Computing a quasi-developable strip surface bounded by design curves finds
wide industrial applications. Existing methods compute discrete surfaces
composed of developable lines connecting sampling points on input curves which
are not adequate for generating smooth quasi-developable surfaces. We propose
the first method which is capable of exploring the full solution space of
continuous input curves to compute a smooth quasi-developable ruled surface
with as large developability as possible. The resulting surface is exactly
bounded by the input smooth curves and is guaranteed to have no
self-intersections. The main contribution is a variational approach to compute
a continuous mapping of parameters of input curves by minimizing a function
evaluating surface developability. Moreover, we also present an algorithm to
represent a resulting surface as a B-spline surface when input curves are
B-spline curves.Comment: 18 page