" by upper case bold letterX:

T11 T12 T13
dofs(X) = : = [Xl Xy, X3 | =X, X € RV

Tn1 Tn2 Tn3

We say that a geometric elemekitpossesses degrees of freedom; for each
spacial dimension, or simply, it has the sizex 3. An elementX is determined

if the values of alldofs(X) are known. An elemenk is unknown if the values

of dofs(X) are not known. We will use corresponding symbols for geometric
elements and their degrees of freedom, ilefs(X) = X.

A.1 B-Splines

The term “B-Splines” is frequently used to denote certain category of free-form

curves and surfaces. However, from mathematical point of view, B-Splines (Basis
Splines) denote a specific basis for a vector space of piecewise polynomial func-
tions. Therefore, we distinguish between B-Splines and functions, curves and

133

134 APPENDIX A. NOTATIONS AND DEFINITIONS

surfaces defined in terms of the B-Spline basis. In the following three paragraph
we will define B-Splines and univariate and two-variate B-Spline functions. The
latter two paragraphs extend the definitioff BySpline curves and surfaces and
establish the notation for denoting the degrees of freedom of B-spline curves and
surfaces.

A.1.1 Definition
A.1.1.1 B-Splines and B-Spline functions

Let (a,b) C R' be a given interval of'. Let also be given integers> 0,n > 1
and a sequenceof n + d + 1 real numbers; such that

1. TiSTi+1,0§i§n+d
2.75<a,0<5<d
3.75>2bn<j<n+d

Suchr; are calledknotsand the sequenceis calledknot vector We associate
with each knotr; an integer valuen;, 0 < m; < d, calledmultiplicity of 7;, which
counts the number of occurancesmpin the sequence.

By P..-,» we will denote an-dimensional vector space of univariate piecewise
polynomial functions of polynomial degrekon interval{(a, b) which areC¢~™i
continuous at knots;. The dimension ofP; ., isn, if m; < d, 0 <i <n+d,
see|[[68]. Elements dP, , are piecewise polynomial functions:

c:Q — R c=c(t),t€Q C R, Q = {a,b)

A set of n linearly independent piecewise polynomial functigité” (1) : 0 <
i < n}, calledB-SplinegBasis Splines), defined by recursion

bO’T(t) _ { 1 if Ti <t< Ti+1

0 otherwise
(A.1)

BT () = ST () 4 T ()

Titd—Ti Titd+1—Tit1 1

constitutes a basis f@, ., see[[68],[[25] [[41]. Therefore anyt) € P, ., may be
written as a linear combination af B-Splines:

cw—imﬁw

1n fact, the dimension is not limited to three. Curves and surfaces in arbitrary dimension are
defined in exactly the same way, by simply considering all dimensions independently.

A.l. B-SPLINES 135

Eachc(t) € Py, is uniquely determined by its coefficients; € R' : 0 < i <
n} and a fixed set of B-Spline®?" (¢) : 0 < i < n}. The coefficients; are the
degrees of freedom of a B-Spline functioft).

A.1.1.2 Scalar product notation

In order to simplify notation, we denote a basis (a set of basis functions) by a
vector
bl =[t7(t) - b0 |

and writec(t) as ascalar productof the basis and the coefficient vector:

Co
ct)y=[bg7t) - L] ¢ | =blc
Cn—1

It follows that

dofs(c(t)) = : =c,ceR"

A.1.1.3 Properties of B-Splines

With this notation B-Splines have following properties (see €.d. [68] for detailed
proofs):

1. b%7(t) consists of polynomial segments of degrifer T <t <Tjy,d <
J<n
2. b7 (t) is a piecewise polynomial of degrddor 7, < ¢ < 7,
dr >0 if <t <Tiyar;d<i<n
3. b (1) { 0 otherwise
4. b () =1

These properties will be of importance in the scope of the thesis. Furthermore,
we will make use of following properties, induced by properties 1 and 2: Let
z(t) € Parm andy(t) € P, be two B-Spline functions. Then the following
propositions applies:

1. B-Spline functions are closed under multiplication, i.e. a product of two
B-Spline functions is also a B-Spline function:

2(t) - y(t) = 2(1); 2(1) € Payiryp

136 APPENDIX A. NOTATIONS AND DEFINITIONS

2. B-Spline functions are closed under differentiation and integration:

;ix(t) = 2(t); 2(t) € Po1an—1 < /z(t)dt =z(t)+C

The advantage of using the B-Spline basis compared, for example, to the power
basis for piecewise polynomials is that the coefficientsave a geometric repre-
sentation: Le{(¢;, ¢;) with & = 5 >i79~" 7; be the coordinates of a point if”.

The set of point{(¢;,¢;) : 0 < i < n}, calledcontrol points constitute the
so-called control polygonof a B-spline functiorn:(¢). The graph of the function

c(t) approximates the shape of a control polygon which allows to conclude on the
shape of a B-Spline function by only considering the shape of its control poly-
gon. This is an important property in the context of designing B-Spline curves
and surfaces, defined if 8A.lL.2 arid 8Al1.3.

A.1.1.4 Two-variate B-Splines and B-Spline functions

Let P, andP,,, be two B-Spline spaces of dimensiomsandn. Denote the
B-Spline bases foP; . andP;,, by bl andb’. Furthermore, define a set of
B-Spline functions(s;(u) € P : 0 < j < n} with coefficientss; ;;0 < i < m.
Then a two-variate function

sy, — R', s = s(u,v), (u,v) € Qu. C R?, Quo = QyxQ, = (a,b) x(c,d)

defined by
s(u,v) = X520 s ()b (v)
n—1 kT l,v
= j=o(o' 8 ()) b;"(v) (A.2)

Poo S sigbi T ()b (v)
is called a two-variatéensor-producB-Spline function of polynomial degree
in u-direction and polynomial degréen v-direction. Settinglofs(s;) = s;, and
using the scalar product notation for univariate B-Spline function yields a 2-tensor
in variablesu andv:

s(u,v) = 0= (bls;) 0 (v) = b S20=) 8,65 (v)
== bz[SO Sn—l}bv

— bISh,

Eachs(u,v) is uniquely determined by its coefficients; and fixed sets of B-
Splinesb! andb! in variablesu andv.

A.l. B-SPLINES 137

A.1.1.5 Scalar product notation for tensor-products

The scalar product notation is established by introducing two-variate B-spline ba-
sis functions} ™" (u, v) = b7 (u)b}" (v) with integer indiced such that

I=i4+mj,0<i<mAN0<j<n=0<I<(m-1)(n—-1)

The linear subspace formed by the prodtbété(u)bé’“(v) is called a tensor prod-

uct of P, - andP, ,,, and will be denoted b¥;, - x P, ,,. Similarly as in the univari-

ate case we simplify the notation for two-variate basis functions by introducing a
vector notation:

k1,00 kv
bf,u = [bo " (u,v) e b —1)(n— 1)(%“)]

We expands in row-major order yielding a vecterof sizemn:

T
s = [500 *°° Sm—10 " Som—1 " Sm—1n-1]
Using the vector notation for two-variate B-Spline basis yields

(m—1)(n—1)
s(u,v) = Z SIbI;TlU(,U) = bivs
1=0
and
dofs(s(u,v)) =s,s € R™

A.1.1.6 Properties of two-variate B-Spline functions

The properties of univariate B-Spline functions extend to two-variate B-Spline
functions by considering each variable separately. In particulagah&ol mesh

of a two-variate B-Spline function is defined as follows: Igf, v;, s; ;) be the
coordinates of a point i® with y; = L0~ 7 andy; = 157"y, The

set of points{ (1, vj,s,5) : 0 <i < mA 0 < j < n}, calledcontrol pointsof
s(u,v), constitute the so-calledpntrol mestof a B-spline functiors(u, v). Asin

the univariate case the graph of the functi¢n, v), a surface in£3, approximates

the shape of the control mesh.

The 2-tensors of that kind have the property that setting const. orv =
const. yields a univariate B-Spline function in the other non-constant variable:
For example, setting = const. = a in equatio and substitutirfnj’“(a) =
B, 0 < j < nyields

Z w)fB;, s(u,a) € Pry

The graph ofs(u,v = const.) is a curve inE? incident ons(u, v) called aniso-
parametriccurve inu-direction.

138 APPENDIX A. NOTATIONS AND DEFINITIONS

A.1.2 B-Spline curves

Letc;(t) € Pyr, 0 < j < 3 bethree B-Spline functions of dimensioras defined
in §A.1.1. A parametric curve ifv® defined by

C:Q— B C=C(t) = (co(t),c1(t), ca(t)), t €Y

is called a B-Spline curve of degree In the following we denote points and
vectors in Euclidian spaces by upper italic letters and(us¢ to list their coor-
dinates. Denote by, ; thei-th coefficient ofc;(¢). The coefficients; ; for fixed:
andl < j < 3 define a point in&® with coordinategc; 1, ¢; 2, ¢; 3), calledcontrol
point of a B-Spline curve. The set af control points{C; = (¢;1,¢i2,¢i3) 1 0 <

i < n} constitutes aontrol polygonof a B-Spline curve. The curv@(t) may be
then written as a linear combination of control poiatsand basis functions:

O(t) = nf O (1)

Since eachy;(t) is fully determined by its coefficients, sep §Al1.1, a B-Spline
curve is fully determined by its control points. In order to obtain do¢s(C')
relation we switch to scalar product notation for eagft). We define a matrix of
control pointsC:

Ci
C=| :
Cnfl
which yields
Ct) = [alt) e) e |
Ci
= 0@ - HLe]|
On—l
= b/C

Hence, the coordinates of the control points are the degrees of freedom of a free-
form curve:
dofs(C(t)) =C, C e R

A.1.3 B-Spline surfaces

Let sq4(u,v) € Prr X Py, 0 < d < 3 be three 2-variate B-Spline functions of
dimensionmn as defined in|8A.1]1. A parametric surfacefit defined by

S Quy — E* S = S(u,v) = (so(u,v),51(u,0), s2(u,v)), (u,v) € Qs

A.l. B-SPLINES 139

is called a tensor-product B-Spline surface of polynomial degiee; and degree
lin v. Denote bys; ; 4 the coefficient ok, (u, v) with indices:, j. The coefficients
s;.;.q for fixed 7, 7 and0 < d < 2 define a point inE* called control pointof a
B-Spline surface. The set afn control points{sS; ; = (s; 0, Sij1,Sij2) : 0 <

i < m,0 < j < n} constitutes aontrol meshof a tensor-product B-Spline
surface. By convention, the size of the control mesh i u-direction andn in
v-direction. The surfacé(u, v) may be then written as a linear combination of
its control points and basis functions fBy, , andP, ,:

n—1lm

-1
S(u,v) = Y 3 it (Wb (v)

7=0 =0
Alternatively, we will use the compact notation with two-variate B-spline basis
functionsby ™" (u, v) = b} (u)b5" (v) and control pointsS; with integer indices
I such that
I=i4+mj,0<i<mAN0<j<n=0<I<(m-1)(n-1)
The surfaceS(u,v) may be then written as a linear combination of its control
points and two-variate basis functions:

(m—1)(n—1)

S(uwv)y= > S (u,v)

1=0

Since eachs,(u, v) is fully determined by its coefficients a B-Spline surface is
fully determined by the values of its control points. Analogously to a B-Spline
curve we define a matrix of control points:

So
S = :
Sm-1)(n-1)

which yields:

S(u,v) = [So(u,v) s1(u,v) SQ(U,U)}
So
- bg,v :

Sm-1)(n-1)

S

The coordinates of the control points are the degrees of freedom of a B-Spline
surface:
dofs(S(u,v)) =S, S € R™*?

140 APPENDIX A. NOTATIONS AND DEFINITIONS

A.1.3.1 Iso-parametric curves of a B-Spline surface

Letv = const. be a line in the domain space of a B-Spline surface.vSeta.
Then a curve

() = Flun) = 3 5 S8 0 0

is called aniso-parametriccurve in u-dlrectlon of the B-Spline surfacg. By
setting3; = b} (a) it follows immediately that? (u) = Y, E;b}"" (u) with E; =
Y1~ Si;3;. Similarly, one can sei = const. obtaining an iso-parametric curve

in v-direction. Iso-parametric curves play an important role in the design and
analysis of tensor-product surfaces, as will be described in §2.2.2.

A.2 Bezier basis as special case of B-Spline basis

We will introduce the, so-called, Bezier basis as a special case of the B-Spline
basis: Let(a,b) C R' be a given interval ofz!. As in let also be given
d > 0,n = d+ 1 and a knot vector of sizen + d + 1 = 2d + 2 such that

lL. = =m7=ua

2. Td+1:"':T2d+1:b

Seta = 0, b = 1. For this special case, formula A.1 degenerates into
d+1 y
1

Denote byP, a vector space of univariate polynomials of degreé. The set of

d + 1 functions{b¢(t) : 0 < i < d}, calledBernsteinpolynomials constitutes

a basis forP,, see e.g.[[68]. Traditionally, the Bernstein polynomials are called
Bezier basis functions. We will use the notatigtit) (without the super index

7) for Bezier basis functions to denote the difference to general B-Splines. The
domain space for Bezier basis functions is not restricted ¢o (0, 1). Setting

the knot vector as defined above yields a set of generalized Bernstein polynomials
{(bd(t): 0<i<d, te(ab)}

) <t— >bd1 b—t\ a1 _ (1) (bt d“”(t—a)"

b—a b—a) i b—a b—a
Bezier functions, curves and surfaces are defined in exactly the same way as B-
Splines in BA.L.1{8A.1]3, therefore we will not make further distinction in the

notation. Whenever the type of used basis functions is of importance we will
point that out in advance.

	Introduction
	Goals of the thesis
	Structure and contents of the thesis

	Methods for free-form surface design
	Parametric methods for CAD
	Known methods for free-form surface design
	Warping methods
	Constraint-based methods

	Generalized constraint-based surface modeling
	The design example
	Design with Free-form Features

	Linear curve constraints
	Related research
	Formulating the equations
	Obtaining a stable solution

	Generalizing the composition method
	Curve-surface incidence constraints
	Tangency constraints

	Variational constraints

	Computing the incidence constraints
	The blossoming kernel
	The Blossoming principle
	Blossoming principle for Bezier polynomials
	Blossoming B-Splines
	Blossoming tensor-product B-Splines
	Unevaluated formulation of a blossom

	Unevaluated polynomial composition
	Revisiting the DeRose et al. algorithm
	Computing the Bezier composition matrix
	Unevaluated composition for B-splines

	Efficiency and Data structures
	The combinatorics
	The products
	The blossoms
	Implementation: the Multi-index tree

	Practical notes and some results
	Run-time performance
	Numerical stability and shape of the composition matrix

	Tangency constraints
	Problem definition
	Differentiation operator in matrix form
	Computing the scalar product
	Practical notes on implementation

	Variational constraints
	Quadratic error functionals for surfaces
	Matrix notation for surface functionals
	Implementation
	Computing two-variate integrals of B-splines
	Hierarchical decomposition of B-spline derivatives
	Integrating products of B-splines

	Results and practical notes

	Linear constraint solving I
	Notation
	Ill-posed problems
	The Picard condition
	Regularization of ill-posed problems

	The truncated SVD
	The SVD
	The rank revealing effect of SVD

	The L-curve method
	The singular values plot
	Determining the optimal truncation parameter
	Demonstrating the Picard condition
	The ``aliasing effect'' of the truncated SVD solution

	The surface aliasing effect

	Linear constraint solving II
	Introduction: Anti-aliasing
	Surface reparametrization
	Reparametrization of tensor-product B-splines
	Solving a constrained curve network interpolation problem
	A design example
	Summary of the method

	Constrained least squares
	The constrained regularization
	Modified truncated SVD
	More results and selected problems
	Summary of the method

	Conclusions and Acknowledgments
	Notations and Definitions
	B-Splines
	Definition
	B-Spline curves
	B-Spline surfaces

	Bezier basis as special case of B-Spline basis

