
Methods for Constraint-based Conceptual
Free-form Surface Design

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.–Ing.)

vorgelegt der Fakultät für Informatik und Automatisierung

der Technischen Universität Ilmenau

vorgelegt von Dipl.–Inf. Pavol Michalik

geboren am 18. 07. 1971 in Trnava

vorgelegt am 16. 08. 2003

Verteidigung am 6. 11. 2003

Gutachter 1. Prof. Dr. Beat Brüderlin

2. Prof. Dr. Guido Brunnett

3. Prof. Dr. Hans Hagen

Abstract

The constrained-based design of free-form surfaces is currently limited to tensor-
product interpolation of orthogonal curve networks or equally spaced grids of
points. The, so-called, multi-patch methods applied mainly in the context of scat-
tered data interpolation construct surfaces from given boundary curves and deriva-
tives along them. The limitation to boundary curves or iso-parametric curves con-
siderably lowers the flexibility of this approach. In this thesis, we propose to
compute surfaces from arbitrary (that is, not only iso-parametric) curves. This
allows us to deform a B-spline surface along an arbitrary user-defined curve, or,
to interpolate a B-spline surface through a set of curves which cannot be mapped
to iso-parametric lines of the surface. We consider three kinds of constraints: the
incidence of a curve on a B-spline surface, prescribed surface normals along an ar-
bitrary curve incident on a surface and the, so-called, variational constraints which
enforce a physically and optically advantageous shape of the computed surfaces.

The thesis is divided into two parts: in the first part, we describe efficient meth-
ods to set up the equations for above mentioned linear constraints between curves
and surfaces. In the second part, we discuss methods for solving such constraints.
The core of the first part is the extension and generalization of the blossom-based
polynomial composition algorithm for B-splines: let be given a B-spline surface
and a B-spline curve in the domain of that surface. We compute a matrix which
represents a linear transformation of the surface control points such that after the
transformation we obtain the control points of the curve representing the polyno-
mial composition of the domain curve and the surface. The result is a 3D B-spline
curve always exactly incident on the surface. This, so-called, composition ma-
trix represents a set of linear curve-surface incidence constraints. Compared to
methods used previously our approach is more efficient, numerically more stable
and does not unnecessarily increase the condition number of the matrix. The the-
sis includes a careful analysis of the complexity and combinatorial properties of
the algorithm. We also discuss topics regarding algebraic operations on B-spline
polynomials (multiplication, differentiation, integration). The matrix represen-
tation of B-spline polynomials is used throughout the thesis. We show that the
equations for tangency and variational constraints are easily obtained re-using the

i

ii

methods elaborated for incidence constraints.
The solving of generalized curve-surface constraints means to find the control

points of the unknown surface given one or several curves incident on that sur-
face. This is accomplished by solving of large and, generally, under-determined
and badly conditioned linear systems of equations. In such cases, no unique and
numerically stable solution exists. Hence, the usual methods such as Gaussian
elimination or QR-decomposition cannot be applied in straightforward manner.
We propose to use regularization methods based onSingular Value Decomposi-
tion (SVD). We apply the so-calledL-curve, which can be seen as an numerical
high-frequency filter. The filter automatically singles out a stable solution such
that best possible satisfaction of defined constraints is achieved. However, even
the SVD along with the L-curve filter cannot be applied blindly: it turns out that it
is not sufficient to require only algebraic stability of the solution. Tensor-product
surfaces deformed along arbitrary incident curves exhibit unwanted deformations
due to the rectangular structure of the model space. We discuss a geometric and
an algebraic method to remove this, so-called,Surface aliasing effect. The first
method reparametrizes the surface such that a general curve constraint is converted
to iso-parametric curve constraint which can be easily solved by standard linear
algebra methods without aliasing. The reparametrized surface is computed by
means of the approximated surface-surface composition algorithm, which is also
introduced in this thesis. While this is not possible symbolically, an arbitrary ac-
curate approximation of the resulting surface is obtained using constrained curve
network interpolation. The second method states additional constraints which
suppress or completely remove the aliasing. Formally we solve a constrained
least square approximation problem: we minimize an surface objective function
subject to defined curve constraints. The objective function is chosen such that
it takes in the minimal value if the surface has optimal shape; we use a linear
combination of second order surface smoothing functionals.

When solving such problems we have to deal with nearly linearly dependent
equations. Problems of this type are calledill-posed. Therefore sophisticated nu-
merical methods have to be applied in order to obtain a set of degrees of freedom
(control points of the surface) which are sufficient to satisfy given constraints. The
remaining unused degrees of freedom are used to enforce an optically pleasing
shape of the surface. We apply theModified Truncated SVD(MTSVD) algorithm
in connection with the L-curve filter which determines a compromise between an
optically pleasant shape of the surface and constraint satisfaction in a particularly
efficient manner.

Zusammenfassung

Der constraint-basierte Entwurf von Freiformflächen ist eine mächtige Methode
im Computer gestützten Entwurf. Bekannte Realisierungen beschränken sich je-
doch meist auf Interpolation von Rand- und isoparametrischen Kurven. In diesem
Zusammenhang sind die sog. “Multi-patch” Methoden die am weitesten verbreite-
te Vorgehensweise. Hier versucht man Flächenverbände aus einem Netz von drei-
dimensionalen Kurven (oft gemischt mit unstrukturierten Punktewolken) derart zu
generieren, dass die Kurven und Punkte von den Flächen interpoliert werden. Die
Kurven werden als Ränder von rechteckigen oder dreieckigen bi-polynomialen
oder polynomialen Flächen betrachtet. Unter dieser Einschränkung leidet die
Flexibilität des Verfahrens. In dieser Dissertation schlagen wir vor, beliebige, d.h.
auch nicht iso-parametrische, Kurven zu verwenden. Dadurch ergeben sich fol-
gende Vorteile: Erstens kann so beispielsweise eine B-spline Fläche entlang einer
benutzerdefinierten Kurve verformt werden während andere Kurven oder Punkte
fixiert sind. Zweitens, kann eine B-spline Fläche Kurven interpolieren, die sich
nicht auf iso-parametrische Linien der Fläche abbilden lassen. Wir behandeln drei
Arten von Constraints: Inzidenz einer beliebigen Kurve auf einer B-spline Fläche,
Fixieren von Flächennormalen entlang einer beliebigen Kurve (dieser Constraint
dient zur Herstellung von tangentialen Übergängen zwischen zwei Flächen) und
die sog. Variational Constrains. Letztere dienen unter anderem zur Optimierung
der physikalischen und optischen Eigenschaften der Flächen. Es handelt sich hi-
erbei um die Gausschen Normalgleichungen der Flächenfunktionale zweiter Ord-
nung, wie sie in der Literatur bekannt sind.

Die Dissertation gliedert sich in zwei Teile. Der erste Teil befasst sich mit der
Aufstellung der linearen Gleichungssysteme, welche die oben erwähnten Con-
straints repräsentieren. Der zweite Teil behandelt Methoden zum Lösen dieser
Gleichungssysteme. Der Kern des ersten Teiles ist die Erweiterung und Gener-
alisierung des auf Polarformen (Blossoms) basierenden Algorithmus für Verket-
tung von Polynomen auf Bezier und B-spline Basis: Gegeben sei eine B-spline
Fläche und eine B-spline Kurve im Parameterraum der Fläche. Wir zeigen, dass
die Kontrollpunkte der dreidimensionalen Flächenkurve, welche als polynomiale
Verkettung der beiden definiert ist, durch eine im Voraus berechenbare lineare

iii

iv

Tranformation (eine Matrix) der Flächenkontrollpunkte ausgedrückt werden kön-
nen. Dadurch können Inzidenzbeziehungen zwischen Kurven und Flächen exakt
und auf eine sehr elegante und kompakte Art definiert werden. Im Vergleich zu
den bekannten Methoden ist diese Vorgehensweise effizienter, numerisch stabiler
und erhöht nicht die Konditionszahl der zu lösenden linearen Gleichungen. Die
Effizienz wird erreicht durch Verwendung von eigens dafür entwickelten Daten-
strukturen und sorgfältige Analyse von kombinatorischen Eigenschaften von Po-
larformen. Die Gleichungen zur Definition von Tangentialitäts- und Variational
Constraints werden als Anwendung und Erweiterung dieses Algorithmus imple-
mentiert. Beschrieben werden auch symbolische und numerische Operationen auf
B-spline Polynomen (Multiplikation, Differenzierung, Integration). Dabei wird
konsistent die Matrixdarstellung von B-spline Polynomen verwendet.

Das Lösen dieser Art von Constraintproblemen bedeutet das Finden der Kon-
trollpunkte einer B-spline Fläche derart, dass die definierten Bedingungen er-
füllt werden. Dies wird durch Lösen von, im Allgemeinen, unterbestimmten
und schlecht konditionierten linearen Gleichungssystemen bewerkstelligt. Da in
solchen Fällen keine eindeutige, numerisch stabile Lösung existiert, führen die
üblichen Methoden zum Lösen von linearen Gleichungssystemen nicht zum Er-
folg. Wir greifen auf die Anwendung von sog. Regularisierungsmethoden zurück,
die auf der Singulärwertzerlegung (SVD) der Systemmatrix beruhen. Insbeson-
dere wird dieL-curveeingesetzt, ein “numerischer Hochfrequenzfilter”, der uns in
die Lage versetzt eine stabile Lösung zu berechnen. Allerdings reichen auch diese
Methoden im Allgemeinen nicht aus, eine Fläche zu generieren, welche die er-
wünschten ästhetischen und physikalischen Eigenschaften besitzt. Verformt man
eine Tensorproduktfläche entlang einer nicht isoparametrischen Kurve, entstehen
unerwünschte Oszillationen und Verformungen. Dieser Effekt wird “Surface-
Aliasing” genannt. Wir stellen zwei Methoden vor um diese Aliasing-Effekte
zu beseitigen: Die erste Methode wird vorzugsweise für Deformationen einer ex-
istierenden B-spline Fläche entlang einer nicht isoparametrischen Kurve angewen-
det. Es erfogt eine Umparametrisierung der zu verformenden Fläche derart, dass
die Kurve in der neuen Fläche auf eine isoparametrische Linie abgebildet wird.
Die Umparametrisierung einer B-spline Fläche ist keine abgeschlossene Opera-
tion; die resultierende Fläche besitzt i.A. keine B-spline Darstellung. Wir berech-
nen eine beliebig genaue Approximation der resultierenden Fläche mittels Inter-
polation von Kurvennetzen, die von der umzuparametrisierenden Fläche gewon-
nen werden. Die zweite Methode ist rein algebraisch: Es werden zusätzliche Be-
dingungen an die Lösung des Gleichungssystems gestellt, die die Aliasing-Effekte
unterdrücken oder ganz beseitigen. Es wird ein restriktionsgebundenes Mini-
mum einer Zielfunktion gesucht, deren globales Minimum bei “optimaler” Form
der Fläche eingenommen wird. Als Zielfunktionen werden Glättungsfunktionale
zweiter Ordnung eingesetzt. Die stabile Lösung eines solchen Optimierungsprob-

v

lems kann aufgrund der nahezu linearen Abhängigkeit des Gleichungen nur mit
Hilfe von Regularisierungsmethoden gewonnen werden, welche die vorgegebene
Zielfunktion berücksichtigen. Wir wenden die sog. Modifizierte Singulärwertzer-
legung in Verbindung mit dem L-curve Filter an. Dieser Algorithmus minimiert
den Fehler für die geometrischen Constraints so, dass die Lösung gleichzeitig
möglichst nah dem Optimum der Zielfunktion ist.

vi

Contents

1 Introduction 1
1.1 Goals of the thesis . 2
1.2 Structure and contents of the thesis 3

2 Methods for free-form surface design 5
2.1 Parametric methods for CAD . 5
2.2 Known methods for free-form surface design 6

2.2.1 Warping methods . 8
2.2.2 Constraint-based methods 12

2.3 Generalized constraint-based surface modeling 17
2.3.1 The design example . 18
2.3.2 Design with Free-form Features 21

3 Linear curve constraints 23
3.1 Related research . 23

3.1.1 Formulating the equations 24
3.1.2 Obtaining a stable solution 26

3.2 Generalizing the composition method 27
3.2.1 Curve-surface incidence constraints 27
3.2.2 Tangency constraints . 28

3.3 Variational constraints . 29

4 Computing the incidence constraints 31
4.1 The blossoming kernel . 31

4.1.1 The Blossoming principle 31
4.1.2 Blossoming principle for Bezier polynomials 32
4.1.3 Blossoming B-Splines 34
4.1.4 Blossoming tensor-product B-Splines 37
4.1.5 Unevaluated formulation of a blossom 38

4.2 Unevaluated polynomial composition 41
4.2.1 Revisiting the DeRose et al. algorithm 42

vii

viii CONTENTS

4.2.2 Computing the Bezier composition matrix 43
4.2.3 Unevaluated composition for B-splines 45

4.3 Efficiency and Data structures 51
4.3.1 The combinatorics . 52
4.3.2 The products . 55
4.3.3 The blossoms . 59
4.3.4 Implementation: the Multi-index tree 61

4.4 Practical notes and some results 64
4.4.1 Run-time performance 65
4.4.2 Numerical stability and shape of the composition matrix . 66

5 Tangency constraints 71
5.1 Problem definition . 71
5.2 Differentiation operator in matrix form 72
5.3 Computing the scalar product . 73
5.4 Practical notes on implementation 76

6 Variational constraints 79
6.1 Quadratic error functionals for surfaces 79
6.2 Matrix notation for surface functionals 80
6.3 Implementation . 82

6.3.1 Computing two-variate integrals of B-splines 83
6.3.2 Hierarchical decomposition of B-spline derivatives 83
6.3.3 Integrating products of B-splines 85

6.4 Results and practical notes . 86

7 Linear constraint solving I 89
7.1 Notation . 89
7.2 Ill-posed problems . 90

7.2.1 The Picard condition . 92
7.2.2 Regularization of ill-posed problems 93

7.3 The truncated SVD . 94
7.3.1 The SVD . 94
7.3.2 The rank revealing effect of SVD 95

7.4 The L-curve method . 96
7.4.1 The singular values plot 96
7.4.2 Determining the optimal truncation parameter 97
7.4.3 Demonstrating the Picard condition 100
7.4.4 The “aliasing effect” of the truncated SVD solution 101

7.5 The surface aliasing effect . 101

CONTENTS ix

8 Linear constraint solving II 105
8.1 Introduction: Anti-aliasing . 105
8.2 Surface reparametrization . 106

8.2.1 Reparametrization of tensor-product B-splines 106
8.2.2 Solving a constrained curve network interpolation problem 108
8.2.3 A design example . 110
8.2.4 Summary of the method 112

8.3 Constrained least squares . 112
8.3.1 The constrained regularization 112
8.3.2 Modified truncated SVD 113
8.3.3 More results and selected problems 115
8.3.4 Summary of the method 118

9 Conclusions and Acknowledgments 121

A Notations and Definitions 133
A.1 B-Splines . 133

A.1.1 Definition . 134
A.1.2 B-Spline curves . 138
A.1.3 B-Spline surfaces . 138

A.2 Bezier basis as special case of B-Spline basis 140

Chapter 1

Introduction

In the last two decades, computer-aided design systems have developed to power-
ful 2D and 3D modeling tools. Nevertheless, the use of a state-of-the-art modeler
is still far from simple and intuitive. It requires a lot of learning and preparation
before the intention of the design is met. The weak point of current systems is the
way the models are constructed: the designer has to define a sequence of mod-
eling operations which generate the model. This, so-called, design history has
to be carefully planned before the actual design work starts. As a consequence,
the designer must posses a relatively detailed a-priori knowledge about the model.
Modern systems aid the user with sophisticated interfaces which significantly sim-
plify the design work. For example, the concept of parameterizable features has
become ade factostandard in computer-aided-engineering. However, the depen-
dency of the model on a predetermined sequence of operations remains.

Recently, a new paradigm to geometric design the, so-called constraint-based
design, has been proposed. Important design decisions and consistency condi-
tions are expressed by relations (constraints) among the geometric elements of the
model. The design work proceeds in a interactive manner: the designers explore
new variations of shapes by interactive manipulations. There is no fixed order
of design operation; instead, based on specified constraints and the intention of
the user, the built-in logic of the modeling system derives the shape of the model.
The major difficulty of constraint-based approaches is theconstraint solving. This
means to compute the values of degrees of freedom such that defined constraints
are satisfied. For this reason, the set of supported geometric elements is usually
restricted to points, line segments and circular arcs in 2D and to points and regu-
lar surfaces such as planes, spheres or cylinders in 3D. Although this is sufficient
for many applications, concentrating the effort on these cases hinders the exten-
sion of this paradigm to other areas, specifically, to free-form surface modeling.
We claim, that in the context of surface modeling the power of constraint-based
methods have not yet been fully exploited.

1

2 CHAPTER 1. INTRODUCTION

1.1 Goals of the thesis

The experience we have gained from investigating methods for interactive ma-
nipulations of solids with constraints for planar and analytic surfaces [8, 7, 21]
has led to the idea to extend the constraint-based approach to free-form sur-
face models. The fundamental idea remains: points, curves and surfaces are
related to each other by geometric relations, particularly, incidence and conti-
nuity constraints. The designer selects curves, points or regions on the surface
and changes their shape or position. In order to satisfy the specified constraints
the surface has to follow these modifications. Some results of these efforts were
published in [54, 55, 56]. The, so-called, constructive constraint solving meth-
ods, [43, 42, 44], satisfy the constraints using a sequence of construction steps. At
each step a geometric or algebraic operation is applied which determines the un-
known objects. Roughly, modeling systems of this type consist of two substantial
components:

1. A set of “constructors” (shape operators) which determine unknown de-
grees of freedom of an object from constraints and objects which are already
known

2. A constraint solving engine which determines the order in which these
constructors should be invoked and resolves potential conflicts.

It is not the intention of this thesis to present a complete modeling system.
Rather, we are concerned with fundamental shape operators which can be used for
constraint based design of free-form surfaces, especially, in a conceptual design
phase. We will break down a construction step to interpolation of a B-spline
surface from one or several arbitrary 3D curves or points and their representation
in the parametric space of the surface. We are concerned with following topics:

• Definition of constraint-based shape operators for conceptual design of B-
spline surfaces

• Efficient and numerically stable methods for setting up of equations for fol-
lowing linear constraint problems:

◦ Incidence of a non iso-parametric curve on a B-spline surface

◦ Fixed normals of a B-spline surface along a non iso-parametric curve
(or tangent plane continuity of two B-spline surfaces along such curve)

◦ Enforcing of a smooth or “visually fair” shape of a curve or surface

• Numerical solving of the resulting interpolation problems. Generally, such
problems are under-determined and ill-posed, thus special numerical meth-
ods have to applied in order to obtain a numerically stable and esthetically
pleasing solution

1.2. STRUCTURE AND CONTENTS OF THE THESIS 3

1.2 Structure and contents of the thesis

The thesis is divided into seven subsequent chapters as follows:

Chapter 2 reviews state-of-the-art free-form surface design methods. We de-
scribe the concept of an interactive sketch- and constraint-driven modeling
system. The central operation is the interpolation of B-spline surfaces from
arbitrary curves; we discuss known approaches and introduce our method
to solve this problem.

Chapter 3 The constraints, expressed by systems of linear equations, are cat-
egorized with regard to the method how the equations are obtained. We
consider incidence, tangency and variational constraints.

Chapter 4 describes an efficient algorithm to formulate equations which con-
strain the incidence of an arbitrary curve on a B-spline surface. We intro-
duce the concept of “unevaluated” polynomial composition: We general-
ize the blossom based algorithm for composing Bezier polynomials [18]
to B-splines and show that a so-called composition matrix can be obtained
that transforms the control points of the surface to the control points of
the incident curve. We use this matrix to formulate linear equations for
curve-surface incidence. We analyze the combinatorial properties of the al-
gorithm, discuss efficient methods for computing products of B-splines and
present an efficient data structure for storing the intermediate results of the
algorithm so that optimal run-time behavior is achieved.

Chapter 5 We derive linear equations which enforce tangent plane continuity of
two surfaces along an arbitrary curve incident on both surfaces. We as-
sume that the surface normals along an arbitrary curve on that surface are
known and extract the necessary and sufficient conditions for the degrees of
freedom of the surface by symbolically computing the scalar product of the
normal and the tangent fields of the incident curve.

Chapter 6 demonstrates that the framework of methods elaborated so far, is per-
fectly suited to efficiently compute the normal equations of the so-called
quadratic surface fairing functionals.

Chapter 7 The problem which is addressed in this chapter is that the inverse lin-
ear problem associated with generalized curve-surface incidence constraints
belongs to the category of the so-called ill-posed problems which cannot be
solved in the usual straight-forward manner. We considerregularization
methods based on Singular Value Decomposition (SVD). The “L-curve”

4 CHAPTER 1. INTRODUCTION

method discussed here provides a generic and reliable tool to select a numer-
ically stable solution best satisfying the defined constraints. It turns out that
an algebraically stable solution is not satisfactory with regard to the quality
of the so obtained surfaces. Tensor-product surfaces deformed along arbi-
trary incident curves exhibit unwanted deformations due to the rectangular
structure of the model space. We name this the “Surface-aliasing effect”
and identify reasons for that.

Chapter 8 discuss a geometric and an algebraic method to remove the aliasing-
effect: The first method reparametrizes the surface such that a general curve
constraint is converted to iso-parametric curve constraint which can be eas-
ily solved by standard linear algebra methods without aliasing. For that
purpose, a method is introduced, to approximate a surface resulting from
polynomial composition of two B-spline tensor-product surfaces. The so
obtained surface locally reparametrizes the original surface according to
stated curve incidence constraints. The second approach circumvents the
reparametrization by stating additional constraints which suppress or com-
pletely remove the aliasing. Formally we solve a constrained least square
problem which minimizes a surface fairing functional (a technique elabo-
rated in chapter 6) subject to defined curve constraints. We apply an L-
curve based method to solve the ill-posed variational problem: a regular-
ization method called “Modified Truncated Singular Value Decomposition”
is used to obtain a surface which compromises the satisfaction of defined
constraints and the visual quality of the surface.

Chapter 9 summarizes the results of the thesis.

Appendix A contains the definitions and notations used throughout the thesis

Chapter 2

Methods for free-form surface
design

The objective of our approach is to develop a surface modeling method which
satisfies following criteria:

• Easy intuitive handling: Designers are usually not experts in surface math-
ematics. Thus, shape design operations should be decoupled from the inter-
nal mathematical description of the model.

• Flexibility: Design is an iterative process. The design intention will be
rarely met by the first sketch. It should be possible to change previously
made design decisions easily, without too much additional effort.

• Efficiency: Shape design operations must be performed rapidly, if possible
in real-time.

In the following section we briefly describe two fundamental approaches to com-
puter aided design. Section 2.2 reviews the currently applied free-from surface
design methodologies with regard to the above criteria. We introduce an alterna-
tive to standard surface modeling methods in section 2.3: interactive sculpting of
B-spline surfaces by free-hand sketches under the maintenance of curve-surface
incidence and tangency constraints.

2.1 Parametric methods for CAD

Basically, two approaches to computer aided design (CAD) can be identified: the
history based and the non-history based approach. The history based approach de-
scribes model by a sequence of geometric shape operations ordered in a tree or a

5

6 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

directed acyclic graph. This, so-called,design historyhas to be prescribed by the
user. Usually, the shape operators areparameterized– the model is determined af-
ter specific values are assigned to external parameters of the operator. This depen-
dency of the model on a sequence of operations and external parameters is called
parameterized design history. The constraint-based approach describes the model
by a set of geometric elements and a set of relations (or geometric constraints)
among the elements – theconstraint graph. The nodes of the graph correspond
to variables (degrees of freedom) which determine each geometric element, the
edges of the graph correspond to geometric constraints. Any element (its degrees
of freedom) in the graph can be modified: the satisfaction of constraints is estab-
lished in theconstraint solvingprocess where the degrees of freedom of influenced
elements are recomputed such that all constraints are satisfied.

The fundamental difference between the two approaches is that editing of
models is restricted to changes of the parameters of the fixed design history. In
other word, the shapes which can be generated are restricted by given design his-
tory and parameterization. With constraint-based approach, a change can be ap-
plied to any element of the model within the defined constraints. The order of
required operations is determined automatically during constraint solving. Thus,
the possible shapes are determined entirely by defined constraints and degrees of
freedom in the constrained objects. Constraints can be added or deleted as re-
quired. Therefore, this approach is occasionally called “constraint-driven”. Con-
straint solving can be approach in different ways, see e.g. [71] for an overview of
currently applied methods. For example the, so-called, constructive approaches,
[43, 42, 44, 7, 21], satisfy the constraints using a sequence of construction steps.
This “construction plan” is determined automatically, based on information avail-
able from the constraint graph. At each step geometric or algebraic operations are
applied which determine the unknown degrees of freedom.

The power of a constructive constraint-driven modeling system depends on
the set of available shape operators and the ability to determine the construc-
tion plan from given constraint graph. We will concentrate on the definition of
constraint-based shape operators for free-form surfaces suited for application in a
constructive constraint-based modeling system.

2.2 Known methods for free-form surface design

The goal of free-form surface design is to obtain a surface the shape of which
satisfies given design criteria. In this section we look at a particular design prob-
lem which demonstrates the difficulties of this task. Without loss of generality,
we will consider B-Spline surfaces as defined in §A.1. Note that all the alterna-
tive free-form surface representations, e.g. Bezier or Coons-patches,β-splines or

2.2. KNOWN METHODS FOR FREE-FORM SURFACE DESIGN 7

ν-splines, see [41, 25, 61], can be expressed in terms of B-Splines.
B-spline surfaces and the various related surface representation schemes have

gained a large popularity in computer aided design of sculpted shapes. This re-
sults mainly from the property that the degrees of freedom (DOFs) inherent to the
chosen surface representation scheme, i.e. the control points, vectors, or various
auxiliary parameters have (at least to some extent) a predictable influence on the
shape of the surface. Therefore, the dominant approach to interactive free-form
surface sculpting is a direct manual modification of DOFs. Although, theoreti-
cally, an arbitrary shape can be modeled by re-positioning the control points of a
B-spline surface, in practice, the types of changes one can achieve are quite lim-
ited. An attempt to deform a B-Spline surface this way, beyond making a few
bumps or dents on it, is usually quite de-motivating:

Consider figure 2.1. The goal is to create a “dome” shaped surfaceS ′ shown in
fig. 2.1(b) by editing the control mesh of an planar surfaceS fig. 2.1(a) such that
the surface passes through a given curveC (the shape ofC must remain fixed).
It would be difficult, if not impossible, to design such surface by manual reposi-
tioning of the control points. The number of degrees of freedom is usually not
a problem: one can insert arbitrary many control points into a B-spline surface.
For example, a B-spline surface with 10×10 control points already has 100 inde-
pendent degrees of freedom in each spatial dimension. However, for this purpose,
the large amount of DOFs is not really helpful: it is not obvious which control
points and how should be changed in order to achieve the desired shape. Thus,
this approach does not meet the criteria of intuitive and easy handling. Also, its
flexibility is limited: the effort of introducing a change to the dome surface (e.g.
changing the shape ofC) equals the effort of sculpting the surface from scratch.

Hence, we need a mathematical definition of the relationship between the
DOFs (control points) of the curve and the DOFs of the surface: the change of
DOFs on either side, causes the change of dependent DOFs of the other object.
Basically, there are two approaches to establish this relationship described in the
literature:

• the “Warping” or Free-Form deformation (FFD) methods and

• Constraint-based approaches, particularly, the so-called surface skinning
and multi-patch methods

Both methods pursue the same goal: determine the degrees of freedom of the mod-
ified object such that the curve or surface takes in the desired shape. They differ in
the way how the determination of DOFs is realized. Also, the philosophy behind
both approaches is different: FFD methods pursue the modification as a primary
goal – already deformed or otherwise “fixed” parts of the surface cannot be con-
sidered. The constraint-based methods proceed exactly the opposite way: they

8 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

CC

SS

(a)

CC

SS

S’

(b)

Figure 2.1: The “dome” surface example: it is not obvious how to change the con-
trol mesh, shown by straight lines in fig. (a), of the planar surface in fig. (a) such
that the dome-shaped surface passing through curveC, see fig. (b), is obtained.

implement shape operators which create a new surface from constraints defined
between the surface and previously determined (“fixed”) elements. In general,
it is not assumed that once determined surfaces will be further modified. In the
following we will describe both approaches in more detail.

2.2.1 Warping methods

The idea of Warping methods is to embed the modified free-form shape in the,
so-called, deformation space. If the deformation space is modified, the embedded
shape “warps” according to the changes applied to the deformation space. The
most commonly used analogy for FFD is to consider an object embedded in a
parallelepiped of clear, flexible plastic. If the lattice structure is deformed, the
object inside the lattice will also be deformed, [59].

The technique proposed by Sederberg and Parry in [73] embeds the modified
free-form surface inE3 in a tri-variate Bezier volume

V : Ωu,v,w → E3, V = V (u, v, w), Ωu,v,w ⊆ R3

defined by tensor product of three Bezier spaces of dimensions(l + 1) × (m +
1) × (n + 1). The shape ofV is determined by(l + 1)(m + 1)(n + 1) lattice of
control points inE3. The domain spaceΩu,v,w of V is a paralellpiped region of
R3 with dimensions〈a, b〉× 〈c, d〉× 〈e, f〉. The deformation proceeds as follows:

1. Let {Si,j : 0 ≤ i < p, 0 ≤ j < q} be the set of control points of the B-
Spline surfaceS(s, t). Apart from the change in the names of the variables

2.2. KNOWN METHODS FOR FREE-FORM SURFACE DESIGN 9

SS

VV

V’
S’

(a)

SS
AA

A’S’

(b)

Figure 2.2: The Warping-methods embed the deformed surfaceS into a deforma-
tion space: (a) Sederbergs approach uses a tri-variate Bezier volumeV . Changing
V to V ′ “warps” S to S ′. (b) The Axial-Free-form deformations use an “axis”
curve to deform a surface. The dome-shape is created by deforming axisA to A′

yielding a deformation ofS to S ′

the notation remains the same as in §A.1

2. Compute the embedding ofS in the domain space ofV : impose a local
coordinate system onΩu,v,w by specifying any control point ofS asSi,j =

ui,j
~U + vi,j

~V + wi,j
~W with ~U = (b − a, 0, 0), ~V = (c − d, 0, 0) and ~W =

(f − e, 0, 0). Theui,j, vi,j, wi,j coordinates are found by solving the linear
system of equations for knownSi,j and~U , ~V , ~W .

3. Deform the control points ofV

4. There are two possibilities how to obtain the control points of the deformed
surface:

(a) Compute the deformed surfaceS ′ by settingS ′
i,j = V (ui,j, vi,j, wi,j).

This is only an approximative method and may exhibit undesirable
distortions ofS, see [59].

(b) Recognize that the deformed surface is a composition of the two map-
pingsV andS and exactly compute the higher degree B-Spline surface
S ′ = V ◦ S = V (u(s, t), v(s, t), w(s, t))

This technique and its clones or extensions ([33], for example) is widely used
because of its power to create interesting shapes easily and with low computa-
tional effort, if the method 4(a) is used. The method 4(b) is computationally more

10 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

involved. However, we will show in chapter 4 that with certain computational pre-
processing effort the exact control points ofS ′ can be computed very efficiently.

It has been recognized by Coquillart et. al, that one limitation of Sederberg’s
and Parry’s method is the restriction on the parallepiped topology of the defor-
mation space. In [13] Coquillart et al. have proposed using free-form volumes
of arbitrary topology; this technique is known as Extended-Free-form deforma-
tions (EFFD). This extension allows a more flexible definition of the deformation
space and enlarges the inventory of types of deformations introduced to a surface.
However, the simplicity of Sederberg’s approach is lost: the embedding of the
modified surface in the deformation space, i.e. determination of theu, v, w co-
ordinates for each control point ofS from step 2, requires solving of non-linear
systems of equations. Also, computing the exact control points as pointed out
in 4(b) becomes very difficult, if not impossible.

Another interesting extension to FFD-techniques are the so-called Axial-Free-
form deformations (AFFD), introduced by Lazarus et al. in [49]. The deformation
space is not defined as an tri-variate free-form volume. Instead, a user defined
“axis”, a parametric curve in 3D, serves as a deformation tool:

1. Let the axis be defined as an 3D B-Spline curveA(t) with control points
{Ai : 0 ≤ i < n} and letS be the deformed surface.

2. Define a local coordinate system at each point ofA(t) by introducing three
vector field curves~U(t), ~V (t) and ~W (t) which must be linearly independent
for all t. A good choice for the local coordinate system is the Frenet-frame
of A(t).

3. Associate each control point ofSi,j with a point onA(ti,j) and determine
valuesui,j, vi,j, wi,j so thatSi,j = A(ti,j)+ui,j

~U(ti,j)+vi,j
~V (ti,j)+wi,j

~W (ti,j)

4. Deform the control points ofA, yielding a deformed curveA′ and new
vector field curves~U ′, ~V ′ and ~W ′

5. Compute the deformed surfaceS ′ by settingS ′
i,j = A′(ti,j) + ui,j

~U ′(ti,j) +

vi,j
~V ′(ti,j) + wi,j

~W ′(ti,j).

Since AFFD are conceptually similar to EFFD, the main difficulty of AFFD-
methods is the step 3: to find the relationship between the “deformation space” (in
this case the axisA) and control points of the deformed surfaceS. The parameter
valuesti,j are usually determined by computing a point onA such that the Euclid-
ian distance between the pointsA(ti,j) andSi,j is minimal, which also requires
numerical methods.

2.2. KNOWN METHODS FOR FREE-FORM SURFACE DESIGN 11

The axial FFD allow to deform a surface locally, according to the position
of the axis curve relative to the deformed surface: In [79], Singh and Fiume de-
termine the amount of change of each surface control point by an user-defined
potential field function (the, so-called, density function)

f : R1 → 〈0, 1〉 , f = f (|Si,j − A(ti,j)|)

emanating at the axis curve (the authors use the term “wire curve”). The inten-
sity of the field is maximal at the wire curve and decays gradually with growing
distance from it. The amount of change of eachSi,j (determined as outlined in
step 5) is weighted by the value off which restricts the influence of a wire to a
region ofE3 around the axis. Sing and Fiume have also discussed how to con-
trol the deformation induced by several wire-curves with overlapping regions of
influence: the resulting deformation for a control pointSi,j is proportional to the
algebraic combination of all deformations applied toSi,j: let ~∆k

i,j be the amount
of displacement of control pointSi,j induced by thek-th of n wires and letfk be
the density function associated withk-th wire. The resulting deformation forSi,j

is then proportional to

f1(Si,j)~∆
1
i,j + · · ·+ fn(Si,j)~∆

n
i,j

Summarizing all Warping methods and with regard to the criteria listed in the
beginning of chapter 2 we note:
Easy handling: the deformation process proceeds interactively via suited graph-
ical user interface. The users do not have to deal with internal surface represen-
tation: the shape of the surface follows the changes of the deformation space. A
great advantage is that instead of dealing with hundreds or thousands of control
points which determine the surface, one only has to deal with relatively few con-
trol points which determine the shape of the deformation space. In case of the
traditional FFD methods, the users have to be aware of the restriction on the par-
alellpiped topology of the deformation space.
Flexibility : the warping methods are well suited for design of shapes which do
not have to satisfy some additional exact criteria. Consequently, while introduc-
ing new modifications is easy and intuitive, it is not possible to keep previously
designed parts of the model unchanged. Consider the dome-shaped surface ex-
ample from figure 2.1: we have required that the modified surface passes through
given curveC. This is hard to achieve by warping the surfaceS by means of
FFD; The deformation ofS is determined solely by the deformation space – there
are no additional restrictions which assure thatC stays incident onS (therefore
the curveC is not shown in figures 2.2(a) and 2.2(b). Also, the Axial FFD or
the wires-method do not guarantee incidence of the edited curve on the surface.
The surface only roughly approximates the changes of the edited curve: Although

12 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

several deformations induced by several “wire curves” can be applied simultane-
ously, keeping some wires fixed and changing the others does not guarantee that
the surface stays locally unchanged.
Efficiency: One needs to distinguish between Sederberg’s original version of FFD
and the extended FFD methods (Axial-FFD, Wires). The first allow very efficient,
real time modifications. The second may require considerable time to compute
the embedding of the modified shape in the deformation space. Then, however,
the modifications proceed at interactive speed.

2.2.2 Constraint-based methods

The goal of constraint-based surface design is to obtain a surface which satisfies
some specified geometric properties. For example, it should pass through a set
of 3D curves or points, or it should be smoothly connected to another surface.
These properties represent geometric constraints on the shape of a curve or sur-
face, we speak of incidence constraints or geometric (or polynomial) continuity
constraints. In this context, the class of linear interpolation methods is most fre-
quently applied. There are two main families of interpolation methods which are
considered standard in CAGD: (1) tensor-product interpolation (so-called “surface
skinning”) and (2) multi-patch methods.

2.2.2.1 Tensor product interpolation

The simplest interpolation scheme seeks a B-Spline surface which interpolates a
lattice of 3D points{Hi,j : 0 ≤ i < m, 0 ≤ j < n}. Assume that the set of
two-variate B-Spline basis functions{bk,τ

i (u)bl,υ
j (v) : 0 ≤ i < m, 0 ≤ j < n}

is given. The interpolation problem consists of finding the control pointsFi,j of a
B-Spline surface

F (u, v) =
n−1∑
j=0

m−1∑
i=0

Fi,jb
k,τ
i (u)bl,υ

j (v)

and parameter values(αi, βj) such thatF (αi, βj) = Hi,j. For that one proceeds
as follows:

1. Set(αi, βj) =
(

(τi+1+τi+k)
k

,
(υj+1+υj+l)

l

)
2. We use the fact that a two-variate B-Spline consists of tensor-product of two

univariate B-Splines and subsequently solve two one-dimensional interpola-
tion problems. First, interpolaten B-Spline curvesEj(u) =

∑m−1
i=0 Ei,jb

k,τ
i (u)

through pointsH0,j, · · · , Hm−1,j: Setdofs(Ej(u)) = Ej. Denote bybu|u=αi
the

2.2. KNOWN METHODS FOR FREE-FORM SURFACE DESIGN 13

vector of B-Spline functions evaluated atαi, i.e. {bk,τ
i (αi) : 0 ≤ i < m}.

Set up matrices

Hj =

 H0,j

Hm−1,j

 ,A =

 bu|u=α0

bu|u=αm−1

 ,Ej =

 E0,j

Em−1,j


and solven linear systems of equations

Hj = AEj, 0 ≤ j < n

obtaining the control points of eachEj(u), 0 ≤ j < n.

3. Interpolate the control points ofEj(u) in the other parametric direction:
One assumes that the curvesEj(u) are mapped ton iso-parametric curves
F (u, v = const. = βj). Then, the control points of the surfaceF (u, v)
which satisfiesF (αi, βj) = Hi,j are obtained by solvingm linear systems

E′
i = BFi, 0 ≤ i < m

where

E′
i =

 Ei,0

Ei,n−1

 ,B =

 bv|v=β0

bv|v=βn−1

 ,Fi =

 Fi,0

Fi,n−1


It can be shown, see e.g. [68], that if one chooses(αi, βj) as in step 1 the matrices
A andB are always invertible and both equation system always have one unique
solution.

The popular “surface skinning” is a special case of the above procedure: Given
a set ofm 3D curves{Ej(u) =

∑m−1
i=0 Ei,jb

k,τ
i (u) : 0 ≤ j < n} and set of

parameter values{βj : 0 ≤ j < n} one seeks a B-Spline surfaceF (u, v) such that
F (u, v = βj) = Ej(u). Basically, one performs only the 3rd step of the procedure
described above. The literature describes various extensions or modifications of
this method. For example, one can prescribe more (or less) thanmn points and
solve overdetermined (or under-determined) linear systems. It is also possible to
prescribe derivatives of arbitrary order at each point or curve and consider these
constraints when solving for control points ofF . The skinning method can be
generalized to an interpolation of compatible curve network. Given two sets of
curves

{Ej(u) : 0 ≤ j < n}, {E ′
i(v) : 0 ≤ i < n}

intersecting at 3D pointsHi,j find a B-Spline surfaceF (u, v) such thatF (u =
αi, v) = E ′

i(v), F (u, v = βj) = Ej(u) and F (αi, βj) = Hi,j, see [30] and
chapter 7 of this thesis which contains a detailed description and a generalization
of this interpolation scheme. For further references see, for example, [61, 25, 41].

14 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

2.2.2.2 Multi-patch methods

The skinning method and its clones deliver one B-spline surface which interpo-
lates a set of iso-parametric curves or a rectangular lattice of 3D points. These
methods are simple and efficient but they fail in two cases:

1. The set of interpolated points is unstructured, i.e. no lattice structure of
fixed size exists

2. The curves cannot be mapped to a set of parallel iso-parametric lines in the
domain of the surface

In this case one has to turn to the, so-called,multi-patchmethods. This class of
surface interpolation methods is concerned with methods for filling a 3D curve
network by 4-sided tensor-product surface patches. Alternatively, 3-sided poly-
nomial patches are used to fill triangular holes in the curve network1. Non-
rectangular (“n-sided”) holes are segmented into 3-sided or 4-sided regions and
filled with surfaces based on the assumption that given 3D curves or their parts are
the boundaries of the patch. Usually, the surfaces are required to meet with certain
order of geometric continuity (usuallyG1 or G2) along their boundary curves. We
point to Peters’ paper [60] which contains a detailed overview about multi-patch
methods; many details, algorithms and problems are also discussed in [41, Sec.
7.5].

Multi-patch methods are applied mainly in the context of surface reconstruc-
tion from unstructured point and/or curve data (“Reverse Engineering”). Multi-
patch models resulting from Reverse engineering (RE) may consist of several
thousands of patches. Often, the result of the surface interpolation is of bad qual-
ity: the choice of the wrong segmentation or a un-advantageous distribution of the
point data causes unwanted “wiggles” or jumps in the resulting surfaces. Then,
the process needs to be restarted with a new segmentation or point distribution.
Experience shows, that from a designer’s point of view, it is simpler to change the
surface model interactively, inside restricted areas or near characteristic points or
curves such that the overall shape of the model is kept. However, it usually not
possible to manually improve the shape of RE-surfaces because there is no pre-
defined dependency between suitable design parameters and the surface patches.
Furthermore, multi-patch models are often generated “off-line”, even on a differ-
ent CAE platform. This introduces another problem: after re-importing the data
into modeling system no editing is possible because there is no “design history”
that describes the dependency of the surface patchwork on the input data.

1We will not further consider this kind of surfaces, see any standard book concerned with
CAGD methods for details (e.g. [61, 25, 41]).

2.2. KNOWN METHODS FOR FREE-FORM SURFACE DESIGN 15

S
1

S2S
3

S
4

C

A
B

(a)

S1

S
2S3

S 4

S1 S2

S3

S
4

A

C
B

(b)

S
12

S
2

S
3

S 4

S
11

D

S
11

S12
A

C
B

(c)

Figure 2.3: Design of “dome” surface using the multi-patch approach.

On the other hand, when a multi-patch surface model is created “from scratch”,
the designer has the full freedom to choose a design history. Here, the problem is
to create a model flexible enough to meet all specifications of the design. Mod-
ern surface modeling systems usually provide some kind of visual programming
interface to build such multi-patch models. However, in most cases one has to
create the surfaces “patch by patch” in certain order. Usually, shape operations
which fill an n-sided hole given by its boundary curves, or solve the, so-called,
“vertex enclosure problem”, [41, §7.5.1 and §7.5.2] are available. The user has to
apply them in correct order.

For example, in order to create an editable model of the “dome”-shaped sur-
face one could proceed as demonstrated in figure 2.3: The curveA, B andC were
chosen to control the the shape of the surface, Fig. 2.3(a). The segmentation into

16 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

3 and 4-sided patches is shown in the left lower corner of each figure. The curves
need to be split at points where they intersect; if no 3-sided patches are supported
the triangular regions need to be further subdivided into 4-sided regions shown by
the thin lines in trianglesS1 andS3. The “holes” of the curve network are filled
by surface patches, Figure 2.3(b).2 The order in which the design operations were
applied is stored in a design history with the curveA, B andC as “parameters” of
the model: a modification of the curves causes re-evaluation of the design history
yielding a new shape of the surface. Now consider the case that the three curves
are not sufficient to control the shape – one would like to insert a new “parameter”
curve,D, as demonstrated in Fig. 2.3(c). Since a different curve network arises
(left lower corner of the figure) the old segmentation is no more valid and the
design history of the entire model needs to be created from scratch.

For completeness we note that there are other surfaces representation schemes
which allow to define surfaces on arbitrary topological domains, e.g. Seidel’s
B-patches [77] or Loop’s generalization of B-splines to arbitrary domains [51].
However, they are not that well understood as the tensor-product representations
which can be considered a de-facto standard in all common modeling systems.
Thus, usage of one of these alternative surface representations causes considerable
compatibility problems.

With regard to the criteria for a user-friendly surface modeling tool defined at
the beginning of the chapter we conclude:
Easy handling: Surface design be means of skinning methods is relatively easy to
understand even for less experienced users. However, one has to keep in mind the
restrictions on the topology of the interpolated data. On the other hand, as even
the simple example from figure 2.3 demonstrates, design of surface patch works
requires a lot of experience, planning and relatively deep knowledge of surface
mathematics; hence, we conclude that the intuitiveness and easy handling criteria
are not satisfied.
Flexibility : The example from figure 2.3(c) shows that a slight correction of the
design may have severe consequences, hence, the flexibility of the multi-patch
method is low. However, in contrast to FFD methods, the constraints provide an
exact way to control the shape of the surface; For instance, if the curveC in fig-
ure 2.3 is fixed, its incidence onS is guaranteed for any modification ofA andB
(under the assumption that the necessary compatibility conditions are satisfied).
Efficiency: The skinning methods are generally very efficient. One only has to
evaluate the matrices and solve well-determined (and sparse) linear systems of
equations as sketched in previous paragraph. The evaluation of a B-Spline func-

2In fact, the curves have to satisfy strict compatibility conditions; in this example,A, B andC
have to intersect at fixed points. The sufficient compatibility conditions (esp. the “vertex enclo-
sure” conditions) are more complicated and require reparametrization of the curves, see e.g. [60]
or [41, §7.5.1 and §7.5.2].

2.3. GENERALIZED CONSTRAINT-BASED SURFACE MODELING 17

tion has quadratic run-time complexity in the degree of the used B-Spline space.
Therefore, usually, a low degree (such as quadratic or cubic) B-Spline basis is
chosen. In order to satisfy the compatibility conditions the multi patch methods
require reparametrization of the curves which may result in high-degree B-Spline
spaces (see e.g. [60]). One has to consider that the segmentation into many sur-
faces requires solving of many high-degree interpolation problems. In addition,
determination of a surface from its boundary curves usually results in an under-
determined problem, hence more sophisticated methods are required to solve the
linear equation systems. For this reason, interpolation of large curve networks of
complicated topology may take considerable time.

2.3 Generalized constraint-based surface modeling

One possibility to remove the disadvantages of previously described standard
constraint-based methods is to remove the restriction that an interpolated curve
must be mapped to an iso-parametric line. Assuming that the interpolation of B-
spline surfaces from non iso-parametric curves is available, arbitrary 3D curves
incident on a surface can be used as design parameters for surface sculpting: The
designer inputs the curves directly in 3D. For that purpose, we have investigated
free-hand sketching methods, see [47] and [57] for details: Each input curve is
interpreted as a curve-surface incidence constraint. The user modifies the curves
by free-hand pen strokes which yields a new shape of the surface every time a
sketch transaction is finished. The model may consist of several surfaces which
are connected to each other by curve incidence and tangency constraints. Inter-
nally, a sequence of shape operators is applied which determine each surface from
given curves.

Proceeding this way, we combine the advantage of the FFD-approach (easy
intuitive handling) with the advantages of constraint-based methods (precise con-
trol over the modified shapes). There is a direct algebraic relationship between
the surface and the constraint-curves, hence, the previously designed surface can
be preserved.

Non-rectangular surface patches can be simulated by, so-called, trimmed B-
spline tensor-product surfaces: here, the extent of the surface is specified by a
set of loops in the parametric domain of a B-spline surface. The regions defined
by the loops are mapped to regions of the same topological shape on the surface.
This allows to “simulate” non-rectangular surfaces of the same overall continuity
as the underlying B-spline surface: ann-sided patch can be obtained by inter-
polatingn 3D curves by one B-spline surface. On the resulting surface only the
region restricted by the known curves in the domain of the surface is considered.
Visualization and handling of trimmed tensor product surfaces is supported by

18 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

S
A

(a)

S

P
1

P 2

A

B

(b)

S

A

(c)

AC

P 4

P 3

P
1

P 2
S

B

P
5

(d)

Figure 2.4: Sketch- and constraint-based design of the “dome” surface.

all common modeling systems, thus, no compatibility problems arise if trimmed
surfaces are used.

In the following three paragraphs we will demonstrate this concept on design
examples. We will demonstrate how the design of the dome-shaped surface used
for demonstration purposes in previous paragraphs proceeds with a sketch- and
constraint-based system. We will also address the creation of so-called free-form
features.

2.3.1 The design example

Assume, one wishes to create the dome shaped surface, figures 2.4(a)-(d). The
user sketches the closed curveA first. A curve-incidence constraint is automati-

2.3. GENERALIZED CONSTRAINT-BASED SURFACE MODELING 19

A B S P
1

P
2

r
1

r
2

r
3

r
4

r
5

r
6

(a)

P
2

P 1

A B

S

r 1

r 2

r 3 r 4

r 5 r 6

(b)

A

B

S

w 1 r 1

w
2

r
2

f S

(c)

Figure 2.5: Constraint-graph and construction plan for the cap surface example.
ElementsA, P1 andP2 are fixed,B is selected for change. At the last stage the
surfaceS is determined from the curvesA andB, and from integral constraint
f(S). If errors at constraintsr1(B, S) andr2(A, S) are larger than a prescribed
tolerance the surface is refined and the last construction step is repeated.

cally generated. If desired, the region outside the closed curve can be trimmed
from the surface. Since we want to preserve the shape ofA it is marked as
“fixed”. In order to generate the dome shape of the surface, the curveB is drawn,
fig. 2.4(b). The methodology for sketching 3D curves on surfaces was defined
in [47] and [57].

The user modifiesB by further pen strokes inside the so-calledsketchspace
which is defined as an auxiliary free-form surface locally orthogonal to the mod-
ified surface, see [57]. In our example the sketch space is denoted by the hatched

20 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

region in figure 2.4(b). The curve ofB is checked for interference with other el-
ements. In this case,B intersects withA at pointsP1 andP2. It is necessary to
capture these conditions by additional constraints. Here, 4 point-curve incidence
constraints among both curves and points are recognized and generated automati-
cally which yields a constraint-graph shown in fig. 2.5(a): the lower set of nodes
denoted by upper case letters represent the objects (curves, points, surface), the
upper row represent the incidence constraints, denoted byri. The edges of the
graph connect a constraint node with related object nodes.

The order of evaluation is determined from current distribution of degrees of
freedom in the constraint graph: in our example, the construction plan is as shown
in fig. 2.4(b): the curveA is fixed which enforces fixed pointsP1 andP2. These
consistency constraints consume 2 degrees of freedom fromB – thus, the depen-
dent control points ofB must remain fixed. Every sketched input curve needs to
be checked against these conditions.

Finally, the surface is determined from curvesA andB. The resulting shape
of S will depend on its initial parameterization, polynomial degree and number
of DOFs; we will return to this topic in chapter 7. A good idea is to start with
relatively simple surface and insert new DOFs at appropriate positions if errors at
the constraints exceed defined limits. The error for each constraint is measured by
back-substitution of the pre-image curve intoS and evaluation of the difference
among this exactly incident curve and the curve present in the model. In the
following |ri| will denote this error for a specific constraint. At the last stage of
the construction plan, shown in figure 2.5(c), the surface is determined (possibly
in several iterations) as a solution of a constrained variational problem

min
S

f(S) subject to |r2| = 0 ∧ |r1| = 0

wheref(S) is a “smoothness” constraint which regulates the overall shape of the
surface. Here, the objective functionf(S) is a convex combination of quadratic
surface functionals which minimize the area, thin-plate energy and variation of
curvature of a tensor-product surface (section 3.3 and chapter 6). Following the
experience of many researchers who have investigated variational problems of
this kind (e.g. Brunnett, Greiner, Hagen, Hoschek, Seidel and others, [9, 5, 31,
48]), minimization of these expressions has been shown an effective approach
to determine an optically pleasing surface with slowly varying curvature; more
details are found in chapter 7.

The so determined construction plan stays valid as long as the user does not
change the distribution of DOFs (i.e. does not fix or free an element). A new plan
needs to be evaluated if elements are created and inserted into the model, or if
existing elements are removed. This is illustrated in Fig. 2.4(d). Another curve,
C, is introduced. New consistency conditions arise, if the user decides to keep

2.3. GENERALIZED CONSTRAINT-BASED SURFACE MODELING 21

the shape ofB: sinceB intersects withC in P5 andA remains fixed, the number
degrees of freedom in curveC is a-priori reduced by 3.

In summary we note: the model is represented by a constraint-graph which is
updated depending on user’s design actions. The construction plan is determined
after an element of the graph (curve, surface, or point) has undergone a change
of the state. This means that the user has marked an element as one of “fixed”,
“free” or “changed”. Algorithms to obtain a construction plan from steady-state
constraint graph have been proposed, see e.g. [7, 21]. However, these algorithms
rely on the a-priori knowledge of how many DOFs of an object are consumed
by a specific constraint. Since this is impossible to predict in case of ill-posed
linear problems, see chapter 7, these methods have to be modified or completely
re-evaluated which is one of the primary topics of our future work.

2.3.2 Design with Free-form Features

Often, only a part of a surface should be modified such that other regions are not
influenced. The methods discussed so far, don’t provide that possibility. Suppose,
that a region on a B-spline surface is identified by sketching a loop (a loop is one
closed or several connected curves), as demonstrated in Fig. 2.6(a). If we modify
the surface only outside the loopB, there is no guarantee, that the shape of the
shaded part of the surface will stay constant. This can be achieved only if the sur-
face is split into two separate surfaces which share only a common boundary. This
introduces additional objects into the model, therefore, we use the term “feature”.
We propose two methods:

The first is illustrated in figures 2.6(a)-(b): the user draws a loopA on surface
S1. The initial surfaceS1 is cloned intoS2 and incidence constraints are generated
between both surfaces and the curveA. Note that the loop may consist of several
curves; then, an incidence constraint is generated for each curve. If the shape
and position of the boundary curve is fixed, the user can editS2 by sketches as
discussed above, figure 2.6(b). Since the surfaces are only related via their fixed
boundaries no changes are carried over toS1.

The second method differs in the way how the surface is cloned. Instead
of creating a copy of current surface, a new surface is computed such that it
reparametrizes the original surface inside a specified four-sided region. This
is demonstrated in figures 2.6(c)-(d). The advantage of this method is that the
reparametrized surface can be adjusted such, that it reacts very well to changes
of a specific curve, or family of curves; the limitation is that the region must be
rectangular. The surfacesS1 andS2 are connected by incidence and continuity
constraints. Note that the boundary curvesBi are all mapped to iso-parametric
lines ofS2 which makes the formulation of the respective constraints easier. This
method is described in chapter 8.

22 CHAPTER 2. METHODS FOR FREE-FORM SURFACE DESIGN

S
1

B

S2

(a)

P
1

B

S1

P 2S2
A

(b)

S1
S2

B i = 1:4

P
i = 1:4

(c)

S
1

S2

B
i = 1:4

P i = 1:4

A

(d)

Figure 2.6: Creation of a trimmed “surface feature”. Top:S1 is cloned intoS2

and both surfaces are constrained to meet along the curveB. Then, ifB is fixed,
S2 (or S1) can be modified independently from the other surface. Bottom: Region
of interest created by application of surface-surface composition.S1 is locally
reparametrized byS2. The surfaces meet withG1 continuity alongB1 to B4.

The outline of a relational surface modeling platform as discussed above shows
the advantages for conceptual design. Much less mathematical knowledge is re-
quired to implement a design intention compared, e.g., to the multi-patch meth-
ods. Also, the design and re-design cycles shorten considerably: the intention
of the designer is immediately confirmed, or, rejected if the requirement is not
compatible with specified constraints.

Chapter 3

Linear curve constraints

The central operation required in previous section is the interpolation of a sur-
face from one or several arbitrary curves. Although, in principle, the approach is
the same as described in §2.2.2, interpolation of surfaces from non iso-parametric
curves is considerably more complicated. In addition, as it is commonly done for
iso-parametric curves, we wish to enforce tangent plane continuity of two surfaces
along an arbitrary curve incident on both surfaces. In the following section we re-
view the methods known from the literature to approach both types of constraints.
In section 3.2 we outline our approach to formulate the linear equations for these
constraints. It turns out that the effort does not end with a numerically stable and
efficient algorithm for formulating the equations. Solving of generalized curve in-
cidence and tangency constraints requires so-called variational methods: We need
to state additional conditions on the shape of the interpolated surface. These con-
ditions are called variational constraints for B-Spline surfaces and are introduced
in section 3.3. Although the former two types and the latter type are concep-
tually different, technically, their implementation requires the same set of basic
operations: above all sparse matrix operations and symbolic computations with
B-spline polynomials. The implementation of either constraint category is easy,
once this “kernel” is available. In the remaining chapters of the thesis we will
refer to this classification.

3.1 Related research

The problem is defined as follows: We seek a B-Spline surface which interpolates
a given 3D B-Spline curveY (t). Assume that the set of two-variate B-Spline basis
functions

{bk,τ
i (u)bl,υ

j (v) : 0 ≤ i < m, 0 ≤ j < n}, (u, v) ∈ Ωu,v = 〈a, b〉 × 〈c, d〉

23

24 CHAPTER 3. LINEAR CURVE CONSTRAINTS

and a B-Spline curve inΩu,v

Z : R1 → E2, Z(t) = (u(t), v(t)) , u(t) ∈ 〈a, b〉 ∧ v(t) ∈ 〈c, d〉

are given. The interpolation problem consists of finding the control pointsXi,j of
a B-Spline surface

X (Z(t)) = X (u(t), v(t)) =
n−1∑
j=0

m−1∑
i=0

Xi,jb
k,τ
i (u(t)) bl,υ

j (v(t)) (3.1)

such thatX (u(t), v(t)) = Y (t). As long as the curveZ(t) = (u(t), v(t)) does
not change, the termsbk,τ

i (u(t)) bl,υ
j (v(t)) are constants. Hence the non-linear

part of the surface representation is eliminated and the problem becomes linear in
the control pointsXi,j of the surface. Thus it is possible to obtain a linear system
of equations

AX = Y

which restrict the incidence ofY (t) onX(u, v).
The problems are two-fold: first, it is not straight-forward how to formulate the

equations which define the relationship between the surface control points and the
control points of the interpolated curve. Second, obtaining a numerically stable
solution of the above linear system of equations is a subtle procedure: The inverse
problem

A−1 : Y → X

generally belongs to the class of so-calledill-posed problems. Simply stated, it
is not possible to determine the status of the problem by counting the number of
equations and unknowns; in some sense, the problem is simultaneously under-
and over-determined. The following two paragraphs review the approaches to
both problems known from literature.

3.1.1 Formulating the equations

The first problem can be approached in three different ways:

1. The discretization method

2. Continuous approximation

3. The Composition method

3.1. RELATED RESEARCH 25

3.1.1.1 The discretization method

The first method proceeds as follows: the continuous curve-surface incidence
problem is discretized by considering many point-surface constraints ordered along
given 3D curve, see [20]. This approach is often satisfactory, however, it does not
provide a closed formulation of the curve-surface incidence, i.e. there is no direct
relationship between the control points of the incident curve and the control points
of the surface. Also, the condition (or, the so-called, ill-posedness, discussed in
chapter 7) of the associated inverse linear problem worsens – the equations con-
tain too much noise (we have to postpone the definition of noise in this context to
chapter 7) which makes obtaining a suitable solution harder.

3.1.1.2 Continuous approximation

The second approach was pursued by Welch et al. in [83] and [11]. GivenX,
Z andY as above a continuous approximation problem is formulated: the linear
system of equations in the unknown control points of the surface can be set up by
minimizing the quadratic distance functional

∫
t |Y (t)−X (Z(t))|2 which yields

a square matrix of equations linear in the unknown control points ofX. The
disadvantage of this approach is that the computation of the associated matrices
is inefficient and numerically not stable (esp. because of the integration of high
degree splines). Furthermore, the system matrix is obtained by formulating the
normal equations. It is known, that the condition number of normal equations is
the square of the actual condition of the problem [29].

3.1.1.3 The composition method

The third approach uses the fact that a 2D curveG is mapped to a 3D surface
curveY incident onX by taking linear combinations ofXs control points. In
other words, each control point ofY can be written as a linear combination of
control points ofX yielding a linear system of equations in unknown DOFs ofX.
In [24] Elber and Cohen have shown how to obtain the equations for the special
case whenX is a Bezier patch andZ is one or several (arbitrarily oriented) line
segments. This method is more efficient and numerically more stable. In our
previous work [54, 55, 56] we have generalized this approach to B-spline surfaces
and arbitrary domain curves. These papers do not contain all details; the complete
description, examples and further improvements are described in chapter 4 of this
thesis.

The composition method (if implemented carefully) is more efficient and nu-
merically much more stable than the approach in [83] and [11]. It delivers a matrix
with smaller overall errors and, in general, of smaller size. Furthermore it can be
easily extended to obtain equations for other linear curve-surface constraints as

26 CHAPTER 3. LINEAR CURVE CONSTRAINTS

we will demonstrate below. Also note that constraints such as curve-surface inci-
dence or continuity of two surfaces along an arbitrary curve need to be evaluated in
both directions. For example, given several curves incident on a B-spline surface,
maybe not all of them are initially selected as design parameters. I.e., after the sur-
face is determined from given curves, the remaining curves must be recomputed.
The composition method expresses a curve-surface incidence as a matrix equation
in control points of that curve and surface. Then, in the “surface-curve” direction
the constraint reduces to computing a matrix-vector product. This is one of the
advantages of the composition approach. The alternative methods, [20, 83, 11] do
not foresee that the constraints will be ever evaluated this way.

3.1.2 Obtaining a stable solution

Nevertheless, the inverse problem, obtaining the surface control points given the
curve on surface, is still ill-posed – one has to turn to sophisticated methods to
obtain a reasonable solution. Although the authors of [83, 11] have recognized
that the linear systems of equations may be ill-conditioned, it is not clear how
they remedy this. They have proposed to extract the null-space of the interpola-
tion matrix by means of pivoted Gaussian elimination. It is known, see e.g. [36],
that for ill-posed problems this method is not sufficient – we discuss this topic in
more detail in chapter 7. When only Bezier patches with carefully chosen num-
ber of degrees of freedom are considered, as in [24], the ill-posedness is not that
serious problem – and in most cases no particularly sophisticated equation solver
is necessary.

The approaches [20, 83, 11] utilize the variational approach to surface de-
sign, see [9, 5, 48, 31]: generally, the incidence and continuity constraints are not
sufficient to determine all DOFs of the surface. The undetermined DOFs of the
surface are a solution of constrained variational problem which minimizes a given
objective function with respect to specified constraints: A closely related topic
is the, so-called, surface “fairing”, very often applied in the context of scattered
data interpolation. In fact, we will deal with this kind of problems, but in a more
general setting: we will not restrict ourselves to iso-parametric or boundary lines
of B-spline surfaces.

Our approach combines (improves and generalizes) several of the ideas: we
formulate curve-surface incidence constraints in the style of [24] and solve varia-
tional problems as in [20], [83] or [11]. However, none of the mentioned publica-
tions have accessed the problem of obtaining a numerically stable solution from
the ill-posed equations. For iso-parametric curve no ill-posedness occurs. Welch
et al. have proposed to use pivoted Gaussian elimination. However, in most cases
Gaussian elimination is not sufficient to reveal the rank of the matrix. One has to
apply more sophisticated numerical methods to determine the optimal numerical

3.2. GENERALIZING THE COMPOSITION METHOD 27

rank of the problem. Methods for solving ill-posed problems are known in linear
algebra, see e.g. [36] for further backgrounds and a profound overview onregu-
larization methods. An application of so-called “L-curve”-method, see [37, 10],
based on Truncated Singular Value decomposition (TSVD) [35] and modified
TSVD [38] is described in chapter 7.

3.2 Generalizing the composition method

3.2.1 Curve-surface incidence constraints

We use a generalized version of the composition method to approach the problem
of obtaining the equations for curve-surface incidence. We generalize the results
of DeRose and DeRose et al. [17, 18] which can be summarized as follows:

The so-called simploids (n-variate tensor-product of polynomial vector spaces,
including the casen = 1) are always closed under polynomial composition. De-
note byRi the affine space of dimensioni associated with the linear spaceRi. A
simploid is a mappingM : Ri → Rj. DeRose has shown that given three Bezier
simploids

Z : Ri → Rj, X : Rj → Rk, Y : Ri → Rk, i ≤ j (3.2)

it is possible to obtain the Bezier control points ofY by computing the polynomial
composition ofX andZ which we denote by

Y = X(Z) = X ◦ Z

A similar statement applies to piecewise polynomial B-spline simploids with the
restriction that if the outer simploidX is a tensor-product of B-Splines no closed
solution exists forY in cases ofi ≥ 2 andj ≥ 2, [18]. In this paper, the composi-
tion of B-splines was not performed directly: first, the B-spline was converted to
Bezier representation and the composition was computed segment-wise for each
Bezier simploid.

Each control point ofY is obtained by computing linear combinations of con-
trol points ofX. We introduce the, so-called,unevaluated compositionof two
B-splines (with the restriction thati < 2 andj ≤ 2) without the intermediate con-
version to Bezier basis: GivenX andZ as above we compute the matrix which
transforms the control points ofX to control points ofY yielding a matrix equa-
tion

Y = AX

The matrixA is calledcomposition matrix.The composition matrix is used in
two ways:

28 CHAPTER 3. LINEAR CURVE CONSTRAINTS

• if X is known one obtains the control points ofY = X ◦ Z simply by
performing a matrix multiplication

• for givenY solving this linear system of equations one obtains the control
pointsX such thatY is incident onX

An efficient algorithm to compute the composition matrix is described in chapter
4.

3.2.2 Tangency constraints

We require that two surfaces join with continuous tangent planes along an arbi-
trary curve incident on both surfaces. Figure 3.1 demonstrates the problem: As
for the incidence case, we assume that curvesZ(t) = (u(t), v(t)) andZ ′(t) =
(u′(t), v′(t)) in the domain spaces of both surfaces are given. Both domain space
curve are rendered into a 3D curve incident on both surfaces. Assume, that the
control points of one of the surfaces, e.g.X ′(u′, v′), are known. We seek control
points of the second surfaceX(u, v) such that

1. The curveY (t) is incident onX(u, v):

Y (t) = X (Z(t)) = X (u(t), v(t))

2. The tangent planes of both surfaces alongY (t) are coplanar

The sufficient and necessary condition for coplanar tangent planes is that the
normals of both surfaces alongY (t) are collinear. This is equivalent to the con-
dition that the normals alongY (t) are orthogonal to the tangent planes of the
unknown surfaceX(u, v) alongY (t), see [24].

Denote byN(t) the vector field curve which renders the normals ofX ′ along
the curveY (t). If the control points ofX ′ are known the curveN(t) can be
computed symbolically or numerically, see e.g. [23]. The relation betweenN(t)
and the unknown surfaceX(u, v) is established by requiring that the tangent field
of the incident curve, denoted byd

dt
Y (t), is orthogonal toN(t). Two vectors are

orthogonal if their scalar product is zero, that is:〈
N(t),

d

dt
Y (t)

〉
=

〈
N(t),

d

dt
X (u(t), v(t))

〉
= 0

The above equation needs to be resolved for the unknown control points ofX(u, v).
The equations can be formulated very elegantly if the composition matrix for the
incident curve is known, as demonstrated in chapter 5.

3.3. VARIATIONAL CONSTRAINTS 29

u

v

u’

v’

X’ u’,v’
d

dt
Y t

N t

Z t = u t ,v t

X u,v

Figure 3.1: Enforcing theG1 continuous join of two surfaces along an arbitrary
curve incident on both surfaces.

3.3 Variational constraints

The goal is to construct curves or surfaces having optically pleasant shape that
satisfy given curve or tangency constraints. The area of CAGD which deals with
this problem is called variational design [9, 5, 31, 48, 32]. The problem is to
define a mathematical criterion for “optically pleasing shape” of a surface. A
commonly used approach is to define the so-called fairness functionals which take
in minimal values for surfaces of optimal shape. Formally, for a B-spline surface
S(u, v) : Ωu,v → R3, Ωu,v ⊂ R2 one defines a scalar valued functional

Φ : R3 → R1, Φ = Φ (S(u, v))

with the property that small value ofΦ indicates thatS has a more pleasant shape.
The solution of a variational problem then consist of finding the control pointsS
such that the surface satisfies given constraints and the functional takes in minimal
value over the entire domain ofS:

min
S

Φ (S(u, v)) , ∀(u, v) ∈ Ωu,v (3.3)

30 CHAPTER 3. LINEAR CURVE CONSTRAINTS

Hence, unlike the former constraint categories, variational constraints restrict the
degrees of freedom ofoneobject to take in such values that a property defined in
terms of the functional is satisfied.

We will discuss surface functionals which minimize curvature, energy, length,
area or similar properties. This selection arises from the observation that a curve
or surface has an optically pleasing shape, if the functional of this type is near
the global minimum. Exact formulation of these conditions results in large non-
linear problems, therefore a variety of simplified functionals were proposed which
provide good approximations, see e.g. [32]. What is common to all of them is that
they depend on product of partial derivatives of the optimized surface and are
quadratic in the degrees of freedom of the surface. Hence, they posses one well
defined global minimum which can be computed efficiently by means of Gaussian
normal equations. The normal equations are linear in control points of the surface,
the system matrix is symmetric and, in general, sparse.

Although the usage of these constraints is frequently mentioned in the litera-
ture, not much information is available about an efficient and simple computation
of matrices representing the normal equations for this type of surface functionals.
We will describe a unified and efficient approach for symbolic computing of these
matrices in chapter 6.

Chapter 4

Computing the incidence constraints

In previous chapter we have sketched a new application of polynomial composi-
tion: given a B-spline surface and a curve in the domain space of that surface, it
is possible to obtain the control points of B-spline curve incident on the surface
by a linear transformation of the control points of the surface. We use the result-
ing matrix equation as a constructor which determines the incident curve from
known surface and vice-versa. This chapter presents an efficient method to gen-
erate the linear transformation in matrix form. Internally, a generalized version
of the blossom based polynomial composition algorithm developed by DeRose et
al. [18] is applied. In 4.1 we briefly review the concept of blossoming and in-
troduce blossoms in so-called “unevaluated” form. In section 4.2 we derive the
straight forward version of unevaluated composition for Bezier and B-splines. The
complexity issues and efficient versions of the algorithm are investigated in sec-
tion 4.3. Finally, in 4.4 some results are presented regarding run-time performance
of the algorithm and the numerical stability of the composition matrix.

4.1 The blossoming kernel

4.1.1 The Blossoming principle

In a 1987’s technical report [65], Ramshaw has introduced a new approach to
polynomial functions in Bezier or B-spline form: the so-calledblossomingprin-
ciple. It uses the duality of a univariate polynomial of degreed and its polar form,
or, in Ramshaws terminology a blossom. A blossom is a multi-affine, symmetric
form in d variables. A mapf(t) : R1 → Rn is affine if it preserves affine combi-
nations of its arguments: i.e. it satisfiesf(

∑
i αiti) =

∑
i αif(ti) for a set of real

31

32 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

scalar values{αi : 0 ≤ i < m} such that
∑

i αi = 1. A mapf : Rn → R1, f =
f (t0, . . . , tn−1) is said to be multi-affine if it is affine in each of its variables when
the others are kept fixed: Let all{t0, . . . , tn−1} \ tj, 0 ≤ j < n have fixed values.
Then the multi-affinity means that

f

(
t0, . . . ,

∑
i

αitji
, . . . tn−1

)
=
∑

i

αif (t0, . . . , tji
, . . . tn−1)

with
∑

i αi = 1. A mapf : Rn → R1 is said to be symmetric if it does not depend
on the ordering of variablest0, . . . tn−1. Based on these properties of symmet-
ric multi-affine maps Ramshaw has stated the so-calledBlossoming principlefor
polynomials see [65, 64, 66]:

Associated with each polynomialp : R1 → R1, p = p(t), p(t) ∈ Pd there is
a symmetric multi-affine mapf : Rd → R1, f = f (t0, . . . , td−1) called a polar
form, or blossom ofp with following properties:

1. Identity between the polynomial and thediagonalof the blossom:

if ti = t, 0 ≤ i < d then f (t0, . . . , td−1) = p(t)

2. Symmetry: the value of the blossom is invariant under permutations of its
arguments.

3. Multi-affinity : f is affine in each of its arguments, or simply multi-affine

The blossoming principle applies for general vector-valued polynomial mapsP :
R1 → RD, P = P (t) whereD denotes the dimension of the image space. One
simply considers each of theD polynomials separately. Thus it is possible to blos-
som polynomial curves inD-dimensional space in the same manner as polynomial
functions. In order to simplify notation the following paragraphs demonstrate ev-
erything on univariate one-dimensional Bezier and B-Spline functions without
loss of generality.

4.1.2 Blossoming principle for Bezier polynomials

Blossoming is very useful when dealing with polynomials expressed in terms
of Bezier or B-Spline basis. Consider a degreed Bezier functionc(t) ∈ Pd,
c(t) =

∑d−1
i=0 cib

d
i (t) defined on intervalt ∈ 〈a, b〉. By property 1 of blossoms

c(t) corresponds to the value of the blossom at its diagonal. Writingt as an affine
combination ofa anb, t = b−t

b−a
a + t−a

b−a
b and using the property 3 of blossoms we

4.1. THE BLOSSOMING KERNEL 33

express, for example, the last argument of the blossom as an affine combination
of a andb:

c(t) = f(t, . . . , t︸ ︷︷ ︸
d×

)

= f(t, · · · , t︸ ︷︷ ︸
(d−1)×

, b−t
b−a

a + t−a
b−a

b)

= b−t
b−a

f(t, . . . , t︸ ︷︷ ︸
(d−1)×

, a) + t−a
b−a

f(t, . . . , t︸ ︷︷ ︸
(d−1)×

, b)

(4.1)

This can be done recursively for all remaining blossom arguments yielding

c(t) =
∑d−1

i=0

(
d+1

i

) (
b−t
b−a

)d+1−i (
t−a
b−a

)i
f(a, . . . , a︸ ︷︷ ︸

(d−i)×

, b, . . . , b︸ ︷︷ ︸
i×

)

=
∑d−1

i=0 bd
i (t) f(a, . . . , a︸ ︷︷ ︸

(d−i)×

, b, . . . , b︸ ︷︷ ︸
i×

)

It follows immediately thatci = f(a, . . . , a︸ ︷︷ ︸
(d−i)×

, b, . . . , b︸ ︷︷ ︸
i×

). Thus, each control point

has a blossom formulation.

4.1.2.1 Affine and multi-affine de Casteljau algorithm

It is possible to approach formula 4.1 in the opposite direction and obtain a blos-
som evaluation algorithm from given control points. Suppose that the control
points{ci : 0 ≤ i ≤ d} are given as blossoms. An affine combination of two
consecutive control pointsci andci+1 yields

b−t
b−a

ci + t−a
b−a

ci+1 =
b−t
b−a

f(a, . . . , a︸ ︷︷ ︸
(d−i)×

, b, . . . , b︸ ︷︷ ︸
i×

) + t−a
b−a

f(a, . . . , a︸ ︷︷ ︸
(d−i−1)×

, b, . . . , b︸ ︷︷ ︸
(i+1)×

) =

f(a, . . . , a︸ ︷︷ ︸
(d−i−1)×

, t︸︷︷︸
1×

, b, . . . , b︸ ︷︷ ︸
i×

)

Building affine combinations of alld consecutive control points yields a set of
d − 1 points{c1

i = f(a, . . . , a︸ ︷︷ ︸
(d−i−1)×

, t︸︷︷︸
1×

, b, . . . , b︸ ︷︷ ︸
i×

) : 0 ≤ i ≤ d − 1}. Repeating this

procedure with the intermediate points{c1
i : 0 ≤ i ≤ d − 1} yieldsd − 2 points

{c2
i = f(a, . . . , a︸ ︷︷ ︸

(d−i−2)×

, t︸︷︷︸
2×

, b, . . . , b︸ ︷︷ ︸
i×

) : 0 ≤ i ≤ d− 2} and finally, after the recurrence

was executedd-times, one obtains a point{cd
i = f(t, . . . , t︸ ︷︷ ︸

d×

) : i = 0} such that

c(t) = cd
0. This leads to a recurrence formula which provides an efficient way to

34 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

evaluate a blossom (and thus the value of a Bezier function) for givent by repeated
affine interpolation between two consecutive control points:

cj
i =

b− t

b− a
cj−1
i +

t− a

b− a
cj−1
i+1 (4.2)

or, equivalently, in blossom format

f(a, . . . , a︸ ︷︷ ︸
(d−i−j)×

, t, · · · , t︸ ︷︷ ︸
j×

, b, . . . , b︸ ︷︷ ︸
i×

) =

b−t
b−a

f(a, . . . , a︸ ︷︷ ︸
(d−(i+1)−j)×

, t, · · · , t︸ ︷︷ ︸
(j−1)×

, b, . . . , b︸ ︷︷ ︸
i×

)+

t−a
b−a

f(a, . . . , a︸ ︷︷ ︸
(d−i−j)×

, t, · · · , t︸ ︷︷ ︸
(j−1)×

, b, . . . , b︸ ︷︷ ︸
(i+1)×

)

(4.3)

This recurrence is known asde Casteljau algorithm, investigated by de Casteljau
in [15] and [16]. The Blossoming principle provides a mathematical method to
access the intermediate points of the de Casteljau scheme. Moreover, a slight
modification of eq. 4.3 can be used to compute arbitrary blossomsf(t0, · · · , td−1):

f(a, . . . , a︸ ︷︷ ︸
(d−i−j)×

, t0, · · · , tj︸ ︷︷ ︸
j×

, b, . . . , b︸ ︷︷ ︸
i×

) =

b−tj
b−a

f(a, . . . , a︸ ︷︷ ︸
(d−(i+1)−j)×

, t0, · · · , tj−1︸ ︷︷ ︸
(j−1)×

, b, . . . , b︸ ︷︷ ︸
i×

)+

tj−a

b−a
f(a, . . . , a︸ ︷︷ ︸

(d−i−j)×

, t0, · · · , tj−1︸ ︷︷ ︸
(j−1)×

, b, . . . , b︸ ︷︷ ︸
(i+1)×

)

(4.4)

This is the so-called multi-affine version of the de Casteljau algorithm. One com-
putes an affine combination of consecutive blossoms with respect to the current
argument of the blossom. It can be easily verified by inspection that the blossom
f(t0, · · · , td−1) is symmetric: the valuef(t0, · · · , td−1) is the same for each per-
mutation of argumentst0, · · · , td−1. In contrast to the affine version, afterd steps
of the multi-affine de Casteljau algorithm one obtains a pointcd

0 = f(t0, · · · , td−1)
which is not incident onc(t). These points are of interest in theoretical consider-
ations, as will be demonstrated in following paragraphs.

4.1.3 Blossoming B-Splines

The blossoming principle for B-Splines is slightly more complicated. Consider
a B-Spline functionc(t) ∈ Pd,τ , c(t) =

∑n−1
i=0 cib

d,τ
i (t) defined on knot vector

τi : 0 ≤ i ≤ n + d. By properties 1-2 of B-Splines, see §A.1.1.3,c(t) consists of
polynomial segments defined at intervalsτi ≤ t < τi+1, d ≤ i < n. Therefore,

4.1. THE BLOSSOMING KERNEL 35

in order to compute a blossom of a B-Spline we need to select an interval of the
knot vectorτ . In the following we will denote a B-Spline blossom for〈τi, τi+1) by
fi(t0, . . . , td−1). At that intervalc(t) is a polynomial, hence, blossom properties
1-3 apply tofi(t0, . . . , td−1).

It can be shown by a similar reasoning as for Bezier functions in previous
paragraph that each B-Spline control pointci has a blossom formulation. Consider
blossomfi(t, . . . , t︸ ︷︷ ︸

d×

). First, we writet as an affine combination ofτi andτi+1

t =
τi+1 − t

τi+1 − τi

τi +
t− τi

τi+1 − τi

τi+1

Second, we expand the last argument of the blossom as follows:

c(t) = fi(t, . . . , t︸ ︷︷ ︸
d×

)

= fi(t, · · · , t︸ ︷︷ ︸
(d−1)×

, τi+1−t
τi+1−τi

τi + t−τi

τi+1−τi
τi+1)

= τi+1−t
τi+1−τi

fi(t, . . . , t︸ ︷︷ ︸
(d−1)×

, τi) + t−τi

τi+1−τi
fi(t, . . . , t︸ ︷︷ ︸

(d−1)×

, τi+1)

In the second step of the expansion one considers the left and right neighboring
spans of the knot vector and expands the left and right terms of the above affine
combination with respect to intervals〈τi−1, τi+1) and〈τi, τi+2) yielding

fi(t, . . . , t︸ ︷︷ ︸
(d−1)×

, τi) = fi(t, · · · , t︸ ︷︷ ︸
(d−2)×

, τi−t
τi−τi−1

τi−1 + t−τi−1

τi−τi−1
τi)

= τi−t
τi−τi−1

fi(t, . . . , t︸ ︷︷ ︸
(d−2)×

, τi−1, τi)+

+ t−τi−1

τi−τi−1
fi(t, . . . , t︸ ︷︷ ︸

(d−2)×

, τi, τi+1)

and

fi(t, . . . , t︸ ︷︷ ︸
(d−1)×

, τi+1) = fi(t, · · · , t︸ ︷︷ ︸
(d−2)×

, τi+2−t
τi+2−τi+1

τi+1 + t−τi+1

τi+2−τi+1
τi+2)

= τi+2−t
τi+2−τi+1

fi(t, . . . , t︸ ︷︷ ︸
(d−2)×

, τi+1, τi)+

+ t−τi+1

τi+2−τi+1
fi(t, . . . , t︸ ︷︷ ︸

(d−2)×

, τi+2, τi+1)

Continuing this expansion for all remaining blossom arguments one obtains a tri-
angular scheme first three stages of which look as follows:

36 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

fi(t, . . . , t︸ ︷︷ ︸
d×

)

fi(t, . . . , t︸ ︷︷ ︸
(d−1)×

, τi) fi(t, . . . , t︸ ︷︷ ︸
(d−1)×

, τi+1)

fi(t, . . . , t︸ ︷︷ ︸
(d−2)×

, τi−1, τi) fi(t, . . . , t︸ ︷︷ ︸
(d−2)×

, τi, τi+1) fi(t, . . . , t︸ ︷︷ ︸
(d−2)×

, τi+1, τi+2)

...
(4.5)

On the way from top to the bottom of the triangle one multiplies the left lower
term by τi+j−t

τi+j−τi
and the right lower term by t−τi

τi+j−τi
wherej denotes the current

“stage” of the triangle counted from1. The bottom line reached afterd expansions
contains exactlyd + 1 blossoms with arguments consisting entirely of entries of
the knot vector. These blossoms have the format

{fi(τk, · · · , τk+d−1) : i− d ≤ k ≤ i}

It can be shown by collecting and multiplying the termsτi+j−t

τi+j−τi
and t−τi

τi+j−τi
for

1 ≤ j ≤ d that

fi(t, . . . , t︸ ︷︷ ︸
d×

) =
∑i

k=i−d bd,τ
k fi(τk, · · · , τk+d−1) (4.6)

see e.g. [65] or [76]. I.e., in front of the blossom the recurrence for B-Spline
basis functions is recovered. It follows that the blossom representation for control
points of the B-Spline segmentc(t), τi ≤ t < τi+1 is ci−d = fi(τi−d+1, · · · , τi).
These points are calledde Boorpoints due to Carl de Boor who discovered this
expansion. Though there are different approaches to derive the B-Spline basis
functions, see e.g. [68], we see that using blossoms and their properties this can
be accomplished easily. In [65] Ramshaw uses the Blossoming principle to derive
properties of the B-spline basis listed in §A.1.1.3.

4.1.3.1 Affine and multi-affine version of the de Boor algorithm

The procedure sketched above can be approached from the opposite direction
which leads to an evaluation algorithm for B-Splines: Suppose the de Boor points
are given in blossom-format. Given a parametert = const. = µ such that
τi ≤ µ < τi+1 one needs to go up the triangle building the affine combination
of intermediate points w.r.tµ. This yields a set ofd + 1 − j intermediate points
{cj

k : i− d + j ≤ k ≤ i} at j-th stage. At the top of the triangle a pointcd
i is com-

puted which satisfiescd
i = c(µ). This is the well known affine version ofde Boor

algorithm for evaluating B-Splines [65, 41, 76]. In the following we will use a

4.1. THE BLOSSOMING KERNEL 37

generalized multi-affine version of the de Boor algorithm. For that we change the
notation as follows:

Let be given a set of B-spline basis functions{bk,τ
i : 0 ≤ i < n} and

de Boor points{c0
i : 0 ≤ i < n}. We wish to compute the value of a blossom

fI(t0, . . . , td−1) for the interval〈τI , τI+1) such thatτI < τI+1. The intermediate
de Boor points atj-th stage are computed by the recursion

cj
i =

(
1− αj

i (tj)
)

cj−1
i−1 + αj

i (tj) cj−1
i , I − d + j < i ≤ I

with αj
i (tj) = tj−τi

τi+j−τi

(4.7)

The recurrence is executed for1 ≤ j ≤ d obtaining a pointcd
I afterd steps that

corresponds to the blossomfI(t0, . . . , td−1). The multi-affine de Boor algorithm
is also “triangular”, each intermediate point is the the linear combination w.r.t.
current blossom argument of its two predecessors on the left:

c0
I−d+1

... c1
I−d

...
...

c0
I c1

I · · · cd
I = fI(t0, . . . , td−1)

(4.8)

The multi-affine de Boor algorithm generalizes the multi-affine version of de Castel-
jau algorithm in previous paragraph. It is possible to write the multi-affine de Boor
recurrence in blossom format see e.g. [76] – however, the notation which uses in-
termediate de Boor pointscj

i : 0 ≤ j ≤ d is easier to handle in practical applica-
tions.

4.1.4 Blossoming tensor-product B-Splines

Let be defined a two-variate B-spline function

s : Ωu,v → R1, s = s(u, v), s(u, v) ∈ Pk,τ × Pl,υ

with (u, v) ∈ Ωu,v ⊆ R2, Ωu,v = Ωu × Ωv. In order to establish the blossoming
principle for tensor-products of B-Splines one has to apply the univariate blossom-
ing principle to each parametric direction separately [65, 64, 66]. The resulting
blossom of a tensor-product is a map

fI,J : Rk ×Rl → R1, fI,J = fI,J(u0, . . . , uk−1; v0, . . . , vl−1)

whereI andJ denote the intervals〈τI , τI+1) and〈υJ , υI+1) selected for blossom-
ing s(u, v) in each parametric direction. The properties of blossoms of univariate
polynomials apply to each parametric direction separately:

38 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

1. Identity betweens and the diagonal of the blossom:

if ui = u, 0 ≤ i < k andvj = v, 0 ≤ i < l
then fI,J(u0, . . . , uk−1; v0, . . . , vl−1) = s(u, v)

2. Symmetry: the blossomfI,J is symmetric in variablesui, 0 ≤ i < k and
vj, 0 ≤ j < l separately

3. Multi-affinity : fI,J is affine in each of its argumentsui, 0 ≤ i < k and
vj, 0 ≤ j < l separately

Based on these properties one can derive the blossom representation for de Boor
points of a tensor-product B-Spline and de Boor evaluation algorithm for tensor-
products of B-Splines, see [76], for example.

4.1.5 Unevaluated formulation of a blossom

It is easy to compute the value a blossom, once the connection between blossom-
ing and de Boor algorithm is established. Two famous algorithms for B-splines
can be formulated in terms of blossoms: the knot insertion algorithm (the “Oslo”
or “Böhm”-algorithm, see [74]) and degree raising, as Seidel has shown in [75].
Another operations frequently needed in free-form modeling can be expressed
in terms of the Oslo-algorithm and thus, in terms of blossoming, for example:
evaluation of the function value or its derivatives (this follows from Property 1),
splitting of a curve or surface at a particular parameter value, extraction of a spec-
ified interval from curve or surface, and conversion between B-spline and Bezier
bases. In [50] Liu has pursued an idea of writing a software library for CAGD
based solely on blossoming. In the following, we generalize this approach by
introducing unevaluated blossoms.

4.1.5.1 The polarized basis functions

The multi-affine version of the de Boor algorithm delivers a value of a blossom by
recursively computing affine combinations of de Boor control points. For that the
values of the control points must be known. In the following we assume that the
structure of the B-spline vector space (i.e. knot vector and degree) are known but
the values of the control points are not. Analogously to the definition of B-spline
basis functions (eq. A.1) we seek a formula which delivers the multi-affine, or,
“polarized” basis functions such that the value of the blossom is computed the
same way as the value of a B-spline function for any control point values.

The value of a blossom of a B-splinec(t) ∈ Pd,τ , c(t) =
∑n−1

i=0 cib
d,τ
i (t) is:

4.1. THE BLOSSOMING KERNEL 39

fI(t0, . . . , td−1) =
I∑

i=I−d

ad,τ
i (t0, . . . , td−1)ci

where
ad,τ

i (t0, . . . , td−1) =(
1− αd−1

i+1 (td−1)
)
ad−1,τ

i+1 (t0, . . . , td−2)+

αd−1
i (td−1) ad−1,τ

i (t0, . . . , td−2)

(4.9)

with

a0,τ
i (t0) =

{
1 if i = I
0 otherwise

The functionsαj
i (tj) are defined as in eq. 4.7. We call the set

{ad,τ
i (t0, . . . , td−1) : I − d ≤ i ≤ I}

the polarized basis functionsof Pd,τ . Equation 4.9 results from collecting and
multiplying theαj

i (tj) and1 − αj
i (tj) terms at each stage of the de Boor algo-

rithm (eq. 4.7).
In order to compute all non-zero valuesad,τ

i (t0, . . . , td−1) efficiently for given
I andt0, . . . , td−1 consider the following triangular scheme:

ad
I−d(t0, . . . , td−1)

...
... ad−1

I−1(t0, t1)

ad
I(t0, . . . , td−1) · · · ad−1

I (t0, t1) a0
I(t0) = 1

(4.10)

This time the recursion starts on the right lower vertex (a0
I(t0) = 1) of the trian-

gle. We compute affine combination with respect to the current argument of the
blossom moving from right to left until afterd steps alld+1 non-zero coefficients
are computed. In each column we move from bottom to top reusing the values
computed in previous steps. The computational costs of the algorithm are not
higher than the costs of the de Boor algorithm: There are totallyd stages. Atj-th
stagej linear combinations need to be computed. Hence the cost of obtaining all
non-zeroad,τ

i is O(d2) linear combinations.

4.1.5.2 Properties

The so obtained polarized basis functions posses the following properties:

40 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

1. if ti = t, 0 ≤ i < d we havead,τ
i (t, . . . , t) = bd,τ

i (t) andc(t) = fI(t, . . . , t).
This follows from the diagonal property of the blossom.

2.
∑n−1

i=0 ad,τ
i (t0, . . . , td−1) = 1

3. ad,τ
i (t0, . . . , td−1)

{
6= 0; if I − d ≤ i ≤ I
= 0 otherwise

4. ad,τ
i (t0, . . . , td−1) ≥ 0 iff τI ≤ tj < τI+1 for 0 ≤ j < d

The property 4 contains an important difference to the properties of B-spline ba-
sis functions, (see §A.1.1.3): We are free to select blossom arguments which are
spread over several intervals of the knot vector. Then, although property 2 still
applies, not allad,τ

i (t0, . . . , td−1) : I−d ≤ i ≤ I are positive: Hence, the blossom
value is not necessarily a convex1 combination of the de Boor points. Thus the
value of a blossom depends on the interval selected for blossoming. It is easy
to see thatfI(t0, . . . , td−1) 6= fJ(t0, . . . , td−1) if I 6= J . Consequently if not all
arguments stem from the same interval of the knot vector and the interval is not
given explicitely the value of a blossom is not uniquely defined; In order to cir-
cumvent that Ramshaw has defined conventions how to determine a valid interval
for blossoming given the blossom arguments the, so-called, argument overload-
ing [65, 64, 66]. However, as we will see in section 4.2, in our application (com-
position of two B-splines) the intervals follow from the structure of the problem
and cannot be selected by the overloading conventions.

4.1.5.3 Scalar product notation:a-vectors

In order to simplify notation, we introduce a vector notation for polarized basis
functions in the same manner as for regular basis functions in section A.1. We
denote the set of polarized basis functions by a vector

aT
t =

[
ad,τ

0 (t0, . . . , td−1) · · · ad,τ
n−1(t0, . . . , td−1)

]
and write a blossom of a B-splinec(t) as a scalar product:

fI(t0, . . . , td−1) =
[

ad,τ
0 (t0, . . . , td−1) · · · ad,τ

n−1(t0, . . . , td−1)
] 

c0
...

cn−1


= aT

t c

1A “convex” combination is a special case of affine combination such that for some real values
γi and

∑n−1
i=0 γici we have

∑n−1
i=0 γi = 1 ∧ {γi ≥ 0 : 0 ≤ i < n}. Then the result lies inside the

convex hull spanned by the pointsci : 0 ≤ i < n.

4.2. UNEVALUATED POLYNOMIAL COMPOSITION 41

For simplicity, such vectors containing the values of polarized basis functions are
calleda-vectors.

The notation for two-variate polarized basis functions is the same as for two-
variate B-spline basis functions: Given a two-variate tensor product of B-spline
spacess(u, v) ∈ Pk,τ × Pl,υ,

∑n−1
j=0

∑m−1
i=0 si,jb

k,τ
i (u)b,l,υ

j (v) we introduce two-
variate polarized basis functions

ak,τ,l,ν
K (u0, . . . , uk−1; v0, . . . , vl−1) = ak,τ

i (u0, . . . , uk−1) al,υ
j (v0, . . . , vl−1)

with integer indicesK such that

K = i + mj, 0 ≤ i < m ∧ 0 ≤ j < n⇒ 0 ≤ K ≤ (m− 1)(n− 1)

In full analogy to §A.1.1.4 we define a(m − 1)(n − 1)-size vector of polarized
basis functions denoted byaT

u,v such thatK-th entry of the vector is

aK = ak,τ,l,ν
K (u0, . . . , uk−1; v0, . . . , vl−1)

We expand the matrix of tensor-product control points in row major order as
in §A.1.1.4 yielding

fI,J(u0, . . . , uk−1; v0, . . . , vl−1) =
I−k∑
i=I

J−l∑
j=J

sKak,τ,l,υ
K (u0, . . . , uk−1; v0, . . . , vl−1)

= aT
u,vs

with K = i + mj.

4.1.5.4 Summary

In summary, we note: there is the same scalar product notation for a blossom of a
B-spline function (curve, surface) as we have already defined for values of func-
tions (curves, surfaces) in section A. A scalar product of the vector of polarized
basis functions multiplied with the control points of the B-spline yields the value
of the blossom. This is called theunevaluatedformulation of a blossom expressed
in terms of thea-vector.

4.2 Unevaluated polynomial composition

In the 1988 paper [17], DeRose has introduced a new approach to polynomial
composition of Bezier simplices of arbitrary dimension based on blossoming. The
continuation work published in 1993 [18] extends the algorithm to rational func-
tions and tensor products. The complexity of the algorithm was analyzed in [53],

42 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

where a modified version with optimal run-time complexity was described. We
want to generalize this algorithm in two ways: First, we introduce unevaluated
version of polynomial composition algorithm for both Bezier and B-splines. The
term “unevaluated” was chosen because the algorithm delivers the so-called com-
position matrix which transforms the control points of the outer function to con-
trol points of the result. Second, we show how to obtain the result in irreducible
B-spline form when both, inner and outer functions, are B-Splines (curve and sur-
face, with restrictions from section 3.2). We will first derive the algorithm for
computing the composition matrix for Bezier surface-curve case since it is more
straight-forward and better suited to demonstrate the concept. We first consider
the straight-forward algorithm and show how to reduce the complexity later on.

For sake of generality, in [18] and [53] a new versatile notation for indices,
basis functions and control points was used. Since we only intend to cover the
curve-surface case we use our own notation which is simpler. However, we will
not get around “multi-indices” used in [18]: they improve the readability of for-
mulas and are well suited to derive the implementation of the algorithms. The
original hyper-indices and multi-indices are not very advantageous when the inner
and outer functions are B-splines. Therefore we use a modified, more comprehen-
sive, version of a multi-indices, the so-called, v-index and c-index which will be
introduced below.

4.2.1 Revisiting the DeRose et al. algorithm

We start with a brief review of De Rose’s algorithm for Bezier surface and Bezier
curve. LetF (u, v) be a tensor product Bezier patch of polynomial degreek and
l in each parametric direction. Furthermore letG(t) be a degreed Bezier curve
in the domain ofF (u, v). The starting point of the algorithm is to represent the
outer functionF in blossom notation and to substitute the inner functionG into
the blossom expression. SplitG(t) into its coordinate polynomials:

G(t) = (u(t), v(t))T =

(
d∑
i

uib
d
i (t),

d∑
i

vib
d
i (t)

)T

Here(ui, vi) denotes the coordinates of thei-th control point of the curveG(t).
Using diagonality of blossoms (property 1, §4.1.1) the componentsu(t) andv(t)
are inserted into the surface blossom yielding

H(t) = F (u(t), v(t)) = f(u(t), . . . , u(t)︸ ︷︷ ︸
k

; v(t), . . . , v(t)︸ ︷︷ ︸
l

) (4.11)

4.2. UNEVALUATED POLYNOMIAL COMPOSITION 43

Since
∑d

i bd
i (t) = 1, by blossom property 3 we may expand the above blossom

into an affine combination of blossoms

H(t) = bd
0(t)f(u0, u(t), . . . , u(t)︸ ︷︷ ︸

k−1

; v(t), . . . , v(t)︸ ︷︷ ︸
l

) + . . .

. . . + bd
d(t)f(ud, u(t), . . . , u(t)︸ ︷︷ ︸

k−1

; v(t), . . . , v(t)︸ ︷︷ ︸
l

)

This expansion is done for all remaining blossom arguments in both parametric
directions ofF until the argument bags consist only of coordinates of control
points ofG yielding

H(t) =
d∑
i0

. . .
d∑

jk+l

bd
i0
(t) · · · bd

jk+l
(t) f(ui0 , . . . , uik ; vjk+1

, . . . , vjk+l
)

The 1st term in the above formula is ak+l fold product of Bernstein polynomials,
result of which is a Bernstein polynomial of degreed(k+l) times an rational factor
(see [17], for example). The coefficientsui andvi are constant, hence, the second
term reduces to a 3D point obtained by applying the generalized de Boor algorithm
directly to control points ofF . The control points{Hi : 0 ≤ i < d(k + l)} of the
curveH(t) are obtained by collecting the compatible terms on both sides of the
equality

∑d(k+l)
i=0 Hib

d(k+l)
i =∑d
i0

. . .
∑d

jk+l
bd
i0
· · · bd

jk+l
f(ui0 , . . . , uik ; vjk+1

, . . . , vjk+l
)

(4.12)

4.2.2 Computing the Bezier composition matrix

The generalization to unevaluated form is achieved by using the polarized basis
functions introduced in §4.1.5 and rewriting the equation 4.12 with regard to this
new notation. How this is accomplished is shown in the next paragraphs.

4.2.2.1 The v-index

First, we introduce a new notation for tuples of integer indicesi0 . . . jk+l from
eq. 4.12. Consider an ordered setP = {0, . . . , d}. As the summation in for-
mula 4.12 goes on the subscriptsi0, . . . , ik andjk+1, . . . , jk+l take in values which
are permutations of entries fromP . More specifically, the tuples(i0, . . . , ik) and
(jk+1, . . . , jk+l) are variations with repetition of sizek andl from the setP . The
notation for a set of all variations with repetition of sizek from d + 1 elements is
V ′ (d + 1, k). An element fromV ′ (d + 1, k) is ak-tuple of integers(i0, . . . , ik)

44 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

such thatin ∈ P : 0 ≤ n ≤ k. We will refer to such tuples as ”v-index“ and de-
note them by~ı ∈ V ′ (d + 1, k) or simply~ı(d+1,k). We define following operations
on v-indices:

1. Concatenationof several v-indices is denoted by~ı | ~. If ~ı ∈ V ′ (d, k) and
~ ∈ V ′ (d, l) then~ı | ~ ∈ V ′ (d, k + l).

2. “Absolute value” |~ı| is defined as|~ı| = i0 + . . . + ik−1.

In order to simplify notation we write a nested iteration as in eq. 4.12 directly in
terms of v-indices: for example,

∑d
i1

. . .
∑d

ik
becomes

∑
~ı∈V ′(d,k).

4.2.2.2 The composition matrix

The first term behind the summation from eq. 4.12 is a(k + l) fold product of
Bernstein polynomials. I.e. we have

bd
i0
(t) · · · bd

jk+l
(t) =

d(k+l)∑
i=0

b
d(k+l)
i (t)p

i0,...,jk+l

i

wherep
i0,...,jk+l

i is the coefficient of the product of Bernstein polynomials, see [41,
§4.1, Eq. 4.2d], for example. The coefficientspi depend on the indicesi0, . . . , jk+l.
Denote the coefficientspi0,...,jk+l

i : 0 ≤ i ≤ d(k + l) of this product of Bernstein
polynomials with indicesi0, . . . , jk+l =~ı(d,k)|~(d,l) by a vector

p~ı(d,k)|~(d,l)
=
[

p
i0,...,jk+l

0 · · · p
i0,...,jk+l

d(k+l)

]T
Note that according to product formula for Bernstein polynomials only the entry
p|~ı(d,k)|~(d,l)| is non-zero. Now denote the degreed(k+l) Bezier basis of the product

by

bπ =
[

b
d(k+l)
0 (t) · · · b

d(k+l)
d(k+l)(t)

]T
and write the product in matrix format:

bd
i0
(t) · · · bd

jk+l
(t) = bT

π p~ı(d,k)|~(d,l)

Analogously, we write the blossom term from eq. 4.12 in scalar product notation
introducing a vector of generalized two-variate basis functions such that the blos-
som arguments are the variations of control points(ui, vi) according to current
v-indices. The vector is denoted byaT

~ı(d,k);~(d,l)
so that thei-th entry ofa is

ai = ak,l
i (ui0 , . . . , uik ; vjk+1

, . . . , vjk+l
)

4.2. UNEVALUATED POLYNOMIAL COMPOSITION 45

This yields
f
(
ui0 , . . . , uik ; vjk+1

, . . . , vjk+l

)
= aT

~ı(d,k);~(d,l)
F

Rewriting eq. 4.12 in terms of these new conventions we get

bT
π ·H =

∑
∀~ı ∈ V ′ (d, k)
∀~ ∈ V ′ (d, l)

bT
π p~ı|~ a

T
~ı;~︸ ︷︷ ︸

A~ı|~

F (4.13)

The under braced term in Eq. 4.13 is an outer product of two vectors with dimen-
sionsd(k + l) × 1 andkl × 1. The result of this operation is a matrix with size
d(k+ l)×kl, denoted byA~ı|~. The basis of the productbπ does not change during
the iteration, hence, we may take it in front of the summation obtaining

bT
πH = bT

π

∑
∀~ı ∈ V ′ (d, k)
∀~ ∈ V ′ (d, l)

A~ı|~ F

In each iteration step the non-zero part of current matrixA~ı|~ (recall that always
only one entry ofp is non-zero) is added to the matrix from previous step. This
yields after(d + 1)k+l steps:

bT
πH = bT

πAF

with
A =

∑
∀~ı|~∈V ′(d,k+l)

A~ı|~

The Bezier bases on both sides of the equation cancel out and we obtain a matrix
equation

H = AF

4.2.3 Unevaluated composition for B-splines

As already pointed out in [18], composing B-splines is considerably more com-
plicated than composing Bezier polynomials. DeRose proposes to convert the
B-splines to composite Bezier format and apply the algorithm as described above
for each Bezier segment. The result is a 3D composite Bezier curve which can be
reduced to B-spline form by removing all unnecessary knots. We could proceed
in exactly the same manner and compute composition matrices for each Bezier
segment as explained in previous paragraph. Basically, conversion of mutually
continuous Bezier segments to a B-spline of the same parametric continuity re-
quires extrapolation between neighboring control points. This way one removes

46 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

redundant coefficients from the Bezier representation. This is known as “knot
removal”, see [52], for example. Though knot removal tends to be numerically
unstable for irregular and dense knot vectors it is usually sufficient if the con-
trol points of the resulting curve are known. If, however, only the composition
matrix is known, the extrapolation has to be performed between the rows of the
composition matrix. Here the issue of numerical stability becomes more involved
because it enlarges the (albeit small) errors accumulated in composition matrix
(numerical analysis of the algorithm for B-splines is postponed to section 4.4) In
addition, for efficiency reasons, a careful implementation of sparse matrix prod-
ucts is necessary. On the other hand, the full-size composition matrix (with all
Bezier knots unremoved) has approximatelyd-times (d is the degree of the inner
function) more rows than actually required. As will be shown in chapter 7 this has
dramatic influence on efficiency when solving the inverse problem. Therefore, we
develop the composition of B-splines without this intermediate conversion: we
compute the B-spline composition matrix which contains no redundant rows.

4.2.3.1 Preparing the B-spline composition

Let G(t) =
∑p−1

i=0 Gi b
d,τ
i (t) be a B-spline curve in the domain of the B-spline

surfaceF (u, v) =
∑n−1

j=0

∑m−1
i=0 Fi,jb

k,µ
i (u)bd,ν

j (v). Denote the components ofG(t)
by (u(t), v(t)). The starting point for computing the control points of the B-spline
curveH(t) = F (u, v) ◦ G(t) is to select the intervalsI andJ for blossomingF
and insert the curve into the blossom representation ofF :

H(t) = F (u(t), v(t)) = fI,J(u(t), . . . , u(t)︸ ︷︷ ︸
k

; v(t), . . . , v(t)︸ ︷︷ ︸
l

)

Assume for the moment that the surface consists only of one B-spline patch. Then
we may proceed in the same way as in §4.2.2 obtaining a decomposition of the
above equation into

H(t) =
d∑
i0

. . .
d∑

jk+l

bd,τ
i0 (t) · · · bd,τ

jk+l
(t) f(ui0 , . . . , uik ; vjk+1

, . . . , vjk+l
) (4.14)

The indicesI andJ of the surface blossom may be skipped because the two-
variate B-spline basis consists only of one segment in each parametric direction.
For a general B-spline surface consisting of several polynomial patches, some pre-
processing and additional notation are required as will be shown in the following
paragraphs.

4.2.3.1.1 Merging the knot vectors ofF and G The first subtlety with com-
posing general B-splines is that a knot vector sufficient to representH must be

4.2. UNEVALUATED POLYNOMIAL COMPOSITION 47

constructed from the knot vectors ofF andG. Therefore, one cannot write the
formulas in the straightforward manner as for Bezier surfaces and curves. Before
the composition starts, the knot-vectors of B-splinesF andG must be merged
as follows: We compute the parameter valuest at whichG(t) intersects the knot
lines ofF . Let τ be an ordered set of all real solutions to polynomial equations
µi = u (t) : k − 1 ≤ i ≤ m andνj = v (t) : l − 1 ≤ i ≤ n. Following De
Rose’s terminology we refer to these knots asbreakpoint knots. We introduce
new terminology:

• The curveG′(t) obtained by inserting the new knotsτ into the original knot
vector is calledcompatiblewith F . Its knot vector is the union of original
knots and the breakpoint knotsτ ′ = τ ∪ τ . The compatible knot vectorτ ′

has the formatτ = {. . . , τ b, . . . , τ b+1, . . .}, where the dots symbolize that
there may be several knots from the original knot vectorτ before, after and
in-betweenτ b andτ b+1.

• The segments ofG′(t) such thatt ∈ 〈τ b, τ b+1) are calledbreakpoint seg-
ments

This has two consequences: First, the breakpoint knots mark locations whereG
enters a new B-spline patch ofF and we need to select blossoming intervalsI
and J accordingly (see also the example in figure 4.1; here, the intervals will
change three times). Second, the restriction to interval〈τ b, τ b+1) limits the range
for iterating over the indicesi0, . . . , jk+l in eq. 4.14 and it determines the indices
of the control points for current breakpoint segment ofH.

4.2.3.1.2 Determining the B-spline basis ofH The second difficulty is that
the result of multiplying the B-spline basis function (first term in eq. 4.14) is a
general B-spline function and there is no such simple formula as for Bernstein
polynomials to obtain its coefficients. As in the Bezier case, the B-spline basis of
the product determines the basis for the composed curveH. Therefore, in order
to extract the composition formulae we need to determine the degree and knot
vector of the B-spline function resulting from eq. 4.14. Obtaining the coefficients
efficiently is more involved and we defer it to §4.3.2. However, the sufficient B-
spline basis to represent the product can be determined a-priori: The degree of the
B-spline is the product of degree ofG and sum of degrees ofF in each parametric
direction: d(k + l). The knot vector needs to reflect the fact that the degree of
the product is higher then the degree of the original B-spline, yet the continuity is
the same. The resulting knot vector will contain only knots from the merged basis
of G′ with multiplicities determined as follows: letmi be the multiplicity ofi-th

48 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

distinct knot inτ ′. The continuity at a knot is degree minus multiplicity, hence,
following identity must hold for the new multiplicityni:

d−mi = d.(k + l)− ni =⇒ ni = mi + d.(k − l − 1)

This yields the smallest possible knot vector with sufficient support of the product
B-spline, in the following denoted by “π”. The size of the product B-spline is
determined as the size ofπ minus polynomial order of the product.

Note thatπ is the “worst-case” knot vector; the actual continuity ofH can be
larger. Consider figure 4.1: the curveG is linear with no internal knots andF is bi-
cubic with two internal knotsµi andνj. Hence, the curveH will have polynomial
degree6 and will beC2 continuous at both breakpoint knots. However the basis
of G′ consists of piecewise linear polynomials which are, theoretically, onlyC0

as demonstrated by the figure on the right. Since the continuity of the product
cannot be higher than the continuity of the operands, the product will be also only
C0 at both breakpoint knots, as the figure demonstrates (the product is shown in
bright gray). This means that the multiplicity of knots will be higher than really
required. This can be avoided be raising the degree ofG′ to cubic for the price of
higher degree of the resulting curve. Alternatively, one can apply “unevaluated”
knot removal to rows of the composition matrix, as mentioned above.

4.2.3.2 The B-spline composition formula

After the B-splinesF andG were made compatible and the basis for the B-spline
H was constructed we can start with computing the composition of B-splines. We
seek the control points of the curve

H(t) = F (u, v) ◦G′(t), t ∈ 〈τ i, τ i+1)

We use the notation from previous paragraph: i.e.π denotes the knot-vector of
H andτ ′ is the merged knot vector ofG′ which already contains all breakpoint
knots:

1. Determine the indices of influenced control points ofH(t), t ∈ 〈τ i, τ i+1);
this is accomplished by locating knotsπP andπQ such that

πP ≤ τ i < πP+1 ∧ πQ ≤ (τ i+1) < πQ+1

Then, by local property of B-splines, the breakpoint segmentt ∈ 〈τ i, τ i+1)
is determined by control points with indicesP − d(k + l) to Q

2. Determine the indices of control points of all internal segments ofG′ which
contribute to desired breakpoint segment. Locate knots fromτ ′ with indices
R andS such that following relations apply:

τ ′R ≤ τ i < τ ′R+1 ∧ τ ′S ≤ (τ i+1) < τ ′S+1

4.2. UNEVALUATED POLYNOMIAL COMPOSITION 49

F H

G

t

Figure 4.1: Left: the B-splinesF andG. WhereverG crosses a knot-line ofF
a new knot must inserted intoG. Right: the symbolic computation of products
causes redundant factors inH. The surface isC2 continuous at knot linesµi and
νj but the worst-case basis forH is apparently onlyC0 continuous.

It follows that we consider the control points ofG′ with indicesR− d to S

3. Finally, determine the intervalsI andJ for blossomingF . Since each break-
point segment is completely inside one interval from knot-vectorsµ andν
the blossoming intervalsI andJ must satisfy following relations:

µI ≤ u(τ i) < µI+1 ∧ νJ ≤ v(τ i) < νJ+1

With so determined ranges, the composition formula is:

∑Q
i=P−d.(k+l) Hib

d·(k+l),π
i (t) =∑S

s=R−d

∑s+d
i0=s · · ·

∑s+d
jk+l=s bd,τ

i0 (t) · · · bd,τ
jk+l

(t) fI,J(ui0 , . . . , uik ; vjk+1
, . . . , vjk+l

)
(4.15)

The iteration ranges follow from the local support properties of B-splines (§A.1.1.3)
and can be derived from the B-spline definition and from the de Boor algorithm.

50 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

The first “
∑

” with iteration variables symbolizes the segment-wise composition
of internal segments ofG′. Note that it is not necessary to iterate over allp con-
trol points ofG′, since at mostd + 1 subsequent B-spline basis functions can be
simultaneously non-zero, see §A.1.1.3.

4.2.3.3 The B-spline composition matrix

Analogously to the Bezier surface-curve composition, the B-spline composition
matrix is obtained by rewriting eq. 4.15 in matrix notation. One distinction to the
Bezier case is the new iteration variables which represents the current segment
of G′(t). For thes-th segment the variations ofi0, . . . , jk+l are taken from the
ordered setPs = {s, s + 1, . . . , s + d}. The set of all possible variations of size
k from the setPs containingd + 1 elements is denoted byV ′

s (d + 1, k). This
generalization of v-indices toV ′

s (d + 1, k) is calledshifted v-indexand is denoted
by~ıs ∈ V ′

s (d + 1, k).
In order to obtain the matrix representation we proceed as follows: Let the

size of thek + l-fold product of B-splines from eq. 4.15 beq. The product ofk + l
B-splines is a B-spline of degreed(k + l) with coefficientspi : 0 ≤ i < q:

bd,τ
i0 (t) · · · bd,τ

jk+l
(t) =

q−1∑
i=0

p
i0,...,jk+l

i b
d(k+l),π
i (t) (4.16)

For a fixed breakpoint segment only the coefficientsp
i0,...,jk+l

i with indicesP −
d(k + l) ≤ i ≤ Q are considered. Recall that we have restricted the composition
to one breakpoint segment, thus only the coefficient according to current range
for the control points ofH are of importance. Hence we setp

i0,...,jk+l

i = 0 for
Q < i < P − d(k + l). Denote the sizeq vector containing these coefficients by
p~ıs|~s . Then the product in scalar product notation is

bd,τ
i0 (t) · · · bd,τ

jk+l
(t) = bT

π p
~ıs|~s

(4.17)

The B-spline blossomfI,J(ui0 , . . . , uik ; vjk+1
, . . . , vjk+l

) is expressed as a scalar
product of polarized basis functions and the control pointsF: We denote the vec-
tor of polarized basis functions byaT

~ıs;~s
so that thei-th entry ofa is

ai = ak,τ,l,υ
i (ui0 , . . . , uik ; vjk+1

, . . . , vjk+l
)

Theai are computed as in §4.1.5 with respect to blossoming intervalsI andJ .
This yields

fI,J(ui0 , . . . , uik ; vjk+1
, . . . , vjk+l

) = aT
~ıs;~s

F (4.18)

4.3. EFFICIENCY AND DATA STRUCTURES 51

Substituting 4.17 and 4.18 into 4.15 we obtain

bT
πH =

S∑
s=R−d

∑
~ıs ∈ V ′

s (d + 1, k)
~s ∈ V ′

s (d + 1, l)

bT
π p~ıs|~s aT

~ıs;~s
F (4.19)

Evaluating the outer products of the two vectors yields

A~ıs;~s = p~ıs|~sa
T
~ıs;~s

The composition matrix is obtained by iterating over all~ıs | ~s ∈ V ′
s (d + 1, k + l)

:

A =
S∑

s=R−d

∑
~ıs∈V ′

s(d+1,k)

~s∈V ′
s (d+1,l)

A~ıs;~s (4.20)

Note that only that rows of the composition matrix which correspond to non-
zero entries of the current vectorp~ıs|~s will be computed. In order to obtain the
completecomposition matrix one needs to repeat this procedure for all pairs of
breakpoint knots inτ . SinceCr continuous segments of a B-spline curve share
r + 1 control points care has to be taken that rows ofA corresponding to these
common control points ofH are not overwritten.

4.3 Efficiency and Data structures

The procedure described in previous section is well suited for demonstration pur-
poses. However, the iteration over all variations of indices in eq. 4.20 would
be extremely inefficient: obtaining the complete composition matrix requires ap-
proximately(p− d).(d + 1)k+l iterations. For example, if the surface is of degree
k = l = 3 and the curveG has degreed = 3 andp = 20 the algorithm termi-
nates after≈ 69000 iterations. In [18] and [53] several methods were proposed to
reduce the complexity of the composition algorithm for Bezier simplices. There-
fore, in the following we will concentrate only on composition of B-splines. The
objective is to show that similar statements as in the before mentioned papers
about “one-permutation” and “optimal” algorithm for Bezier simplices are also
possible for unevaluated composition of B-splines.

Paragraph 4.3.1 is an excursion to combinatorics: we show how many unique
products and blossoms are necessary to compute the composition of two B-splines.
Furthermore in §4.3.2 an efficient procedure to obtain the coefficient of B-spline
product function is described which utilizes the local properties of B-splines. Us-
ing the results gained in §4.3.1 in §4.3.4 we describe an efficient data-structure
for storage of intermediate results of the algorithm.

52 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

4.3.1 The combinatorics

Analysis eq. 4.14-4.20 reveals two possibilities for decreasing the number of eval-
uations:

1. The(k + l)-fold product of B-spline basis functions (eq. 4.17) does not de-
pend on the ordering of indices in~ıs | ~s. This follows from the commuta-
tivity and associativity of products:a · b · c = a · c · b = b · a · c =

2. Similarly the blossom property 2, §4.1.1 states that inside of one breakpoint
segment the value of the blossom term in eq. 4.18 does not depend on the
ordering of entries in~ıs and~s.

This leads to following consideration: first, compute and store only unique non-
zero products and blossoms and second, expand the stored values into the matrix
A such, that the occurance of each particular combination is taken into account
appropriately many times. This raises two questions:

• How many unique product and blossom expressions exist?

• How many times each combination appears in the nested iteration in eq. 4.20?

4.3.1.1 The c-index

We need an iteration scheme which ignores the ordering of entries in a v-index. In
other words, in all formulae derived in §4.2.2 and §4.2.3 all permutations of fixed
is andjs yield the same product and, inside of one breakpoint segment, the same
value of a blossom. For example, consider all productsbk,τ

i1 (t) · · · bk,τ
i5 (t) such that

2 ≤ ij ≤ 4 for 1 ≤ j ≤ 5: The indices in the tuple(i1, . . . , i5) take in values
from the setP2 = {2, 3, 4} which we denote by a v-index~ı2 ∈ V ′

2 (3, 5). Iterating
over all v-indices inV ′

2 (3, 5) yields all variations of size5 out of the3 elements
in P2. However, since the ordering of entries in~ı2 is not of importance, many of
the products are identical, e.g.:

b2b2b3b3b4 = b2b3b2b3b4 = b4b2b2b3b3 = . . .

In order to identify a unique product we only need to know how many times
a specific entry appears in~ı2. In the above example the indices2, 3, 4 appear
(2×, 2×, 1×) in different order but for each permutation of two ’2’s, two ’3’s, two
’4’s we obtain the same result. The 3-tuple(2, 2, 1) which contains the number
of occurancies of elements fromP2 in ~ı2 represents a size3 partitioning of the
number5 = 2 + 2 + 1. Generally, all v-indices~ıs ∈ V ′

s (m, n) (in this casem =
d + 1, n = k + l) which contain the same number of the same elements fromPs

4.3. EFFICIENCY AND DATA STRUCTURES 53

can be compactly represented in terms of a size-m partition of numbern. All such
partitionings belong to the class of combinations with repetition fromPs of sizen
which we denote byC ′

s (m, n). We call one such partition acombinatorial indexor
justc-indexand denote it byıs ∈ C ′

s (m, n), or justıs whenm andn are fixed. For
fixed s andPs = {s, . . . , s + m− 1} the c-indices correspond to “hyper-indices”
used in [18] and [53]. In these papers a recurrence was defined to compute all
c-indices givenm andn. This allows to write iteration formulae from §4.2.2 and,
with slight modifications also the B-spline formulae from §4.2.3, directly in terms
of c-indices (for B-splines we need to consider that iteration needs to be performed
over all subsequent segments). We define following operations on c-indices:

1. Component-wise summationof c-indicesıs ∈ C ′
s (m, n) andıs ∈ C ′

s (m, o)
yieldingks = ıs + s whereks ∈ C ′

s (m, n + o)
2. Absolute valueof a c-index is|ıs ∈ C ′

s (m, n)| = i0 + . . . + in−1 = n.
In the following a summation over allıs ∈ C ′

s (d + 1, k + l) is denoted by
∑

∀ı∈C′
s(d+1,k+l).

4.3.1.2 The relation between v-indices and c-indices:
“The c-number”

The c-index notation considerably reduces the number of necessary iterations.
Note that the number of v-indices inV ′

s (m, n) is mn compared to number of c-
indices inC ′

s (m, n) which is
(

m+n−1
n

)
. However, in order to compute the com-

position matrix, in eq. 4.20 all variations of indices (all v-indices) must taken into
account. Thus, we need to know how many times a particular v-index will appear
during the iteration. In other words we need to know how many v-indices are
mapped to a particular c-index. This is a nice exercise in combinatorics: as above,
consider, for example, the c-indexı2 ∈ C ′

2 (3, 5) = (2, 2, 1). Each corresponding
v-index~ı2 ∈ V ′

2 (3, 5) has five positions containing 5 numbers:2×’2’, 2×’3’ and
1×’4’. Take 5 positions of a v-indexV ′

2 (3, 5) and place the ’2’ in two of them.
This gives

(
5
2

)
possibilities. Next, place the two ’3’s in the remaining free posi-

tions which is possible in
(

5−2
2

)
ways, since two positions are already occupied by

the ’2’s. At last, place the ’4’ for which there are
(

5−2−2
1

)
possibilities. This gives

a total of(
5

2

)
·
(

5− 2

2

)
·
(

5− 2− 2

1

)
=

5!

3! · 2!
· 3!

1! · 2!
· 1!

0! · 1!
=

5!

2! · 2! · 1!
= 60

possibilities to expand the c-indexı2 = (2, 2, 1) into v-indices. We call this ac-
numberof a c-index a denote it by#ıs. The above procedure can be generalized
for any c-index fromC ′

s (m, n) yielding

#ıs ∈ C ′
s (m, n) =

n!

i0! · · · im−1!
(4.21)

54 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

In the nominator we have the size of the v-index, the entries of the c-index appears
in the denominator. Thus with each c-index there associated a c-number that deter-
mines the number of v-indices which can be mapped to a particular c-index. Now
we see that in eq. 4.20 it suffices to compute only products and blossoms corre-
sponding to allıs ∈ C ′

s (d + 1, k + l). If each ıs is multiplied by its c-number
(i.e. it is added#ıs-times) all variations which are necessary for the composition
matrix will be automatically considered.

4.3.1.3 The total number of unique c-indices

Consider eq. 4.15: in order to compute all segments of the curveH(t) we need to
iterate over all segments of the inner B-splineG′(t). Denote the number of control
points ofG′(t) by p and its degree byd. Then the indicesi1, . . . , jk+l will take in
values fromPs = {s, s + 1, s + d} for 0 ≤ s ≤ p − d + 1. Hence, we need to
determine the total number of unique c-indices for all segments contained in the
setP = {0, 1, . . . , p− 1}.

For simplicity in the following we setm = d + 1 andn = k + l. Since
eachPs-set has the same size there will be the same number of c-indices for each
segment which is

(
m+n−1

n

)
. Recall that although corresponding c-indices from

different segments have the same entries they are mapped to different v-indices:
for example,ı0 ∈ C ′

0 (3, 3) = (0, 1, 2) is mapped to all v-indices of size 3 from
P0 = {0, 1, 2}, ı1 = (0, 1, 2) is mapped to v-indices fromP1 = {1, 2, 3} and so
on. Note that there are redundant c-indices in neighboring segments, every two
neighboring segments overlap inm − 1 entries. For example,ı0 = (0, 1, 2) and
ı1 = (1, 2, 0) are mapped to the identical set of v-indices:

ı0 = (0, 1, 2)

ı1 = (1, 2, 0)

 (1, 2, 2), (2, 1, 2), (2, 2, 1)

In general, all c-indices which have a ’0’ at the right-most boundary already ap-
pear in the previous segment. Therefore, for each segment such thats > 1 the
size of candidate setPs is reduced by one and we may skip the right-most entry
which appears ’0’ times. This yields

(
m+n−1

n

)
−
(

m+n−2
n

)
unique c-indices for

each segments, except the first one – which has full number of
(

m+n−1
n

)
c-indices.

There are(p −m) segments, hence, total number of unique sizen combinations
of “bandwidth”m from p elements is

(p−m + 1) ·
(
m + n− 1

n

)
− (p−m) ·

(
m + n− 2

n

)
(4.22)

4.3. EFFICIENCY AND DATA STRUCTURES 55

4.3.2 The products

Next we discuss the problem of multiplying B-splines. This operation is re-
quired in equations 4.15-4.20. We wish to compute the coefficientspi given
k + l-fold product of B-spline basis functions which define the curveG′(t) =∑p−1

i=0 Gi b
d,τ ′

i (t):

bd,τ ′

i0 (t) · · · bd,τ ′

jk+l
(t) =

k+l∏
j=0

bd,τ ′

ij (t) =
q−1∑
i=0

b
d(k+l),π
i p

i0,...,ik+l

i (4.23)

4.3.2.1 Determining the number of unique products

Armed with the combinatorics from previous paragraph we can easily count the
number of unique B-spline products givenp, k, l andd: The number of unique
non-zero products required forcompletecomposition matrix is given by the num-
ber of shifted c-indices which is determined by eq. 4.22. For comparison, if
p = 20, k + l = 6 andd = 2 the economy-factor compared to the straight-
forward algorithm is69000 : 385 ≈ 180. The c-number (equation 4.21) defines
how many times a specific combination ofis will be encountered during the sum-
mation. Hence, re-writing eq. 4.20 in this “economy” c-index notation yields

A =
S∑

s=R−d

∑
∀ı∈C′

s(d+1,k+l)

#ı · pıs aT
ıs→(us,vs) (4.24)

The subscriptı → (u, v) denotes a conversion of current c-index to a pair of c-
indices which determine arguments of the unevaluated surface blossom. We leave
this conversion open until §4.3.3 where an algorithm for obtaining the matching
blossom is described.

4.3.2.2 Multiplying B-splines

The vectorpıs contains coefficients of the B-spline function from eq. 4.23. There
are three possibilities to compute the coefficients:

1. Convert each operand B-spline basis function to composite Bezier form,
multiply the corresponding Bezier segments obtaining a composite Bezier
function of degreed(k + l). Since it is known in advance which knots are
redundant (refer to §4.2.3) these knots may be removed yielding the desired
coefficients of the product. This method was used, for example, by Kazinnik
and Elber in [45].

2. Use Mørken’s symbolic method [58] and recursively multiply each pair of
operands

56 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

3. Interpolate the product. Determine the degree and knot vector of the prod-
uct B-spline as explained in §4.2.3, evaluate the basis functions and values
of the operands yielding a well-determined linear system of equations in
unknownspıs . Then solve the system obtaining the desired values

Although we don’t have the ambition to prove that, it appears that the first two
methods are equivalent. In [58] Mørken has shown how to express a product
of two B-splines recursively as a linear combination of the coefficients of the
operands. The recursion is quite complex and we will not rewrite it here. It
was designed to compute a product of two general B-spline functions; hence, we
would have to multiply the operands of thek + l-fold product recursively. With
regard to equivalence of the first two methods note that if the minimum support
B-spline basis of the product is known in advance then following quantities can
be precomputed:

• Knot insertion matrices for B-spline→Bezier conversion, §4.1.5

• Factors resulting from multiplying Bernstein polynomials, see [41, §4.1, eq.
4.2d]

• Knot removal matrices (for the Bezier→B-Spline conversion, see §4.1.5)

Then, using matrix multiplications, a concatenation of following operations yields
a closed formula for multiplying B-splines:

1. Transform the B-spline operands to Bezier format

2. Multiply the Bezier segments

3. Remove the unnecessary knots

We conclude that if a tough algebraist undergoes that task Mørkens formula is
revealed. The amount of work required by Mørken’s algorithm is, in general
setting,O

(
(d(k + l))4

)
linear combinations per B-spline segment, see also [81].

Similar result should be obtained for the “Bezier-conversion” algorithm. Keeping
track of the sparsity of the operands (note that we multiply only B-spline basis
functions, not general dense B-splines) and intermediate result should improve the
run-time behavior of the algorithm. However, the implementation is very sensitive
to programming errors and requires a considerable effort. Therefore we have used
the third method which is easy to implement and more efficient – if the properties
of the interpolation matrix and the sparsity of the product B-spline are taken into
account. Since this is essential for an efficient implementation, we will discuss it
in more detail.

4.3. EFFICIENCY AND DATA STRUCTURES 57

4.3.2.3 Determining non-zero coefficients of the product

In the resulting product function (eq. 4.23) the degree of the original B-splineG′

is increased by the factor(k + l). Accordingly, the number of coefficients in the
product function (and in the resulting B-splineH) increases approximately of the
same factor. Fortunately, not allq coefficients of the product function will be
non-zero and the sparsity pattern is easy to predict: The non-zero interval of a
B-spline basis functionbd,τ

i (t) is t ∈ 〈τi, τi+d+1), see e.g. [41]. Hence, the product∏k+l
j=0 bd,τ

ij (t) will be non-zero only at the intersection of the support intervals of the
operands. Since a B-spline function is zero if and only if its coefficient are zero
we conclude that the non-zero coefficients of the product function will appear only
inside of certain band-width.

Recall that the knot vector of the product function,π, contains only knots
contained in the knot vector of the operands, hence a knot fromτ will also occur
in π. Let imin and imax be indices such thatimax − imin ≤ d. Then the non-
zero interval for the product ist ∈ 〈τimin

, τimax+d+1). It follows that the non-zero
indices of the product must be inside of the rangejmin − d(k + l) to jmax where
πjmin

≤ τimin
< πjmin+1 andπjmax ≤ τimax < πjmax+1.

To see the effect of that, consider a B-spline basisd = 2, p = 6 and knot-vector
τ = {0, 0.3, 0.4, 0.7, 1} shown in figure 4.2(a). The knots with multiplicities
mτ = {3, 1, 1, 1, 3} are marked by dots. Consider a 3-fold productsb0bibj for
i, j ∈ P = {0, . . . , 5}. b0(t) 6= 0 if t ∈ 〈τ0, τ3) = 〈0, 0.3). The 3-fold product
b0bibj 6= 0 iff i ≤ 2 ∧ j ≤ 2, because fort ∈ 〈0, 0.3) only b1 andb2 (colored
bright in the figure) are simultaneously non-zero. figure 4.2(b) shows the product
b0b1b2 in bright gray and the operands in black. The product B-spline hasd = 6,
q = 22, knot vectorπ with mπ = {7, 5, 5, 5, 7} and the non-zero coefficients are
aggregated in interval0 ≤ i ≤ 6.

4.3.2.4 Optimizing the product interpolation

The interpolation of products was applied for example by G. Elber in [23] for
computing products of two B-splines and can be very simply extended forn-fold
products of basis functions as follows: We state the interpolation problem with
the system matrixM

Mpıs = vıs ;∀ıs ∈ C ′
s(d + 1, k + l) (4.25)

The rows of the matrixM contain basis functions of the product basis evaluated
at the Greville abscissae of the product B-spline. I.e. thej-th element in thei-th
row of is b

d(k+l),π
j (ξi) whereξi =

∑s+d(k+l)
i=s πi. The vectorvıs contains values of

Gs basis functions evaluated atξi and multiplied according to current c-index, i.e.

58 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

(a) (b)

Figure 4.2: Demonstrating the economy of utilizing the predicted bandwidth of
a B-spline product: Then-fold product of B-splines is non-zero only at the in-
tersection of support intervals of its operands. Here, we multiply the first three
basis functions (colored bright gray in the left figure). The right figure shows the
operands and the result (colored bright gray); The resulting B-spline function has
only 7 non-zero coefficients out of22.

thei-th entry ofv is bd,τ
i1 (ξi) . . . bd,τ

ik+l
(ξi). The solution of the inverse problem

M−1 vıs = pıs (4.26)

yields the coefficients of the product function for the current c-index.
The complexity of this method is influenced by the size and shape of the matrix

M and by the number of right sides in eq. 4.25, i.e. by the number of unique
products. Givenp, k, l andd as above andq as the size of the product,M is
a banded matrix of sizeq × q and with maximum upper and lower bandwidth
l = u = (d + 1).(k + l). It will be close to be diagonally dominant and, typically,
no pivoting will be necessary. We compute banded LU-decomposition ofM and
solve the system for all right sides simultaneously. LU decomposition for banded
matrices can be computed in circaO (2.q.l.u) operations, see [29]. If no pivoting
is applied, the triangular factors of sizeq × q inherit the lower (L) and upper (U)
bandwidth fromM. The solution for eachvı is obtained by forward and backward
substitution inO (2.q.l) + O (2.q.u) operations. We have tested this method with
large and high degree B-splines. The performance is satisfactory for middle-sized

4.3. EFFICIENCY AND DATA STRUCTURES 59

data sets (see section 4.4), for large data sets the back-substitution unacceptably
slows down the execution of the algorithm. This happens if the number of “right-
hand sides” is much larger then the size of the matrix. In this case, it is more
efficient to compute the inverse ofP and obtain the coefficients of the product
B-spline by means of eq. 4.26. Note that in this case the complexity of computing
M−1 is only only as large as computing the banded LU-decomposition ofM plus
computing the solutions forq right-hand sides (initially set to unity matrix). We
utilize the knowledge about the predicted bandwidth of the resultpıs and multiply
only a sub matrix ofM−1 and subvector ofvı. For very irregular and dense knot
vectors pivoting becomes necessary in order to stabilize the LU-decomposition.
Then, no prediction on bandwidth ofL can be made; However, the predictions on
maximum number of non-zero entries inMs columns still apply.

A great advantage is a simple implementation once a LU decomposition is
available; a good implementation of banded LU-decomposition is, for example,
GDBLU in LAPACK, see [2].

4.3.3 The blossoms

In this paragraph we discuss efficient evaluation of all unique blossoms required
in equation 4.24. When counting the number of unique blossoms we need to
consider that new set of blossoms is computed for each breakpoint segment. Also
we need to consider that blossoms of a tensor-product B-spline are not invariant
under permutation of variables from different parametric directions.

More specifically, in the following we seek unique vectorsaT
ıs;s

in equa-
tion 4.24 for all ıs ∈ C ′

s(d + 1, k) and s ∈ C ′
s(d + 1, l). Furthermore, given

a non-zero product corresponding to a concatenation of c-indicesıs|s we need to
identify all compatible blossom corresponding to a decompositionıs|s ∈ C ′

s(d +
1, k + l)→ (us, vs) whereus ∈ C ′

s(d + 1, k) andvs ∈ C ′
s(d + 1, l)

4.3.3.1 Determining the number of unique blossoms

The total number of unique blossoms is determined by the number of unique non-
zero products. Inside of one breakpoint segment a blossom does not depend on
the ordering of arguments, see §4.2.3; hence, the total number of unique blossoms
per breakpoint segment of sizer = S−(R−d)+1 (S andR are defined in §4.2.3)
is given by eq. 4.22:

(r − d + 2) ·
[(

d+k
k

)
+
(

d+l
l

)]
−

(r − d + 1) ·
[(

d+k−1
k

)
+
(

d+l−1
l

)]

60 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

4.3.3.2 Obtaining the compatible blossoms

We need to consider a decomposition of c-index which identifies a product into all
c-indices which identify all compatible tensor-product blossoms. The subtlety is
that one cannot mix the variables throughout the argument bags of tensor-product
blossoms. Consider, for example a c-indexı2 ∈ C ′

2 (3, 6) = (3, 2, 1). One v-index
corresponding toı2 = (3, 2, 1) is~ı2 ∈ V ′

s (3, 6) = (2, 2, 2, 3, 3, 3, 4). This permu-
tation of indices has to be distributed throughout theu andv-argument bags of the
blossom. In contrast to product terms which are independent under variations of
their arguments the blossoms of a tensor product are not. E.g., we have

f (u2, u2, u2; v3, v3, v4) = f (u2, u2, u2; v4, v3, v3)

but
f (u2, u2, u2; v3, v3, v4) 6= f (u3, u3, u4; v2, v2, v2)

From this we conclude that only blossoms corresponding to special combinations
of arguments will match one product. All such compatible combinations are ob-
tained from current c-index as follows: given

ıs ∈ C ′
s (d + 1, k + l)

each decompositionıs → us, vs such, that

ıs = us + vs ∧ us ∈ C ′
s (d + 1, k) ∧ vs ∈ C ′

s (d + 1, l) (4.27)

delivers a valid blossom. For example, settingk, l andd as above, the c-indexı2 =
(3, 2, 1) is decomposed into all matching c-indices as follows (the ’2’ subscripts
are omitted):

ı2 ∈ C ′
2 (3, 6) = (3, 2, 1)→ u, v

u ∈ C ′
2 (3, 3) v ∈ C ′

2 (3, 3)

(0, 2, 1) (3, 0, 0)
(1, 1, 1) (2, 1, 0)
(1, 2, 0) (2, 0, 1)
(2, 0, 1) (2, 0, 1)
(2, 1, 0) (1, 1, 1)
(3, 0, 0) (0, 2, 1)

Note, that not all c-indices fromC ′
2 (3, 3) appear in the above table: e.g., for

(0, 1, 2) + (i, j, k) = (3, 2, 1) no compatiblei, j andk exist. Since each product
which corresponds to c-indexıs appears only once during the summation, we need
to consider all matching blossoms, otherwise, certain blossoms are missed and the

4.3. EFFICIENCY AND DATA STRUCTURES 61

composition matrix would be incomplete. Thus, the curve-surface composition
matrix is computed as:

A =
S∑

s=R−d

∑
∀ıs∈C′

s(d+1,k+l)

#ıs · pısa
T
ıs→us,vs

(4.28)

whereaT
ıs→us,vs

denotes a sum:

aT
ıs→us,vs

=
∑

us ∈ C ′
s (d + 1, k)

vs ∈ C ′
s (d + 1, l)

ıs = us + vs

aT
us,vs

4.3.4 Implementation: the Multi-index tree

On-the-fly computation of blossoms in eq. 4.28 would be extremely inefficient.
To see this recall that the tensor-producta-vectors arise from concatenation of
a-vectors for each parametric dimension of the tensor product. An inspection
of formulas 4.27 and 4.28 reveals that the samea-vectors will appear in the de-
composition of different c-indices. If the blossoms were computed on the fly, we
would have to compute identicalas several times. The evaluation of ana-vector
for a degreed B-spline requiresO (d2) linear combinations for B-spline of degree
d. For a tensor-product of B-splines with degreesk and l the concatenation re-
quiresO (k + l) multiplications, thus, we have complete cost of building oneau,v

circaO (k2 + l2). Clearly, the performance is improved if all uniquea-vectors are
computed only once, stored in a suitable data structure and retrieved on demand.
In the next two paragraphs we introduce:
1. The, so-called, Multi-index tree – a data container which allows to insert and
retrieve a B-spline blossom (thea-vector) identified by a c-index ind steps where
d is the degree of the B-spline.
2. An algorithm using the Multi-index tree which is optimal according to Mann’s
definition, [53]: among all algorithms it requires the minimal number of linear
combinations to compute the value of a blossom

4.3.4.1 Storing the blossoms in a tree

Design of a “suitable” data structure which stores all unique blossoms is a trade-
off between storage requirements, fast access and re-usability of the implemented
data structure. Given a c-index we must be able to insert or retrieve a precom-
puted entry fast, possibly without any kind of preprocessing, sorting or ordering.
DeRose et al. and S. Mann [18], [53] have used a lexicographic ordering of hyper-
indices (c-indices). While this is easy to implement for Bezier polynomials (or for

62 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

1 2 ... p−m

p−m... p−1 p

 p

...

s ...

s s+m...

 m

n

[2,0,1,1]2 [2,2,4,5]

1 2 3 4 2 3 4 5

m
n

e=[2,2,4,5]

2 3 4 5

4 5 6 7

p

p...

Figure 4.3: Accessing an entry in the Multi-index tree

B-splines converted to Bezier format), it becomes difficult when dealing with B-
splines directly. We did not succeed to find an ordering which would reflect the
concept of shifted c-indices as described in paragraph 4.3.1. Hence, we propose
to store entries which can be uniquely identified by a c-index in a tree structure.

We want to storea-vectors which are uniquely identified by a c-indexıs ∈
C ′

s (m, n). Recall that a c-index represents unordered combinations ofn integers
from Ps = {s, s + 1, . . . , s + m} such that|ıs| = n. Each c-index is mapped to
#ıs v-indices of sizek. Representatively, one v-index can be obtained from given
c-index by counting the number of entriesir for 1 ≤ r ≤ m. This corresponds to
component-wise expansion ofıs into v-index~ of sizen:

ıs = (i1, · · · , im)→
n×︷ ︸︸ ︷

(s, . . . , s︸ ︷︷ ︸
i1×

, s + 1, . . . , s + 1︸ ︷︷ ︸
i2×

, · · · , s + m, . . . , s + m︸ ︷︷ ︸
im×

)

The so-calledMulti-index treemaps this conversion to a tree structure organized as
in figure 4.3: each node, except of the root node, consists of an array of dimension

4.3. EFFICIENCY AND DATA STRUCTURES 63

m with links to its children nodes. The array of the root node has size of the the
total number of control points in the current breakpoint segment, here denoted
by p. Leaf nodes containa-vectors corresponding to given c-index. As a query,
c-indexıs is passed to the tree. Depending on the entries ofıs the tree is traversed
according to v-index expansion as described above. For example: assume that
we want to store blossoms of degree 4 B-spline. The c-indexı2 ∈ C ′

2(4, 4) =
(2, 0, 1, 1) is expanded into v-index~ı2 ∈ V ′

2(4, 4) = (2, 2, 4, 5). We enter the tree
at the root node on2nd position of the array. We descend into the child node
which represents the entry “2”. Proceeding this way after four steps we arrive at
the leaf node which corresponds to c-index(2, 0, 1, 1), or equivalently, the sorted
v-index(2, 2, 4, 5). At the leaf nodes, thea-vector that corresponds to the blossom
with arguments(u2, u2, u4, u5) is found and returned as an answer to the query.
Note that the tree is initialized by simply allocating the root node forp entries.
The figure 4.3 shows the traversal of the C-Tree form = n = 4 ands = 2, the
solid arrows mark the way along the tree.

The storage requirements for a Multi-index tree are as follows: we need an ar-
ray of sizep at the root node, which hasp children each of sizem. All subsequent
nodes havem children, i.e. there are roughlyp + pm + pm2 + pm3 + . . . + pmn

entries, thus, there are circaO (p.mn−1) auxiliary “administration” elements in ad-
dition to the intrinsic entries. This applies if we pre-compute and store all unique
products and blossoms ever required. However, we only need to store products
and blossoms for two neighboring segments at a time: this reduces the memory
cost to approximatelyO (mn−1) which is acceptable for small numbersm andn.
Recall thatm equals the degree of the inner B-spline curveG andn is the sum of
the polynomial degrees of the surface. These values are typically small, such as
m = 3 andn = 6, for example.

4.3.4.2 Optimal utilization of Multi-index trees

We use the internal (administration) nodes of the Multi-index tree to speed up the
computation of blossoms: Assume that we wish to compute and store all unique
blossomsfI(ui1 , . . . , ui4), such that0 ≤ ij ≤ m for 1 ≤ j ≤ 4. Further assume,
without loss of generality, that the blossom arguments are sorted in ascending
order i.e.ui1 ≤ ui2 ≤ ui3 ≤ ui4. Consider the triangular scheme for evaluation of
a-vectors containing the generalized B-spline basis functions, §4.1.5, eq. 4.10:

64 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

an−1
I−n−1(ui1 , ui2 , uix , uiy)

...
... a1

I−1(ui1 , ui2)

an−1
I (ui1 , ui2 , uix , uiy) · · · a1

I(ui1 , ui2) a0
I(ui1) = 1

↓ ↓ ↓
an−1 a1 a0

Generally, the entries at(j + 1)-th level are computed as a linear combination of
coefficients fromj-th level. At each level an intermediatea-vector is computed;
its entries are thea-coefficients in the current column of the triangle. Since we
iterate over all combinations of the blossom arguments(ui1 , . . . , ui4) many iden-
tical intermediatea-coefficients are computed more than once. For example the
coefficients in the first two columns of the triangle are required for all blossom
f(ui1 , ui2 , uix , uiy) where1 ≤ x, y ≤ 4. Therefore, we store the intermediate
a-coefficients at the corresponding internal nodes of the Multi-index tree. All
children of an internal node re-use the precomputed coefficient from their parent
node.

We conclude that this leads to the same result as Mann’s optimal version of
the composition algorithm for Bezier polynomials, see [53]. Translated to our
terminology, he used a specific ordering of c-indices in order to achieve an optimal
utilization of intermediatea-vectors. The term “optimal” was interpreted in the
sense that there is no other algorithm which would compute all required blossoms
with less linear combinations.

4.4 Practical notes and some results

The formula 4.28 can be directly converted into computer code. Although in both
cases the products can be computed on the fly, it is not always the best choice.
It depends on the product computation method: if “direct” methods (1. and 2.
from section 4.3.2) are applied then there is no need for a temporary storage of
the products. If the 3rd method is used, we need to choose from the inverse-
matrix method and the back-substitution method. The former case requires only
storage of the inverse matrix, the values of the products can be computed on the
fly. In the latter case, the LU back-substitution must be applied to all right-sides
simultaneously; therefore, one has to store all unique products in a column-major
matrix along with corresponding v-indices and the bandwidth information.

With regard to blossoms, we compute all uniquea-vectors for each parametric
direction and store them in two Multi-index trees. According to eq. 4.28, for each

4.4. PRACTICAL NOTES AND SOME RESULTS 65

pıs , we compute valid pairs ofus andvs for currentıs. Then trees is queried for
a-vectors corresponding to currentu andv. Finally, the outer product update

A← Aıold
+ pınew · aT

ınew→u,v

is performed; note, that the effort of explicit concatenation ofau andav into au,v

can be saved if it is built implicitly during the outer product update.

4.4.1 Run-time performance

The algorithm consists of three significant components:

1. computation of products, denoted byT1

2. computation of blossoms (T2)

3. the outer products updates (T3)

In the following we will consider the run-time performance of the curve-surface
composition. LetF be a B-spline surface andG the domain curve. The algorithm
has following parameters:

variable meaning

p size ofG′

d degree ofG′

k, l degrees ofF in u andv parametric directions
m, n sizes ofF in u andv

The effort required forT1 andT2 can be estimated according to the analysis
from section 4.3; Note, thatm andn do not appear in the combinatorial formulae –
the computation of B-spline blossoms is always local and depends only on the
polynomial degree of the surface. The knot-line density, and thus, the size of
the surface is indirectly reflected by the factorp: it increases with the number of
knot-lines intersections with the domain curveG, as described in §4.2.3. Results
for typical values ofp, k, l andd are shown in figure 4.42: as expected, the run-
time of the algorithm depends almost linearly onp, as eq. 4.22 predicts. The
number of unique products per segment is determined by the binomial coefficient(

d+k+l
k+l

)
; i.e. it grows dramatically with growing degrees of the inner and outer

functionsd andk + l, as illustrated by the graphs in fig. 4.4(b)-(c). Fortunately,
in practical applicationsG andF will rarely have degree higher than cubic. On

2All performance test in this thesis were executed on a 750 Mhz Athlon PC with 128 MB
dynamic memory available.

66 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

the other hand,p can grow very rapidly; note that the surfaceF is refined in order
to generate new degrees of freedom for the surface. By the variation diminishing
property of planar B-spline curves, in worst case, each new knot-line ofF can
introduce order ofd new knots per segment inG.

Compared to the DeRose’s original composition algorithm, the only additional
operation is the summation of outer products in equation 4.28. An outer product
update involves an amount of work which is quadratic in number of non-zeros
in both vectors. The number of required outer product updates is determined by
number of unique products. As we have shown, the density (number of non-
zero entries compared to the size of the vector) of both argument vectors will
be, typically, small: The density ofa is proportional to the ratiok.l

m.n
. Similarly

density ofp is proportional tod
p
. We stress that using this sparsity information is

essential, otherwise the cost for componentT3 become intractable. An interesting
insight into the run-time behavior of the algorithm is given by comparing the ratio
of time spent for each component. Figure 4.5 demonstrates the dependency ofT1 :
T2 : T3 on growingp. T1 (product computation) is the most expensive component,
followed by the blossom computation (T2). In all run-time test we have used the
interpolation method to compute the products. Largep implicates large size of the
product B-spline and thus a large (but sparse) interpolation problem. Thus, the
most time is spent by LAPACKsGDBLU which delivers the LU decomposition
and performs the back-substitution.

If G is converted to Bezier format before the composition starts, evaluation of
one product is actually a constant time operation – under the assumption that the
factors required to computen-fold product of Bernstein polynomials are precom-
puted. However, there will be approximately factord more blossom and outer-
product updates necessary. In addition, as mentioned in §4.3.2, in this case the
unevaluatedH is obtained in composite Bezier format. The consequence is an
factord higher composition matrix which considerable slows down solving of the
inverse problem, see chapter 7 for more details.

4.4.2 Numerical stability and shape of the composition matrix

The numerical stability of the algorithm is influenced by the errors caused in its
three components. The error in the coefficients of the productp depends on the
method chosen for products computation; since the former two methods include
knot removal, their numerical stability will depend on the density and regularity of
the merged knot vector ofG. Basically the same applies to the third method – the
overall precision of the interpolation matrix is also influenced by the regularity
of the knot vector. The blossom evaluation is as stable as the de Boor algorithm
itself; there is a danger of number cancellation when computing the factorsα in
formula 4.7 for irregular knot vectors. The third component are the outer product

4.4. PRACTICAL NOTES AND SOME RESULTS 67

updates. This operation accumulates the product of errors inpi and aj in the
elementcij. Though the errors are small, consider, that there are thousands of
outer product updates even for moderate values ofp, d, k and l. In general, the
error in each entry in the composition matrix will be proportional to how many
times it was updated.

It follows from the above considerations that the numerical precision is primar-
ily influenced by the parametrization and shape of the “merged” curveG. Recall
that each intersection ofG with a knot-line ofF generates a breakpoint knot in
G. SinceG may cross the knot lines ofF in arbitrary ways it is not possible to
avoid irregular knot intervals. To see the influence on the numerical stability of
the algorithm, let us review the concept of “composition matrix” from a different
perspective:

Recall that the linear transformationH = AF delivers the control points of
the curveF (G(t)) = F (u(t), v(t)) for arbitrary values ofF. As above, let the
sizes of the surface bem andn. Introducem×n vectorsfI of sizem×n such, that
I-th vector has zero entries everywhere except at positionI wherefI = 1. Then
eachfI corresponds to coefficients of a 2-dimensional basis function ofF (u, v):

bk,τ
i (u) bl,υ

j (v) = bk,τ,l,υ
I (u, v) = bT

u,vfI ; I = i + jm

The multiplication ofA by vectorfI yieldsaI – theI-th column ofA. It follows
that each column ofA contains control points of the B-spline:

bk,τ,l,υ
I (u(t), v(t)) = bT

πaI

In other words, each column of matrixA represents a decomposition ofG onto
basis functions ofF . Each basis function is non-zero only in certain interval of
the domain rectangle. From this we conclude that the number of outer-product up-
dates involving oneaI will be proportional to the number ofGs segments which
lie in the non-zero interval ofbk,τ

i (u) bl,υ
j (v). Therefore, in order to avoid accu-

mulation of errors one should choose the curveG as simple as possible. Figure 4.6
on the right shows the graph of the error function

εij(t) =
∫

t

∣∣∣bk,τ
i (u(t)) bl,υ

j (v(t))− bT
πaI

∣∣∣ dt; I = i + jm (4.29)

for the domain curveG shown in figure 4.6 on the left; We see that even for such
“unreasonable” curves the errors stay inside of acceptable limits. The sparsity
pattern of the matrix can be predicted from this consideration. IfG crosses the
region where a particular basis function has influence, the corresponding column
will have non-zero elements. Note that the non-zeros in each column will always
occur in strips of certain length (G can “leave and enter” non-zero interval of a
basis function several times).

68 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

p

T
im

e
[s

]

1 2 3 4 5 6 7 8 9 10 11
0

100

200

300

400

500

600

d

T
im

e
(s

)

6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

k+l

T
im

e
(s

)

Figure 4.4: The time in seconds spent for computing the composition matrix in
dependency on factors (top figure)p, (d = 2, k + l = 6), (middle) d, (p =
11, k + l = 6), (bottom)k + l, (d = 2, p = 10).

4.4. PRACTICAL NOTES AND SOME RESULTS 69

50 70 90 110 130 150 170 190
0

0.5

1

1.5

2

2.5

3

3.5

p

T
1 +

 T
2 +

 T
3

T
1

T
2

T
3

Figure 4.5: Comparison of run-times spent for computation of products (T1), blos-
soms (T2), and outer product updates (T3).

5

10

15

20
5

10

15

20

0

0.5

1

1.5

2

2.5

x 10
−8

Figure 4.6: Element-wise error plot of the functionεij(t);∀i, j, as defined in
eq. 4.29, for a cubic curve in the domain of a bi-cubic regularly parametrized
B-spline surface with20× 20 control points. The upper Figures shows the curve
G in the domain of the surface; the grid symbolizes the knot-lines of the surface.
The errors are larger (but acceptable) at positions which are influenced by the
rapidly varying part of the curve.

70 CHAPTER 4. COMPUTING THE INCIDENCE CONSTRAINTS

Chapter 5

Tangency constraints

This chapter covers tangency constraints with emphasis on efficient algorithmic
implementation. We show how to enforce the tangent plane continuity of two
surfaces meeting at an arbitrary curve incident on both surfaces. The coefficients
of the system of linear equations in the unknown degrees of freedom of the surface
are obtained using the curve-surface composition matrix.

5.1 Problem definition

The problem is illustrated in figure 5.1: given are the curveG(t) = (u(t), v(t)) in
the domain of the B-spline surfaceF (u, v), and the vector field curve~N(t) which
represents the required direction of the surface normals. The task is to determine
the dependent control points of the surfaceF such that the surface normals along
F (G(t)) are collinear with~N(t).

The sufficient condition for a surface to interpolate the direction of given nor-
mals is that the scalar product of the following two curves is zero:〈

d

dt
F (G(t)) , ~N(t)

〉
= 0;∀t (5.1)

Here d
dt

F (G(t)) denotes the differentiation w.r.tt; The first derivative function
of a parametric curve the, so-called, hodograph and is obtained by applying the
chain rule for differentiation toF (G(t)):

d

dt
F (G(t)) =

d

dt
u(t) · ∂

∂u
Fu,v +

d

dt
v(t) · ∂

∂v
F (u, v)

The hodograph curve a linear combinations of partial derivatives ofF which con-
stitute the tangent plane at that position. Therefore, each vector perpendicular to
the hodograph ofF (G(t)) will also be perpendicular to the tangent plane ofF .

71

72 CHAPTER 5. TANGENCY CONSTRAINTS

G(t)

u

v

F(G(t))

F(u,v)

Figure 5.1: The tangency constraint: The task is to enforce orthogonality of the
surface normals (this arrow) and the tangent of the surface curveF (G(t)) shown
as dotted thick arrow.

Two vectors are perpendicular if their scalar product is zero, thus, the above con-
dition will enforce the surface to take in desired direction alongF (G(t)). Scalar
product of two B-spline curves is a B-spline function, see [23] or [24], for exam-
ple. A B-spline function is zero everywhere, if all its coefficients are zero, hence,
on the right-hand side of eq. 5.1 we must have a B-spline polynomial with all
coefficients equal zero. We need to extract the relationship between thee control
points ofF and the zero coefficients of the scalar product function. Thus, we are
looking for a matrixB such, that〈

d

dt
F (G(t)) , ~N(t)

〉
= 0⇐⇒ BF = 0

5.2 Differentiation operator in matrix form

The first task is to express the hodograph curved
dt

F (G(t)) as a function of the
control points of surfaceF . We have shown in previous chapter that given the
composition matrix forF andG the control points ofH = F (G(t)) can be found
byH = AF. B-splines are closed under differentiation, i.e. a derivative of a (non-
rational) B-spline curve or is again a B-spline curve of lower degree. Let be given

5.3. COMPUTING THE SCALAR PRODUCT 73

a B-spline basisbt = {bd,τ
i (t) : 0 ≤ i < n} for the curveH(t) =

∑n
i=0 bd,τ

i (t) Hi.
After few manipulations of the de Boor formula [41] the following recurrence
yields the control pointsH(r)

i of the order-r hodograph ofH:

H
(r)
i = δr

i ·
(
H

(r−1)
i+1 −H

(r−1)
i

)
; 0 ≤ i < n− r

δr
i = d−r+1

τi+d+1−τi+r

(5.2)

We write the first differentiation step (i.e.r = 1) in matrix format as follows:
we set up a(n − 1) × n matrix D(1) containing the coefficients−δ1

i andδ1
i in

the i-th row at positionsi − 1 andi and apply it to the control pointsH. This is
done recursivelyr times, using the result from previous step yielding a sequence
of matrices such that

H(r) = D(r) · · · D(1)︸ ︷︷ ︸
D(r)

H

For univariate B-splines the differentiation matrixD(r) hasr + 1 entries in each
row.

MatricesD(r) andA have compatible sizes; hence we can write:

H(r) = D(r)H = D(r)AF

which yields the required dependency between ther-th derivative of a surface
curveH = F (G(t)) and DOFs of the surface. The degree and the size of the
derivative curve reduces by one with each differentiation, i.e. the resulting B-
spline has the the degreed−r and sizen−r. The knot vector ofr-order derivative
is obtained by truncatingr knots at the beginning and at the end of the original
knot vector. Hence the basis for ther-th order hodograph of the B-spline isb(r)

t =
{bd−r,τ ′

i (t) : 0 ≤ i < n− r} whereτ ′ denotes the “truncated” knot vector.
Differentiation in matrix form is also possible for B-spline surfaces. One pro-

ceeds exactly as in univariate case by differentiating each parametric direction
separately. Two-variate differentiation matrices will be required in chapter 6.

5.3 Computing the scalar product

The symbolic scalar product of two curves, one in “evaluated” the other in “un-
evaluated” format is more difficult: given the vector fields curves~N(t) and~T (t) =
d
dt

F (G(t)) = D(1)AF we need to extract the dependency of their scalar prod-
uct on the control points of the surfaceF . In the following, we assume without
loss of generality, that both curves are defined on the same B-spline basis, i.e.

74 CHAPTER 5. TANGENCY CONSTRAINTS

they have the same size, degree and knot vector.1 The basis is denoted by the
set of basis function{bd,τ

i (t) : 0 ≤ i < n}, or in vector formatb such that
bi = bd,τ

i (t) : 0 ≤ i < n.
First, we split both operands into their components in each spatial dimension;

this yields in matrix notation

~N(t) =
[

nx(t) ny(t) nz(t)
]

= bT
[

nx ny nz

]
and

~T (t) = d
dt

F (G(t)) =
[

tx(t) ty(t) tz(t)
]

= bT
[

tx ty tz

]
= bTD(1)A

[
fx fy fz

]
According to previous paragraph the above formula applies the differential oper-
atorD(1) to establish the connection between the derivative curve and the DOFs
of the surface. The inner product of two curves is in this expanded notation:〈

~N(t), ~T (t)
〉

= nx(t) · tx(t)︸ ︷︷ ︸
sx(t)

+ny(t) · ty(t) + nz(t) · tz(t) (5.3)

Since we already have the dependency between the control points of the hodo-
graph curve and the control points of the surface, the next step will be to express
a product of two B-spline functions in unevaluated format - as a function oftx,
ty andtz . We will consider only the under braced termsx(t) from the above
equation. Note that, formally, a curve in matrix notation represents a product of
two matrices. We can transpose this matrix product which yields(

bTnx

)T
= nT

x b

This allows us to write the termsx(t) in tensor product form which nicely sepa-
rates the parametersnx and the unknownstx:

sx(t) = nT
x

(
bbT

)
tx

= nT
x Pttx

(5.4)

1In principle, the procedure described here also works for different B-spline bases of~N(t) and
~T (t), with a slightly more complicated notation.

5.3. COMPUTING THE SCALAR PRODUCT 75

The termP is a square symmetric matrix2 with polynomial entriespij(t) =

bd,τ
i (t) · bd,τ

j (t) : 0 ≤ i, j < n; i.e. the elementpij(t) is the product ofi-th andj-th

basis function of~N(t) and~T (t). Since entries of the vectornx are constant scalar
values we carry out the multiplicationnT

x Pt. This requires additional notation:
the product of two B-spline basis function is a B-spline function of polynomial
degree2d. Denote the coefficients ofij-th product bypij and its B-spline basis
by bT

π . The degree of the product B-spline is2d. In the following we denote the
knot vector of the product byπ; it is determined as described in §4.2.3. Then the
ij-th entry ofPt is a B-spline

∑m1
k=0 pij

k b2d,π
k (t) = bT

πpij. Let m1 be the size of
the product B-splinepij(t) and denote the size of the operand B-splines~N(t) and
~T (t) by m2. The product expands into

nT
x Pt = nT

x


bT

πp11 · · · bT
πp1m1

...
...

bT
πpm11 bT

πpm1m1



= bT
π


m2∑
i=1

nx
i p

i1

︸ ︷︷ ︸
x1

· · ·
m2∑
i=1

nx
i p

im1

︸ ︷︷ ︸
xm2


= bT

π X

(5.5)

The matrixX consists ofm2 column vectorsxi : 1 ≤ i ≤ m2. Inserting the above
result into eq. 5.4 and comparing compatible terms yields the control points of the
x-component of the scalar product:

Sx(t) = bT
π sx = bT

πXtx ⇒
sx = Xtx

The termssy(t) andsz(t) in eq. 5.3 are obtained in exactly the same manner;
we only replacenx by ny andnz which yields the matricesY andZ. sx(t), and
the corresponding termssy(t) and sz(t), are B-spline polynomials on basisbπ

with scalar control pointssx, sy andsz. Hence, we can write eq. 5.3 in matrix
notation 〈

~Nt, ~Tt

〉
= bT

π · [sx + sy + sz] = bT
π · s (5.6)

According to the stated orthogonality condition the vectors must have all entries
equal zero. Thus, the equations which connect the control points of the tangent

2If ~Nt and~Tt have different B-Spline bases the matrixBt is neither square nor symmetric

76 CHAPTER 5. TANGENCY CONSTRAINTS

curveT and the scalar product are:

0 = s = [sx + sy + sz]
= [Xtx + Ytx + Ztx]

=
[

X Y Z
]
·

 tx

ty

tz


After replacingtx (and, accordingly,ty andtz) in the above equation bytx =
D(1)Afx we obtain the relationship between control points of the surface and the
scalar product:

0 =
[

X Y Z
]  D(1)A

D(1)A
D(1)A


 fx

fy
fz

 (5.7)

5.4 Practical notes on implementation

We see that the mathematical tools used in this section perfectly match our pre-
vious efforts. What remains, are, mainly, matrix operations. This part should not
be ignored. Consider that the matricesX, Y, Z and consequently the matrix of
the resulting linear system can be quite large: the sizes of exact curves~N(t) and
~T (t) are in the order of the “height” of the composition matrix. The size of their
product (reflected by the size of matrixP) is order of2d larger, whered is the
degree of~N and~T . The height of composition matrixA usually varies in order of
several hundred rows, the number of columns is determined by the size of the sur-
face. In eq. 5.7, the degrees of freedom of the surface in each spacial dimension
are no longer independent – the height of the resulting matrix is, in general, factor
3. (2d) larger than the “usual” sizes of the composition matrix. If incidence and
normal constraints are stated simultaneously – and in the most cases they are – the
coordinates in each spacial dimensions have to be separated in both constraints.
The full size of such systems quickly reaches thousand and more rows for one
curve constraint. In order to speed up the computation we exploit the following
properties:

Properties of B-spline products: When evaluating matricesPt andX, Y, Z we
utilize the properties of B-spline products analyzed in §4.3.2. Ifd is the
polynomial degree of~N(t) and ~T (t) then the matrixPt is symmetric with
upper bandwidthd – all productspij(t) such, that|i− j| ≥ d + 1 are zero.
The vectorspij are also sparse with predictable bandwidth which consider-
able accelerates the evaluation of linear combinations in eq. 5.5.

5.4. PRACTICAL NOTES ON IMPLEMENTATION 77

Approximation of ~N(t) by a lower degree curve: The polynomial degree of the
exact normal curve~N is quite high, in general, higher than the degree of ex-
act ~T . In practice,~N can be usually approximated by a lower degree curve
with less knots without significant loss of accuracy. Therefore, we apply
degree reduction and knot removal to~N(t) before entering the algorithm.

Faster implicit evaluation of auxiliary matrices: The matricesAx, Ay, Az and
D(1) (eq. 5.7) need not to be computed explicitly. Instead we have hard
coded the evaluation of matrix products(

XD(1)
)
A

from eq. 5.7 such, that all three blocks of the final matrix are obtained si-
multaneously.

78 CHAPTER 5. TANGENCY CONSTRAINTS

Chapter 6

Variational constraints

In this chapter we discuss efficient methods to obtain the Gaussian normal equa-
tions resulting from the, so-called, quadratic surface functionals. The most fre-
quently used surface functionals are listed. The structure of these expressions is
analyzed which results in a unified algorithmic approach to obtaining the Gaussian
normal equations for all types of functionals in an elegant and efficient manner. In
particular, we discuss hierarchical decomposition of derivatives of B-splines and
fast methods for integrating products of B-splines. Results regarding the run-time
performance are presented.

6.1 Quadratic error functionals for surfaces

The problem is stated as follows: given is a B-spline surface

S(u, v) : Ω→ R3, Ω ⊂ R2

determined by its control pointsS ∈ Rn×3. One considers an objective function

f : R3 → R1, f = f (S(u, v))

and seeks values for the control points such thatf takes in minimal value over the
entire domain of the surface. This is achieved by minimizing a surface functional

Φ(S) =
∫
Ω

f (S(u, v)) ∂u∂v

with respect to degrees of freedom of the surface. Generally, one proceeds as
follows:

• Select an appropriate type of functionf (see below)

79

80 CHAPTER 6. VARIATIONAL CONSTRAINTS

• Set up the equations which restrict the functionalΦ to take in minimal value;
We require that the derivatives ofΦ with respect to the degrees of freedom of
the surface must equal zero. This yieldsn equations inn unknown control
points:

∂

∂Si

Φ(S0, . . . , Sn) = 0, 0 ≤ i < n (6.1)

• Find the zero set of 6.1 yielding the required control points of the surface.

A frequently used approach is to minimize functionals consisting of squared sums
of mixed surface derivatives, see [32], for example. These so-calledquadratic
surface functionalshave the advantage that the normal equations 6.1 are linear in
the control points of the surface.

The most frequently used functionals are shown in table 6.1. In the table and
throughout the following text we use a simplified notation for partial derivatives
of a B-spline surfaces. We define a differentiation operator

Dr,s : Ω→ R3, Dr,sS(u, v) =
∂r+s

∂ur∂vs
S(u, v)

with the convention that forr = s = 0 the differential operatorD0,0 equals the
identity transformation, i.e. it has no effect onS(u, v). Using this notation, the
left column of table 6.1 shows the orders of required surface derivatives. The
rightmost column describes the property of the surface which is minimized by the
expression in the middle column.

6.2 Matrix notation for surface functionals

Consider, for example, the functional which minimizes the thin plate energy of a
surfaceS(u, v). The expression to be integrated is:

f(u, v) =
(
D2,0S(u, v)

)2
+
(
D1,1S(u, v)

)2
+
(
D0,2S(u, v)

)2
(6.2)

Other quadratic functionals are variations of the above expression: they arise from
the summation of squared partial derivatives of orders 1, 2 or 3. Often, linear
combinations of these expressions are used.

We break down all quadratic functionals of the this type into summations of
terms ∫

u

∫
v
(Dr,sS(u, v))2 ∂u∂v; 0 ≤ r ≤ 3, 0 ≤ s ≤ 3 (6.3)

We need to compute definite integral of the square ofDr,sS(u, v) and extract
the relation between its value and the control points of the surface. This can be
accomplished easily if we re-write equation 6.3 in matrix format:

6.2. MATRIX NOTATION FOR SURFACE FUNCTIONALS 81

r, s Φ =
∫
Ω f (S(u, v)) ∂u∂v Property

r, s = {(1, 0), (0, 1)} f =
(
D1,0S(u, v)

)2 +
(
D0,1S(u, v)

)2
Area

r, s = {(2, 0), (1, 1),
(0, 2)}

f =
(
D2,0S(u, v)

)2 +
(
D1,1S(u, v)

)2(
D0,2S(u, v)

)2 Thin
plate

energy

r, s = {(2, 0), (0, 2)} f =
(
D2,0S(u, v) + D0,2S(u, v)

)2 Mean
curvature

r, s = {(3, 0), (2, 1),
(1, 2), (0, 3)}

f =
(
D3,0S(u, v) + D2,1S(u, v)

)2 +(
D0,3S(u, v) + D1,2S(u, v)

)2 Variation
of

curvature

Table 6.1: Frequently used quadratic surface functionals which can be easily ob-
tained by the presented algorithm.

Let {bk,τ
i (u)bl,υ

j (v) : 0 ≤ i < m, 0 ≤ j < n} be the set of 2-variate basis
functions of the surfaceS(u, v). The partial derivative of a B-spline surface is
obtained by differentiating each basis function with respect to variablesu andv:

Dr,sS(u, v) = Dr,s
n∑

j=0

m∑
i=0

Sijb
k,τ
i (u)bl,υ

j (v) =
n∑

j=0

m∑
i=0

SijD
rbk,τ

i (u)Dsbl,υ
j (v)

Next, we define a vectorl(r,s)u,v as follows:

lr,sI (u, v) = Drbk,τ
i (u)Dsbl,υ

j (v) : I = i + mj, 0 ≤ i < m, 0 ≤ j < n

The square of the surface derivative becomes in matrix format:

(Dr,sS(u, v))2 = ST lr,su,v

(
lr,su,v

)T

︸ ︷︷ ︸S
The under braced term in the above equation represents an outer product of two
vectors, which yields a square matrix of the same size. We denote it by

Lr,s
u,v = lr,su,v

(
lr,su,v

)T

82 CHAPTER 6. VARIATIONAL CONSTRAINTS

The entries ofLr,s
u,v are two-variate B-spline functions

lr,sIJ (u, v) = (lr,sI (u, v)) · (lr,sJ (u, v)) , 0 ≤ I < mn, 0 ≤ J < mn (6.4)

Substituting into eq. 6.3 yields∫
u

∫
v (Dr,sS(u, v))2 ∂u∂v =∫

u

∫
v

(
STLr,s

u,vS
)
∂u∂v =

ST
(∫

u

∫
v Lr,s

u,v∂u∂v
)
S = ST (Lr,s)S

(6.5)

The matrixLr,s ∈ Rmn×mn contains the values of definite integrals from eq. 6.4
evaluated over the domain of the surface. I.e. theIJ-th entry ofLr,s is obtained
by computing:

lr,sIJ =
∫

u

∫
v
lr,sIJ (u, v)∂u∂v (6.6)

Equation 6.5 is a quadratic form inS, hence, its normal equations are:

Lr,sS = 0

Settingr, s = {(2, 0), (1, 1), (0, 2)} yields the terms which are necessary to as-
semble the normal equations for the thin plate energy (TPE) minimizing func-
tional, eq. 6.2:

L2,0S + L1,1S + L0,2S =
(L2,0 + L1,1 + L0,2)S = LTPES = 0

(6.7)

The other surface functionals are obtained analogously: we just set the values
r ands according to table 6.1, obtaining the matricesLr,s. Hence, an efficient
implementation of this algorithm is required for different values ofr ands.

6.3 Implementation

Our implementation is based on following ideas:

• We compute all combinations of products of B-splines required in eq. 6.4.
We integrate in each variable separately and multiply the values of univari-
ate integrals according to formula 6.4

• We use the recursive definition of the derivative of a B-spline basis func-
tion which defines a derivative of a B-spline as a linear combinations of
B-splines of lower degree. We decompose each B-spline that way obtain-
ing a closed formula which delivers the product of B-spline derivatives of
required order.

6.3. IMPLEMENTATION 83

• We integrate products of B-splines symbolically: we compute the B-spline
function which represents the product of two B-splines and determine its
antiderivative function. This is not the fastest method, but it is numerically
stable and sufficiently fast for our application.

The advantage of this approach is that the computation all quadratic functionals
is put on a common basis; basically, we compute the matricesLr,s for required
order of derivatives, see eq. 6.5. For example, derivatives of orders0 ≤ r ≤ 2
and0 ≤ s ≤ 2 are required for the TPE-minimizing functional. Then, the normal
equations of a specific functional are obtained simply by matrix addition, see, for
example, equation 6.7 in previous paragraph.

6.3.1 Computing two-variate integrals of B-splines

In order to compute the two-variate integrals needed in eq. 6.4, we first compute
the univariate products of the basis functions in each variable. That is, eq. 6.6
decomposes into:∫

u

∫
v
lr,sIJ (u, v)∂u∂v =

(∫
u
Drbk,τ

i1 (u)Drbk,τ
i2 (u)du

)(∫
v
Dsbl,υ

j1 (v)Dsbl,υ
j2 (v)dv

)
(6.8)

Thus given the orders of derivatives in each parametric direction the operands of
the above product are computed and stored for all combinations of indices[i1, i2] :
0 ≤ i1 < m, 0 ≤ i2 < m, and[j1, j2] : 0 ≤ j1 < n, 0 ≤ j2 < n. The value of the
two-variate integral, i.e. theIJ-entry of the matrixLr,s is obtained by retrieving
and multiplying the univariate terms corresponding to indicesI = i1 + mj1 and
J = i2 + nj2.

6.3.2 Hierarchical decomposition of B-spline derivatives

Next, we will show how to compute the coefficients of ar-times differentiated
B-spline basis function which is required in formula 6.8. Ther-th derivative of a
B-spline basis function of degreed is defined by the following recurrence:

Drbd,τ
i (t) = δr

i−1 ·Dr−1bd−1,τ
i−1 (t)− δr

i ·Dr−1bd−1,τ
i (t), 0 ≤ i < n− r (6.9)

where

δr
i =

d− r + 1

τi+d+1 − τi+r

with the convention that fori − 1 < 0, δr
i−1 = 0. This can be shown easily by

means of eq. 5.2. To computeDrbd,τ
i (t) one sets:

bd,τ
i (t) =

n∑
j=0

hjb
d,τ
j (t), hj =

{
1 if i = j
0 otherwise

84 CHAPTER 6. VARIATIONAL CONSTRAINTS

The differentiation formula for B-splines (eq. 5.2) is applied which immediately
yields eq. 6.9. The knot-vector of the differentiated B-spline is determined as
explained in §5.2. Thus a derivative of a B-spline basis function is a B-spline
function with coefficients determined from linear combinations of theδ-factors;
For example, the first derivative becomes

D1bd,τ
i (t) = δ1

i−1b
d−1,τ
i−1 (t)− δ1

i b
d−1,τ
i (t) =

i∑
j=i−1

γ1
j,ib

d−1,τ
j (t)

which is a B-spline function fromPd−1,τ with coefficients

γ1
j,i : 0 ≤ j < n− 1 =


δ1
i−1 if j = i− 1

−δ1
i−1 if j = i

0 otherwise

The task is to compute the coefficientsγr
j,i : 0 ≤ j < n − r for all basis

functionsbd,τ
i (t) : 0 ≤ i < n. The following consideration makes this very

efficient: The decomposition advised by the formula 6.9 yields the a triangular
scheme withr-levels:

δ1
i−rb

d−r,τ
i−r

δr−1
i−2 Dr−2bd−2,τ

i−2

· · ·
δr
i−1D

r−1bd−1,τ
i−1 δr−1

i−1 Dr−2bd−2,τ
i−1

Drbd,τ
i δr

i D
r−1bd−1,τ

i δr−1
i Dr−2bd−2,τ

i δ1
i b

d−r,τ
i

The decomposition proceeds from left to right: the left-most vertex of the triangle
is the required B-spline derivative. It decomposes into linear combinations of B-
splines of lower degree as prescribed by eq. 6.9. We proceed in this manner until
the differentiation stops on the right side of the triangle where the B-spline basis
functions which constitute the basis ofDrbd,τ

i (t) are found. We see that the terms
from lower levels are re-used for computing several neighboring derivatives. For
example, if one draws the triangle forDrbd,τ

i−1 the termδr
i−1D

r−1bd−1,τ
i−1 and its

ancestors will also be contained in its decomposition. Traversing the triangle in
the other direction (from right to left) we obtain the coefficients of the derivative
B-spline by collecting the appropriateδ terms. This yields the coefficients of the
derivative B-splineDrbd,τ

i (t) defined in terms of basis functions of degreed− r:

Drbd
i (t) =

i∑
j=i−r

γr
j,ib

d−r
j (t)

6.3. IMPLEMENTATION 85

where coefficientsγr
j,i are determined for giveni, d andr by collecting the cor-

responding factorsδ during the traversal. Finally, the substitution into eq. 6.8
yields:

∫
t

(
Drbd,τ

i1 (t) ·Drbd,τ
i2 (t)

)
dt =

∫
t

(∑i1
k=i1−r γr

k,i1
bd−r,τ
k (t)

) (∑i2
l=i2−r γr

l,i2
bd−r,τ
l (t)

)
dt =

∑i1
k=i1−r

∑i2
l=i2−r γr

k,i1
γr

l,i2

(∫
t b

d−r,τ
k (t)bd−r,τ

l (t)dt
)

(6.10)

6.3.3 Integrating products of B-splines

It remains to mention how to integrate products of B-splines. This is profoundly
discussed in [81], for example. Basically, there are three possibilities:

1. Evaluate the product using one of the three methods from section 4.3.2,
compute the antiderivative function of the resulting B-spline [68, 23], and
evaluate the definite integral.

2. Use the recurrence for integrating a product of B-splines as described by
De Boor, Lyche and Schumaker in [6].

3. Integrate by parts, as proposed by authors of [81]. This method is the fastest
of the three but it suffers from numerical instability for B-splines with high
degree and dense and uneven knot vectors.

The discussion in the abovementioned papers concludes that the first and second
methods are numerically stable but slow. Our experiments with the third method
(introduced in that work) have shown that the integration by parts tends to be
numerically unstable already for B-splines of relatively low degree (such as 4 or
5) and for B-splines with irregularly spaced knot vectors. Since such B-spline
occur very frequently in our application we have decided to use the first method.

The 1-st method is the easiest from the implementation point of view – if
efficient symbolic computation of B-spline products is available. We apply the
apparatus developed in chapter 4, §4.3.2: the product of B-splines contained in
the last term of eq. 6.10 has following properties:

1. it is symmetric, i.e.
(∫

t b
d−r,τ
k (t)bd−r,τ

l (t)dt
)

=
(∫

t b
d−r,τ
l (t)bd−r,τ

k (t)dt
)

2. it is local:
∫
t b

d−r,τ
k (t)bd−r,τ

l (t)dt

{
6= 0 if max k, l −min k, l ≤ d− r
= 0 otherwise

86 CHAPTER 6. VARIATIONAL CONSTRAINTS

Thus only a fraction of all possible combinations of products will need to be com-
puted. We obtain the product B-spline functions, compute their anti-derivative
function according to formula for integration of B-splines (see [41, 25, 23], for
example) and evaluate the definite integrals. Finally, the matrix representing the
normal equations of a specific surface functional is obtained by back-substitution
into eq. 6.8 and addition of the intermediate matricesLr,s.

6.4 Results and practical notes

We conclude with an example of the run-time performance of the algorithm for
typical input parameters. Although, theoretically, our method is not the fastest one
using the properties of combinations of B-spline products it performs very well
even for very dense surfaces. Typically, the degrees of the involved B-splines will
be low. The important criterion is how the increasing number of control points
(dimension of the spline spaces{bk,τ

i (u)bl,υ
j (v) : 0 ≤ i < m, 0 ≤ j < n}) will

influence the performance of the algorithm; this is shown in fig. 6.1 on the top.
The dependency on the degree of the B-spline basis (the univariate case) is shown
in the lower figure 6.1 – we see that the consumed time grows very rapidly.

Note: The expression
∫
t b

d,τ
i (t).bd,τ

j (t)dt represent the algebraic scalar product of
two B-spline functions. In certain applications it is useful to have an ef-
ficient implementation of this operation at hand. For example, in [45],
Kazinnik and Elber have used wavelet-based decomposition of B-splines
in order to get a multi-resolution representation of a curve or surface, for
which scalar products of B-Splines are required. Further applications are
e.g. continuous approximation or symbolic evaluation of continuousL2

norms of B-Spline functions.

6.4. RESULTS AND PRACTICAL NOTES 87

0 500 1000 1500 2000 2500
10

−2

10
−1

10
0

10
1

m.n

lo
g(

T
im

e)

0 5 10 15 20 25 30
10

−2

10
−1

10
0

10
1

10
2

d

lo
g(

T
im

e)

Figure 6.1: The upper figure shows the run-time cost for computing the matrix
LTPE (eq. 6.2) in dependency on the size of a b-cubic B-spline surface. The lower
displays the time spent for computing the integrals of univariate products (eq. 6.8)
in dependency on the degree of the B-spline basis with constant sizen = 30. The
graphs are plotted in semi-logarithmic scale on they-axis.

88 CHAPTER 6. VARIATIONAL CONSTRAINTS

Chapter 7

Linear constraint solving I

In this chapter we discuss the problem of solving the linear constraint problems
defined in terms of equations obtained in chapters 5, 6 and 7. The problem to
determine a surface from one or several arbitrary curves generally belongs to the
category of, so-called,ill-posed inverse linear problems. Although the theory of
ill-posed problems is well developed in the literature, it is rarely applied for solv-
ing surface interpolation problems. One rather avoids to state such problems at
all – which leads to considerable restrictions on surface topology and the shape of
permitted curve constraints. This chapter demonstrates that under certain assump-
tions ill-posed surface interpolation problems can be safely solved. Section 7.2
briefly reviews the theory of ill-posed problems and introduces the idea of “reg-
ularization”. We have used a powerful algebraic tool for solving ill-conditioned
system of equations, the Singular Value Decomposition (SVD). In section 7.3 we
describe a SVD-based method which safely reveals the rank of the ill-conditioned
system. Here, the, so-called,surface aliasing effectis addressed which occurs
whenever a B-spline surface is deformed along general curves. Two “anti-aliasing
methods” which suppress or completely remove the aliasing are described in chap-
ter 8.

7.1 Notation

In this and the following chapters a slightly different notation for linear systems
of equations will be used. A system of linear equations is defined by a mapping:

A : Rm → Rn, Af = h, A ∈ Rm×n, f ∈ Rm, h ∈ Rn (7.1)

A solution of the linear system is a defined as inverse mapping:

A−1 : Rn → Rm, A−1h = f , A ∈ Rn×m (7.2)

89

90 CHAPTER 7. LINEAR CONSTRAINT SOLVING I

The change consists in using solely vectors to denote the unknowns and the
parameters of a linear system. The reason for this change is to have a unified
notation for all types of constraints: generally, we simultaneously solve systems of
equations consisting of incidence, tangency and variational constraints. Moreover
we wish to solve several curve constraints foronesurface simultaneously. Thus
given a surface and constraints affecting it the actual constraint solving is done in
three steps:

1. Compute the matrices for required constraints.

2. Concatenate the matrices and parameters vertically yielding the global ma-
trix A and the global rights hand side vectorh in eq. 7.1.

3. Solve the linear system (eq. 7.2) obtaining the control points of the required
surfacef .

If only incidence constraints are used, the equation system can be solved inde-
pendently for each spacial dimension. I.e., in eq. 7.1 the vectorsf , h are simply
replaced by the matricesF, H (or the vertical concatenation ofHs in case of
several incidence constraints) in our usual notation: each column corresponds to
coordinates in one spacial dimension and the system can be solved for several
parameter vectors (corresponding tox, y andz coordinates) simultaneously. If
tangency and variational constraints are to be solved the spacial dimensions are
no longer independent. Then the vectorf contains thex, y andz coordinates of
the surface control points concatenated vertically as explained in chapter 5.

7.2 Ill-posed problems

The properties of anill-posed inverse linear problemand the difficulties associated
with solving of such problem are easily demonstrated by an example: Consider a
bi-cubic B-spline surface as shown in figure 7.1 with one curve constraint. The
original shape of the curve is shown in dark color. The curve is modified two
times (the bright curves). We seek the control points of the surface such that the
modified curves are interpolated.

In this example, the surface has8×10 DOFs, the curve constraint is defined by
a quadratic B-spline curve with 8 control points in the domain of the surface yield-
ing an exact surface curve of degree 12 and with 72 control points. The equation
system which defines the curve-surface incidence consists of72 equations with80
unknowns; The unknowns are the control points of the surface and the parameters
are the control points of the modified curve.

7.2. ILL-POSED PROBLEMS 91

(a) (b)

Figure 7.1: Demonstrating the ill-posedness of a single curve constraint on a bi-
cubic B-spline surface with80 DOFs. (a): Initial shape of surface, the surface
curveH (dark) and two request curves shown in bright gray. One of the curve is
varying too rapidly and does not satisfy the discrete Picard condition. (b): The
un-regularized solution. Although the surface satisfies the constraint (the smooth
bright curve in the left figure) from the shown control mesh we conclude that this
surface is useless.

The task to solve the associated inverse linear problem. Clearly, the problem
to compute a surface from this curve will be under-determined regardless of the
actual size of the system matrix. Note that we could have inserted arbitrary many
control points into the domain curve which would have increased the “height” of
the system matrix. These additional equations are superfluous; there is only a cer-
tain number of variables which are determined by this constraint. Thus, the tasks
will be:
(1) To identify the subset of equations which safely render the dependency be-
tween the control points of the curve and the surface
(2) to extract those variables (control points) which can be safely determined.

Thus assume we have set up a linear system 7.1 and wish to obtain its so-
lution defined by eq. 7.2. The simplest possibility is to apply pivoted Gaussian
elimination to the normal equations of the above system obtaining a generalized
solution

f = fp + fn (7.3)

92 CHAPTER 7. LINEAR CONSTRAINT SOLVING I

where the first term denotes the subset of those variables (control points) which are
uniquely determined by the specified curve constraint and the second term denotes
an arbitrary translation factor from the null-space ofA. In practice, the surface
editing process is an ordered sequence of steps with an intermediate surface in
each, thus the termfn can be set according to surface from previous editing step.
The solution resulting from Gaussian elimination with pivoting threshold10−4

(which is a very “tolerant” value, much greater than the precision provided by
the floating point unit of the computer) is shown in fig. 7.1(b): Although only
the control mesh of the surface is shown, we may conclude that this surface is
worthless: obviously, we have missed the right moment to stop the elimination
process – the selected pivoting threshold was too small which has caused an un-
proportional growth of certain components inf .

Although one can experiment with different pivoting strategies or with setting
the pivoting threshold to larger values, in general, Gaussian elimination is not well
suited to solve such sets of equations. Apparently, certain equations are close to be
linearly dependent, but the actual rank of the matrix cannot be reliably determined.
The equation system exhibits the typical features of anill-posedproblem:

• The condition number is high. Algebraically, the condition of a linear equa-
tion system is expressed as amount of change in the normed solution‖f‖
in dependence of the changes in parametersh [80, Part III]: an inverse lin-
ear problem eq. 7.2 is well-conditioned if‖A−1‖ is a continuous function
of h – which means that small perturbations ofh lead to small changes of
‖f‖. Otherwise it is ill-conditioned, or ill-posed. Figure 7.1 demonstrates
that: even a small deformation of the constrained curve, in this case, shown
as the smoother bright curve in figure 7.1(a), causes randomly occurring
“wiggles” in the control mesh of the surface.

• The rank of the system matrix is a “noisy” number. This property makes
the difference between just ill-conditioned and an ill-posed problem. E.g.,
when applying pivoted Gaussian elimination one will not encounter a pivot
which is particularly smaller than the pivots in previous elimination steps (in
most cases this would happen when the problem is “only” ill-conditioned).
The values of pivots gradually decay to a small number; hence, there is no
obvious criterion when to stop the elimination.

7.2.1 The Picard condition

The ill-posedness of the linear system is caused by nearly linearly dependent rows
(and columns) in the system matrix; in other words, the chosen linear model,
here obtained from the composition of the B-splines spaces of the surface and

7.2. ILL-POSED PROBLEMS 93

the curve, is not able to safely determine the dependency between the parameters
and the unknown variables. There is a more precise statement than this, the so-
called “Picard condition”, see, e.g. [34], [36]: The modified right-hand side of the
equations system

Af = h′, h′ = h + ∆h

must be “smooth enough to survive the inversion tof ” [36]. It follows that we
cannot expect to obtain a meaningful solution for arbitrary shape of the curve
(determined by its control pointsh′). For example, it is very unlikely that a rea-
sonable surface (with given parametrization and number of control points) which
interpolates the rapidly varying curve shown in figure 7.1(a) will exist. We will
demonstrate the difference between these two cases in more detail in § 7.4.

7.2.2 Regularization of ill-posed problems

The branch of linear algebra which deals with solving of ill-posed problems is
calledregularization. Ill-posed problems occur in many areas of science and engi-
neering; the typical example of anticipated ill-posedness are the Fredholm integral
equations [34] – the vast majority of available literature concentrates on methods
to solve this type of equations. A book which provides a lot practical examples as-
sociated with practical problems in physics is [69]; Many researchers have sought
for efficient and secure methods to obtain a solution of ill-conditioned problems;
we name only few: Golub, Stewart, O’Leary et al. [28, 26, 27] and Hansen et al.,
[35, 12, 38, 37, 10]. One rarely finds a paper which does not deal with Fredholm
equations, nevertheless, the methods are (to certain extent) applicable to arbitrary
ill-posed problems. One reference with connection to CAGD and B-spline surface
interpolation, is Schumaker’s paper [72]. A fabulous reference is Hansen’s survey
on regularization methods [36].

Essentially, ill-posed problems are under-determined due to the uncertainty
about the exact rank of the matrix. The consequence is that that standard methods
for solving inverse linear problems (such as Gaussian elimination or QR factor-
ization) cannot be used in straightforward manner to obtain a solution. The basic
idea of regularization is to remedy this uncertainty by stating an additional con-
dition on properties of the solution in order to improve the rank of the system
matrix. Technically, one selects a so-called “side constraint” which represents
some expected properties of the solution. Then we seek a compromise between
minimizing the residual of the ill-posed equation system and an “optimal” value
of the side constraint. Clearly, once a problem is identified as ill-posed and a side
constraint is introduced, we have to give up the goal to solve the problem exactly,
i.e., we will, in general, not be able to make the residual equal zero. Instead, we
hope to obtain aregularizedsolution which is not too far away from the actual

94 CHAPTER 7. LINEAR CONSTRAINT SOLVING I

requirement that the residual equals zero.
The main difficulty of regularization is to find a good compromise between

the error in the residual and value of the side constraint. In this thesis we will
apply discrete regularization methods based onSingular Value Decompositionof
the model matrix.

7.3 The truncated SVD

The superior tool for analysis of ill-posed problems is the Singular Value De-
composition (SVD) [80, 29, 46, 84]. In this section we will briefly review the
properties of SVD. We will explain how the truncation of the SVD helps to reveal
the rank of the degenerate system of linear equations.

7.3.1 The SVD

Let be given a system of linear equations:

A : Rm → Rn, Af = h, A ∈ Rm×n, f ∈ Rm, h ∈ Rn

The SVD of system matrixA has the formatA = UΣVT . The matricesU, V
are orthonormal andΣ is a diagonal matrix such that

diag(Σ) = σi ≥ σi+1 . . . σmin(m,n) ≥ 0

For well-conditioned non-singular problems all singular valuesσi are non-zero
and the condition numberκ = σ1/σmin(m,n) is small. In case of well-conditioned
singular problem, there is a particulark such thatσk � σk+1 andσi ≈ 0 for
i ≥ k + 1. The “truncation” parameterk corresponds to the rank of the singular
problem. Consider the following partitioning of the SVD matrices:

Uk = [u1 . . .uk] Σk = diag(σ1, . . . , σk) Vk = [v1 . . .vk]

Accordingly, introduce the matrixVk+1 which consists of all(m− k) remaining
columns ofV. The matrix

Ak = UkΣkV
T
k (7.4)

represents the closest rankk approximation of the original matrixA, see, the
before mentioned publications for further details. Thus, instead of solving the
original ill-conditioned problemAf = h we solveAkfk = h by computing

fk = VkΣ
−1
k UT

k h (7.5)

7.3. THE TRUNCATED SVD 95

v
1

v
3

v
2

f

h

a
1

a
2a

3

Figure 7.2: Geometric interpretation of Singular Value DecompositionAV =
UΣ

for a selected truncation parameterk. Note thatfk has no component in the null-
space ofA; the generalized solution space (for casesk < min (m, n)) is obtained
by adding a translation factor fromAs null-space

f = fk + fn = fk + Vk+1fk+1 (7.6)

wherefk+1 are the(m − k) variables which are not determined by given con-
straints. Settingfk+1 = VT

k+1f0 (wheref0 denotes a previously known solution of
the system (in our application the control points of the previously known surface)
and insertingfk+1 into above equation one obtains a solution which:

1. exactly solvesAkfk = UT
k h

2. minimizes the residualρk = ‖Akf − h‖ and

3. minimizes the normed differenceηk = ‖f − f0‖

7.3.2 The rank revealing effect of SVD

The rank revealing effect is the most valuable property of the SVD. We utilize
the knowledge that for any numberk < min (m,n), k > 0 among all size
m × n matrices with rankk the matrixAk is the closest possible approxima-
tion of the original matrixA. The SVD has a geometric interpretation; This is
visualized form, n = 3 in figure 7.2. Again we have a linear transformation

96 CHAPTER 7. LINEAR CONSTRAINT SOLVING I

Af = h, A ∈ Rm×n, m = n = 3. The matrixA transforms a vectorf (left
part of the figure) into a vectorh (right part of the figure). The SVD delivers or-
thonormal bases forRn andRm such that the unit (hyper)-sphere inRn spanned
by vectorsv1 to vn is transformed by matrixA to an (hyper)-ellipsoid inRm with
principal axes determined by vectorsσiui which is expressed by SVDAV = ΣU.
The geometric interpretation of SVD helps to understand the effect of zero singu-
lar valuesσi for i < min (m, n): if, for example,σ3 were zero the ellipsoid inR3

degenerates to an ellipse with principal axesσ1u1 andσ2u2. Due to the relation-
ship among the columns ofA and the SVD, we may conclude that the matrixA is
degenerate:A transforms one of the vectorsvi to a zero vector. In other words, its
columns only span a basis forR2, or equivalently, one ofAs columns is linearly
dependent from the others.

We conclude by noting that truncating the SVD can be interpreted in three
different ways:

1. Geometric: we ignore the “collapsed” dimensions of the ellipsoid and con-
sider only the (orthogonal) projection ofh ontoUk ∈ Rk ⊂ Rm.

2. Algorithmic: we shift a corresponding vectorvi from Vk to Vk+1 (from the
first term in Eq. 7.6 to the second term)

3. Algebraic: by setting a singular value equal zero we enlarge the dimension
of the null-space ofA by one and collapse the range-space ofA of the same
amount.

7.4 The L-curve method

The central topic of this section is the algorithm to obtain the optimal truncation
parameter given the Singular value decomposition of a linear systems of equation.
We will refer to the example from section 7.2, fig. 7.1.

7.4.1 The singular values plot

The benefits of SVD become obvious when comparing a singular problem with
well-defined rank and an ill-posed problem. Figures 7.3(a)-(b) show the so-called
singular value plots of two curve-surface incidence constraints:

(a) the pre-image of the 3D curve is a part of iso-parametric line foru = const.
andv ∈ 〈0.25, 0.75〉 treated as a general curve (i.e. equations were set up by the
composition method)

7.4. THE L-CURVE METHOD 97

0 2 4 6 8 10 12 14
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k

lo
g(

σ k)

(a)

0 10 20 30 40 50 60
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k
lo

g(
σ k)

(b)

Figure 7.3: Theσ-plot of a singular curve constraint with well-determined rank
(a), and an ill-posed curve constraint (b). Theσ-plots show the distinct jump in
the former case but gradually decreasing singular values for the latter case.

(b) the constraint from example in figure 7.1, section7.2 (i.e. the pre-image
curve is a general cubic curve)

We draw the dependency of the logarithm of singular valueσk (vertical axis)
on the truncation parameterk (horizontal axis). In both cases the surface is bi-
cubic with8×10 control points. For the iso-parametric curve the problem is under-
determined but “exactly” singular: the jump betweenσ8 andσ9 has the magnitude
of several exponents, therefore we can safely obtain a solution by means of eq. 7.6
by setting the truncation parameterk = 8. Of course, for this particular case, it
is not necessary to employ the composition method. The equations can be set up
directly obtaining a full-rank matrix of size8× 80 which confirms the result from
the SVD. On the other hand, the singular values plot of the other constraint shown
in fig. 7.3(b) decays gradually to zero without a significant jump in magnitude at
a specificσk. The problem is ill-posed according to definition in 7.2: there is no
obvious choice for the rankk.

7.4.2 Determining the optimal truncation parameter

Determining truncation parameterk is the central difficulty when a linear problem
is ill-posed. The choice of the truncation parameterk is apparently not arbitrary:
Choosing too smallk will cause large error inρk and too largek will increaseηk,
since computingΣ−1 in eq. 7.5 involves divisions by small numbers. Therefore,

98 CHAPTER 7. LINEAR CONSTRAINT SOLVING I

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

ρ

η

(a)

10
−2.8

10
−2.79

10
0.296

10
0.298

10
0.3

10
0.302

38
39

40
41

42

43

44

(b)

Figure 7.4: The L-curve (a) with the magnified “corner” region (b) for the
smoothly varying curve constraint shown in figure 7.1.

one seeks a solution which satisfies the criteria defined in §7.3.2: it must minimize
the residualηk and it must possess the minimal normρk.

It was observed by several researchers that if the residual of the truncated
problemρk and the norm of the so obtained solutionηk are plotted versus each
other in logarithmic scale for severalks a curve with characteristic “L-shape”
almost always results, see [37] for historical overview and further background of
L-curves.

For the ill-posed constraint – corresponding to the example in fig. 7.1 and to
singular value plot in fig. 7.3(b) – we obtain the L-curve shown in figure 7.4(a):
The optimal truncation parameter corresponds to the sharp concave corner em-

7.4. THE L-CURVE METHOD 99

phasized by an arrow: at this point, an attempt to determine another unknown
variable (i.e. increasing the truncation parameterk) only increases the norm of
the solution without a significant improvement of the residual. Thus it is reason-
able to conclude that given a linear system of equationsAf = h, the matrixAk

(equation 7.4) is the best possible approximation of the matrixA using the criteria
from §7.3.1. It follows that among all surfaces the surface with control pointsfk
(obtained by means of eq. 7.5 applied to each spacial coordinate) is optimal in the
sense of criteria stated onρ andη.

We detect the corner of the L-curve as follows: A magnification of the cor-
ner region shown in figure 7.4(b) reveals that the “corner” consists of a clus-
ter of rapidly varying values(ρk, ηk). This leads to an idea to approximate the
discrete points of the L-curve by a sufficiently smooth B-spline curveL(t) and
to locate a parameter valuetk where the curve exhibits largest negative curva-
ture. Then the point associated with the closest smallerk is chosen. Thus, the-
oretically, the optimal truncation parameterk is found by solvingmaxt (κ) and
mink ‖L(tk)− (ρk, ηk)‖. In order to detect such points, we start with a piecewise
linear approximation of the discrete point set(ρk, ηk) : kmin ≤ i ≤ kmax. We
increase the polynomial degree of the piecewise linear curve to cubic and apply
a slightly modified version of Lyche-Mørken algorithm [52] to remove as many
knots as possible. We build a statistics on errorsεr caused by removal of ar-th
knot and increase the threshold which regulates the Lyche-Mørken recursion until
the statistics contains only errors such that

‖max (log ε)−min (log ε)‖ ≤ 1

This heuristics relies on the observation that the L-curve has one (in the optimal
case), or several, distinct regions of large curvature and is relatively smooth else-
where. At the output, we obtain the B-spline representation of the L-curve which
has one (in the optimal case) or severalC0 discontinuities in the knot vector. The
curve points corresponding to these discontinuities are (or are close to) the corner
of the L-curve.

The range for tested truncation parameters(kmin, kmax) is determined based on
the following heuristics: Consider, for example, the L-curve shown in figure 7.4
on the left. Figure 7.3(b) shows the singular value plot of the associated linear
problem: there is a jump nearσ38 but there are also several jumps of approximately
the same (or even larger) magnitude betweenσ40 andσ50 and betweenσ50 andσ60.
Thus, one should select such range forkmin andkmax that no large jumps occur
outside ofσmin to σmax with a sufficiently large buffer zones at both ends. The
comparison of the two figures 7.3(b) and 7.4 also demonstrates how dangerous
it is to rely exclusively on theσ-plot: the jump atσ53 is larger than the jump at
σ38 but the solution becomes unstable already atk > 40, see also the magnified
L-curve corner in fig. 7.4(b).

100 CHAPTER 7. LINEAR CONSTRAINT SOLVING I

10
−1

10
1

10
2

ρ

η

Figure 7.5: The L-curve for the rapidly varying curve from figure 7.1: the “cas-
cade” shape of the L-curve is characteristic for data which do not satisfy the dis-
crete Picard condition.

7.4.3 Demonstrating the Picard condition

It is interesting to compare the L-curves which result when shape of the con-
strained curve is modified. Again, consider the curve-surface constraint from
fig. 7.1: The figure 7.4(a) shows the L-curve for the smoothly changing curve
from fig. 7.1 while in figure 7.5 the L-curve is shown which results from the
rapidly oscillating curve.

If the constrained curve varies too rapidly the L-curve possesses several dis-
tinct corners as shown in figure 7.5: it moves from one to the next corner in a
“cascade”-like manner. In such cases it is reasonable to select the corner with
smallestη even if the residual does not reach the required threshold. However,
such cascades in the L-curve generally indicate that the data to be interpolated
does not satisfy the discrete Picard condition, see §7.2.2. Such input data (i.e. such
shapes of the constrained curve) should be avoided right from the start. Usually,
none of the corners (truncation parameters) will deliver a meaningful solution.
Rather, the presence of several sharp corners signalizes that there is no unique
choice for a closest lower rank approximation of the problem. This is the limi-
tation of all SVD based regularization methods – the parameters of the ill-posed
linear problem must satisfy the Picard condition.

7.5. THE SURFACE ALIASING EFFECT 101

Figure 7.6: The TSVD solution corresponding to the corner of the L-curve from
Fig. 7.4. In order to emphasize the “aliasing” effect the right figure shows a bi-
quadratic surface with the same curve constraint and the same number of DOFs.

7.4.4 The “aliasing effect” of the truncated SVD solution

The procedure described above is known as “Truncated SVD regularization” (TSVD),
see [35]. The solution surface corresponding to the L-curve corner atk = 38 is
shown in figure 7.6: observe, that the surface deforms along the curve in a “stair-
case” like manner. It is less apparent in the bi-cubic surface shown on the left
and stronger in bi-quadratic surface on the right. We call this thesurface alias-
ing effect, cf. [55], because of the similarity with aliasing as known in computer
graphics. The resulting surfaces although in algebraic sense correct (the example
in fig. 7.6 on the left renders the residual ofρ38 = 10−2.95, cf. to figure 7.4, the
more “aliased” bi-quadratic surface on the right hasρ49 = 10−6) will surely not be
accepted by the designers. Before we approach suitable “anti-aliasing” methods,
in the next paragraph we analyze the reasons for such unwanted deformations of
the surface in more detail.

7.5 The surface aliasing effect

Figure 7.7 shows the result of constraining the incidence of a diagonal, vertical
and horizontal line (in the domain of the surface) on a20 × 20 bi-quadratic B-
spline surface. The distribution of the dependent control points of the surface is
shown in the bottom part of the figure: each bright square represents a control
point safely determined by the L-curve method. The aliasing effect in example on
the left is strong – the surface exhibits undesired bumps or wiggles – whereas in

102 CHAPTER 7. LINEAR CONSTRAINT SOLVING I

Figure 7.7: An attempt to constrain a diagonal, vertical and horizontal line on
a 20 × 20 bi-quadratic B-spline surface. The lower part of the figure shows the
distribution of control points determined by the L-curve method

the middle and right examples, no bumps can be observed. A comparison with
the staircase effect when drawing a line on a screen by assigning color values to
a discrete grid of pixels comes to mind immediately. What is the reason for this
“aliasing” and is there a way to remedy it?

The first question can be easily answered: the control points of a tensor prod-
uct surface are aligned on a rectangular grid, the size and density of which de-
pend on the parametrization of the surface (compare with pixel-grid of a monitor
screen). The TSVD method as described in previous sections defines an alge-
braically stable solution by minimizing the norm‖f − f0‖. It discards certain
variables for the prize of this stability. However, this does not mean that the dis-
carded variables are really independent – we just cannot reliably determine the
“amount” of the dependency. Apparently, the transition among dependent and
independent control points is too abrupt which causes undesirable bumps in the
shape of the surface.

The frequency of the bumps depends on the order of polynomial continuity
among the surface patches. The higher order of polynomial continuity, the lower
frequency of the bumps is observed. With growing polynomial degree (and order
of polynomial continuity) the change of a constrained curve propagates through-
out a larger region of the surface and is distributed across more surface patches.
This gives the surface an opportunity to deform more slowly, and thus, more
equally.

7.5. THE SURFACE ALIASING EFFECT 103

Figure 7.8: Influence of polynomial degree and order of continuity to the aliasing
effect: left figure shows a bi-quadraticC1-continuous B-splines surface, the sur-
face in the middle figure is bi-cubic andC2-continuous and the right-most surface
is bi-quinticC4-continuous. Each surface has15× 15 control points. In all cases
the same curve constraint and the same deformation was applied.

The effect is illustrated in figure 7.8: a change is applied to the same curve
on bi-quadratic and bi-cubic and bi-quintic B-spline surfaces with15 × 15 con-
trol points. The aliasing becomes less distinct with growing order of polynomial
continuity of the surfaces. However, increasing the degree of used surfaces is not
the optimal solution since the high order of polynomial continuity restricts the al-
lowed changes of the surface. In other words, the surface becomes more sensitive
to changes of constrained curves. For example, the L-curve for the bi-quadratic
surface in fig. 7.8 on the left has only one distinct corner and satisfies the con-
straint with residual errorρk = 10−6 for k = 80. I.e. from the numerical point
of view the solution is perfect. The L-curve for bi-cubic surface is already more
scattered and we have to truncate the SVD atρ45 = 10−4.7. The L-curve for the
bi-quintic surface exhibits the first sharp corner already atρ6 = 10−1.3. Thus by
increasing the polynomial order of the surface we damp the aliasing effect for
the prize of increasing error in the residual. The flexibility of the surface can be
increased by generating new degrees of freedom (i.e., by refinement of the con-
trol mesh of the surface) at positions where the error between the required curve
and the surface exceeds a prescribed limit. However, then the composition matrix
has to be recomputed from scratch which becomes more expensive with growing
polynomial degrees of the surface, see also section 4.4.

104 CHAPTER 7. LINEAR CONSTRAINT SOLVING I

Chapter 8

Linear constraint solving II

In this chapter two methods are proposed to improve the shape of the constrained
surfaces. We describe twoanti-aliasingmethods: a geometric method using local
reparametrization the of the surface (section 8.2) and an algebraic method which
applies regularization with a side-constraint in general form, section 8.3. The
section 8.3.3 contains a brief overview about alternatives to SVD and points out
directions for future improvements of the algebraic solver.

8.1 Introduction: Anti-aliasing

The aliasing effect always occurs when using piecewise bi-polynomial tensor-
product surfaces, whenever the constrained curve does not match the rectangular
arrangement of the control points. The problem seems to be known in the field
of data interpolation (cf. [14]). In [39], Hayes introduced piecewise composite
surfaces withcurved knot lineswhich cope better with an arbitrary curve. The do-
main of the surface is defined as a curvilinear mesh of knot lines. The parametriza-
tion of the surface can then be better adjusted to match a given curve. Although
very powerful and conceptually simple, in practice, elementary algorithms for tra-
ditional B-splines (for example knot insertion and removal, degree raising and
lowering) become very complicated with Hayes splines, which may be the rea-
son for low acceptance of this type of surfaces. For example, it is not clear if the
polynomial composition can be formulated in similar manner as for “traditional”
B-splines, or even, if the blossoming principle applies at all. Though this could be
an interesting topic to investigate, the practical usability of Hayes-splines in CAD
is questionable – we have not encountered a modeling system which uses this
kind of surfaces, or a scientific publication which further investigates the usage of
Hayes-splines in geometric and solid modeling.

In our effort to remove the “aliasing” effect” we have successfully applied

105

106 CHAPTER 8. LINEAR CONSTRAINT SOLVING II

two approaches: in the first approach we reparametrize the surface such that the
pre-image of an arbitrary curve becomes an iso-parametric line. We convert an
arbitrary shaped ill-conditioned curve constraint to a well-conditioned iso-curve
constraint which can be safely solved with no aliasing. The second method is
comparable to traditional “anti-aliasing” as applied in computer graphics: we find
such values for the remaining degrees of freedom of the surface (i.e. those which
could not be determined by TSVD) that the aliasing effect becomes less apparent
or completely disappears. We define new constraints, working against the aliasing,
in connection with the primary incidence constraint. The following paragraphs
describe these two methods in more detail.

8.2 Surface reparametrization

It follows from the discussion in section 7.5 that the only case of curve constraints
a tensor-product surface can handle without aliasing are iso-parametric lines. In
this case, the influenced control points of the surface lie on (or inside) an axis-
aligned rectangle, cf. figure 7.7. The question is now, given a surface with one or
several arbitrarily positioned curve constraints, is a conversion to this case possi-
ble, without destroying the appearance of the input data?

8.2.1 Reparametrization of tensor-product B-splines

Suppose the designer wishes to deform the surfaceF (u, v) aligned along the curve
shown in figure 8.1(a). We are looking for a surface in the domain of which this
curve can be represented as an iso-parametric line and which is locally identical
to the original surface in the 3D space, see figure 8.1(b). Obviously, this can only
be done by some kind of re-parameterization of the original surface, as shown in
the figure 8.1(c): The lower left figure shows the curve projected into the domain
of the original surfaceF (u, v). We have to find a surfaceG (s, t) in the domain of
F , such that the given curve is a line in the domain ofG, as shown in figure 8.1(c)
on the right. If the surfaceG (s, t) = (u(s, t), v(s, t)) is known, we can locally
replace the surfaceF by a new one

H (s, t) = F (u(s, t), v(s, t)︸ ︷︷ ︸
G(s,t)

) (8.1)

yielding the reparametrized surfaceH with required properties. There are two
problems to be solved:

1. obtaining the surfaceG

8.2. SURFACE REPARAMETRIZATION 107

(a) (b)

G(s,t)
v

u

t

s
G(s=const., t)

(c)

Figure 8.1: The surface is reparametrized such that a domain curve (shown as a
thick line in the left lower figure) corresponding to the 3D curve shown in figure
(a) becomes an iso-parametric line (right lower figure). For that a new surface
G(s, t) satisfying this property is computed. The (approximate) composition of
the two surfaces yields a surfaceH (s, t) = F (G (s, t)) locally identical with the
original surface which is shown in figure (b).

2. computing the reparametrization surfaceH from G andF

The surfaceG can be obtained by letting the designer sketch the four bound-
ary curves of the new feature (Fig. 8.1, left), project them into the domain of

108 CHAPTER 8. LINEAR CONSTRAINT SOLVING II

Figure 8.2: Left figure: boundary curves of the new reparametrized surface, mid-
dle: derivatives along the boundary curves assuringC1 continuity to the original
surface. Right figure shows the resulting surface obtained from interpolating the
four boundary curves and derivatives along them.

the surfaceF and compute a 2D boolean-sum surface. Another possibility is a
heuristics utilizing the sketched curve: the curve is projected into the domain of
F , where two offset curves at user-defined distances are computed, which serve
as the boundary curves in one parametric direction. The boundaries in the other
direction are chosen to be linear. The expression 8.1 is a polynomial surface-
surface composition. Unfortunately, if the outer operand of the composition, the
surfaceF , is a tensor-product B-spline the result of the composition does not have
a tensor-product representation anymore, as it was already noted by DeRose et
al. in [18]. Consequently, there is no algebraic relationship between the control
points of both surfaces in the style of one-dimensional composition constraints.
To representH would require a surface definition on a non-rectangular domain.
We have not further investigated this alternative; for example, one could try to
formulateH in terms of Seidel’s B-Patches, see e.g. [77] or Loop’s generalization
of B-splines to arbitrary domains [51]. Instead, we propose an efficient method
which computes an approximation ofH in tensor-product B-spline format up to
arbitrary user defined tolerance. The algorithm is described in the next paragraph.

8.2.2 Solving a constrained curve network interpolation prob-
lem

Consider figures 8.1 and 8.2: We can compute arbitrarily many curves repre-
sentingG such thats or t = const. and compute their exact representation on
the surfaceF obtaining a network of 3D curves. In the second step we apply
Gordon’s method to interpolate a tensor product surface through a topologically
orthogonal network of 3D curves, see [30]: A set of parallel curves from sur-
faceG(s, t) are scanned at suitable valuessi andtj. In the following we denote
them byG (si, t) = Gi(t) andG (s, tj) = Gj(s). Such curves intersect at points

8.2. SURFACE REPARAMETRIZATION 109

G (si, tj) = Gi,j. In addition, the vector field curves∂Gi(t)/∂s = Di(t) and
∂Gj(s)/∂t = Dj(s) are computed. Given this data the algorithm to interpolate
the surfaceH(s, t) looks as follows:

1. Estimate the numbersp, q which determine the number of curvesGi(t) and
Gj(s) such that the shape of the surfaceG(s, t) is fully determined by that
curve network. After computingF (Gi(t)) , 0 ≤ i < p andF (Gj(t)) , 0 ≤
j < q we obtain a network of 3D curves incident onF and meeting at
pointsF (Gij). Figure 8.2(a) shows the curve network for the case0 ≤
i, j ≤ 1. The derivative curvesDi andDj transformed to 3D are vector
field curves representing directional derivatives ofF with respect tos and
t, ∂F (Di(t)/∂s) and∂F (Dj(s)/∂t), see fig. 8.2(b).

2. We now have enough information to carry out a cubic interpolation among
the curvesF (Gi(s)) , 0 ≤ i < p andF (Gj(t)) , 0 ≤ j < q, using the
respective derivative conditionsDi(t) andDj(s). Using surface skinning
(c.f. paragraphs 2.2.2 and 2.2.2.1), the surfacesH1 andH2 are computed
from this data. The surfaceH3 is obtained as a result of tensor product in-
terpolation of the valuesF (Gij) , 0 ≤ i < p, 0 ≤ j < q and the derivatives
at corner vertices and at the intersection points of the scanned curves.

3. According to [30], the surfaceH (s, t) = H1 + H2 − H3 interpolates the
given network of curves and points at which they intersect, fig. 8.2(c).

The surfaceH(s, t) is exactly identical to the original surfaceF (u, v) along
the scanned curves and points and it approximates the original surface in be-
tween. Moreover, due to the derivative information inherited fromF , there is
at least aG1 continuous connection ofH to F at prescribed curves. The qual-
ity of the approximation is determined by measuring the maximum ofε (s, t) =
|F (G(s, t)) − H(s, t)|. Wheneverε is larger than a prescribed value, the curve
network is refined and the whole process is repeated. The refinement is done by
recursively inserting a new curve in the middle of each interval of the surfaceG
in each parametric direction. The curve is then composed with the original sur-
faceF and added to the interpolation equations forH. We recommend to start
with four boundary curves and corner points and refine the curve network itera-
tively. Proceeding this way, the example from figure 8.2 succeeds after 1 step with
max (ε(s, t)) < 10−6. A sculpted example which succeeds after 3 such refinement
steps is shown in figure 8.3.

The degree and knot density of the resulting surface depend on:

• the degree and parameterization chosen for the initial surfaceG and

• the degree and knot density of the original surface.

110 CHAPTER 8. LINEAR CONSTRAINT SOLVING II

Figure 8.3: The left-most figure shows the surfaceH after the first interpolation
step. The approximation error falls below10−8 after twice inserting a curve and
derivatives in the middle of each interval. Interpolation of the curve network in
upper figure leads to the result shown in right-most figure.

The degree of a curve resulting from curve-surface composition is given byd. (k + l)
whered is the degree of the domain curve andk andl are the degrees in both para-
metric directions ofF . The curves are evaluated using the methods from chap-
ter 4 and the skinning problems are solved efficiently with the aid of algorithms
for solving banded linear systems. For further details, examples and a run time
analysis see [55].

8.2.3 A design example

After the reparametrization, the constrained curve is exactly incident on the reparametrized
surface and its pre-image in the domain of the new surface is an iso-parametric
line. Incidence and tangency constraints are stated on the boundaries of the new
surface and their current values are fixed. Any change of the curve is transfered to
the new surface without an interference with the “underlying” original surface.

Figure 8.4 demonstrates a design application of the presented method. Here,
the designer wants to add a “crater” shaped feature to the surface shown in fig-
ure 8.4 on the left: Two closed curves are sketched on the surface. The system

8.2. SURFACE REPARAMETRIZATION 111

H(s,t)

F(u,v)

G(s,t)
v

u

t

s
G(s=const., t)

Figure 8.4: The reparametrization method completely circumvents ill-
conditioning and aliasing: the surface between the two curve shown in the left
part of the figure is replaced by a new surface which can be safely determined
from the fixed boundary curves, derivatives along boundary curves and a user
specified curve “handle”

projects the curves into the domain of the surface and computes their exact repre-
sentation on the surface. They represent the boundaries of the new feature. The
designer can choose a continuity of the crater feature along the boundary curves.
Here incidence andG1 continuity along both boundaries are specified. The system
computes a reparametrization surface from surface curves as described in previ-
ous paragraph. Two tangency and two incidence constraints along the boundary
curves are generated between the new and the original surface. The area covered
by the new surface is trimmed away from the original surface, see fig. 8.4. The
manipulation tool of the designer will be any iso-parametric curve in either di-
rection on the crater surface, which can now be selected by choosing a direction
and picking a point anywhere on the surface, as demonstrated in figure 8.4 on the
right: the surface reacts to changes of any iso-parametric curve as expected: the
incidence and tangency constraints along the boundary and feature curves assure
the proper connection of the new feature to the original surface. No aliasing ef-

112 CHAPTER 8. LINEAR CONSTRAINT SOLVING II

fects occur, since all constrained curves are iso-parametric lines in the domain of
the new surface.

8.2.4 Summary of the method

The disadvantage of this method is that one can adjust the surface only for one se-
lected curve constraint. All other constraints need to be recomputed to match the
new topology of the model which considerably complicates the data-management.
Furthermore, this method guarantees only aliasing-free editing of the reparametrized
surface: if we haven’t fixed the boundaries of new surface feature, then the un-
derlying original surface would have to follow the changes of new reparametrized
surface. However, then the new shape of the original surface needed to be com-
puted from general curve constraints which are not aliasing-free.

8.3 Constrained least squares

The idea behind the second approach is to better utilize the degrees of freedom of
the surface which were discarded by the L-curve method. We refer to the notation
used in sections 7.3.1-7.4: we solve a general linear system of equationsAf = h
with knowns and unknowns set as explained in §7.3.1.

The L-curve algorithm separates the degrees of freedom into two sets: the
dependent ones and the discarded or free ones. Referring to eq. 7.6, we have(m−
k) free parameters and the solution space obtained from the TSVD at our disposal.
Thus, we may use these free parameters for stating additional constraints which
help against the “aliasing” effect and improve the shape of the surface without
destroying the already minimal residual of the TSVD solution. Well-suited for
this purpose are the quadratic surface functionals frequently used in variational
surface design, see [32], for example. We have discussed efficient methods to
obtain the normal equations for all frequently used functionals in chapter 6. In the
following we will consider a linear combination of matrices

L =
3∑

i=1

αiLi for
3∑

i=1

αi = 1 (8.2)

whereLi denote the normal equations of area, thin-plate energy and variation of
curvature minimizing functionals fori = 1, 2, 3, please refer to table 6.1.

8.3.1 The constrained regularization

Formally the so-called regularization methods with general side constraint and
constrained variational problems are equivalent. In both cases a constrained least

8.3. CONSTRAINED LEAST SQUARES 113

square problem is solved [29, Section 12.1]: an objective functionf = fTLf is
minimized subject to a set of linear constraintsAf = h which is usually denoted
by

min
f

f sub min
f
‖Af − h‖ (8.3)

In this contextminf f = Lf . There are two possible ways to solve problems of
the type 8.3:

1. Extract a solution space which satisfies the constraintsAf = h obtaining
a generalized solution in terms of hyperplane equationf = fk + fn, see
also §7.3.1. Substituting the generalized solution forf in the side constraint
yields an unconstrained minimization problem

L (fk + fn) = 0

which is solved forfn. The solution of the original constrained optimization
is obtained by insertingfn back intof = fk + fn.

2. Use Lagrange method (see e.g. [69]): introduce auxiliary variables, the so-
called, Lagrange multipliersΛ and solve the system:[

H AT

A 0

]
·
[

f
Λ

]
=

[
0
h

]

This is easy, if the system matrixA has full rank: such variational equations
are commonly solved in the context of multi-patch surface interpolation or scat-
tered data interpolation, see e.g. [9, 5, 31, 48, 32, 19, 40, 20]. There are efficient
numerical methods to solve (1) and (2) if the matrixA has full rank, e.g. the Gen-
eralized QR-decomposition [29]. A practitioner obtains the solution by calling
LAPACK [2, 4] functionsDGGLSEor DGGGLM. If, however, the matrixA is rank
deficient or even the problem is ill-posed – as it is the case with our generalized
curve-surface constraints – one has to turn to more sophisticated methods.

8.3.2 Modified truncated SVD

If the SVD of A is available, an efficient numerical method to solve such con-
strained approximation problem is the so-called, Modified TSVD (MTSVD) [38].
It allows to define more general side constraints. Instead of‖f − f0‖ one mini-
mizes‖L (f − f0)‖ for some regularization matrixL. In our case the selection of
regularization matrix is obvious:L is set as described above. We know that the
linear combination of the surface functionals is minimal at

L (f − f0) = 0

114 CHAPTER 8. LINEAR CONSTRAINT SOLVING II

with the previously known solutionf0 before the deformation. Substituting eq. 7.6
for f in above equation yields

L (fk + Vk+1fk+1 − f0) = 0
LVk+1fk+1 = L (f0 − fk)

(8.4)

Solving eq. 8.4 forfk+1 and substituting back to eq. 7.6 we obtain a “corrected”
MTSVD solution

fL,k = fk + Vk+1fk+1

which in addition to properties 1-2 from §7.3.1 minimizes the norm‖L (f − f0)‖.
In [38], Hansen proposes to compute the values ofρk = ‖AfL,k − h‖ and

ηk = ‖fL,k‖ for eachk and locate the corner of the “weighted” L-curve as in
the case of TSVD. Consider, that there may be several hundred up to several
thousand truncation parameters, thus, we must be able to obtain the “penalty”
termfk+1 fast. The linear system in Eq. 8.4 can be solved in a particularly efficient
way by pre-computing the worst case QR-decomposition ofLVkmin+1, i.e., for the
smallestk ever used and update it for the eachkmin < k accordingly, see [38]
and [29, §12.6] for details. Thus obtaining the proper “correction” termfk+1 for
eachk is computationally cheap. Note that the pre-condition for this procedure
is thatL or at leastLVkmin+1 must be non-singular. Otherwise, the “trick” of
updating the QR-decomposition does not work and Eq. 8.4 must be solved for
eachk “from scratch”. Fortunately, ifL is the linear combination of matrices
as described above, the matrixLVkmin+1 tends to be non-singular for at least one
αi > 0, reasonable parametrization of the B-spline surfaceF and sufficiently large
kmin, see also [19, 40, 20].

Figure 8.5 shows three different modifications of the same surface and the
same constraint as in figure 7.1 after the MTSVD correction was applied. No
aliasing can be observed, the error in the residual is less than10−3. Since the
system matrix in Eq. 8.4 is not particularly well conditioned (the typical condition
numbers obtained in our experiments were between103-104), the discrete L-curve
points are considerably more “scattered”. Generally, the truncation parameter
obtained by above method is smaller than if no “smoothing” side constraint is
applied. We have found that the “L weighted” L-curve almost always possess
one more corner compared to the L-curve obtained by TSVD method. Typically,
the corner occurs earlier, hence, the usage of a generalized side constraint causes
larger error in the residual but delivers smoother solutions, which is in accordance
with results described in [38]. Alternatively, one can computek by the TSVD
method and solve forfk+1 only once. However, in some cases the L-curve corners
which occur earlier if the weighted norm‖Lf‖ is considered could be missed.

8.3. CONSTRAINED LEAST SQUARES 115

Figure 8.5: Bi-cubic surface obtained by the MTSVD method. The modifications
of the surface proceed from left to right, the “next” sketched curve is shown in
darker color. Adding the “smoothing term” to the TSVD solution removes the
aliasing artifacts and delivers an optically and geometrically smooth surface.

8.3.3 More results and selected problems

Based on numerous experiments with the methods described in previous Para-
graphs we conclude that the MSTVD method reliably removes the aliasing effects
and, if SVD of the system matrix is available, efficiently locates the compromise
between constraints satisfaction and the smoothness of the surface. Of course, the
procedure is not limited to single curve constraints. For example, figure 8.6 shows
the creation of the “dome” shaped surface such as we have used for demonstration
purposes in §2.3.1. The lower row of figures show a dome “feature”: the loop is

116 CHAPTER 8. LINEAR CONSTRAINT SOLVING II

Figure 8.6: The example shows the design of a “dome” surface with two curve
constraints. The closed loop remains “fixed”, the other curve is modified by sub-
sequent pen-strokes. In the lower figures the bi-cubic surface with12× 12 DOFs
was trimmed outside of the fixed loop. In this example the MTSVD method deliv-
ers a solution with residuals between10−5-10−4 depending on the change applied
to the straight curve.

constrained on both surfaces. Since its shape and position is fixed no changes are
carried over to the flat surface which allows to create local features inside of a
marked region on the surface, refer also to §2.3.2.

An attractive application is the creation of “n-sided” surface patches for filling
n-sided holes in solid models the, so-called, surface fillets, see figure 8.7: The
“traditional” approach is to fill ann-sided region withn four-sided patches intro-
ducing a midpoint andn splitting curves in a “star” constellation, see e.g. [62].
The patches are then computed from then boundary and splitting curves with se-
lected order of geometric continuity. The problem is that it is not clear how to
determine the midpoint and the splitting curves, and that complicated “compati-

8.3. CONSTRAINED LEAST SQUARES 117

Figure 8.7: A ”5-sided” surface patch simulated by trimming a bi-cubic B-spline
surface with12× 12 DOFs computed from 5 curve constraints. The lower figure
shows the control mesh of the surface.

bility” pre-conditions for the curves arise, see e.g. [60]. Usage of trimmed Bezier
patches was examined by Cohen and Elber in [24] and an approach similar to ours
was described by Dietz in [20]: here, the boundary curves are given as strips of
points and the B-spline surface is iteratively “shifted” towards the compromise be-
tween minimum thin-plate energy and constraint satisfaction. However, the paper
does not mention ill-conditioning of the point-incidence equations which occurs
if many point constraints are used for discrete approximation of a curve.

The advantage of using generalized curve constraints on arbitrary B-splines is
that a low degree tensor-product B-spline surface which interpolates the boundary
curves with sufficient accuracy can be obtained. Since usage of trimmed B-spline
patches is a de-facto “standard” in almost all modeling systems the method is

118 CHAPTER 8. LINEAR CONSTRAINT SOLVING II

more universal than usage of high-degree Bezier patches or non-rectangular sur-
face patches. Furthermore, there is no need to deal withG-continuity conditions:
the B-spline surface deforms smoothly inside of the trimmed region, see Fig. 8.7
on the right. In addition, the normals along the boundary curves can be prescribed
by simply adding the equations set up as described in section 5.1. The bottom
figure shows the control mesh of the surface: in this case a bi-cubic surface with
12× 12 DOFs was used.89 DOFs can be safely determined from the curve con-
straints, the rendered residual isρ89 ≈ 10−7. The figure demonstrates that the
smoothing constraint enforces an overall smooth surface without fast changes in
the curvature. As in the all examples, we have used weight coefficientsα1 = 0.5,
α2 = 0.5, α3 = 0 in Eq. 8.2.

It is reasonable to assume that the specified curves do not represent contra-
dictory requirements. For example, the endpoints of the modified curve in the
“dome” model in figure 8.6 must remain fixed. For “n-sided” constellation of
curves such as in figure 8.7 all subsequent curves must share a common endpoint.
If more than two curves intersect in one point they must be locally co-planar, and
so on. These are necessary conditions for the theoretical existence of the solution
and have to be derived from the constraint graph depending on current distribution
of DOFs as sketched in section 2.3.

8.3.4 Summary of the method

In conclusion, with regard to surface interpolation as proposed above we summa-
rize the problems and subjects to future work as follows:

8.3.4.1 Efficiency

An important topic of future work will be to improve the efficiency of solving
the equation system: Although the SVD provides a perfect insight into an ill-
conditioned system obtaining the SVD for a general matrix is a computationally
expensive procedure. The amount of work required by currently known symbolic
algorithms (the Golub-Kahan method [29, Sec. 5.4 and 8.3]) to perform the SVD
of am× n matrix is approximatelyO (m2 + n3). Note that the SVD needs to be
computed only once in a “life-time” of a system of linear constraints – computing
a surface after a curve modification from available SVD is fast and delivers a new
surface shape in real time. Nevertheless, for large data sets computing the SVD
may cause quite unpleasant delay-times during the design work: for moderate
sizes ofm andn, such as used in above examples, i.e. few hundred columns and
rows the LAPACK functionsGESVD or GESDD require about 1-3 seconds on an
750 MHz PC. This is acceptable; however, consider that the model may consist
of several surfaces and many curve constraint. Also, the run-time grows rapidly

8.3. CONSTRAINED LEAST SQUARES 119

for larger examples: for surfaces with about 500 DOFs and more than thousand
constraint equations the SVD already requires prohibitive 15-20 seconds. In addi-
tion, if we consider the “normal” constraints (fixed normal along a surface curve,
see section 5.1 the spacial dimensions of the surface are no longer independent
and need to be treated as separate variables. This further blows up the size of the
system by factor 3 and computing the SVD for even simple examples becomes un-
realistic for usage in an interactive design system. Unfortunately, the alternatives
to SVD are by far not that straightforward and reliable. Other, cheaper to compute,
rank-revealing factorization is for the so-called Rank-revealing QR-factorization
(RR-QR) as proposed by Chan and Hansen in [12]. However, in order to apply
this method, at least approximate guess on the location of the optimal truncation
parameter is required. Otherwise, the effort becomes comparable to computing
the SVD.

An attractive approach appears to be using iterative linear solvers for large
and sparse systems of equations (see [70, 82] or [29, chapter 10]) since the ma-
trices in this context are sparse with predictable structure (which is not utilized
when computing SVD). In this case one uses the Lagrangian formulation of the
constrained problem as explained in section 8.3. If the solution converges, the
gain on run-time performance is considerable. Moreover, the so-called “Krylov
subspace” methods exhibit similar behavior as the SVD: they tend to filter out the
stable components of the solution first, thus, the discrete L-curve method can be
applied to obtain the optimal truncation parameter. However, for ill-posed prob-
lems, the convergence of most iterative methods is poor. We conclude by noting
that the selection of the proper iterative method and the suitable “preconditioned”
will be investigated in the scope of future work.

8.3.4.2 Over-smoothing

The “smoothed” MTSVD solution tends to generate “too stiff” surfaces whenever
there are not sufficiently many constraint which restrict the shape of the surface,
for example, such as shown in figures 7.6 and 7.8. Considering the previously
known surfacef0 when we solve for the penalty termf ′ in Eq. 8.4 prevents the sur-
face from collapsing into a narrow strip somewhere around the curve constraint.
However, for certain curves, the surface functionals used in this work and the
MTSVD method generate almost “ruled” surfaces and may smooth out “desired”
features of the original surface. This is rarely the shape a designer would ex-
pect. One possibility is to use so-called “data-dependent” functionals introduced
by Greiner in [31]. They take the shape of a reference surface (assumed to be
known) stronger into account than Eq. 8.4 does. The surface sculpting is an it-
erative process, thus, a surface from previous design step is always available and
should be used as such “reference”. If no reference surface is available a-priori

120 CHAPTER 8. LINEAR CONSTRAINT SOLVING II

it can be computed from sketched curves as a “raw” lest square fit to a bi-linear
surface, for example. Another possibility to regulate the influence of the smooth-
ing constraint, is to use incomplete QR-factorization when solving Eq. 8.4 for the
penalty term: this allows to regulate the amount of smoothing by considering only
a “lower energy” factorf ′. The disadvantage is that the QR-factorization has to
be carried out with pivoting and hence, has to be computed from scratch for each
new shape of the constrained curve.

8.3.4.3 Robust-estimation

The objective of robust estimation is to recognize and filter noise in measurements
based on a-priori known characteristic properties of the input data, see e.g. [63,
Sec. 15.7]. In our context, the constrained curves can be interpreted as measure-
ments and the DOFs of the surface as the parameters of the mathematical model.
The “noise” corresponds to amount of change required from each curve constraint.
The L-curve method already implements a “filter” which automatically discards
solutions with too large euclidian norm. However, the L-curve corners for too
“noisy” curves (refer to §7.4) are difficult to locate. Thus filtering the changes of
constrained curves before the L-curve algorithm is entered would result in more
robust estimation of the optimal truncation parameter. Mathematically, the pre-
diction is realized by introducing “a-priori covariances”, [63, Chap. 15], which
express the uncertainty about the exactness of the “measured” value for each con-
straint. Assigning an uncertainty factor to each constraint equation reflects the
fact that an ill-conditioned linear system can be safely solved if the discrete Pi-
card condition is satisfied: i.e., if the perturbation, or noise, component∆h in
the parameter vectorh′ = h + ∆h is reasonably smooth, see section 7.2. Thus,
one could try to determine the uncertainty for each control pointhi (and for the
respective constraint equation) according to the “amount” of noise∆hi induced
onhi. However, it is not yet clear how to measure the quantity “amount of noise”:
intuitively, the covariances should be set proportional to the change of curvature
in the difference curve∆h – if the edited curve exhibits much more changes than
the initial one, the probability of obtaining a stable solution sinks; hence, a high
uncertainty factors should be used. In [67], Rappoport et. al have used robust
estimation of B-spline surfaces from “uncertain” (or noisy) point data. In their
work it is assumed that the uncertainty is assigned to each point constraint by the
user.

Chapter 9

Conclusions and Acknowledgments

In this chapter a summary of the results and contributions of this thesis is given.
Open questions and topics which we have not addressed before are pointed out.
The contributions of this thesis are two-fold: first, in the first part consisting of
chapters 4-6 we have proposed efficient methods to set up equations for linear
constraints between curves and surfaces. In the second, part (chapters 7 and 8) we
have described several methods for solving of such constraints. The results gained
in both parts are briefly summarized below.

The first part: obtaining the constraint equations

The core of the this part is the extension of the blossom based polynomial com-
position algorithm to unevaluated form: given a B-spline surface and a B-spline
curve in the domain of that surface, we extract a linear transformation (a matrix)
which, applied to the control points of the surface, yields the control points of
the curve exactly incident on the surface as prescribed by the domain space curve.
This allows to formulate linear constraints, especially, incidence of arbitrary curve
on a free-form surface in a very elegant manner. Compared to variational meth-
ods used previously [83, 11] or discrete methods [20] it is more efficient, numer-
ically more stable and does not unnecessarily increase the condition number of
the matrix. We have shown how the result of the curve-surface composition can
be directly expressed in B-spline format. The proposed efficient data structures
(Multi-Index Trees, data structures utilizing the sparsity of the intermediate re-
sults) and careful analysis of the complexity and combinatorial properties of the
algorithm allow to perform the composition in unevaluated form very fast – for
practical sizes of surface and curve we obtain the matrix in fraction of a second
on a standard PC.

The matrices for tangency and variational constraints can be easily obtained

121

122 CHAPTER 9. CONCLUSIONS AND ACKNOWLEDGMENTS

re-using the methods elaborated for composition constraints: We have demon-
strated how to prescribe normals along an arbitrary surface curve using the sym-
bolic unevaluated curve representation; this constraint is used to ensure tangency
of two surfaces meeting along an arbitrary curve. We have also shown how to ob-
tain the Gaussian normal equations of the quadratic surface functionals. They are
used to optimize certain differential surface properties such as curvature, variation
of curvature, area and to compute thin plate energy surfaces.

The practical result of this part of the thesis is a software implementation of
a powerful two-level kernel: The first, low-level level implements basic symbolic
and numeric methods for dealing with B-spline polynomials. The central opera-
tion computes a B-spline blossom in unevaluated format. Based on blossoming,
other B-spline operations, e.g. degree raising, knot-insertion and removal are ex-
pressed in unevaluated format. Also various kinds of B-spline interpolation and
approximation are integrated. In addition the kernel provides very efficient pro-
cedures for computing derivatives, products, integrals, or integrals of products of
B-splines. We have used the matrix based approach in the kernel, which allows
to express most of the abovementioned operations as matrix operations without
the necessity to know the values of the respective control points or the dimension
of a free-form geometry. The second, high-level level implements the procedures
which deliver matrices for composition, tangency and variational constraints. The
interface between our mathematical kernel and the geometric 3D world is built
on top of IRIT – a powerful geometric modeling kernel which contains a lot of
functionality required when dealing with free-form curves and surfaces, see [22].
Wherever possible, we have avoided re-implementation of functionality already
available from IRIT; therefore, in many parts, our kernel depends on IRIT-data
structures and IRIT-libraries.

The second part: numerical methods for constraint--
solving

The central difficulty is that the inverse linear problem associated with generalized
curve-surface incidence constraints is ill-posed. Hence, the usual methods such as
Gaussian elimination or QR-decomposition cannot be applied in straightforward
manner. We have proposed to use regularization based on Singular Value Decom-
position (SVD). The so-called L-curve method discussed here provides a generic
and reliable tool to single out a numerically stable solution such that best possi-
ble satisfaction of defined constraints is achieved. However, even the SVD along
with the L-curve method cannot be applied blindly. Tensor-product surfaces de-
formed along arbitrary incident curves exhibit unwanted deformations due to the

123

rectangular structure of the model space. We have discussed a geometric and an
algebraic method to remove this, so-called, “Surface aliasing effect”. The former
method reparametrizes the surface such that a general curve constraint is con-
verted to iso-parametric curve constraint which can be easily solved by standard
linear algebra methods without aliasing. The reparametrized surface is computed
by means of the approximated surface-surface composition algorithm. While this
is not possible symbolically, an arbitrary accurate approximation can be obtained
using curve network interpolation. This method is used to constrain incidence of a
rectangular region on a surface – the user can add editable features to a free-form
surface. The disadvantage of this approach is that the surface can be “adjusted”
only with regard to one curve constraint. Nevertheless it is an interesting alter-
native whenever a surface should be sculpted inside a topologically rectangular
region. The latter method circumvents this limitation by stating additional con-
straints which suppress or completely remove the aliasing. Formally we solve a
constrained least square problem which minimizes a surface objective function
(expressed by a linear combination of surface smoothing functionals) subject to
defined curve constraints. Because of the inherent ill-posedness of the problem,
sophisticated numerical methods has to be applied in order to obtain a set of de-
grees of freedom which are sufficient to satisfy given constraints. The remaining
free variables are used to enforce an optically pleasing shape of the surface. We
have applied the Modified Truncated SVD algorithm which determines a compro-
mise between an optically pleasant shape of the surface and constraint satisfaction
in a particularly efficient manner. Compared to methods proposed by Gossard,
Welch and Witkin in [83, 11] where pivoted Gaussian elimination was used to
single out a numerical rank of the matrix the MTSVD algorithm is much more
reliable. Furthermore, the built in coherence between previously known and cur-
rent solution prevents the surface from collapsing to a point or curve whenever the
constraints do not span a sufficiently large solution space. A disadvantage of the
method is that a modification of one usually curve influences the whole surface –
thus, introducing local modifications is only possible when the surface is split into
several trimmed parts connected by curve constraints.

In our implementation, we have used the Matrix Template Library (MTL,
see [78]) for storage and manipulation of matrices in both parts. MTL is a template-
based software package based on principles of Generic programming [3]. In its
philosophy it is similar to the famous Standard Template Library: it provides a
set of template data-types and procedures for dealing with matrices and vectors
of various formats (e.g. banded, symmetric, general sparse, etc.). Our overall
experience with MTL is good, although the version we have used (2.1.2-19) was
quite buggy. The robust linear solver builds on top of MTL and LAPACK [1], [2].
The part of the software which analyzes the L-curve is quite independent of the
algebraic method chosen to solve the equation system. Hence, the algorithms for

124 CHAPTER 9. CONCLUSIONS AND ACKNOWLEDGMENTS

L-curve interrogation can still be used even if the SVD is replaced by other fac-
torizations (e.g. the faster Rank Revealing QR-decomposition) or by an iterative
method.

Bibliography

[1] D. C. Anderson and R. H. Crawford. Knowledge management for prelimi-
nary computer aided mechanical design. In T. Sata, editor,Organization of
engineering knowledge for product modelling in computer integrated manu-
facturing, pages 15–34. IFIP, Elsevier, 1989.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide Third Edition. Software, Environments, and Tools 9.
Society for Industrial and Applied Mathematics, SIAM, 3. edition, 1999.

[3] Matthew H. Austern.Generic Programming and the STL: Using and Extend-
ing the C++ Standard Template Library. Professional Computing. Addison-
Wesley, 1999.

[4] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R.Pozo, C. Romine, and H. Van der Vorst.Templates for the Solu-
tion of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition.
SIAM, Philadelphia, PA, 1994.

[5] G. P. Bonneau, H. Hagen, and S. Hahmann. Variational Surface Design and
Surface Interrogation.Computer Graphics Forum, 3(12):447–459, 1993.

[6] C. De Boor, L. Lyche, and L. L. Schumaker. On calculating with B-splines:
Integration. In L. Collatz, H. Werner, and G. Meinardus, editors,Numerische
Methoden der Approximationstheorie, pages 123–146. Birkhhäuser, Basel,
1976.

[7] B. Brüderlin, U. Döring, R. Klein, and P. Michalik. Declarative geometric
modeling with constraints. In A. Iwainsky, editor,Conference proceedings
CAD 2000, Berlin, March 2000. GFAI.

[8] B. Brüderlin, U. Döring, P. Michalik, D. Beier, and H. Oestreich. Pro-
grammable Features in CAD. InProceedings, ISATA, Dublin, Ireland, 2000.

125

126 BIBLIOGRAPHY

[9] G. Brunnett, H. Hagen, and P. Santarelli. Variational Design of Curves and
Surfaces.Surv. Math. Industry, 3(27), 1993.

[10] D. Calvetti, P. C. Hansen, and L. Reichel. L-curve curvature bounds via
Lanczos bidiagonalization.Electronic Transactions on Numerical Analysis,
May 2001. To obtain underwww.imm.dtu.dk .

[11] G. Celniker and W. Welch. Linear constraints for deformable B–spline sur-
faces.Computer Graphics, 25(2):171–174, March 1992.

[12] T. Chan and P. C. Hansen. Computing Truncated Singular Value Decompo-
sition Least Square Solutions by rank revealing QR-Factorizations.SIAM J.
Sci. Stat. Comput., 11(3):519–530, May 1990.

[13] S. Coquillart. Extended free–form deformation: a sculpturing tool for 3D
geometric modeling.Computer Graphics, 24(4):187–196, August 1990.

[14] M. Cox. Algorithms for spline curves and surfaces. In L. A. Piegl, editor,
Fundamental Developments of Computer–Aided Geometric Modeling, pages
51–75. Academic Press Limited, 1993.

[15] P. de Casteljau.Formes à Pôles. Hermes, Paris, 1985.

[16] P. de Casteljau.Le Lissage. Hermes, Paris, 1990.

[17] T. DeRose. Composing Bézier Simplices.ACM Trans. Graph., 7(3):198–
221, July 1988.

[18] T. DeRose, R. Goldman, H. Hagen, and S. Mann. Functional composition
via blossoming.ACM Transactions on Graphics, 12(2), April 1993.

[19] U. Dietz. B-Spline Approximation with Energy Constraints. InReverse
Engineering. B.G. Teubner, Stuttgart, 1996.

[20] U. Dietz. Creation of Fair B-Spline Surface Fillets. InCreating Fair and
Shape Preserving Curves and Surfaces. B.G. Teubner, Stuttgart, 1998.

[21] U. Doering, P. Michalik, and B. Brüderlin. A constraint–based shape mod-
eling system. InGeometric Constraint Solving & Applications. Springer
Verlag, June 1998.

[22] G. Elber.Users’ Manual – IRIT, A solid modeling Program. Technion insti-
tute of Technology, Haifa, Israel, 1990–1996.

[23] G. Elber.Free form surface analysis using a hybrid of symbolic and numer-
ical computations. PhD thesis, University of Utah, 1992.

BIBLIOGRAPHY 127

[24] G. Elber and E. Cohen. Filleting and rounding using trimmed tensor prod-
uct surfaces. InProceedings The fourth ACM/IEEE Symposium on Solid
Modeling and Applications, pages 201–216, May 1997.

[25] G. Farin.Curves and Surfaces for CAGD. Computer Science and Scientific
Computing. Academic Press, Inc., 3. edition, 1992.

[26] R. Fierro, G. H. Golub, P. C. Hansen, and D. P. O’Leary. Regularization by
Truncated Total Least Squares. In J.G. Lewis, editor,Proceedings of the Fifth
SIAM Conference on Applied Linear Algebra, pages 250–254, Philadelphia,
PA, 1994. SIAM Press.

[27] G. H. Golub, P. C. Hansen, and D. P. O’Leary. Tikhonov Regularization and
Total Least Squares. Journal on Matrix Analysis and Applications, to appear.

[28] G. H. Golub, V. Klema, and G. W. Stewart. Rank Degeneracy and Least
Squares Problems. Technical Report 456, Department of Computer Science,
Institute for Advanced Computer Studies (UMIACS), University of Mary-
land at College Park,www.cs.umd.edu , 1976.

[29] G. H. Golub and C. E. van Loan.Matrix Computations. John Hopkins Series
in the Mathematical Sciences. The John Hopkins University Press, 2 edition,
1989.

[30] W. J. Gordon. Sculptured surface definition via blending–function meth-
ods. In L. A. Piegl, editor,Fundamental Developments of Computer–Aided
Geometric Modeling, pages 117–134. Academic Press Limited, 1993.

[31] G. Greiner. Variational design and fairing of spline surfaces.Computer
Graphics Forum (Proc. Eurographics ’94), (3):143–154, 1994.

[32] G. Greiner and H.-P. Seidel. Automatic modeling of smooth spline surfaces.
In V. Skala N. Magnenat-Thalmann, editor,Proc. WSCG ’97, pages 665–
675, 1997.

[33] J. Griessmair and W. Purgathofer. Deformation of solids with trivariate b-
splines. In W. Hanmann, F.R.A. Hopgood, and W. Strasser, editors,Euro-
graphics ’89, pages 137–148. Elsevier Science Publishers (North Holland),
1989.

[34] C. W. Groetsch, editor.The Theory of Tikhonov Regularization for Fredholm
Equations of the First Kind. Pitman, Boston, 1984.

128 BIBLIOGRAPHY

[35] P. C. Hansen. Truncated Singular Value Decomposition Solutions to Dis-
crete Ill–posed Problems With Ill–determined Numerical Rank.SIAM J. of
Scientific Computing, 11(3):519–530, May 1990.

[36] P. C. Hansen.Regularization Tools. Department of Mathematical Modeling,
Technical University of Denmark,www.imm.dtu.dk , March 1998.

[37] P. C. Hansen. The L-curve and its use in the numerical treatment of inverse
problems. In invited paper for P. Johnston, editor,Computational Inverse
Problems in Electrocardiology, pages 119–142, Southampton, 2001. WIT
Press.

[38] P. C. Hansen, T. Sekh, and H. Shibahashi. The Modified Truncated SVD
Method for Regularization in General Form.SIAM J. of Scientific Comput-
ing, 13(5):1142–1150, September 1992.

[39] J. Hayes. Nag algorithms for the approximation of functions and data. In
J. Mason and M. Cox, editors,Algorithms for Approximation, pages 653–
668. Clarendon Press, Oxford, 1988.

[40] J. Hoschek and U. Dietz. Smooth B-Spline Surface Approximation to Scat-
tered Data. InAdvanced Course on FAIRSHAPE. B.G. Teubner, Stuttgart,
1996.

[41] J. Hoschek and D. Lasser.Fundamentals of Computer Aided Geometric
Design. A K Peters Ltd., 2. edition, 1989.

[42] C. Hsu, G. Alt, Z. Huang, E. Beier, and B. Brüderlin. A Constraint–based
Manipulator Toolset for Editing 3D Objects. InSolid Modeling 1997, At-
lanta, Georgia, 1997. ACM Press.

[43] C. Hsu and B. Brüderlin. A graph-based degree of freedom analysis
algorithm to solve geometric constraint problems. In W. Strasser and
J. Rossignac, editors,Theory and Practice of Geometric Modeling. Springer
Verlag, 1997.

[44] C. Hsu and B. Brüderlin. A hybrid constraint solver using exact and iterative
geometric constructions. In D. Roller and P. Brunet, editors,CAD Systems
Development – Tools and Methods. Springer Verlag, 1997.

[45] Roman Kazinnik and Gershon Elber. Orthogonal Decomposition of Non-
Uniform Bspline Spaces using Wavelets.Computer Graphics forum,
16(3):27–38, September 1997.

BIBLIOGRAPHY 129

[46] A. Kielbasinsky and H.Schwetlick.Numerische lineare Algebra, eine com-
puterorientierte Einführung. Mathematik für Naturwissenschaft und Tech-
nik. Deutscher Verlag der Wissenschaften, Berlin, 1988.

[47] D. H. Kim, P. Michalik, and B. Brüderlin. Sketching B-spline curves and
surfaces. In P. Slusallek D. Saupe, editor,Graphiktag 2001, pages 68–76,
Tübingen, November 2001.

[48] A. Kolb, H. Pottmann, and H.-P. Seidel. Fair surface reconstruction using
quadratic functionals. InEurographics Proc. ’95, pages 469–479. Euro-
graphics, Blackwell Publishers, 1995.

[49] F. Lazarus, S. Coquillart, and P. Jancéne. Axial deformations: An intuitive
deformation technique.Computer–Aided Design, 26(8):607–613, August
1994.

[50] W. Liu. Programming support for blossoming. Master’s thesis, University
of Waterloo, Waterloo, 1995.

[51] C. T. Loop. Generalized B-spline Surfaces of Arbitrary Topological Type.
PhD thesis, University of Washington, 1992.

[52] T. Lyche and K. Mørken. A Discrete Approach to Knot Removal and De-
gree Reduction Algorithms for Splines. In J. Mason and M. Cox, editors,
Algorithms for Approximation, pages 67–82. Oxford University Press, 1987.

[53] S. Mann and W. Liu. An analysis of polynomial composition algorithms.
Technical Report CS–95–24, University of Waterloo, Computer Science De-
partment, 1995.

[54] P. Michalik and B. Brüderlin. Computing curve–surface incidence con-
straints efficiently. InProceedings Swiss Conference on CAD/CAM, Febru-
ary 1999.

[55] P. Michalik and B. Brüderlin. A constraint-based method for sculpting free-
form surfaces. In G. Brunnett and H. P. Bieri, editors,Computing, special
issue of the Dagstuhl Seminar on Geometric Modelling. Springer Verlag,
2000.

[56] P. Michalik and B. Bruederlin. Introducing parametrization in surface mod-
els by means of geometric constraints. InProceedings Scanning and Human
Body Modeling, Paris, France, May. 4-5 2001.

130 BIBLIOGRAPHY

[57] P. Michalik, D. Kim, and B. Bruderlin. Sketch- and Constraint-based Design
of B-spline Surfaces. InProceedings of International Conference on Solid
Modeling, Saarbrücken, Germany, 2002.

[58] K. Mørken. Some identities for products and degree raising of splines.Con-
structive Approximation, 7:195–208, 1991.

[59] On-Line Computer Graphics Notes. Free-form deformations.
http://graphics.cs.ucdavis.edu/GraphicsNotes .

[60] J. Peters. Geometric continuity. Dept C.I.S.E, University of Florida,
www.cise.ufl.edu/research/SurfLab/papers , February
2001.

[61] L. Piegl and W. Tiller.The Nurbs Book. Springer Verlag, 1995.

[62] L. Piegl and W. Tiller. Fillingn-sided regions with NURBS patches.The
Visual Computer, (15):77–89, 1999.

[63] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery.Numerical Recipies
in C: The art of scientific computing. Cambridge Unversity Press, 1992.

[64] L. Ramshaw. Beziers and B-splines as multiaffine maps. In R. A. Earnshaw,
editor,Theoretical Foundations of Computer Graphics and CAD, number 40
in NATO ASI Series F: Computer and Systems Sciences, pages 757–776.
Springer-Verlag, 1987.

[65] L. Ramshaw. Blossoming: A connect–the–dots approach to splines. Techni-
cal Report 19, Digital Systems Reaearch Center, Palo Alto CA, June 1987.

[66] L. Ramshaw. Blossoms are polar forms.Computer Aided Geometric Design,
6:323–358, January 1989.

[67] A. Rappoport, Y. Hel-Or, and M. Werman. Interactive design of smooth
objects with probabilistic point constraints.ACM Transactions on Graphics,
13(2):156–176, April 1994.

[68] J. J. Risler.Mathematical Methods for CAD. Press Syndicate of the Univer-
sity of Cambridge, 1991.

[69] B. W. Rust and W. R. Burrus.Mathematical Programing and the Numerical
Solutions of Linear Equations. Modern Analytic and computational methods
in science and mathematics. American Elsevier Publishing Company, New
York, N.Y., 1972.

BIBLIOGRAPHY 131

[70] Y. Saad.Iterative Methods For Sparse Linear Systems. The PWS Series in
Computer Science. PWS Publishing Company, Boston, MA, 1996.

[71] O. W. Salomons.Computer support in the design of mechanichal products.
PhD thesis, Universiteit Twente, Groeningen, 1995.

[72] L. L. Schumaker and F. I. Utreras. On Generalized Cross validation for
Tensor Smoothing Splines.SIAM J. Sci. STAT. Comput., 11(4):713–731,
July 1990.

[73] T. Sederberg and S. Parry. Free–form deformation of solid geometric mod-
els. InProceedings SIGGRAPH ’86, pages 151–160, 1986.

[74] H. P. Seidel. Knot insertion from a blossoming point of view.Computer
Aided Geometric Design, 5(1):81–86, 1988.

[75] H. P. Seidel. Computing B-Spline Control Points. In W. Strasser and H. P.
Seidel, editors,Theory and Practice of Geometric Modeling, pages 17–32.
Springer Verlag, 1989.

[76] H. P. Seidel. An introduction to polar forms.IEEE Comp. Graph. Appl.,
1(13), 1993.

[77] H. P. Seidel, W. Dalmen, and C. A. Micchelli. Blossoming begets B-splines
built better by B-patches.Math. Comp, (59), 1993.

[78] J. G. Siek. A Modern Framework for High Performance Numerical Linear
Algebra. Master’s thesis, University of Notre Dame, Notre Dame, Indiana,
April 1999. www.lsc.nd.edu/research/mtl .

[79] K. Singh and E. Fiume. Wires: A geometric deformation techinque. In
Proceedings SIGGRAPH ’98, 1998.

[80] L. N. Trefethen and D. Bau.Numerical Linear Algebra. Sociaty for Indus-
trial and Applied Mathematics, Philadelphia, PA, 1997.

[81] A. H. Vermeulen, R. H. Bartels, and G. R. Heppler. Integrating Product of
B-Splines.SIAM J. Sci. Stat. Computing, 13(4):1025–1038, July 1992.

[82] R. Weiss. Parameter-Free Iterative Linear Solvers. Akademie Verlag
Gmbh., Berlin, 1996.

[83] W. Welch and A. Witkin. Variational surface modeling.Computer Graphics,
26(2):157–165, July 1992.

132 BIBLIOGRAPHY

[84] Todd Will. Introduction to the Singular Value Decomposition.
http://www.davidson.edu .

Appendix A

Notations and Definitions

The geometric elements we deal with are B-Spline curves and surfaces in 3-
dimensional Euclidian space (denoted byE3). Each geometric element possesses
a defined and fixed number ofdegrees of freedom: Degrees of freedom of a ge-
ometric elementX aren × 3 real scalar variables which uniquely determineX.
This will be abbreviated by the relationshipdofs(X) (read: “degrees of freedom
of elementX”) defined as:

dofs(X) : X → Rn×3

Degrees of freedom for each spacial dimension are an element of vector space
over real numbersRn; we denote vectors inRn by lower case bold letters,x and
matrices inRm×n by upper case bold letters,X:

dofs(X) =


x11 x12 x13

...
xn1 xn2 xn3

 =
[

x1 x2 x3

]
= X, X ∈ Rn×3

We say that a geometric elementX possessesn degrees of freedomxi for each
spacial dimension, or simply, it has the sizen × 3. An elementX is determined
if the values of alldofs(X) are known. An elementX is unknown if the values
of dofs(X) are not known. We will use corresponding symbols for geometric
elements and their degrees of freedom, i.e.:dofs(X) = X.

A.1 B-Splines

The term “B-Splines” is frequently used to denote certain category of free-form
curves and surfaces. However, from mathematical point of view, B-Splines (Basis
Splines) denote a specific basis for a vector space of piecewise polynomial func-
tions. Therefore, we distinguish between B-Splines and functions, curves and

133

134 APPENDIX A. NOTATIONS AND DEFINITIONS

surfaces defined in terms of the B-Spline basis. In the following three paragraph
we will define B-Splines and univariate and two-variate B-Spline functions. The
latter two paragraphs extend the definition to1 B-Spline curves and surfaces and
establish the notation for denoting the degrees of freedom of B-spline curves and
surfaces.

A.1.1 Definition

A.1.1.1 B-Splines and B-Spline functions

Let 〈a, b〉 ⊆ R1 be a given interval ofR1. Let also be given integersd > 0, n ≥ 1
and a sequenceτ of n + d + 1 real numbersτi such that

1. τi ≤ τi+1, 0 ≤ i ≤ n + d

2. τj ≤ a, 0 ≤ j ≤ d

3. τj ≥ b, n ≤ j ≤ n + d

Suchτi are calledknotsand the sequenceτ is calledknot vector. We associate
with each knotτi an integer valuemi, 0 ≤ mi ≤ d, calledmultiplicity of τi, which
counts the number of occurances ofτi in the sequenceτ .

By Pd,τ,n we will denote an-dimensional vector space of univariate piecewise
polynomial functions of polynomial degreed on interval〈a, b〉 which areCd−mi

continuous at knotsτi. The dimension ofPd,τ,n is n, if mi ≤ d, 0 ≤ i ≤ n + d,
see [68]. Elements ofPd,τ are piecewise polynomial functions:

c : Ωt → R1, c = c(t), t ∈ Ωt ⊆ R1, Ωt = 〈a, b〉

A set of n linearly independent piecewise polynomial functions{bd,τ
i (t) : 0 ≤

i < n}, calledB-Splines(Basis Splines), defined by recursion

b0,τ
i (t) =

{
1 if τi ≤ t < τi+1

0 otherwise

bd,τ
i (t) = t−τi

τi+d−τi
bd−1,τ
i (t) + τi+d+1−t

τi+d+1−τi+1
bd−1,τ
i+1 (t)

(A.1)

constitutes a basis forPd,τ , see [68], [25] ,[41]. Therefore anyc(t) ∈ Pd,τ may be
written as a linear combination ofn B-Splines:

c(t) =
n−1∑
i=0

cib
d,τ
i (t)

1In fact, the dimension is not limited to three. Curves and surfaces in arbitrary dimension are
defined in exactly the same way, by simply considering all dimensions independently.

A.1. B-SPLINES 135

Eachc(t) ∈ Pd,τ,n is uniquely determined by its coefficients{ci ∈ R1 : 0 ≤ i <

n} and a fixed set of B-Splines{bd,τ
i (t) : 0 ≤ i < n}. The coefficientsci are the

degrees of freedom of a B-Spline functionc(t).

A.1.1.2 Scalar product notation

In order to simplify notation, we denote a basis (a set of basis functions) by a
vector

bT
t =

[
bd,τ
0 (t) · · · bd,τ

n−1(t)
]

and writec(t) as ascalar productof the basis and the coefficient vector:

c(t) =
[

bd,τ
0 (t) · · · bd,τ

n−1(t)
] 

c0
...

cn−1

 = bT
t c

It follows that

dofs (c(t)) =


c0
...

cn−1

 = c, c ∈ Rn

A.1.1.3 Properties of B-Splines

With this notation B-Splines have following properties (see e.g. [68] for detailed
proofs):

1. bd,τ
i (t) consists of polynomial segments of degreed for τj ≤ t < τj+1, d ≤

j ≤ n

2. bd,τ
i (t) is a piecewise polynomial of degreed for τd ≤ t < τn

3. bd,τ
i (t)

{
≥ 0; if τi ≤ t < τi+d+1; d ≤ i ≤ n

0 otherwise

4.
∑n−1

i=0 bd,τ
i (t) = 1

These properties will be of importance in the scope of the thesis. Furthermore,
we will make use of following properties, induced by properties 1 and 2: Let
x(t) ∈ Pd,τ,m andy(t) ∈ Pl,υ,n be two B-Spline functions. Then the following
propositions applies:

1. B-Spline functions are closed under multiplication, i.e. a product of two
B-Spline functions is also a B-Spline function:

x(t) · y(t) = z(t); z(t) ∈ Pd+l,π,p

136 APPENDIX A. NOTATIONS AND DEFINITIONS

2. B-Spline functions are closed under differentiation and integration:

d

dt
x(t) = z(t); z(t) ∈ Pd−1,π,n−1 ⇐⇒

∫
z(t)dt = x(t) + C

The advantage of using the B-Spline basis compared, for example, to the power
basis for piecewise polynomials is that the coefficientsci have a geometric repre-
sentation: Let(ξi, ci) with ξi = 1

d

∑i+d−1
j=i τi be the coordinates of a point inE2.

The set of points{(ξi, ci) : 0 ≤ i < n}, calledcontrol points, constitute the
so-called,control polygonof a B-spline functionc(t). The graph of the function
c(t) approximates the shape of a control polygon which allows to conclude on the
shape of a B-Spline function by only considering the shape of its control poly-
gon. This is an important property in the context of designing B-Spline curves
and surfaces, defined in §A.1.2 and §A.1.3.

A.1.1.4 Two-variate B-Splines and B-Spline functions

Let Pk,τ andPl,υ be two B-Spline spaces of dimensionsm andn. Denote the
B-Spline bases forPk,τ andPl,υ by bT

u andbT
v . Furthermore, define a set ofn

B-Spline functions{sj(u) ∈ Pk,τ : 0 ≤ j < n} with coefficientssi,j; 0 ≤ i < m.
Then a two-variate function

s : Ωu,v → R1, s = s(u, v), (u, v) ∈ Ωu,v ⊆ R2, Ωu,v = Ωu×Ωv = 〈a, b〉×〈c, d〉

defined by
s(u, v) =

∑n−1
j=0 sj(u)bl,υ

j (v)

=
∑n−1

j=0

(∑m−1
i=0 si,jb

k,τ
i (u)

)
bl,υ
j (v)

=
∑n−1

j=0

∑m−1
i=0 si,jb

k,τ
i (u)bl,υ

j (v)

(A.2)

is called a two-variatetensor-productB-Spline function of polynomial degreek
in u-direction and polynomial degreel in v-direction. Settingdofs(sj) = sj, and
using the scalar product notation for univariate B-Spline function yields a 2-tensor
in variablesu andv:

s(u, v) =
∑n−1

j=0

(
bT

u sj

)
bl,υ
j (v) = bT

u

∑n−1
j=0 sjb

l,υ
j (v)

= bT
u

[
s0 · · · sn−1

]
bv

= bT
uSbv

Eachs(u, v) is uniquely determined by its coefficientssi,j and fixed sets of B-
SplinesbT

u andbT
v in variablesu andv.

A.1. B-SPLINES 137

A.1.1.5 Scalar product notation for tensor-products

The scalar product notation is established by introducing two-variate B-spline ba-
sis functionsbk,τ,l,ν

I (u, v) = bk,τ
i (u)bl,υ

j (v) with integer indicesI such that

I = i + mj, 0 ≤ i < m ∧ 0 ≤ j < n⇒ 0 ≤ I ≤ (m− 1)(n− 1)

The linear subspace formed by the productsbk,τ
i (u)bl,υ

j (v) is called a tensor prod-
uct ofPk,τ andPl,υ, and will be denoted byPk,τ×Pl,υ. Similarly as in the univari-
ate case we simplify the notation for two-variate basis functions by introducing a
vector notation:

bT
u,v =

[
bk,τ,l,υ
0 (u, v) · · · bk,τ,l,υ

(m−1)(n−1)(u, v)
]

We expandS in row-major order yielding a vectors of sizemn:

s =
[

s0,0 · · · sm−1,0 · · · s0,n−1 · · · sm−1,n−1

]T
Using the vector notation for two-variate B-Spline basis yields

s(u, v) =
(m−1)(n−1)∑

I=0

sIb
k,τ,l,υ
I (u, v) = bT

u,vs

and
dofs (s(u, v)) = s, s ∈ Rmn

A.1.1.6 Properties of two-variate B-Spline functions

The properties of univariate B-Spline functions extend to two-variate B-Spline
functions by considering each variable separately. In particular, thecontrol mesh
of a two-variate B-Spline function is defined as follows: Let(µi, νj, si,j) be the
coordinates of a point inE3 with µi = 1

k

∑i+k−1
p=i τp andνj = 1

l

∑j+l−1
p=i υp. The

set of points{(µi, νj, si,j) : 0 ≤ i < m ∧ 0 ≤ j < n}, calledcontrol pointsof
s(u, v), constitute the so-called,control meshof a B-spline functions(u, v). As in
the univariate case the graph of the functions(u, v), a surface inE3, approximates
the shape of the control mesh.

The 2-tensors of that kind have the property that settingu = const. or v =
const. yields a univariate B-Spline function in the other non-constant variable:
For example, settingv = const. = α in equation A.2 and substitutingbl,υ

j (α) =
βj, 0 ≤ j < n yields

s(u, α) =
n−1∑
j=0

sj(u)βj, s(u, α) ∈ Pτ,k

The graph ofs(u, v = const.) is a curve inE3 incident ons(u, v) called aniso-
parametriccurve inu-direction.

138 APPENDIX A. NOTATIONS AND DEFINITIONS

A.1.2 B-Spline curves

Let cj(t) ∈ Pd,τ , 0 ≤ j < 3 be three B-Spline functions of dimensionn as defined
in §A.1.1. A parametric curve inE3 defined by

C : Ωt → E3, C = C(t) = (c0(t), c1(t), c2(t)) , t ∈ Ωt

is called a B-Spline curve of degreed. In the following we denote points and
vectors in Euclidian spaces by upper italic letters and use(· · ·) to list their coor-
dinates. Denote byci,j thei-th coefficient ofcj(t). The coefficientsci,j for fixed i
and1 ≤ j ≤ 3 define a point inE3 with coordinates(ci,1, ci,2, ci,3), calledcontrol
point of a B-Spline curve. The set ofn control points{Ci = (ci,1, ci,2, ci,3) : 0 ≤
i < n} constitutes acontrol polygonof a B-Spline curve. The curveC(t) may be
then written as a linear combination of control pointsCi and basis functions:

C(t) =
n−1∑
i=0

Cib
d,τ
i (t)

Since eachcj(t) is fully determined by its coefficients, see §A.1.1, a B-Spline
curve is fully determined by its control points. In order to obtain thedofs(C)
relation we switch to scalar product notation for eachcj(t). We define a matrix of
control pointsC:

C =


Ci
...

Cn−1


which yields

C(t) =
[

c1(t) c2(t) c3(t)
]

=
[

bd,τ
0 (t) · · · bd,τ

n−1(t)
] 

Ci
...

Cn−1


= bT

t C

Hence, the coordinates of the control points are the degrees of freedom of a free-
form curve:

dofs (C(t)) = C, C ∈ Rn×3

A.1.3 B-Spline surfaces

Let sd(u, v) ∈ Pk,τ × Pl,υ, 0 ≤ d < 3 be three 2-variate B-Spline functions of
dimensionmn as defined in §A.1.1. A parametric surface inE3 defined by

S : Ωu,v → E3, S = S(u, v) = (s0(u, v), s1(u, v), s2(u, v)) , (u, v) ∈ Ωu,v

A.1. B-SPLINES 139

is called a tensor-product B-Spline surface of polynomial degreek in u and degree
l in v. Denote bysi,j,d the coefficient ofsd(u, v) with indicesi, j. The coefficients
si,j,d for fixed i, j and0 ≤ d < 2 define a point inE3 calledcontrol pointof a
B-Spline surface. The set ofmn control points{Si,j = (si,j,0, si,j,1, si,j,2) : 0 ≤
i < m, 0 ≤ j < n} constitutes acontrol meshof a tensor-product B-Spline
surface. By convention, the size of the control mesh ism in u-direction andn in
v-direction. The surfaceS(u, v) may be then written as a linear combination of
its control points and basis functions forPk,τ andPl,υ:

S(u, v) =
n−1∑
j=0

m−1∑
i=0

Si,jb
k,τ
i (u)b,l,υ

j (v)

Alternatively, we will use the compact notation with two-variate B-spline basis
functionsbk,τ,l,ν

I (u, v) = bk,τ
i (u)bl,υ

j (v) and control pointsSI with integer indices
I such that

I = i + mj, 0 ≤ i < m ∧ 0 ≤ j < n⇒ 0 ≤ I ≤ (m− 1)(n− 1)

The surfaceS(u, v) may be then written as a linear combination of its control
points and two-variate basis functions:

S(u, v) =
(m−1)(n−1)∑

I=0

SIb
k,τ,l,υ
I (u, v)

Since eachsd(u, v) is fully determined by its coefficients a B-Spline surface is
fully determined by the values of its control points. Analogously to a B-Spline
curve we define a matrix of control points:

S =


S0
...

S(m−1)(n−1)


which yields:

S(u, v) =
[

s0(u, v) s1(u, v) s2(u, v)
]

= bT
u,v


S0
...

S(m−1)(n−1)


= bT

u,vS

The coordinates of the control points are the degrees of freedom of a B-Spline
surface:

dofs (S(u, v)) = S, S ∈ Rmn×3

140 APPENDIX A. NOTATIONS AND DEFINITIONS

A.1.3.1 Iso-parametric curves of a B-Spline surface

Let v = const. be a line in the domain space of a B-Spline surface. Setv = α.
Then a curve

E(u) = F (u, α) =
n−1∑
j=0

m−1∑
i=0

Si,jb
k,τ
i (u)b,l,υ

j (α)

is called aniso-parametriccurve inu-direction of the B-Spline surfaceF . By
settingβj = b,l,υ

j (α) it follows immediately thatE(u) =
∑

i Eib
k,τ
i (u) with Ei =∑n−1

j=0 Si,jβj. Similarly, one can setu = const. obtaining an iso-parametric curve
in v-direction. Iso-parametric curves play an important role in the design and
analysis of tensor-product surfaces, as will be described in §2.2.2.

A.2 Bezier basis as special case of B-Spline basis

We will introduce the, so-called, Bezier basis as a special case of the B-Spline
basis: Let〈a, b〉 ⊆ R1 be a given interval ofR1. As in §A.1.1 let also be given
d > 0, n = d + 1 and a knot vectorτ of sizen + d + 1 = 2d + 2 such that

1. τ0 = · · · = τd = a

2. τd+1 = · · · = τ2d+1 = b

Seta = 0, b = 1. For this special case, formula A.1 degenerates into

bd
i (t) = tbd−1

i + (1− t)bd−1
i+1 =

(
d + 1

i

)
(1− t)d+1−iti

Denote byPd a vector space of univariate polynomials of degree≤ d. The set of
d + 1 functions{bd

i (t) : 0 ≤ i ≤ d}, calledBernsteinpolynomials constitutes
a basis forPd, see e.g. [68]. Traditionally, the Bernstein polynomials are called
Bezier basis functions. We will use the notationbd

i (t) (without the super index
τ) for Bezier basis functions to denote the difference to general B-Splines. The
domain space for Bezier basis functions is not restricted tot ∈ 〈0, 1〉. Setting
the knot vector as defined above yields a set of generalized Bernstein polynomials
{bd

i (t) : 0 ≤ i ≤ d, t ∈ 〈a, b〉}:

bd
i (t) =

(
t− a

b− a

)
bd−1
i +

(
b− t

b− a

)
bd−1
i+1 =

(
d + 1

i

)(
b− t

b− a

)d+1−i (
t− a

b− a

)i

Bezier functions, curves and surfaces are defined in exactly the same way as B-
Splines in §A.1.1-§A.1.3, therefore we will not make further distinction in the
notation. Whenever the type of used basis functions is of importance we will
point that out in advance.

	Introduction
	Goals of the thesis
	Structure and contents of the thesis

	Methods for free-form surface design
	Parametric methods for CAD
	Known methods for free-form surface design
	Warping methods
	Constraint-based methods

	Generalized constraint-based surface modeling
	The design example
	Design with Free-form Features

	Linear curve constraints
	Related research
	Formulating the equations
	Obtaining a stable solution

	Generalizing the composition method
	Curve-surface incidence constraints
	Tangency constraints

	Variational constraints

	Computing the incidence constraints
	The blossoming kernel
	The Blossoming principle
	Blossoming principle for Bezier polynomials
	Blossoming B-Splines
	Blossoming tensor-product B-Splines
	Unevaluated formulation of a blossom

	Unevaluated polynomial composition
	Revisiting the DeRose et al. algorithm
	Computing the Bezier composition matrix
	Unevaluated composition for B-splines

	Efficiency and Data structures
	The combinatorics
	The products
	The blossoms
	Implementation: the Multi-index tree

	Practical notes and some results
	Run-time performance
	Numerical stability and shape of the composition matrix

	Tangency constraints
	Problem definition
	Differentiation operator in matrix form
	Computing the scalar product
	Practical notes on implementation

	Variational constraints
	Quadratic error functionals for surfaces
	Matrix notation for surface functionals
	Implementation
	Computing two-variate integrals of B-splines
	Hierarchical decomposition of B-spline derivatives
	Integrating products of B-splines

	Results and practical notes

	Linear constraint solving I
	Notation
	Ill-posed problems
	The Picard condition
	Regularization of ill-posed problems

	The truncated SVD
	The SVD
	The rank revealing effect of SVD

	The L-curve method
	The singular values plot
	Determining the optimal truncation parameter
	Demonstrating the Picard condition
	The ``aliasing effect'' of the truncated SVD solution

	The surface aliasing effect

	Linear constraint solving II
	Introduction: Anti-aliasing
	Surface reparametrization
	Reparametrization of tensor-product B-splines
	Solving a constrained curve network interpolation problem
	A design example
	Summary of the method

	Constrained least squares
	The constrained regularization
	Modified truncated SVD
	More results and selected problems
	Summary of the method

	Conclusions and Acknowledgments
	Notations and Definitions
	B-Splines
	Definition
	B-Spline curves
	B-Spline surfaces

	Bezier basis as special case of B-Spline basis

