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Abstract

The mathematical foundations and an implementation of a new free-form shape design
paradigm are developed. The finite element method is applied to generate shapes that
minimize a surface energy function subject to user-specified geometric constraints while
responding to user-specified forces. Because of the energy minimization these surfaces
opportunistically seek globally fair shapes. It is proposed that shape fairness is a global and
not a local property. Very fair shapes with C1 continuity are designed.

Two finite elements, a curve segment and a triangular surface element, are developed and
used as the geometric primitives of the approach. The curve segments yield piecewise C1
Hermite cubic polynomials. The surface element edges have cubic variations in position
and parabolic variations in surface normal and can be combined to yield piecewise C1

surfaces. These are called deformable curves and surfaces because they respond to user
inputs much like elastic beams and membranes.

The properties of these geometric primitives have been designed to enable a three phase
interactive approach to defining very fair free-form shapes. The shape's character lines are
created with deformable curve segments. These character lines are then "skinned" with a
deformable surface. The final shape is sculpted interactively by applying loads to the
surface to control the surface shape between character lines. Very fair free-form shapes
have such applications as the design of automobiles, ships, ceramics, and air-supported
buildings as well as the modeling of natural forms.

Thesis Advisor: Prof. David Gossard
Thesis Committee: Prof. Tony Patera

Prof. Alex Pentland
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Nomenclature

Bold lower case symbols are used to represent vectors or functions with values which are
vectors in R2 and R3 space. Symbols which are not bold represent scalar quantities or
functions with values which are scalars. Uppercase bold symbols represent matrices or
column vectors from matrix equations. These rules hold except where noted otherwise.

Shape definitions

w
wh
xi

(Pi
w[i],w[i,j]
U
a
x
y
wu

wuu

w = w(u), shape in 3 space, wT= [x y z]
The finite element approximation of the shape w
unknown gains in the approximate shape wh
known shape functions of the approximate shape
a particular discrete point in the shape w in 2 and 3 dimensions
parametric shape vector, either u = [u] or u = [u,v] for a curve or surface
region of the parametric plane that is the domain of the deformable shape
rest shape in 3 space x = [x y z]
deformed shape in 3 space, y = x + w
The partial of w with respect to u, Dw/au
The 2nd partial of w with respect to u, a2w/au 2

Variational and dynamic geometry

A minimum principle of w
ShapeWright curve energy minimum principle
ShapeWright surface energy minimum principle
Energy functional for a soap film
Energy functional for a plate
Energy functional for a shell structure
forcing vector applied to a curve or surface, f = f(u)
force of a spring
force of gravity
force of pressure
a deviation from w in 3 space e = [x y z]
a deviation in the space spanned by the shape functions in (
A small arbitraty value scalar weighting deviations from w
The stretch resistance weight for a curve
the bending resistance weight for a curve
matrix of stretch resistance weights for a surface

matrix of bending resistance weights for a surface
strain
stress

I(w)
Ecurve
Esurface
Eflm
Eplate
Eshell
f
fs
fg
fp
e
e
h

Eij

oij
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f a general minimization functional, f = f(u) in I(w) =j fdu

gn a general constraint function, g = g(u)
h a combined minimization function, h = f - g
k a Lagrange multiplier, X = k(u)

kh Ritz approximation to the k Lagrange multiplier function

p mass density for a curve or surface

!a damping for a curve or surface

Co-ordinate space and transformation definitions

R2 , R3  2 and 3 dimension vector spaces
el,e2,e3 unit orthonormal vectors in R3

Au,Av Finite difference spacing in the parametric plane

At time step size for dynamic system integration

Ho Hilbert 0 space, the set of functions with finite energy
H 2  IHilbert 2 space, the set of functions with 2nd derivatives of finite energy
H 4  Hilbert 4 space, the set of functions with 4th derivatives of finite energy
Iwl the norm of w, always a scalar
Iwl0 Norm of Ho space
JW12 Norm of H2 space
Iw14 Norm of H 4 space
z distance in the e3 direction
R Chapter 3, rotation matrix for angle 0
1 The barycentric mapping matrix for a triangular element
ul,vl 1st vertex of a triangular element
u2 ,v2 2nd vertex of a triangular element
u3 ,v3 3rd vertex of a triangular element
L1,L2,L3 coordinates of a barycentric point
tij tangent direction between nodes i and j
nij normal direction between nodes i and j

Yij angle of edge between nodes i and j
2A Twice the area of a triangular element

11  Jacobian between 1st order barycentric and parametric partial derivatives

2 Jacobian between 2nd order barycentric and parametric partial derivatives

JYij rotation matrix for angle yij
Ttn transformation matrix from parametric to edge tangent and normal partials

Numerical operators

a(w,w) The energy inner product associated with a minimum principle,
I(w) = a(w,w) - 2(f,w)
+Up ,di4•pl t i *-art 4I ,
t e gra ent operator n 

e
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VL gradiant operator in barycentric coordinates
Lw a general linear differential operator applied to w
Lc the Euler differential operator for a ShapeWright curve
La the Euler differential operator for a ShapeWright surface
(g,h) vector inner product, (g,h) = g-h when g,h E R3,

(g,h) = g(u) h(u) du when g,h 6 Hi

Differential geometry properties

n the normal vector to a curve or surface
m vector in the direction of the center of an osculating circle of a curve in a

surface
s curve arc length, often used to parameterize a curve
A area of a surface
cK curvature

• 0  normal curvature
i'1 maximum principle curvature

K2 minimum principle curvature
Kg Guassian curvature

Km mean curvature
G Chapter 3, the first fundamental matrix of a surface
B Chapter 3, the second fundamental matrix of a surface
CO,C 1,C2... degree of continuity: continuous function, derivative, 2nd derivative,...

Numerical matrix equations

M a mass matrix
C a damping matrix
K a system stiffness matrix
Kd a finite difference stiffness matrix
Ka a finite element stiffness matrix
Kb stiffness matrix terms due to bending
Ks stiffness matrix terms due to stretch
K), stiffness matrix terms due to Lagranage multiplier constraints
C x Jacobian matrix of non-linear constraint equations
X column vector of all degrees of freedom for a system of equations
X column vector of all combined degrees of freedom for a finite element

model
F column vector of all degree of freedom loads for a system of equations
A column vector of the Lagrange multiplier Ritz approximation weights
A a system matrix
B chapter 4 and 5, a system forcing matrix
L,U,D lower and upper triangular and diagonal matrices used in Gaussian

elimination
Y column vector of the degrees of freedom remaining after constraining a set

of system equations
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Do,D 1  components constraint matrices defining the class of linear constraints on
the dofs of the system

f diagonal matrix of penalty matrix gains
Dpenalty Matrix of linear penalty constraint functions

Finite element stiffness matrix components

ae
ae
a
e

wi,Wui,wvi
wnij
W tij

Ob
Ds

Wb
Ws
N9

N 12

N 12

N 12L21
N elementi
fi,fij,eij
Z

column vector of the dofs of the 9 dof triangle element
column vector of the dofs of the 12 dof triangle element
column vector of constraint transformed dofs of the 12 dof triangle
element
shape location, and u and v partials at node i
shape partial normal to edge ij
shape partial tangent to edge ij
row vector of all shape function, (Pi
column vector of the 2nd parametric derivatives of (D
column vector of the 1st parametric derivatives of (D
row vector of the Lagrange multiplier shape funcions
column vector of the 2nd partial derivatives of w
column vector of the 1st partial derivatives of w
row vector of the 9 dof shape functions
row vector of the 12 dof shape functions

matrix of the 1st partials with respct to Li of the 12 dof shape functions

matrix of the 2nd partials with respct to Li of the 12 dof shape functions

row vector of all combined shape functions for a finite element model
basis functions for the triangle shape functions
matrix of N9 functions evaluated at the mid-edge locations
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1 Introduction

The objective of this work is to develop an improved free-form design methodology
capable of interactively defining "natural" shapes with a minimal amount of input from a
user. The thesis is that this can be accomplished using "energy-based" deformables models
that mimic real surface behavior. The bulk of this investigation was dedicated to

developing the mathematical foundations for an implementation of such a system.

Free-form surfaces are shapes that are doubly-curved, smoothly varying and aesthetically

pleasing. The need to define free-form surfaces arises in the modeling of molded and

stamped shapes in such applications as the design of automobiles, ships, ceramics, air-

supported buildings, and general industrial design. The shapes are characterized by loose

tolerancing and dimensioning constraints, but strict demands on surface quality and

aesthetics. These shapes usually depend more on a designer's aesthetic judgement than on

calculated performance.

The two major applications for mathematically complete descriptions of free-form surfaces

have been the lightly scattered data problem and the design of free-form shapes from

scratch. The lightly scattered data problem is, given a set of measured surface locations

generate an interpolation that completely describes the surface. The free-form design

problem is less constrained. Given a means to represent a free-form shape, define one that

meets the desires of the user.

The need for mathematically complete descriptions of surfaces comes from the need to

compute over the shape of an object. This information is needed for manufacturing to

automatically generate NC tool paths in the making of dies and stamps, for computer

graphics in rendering an object, and for analysis in the definition of finite element models.

This thesis corcentrates on the free-form shape design problem but suggests some

advances for the lightly scattered data problem as well.

1.1 Computer Aided Geometric Design

Since the 1960s researchers in the Computer Aided Geometric Design field, primarily

based on the early work of Coons, Bezier and de Casteljau, have established the utility of
parametric surfaces for these applications. A definitive description of this technology
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complete with its historical development is given by Farin in his book, "Curves and

Surfaces for Computer Aided Geometric Design" [Farin_88].

In a parametric scheme a curve or surface is defined over a simply-connected region in

parametric space. The parametric region is mapped to three-space to define the set of

Cartesian coordinates that define the free-form curve or surface. Mappings described by

polynomial functions have been popular because of ease of computation. Much effort has

been devoted to developing polynomial functions that have shape stability and coefficients

with geometric interpretations so that the user can modify the surface shape in a

straightforward manner. To develop more user control over the free-form shape, piecewise

continuous mappings have been used. These enable the user to modify small sections of

the shape sequentially until a desired affect is achieved.

The parametric surface community has generated three major schemes for the interactive

design of free-form surfaces as represented in Figure 1.1. These are the control point,

trans-finite and skinning methods.

a. Control Point

b. Transfinite

c. Skinning

Figure 1.1) Current free-form design paradigms

c. Skinning

~e~,
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1.1.a) Control Point Methods

The control point schemes, typified by the Bezier [Bezier_62], B-spline [de Boor_78] and
recently the rational B-spline curves [Tiller_83, Piegl_84], are reminiscent of the lightly
scattered data problem. The actual surface is defined by the locations of a set of control-
points. By moving the control points the shape of the surface can be modified. These
schemes do not try to interpolate the control point positions. Instead the control points act
to generally define the position of the surface. This compromise is made to increase the
user's control of the surface while editing its shape.

One of the nice geometric properties that have been engineered into these shapes is that the
surface geometry depends only on the location of the control-points in the immediate
neighborhood. This local control property facilitates interactive shape design. This enables
the progressive definition of a surface, i.e. completing one section at a time. Modifying the
control points of ta particular section will not alter the shape of other previously completed
sections.

The local control property is a two edged sword. Giving complete interactive control of a
surface to the user makes an orderly development of a free-form surface possible but it also
makes it very difficult to control the surface's global geometric properties. Modifying a
surface while preserving its global convexity requires the user to manipulate several
control-points simultaneously. This task has proven to be very difficult. Andersson
[Andersson_88] reports that 170 hours were spent in modifying the control point locations
on a 700 series Volvo car hood to achieve global geometric convexity and smoothness.

The control point scheme also makes it difficult to enforce geometric constraints since the
surface's boundaries and points through which it passes are not explicitly represented.
Constraints on.such geometric properties require the additional consideration of constraint
equations. Many proposals have been made to extend this scheme to the enforcement of
geometric constraints [Barsky_80, Barsky_82].

1.1.b) Trans-Finite Methods

The trans-finite schemes define surfaces in the manner of a boundary value or Dirichlet
problem. They generate a surface that is completely bounded by a set of arbitrarily shaped
curves [Coons_67, Gordon_72]. In general this scheme enables the user to enforce
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tangent as well as higher order differential constraints on the boundaries. Control of the

interior region of the surface is achieved by dividing the original boundary into a net of

curves. The original surface is then represented as a set of patches that join to form the

original surface. Each patch can then be treated as its own boundary problem. Each patch

is constrained to meet its neighbors to a specified degree of continuity so that the aggregate
has acceptable geometric properties. The interior of the surface is modified by changing the

shape of an interior curve.

The strength of the trans-finite method is that it directly enforces geometric boundary

constraints. Its weakness is that controlling the interior of the surface patch' is laborious.
For instance, if the desire is to have a generally shaped surface constrained to go through a
target point somewhere in its interior then the trans-finite surface has to be divided into a set
of patches such that the patch boundaries pass through the target point. The user is now

obligated to control the interior curves when originally the user was interested in controlling

only a single point location. Once the net has more than a very few curves, controlling
global geometric properties will require the manipulation of a large number of curves in the
net and will be difficult for a user to accomplish.

1.1.c) Skinning Methods

Like the trans-finite scheme, skinning defines the surface as an interpolation through a set
of curves. However, instead of interpolating a net of curves, skinning interpolates a series
of curves defined in a set of parallel planes [Tiller_83]. The surface is generated by
interpolating the curves through the space between planes. This basic method has been
extended to allow non-planar curves with arbitrary orientation [Woodward_88,
Coquillart_87] and can be viewed as a special case of generalized cylinders in which the
surface is defined by a single curve which can change its shape as it is swept through space
along a prescribed trajectory.

When compared to the trans-finite method this technique is a compromise between control
and ease of use. The user is freed from specifying about half the geometric boundaries
while still retaining a high degree of geometric control. This approach has been very
effective at defining ship hull shapes where the geometry is mostly determined as a series
of bulkhead profiles. As a general free-form modeling package this scheme still has the
same limitations on controlling shape as the trans-finite system. Internal shape is specified
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by internal contours and once the number of contours grows large, controlling global
geometric properties becomes difficult.

The success of the current parametric surface technology is that it provides a means for
developing a wide range of free-form shapes interactively. A major disadvantage of this
technology is that the large range of shapes requires the user to control a large amount of
information, i.e. the Cartesian locations of the control points. This limitation makes it
difficult to build large-scale shape features due to the need to simultaneously coordinate
changes to many control points or curves. Implementors of this technology, such as Mori
et. al. at Nissan Motor Co. [Mori_86], commonly site the need to "create and modify (free-
form) designs on the graphic terminal screen with much greater ease".

1.2 The ShapeWright Design Paradigm

This thesis proposes a new paradigm for the generation of free-form shapes that shares
many of the strengths of the existing techniques but avoids their difficulties called the
ShapeWright paradigm. The approach is based on the observation that people have a rich

background with deformable surfaces. People find it easy to imagine folding a piece of
paper or expanding a soap bubble with an internal pressure. Historically, such physical
surfaces have commonly been employed as the basis for free-form design. Thin wooden
splines were used to loft the shape of ship hulls and aircraft wings. Actual soap films were
used to design the roof of the Olympic stadium in Munich, Germany.

The excellent geometric properties of deformable membranes can be exploited to build
surfaces that opportunistically seek "fair" or "smooth" shapes while satisfying their

geometric constraints thereby freeing the user from this responsibility. Deformable

surfaces seek shapes that minimize an internal energy. For a soap film the energy is

proportional to its area. For a thin elastic beam the energy of an infinitesimal section is

proportional to its curvature. A geometric primitive can be generated with an artificial
energy functional designed so that it naturally has desirable properties for geometric design.

The ShapeWright paradigm is a three step procedure for generating objects as shown in
Figure 1.2. First, the essence of the object is defined as a set of three dimensional
character lines. These lines define "hard" geometric constraints for the shape such as edges
and creases. These do not include lines typically used to characterize the interior shape of a
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surface such as silhouette lines. Then the object is skinned. Imagine dipping the wire
frame object into a bucket of soap and pulling it out slowly so that over every face there is
now a deformable soap film like surface. Finally, the object shape is completed by
interactively sculpting the surfaces with forces. Modifying the shape can be achieved by
changing the character lines or the sculpting forces.

a. character lines b. skinned c. sculpted

Figure 1.2) The ShapeWright design paradigm

The ShapeWright paradigm has been crafted keeping the philosophy suggested by Pentland
[Pentland_86] in mind. He suggests an ideal CAD system should work with shape in a
manner paralleling the way people think about shapes. Many researchers have suggested
that people are only capable of making qualitative judgements of surface shape, such as the
sign of the Gaussian curvature [Stevens_81, Brady_84, Pentland_87]. The ShapeWright
paradigm seeks to build surface shape as a combination of explicit and implicit geometry.
Character lines are explicit while interior surface region shapes are implicit. Once the
specific geometric boundaries of the shape are defined with character lines, the shape of the
interior can be modified by the general sculpting operators to achieve global shape
characteristics such as general size, convexity and concavity.

1.3 ShapeWright Design Issues

The challenges addressed in this thesis are to select appropriate deformable curve and
surface models and to define a solution strategy that supports the ShapeWright modeling
paradigm. Additionally, these choices have to be made in such a way that the resulting
system can be used interactively. More specifically, this investigation address three major
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problem areas that have come to be loosely termed the "continuity", "constraint", and

"topology" problems.

1.3.a) The Continuity Problem

The manufacturing processes used to make free-form surfaces require a complete

description of a surface in the sense that enough information be available to generate, for

example, the NC tool paths of an automatic milling machine. To do this a complete

mathematical model yielding the continuous shape and normals of the surface are needed.

Additionally, the kinds of surfaces to be developed by ShapeWright are to be smooth and

fair. At a minimum, the final shapes defined need to have continuous tangent planes. As

will be seen, the energy algorithm to be used to define the surface naturally distributes

curvature over large regions of the surface. As a result, very fair shapes are generated

although only C1 continuity is enforced by the underlying shape representation.

1.3.b) The Constraint Problem

The means to control shape explicitly in the ShapeWright paradigm is to fix a surface to a

character line during the skinning step of the process. The system developed must support

a set of geometric constraints rich enough to accomplish this skinning step. A set of

constraints deemed sufficient for skinning include the "pinned", "hinged" and "fixed"

edges, which are represented schematically in Figure 1.3.

a. Pinned b. Hinged c. Fixed

Figure 1.3) Geometric constraints needed for skinning

The "pinned" edge allows any point or set of points in the surface to be set to fixed
locations in space. The position of a "hinged" edge is completely specified by the
constraint, but the normal vector direction along the edge is free to vary. Hinged edges can

I
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be used to model discontinuities in the interior of the surface. At every such character line,
two surfaces may be stitched together with the hinged constraint, to make a CO

discontinuity in the surface.

The "fixed" edge constraint specifies both the shape and the normal vector direction of a

surface along the length of an edge. The effect of the fixed edge is to model a cantilevered

beam, rather like a diving board at a pool. The internal surface is free to bend as long as

the shape and orientation of the surface along the constrained edge remain fixed.

The fixed edge constraint is needed for local control. Any surface region isolated by a set

of edges which are fixed can be deformed independently of the rest of the surface. For

example, this feature can be used to add a pocket for a door handle into the shape of a car

door. The region of the pocket needs to be identified by adding edges that surround it.

Those edges are then fixed to isolate the geometry of the door from the geometry of the

pocket. The pocket is then manipulated to make room for the door handle.

1.3.c) The Topology Problem

The range of topological structures that the system can model must be large enough to be of

practical use in modeling objects to be built. The character line wire frame models of the

ShapeWright paradigm will define the boundaries of a set of faces that will be used to

define the final free-form surface. In general, these character line models will have vertices

where any number of faces may meet, will have faces which may have any number of

boundaries and may even have edges where more than two faces can meet. The topological
range for surfaces that was selected as necessary for the ShapeWright paradigm included

those shapes which are needed to skin such a character line wire frame model.

1.4 Scope of Work

In this thesis primitives are developed for both curves and surfaces to support the
ShapeWright design paradigm. In Chapter 3, the curve and surface energy functionals are
given. They consist of two terms: one that depends on a measure of local stretching and
the other that depends on a measure of local bending. The term that depends on stretching
makes the surface act like a soap film, causing it to seek to minimize its area. This term is
very effective at preventing the surfaces from folding like a curtain on a curtain rod while
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the bounding geometry is being modified. The term that depends on bending causes the

surface to distribute high levels of curvature over large regions. This term causes the
surface to deform in a naturally graceful manner.

Shape is achieved by a numerical simulation in time. The deformable shapes continuously
seek shapes that minimize their energy while meeting the imposed geometric constraints.
The user can apply forces, change the geometric constraints, or modify the weights in the
energy functional while the simulation is running to sculpt the final free-form shape.

The choice of the energy functional and the implementation technologies are influenced by

the desire to make the system highly interactive. For this reason the actual energy

functional used is a quadratic function of the first and second order terms of the surface's

local deformations as defined by its Taylor Series expansion resulting in a very well

behaved set of linear equations. These equations can be expressed as symmetric, positive-

definite, banded matrices and as such lend themselves to very fast solving methods.

In Chapter 4, the actual geometric primitive formulations based on the Ritz finite element

method are given. The resulting curves and surfaces are represented parametrically and are

suited for applications including the automatic generation of NC tool paths. They have the
capacity to model a large topological range of shapes while meeting very general geometric

constraints. Due to the energy minimization paradigm these surfaces tend to be very well

behaved and enable the interactive sculpting of surfaces.

An implementation based on this scheme, and some of the related implementation issues are

discussed in Chapter 6. Chapter 5 contains a discussion of some of the problems

encountered in the implementation of geometric constraints. Some of the contributions of

this work and problems of the Computer Aided Geometric Design field as well as a review

of previous "energy-based" shape applications are given in Chapter 2.

The ShapeWright technique depends on the artful engineering of well-behaved geometric

primitives for free-form design that can act to decouple the tasks of overall shape definition

and surface fairness. The approach presented here relegates the fairness preservation to the

geometric primitives freeing the user to concentrate on shape definition alone.
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2 Previous Work

In this chapter the relatively brief history of applying energy minimization algorithms to.the
generation of shape geometry is presented. Following this section is a much broader
description of current and past work related to all forms of free-from geometric shape
modeling.

2.1 Precursors to Energy-Based Shape Design

Energy-based shape modeling is the combination of parametrically described geometry with
an energy minimization algorithm that gives the geometry natural properties. This supplies
a means to control shape behavior during an interactive modeling process that can greatly
reduce the amount of input effort required to build or modify shape. The savings in input
effort is obtained because the energy minimization algorithm directly controls the
simultaneous manipulation of the huge number of degrees of freedom needed to
parametrically represent free-form shapes while the user indirectly modifies shape with
global operators described as forces, material properties and geometric constraints.

In contrast, the Computer Aided Geometric Design (CAGD) field has typically relied on
building the properties of the surface directly into the parametric shape functions and relied
on the user to manipulate the resulting degrees of freedom to build shape. The range of
shapes that can be modeled by energy-based methods and the more established CAGD
approaches are exactly the same. In fact, the energy-based scheme can be applied to any
parametric representation.

One exciting aspect of the paradigm is that the energy functional to be minimized can be
designed. In this manner it is possible to engineer surfaces with different "natural and
desirable" properties. Surfaces which minimize their area and distribute their curvature
smoothly have been built in this thesis to create geometry which is opportunistically fair-
seeking.
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Other researchers in the CAGD community have used energy-based techniques for
interpolation and the fairing of existing shapes. Schweikert [Schweikert_66] introduced
the notion of splines in tension to improve the interpolating behavior of the spline.
Schweikert's splines are an analytic solution to the equation,

d4W _ 2d 2W - 0 2.1
du4  du 2

subject to the constraints of interpolating the data. Shape control of the spline is achieved
by modifying the ca values. Nielson [Nielson_74] noted that solving this differential

problem for shape is equivalent to finding the one shape that minimizes the following

integral,

I(w) = d2wu 2 + •dw 2 du 2.2o \du2  du

and developed a piecewise polynomial interpolant that approximated the minimum while

interpolating the constraints. In both cases the final splines were found once the
interpolation points and the a values for each span were given by solving a tri-diagonal set

of equations.

Energy-based or minimization algorithms have also been used to help select the twist

vectors in Coons-type patched surfaces. Several efforts have been published

[Nowacki_83, Hagen_87, Kallay_90] that try to improve the surface shape by optimizing

the twist vector without changing the position and tangent data of the surfaces. Similar

approaches have been used in the energy-based fairing of surfaces [Kjellander_83,

Farin_88, Sapidis_90, Lott_88] which are discussed more fully in the section 2.4.d.3.

Here the constraint of preserving all the surface point locations and tangents is relaxed in

favor of increasing surface fairness.

All of these energy-based twist vector selection and surface fairing techniques have been

designed and implemented to be used as shape modification tools. Once the surface has

been defined by the user these approaches help to finish the shape. In recent years

researchers in the Computer Graphics and Vision area have also begun to consider the
generation of deformable models by the use of energy-minimization techniques.
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Terzopoulos, Witkin and Kass [Terzopoulos_87,Kass_87] have used deformable models

for extracting shapes from video images and simplifying the generation of life-like

animations. In this work the deformable model behavior is described by a minimization

principle. The related Euler differential equations are solved using finite differences. To

extract shape from video images, the video intensity map is treated as a force field that

operates on the deformable object. In this manner the deformable objects are encouraged to

extract different features of the video image. The resulting set of algebraic equations is

stabilized by introducing damping and integrating through time. The introduction of time

was exploited to extract sequences of life-like animations.

The deformable models in this early work have many of the elements of an interactive

design package. But since the interest of these researchers was solving computer graphics

problems, the resulting shape representations, range of topologies, and geometric

constraints are inappropriate for CAD applications.

Some efforts have been made to consider the use of energy-based methods as a shape

design package. Bloor and Wilson [Bloor_89] define blends as the solution to differential

equations defined as boundary value problems. The differential equations are solved using

finite difference approximations resulting in a surface model that consists of a set of

discrete points. Interestingly, their basic elliptic differential equations can be shown to be
equivalent to energy-minimization principles.

Perhaps the work in this thesis was most foreshadowed by the efforts of Antti Pramila
[Pramila_78], who saw the opportunity to use finite element methods as a shape generation

package for ship hull design. He proposed a variation on the trans-finite surface definition

.scheme that deforms a plane shape into a ship hull by considering deformations normal to
the surface. His surfaces enforce geometric constraints while minimizing a fairness
criterion, based on local curvatures, equivalent to linear plate bending. Grieger
[Grieger_85] proposed the same idea of capturing shape defined over a set of constrained

geometry. Although. no implementation was discussed he mentioned that standard existing
finite element packages could be used to define surfaces in such a manner.

In this thesis, energy minimization techniques will be used as the foundation for a distinctly
new way to define free-form surfaces. The idea is to define surfaces with a minimal
amount of information. Like the trans-finite methods of surface design, surfaces will be
defined by skinning a set of geometric boundaries. But, the number of these character lines
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can be limited to the set of character lines that exist in the actual object. The trans-finite
method's need for artificial character lines to define the interior of a surface will be satisfied
by sculpting the interpolating surface interactively with the use of applied surface forces.

2.2 The Foundations of Computer Aided Geometric Design

The early work in the Computer Aided Geometric Design (CAGD) field was based on the
seminal work of Ferguson, Coons, Bezier and de Casteljau. Prior to these efforts, in the
words of S.A. Coons [Coons_67], "the subject of surface mathematics had been
investigated in analytical geometry and in differential geometry, from the standpoint of the
analysis of geometric properties of surfaces that already exist, but very little literature had
been produced on the subject of the creation of such surfaces." Using the tools of these
fields, these researchers soon demonstrated the utility of parametric descriptions of curves
and surfaces. Subsequent efforts in the CAGD field have concentrated on extending,
formalizing, and enhancing the performance of free-form shape interpolation and design.

The original Bezier curve was defined in terms of a recursive algorithm developed by de
Casteljau. The control point development of free-form shape was put on a formal basis
when the Bezier curve was expressed explicitly as the linear sum of Bernstein polynomial
basis functions. With this formalization, determining the many positive attributes of these
curves became straightforward.

Spline curves, which are piecewise polynomial curves constrained to enforce a specified
degree of parametric continuity at the boundaries, were introduced to support the modeling
of very complicated shapes in a controlled interactive manner. Piecewise Bezier splines, or
B-splines, popularized by Gordon and Riesenfeld [Gordon_74], differ from Bezier curves
in that they exhibit local control and have the ability to model straight line segments without
being everywhere linear. Rational B-splines were introduced so that the conic sections
could be exactly represented. The history and the technical details of this series of
developments are well described in Farin's book, "Curves and Surfaces for Computer
Aided Geometric Design" [Farin_88].

Coon's work, which visualized a surface as the trans-finite interpolation of a network of
bounding curves, was formalized when the interpolants were seen to be projector operators
applied to the bounding constraint geometry [Gordon_72]. Later Barnhill and Gregory
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[Gregory_74] augmented the Coons patch so that it could support non-singular cross
derivatives at the corner boundaries and allow the interpolation of a boundary of both
specified shape and tangent. Recent work of this same flavor continues with Bloor and
Wilson who consider surfaces which are defined as the solution to differential equations
[Bloor_89]. Interestingly, Gordon in 1972 also recognized the strong relationship between
his blending functions and the solution to elliptic boundary value differential equation
problems.

In applications the control point scheme and in particular the B-spline and the rational B-
spline curves have been the most popular [Wu_77, Barsky_82, Fog_84, Douglas_86,
Filip_89, Woodward_88]. This technology has been directly applied to the generation of
surfaces with the use of tensor product surfaces. Tensor product surfaces, based on bi-
linear interpolation, directly generalize any parametric curve scheme to a parametric surface
scheme. Tensor product B-splines exhibit the same properties as do B-spline curves
including local control.

2.3 Shape Building and the User Load Problem

In these systems the fundamental approach to refining shape is to take advantage of the B-
spline local control property and manipulate the control points one at a time. This enables
"rubber banding", where the user drags a control point through space while the shape is
dynamically redrawn. A designer with a notion of desirable shape can iterate into a
reasonable solution even though the sutface may adopt quite unnatural shapes during the
process.

The major difficulty with this approach is the large amount of user input required to
accurately develop a surface. The local control property, necessary for the sequential
building of shape, makes it difficult to build and maintain large scale features that depend
on many control points. These features include the surface's basic shape, its global
convexity and even its overall fairness. Consider trying to lower the height of a B-spline
described dome while preserving its convexity. Every point in the surface must be moved
"Fair" or good looking surfaces require controlling the distribution of curvature throughout
the surface. Once again the relationship between every point in the surface must be
controlled.
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Several approaches have been tried to reduce the user input required. Efforts have been
made to improve the exercise of placing control points in three dimensions. At the
University of Utah a mechanical "wand" was developed that actually manipulated control
points in 3-D [Clark_76].

Several efforts have attempted to simplify the generation of the general shape of the
surface. Most commonly, the user will be given a starting shape close to the desired shape
which can then be modified into a final configuration one section at a time. For example,
CADMUS, produced at the United States Naval Academy [Rogers_83], is an integral part
of an automated cell for producing half hull hydrodynamic ship models. To limit the
interface burden, the user is given an initial starting ship hull shape to modify.

Another approach for reducing the user load in building the general shape of an object is to
generate an initial spline surface from other models. Thus a user can develop a general
shape easily with a solid modeler and refine it in detail after it has been converted to a
surface model. Beeker [Beeker_86] described an algorithm that smooths polyhedral
models by converting them into surface models.

Efforts to simplify the modification of surface shape have concentrated on developing
sophisticated operators that modify sets of control points simultaneously. Barr [Barr 84]
has shown how to apply transformations to existing Spline surfaces to create tapers and
twists. Coquillart [Coquillart_87] describes a technique for offsetting B-Splines that can be
used to make a general purpose sweep operator. The user defines a path and a cross
section using rational B-Splines and the system calculates an extruded surface shape.

Several systems have been proposed that combine the sweep shape generation paradigm
with the control point representation. Initial shape can be generated by interpolating a set of
user supplied profiles. The resulting surface can then be modified in the typical control
point fashion [Tiller_83, Woodward_88, Rasna_89].

The method proposed in this thesis directly addresses the problem of user load in
developing and modifying complicated free-form shapes. ShapeWright uses an energy
minimization algorithm to directly manipulate the complete set of control points while the
user acts on the surface indirectly with global operators described in terms of forces. So
although the surface representation has the local shape property, the user is allowed to
work at any size scale. For example, preserving the overall convexity of a dome while
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raising or lowering its profile is achieved with a single command without resorting to direct

user manipulation of the control points. The user applies a "pressure" to the dome causing
it to swell like a balloon.

2.4 Parametric Shape Technical Issues

Some of the very attributes that make parametric surface modelers so powerful also cause

many of the difficulties in using these systems. As discussed above, the large flexibility in
modeling shape introduces a user load problem. The local control property used to allow
the sequential building of shape makes it difficult to build or modify large scale features that
depend on large numbers of control points. The piecewise approximation to a curve or
surface introduces questions of "smoothness". How smoothly does one patch of the
geometry connect to its neighbor? Parametric mappings, used to make the geometry
independent of the coordinate system, have problems preserving the shape of a set of
interpolated data. Interpolations tend to overshoot the data. Additionally, the domain of
the parametric mapping directly affects the topology of shapes that can be supported. A
rectangular patch can only model four-sided surfaces. What follows is a quick review of
these problems and some suggestions made by researchers.

2.4.a) Shape Preservation

Shape preservation is the goal of data interpolation. The problem with the interpolation
schemes that have been developed is that while they interpolate the data, they introduce
shapes not necessarily suggested by the data. Higher order polynomial interpolations will
often oscillate wildly between data points. Piecewise lower order polynomial schemes can
add extra points of inflection, indulge in considerable overshoot and appear to be much too
flat in sections. Additionally the schemes are very sensitive to any noise in the data.

Schweikert [Schweikert_66] introduced the notion that by adding a term to an interpolating
spline that behaved like the tension in an elastic beam, a set of data could be interpolated in
a convex fashion when the tension was made large enough. Nielson [Nielson_74]
introduced the v_spline, showing that the spline in tension could be related to a minimal

principle and proved that the resulting spline had well behaved geometric properties without
enforcing high orders of parametric continuity.
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Subsequent work has been spent on introducing a family of such tension interpolants and
developing automated means of selecting the tension values. For example, Wever
[Wever_88] suggests a non-linear optimization strategy for the automatic selection of the
tension value over each piece of the interpolation. This selection is based on minimizing

the bending energy of a beam while preserving the C2 property of the interpolant.

Fletcher and McAllister [Fletcher_87] generalized the tension methods by introducing a

single Hermite interpolating space that was general enough to include most of the tensioned
interpolants. They analyzed the effectiveness of several tensioned interpolants at

preserving the convexity of the original data and stated conditions that would allow the

automatic selection of the tension to preserve convex interpolation.

The basic tension idea has been generalized to include any extra degree of freedom in a

spline which can be used to control its shape without changing its interpolation or

continuity properties. Some such systems include Piegl's [Piegl_87] effort to use rational

B-splines for interpolation followed by the interactive manipulation of shape parameters for

local shape control, and Harada's [Harada_84] introduction of the segmented Bezier curve

with a fullness-control parameter called 'c' that is automatically selected based on estimates
of the tangent magnitudes at each of the data points.

2.4.b) Shape Preservation, Surface and Twist

Shape preservation is also a problem for interpolating a set of data with a surface.

Woodward [Woodward_88] proposed a typical surface interpolation approach.
The data points are fixed onto a rectangular grid and interpolated in each direction with a

.family of curves. This network of curves is used to select the positions and tangents at
each of the data points to be used in a tensor product interpolant scheme. If the curve

interpolant used includes some tangent information, the tensor product surface will require
the additional specification of the twist vector at each data point. The twist vector, unlike

curvature or surface tangent, is not a geometric property of a surface. It is an artifact of the
parameterization and as such is not a very intuitive parameter to specify. An excellent
survey of the many efforts that have been made to select the twist vector values to improve
the shape of the surface is given by Barnhill, Farin, Fayard and Hagen [Barnhill_87].

Optimization methods have been used to set the twist vector. Nowacki, Reese and Walter
[Nowacki_83] selected the twists to minimize the quadratic sum of the principle curvatures
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over the surface. For small deflections this captures the elastic energy stored in a thin

elastic plate. This approach was applied to generalized Coons patches by Hagen and
Schulze [Hagen_87]. Kallay and Ravani [Kallay_90] similarly selected twist vectors to

minimize a quadratic function of the 2nd derivatives of surface shape.

The shape preserving tension methods, although motivated by the interpolation problem,
are very interesting to the shape modeling community because they represent additional
means to sculpt and manipulate surfaces. The twist selection problem is particularly
important to the shape design community because these parameters are not geometrically
invariant and therefore not intuitive.

2.4.c) Smoothness

Designers often desire to make very smooth and "fair" or good looking shapes. The
introduction of piecewise parametric patch schemes makes it difficult to preserve

smoothness across patch boundaries and curve knots. The most common definition of

curve smoothness is the continuity of the parametric mapping and its derivatives, e.g. a CI
curve is smoother than a CO curve.

The degree of surface continuity required between patches will depend on the application of
the free-form surface. Finite element analysis often times only requires continuous
surfaces, disregarding the continuity of higher order derivatives. Objects to be
manufactured usually require much higher levels of smoothness. Automobile surfaces are
designed so that the perceived reflection lines will themselves be smooth and well behaved
[Kaufmann_87]. Kinematic surfaces used in cams are designed so that the third order
derivatives, which determine the continuity of both acceleration and jerk, are continuous

[MacCarthy_88].

For parametric surfaces, the easiest means to enforce smoothness between adjacent patches
is to require continuity of the parametric partial derivatives. If derivatives up to order n are
continuous, the segments or patches are said to meet with Cn, or nth order parametric
continuity. One of the strengths of the Bernstein-Bezier curves is that the requirements for
high order Cn continuity can be written down directly [Bohm_84]. The popular cubic B-
spline is made by applying geometric constraints between curve segments to enforce C2

continuity.
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It has been shown that parametric continuity is sufficient, but not necessary, for geometric
smoothness and thus it is believed that enforcing parametric continuity across patch
boundaries is too stringent a requirement. Nielson, with his tensioned nu splines, first
established the necessary constraints needed for the geometric continuity of the curve's unit
tangent and curvature.

Farin [Farin_82] introduced algorithms for curves and surfaces based on Bernstein
polynomials that enforce geometric continuity. Barsky and Bette [Barsky_83] introduced
the term geometric continuity to describe curves with continuous unit tangents and
curvatures, and surfaces with continuous tangent planes and Dupin indicatrix. Derose
[DeRose_85] extended the definitions to any order of geometric continuity through the
application of the chain rule to the parameterization being used. Lee and Ravani [Lee_90]
developed a theory for any order of geometric contact independent of parameterization for
piecewise parametric curves based on the differential geometry of evolutes.

Geometric continuity and not parametric continuity is now accepted as the true measure of
curve and surface smoothness.

2.4.d) Fairness

2.4.d.1) Perceptual Methods of Fairing

In addition to smoothness, designer's often require that surfaces be fair. The smoothness
of a surface is defined as the degree of differential continuity defined over the surface. A
fair surface is a surface that looks good. Unfortunately, there is currently no single
quantitative measure of fairness. Several different schemes of measuring fairness and
producing fair surfaces have been proposed. These fairing approaches are incremental.
The user first creates an initial surface capturing the general desired shape while meeting the
geometric constraints. The fairness of the surface is then improved through small
modifications of the original geometry.

The most simple of the fairing schemes are interactive. They depend on giving the user a
graphical report of the surface from which the user can judge the fairness of the curve. The
user is then free to modify the surface to improve its perceived overall fairness. Although
these graphical reports depend directly on different geometric measures of the surface, they
do not quantify the concept of fairness.
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Beck, Farouki and Hinds [Beck_86] proposed to analyze surfaces to isolate peculiar

features through the use of several different display techniques. They claim that the

common practice of rendering a surface as a set of isoparametric lines is inadequate for this

purpose. Instead they prefer plotting curvature maps, contours of constant height, and

high resolution shaded images. The curvature maps are displayed by a color coding of the

surface. Colors can be selected to display the Gaussian, mean and principle curvatures.

Munchmeyer [Munchmeyer_87] gave an excellent case study of the imperfections in a

surface's shape using all of the above mentioned graphical reports. In a similar vein

Bonfiglioli [Bonfiglioli_86] suggested that surfaces can be well communicated with the use

of silhouettes and gives a very simple algorithm for rendering such curves.

Poeschl [Poeschl_84], based on the practices of automobile surface designers, proposed

measuring the fairness of a surface as the fairness of isophotes, lines of equal light intensity

when seen under a point light source. Similarly, Kaufmann and Klass [Kaufmann_87]

proposed using reflection lines as defined by the reflection in a surface of a set of parallel

light sources. They allow the user to modify the reflection curves and automatically

regenerate a fairer surface.

Bedi and Vickers [Bedi_89] proposed smoothing a surface interpolation through a set of

sparse, irregular, inconsistent data by individually smoothing a set of skeletal lines.

Skeletal lines are the profiles used in lofting or skinning a surface. Smoothing a skeletal

line is accomplished by interactively eliminating the variation in the first divided differences

in the control point locations. New skeletal lines are automatically generated by back

substitution from the smoothed first divided difference lines. The final smoothed surface is

made by lofting the smoothed skeletal lines.

2.4.d.2) Convexity Based Fairing Methods

Like the developers of the tensioned splines, many researchers feel that fairness problems

introduced by splines are due to superfluous inflections in the part's shape. Several efforts

have been made to identify and eliminate points of inflections on curves and points of zero
Gaussian curvature on surfaces. Isolating and eliminating all of these points results in

globally convex shapes.
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Hoschek [Hoschek_84,85] proved that the polar image of a curve will have a singularity at
every corresponding point of inflection on the original curve. This same measure of
inflection can be applied to surfaces to find locations of zero Gaussian curvature. Chang
and Feng [Chang_84] developed convexity criterions for Bernstein-Bezier surfaces over
triangles.

Andersson et.al. [Andersson_87] have generated an automated system for modifying a
general surface into a convex one. To do this, the system moved the surface's control
points until the sign of the Gaussian curvature is made constant over the entire surface.
The control points were moved in a direction normal to the surface and the range of the
motion was limited by a specified tolerance. This approach was cast as a nonlinear
problem which they solved using Karmarkar's algorithm for linear programming problems.

Ferguson, Frank and Jones [Ferguson_88] also considered making surfaces convex by
solving a nonlinear constrained optimization problem. Their approach was based, not on
making the entire surface convex, but in making the projection of each isoparameter line
onto a plane convex. They claimed that improving the shape of the isoparameter lines in
this fashion improves the surface's machinability and air flow properties. Their idea was
implemented as an algorithm that moved control points in a direction normal to the surface.
Their shape preserving idea was to limit the sum of the squared travel distances of all the
control points that were moved.

2.4.d.3) Energy-based Fairing Methods

In the literature, the alternative to the perceptual-based methods of fairing are the energy-
based methods of fairing. The first such proposal was made by Kjellander
[Kjellander_83a] who, considering the work in tension by Schweikert and Nielson, argued
that a cubic spline is a mathematical model of the draftsmen's wooden spline. He claimed
the loss of fairness in a curve was directly related to the amount of internal energy that has
been stored in the spline due to deformations. He suggested that curves can be made fairer
by reducing the total internal energy of the spline. Different measures of a shape's internal
energy lead to slightly different methods of fairing a curve.

Kjellander proposed an interactive smoothing approach in which curvature plots were used
to identify the poorly behaved sections of a curve. Any identified points of the
interpolation were repositioned to remove discontinuities in the third order parametric
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derivatives. This is equivalent to removing a point load from a physical spline and thereby
reduces the total stored internal energy. Kjellander [Kjellander_83b] also showed how this

approach could be applied to surfaces. Farin [Farin,88, Sapidis_90] used this same

technique to fair Bernstein-Bezier curves and surfaces. He automated the selection of the

next point to be faired by choosing the point with the largest third order discontinuity.

Lott and Pullin [Lott_88] used energy minimization techniques to improve the fairness of a

B-spline tensor product surface. Starting with the energy measure of a thin plate in
bending they made several liberal approximating assumptions to reduce the numerical size

of the problem. They linearized the energy due to bending, they limited the surface energy

integral to a line integral through a surface, they constrained the control points to move in a

direction only normal to the surface, and they limited the amount of motion by constraining

a linearized measure of the change in surface volume. This technique was then

satisfactorily applied to a set of ship hull designs.

The fairness and smoothness issues are very important to the shape design community. All

of the above approaches used parameterizations that automatically enforced a specified

degree of smoothness, but left large scale features such as convexity and fairness to be

controlled by the user or added at a later time. As mentioned before this strategy for fair

shape design can place a very large burden on the user. The proposal in this thesis is to

develop a set of primitives and algorithms for free-form shape design that automatically

enforce a degree of fairness while the user manipulates shape.

2.5 Topology

"Many of the efforts to generate free-form surfaces are based on rectangular tensor product

parametric patches that combine to give a large general shape. The advantages of such

surfaces are that they are mathematically well understood, easy to implement, and are a

direct extension of a related curve scheme. However, the range of surface shapes which

can be modeled by a rectangular array of parametric patches is greatly limited.

All parametric surface schemes select a region in the parameter space which defines the
domain of the mapping. The selection of this shape greatly affects the topological range of

objects that can be modeled. Rectangle patches model areas bounded with four curves.

They cannot model general n-sided areas without incorporating special singularity
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functions. They can model topological cylinders and tori with the use of periodic boundary

conditions. They cannot model a simple closed surface without introducing singularities in
the parametric mapping.

Early work in the finite element area was spent on developing simple shape functions that
could be used to support the finite element models. The shape of choice was the triangle
since it could be used to approximate any general shape in the parameter domain.

Researchers attempting to solve the plate bending problems originally sought C1 triangular

elements.

Clough [Clough_65] and Zienkiewicz [Bazeley_65] both introduced refined 9 degree of

freedom C1 triangular interpolations to be used for plate bending. These elements allowed

cubic variation in shape of the edges but only linear variation of the tangent normal to the

edge direction. Zienkiewicz's method was based on finding the linear combination of a set

of well behaved shape functions such that the positions and the tangent slopes at each of the

triangle nodes could be set independently. These refined elements tend to produce flat

interpolations when used on very curved surfaces and as a result behaved poorly as finite

element shape functions.

The work in this thesis, as discussed in chapter 4, extends the approach taken by

Zienkiewicz for shape function definition. Zienkiewicz used a refinement procedure so that

a triangular element with just 9 degrees of freedom could be made to have shape that was

C1 continuous across adjacent elements. He felt the resulting loss in shape due to

refinement was outweighed by the reduced complexity of implementation. In the work of

this thesis the refinement restriction on shape proved to be unacceptable for aesthetic

reasons. The models were too flat in the center of elements. The C1 continuous triangular

elements developed in this work were made by augmenting the triangular element degree of
freedom count from 9 to 12.

Other researchers have proposed shape functions for C1 continuous triangular elements

without using refinement. These differ from the proposed element in that they are

significantly more complicated. Efforts by Irons [Irons_69] and Bell [Bell_69] both

produced 18 degree of freedom C1 interpolations that supported quartic deviations in edge

shape and full cubic variations in the tangent normal to the edge direction. Iron used the

position, the tangents, and the three 2nd parametric derivatives at each of the triangle

vertices as degrees of freedom. Bell used only the positions and tangents at the corner
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vertices but considered the position, the tangent, and the 2nd parametric derivative in the
direction normal to the edge at the three mid-edge points for his degrees of freedom.

Triangular elements have always been important to the FEM community because the range
of topological shapes that can be modeled is much larger than can be accomplished with
rectangular elements. Any polygonal shape in the plane can be modeled with arbitrarily
complex meshes where any number of edges can meet at a node in any pattern of angles.

The triangular patch has also been investigated in the CAGD community if not as well
received. When de Casteljau first extended the Bezier curve idea to surfaces he did so
using regular triangulations of the plane. Later researchers have continued to investigate
the generation of Bernstein-Bezier surfaces over irregular meshes. Catmull and Clark
[Catmull_78] published a recursive algorithm for generating B-spline surfaces over
arbitrary topological plane meshes that guaranteed C2 continuity except at a set of
extraordinary points limited to the vertices of the final mesh. Farin [Farin_82] developed
Bezier triangular patches for regular and irregular triangular meshes of the parametric plane.
Farin [Farin_86] exhaustively covered the triangular Bernstein-Bezier surfaces in a special
issue of Computer Aided Geometric Design. Whelan [Whelan_86] pointed out that the
simplest piecewise polynomial C2 interpolant will be of order 9 requiring 55 degrees of
freedom. He went so far as to develop a refined C2 Bernstein triangular interpolation that
only requires vertex data up through fourth order derivatives.

The trans-finite scheme has been extended to the triangle. Gregory and Charrot
[Gregory_80] made a C1 triangulation that was compatible with a rectangular Coons grid.
This work was then extended to support n-sided patches with C2 continuity. The vertices in
this method's meshes are restricted to existing at the simple intersections of the bounding
curve mesh. Each vertex is expected to have only four properly aligned edges. Such
triangular and n-sided patches are needed to model the rounded corners of boxes and the
like. Gregory [Gregory_85] then formalized the trans-finite scheme for triangles by
showing how blends .could be made over a simplex of any order. Interestingly, after the
CAGD community received so many fecund ideas in shape modeling from the original
finite element community, the flow of technology is now being reversed. Ho-Le [Ho-
Le_89] developed triangular mid-edge finite elements to be used to change the mesh density
in a finite element model based on the projector mathematics popularized by Gordon and
Gregory.
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Jones [Jones_88], by ignoring the complexities of having several edges meet a single
vertex, showed how patches with any number of bounding edges can be decomposed into
a set of four sided patches. He built C2 interpolants for the four sided edges based on
blending functions. Ball and Storry [Storry_89] similarly treated the problem of filling in
patches with more than four sides with a set of rectangles. Instead of considering blending
functions they use an extension of the B-spline approach.

Bloor and Wilson [Bloor_89a], pursuing the notion that a surface can be defined as the
solution to a differential equation, developed convolution mappings that turned n-sided
holes into squares. They then generated the final patch shape by applying the inverse
convolution to the solution of the four sided boundary value problem. Their numerical
solution of this problem was based on finite-difference schemes and therefore resulted in a
surface represented as a discrete set of points.

Herron [Herron_85] pointed out a major limitation of discrete interpolants which involved
cross boundary derivatives to form a C1 surface. Requiring C1 continuity between patches
makes sense only if the patch domains are adjacent in the domain space. This makes it
impossible to form C1 closed surfaces. Herron proposed a G1 triangle interpolant to be
used to make well behaved closed surfaces.

An alternative for modeling shapes described by non-rectangular parametric domains is the
trimmed surface patch. Here shape is defined over a rectangular region of the parameter
plane and the final boundaries of the shape are made by trimming sections of the domain
away. This description of arbitrary domain shape is well suited to the solid modeling
community where intersections between objects define new boundaries. An example of a
solid modeling scheme depending on trimmed surface patches is described by Casale
[Casale_87]. A schematic of the trimmed surface patch concept and how it contrasts from a
single continuous mapping of shape is shown in Figure 2.1.
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U U U
a.) Two trimmed patches b.) One patch with a

forming a complicated shape constrained curve and
a surface discontinuity

Figure 2.1) Trimmed and constrained surface patches for complicated shapes

The different techniques discussed above help to extend the topological range of the shapes

that can be modeled. Using triangular patches enables the modeling of n-sided surfaces.

Herron's G2 triangular patch adds the ability to model simply closed surfaces. The

blending functions of Coons and Gordon can be used to generate surfaces over boundaries

without corners, in contrast to the triangulated parametric domains which can only

approximate such surfaces. In this work the topological range supported by triangular

patches is adopted.
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3 Deformable Models

This chapter discusses the development of deformable surface and curve models
appropriate for the ShapeWright design paradigm. The desire is to define a model which
mimics the behavior of real physical surfaces while meeting the needs of the ShapeWright
design paradigm.

o The generation of naturally fair shapes
o Easy and intuitive manipulation of the resulting faces
o Interactive computational speeds

In this chapter the energy functionals, which define the properties of the deformable
geometry are developed. The notions of time, dynamics and external forces are introduced
so that the system enables the interactive manipulation of a deformable model. The
physical properties of the deformable models are discussed and compared to those of real
physical surface models to emphasize the similarities and differences. The chapter includes
a brief review of differential geometry sufficient to define the geometric quantities of
stretch, bending and curvature for curves and surfaces. The stretch and bending terms are
used to define the energy functionals. The curvature behavior of shape is used to help
define measures of fairness.

3.1 Parametric Description of Shape

A parametric description of a curve or surface describes each Cartesian coordinate as an
independent function of parametric variables. A curve is described with one parameter as;

w = w(,u) = [x(u), y(u), z(u)]T E R3  3.1

with u = [u] e R1

and a surface is described with two parameters as;

w = w(u) = w(u,v) = [x(u,v), y(u,v), z(u,v)]T E R3 3.2

with u = [u,v] r R2
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The functions x(a), y(a) and z(a) represent a mapping from the parametric space of [u] or
[u,v] to the three-space of [x,y,z]. In general the range of [u,v] will be restricted to some
subregion of the parametric space. In this paper, that region will be called the parametric
shape represented by a. Thus the set of all points in the parametric shape is written as;

ue a 3.3

The mapping of the parametric shape into R3 space will yield the displacement shape. The
curves that result by setting either u or v constant in the surface mapping are called
isoparametric lines. By giving u or v a set of different values two different sets of
isoparametric lines can be generated. Often times these curve families are considered as the
basis of a surface, or material coordinate system defined in R3 space but limited to the set
of points in the surface.

3.1.a) Shape in the Local Neighborhood of a Point

Consider parametric functions, x(u), y(u) and z(u) which are differentiable at least twice
with respect to the parametric variables. The Taylor series expansion for the shape of the
curve in the neighborhood of a point is given as;

w(u+du) = w(u) + wudu + 1 wuudu 2 +... 3.42

And for a surface the local shape is given as

w(u+du) = w(u) + (wudu + wvdv) + 1 (wuudu 2 + 2wuvdudv + wvvdv 2) +... 3.52

where wu = etc.
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3.1.b) Geometric Properties of the Curve

The first order derivatives completely define the state of stretch for the deformed shape.
The arc length, s, of a curve is defined by the integral relation;

s(u) = wu du =f xu+ u+ y zu du 3.6

The curvature, or state of bending of a shape is defined by the first and second order
derivatives. The curvature, iK, of a curve given in terms of parametric variables can be
defined as;

SIwu x w 3.7

Curvature and arc-length are differential geometric properties of the curve. They are called
differential because they depend on the derivatives found in the Taylor series expansion.
They are called geometric because they are properties of the curve independent of the
parameterization used to describe the curve.

3.1.c) The Surface Normal

Like a curve, the state of stretch and bending for a surface can be defined in terms of the
first and second derivatives of the parametric mapping. Consider, a mapping w(u,v) =
[x(u,v),y(u,v),z(u,v)] which is twice differentiable. When

wu x w,: 0 for all ue a 3.8

the surface normal is uniquely defined. This also means that nowhere in the parametric
shape of the object are the isoparameter lines in R3 space tangent. Such a parameterization
is called regular.
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The vectors Wu and Wv are both tangent to the surface at the point w. For a regular
mapping the local surface normal at that point will be;

Wu X Wv

SIWu X W

3.9

The relationship of these vectors is shown in Figure 3.1. For a regular mapping the

vectors Wu and Wv span the tangent plane to the surface. These vectors, or some
appropriate linear combinations of them can be used as a coordinate system for the tangent

plane.

:onstant

Figure 3.1) The parametric tangents and normal to a regular surface

3.1.d) Arc Lengths and The First Fundamental Form of a Surface

The state of stretch of a surface can be viewed by considering the arc length of a curve
restricted to lie in the displaced surface. Such a curve can always be described by a curve
in the parameter space which is then mapped to R3 space, as shown in Figure 3.2.
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uv

a. Parametric Space b. 3-D Space

Figure 3.2) Curves in the parametric plane map to curves fixed in the surface

A curve in R2 and its associated R3 curve will be given as

u = u(r) = [u(r), v(r)] and 3.10

w(r) = [x(u(r)), y(u(r)), z(u(r))] 3.11

The arc length squared of this curve, will be;

ds2 ' - dr2 = [ur Vr] Wu-Wu Wu'Wv [ur dr2 [du dv] G [du] 3.12
wL -wn Wy-Wv Iyr Idv

This equation is known as the first fundamental form and defines the matrix G. The matrix
G, a function of Wu and Wv only, completely determines the state of stretch for the
parametric surface. This fact can be used to help calculate the area of the displaced shape
by taking an integral in the parametric domain.

The area of a small element in the displacement shape for a regular mapping will be given
by;

dA = wudu x wudvf = WW- (WuWu)2 dudv 3.13

= 'det(G) dudv

9a

- .1, .

$T U.Ji.UVt
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and the total area can be found from the first fundamental form by;

A = fdet(G) dudv 3.14

3.1.e) Arc Curvature and The Second Fundamental Form

Now consider the curvature of a curve which is restricted to lie in the surface. A curve's

curvature is defined as the magnitude of the 2nd derivative of a curve with respect to arc

length.

Km = Wss 3.15

where m = unit vector in the direction of the center of the osculating circle and
K = curvature

applying the chain rule to the parametric definition of the curve yields;

Km = Wuuu 2 + 2 wuvurvr + Wyvv 2 + Wourr + WvVrr 3.16

Notice that although the surface normal will be orthogonal to the surface tangents w, and
w,, it will not generally be aligned with the curve's normal vector, m. Taking the inner
product of Km with the surface normal n, using nWu = nWu = 0, yields;

mn[uuu n.wuv 1 FUr 3.17
Kmn = [ur Vr n*wvu n*w v

which implies;

Kmn ds2 = [du dv] n'wuu n.wuv [du = [du d] B du 3.18
n-wvu · vv_ dv dv

The vector relationships of the curvature properties of a curve lying in a parametric surface
are shown in Figure 3.3. The above relation defining the matrix B, a function of the first
and second derivatives of the surface is called the second fundamental form of the surface.
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Together with the first fundamental form, G, (needed to compute ds2) the second
fundamental form can yield the curvature for any curve in the surface with some given
curve normal direction, m.

The shape of a surface is completely defined by the B and G matrices. Any two parametric

mappings that have B and G everywhere identical over the domain, a, will have the same

shape up to rigid body displacements.

1 = radius of
Co curvature

Figure 3.3) The curvature and normal for a curve fixed in a surface

3.1.f) Surface Curvatures

The normal curvature of a curve constrained to lie in the surface is given for the special

direction where m and n are aligned and m - n = 1, yielding;

[du dv] B [du dv]T
[du dv] G [du dv]T

3.19

As the curve direction in the parametric space defined by the vector, du = [du dv] is varied,

the magnitude of Ko will change. The maximum and minimum values of 'Ko are called the

directions of principal curvature, K1 and Kc2.

K1 = max(Ko(du))

Kc2 = min(k 0(du))
3.20



46 Chapter 3: Deformable Models

The principal curvatures completely define the state of curvature at a point on a surface.

The normal curvature of any curve lying in the surface can be found as a function K1, K2

and the angle between the curve and the direction of principal curvature, V.

The state of surface curvature can be described alternatively in terms of Gaussian and mean

curvatures. Gaussian curvature, Kg, is defined as the product of Ki1 and C2.

det(B) 3.21g = K:1 2 - 3.21
det(G)

The mean curvature is defined by Km = 1/2 (Ki + K2) and is calculated as;

1(nWvv2wu)Wu)-2(n.wuv4Wu.wv)+(n-wu Xwv ' wv) 3.22Km = 1/2 (K1 + K2) e(det(G)

And conversely the principal curvatures can be calculated from the Gaussian and mean

curvatures as;

K1 = Km + KIK- lg 3.23

K2 = Km K - Kg

Positive Gaussian curvature indicates that both the directions of principal curvature are of

the same sign. This happens for elliptiq surfaces like spheres. A negative Gaussian

curvature is indicative of an hyperbolic surface such as a saddle point where the surface is

convex in one direction and concave in another. When the Gaussian curvature is zero the

surface shape is called parabolic and one of the surface's principal curvatures has become

zero. This is typical of cylinders and ruled surfaces where the surface is only singly

curved. Surfaces of zero Gaussian curvature are called developable. They can always be

transformed into a plane without stretching the surface, just unrolling it. Between every

elliptic and hyperbolic region on the surface will be a set of parabolic points. Gaussian

curvature is calculated as;
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3.1.g) Measures of Surface Fairness

A surface is said to be fair when its shape is pleasing to the eye. Unfortunately, although
many surfaces designed are required to be fair, there is no quantitative measure of fairness.
It is therefore difficult to build a surface numerically that guarantees surface fairness.

Many efforts have been made to help quantify the fairness concept, or at least physically

describe the attributes of a fair surface. For example, Farin and Sapidis, [Farin_88] have
proposed the following definition of fairness,

"A curve is characterized as fair if the corresponding curvature plot is continuous
and it is as close as possible to a piecewise monotone function with as few as
possible monotone pieces."

Accordingly, fair surfaces tend to minimize the number of inflection points, and avoid rapid
changes in curvature. Most suggested measures of fairness are based on some property of
the curvature of the surface. Automatic control of the fairness of the curve may be achieved
by controlling the curvature properties. So, reporting the curvature properties of the
surface to the user will be a major means of verifying its fairness. In this work, curvature
reports of a surface are made by color coding a surface based on its Gaussian, mean,
maximum or minimum principal curvatures. These reports tend to identify regions of poor
behavior by highlighting regions of discontinuity and rapid change in curvature.

Whatever the actual attributes of a fair surface, people have very little problem in perceiving
fair surfaces. As such, one of the most effective things an interactive design system can do
is to present the surface graphically to the user in such a way as to enhance its perception.
In this work surfaces can be viewed as shaded light models, sets of contour lines, and sets
of isoparameter lines.

We have found that the shaded light models combined with contour lines give the best
impression of shape as long as the user can dynamically manipulate the orientation of the
surface with respect to the light source and the viewing position. Contour lines give a
superior understanding of the surface than do isoparameter lines which are seemingly
presumed to be contour lines and therefore tend to mislead surface shape interpretation.
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The system built also has the capacity to render the lighted surfaces in 3-d using a Stereo

Graphics rendering system. Although the images generated are very dramatic, such
renderings don't seem to add much information to the perception of surface fairness.

3.2 Modeling of an Elastically Deformable Surface

The main premise of the ShapeWright paradigm is that naturally fair surfaces can be easily
defined in a medium that mimics real deformable surfaces. To model an elastically

deformable surface we consider its strain energy expressed as a functional. In the words of
Timoshenko, [Timoshenko_34], "Under the action of external forces an elastic body

undergoes a deformation during which the forces do a certain amount of work. This work

is transformed into strain energy, or the potential energy of deformation of the body."

The equilibrium configuration of a deformable body subject to constraints and forces can be
found using the principle of virtual work. This principle states that the work done by the
applied forces for any kinematically permissible variation about the equilibrium
configuration will be zero. This statement is equivalent to defining the equilibrium
configuration of the system as the one shape out of all possible shapes which minimizes the
energy functional.

We seek to define the properties of the deformable models by defining their energy
functionals. Actual equilibrium shapes will be found at a later time by satisfying the
requirements of the virtual work principle. The energy functionals actually used in
ShapeWright were motivated by the elastic behavior of soap films, thin plates, and shell
elements with the additional desire for interactive solution times.

Soap films act to minimize their area. A soap film will never fold in on itself as a curtain
might when pushed along a curtain rod. Area minimization is a desirable attribute for a free-
form shape modeler. As the bounding character lines are modified, the user should not
have to be concerned about having the surface fold, exhibit cusp-type singularities, or
behave in a generally poor fashion all in an attempt to preserve its initial area. We therefore
seek primitives that tend to minimize their areas. This will be done by including terms in
the energy functional that add energy for increased areas.
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Thin beams and plates such as the wooden spline deform by bending. The energy of
deformation is proportional to the bending of the beam as measured by its local curvature.
Wooden splines have been used for shape design because they produce very fair curves.
One desire for the ShapeWright primitives is that they naturally produce fair shapes as the
user manipulates them for design purposes. Terms that tend to weight the bending of the
shape will be added to the energy functional to improve the fairness of the surface.

3.3 The Energy Functionals

The energy of deformation for a ShapeWright primitive consists of the sum of two
independent terms; the energy due to stretch plus the energy due to bending. The energy
functionals for these primitives have the form;

Edeformation = f (a stretch + p bending) da 3.24

The a and 0 terms act to weight the impact of stretching and bending on the overall energy

of the shape. Larger a values increase the amount of energy due to stretch while P weights

the energy due to bending. Changing the values of a and 0 will change the deformable
surface's shape accordingly. Increasing the a values causes the surface to increasingly

resist stretch and to seek solutions of smaller and smaller areas. Larger ( values will cause
the surface to distribute its curvature over large regions acting to make it seek flatter and
flatter shapes.

The energy functional used for a ShapeWright curve is given by:

Ecurve f (a(u) w#2 + P(u)wuu2 - 2 f w) du 3.25ou"
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The functional for a ShapeWright surface is;

f (cwu2 + 2al2WuWv + OX22Wv 2) 13.26
Esurface =  - 2 f w dudv

S+ (PlWWuu 2 +2f12Wuv 2 + f22Wvv 2)

where f = f(w,t) and denotes the applied forces used to sculpt the surface.

The curve energy functional is very nearly equivalent to the energy functional used as the

basis of Schweikert's interpolating v-splines, [Schweikert_66, Nielson_74] exclusive of

the forcing terms. The surface energy functional was originally published by Terzopoulos

et.al., [Terzopoulos_87] in a paper which defined surfaces with finite differences defined

over the unit square.

3.4 Properties of the Energy-Based Deformable Models

The energy functionals completely characterize the behavior of the deformable primitive. In

this section some of the properties of the above functionals that make these models
interesting for shape modeling will be discussed.

3.4.a) Shape Definition

A major difference between these models and the theory of elasticity is the definition of
shape. In these models deformable shape is defined as;

Deformable Shape = w(u,v) 3.27

While elasticity theory defines shape as;

Elastic Shape = x(u,v) + w(u,v) 3.28

where x(u,v) is the rest shape of the material.

In elasticity theory the unloaded body has a minimum of strain energy when it is in its rest
shape x(u,v). In this model of deformable shape there is no rest shape. Strain energy
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continually decreases as the bending and stretching terms go to zero. An unconstrained,
unforced deformable shape will become flat to reduce bending energies and reduce its area
to zero to reduce stretch energy. Non-point shapes can only be made with some
combination of constraints and forces.

3.4.b) Stretch Resistance, a

The a variable directly weights the amount of energy due to stretch. In a curve, the a

weighted term is identical to the arc length. Stretch is a local measure of the overall length

of a curve and a weights the resistance to it. A curve with a large a value is said to be

stiff.

The relationship between a and a surface is not much different. The terms of the surface

energy functional weighted by a are just the sum of the terms in the first fundamental form

matrix, G. A large value of a in the energy functional will make the surface deform to

minimize the terms of the G matrix and thereby weight the resistance to stretch of any curve

forced to lie in the surface.

The a variable also acts to minimize the area of a surface, just as the curve's a variable acts

to minimize the overall length of the curve. As mentioned previously the total area of a

surface can be found as an integral of the determinant of G;

A = f•/Wu2W 2 - (Wu.W) 2 dudv 3.29

Although the a weighted term does not directly weight the area of the surface, it does act to
minimize the terms of G which tends to minimize the area of the surface.

Because G is a second order tensor, non-isotropic effects can be introduced by weighting

the terms of the G matrix independently. The a 11 term resists the stretch of fibers in the

surface in the direction of the u isoparameter line. The a22 term resists stretch for fibers in
the direction of the v isoparameter line. By adjusting the all and a22 terms independently
a surface can be made that is very stiff in one direction and not in the other. The 12 term
can be used to rotate the material non-isometric axis. Consider a pair of orthogonal
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directions in the uv parameter plane that are rotated from the u and v directions by some

angle 0. These directions are related by;

[ Fcos(9) sin(6) ]u] R l 3.30
v -sin(6) cos(O)

Now consider the shape function w = w(u(i',V), v(iT,v-) and its derivatives found with the

chain rule as;

[ W ]=RT[ Wu ] 3.31

The ax weighted energy functional can be written in terms of the rotated directions;

iEaF l2 aw(11  X1 2  W 1 dudv 3.32

Substituting the relations between the rotated and original directional partial differentials

into the a weighted energy functional yields;

Ew j [ wu wv ] R [1 12 ]RT[u ] dud 3.33
a a12 X22 Lv

So changing the weights of the a matrix so that;

( a11 a212 =R [ •l 0 ]RT 3.34
(X1l2 a22 0 a22

Is equivalent to weighting the stretch of fibers aligned in the u- and v- directions.

3.4.c) Bending Resistance, 0

It would be conveniently intuitive if the P weighted terms were identical with curvature.
However, the parametric representation of curvature is a rational non-linear function of w,

and wuu. Minimizing this actual quantity would be computationally prohibitive.

Fortunately, the P variable does weight the terms that dominate the actual curvature for
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small deflections. This can be seen by considering the Taylor series expansion for the
curve and surface in the neighborhood of a point as;

w(u+du) = w(u) + wudu + Lwuudu 2 + - 3.352

And for a surface the local shape is given as

w(u+du) = w(u) + (wudu + wvdv) + I (wuudu 2 + 2wuvdudv + wvdv2) + -. 3.362

The 3 term weights the second order behavior of the curve and surface and in this way has

the effect of increasing the energy due to bending. Larger and larger curvatures will

continue to increase the energy although the linear approximation to curvature will no

longer be valid. Additionally, the bending energy weighted by P can only be zero when the

surface is flat. So although the P variable does not actually weight a curvature measure it

does act to resist surface bending.

3.4.d) Quadratic and Adjoint Energy Functionals

All the internal terms of the energy functional have been constrained to be quadratic and

adjoint. Linear variational problems are posed in terms of quadratic functionals, I(w). In
our case we are minimizing a potential energy that can be written in the form,

I(w) = a(w,w) - 2(f,w) 3.37

where a(w,w) is the energy and consist of the quadratic terms of the functional.

The notation (g,h) indicates the inner product between two vectors. If g and h are three

space vectors the inner product is the familiar vector dot product. When g and h are

continuous functions, such that g = g(u) and h = h(u), the inner product is given by;

(h(u),g(u)) = h(u)g(u) du 3.38
rane ofu
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The second-degree term is the strain energy, and it is associated with an energy inner

product,

a(w,g) = 1/4(a(w+g,w+g) - a(w-g,w-g)) 3.39

The energy inner product is symmetric a(w,g) = a(g,w) the associated energy functional is
adjoint. The minimum of an adjoint energy functional can be approximated numerically by
the Ritz method resulting in a symmetric matrix equation problem [Strang_73]. Limiting
the functional to quadratic terms guarantees that those system matrix equations will be
positive definite. The combination of positive definiteness and symmetry in the matrix
equation ensures the very rapid solution these problems for shape which will help in
supporting interactivity.

3.4.e) Decoupled X,Y,Z Equations

The energy functionals have been additionally constrained so that the related Euler
equations will be independent in x,y, and z. This was done so that the system equations
need to be built only once, then used for all three directions, reducing the problem size by a
factor of three. Since the algorithms which are applied to solving the final matrix equations
tend to run O(n2), where n is the number of degrees of freedom for the problem. This
results in an order of magnitude decrease in solution times. The limitation is that
constraints which require coupling in the x, y and z directions will not be able to be
enforced directly.

She effect on the form of the energy functional is to exclude terms which combine the
coordinate functions such as (xu(u,v) * yu(u,v)). This limitation is automatically satisfied
when the energy functional is a function of the inner product of the shape vector and its
derivatives. For instance;

wu2 = wu'wU = (Xu2 + yu2 + Zu2) 3.40

The resulting Euler equations are given in section 3.5 and are seen to be independent in the
x, y, and z directions.
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3.4.f) Elliptic Energy Functionals are Fair Seeking

An additional insight into the fair shape generation property of the ShapeWright primitives
can be found in the theory of elliptical differential equations. A detailed discussion of this
theory will not be developed here but is discussed by Strang, [Strang_73]. At this time,
we are only interested in the implications of this theory for determining the properties of the
energy functionals for the ShapeWright primitives.

The theory of elliptical differential equations states that if the boundary conditions and the
data, f, are smooth then the resulting solution, w, will also be smooth. Taking advantage
of this property the energy functionals have further been constrained so that the resulting
energy functionals will be elliptical.

The solvability of the fundamental variational equation, I(w) = a(w,w) - 2(f,w), is
guaranteed if the form is elliptic, where the energy of the system is equivalent to the norm
of the function in Hilbert space (see section 4.3). For our curve primitives,

a(w,w) = f (awu2 + pluu2) du and 3.41

(f,w) = f f.w du

A space is a set of functions that all have finite size as measured by the norm of that space.
A common norm used to measure the magnitudes of functions in Hilbert space is called the

energy norm. Different Hilbert spaces can be defined by including different number of

derivatives in the energy norm. For the Hilbert space of all functions which have finite

energy through their second derivatives the norm is given by;

Iw2 = (wu 2 + Wu2 + w2) du and for surfaces 3.42

jwl = f(W + w + Wv2 + w 2 + W,2 + w2) du
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For the ShapeWright energy to be equivalent to the norm of the Hilbert space it must satisfy
the relation;

a(w,w) < k w 2  3.43

where k is some constant.

Comparing the ShapeWright energy functionals with the Hilbert space norms shows that
the ShapeWright energy functionals are just partial weighted norms of their respective
Hilbert spaces. They lack the term that adds energy for the position of the body. What this
means is that as long as a boundary condition is applied to the ShapeWright surface that
fixes its position in space a solution is guaranteed that is equivalent to the solution of an
elliptical value boundary problem. And consequently, the guaranteed smoothness of an
elliptical boundary value problem solution will be exhibited by the ShapeWright geometry.

3.4.g) No Poisson's Effects

The ShapeWright deformable models can be compared to models of simple plane strain and
simple bending. The ShapeWright deformable models can be forced to act without

Poisson's effects by enforcing the following constraints on the terms of the a and f
matrices.

all = a22 = a 12 and 311 = 322 = 1/2312. 3.44

Poisson type effects were eliminated to enhance the user intuition in manipulating the
surfaces. The user should be able to stretch a general shape without drastically modifying
the dimensions orthogonal to the stretch.

3.5 Minimize a Functional or Solve a Differential Equation

The ShapeWright models of deformation have been expressed in the intuitively simple form
of an energy functional. These surfaces have greater strain energies when they are
stretched or bent. In this section the equivalence between minimizing a quadratic energy
functional and solving a related linear differential equation, known as the Euler equation,
will be shown.
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We seek to minimize the energy functional,

I(w) = a(w,w) - 2(f,w) 3.45

Subject to certain geometric constraints. We assume that the actual minimum is w, still an
unknown at this time. Then any other function which meets the boundary conditions of the
problem can be written as

w = w + ee 3.46

where E is a scalar of arbitrary sign and
e is a function that when added to w does not violate the geometric

boundary conditions.

Since I(w) is a minimum it must be equal to or less than I(w + se),

I(w) _ I(w + ee) = I(w) + 2e(a(w,e) - (f,e) + e2a(e,e) 3.47

The last term weights a(e,e) with e2. The energy, a(e,e), will always be positive as will e2
and the addition of the last term will not violate the inequality. However, the second term
is weighted by an arbitrarily signed e. To preserve the inequality the relation

a(w,e) = (f,e) 3.48

must be preserved for any function e. Integration by parts will change the symmetric
a(w,e) into an inner product between a general differential operator acting on w and the
function e with some additional boundary conditions as;

(Lw,e) = (f,e) 3.49

This relation is known as the weak form of the variation principle. The notation Lw stands
for any differential operator applied to the function w. As an example, the Laplacian

2 2 = 2 2 aw aw
operator V 2 is defined as = • +  . If L = V then Lw = V2w = + aau avv jua av
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The weak form can be rewritten as;

(Lw,e) = (f,e) =- (Lw,e) - (f,e) = ((Lw-f),e) = 0 3.50

The weak form must hold for all functions e. This will only be true when;

Lw = f 3.51

These are the Euler equations also known as the strong form of the original variational

principle. A physical interpretation of the above equation is that the external forces, f, are

balanced against the internal forces represented by Lw. This is an equation of equilibrium.

Actual execution of the integration by parts steps yields the following syntactical relation

for deriving the Euler equations for curves and surfaces. The Euler equations related to the

minimized functional of a curve of the form;

I(w) = f(W,Wu,wuu,u) du where w = [x(u),y(u),z(u)] are 3.52

I2 f If If
du2 axuu du xu +• ax

d2 i af f afdL2 '-- -d ) I ( +- - o= and
du 2 y -uu du y+ ay

d2 (af d u Dga) If
du2 jzuu du az, Dz
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The Euler equations related to the functional of a surface of the form;

I(w) I f(W,W u,W,Wuuuv,WV,u,v) dudv 3.53

where w = [x(u,v),y(u,v),z(u,v)] are

(f a2 f  Df a a af a af af
+2 +a +-= 0U uv u28Xu 8V2 -x u v X

a2 af I a2 a a2 af a afI a af af2  + 2 + -8 + Yf= 0 and
Du2 \aYUU au8v ayuu 8v 2 jyv) 8u 5 8ay 8v 'Yvy, Iay

82 taf a82 af 82 f\ a af a af f
u2 u+2 V iaua +V2 FJ 5 TZu - v 5; Z

And for the ShapeWright minimum energy principles, the Euler equations are;

d2(3w~uu) =d(cwu) - Lw = f and for a surface
du2  du

a2(P1IwUU) + 8(i 2Wu) + 82( 22W,( u2  u8av v2
= Law = f

8(a••IIw•+u 12Wv)+ +8(al2Wu + a22Wv)=Lw=

au av

3.6 Time, Mass and Dynamics

The notion of time was added to the system to enhance interactivity. The user manipulates
the shape through time by changing the forces, geometric constraints, and material
constants as a simulation of the system is run. Mass and damping were added in addition
to introducing time so that the solutions of the system would automatically appear to be
animated in a natural way. This was meant to enhance the notion of manipulating real

physical surfaces to design shape.



60 Chapter 3: Deformable Models

The equations of motion for the system can be written using d'Alembert's principle,
treating the dynamic effects as forces that modify the equilibrium equation as;

_ aw aw

p~ t pt+ t- + Lw = f(w,t) 3.55

The first term models the inertia of the system and the second term models viscous

damping forces. The damping forces continually eliminate energy as long as the system is

moving. Equilibrium is achieved when the system comes to rest and both the inertial and

damping terms go to zero yielding the original equation set,

Lw = f. 3.56

Dynamics do not alter the final shape of the object, only the path taken to achieve it.

The strain energy of the deformable surface has been carefully constrained to guarantee that
the operator Lw is linear. However, no such constraint has been placed on the forcing
functions, f. When the forces are nonlinear functions of the shape, the positive
definiteness of the whole system of equations is lost. There may be several local minima to
the shape energy functional that could each act as a local solution to the shape problem. By
introducing time, the user can control which of the local minima shapes will be found. As
an example consider an obstacle modeled by a non-linear repulsive force field. The force
acting on any point of the shape will be a function of the its distance and orientation to the
object.

fobstacle(U,V) = -Kob (W(U,V) WO) 3.57
(w(u,v) - wo )

Figure 3.4 shows two solutions for a curve that is forced to avoid an obstacle. The user
can select between these solutions by temporarily applying additional forces to make the
curve move to the correct side of the obstacle and then releasing it. Without time, this
selection process would be difficult to accomplish on an incremental basis.
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target point

targe pobsbs cl

re obstacle pobstacle
target point target point

Figure 3.4) Solutions for avoiding an obstacle
a.) Two valid solutions for connecting two target points while

avoiding one obstacle modeled as a force source
b.) More obstacles create the potential for many solutions

3.7 Forces; Their Applications and a Survey

Forces are the mainstay for the interactive manipulation of deformable surfaces. Force
fields, also called loads, can be modeled for the convenience of the user to simplify
manipulating the shape or to increase the intuitive feel of sculpting. Examples of some
simple force models are shown in Figure 3.5. These include pressure, springs, gravity,
and the previously mentioned obstacle. "Springs" attract a particular point on the surface to

a

target poini
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a particular point in space. "Obstacles" accomplish the reverse by pushing all points on the
surface away. "Gravity" acts on all points of the surface to pull them in one direction.
"Pressure" is a force applied to the surface acting in the direction of the surface normal. All
of the above forces can be made to act on the entire surface or on some subregion of the
surface.

o "Gravity"

o "Springs"

fg(w,t) = p(w) g

'00P

fs(w,t) = k(w - wo)

o "Pressure":

fp(w,t) = p n(w)

Figure 3.5) External forces, a survey

The most important fact about loads is that they can be applied individually to overlapping
sections of the surface and the surface will respond in an intuitive manner. This is
accomplished by treating the total applied force acting on a point of the surface as the sum
of all the loads acting at that point.

fnet(u,v,t) = fi(u,v) 3.58i

~-C·
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An excellent way to specialize the interface for manipulating deformable surfaces can be
achieved by custom designing force fields as needed. New loads can be designed for
future situations as they become needed without modifying the general structure of the
ShapeWright approach or an associated implementation. One measure of the ease of use in

designing a shape is how well that shape can be parameterized. A circle in a plane is

completely defined by specifying a point and a radius. By varying the radius an infinite

number of circles can be designed all sharing the same center point. External forces applied

to the ShapeWright geometric primitives can be used to achieve the same effect.

The implementation that was developed in this thesis has an interface that allows sets of

loads to be applied to the surface. Each load is highly parameterized. A pressure is

parameterized by the region of the surface that it acts on and its magnitude. A spring is

parameterized by the region of the surface it acts on, the location in space of the anchor

point and its magnitude. The user can explore an infinite number of shapes by applying a

load and varying the load's parameters. The advantage of this approach is that, like the

circle example, the family of shapes will be intuitively similar and easy to control. By

applying a set of loads to the object the user can parameterize the free-form shape as it is

designed in any fashion needed to control the shape.

This approach to sculpting reduces the number of parameters the user controls from

hundreds and thousands to just a few. It additionally resolves the problem of how to

coordinate the motion of several degrees of freedom simultaneously to achieve desired

effects. It also lets each deformable shape be parameterized uniquely as a product of the

steps that were taken to make it.

Another idea for specializing the interface with forces is the use of sculpting tools. A
sculpting tool is a force field that acts locally around an arbitrarily shaped object. The force
field can be characterized by the shortest distance between the object and the shape much
like the point obstacle was in the preceding section. The geometry of the sculpting tool can
be built using any convenient modeling scheme available.

Multiple deformable objects can interact with one another by through force fields. These
can be designed to avoid intersecting one shape with another or to cause shapes to seek
each other out. Applications that might benefit from this approach could be an automated
wire router where the wires seek to group together to form wire harnesses or assembly
shape modeling where shapes automatically deform to prevent interference.
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3.8 Soap Films, Plane Strain, Plates and Shells

It is both interesting and informative to compare the ShapeWright deformable models with

the models of real physical deformable surfaces. This comparison yields insights into how

the ShapeWright models achieve fair seeking properties and how they respond to user

inputs. Soap films and plane strain will be considered to develop an appreciation of

systems that gain strain energy through stretch. Simple plate bending models will be

examined as an example of systems that gain strain energy through bending. And a very

brief glimpse of the kinematically exact treatment of the bending and stretching of free-form

shapes known as shell theory will be given to show that the decoupling of strain and

bending energies is a physical as well as a ShapeWright property.

3.8.a) Soap Films

A soap film has a constant surface tension that is a property of the materials that come in

contact, for example soapy water and air. Such surfaces deform to minimize their area

while being constrained to meet their geometric constraints. Consider a soap film on a

child's bubble-blowing toy. From the section on parametric geometry we know that the

energy of such a surface will be given as;

Efilm = kf wu x w dudv = kfJ Idet(G) dudv 3.59

Soap films build minimal surfaces. The properties of the minimal surface are such that the

mean curvature is everywhere zero. The surfaces cannot support self-intersecting or slope-

discontinuous singularities. Overall, soap films are very well behaved surfaces excellent

for interpolating a data set. Their energy functionals are completely defined in terms of the

first partial derivatives of the surface which are the terms weighted by a in the

ShapeWright primitives.

Efilm = Efilm(Wu,Wv) 3.60

The ShapeWright deformable primitives hope to achieve some of the excellent interpolation
properties of a minimal surface by attempting to minimize their area through the use of (x
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weighted terms. By analogy, the a. parameters are acting somewhat like a surface tension
parameter. As discussed before, since the area is not minimized directly the ShapeWright
primitives will not be making exactly minimal surfaces. Shapewright will only make
surfaces with minimal surface-like properties.

3.8.b) Plane Strain

In linear elasticity theory, deformed shape, y, is defined as the sum of a rest shape, x, and
a deformation, w as;

y=x+w 3.61

where x,y, and w are vectors in three space spanned by el,e2,e3.

The actual strains of a full three dimensional body are defined as;

Eij = wij + ji) 3.62

where the notation, W i,j, represents the partial in the jth direction
of the ith component of w. Both i and j vary from 1 to 3.

In elasticity theory, strain is related to stress by Hooke's law. Ignoring initial stresses this

can be expressed as the linear symmetric relation;

-= Chooke E

where a =

011 811

022 822

(733 Chooke = Material Property Matrix, and e = 33
12 E812

023 E23

031 L ' 831 -

3.63
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The strain energy of such a system is given by

-T -T 3.64
Eelasticity = G E = I ET Chooke 3.64

Plane strain is a special case where deformations out of the plane, in the direction of the e3

axis are prohibited and the deformation is the same for all planes. In this case we can

consider the two dimensional problem where the vectors x, y, and w are now constrained

to the space spanned by the vectors e 1, e2. The stress and strain vectors reduce to,

11 [ El 3.65
Ups =  22 and Eps =  -22

G12 E12

The material law for an isotopic material with a Young's modulus, E, and a Poisson's

ratio, v, for plane stress will be of the form;

1 v 0 3.66
Cps = kps(E,v) v 1 0

0 0 (1-v)/2

Placing these definitions into the strain energy functional and equating el with u and e2
with v yields;

1 v 0 W 3.67
Eplain strain = kps [Wu Wv (Wu+v)] V 1 0 Wv dudv

y 0 0 (1-v)/2 _ Wu+Wv

The difference between this energy functional and the ShapeWright a weighted functional

can be made by eliminating the Poisson's ration, v = 0, and ignoring the energy due to

shear deformations. The ShapeWright energy functional ignores these terms to improve

the intuitive response of the shape to input forces. By analogy, we can interpret the a

terms that weight stretch to be akin to Young's modulus acting for a linear elastic material.
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3.8.c) Plate Bending

The simplest plate theory is the classical small deflection theory developed by Lagrange.
All deformations of the plate are due to bending, deformations due to stretch are excluded.
Linear plate theory is built on the assumptions:

i) points which lie on a normal to the mid-plane of the undeflected plate lie on a
normal to the mid-plane of the deflected plate.

ii) the stresses normal to the mid-plate of the plate are negligible compared with
the stresses in the plane of the plate.

iii) the slope of the deflected plate in any direction is small so that the local
curvature can be approximated linearly.

iv) the mid-plane of the plate is a 'neutral plane' where mid-plane stresses due
to non-developable deformations may be ignored. The plate does not stretch.

In this theory the plate deformation is limited to the direction normal to the plane taken to be
the e3 axis. The deformation reduces from a three space vector to a scalar field, w = w e3.
Thus the neutral plane deformed shape is given by the implicit relation,

y=x+we3= Y = v + 0
z 0O - w(uv)

The slopes of the mid-plane are Wu and wv. For small angle slopes the deformation of the
plate in a plane at some height z above the neutral plane will be given by;

-z w 
3.69

w = -zwy
-W
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The strains in the elevated plane will be

Epb = -22

S12 I =[
-z UU1
-z WVV

-2 z wUV

Assuming a state of plane stress, the stress in the plate is given as;

Opb = Opb(Z) = Cps Epb

The general state of stress can be used to find the moments that bend in u and v and twist
by integrating over the thickness of the plate

3.72
Mpb My = z Opb dudv = Dpb Cps -Wvv

Mub V I f -2wuvI

with D = Et3/12(1-v 2); t = plate thickness

The equivalent 'strain' for this system is

-WUU

-2wUV
3.73

Epb I

The terms Wuu and wvv approximates curvature, Kluu = -Wuu/(l + Wu2)3/2 and
KVV = -WVV/(1 + wV2) 3/2 when wu and wv are smaller than 1.

The strain energy of a bending plate is given by;

Eplate bending = Dpb [-Wuu -Wvv -2wuv] v 1
0
0

(1-v)/2
-WVV dudv

I L-2WUV i

By analogy between the bending plate and ShapeWright 3 weighted energy functional we

can conclude that in the range of small deformations the P's model the effects of Young's

3.70

3.71

3.74
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modulus, E on bending. Also we see that all effects due to Poisson's ratio have once again
been eliminated.

3.8.d) Shell Theory Results

We have looked at soap films and plane strain and discovered that the ShapeWright energy
functionals are very similar to these models providing effects that minimize area and resist

stretch. The examination of the plate bending model indicates by analogy that the 3
weighted terms of the ShapeWright energy functional act to resist bending. One major
question remaining is how these effects couple together. In the ShapeWright primitives
these were assumed to simply add together. This assumption garners some credibility from
the results of shell theory.

Shell theory is a careful kinematic analysis of the elastic behavior of bending and stretching
a fully free-form shape made of a thin sheet. Due to the highly coupled nature of the
geometry and the stiffness very nonlinear relations result. However, for small
deformations about the rest shape of a shell structure the energy is actually modeled as the
sum of a term due to bending and a term due to stretch.

Eshell = f (bending term) + (stretch term) dudv 3.75

In fact, the early Finite Element solutions to shell problems used elements whose stiffness
were due to the decoupled effects of plate bending and plane strain.

Kshell = [ Kplain strain 0 ] 3.76
0 Kplate bending

Once again by analogy, we conclude that the effects of resisting bending and stretching can
be combined effectively in the ShapeWright primitives by treating them as decoupled
events.

3.9 Chapter 3 Summary
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A free-form shape can be represented parametrically. These surface representations can be

used to model deformable shapes in an energy functional. The actual shape assumed by a

deformable primitive can be found as the one shape out of all possible shapes that meet the

boundary conditions which minimizes the energy functional. An equivalent statement of

the problem is to solve the related Euler differential equations.

ShapeWright energy functionals consist of the sum of a stretching and a bending term.

These terms are weighted by cx and P so that the behavior of the surface can be modified

during run time. By resisting stretch the ShapeWright primitives hope to mimic the

behavior of Soap films and produce shapes with minimal material. When the user

manipulates the constraining character lines this property will act to prevent the surface

from folding like a curtain on a curtain rod. Resistance to bending was added to increase

the fairness of the produced shapes. Resistance to bending is a property common to simple

beams and plates which are physical objects that have long been exploited to produce fair

geometry. Deformation effects that couple changes in shape between orthogonal directions

were eliminated. This action was equivalent to setting Poisson's ratio to zero in linear

isotropic elasticity theory.

The actual ShapeWright energy functionals are designed to enhance the speed at which

numerical solutions can be obtained. This is done to enable interactive design.

The notions of time, and dynamics were added to the ShapeWright equation set to enhance

user interactivity and to allow for user controlled selection between alternative solutions.

Forces are identified as the primary means to achieve interactive sculpting of deformable

shapes. The notion of parameterized loads is introduced to simplify the design of very

complicated shapes.

In the next chapter solution schemes and actual ShapeWright primitives are discussed.
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4 Curve and Surface Geometric Primitives

This chapter presents solutions to the variational problem of finding the ShapeWright

geometry given in Chapter 3. That problem is; find the shape, w, for a curve or surface
which minimizes one of the following functionals;

Ecurve = (u) W2 + P(U)Wu, 2 - 2 f w du 4.1

Esurface =  (a- wu2 + 2al2Wu v + a22v2) 2 f w dudv
+ (11Wuu 2 +2P12Wuv 2 + 322Wvv 2)

in such a way as to satisfy the following requirements;

o Interactivity
o Continuity
o Constraints
o Topology

needed to support the three step ShapeWright design paradigm as;

1.) Build Character Lines
2.) Skin Faces with Deformable Surfaces
3.) Sculpt Faces into Final Shape

Analytic solutions to the above problem are available over very simple domains. Since it is

our ambition to model complicated topologies to be represented by arbitrarily shaped

domains in the parameter space we consider numerical solutions.

The beginning of this chapter gives a finite difference solution as the simplest means to

solve the ShapeWright problem. The finite element method is introduced to develop a shape

representation capable of satisfying the above requirements. A technique for time

integration is given appropriate for either the finite element or finite difference solution

approaches. Constraint enforcement schemes are reviewed briefly in search of a scheme to

implement the skinning step of the ShapeWright paradigm.
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The remainder of the chapter is spent in developing the actual ShapeWright surface and

curve primitives. Triangular finite elements are used to satisfy the topology requirement

combined with a set of shape functions that can be used to satisfy the constraint and the

continuity requirements. Barycentric coordinates are introduced for building functions

defined over triangular domains. The details of developing the element stiffness matrices,

forcing vectors and enforcing geometric constraints are presented. The same is done for a

curve element based on Hermite polynomial shape functions.

4.1 Finite Difference Solutions

The finite difference method for solving the ShapeWright deformable model problem seeks

solutions to the Euler differential equations;

d2(jWuu) d(twu) 4.3Curve: uu) d( Lw= f
du2  du

( U2(Iiw) + D u•v + a V2 )
au2 auav aV2

Surface : = Law = f
-S((a ociiwu + (X1 2Wv) + (Xl2Wu + a22Wv)

by approximating the differential terms by differences of the actual function. These

approximations derive from a Taylor series expansion of the function about a point. For a

curve the Taylor series expansion is;

w(u+du) = w(u) + wudu + I wuudu 2 + O(du3 ) 4.42

Solving for Wu yields a forward difference approximation to the first derivative of w that is

accurate to first order terms.

w(u+du) - w(u) +1 wl du + O(du2 ) 4.5u = + - du + O(du2)  4.5
du 2
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More accuracy can be achieved by combining this result with another Taylor series
expansion in the opposite direction;

w(u-du) = w(u) - wudu + I wuudu 2 + O(du3 ) 4.62

Subtracting the two Taylor series and solving for Wu yields a central difference
approximation to Wu accurate to second order terms.

w(u+du) - w(u-du) +O(du 2 ) 4.7
2du

Various combinations of Taylor series expansions yield a family of approximations for the

different differentials in the above equations.

To solve the above Euler differential equations, the parametric domain is broken up into an

array of discrete points taken at even intervals, as shown in Figure 4.1, appropriate for the

finite difference approximations;

a(u) = a[i] = a(i*Au) and a(u,v) = a[i,j] = a(i*Au,j*Av) 4.8

where i,j are integers that range from 1 to m and 1 to n respectively

Au, Av are the spacing intervals in the u and v directions.

a. Differential equation b. Finite Difference discrete
continuous solution domain point set solution

Figure 4.1) Discretizing the uv domain for a finite difference solution

1

Z.2% M
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Differential terms in the original Euler equations are approximated with the following

differences;

Wu[i] = w[i+1] - w[i-1] = w[i+l] - 2w[i] + w[i-1] 4.9
2Au Au2

Applying these definitions to themselves yields higher order differentials;

d2f(u)wuu(u) f[i+l]wuu[i+1] - 2P[i]wou[i] + P[i-1]wuu[i-1] 4.10
du2  Au2

and for the surface we also need d2j 12(u,v)w(u,v) which can be found with the following;
dudv

d2w(u,v) _ dw,(u,v) _ w,[i+1,j] - w,[i-1,j] 4.11
dudv du 2Au

w[i+1,j+l] - w[i+l,j-1] - w[i-1,j+1] + w[i-1,j-1]

2Au 2Av

Armed with the above definitions for the differential terms, the original Euler equations can
be turned into a set of linear algebraic equations where the unknowns are the values of the
shape, w, at the array of sampled points, w[i,j]. This is accomplished by requiring that the
finite difference approximation to the differential equation hold simultaneously at all of the
sampled points. Thus the original differential equation becomes n*m (or n for the curve)

linear algebraic equations each evaluated at one of the array points.

The beauty of the finite difference method is that all of the algebraic equations are of the
same form. This regularity is best expressed by showing the template of the equation. The
template is a map showing how the equation for one point location depends on its
neighbors. The templates for the curve and surface equations are given in Figure 4.2.
Reading the template-tells how to generate the algebraic equation for a typical node in the
array. First the template is centered on the node in question, then the algebraic equation for
the node is written weighting each neighboring node with the coefficient in the template that
aligns with that neighbor. Moving the template to every node in the array generates all of
the required equations.
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b
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b. Equation for point [ij] will be of the form
0 = aw[i+l,j]+bw[i+2,j]+....

Template shape for surface finite difference equations

Surface template coefficients for Figure 4.2

The equation set is completed by approximating the forcing functions with finite differences

as;

f(u,v) - f[ij] = f(i*Auj*Av)

: 1 1 [i-lj] 5: 2V 12 [i-1,j-1]

4: -tl[i-1d]-a12[i-1j] 3: X12[i-1j]

-2P13 1 [i-1j]-2 1 1 [ij]-2f 1 2 [i-1,j-1]-21 2 [i-1,j] 20 1 2 [i-1j]

2: 22[i,j-1] 1: -c22[iJ-1]412[ij-1]
-222 [i,j]-2 2 2 [ij-1-21312[i-1j- 1]-2 12[i,j-1]

0: 1 l[i,j]+( 11[i-lj]-iR22 [i,j]+22[ij-1]+2(X12[i,j] a: -aa22ij]-a12[i,j]

1I1 [i-1j]+4 1I1 [ij]+P 1 [i+ 1j] -212 2 [ij]-2P 2 2 [i,j+1]-2 12 [i-1j]-2 12 [ij]

122[i,j-1]+4P 22 [ij]+P 2 2 [i,j+1] b: 122[i,j+1]

2P 12 [i,j]+2 12 [i,j-1]+2 1 2 [i-1j]+2V12 [i-1,j-1]

: 0C12[ij-l] dC-O 1 [ij]--12[ij]

2P 12 [i,j-1] -2P11 [ij]-211 [i+1,j] -2 1 2 ([ij-1]-2 12[ij]

e: 2P 12 [ij] f: i 1 [i+1j]

1

4.12
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The regularity of the algebraic equations results in matrix equations that are symmetric and

banded, and thus easy to solve. Ordering the unknowns and forces into discrete vectors as;

w[1,1] f[,]4.13
= w[1,2] f[1,2]

w[n,m] f[n,m]

yields the matrix equation approximation to the Euler equations as;

KdX = F 4.14

Solving for the unknowns, X, yields an approximate solution for the original shape, w, at

a set of discrete points in space. No shape information between the points is given by this

method. Dealing with the time derivatives in the inertial and damping terms are discussed

in section 4.3.

The above system of equations were used as the basis for a free-form modeling

implementation that is further described in [Celniker_89] and is very much the basis for the

solution techniques adopted by Terzopoulos et.al. for extracting shape from video images

[Terzopoulos_87] and Bloor and Wilson for defining shape as a boundary value problem

[Bloor_90]. This implementation revealed several facts. The positive conclusions were

that the deformable energy paradigm for shape generation could be made to work. Very

complicated shapes were generated with minimal input. Additionally, it was found that the

system of equations could be solved quickly enough on current hardware platforms

(Silicon Graphics 4D GT) to enable the interactive sculpting of surfaces of reasonable sized

problems.

The shortcomings of this approach for Computer Aided Design were all due to the fact that

the finite difference method requires that shape be represented as an array of discrete

points. This limits the topology of the mapping to the unit square, violates the need for

continuous descriptions of surfaces for manufacturing and makes it very difficult to enforce

geometric constraints on the surface. For example, a discrete point in space has no
tangents.

The idea of interpolating such a set of points to define a continuous surface was rejected
due to the problems inherent in interpolations and the difficulty of enforcing geometric
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constraints simultaneously on the finite element point locations and the interpolation.
Instead the Ritz finite element method was applied to solve these problems while preserving
the strengths of the deformable modeling approach.

4.2 The Finite Element Method

This section is divided into two parts. The first part presents the mechanics of solving the
deformable model problems given geometric constraints and arbitrary forcing functions
with the finite element technique. Following the procedure presented deformable finite
element matrices can be defined once the shape functions are selected. The second part
presents some of the theory of finite elements to show that the approximate solution found
with the Ritz finite element is the best that can be obtained with any given set of shape
functions.

The notation introduced in sections 3.4.d), 3.4.f) and 3.5 is used liberally in this section.

4.2.a) The Ritz Finite Element Method

The Ritz solution method for solving the ShapeWright deformable model problem starts
with the variational statement of the problem: find the shape w to minimize the energy
functional;

Ecurve = Icurve(w) =•f (u) wu2 + (U)Wuu 2 - 2 f w du 4.15

(fWu2 + 2(x12WuWv + 0X22Wv 2 ) 4.16
Esurface = Isurface(W) =  - 2 f w dudv

+ (,11Wuu 2 +2112Wuv 2 + I22Wvv2 )

Instead of approximating the equations as in the finite difference approach, the solution, w,
is approximated by wh, which is a weighted sum of continuous shape functions. The shape
functions, (Pi, are fixed in advance and the weights, xi, are unknown.

w(u,v) = wh(u,v) = xi pi(u,v) 4.17
1



78 Chapter 4: Curve and Surface Geometric Primitives

The Ritz method substitutes this approximation into the energy functional, changing and

simplifying the nature of the problem. The unknown used to be w(u,v), a continuous
function in the parametric domain. Now the unknowns are the discrete set of weights in
the Ritz approximation. The problem now is to find the set of weights, xi, that will
minimize the energy functional;

I(wh) 4.18

In the finite difference method the forcing function, f, as well as the solution, w, is

approximated as a set of discrete points in space. In the finite element method the function
f, is a function defined over the whole parametric region. We need to consider what class
of functions, f, will be allowed as data thus determining what class of functions, wh, will

have to be searched to find the minimum to the above variational problem.

The choice made in this work is to admit all functions f which have finite energy. This

means that;

J f(a)2 da < oo 
4.19

and any piecewise smooth function f is allowed. This constraint is more stringent than
required but is acceptable to the ShapeWright application. The set of functions satisfying
the finite energy property also exhibit the property that the linear sum of any two such
functions also satisfies the above property;

if f(a) = c1fl(a) + c2f2(a) when f1 2 da < oo and f 22 da< oo 4.20

then f 2 da < oofJa
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In the accepted terminology of mathematics, such a set of functions is called a space. The

space of functions satisfying the above energy function requirement is denoted Ho. The
superscript in this case, zero, defines how many derivatives are required to have finite
energy. The norm of these spaces is taken to be the square root of the energy, thus for the
spaces H0, H 2, and H 4 , the energies and norms are given as,

f 0 4 f2 da < oo and Ifo = f2 da1/2 4.21
f2a f[a

f~ -H2 f"2 + f,2 +f 2 da < oo and f2 =[f,,2 + f,2 +f2 d a1

f H4 4, f11jf 2 + f,,,2 + f92 + f,2 + f2 da < oo

and ifL = f,,,2 + f-,2 + f91 2 + f12 + f2 da

A differential equation can be thought of as an operator that maps functions from one space

to another. The Euler equation for a ShapeWright curve maps functions from H•4 space to

Ho space. Introducing operator notation, this equation can be written as;

LcurveW = f 4.22

where Lcurve = d- a
du4  du2

We know that the equivalent problem to solving the Euler equation is minimizing the related

variational principle. What class of functions should be considered in trying to find that

minimum? For the curve, clearly we should include at least all H4 functions with proper

boundary conditions. However, the energy minimization principle only requires the

second derivatives of w and not the fourth. One of the great advantages of the finite

element theory is that the space of functions need not be restricted to H4 functions but can

be expanded to include all H2 functions that meet the boundary conditions that are a

function of the position and tangents only.
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Including this larger class of functions will not change the minimum value. That will

indeed be a function in H 4 space as indicated by the Euler equations, however it does

simplify the problem considerably. Only functions from H2 space need to be examined in

search of the minimum. All functions which are C' continuous will be in the H2 space.

This simplifies the problem of defining the (Pi shape functions needed to approximate the

original shape. We do not need to consider functions which are C3 continuous as the Euler

equation would indicate but only functions which are C1 continuous as needed by the

variational problem.

This property of the variational problem has significant implications for shape smoothness.

Although the shapes to be used to solve the variational problem will only guarantee C1

continuity, the solutions found will tend to be C3 continuous. The only time this will be

violated is if the number of degrees of freedom in a curve is too few to allow the

approximation procedure to find a good estimate of the actual solution.
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Because the energy functional has been constrained to be quadratic and since the (Pi shape

functions are known, the above integral can be taken yielding a quadratic matrix equation to
be minimized;

min (XT KO X- F X) 4.23

where the unknowns and the shape functions have been ordered into column

vectors as

SX. 1 4.24
X = x2 and DT= 9

and Kaand Fa define the stiffness matrix and forcing vector. These terms are

given by;

4.25
Ka = •b s+ (S Os dudv

f 4.26
Fa= (T f dudv

F uu 1 Du
where Db =  vv Ds

L2Duvv

( a 12 a22 "22 L 112
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Finding the minimum to the above quadratic matrix equation is equivalent to solving the

matrix problem;

Ko X = Fo 4.27

The Ritz method becomes the finite element method when the shape functions are

constrained to be zero everywhere except in the neighborhood of some node in the surface.

The matrix Ko is guaranteed to be symmetric and positive definite due to the limitations

imposed on the energy functional. The finite element constraint on the shape functions will

make Ko sparse and generally banded.

Both the finite difference and finite element methods result in solving a set of algebraic

equations with convenient properties for rapid solution. The difference between the two
methods is the semantics of the unknown variables. In finite differences the unknowns are

a discrete set of points in space. In finite elements the unknowns define a unique

continuous function appropriate for the ShapeWright deformable models.

The finite element method presented here can be applied to any set of shape parameters. As

will be discussed in section 4.4 the shape functions used in ShapeWright were selected for

their ability to enforce the set of geometric requirements needed for the ShapeWright
skinning step. In general the deformable modeling approach can be applied to any discrete
parametric representation scheme. Thus deformable B-splines, Bezier polynomials,
Rational B-splines, Hermite polynomials, etc. are all possible.

4.2.b) The Finite Element Theory

The previous section discussed the mechanism to approximate the solution of a differential
equation with the finite element method. In this section a very brief review of the theory of
the finite element is presented to show how the approximation relates to the actual solution.
The answer to that question is that the approximate solution is as close to the real solution
as the degrees of freedom of the approximation will allow in that the energy of the error is a
minimum.



Chapter 4: Curve and Surface Geometric Primitives

The problem being solved can be stated as either a linear differential equation or a minimum
principle as;

Lw = f and I(w) = a(w,w) - 2(f,w) 4.28

The w that solves Lw = f minimizes I(w). The Ritz approximation is to find a minimum

over some approximate space of functions, wh. The Ritz theory states that the wh which
minimizes I(wh) is the best approximation to the w that minimizes I(w) in the sense that the
energy of the resulting error, w - wh, is a minimum at wh;

when wh minimizes I(wh) it also minimizes a(w-wh,w-wh) 4.29

The proof for this starts by considering variations about the minimum solution function.
Since I(wh) is a minimum then arbitrarily small variations about wh given by, wh + Eeh,
will have to increase the value of the minimum principle;

I(wh) < I(wh + eeh) 4.30

< I(wh)+ 2e[a(wh,eh) - (f,eh)] + 82a(eh,eh)

where E is an arbitrary scalar and

eh is any function from the sub-space spanned by the shape
functions, (pi

Since e can be of arbitrary sign the relation, a(wh,eh) - (f,eh) must equal zero for the

above inequality to hold for any function eh. We conclude;

a(wh,eh) = (f,eh) for all functions eh. 4.31
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which is a statement of the virtual work principle. Now to find the energy of the error. We

know from the original problem statement that a(w,e) = (f,e) is true for all functions e in

the admissible space of the solution w. Since eh is a function which comes from the sub-

space containing e then a(w,eh) = (f,eh) is certainly true. Subtracting this result and the

virtual work relation for the approximate space yields;

a(w,eh) = (f,eh) 4.32

-a(wh,eh) = (f,eh)

a(w - wh,eh) = 0

The function eh can be any function from the space spanned by the shape functions cpi.

The energy inner product of the error, w - wh, and the function eh is zero indicating that

the error is orthogonal to the space spanned by the shape functions. This will only be true

when the energy of the error is a minimum; a(w - wh,w - wh);

a(w - wh,w - wh) < a(w - (wh+eeh),w - (wh+Eeh)) 4.33

Thus the Ritz method finds the one solution, wh, that minimizes the error between the

approximate solution and the actual solution.

With this result it is now easy to show an additional property of the estimated solution.
The energy of the estimated solution is always less than the energy of the actual solution.

Using a(w-wh,wh) = 0 to imply a(w,wh) - a(wh,wh) = 0, we can write;

a(w-wh,w-wh) = a(w,w) - 2a(w,wh) + a(wh,wh) 4.34

= a(w,w) - a(wh,wh)

The estimated energy a(wh,wh) is always less than the actual energy of the solution
a(w,w).

4.3 Mass, Damping and Integrating Through Time
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Both the finite difference and the finite element methods as discussed, result in a static set
of equilibrium equations of the form;

KX = F 4.35

Inertial and damping effects are added to the system by augmenting this equilibrium

equation as;

M d2X + C dX + KX =F 4.36
dt2  dt

These equations are solved through time using an implicit integration scheme based on

finite difference approximations of the time derivatives. The system of equations are
satisfied at a set of discrete times separated by equal time intervals, At. The approach

described in this section guarantees that a stable configuration will be found at each time
step. The user can modify the time interval, At, to adjust the system speed of response to

inputs. Very large At values will make the system jump directly from one equilibrium

configuration to another eliminating the dynamics of the interface. Very small At values

will exaggerate the dynamics and result in very oscillatory systems that take a long time to

settle down.

The mass and stiffness matrices are taken to be diagonal for simplicity, M = ml and C = cI

where m and c are scalar values for mass and damping and I is the identity matrix. The

actual values used for mass, m and damping, c are not very important as long as they can

be adjusted to make the time constants of the system suitable for interactive use.

The system of equations is solved through time by approximating the time derivatives with
finite differences as;

d2X(t) X(t+At) -2X(t) + X(t-At) 4.37
dt2  At2

dX(t) X(t+At) - X(t-At)
dt 2t
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The integration is made implicit by using the forward values of X(t+At) in the stiffness
term KX. Current values of X(t) are used in evaluating F(t).

The unknowns of the system are now X(t+At) and the knowns include X(t) and X(t-At) as
well as F(t). Placing the unknowns on the left and the knowns on the right yields a new
system of equations in the form

A X(t+At) = B(F(t), X(t), X(t-At)) 4.38

where A M C  + K and B = F(t) + 2M X(t) + -- X(t-At)
LAt2 2At At2 12t At2]

Because of the diagonal forms of the mass and damping matrices, the A matrix is made by
adding a constant value, (c/2At + m/At 2), to each diagonal element of the K matrix. The
effect of this on the eigenvalues of the K matrix is to shift all of them to the left in the
complex plane by a constant amount. This tends to reduce the time constants of the
system, guarantee that their are no zero value poles, and increase the damping of the
system.

During the simulation, time proceeds in increments of At. At each time step the forcing
vector, B, is evaluated given the current values of X(t) and X(t-At) and F(t) calculated
from the applied loads. As will be discussed in the next section the forcing vector B, will
also contain terms that enforce geometric constraints. This forcing vector is then used with
the A matrix to calculate the position at time X(t+At). At the end of each iteration the
current and past positions are updated as;

X(t) becomes the next X(t-At) 4.39

X(t+At) becomes the next X(t) 4.40

and the process is repeated ad infinitum.

During the design session the above time integration proceeds continuously while the user
input is taken as changes made between time steps.

The matrix A is positive definite, symmetric and banded and as such is amenable to
Gaussian elimination. Gaussian elimination is a direct and inexpensive way to solve the
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AX = B equations for X without directly inverting the A matrix. The Gaussian
Elimination idea is to divide the system A matrix into A = LU the product of a lower and
an upper triangular matrix. The L and U matrices can then be used to solve the AX = B
problem in two sequential steps each requiring the solution of a triangular system of
equations.

With AX = B or LUX =B 4.41
then use UX = C and LC = B

Triangular systems can be solved in O(n(n+1)/2) steps where n is the size of the matrix L
and U. Solving two sets of triangular systems can be accomplished in O(n2+n) steps.
When the matrix is banded the solution time becomes 0(2*n*m) where m is the band width

of the system. Narrow bandwidths greatly reduce the cost of computations. For the
deformable curve elements the bandwidth of the matrix is 4. Given a reasonably complex
curve with 50 elements (100 degrees of freedom) the difference in solution times with and
without taking advantage of banding is the difference between 0(10,000) and 0(400)
floating point operations for each time iteration.

The factorization of the A matrix is found by elimination where L contains the multipliers
used in the elimination and is on the diagonal. Because A is originally symmetric the
factorization can be rewritten in the form A = LDLT with U = DLT where D is a diagonal
matrix. Since A is symmetric and DLT is upper triangular only the diagonal and super-
diagonal rows of this matrix need be stored.

An efficient implementation of Gaussian elimination separates the factorization and solution
steps. The A matrix is factored and saved as LDLT whenever the A matrix is modified by

the user. This happens only when the user modifies the a or 13 material constants, adds or
removes a constraint, or adds or moves any of the nodes or elements of the parametric
geometry, a relatively infrequent event. Solving the AX = B system of equations happens
once every time step. First the B matrix is made from terms applied by the loads,
constraints and dynamics of the system. Then B is transformed into C by solving

C = L 1B, and finally X is found by solving X = (DLT)l'B.

Because the elements of B and X are vectors in three space this process is done three
times, once for x, y, and z, using the same A matrix in all cases. If the equations for x, y
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and z were not identical then the size and the band width of the A matrix would have to be
tripled. Solution times would become of the O(18*n*m) an increase of almost an order of
magnitude.

4.4 A Deformable Surface Primitive

The objective of this section is to develop the finite element primitive that is used to solve
for surface shape in the ShapeWright program. The finite element method is selected over
finite difference approach to support continuous representations of shape. The reduced
transformation constraint technique will be used to enforce the geometric constraints needed
to support the skinning, and sculpting phases of the ShapeWright modeling paradigm. The
class of topological structures that will be considered at this time will be all shapes that can
be approximated by arbitrarily meshed polygons in the parameter space. This will be
accomplished by making the basic finite element surface primitive a triangle.

The decision to use the reduced transformation constraint technique to enforce geometric
constraints is due to the fact that this approach is the numerically best behaved. Ideally, the
more geometric constraints that a shape design package can support the better. For instance
if a surface could be made to slide over a point in space like some kind of two dimensional
pulley, then these surface could be applied to the lightly scattered data problem of
interpolating a set of measured points in space. In this work the problem statement is
limited to implementing the three steps of the ShapeWright shape design paradigm. The
complete set of geometric constraints needed to support ShapeWright has been defined to
be free, pinned, hinged, and fixed edges. Although a general constraint scheme that could
define and enforce any kind of geometric constraint would be ideal, this work only
considers schemes that can support all of the ShapeWright constraints.

The constraints on the form of the ShapeWright triangular shape functions are set by the
above design decisions. These include,

o C1 continuity between elements
o Geometric Constraints defined as linear functions of the shape function weights
o Shape function weights defined to be geometric properties at a set of 'nodes'
o Edge geometry completely defined by the weights of the nodes on that edge.

4.4.a) Barycentric Coordinates in 2 Dimensions
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Barycentric coordinates in 2 dimensions are a natural choice for defining functions that
apply to triangular domains. Barycentric coordinates are an alternative to Cartesian
coordinates for defining locations in the plane. Barycentric coordinates are interesting
because their geometric interpretation is based on the triangle. In fact, the mapping from
Barycentric to Cartesian coordinates is defined by the locations of the vertices of a mapping
triangle. The advantage of writing a function in terms of Barycentric coordinates is that the
function can be mapped to any shaped triangle simply by changing the vertex locations of
the mapping triangle. For the finite element to be developed in this section, it means that
the stiffness matrix will be derived only once and be applicable to all triangle'shapes.

Barycentric coordinates are defined by the mapping;

(u3,v3)

constant
S ul 2 U3 Lj- lines

v =-v v2 v3 L2
S1 1 1 1 L3

(u1,v ) t u2,V2Z
(1,0,0) (0,1,0)

Figure 4.4) Barycentric coordinates in 2 dimensions

Where a point location in the uv plane is given as [u,v] in Cartesian coordinates or
[L1,L2,L3] in Barycentric Coordinates. The locations [ul,u2], [u2,v2], and [u3,v3] define
the vertex locations of the mapping triangle as shown in Figure 4.4. The Barycentric
Coordinates, [L1•L2,L3] use three values to map locations over the entire plane. The extra
degree of freedom is eliminated by the constraint, 1 = L1 + L2 + L3, which is the bottom
row equation of the Barycentric mapping given above.

Remark 1: When L1 > 0 and L2 > 0 and L3 > 0 then the equivalent point [u,v] is
inside the triangle.
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Remark 2: A line of constant L1 value will be parallel to the edge opposite the vl

vertex. The line L1 = 0 is coincident with the opposite edge. The same

is true of lines of constant L2 and L3.

Remark 3: The vertices of the mapping triangle given in Barycentric coordinates are
[1,0,0], [0,1,0] and [0,0,1].

Remark 4: Vectors are defined as the difference between points. The vector between
two points, P1 and Po will be given as;

L11 - Llo a
P1- Po=  L21 -L20 = b note: a+b+c+=O0

L31 - L30 c -

4.42

The Barycentric mapping can always be inverted as long as the three vertices of the

mapping triangle are not co-linear. This inverted relationship can be written as;

Li ai bci F 11
L = a2 b2 c2  uj
L3 2A a3 b3 c3J V

and ai = ujvm - umvj

bi = uj - um

ci= Vm - vj

ai bi cil
where a2 b2 C2

a3 b3 c3

ai 1

i 2A

= bi=O

- ci=O 0

All nine elements can be found by solving the above three equations three times, with

[i=l,j=2,m=3], [i=2,j=3,m=1] and [i=3,j=l,m=2].

Remark 1: The I matrix completely characterizes the shape of the triangle up to

rigid body displacements.

Remark 2: 2A = twice the area of the triangle and it can be found as C ai = 2A.
1

4.43
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The ShapeWright energy minimum principle for shape, w is a function of its Cartesian
partial derivatives.

I = I(wu,W U,W uv,Wvv) 4.44

Fortunately, since the Barycentric mapping is a linear function, differentiating Barycentric
functions in terms of Cartesian coordinates is very simple. The chain rule for first order
derivatives yields;

Da aL1 aL2 aL3Lau 8 au au
S 8aL 1 aL2 aL3

Lv av av 8v

-a8L1

a
aL3

4.45aL1 DL2 aL3
where au au aUaL1 aL2 aL3

av av av

The inverse Jacobian matrix, 1 , is constant because of the linear relationship between the
Barycentric and Cartesian coordinates and is given by;

J I V= • 3 and VL=
2A c v2 v3

8Ll

aaL2
_ -L--

4.46
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Applying the chain rule a second time, as in = yields the relationship for

second order differentials;

b2b2  2b2b3
C2C2 2C2C3

2b2C3
b3c2

b3b3  2b3bl
C3C3 2C3C 1

2b3c3  bl
b1c3)

2A2

2

26 2

In addition to the Cartesian derivatives, we will need derivatives of the Barycentric
functions tangent and normal to the edges of the mapping triangle. The direction of the
tangent vector, t, to an edge is defined so that its associated normal, n, has a positive v
component. The normal is always orthogonal to the tangent vector and rotated in the

counterclockwise direction so that the cross product, t x v, is positive. The angle between

the u axis and a tangent vector, Tij, for edgeij will always obey the relation,

O <Yi<M- or 37 <yij<2 2 4.48

Figure 4.5 shows the relation between the mapping triangle, positive normals and the
tangent angles.

bibi
dci

2bic1

D2aU2
au2

a2

av2

2a 2

auav

4.47

2bib2
2cic2

b1c2l

b2C1/

a2

aL1aL1

a2

aL1aL2
a2

aL2zL2
a2

aL2aL3
a2
aL3aL3

a2

aL3aL1 _

V L2
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a3

al

Figure 4.5) Edge tangents
and normals of a Barycentric mapping triangle

The orthonormal transformation from the Cartesian coordinates to the tangent-normal
coordinates is given by;

[tij= [ csO(Yij) sin(Yij) 1 [ u 4.49
nijl I -sin(Yij) cos(TYij) L VJ

Derivatives of the Barycentric coordinates in the direction of the tangents and the normals
along edgeij can be found by applying the chain rule, yet again as;

atij atij F a 4.50
tUij au av 5 au cos(yi j) sin(yij) au

a ,nij anij L ' -sin(yij) cos(yij) I ]
n. Lau av - Jav . v J

- 'Jij a ••u J Ji I VL

Due to the linear nature of the Barycentric mapping the matrix, J yij J 1, is constant

depending only on the values of the terms of the l matrix. This matrix is given the name,

Ttn - J 7 ij J 1 so that;

4.51[' = Ttn VL
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The advantage of using Barycentric coordinates for defining shape functions over triangular

regions is best shown through the use of examples. Consider the three following simple
functions and their properties as follows. The value w, is mapped on the z axis and the x
and y axes span the L1,L2,L3 plane

1.) w(L 1,L2,L3) = L1 4.52

The shape, w, is a flat plane. Its value at vertex 1 is 1 and at vertices 2 and 3 is
zero. The shape, w(L 1=0), along edge23 where L1 = 0 is also zero.

2.) w(L 1,L2,L3) = L2
2L3 and so VLwT = [ 0 2L2L3  L2

2  4.53

The shape, w, and its normal and tangent derivatives are zero at all three
vertices except for the non-zero normal derivative at vertex 2. The shape
geometry along edge31 and edgel2 are zero implying that the tangent derivatives

along those edges are zero; wt31 = wtl2 = 0. The value of VLw(L 2=0) = 0
along edge31 implying that the normal derivative is zero along hlat entire edge as
well.

3.) w(L 1,L2,L3) = L1L2L3 and so VLw = [L 2L3 L1L3 L1L21 4.54

The shape, w, is zero along all three edges implying that all wtij = 0 on all the
edges. At the vertices wnij = 0 but will vary along each edge. This function is
known as the bubble function, since its addition to an existing shape will only
change the interior geometry and will not effect the edge geometry or the surface
tangents at the vertex locations.

4.4.b) Triangular Shape Functions - 9 Degrees of Freedom

In this section the shape approximation, wh = Xi (i, for the ShapeWright triangular

shape function is given. The approach taken to define the (Pi shape functions is to find a
piecewise polynomial function that will guarantee C1 continuity between triangles and will
support the geometric constraints of pinned, hinged and fixed edges as a linear function of
the xi weights.
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) = W, Wu, W

Figure 4.6) Triangular element with 3 nodes and 9 degrees of freedom

The finite element strategy is to assign nodes to the triangular element and to have the xi
weights be equal to geometric properties at that node. As a first try, consider the 9 degree
of freedom triangle shown in Figure 4.6. The triangle is given three nodes, one at each
vertex. Three degrees of freedom are assigned to each node; its position and tangents in the
u and v directions. Zienkiewicz first published shape functions for such a triangle in 1969
as the preferred element for solving linear plate bending problems. Generally speaking,
since the position and tangents are vectors in three space, this triangle really has 3X9 or 27
degrees of freedom. However, since the energy functional has been constrained so that the
equations for the x, y, and z directions are identical and independent, the triangle can be
developed as a 9 degree of freedom element to be applied once in each of the three
directions. The degrees of freedom for one triangle element are ordered as;

aeT=[ W1 Wul Wvl W2 Wu2 Wv2 w3 Wu3 Wv3] 4.55

where wl = w(ul,vl) and wul = Wu(u,vl) etc.

The advantage of defining the degrees of freedom of the system as geometric properties is
that it simplifies the generation of the associated set of shape functions. We require of each
shape function, TPi, that it be 1 for the geometric property at the node corresponding to the
ith degree of freedom for the triangle and be zero for all other geometric properties. For
example, the shape function TPi corresponding to the shape position at the first vertex,

needs to be 1 at vertex 1 and 0 at vertices 2 and 3. Additionally the value of (Plu = and

Plv =  at the three vertices needs to be zero.av



96 Chapter 4: Curve and Surface Geometric Primitives

"fl" = L1 + L12L2 + L12L3 - L1L22 -L1L32

"f23" = L22L3

"f21" = L22L1

+ 1 L1L2L32

+ -LiL2L32

te12 L 1L2
2L3

2(1+L1)
(L1+L2XL1+L3)

Figure 4.7) The 'e' and 'f functions used to build the shape functions

The shape functions for the 9 degree of freedom triangle developed by Zienkiewicz are

based on the 'f and 'e' functions shown in Figure 4.7 and are as expressed as;

wh = N9 (L1,L2,L3,1) ae 4.56

where N9 = N N9 N9 9

L1 + L12 + + L12L3 - L1L22 - LIL32

N9T c3(L1
2L2 + .5L 1L2L3)- C2(L12L3 + .5L 1L2L3)

-b3(L1
2L2 + .5L1L2L3) + b2(L1

2L3 + .5L1L2L3)

91 fl
=(2 C3 f12 - C2 f13
93 -b3 f12 + b2 f13
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The symmetry of the triangle in Barycentric coordinates can be exploited to define the shape
functions for the 2nd and 3rd nodes in terms of the first node shape functions. To generate
N92 use the above equations but add a 1 to each index, so that 1 => 2 and 2=>3 and the
special case 3=>1. Adding another 1 to each index generates the shape functions for N9.

Along the edges the shape varies cubically. For example, along edge23, let L1 = 0, and L2
= (1 -L3). Substituting these values into the shape relation yields a cubic equation in L3

that only depends on the nodal data at nodes node2 and node3.

The VLwh T functions, VLWhT = [ w w h, ] are defined in pieces by;

N9 TN1L 1

2L 1L2 + 2L 1L3 - L22 - L32 4.57

+ .5L2L3) - c2(2L 1L3 + .5L 2L3)

+ .5L2L3) + b2(2L1 L3 + .5L2L3)J

SLi2'- 2L1L2
N1L2 = C3(Li2 + .5L1L3) - c2(.5L 1L3)

-b3(L12 + .5L1L3)+ b2(.5L 1L3)

L12- 2L1L3

N1L3 =C3(.5L1L2) - C2(L1
2 + .5L1L2)

-b3(.5L 1L2) + b2(L1
2 + .5L 1L2)

where symmetry once again builds the partials of the N and N 9 functions by
incrementing the subscripts. Be sure to increment subscripts on both sides
of the equal sign so that N9L1 goes to N L2.

The normal and tangent derivatives are calculated as linear sums of w i, w@, and wh3.

Checking the geometry along edge23, by setting L1 = 0 and L2 = (1 -L3), reveals the
derivatives to vary parabolically depending on the values at all three nodes, node1, node2
and node3.

The properties of the N9 functions can be examined by looking only at the N 9 functions
and trusting symmetry to extend the results to the two other nodes. The major requirement
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on the shape functions is that they can set their associated degrees of freedom

independently. To check this we evaluate the following;

(p1(1,0,0) = 1

p1(0,1,0) = 0 and

p1(0,0,1) = 0

4.5'8acp(1,0,0) =b + b2 + b2 =0
Du

(cp1(0,1,0) a(pl(0,0,1)
D -0

Su au

Evaluating the values of Wh and Wh at node1 we find;

w (1,0,0)
2A
2A

hLi
b[ b2 b3  Wh
C1 C2 c3 2

L 3 J (1,0,0)

And so these functions act to directly set the 9 degrees of freedom of the triangle
independently as required. However, they do not enforce C1 continuity between

To see this, examine the tangent and normal derivatives at the mid-edge locations

nodes. The values of VLWh(.5,.5,0) are;

1.25 .5c3 -.5c3 -.25 -.25c3 .25b3

-.25 .25c3 -.25b3

-I4(C3-c) -(b2-b)
.25 8 8

-.25c2 +.25b2

1.25

0 0 0

-.5c3 .5b3 0 0 0

I-(C1-C3)
.25 8

+.25cl

I(b3-bi)
8
-.25b

.5 -1(c2-C1) bi-b2)8 8

4.60

ae

The tangent and normal derivatives at the mid-edge point are given by;

Wt2
n12 (.5,.5,0)

4.61= TtnVLWh(.5,.5,0)

4.59

triangles.

between

VLWh(.5,.5,0) =

21 L(3b2C3 - 2b32) wul uW
2A L(C3b2- c2b3)wvJ wv 1
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The terms of the matrix Ttn are all constants depending only on the Barycentric
transformation defined by the matrix %. The normal derivative, w~l 2, will be a function of

w3, Wu3 and Wv3.as well as the nodal data at nodes node1 and node2. This shows that
these functions can not be C1 continuous. The reasoning is thus, consider two triangles
that are adjoined along the edge12 as shown in Figure 4.8. Assume for the time being that
they are currently C1 continuous. The normal derivative along edge12 in triangle 1 depends
on the data of node3 as shown above, but node3 does not effect the normal derivative of
edge12 in element 2. Changing the value of the data at node3 while fixing the data of node4

will cause the normal derivative in element 1 to change making the normal derivative across
edge12 discontinuous. In general, any property that must be continuous across a finite
element boundary must be computed only by the data of the nodes on that boundary.

Figure 4.8) Adjoining triangles in a finite element mesh

4.4.c) Triangular Shape Functions - 12 Degrees of Freedom

In this section the shape functions for a C1 continuous 12 degree of freedom triangle are
developed as an extension to the N9 shape functions. The 12 degree of freedom triangle is
defined by adding three degrees of freedom, taken as the normal derivative at the mid-side
of each edge, to the 9 degree of freedom triangle as shown in Figure 4.9. In this manner it
becomes possible to set both the shape and the normal derivative geometry along an edge as
a function of the information in the nodes on that edge.

S= WWu, Wu, v

Figure 4.9) Triangular element with 12 degrees of freedom
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Along each edge of the 9 degree of freedom triangle, shape varies cubically and the normal

derivative varies parabolically. It requires four degrees of freedom to define the shape of a

cubic function and three degrees of freedom to fix the shape of a parabolic function. It will

require at least 7 degrees of freedom to be able to define both the shape and the normal

derivative geometry along an edge. The 9 degree of freedom triangle has only six degrees

of freedom on an edge and was incapable of supporting C1 continuity.

The 'e' function introduced by Zienkiewicz has the excellent properties that its shape value

along all three edges is zero and that the only non-zero shape edge derivative is in the

normal direction of one of the three edges. Along that edge, the normal derivative varies

parabolically with a maximum of 1/4 at the center of the edge. This 'e' function can be

used to define the N12 shape functions of the 12 degree of freedom triangle.

Conceptually, the N12 shape functions can be built in two steps. First adjust the equations

so that the old 9 degrees of freedom act to leave the normal derivatives at the mid-nodes

zero while they vary. The second step is to add in weighted 'e' functions so that the

degrees of freedom at the new nodes directly set the mid-edge normal derivatives.

The effect of the current 9 degrees of freedom on the normal derivative at the mid-edges can

be found by evaluating the functions at the new nodes as;

h23(0,.5,.5) Z ae

w 3 1(.5,0,.5)

The matrix Z is constant depending only on the terms of the , matrix defining the

Barycentric mapping. A 9 degree of freedom set of shape functions can be written that

independently set their 9 degrees of freedom while leaving the mid-side normal derivatives

at zero as;

Wzero mid-edge normal derivatives = (N9 - 4 [ei e23 e31] Z) ae

100
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The 12 degree of freedom shape functions can now be generated by adding the
appropriately weighted 'e' functions to set the mid-side normal derivatives to equal the
values of the mid-side nodal degrees of freedom.

I 1 0 0 a,1 4.64Wn12
h = [ N9 I 0 0 0 ]+ 4 [e12e23 e31] Z 1 0 1 0 Wn23

1001 SLWn31.J

The new set of shape functions can now be written as;

wh = N12 ae defining 4.65

-T
ae -[ W1 Wul Wv1 W2 Wu2 Wv2 W3 W3 Wv3 Wn12Wn23Wn31l

This builds a set of shape functions that has the required 7 degrees of freedom per edge so

that both the shape and the normal derivative can be set independently in terms of the nodes

on that edge. These triangles support C1 continuity between adjoining elements. The

triangle shape varies cubically and the normal derivative varies parabolically along each

edge.

Interestingly, Zienkiewicz did not use the 'e' functions in this manner. He felt
implementing a triangle that had different degrees of freedom at each node would be too

cumbersome. Instead he used the 'e' functions to restrict the normal derivative to vary

linearly along each edge. Now only the 6 degrees of freedom on each edge of the 9 degree

of freedom triangle need be required to fix the edge and normal derivative geometry to

support C1 continuity. Unfortunately, he found that plate bending finite elements based on

this constrained geometry approach worked poorly and ended up concluding that C1

continuity was too excessive a restriction. He went on to explore the use of CO elements on

the plate problem and started a research path that ended in developing the patch test to prove

convergence for non-conforming elements. After experimentation we also found that this

constrained 9 degree of freedom triangle made a poor shape function. It tended to be too

flat in the center of the element and when highly curve would actually calculate surface
normals in the wrong directions.

101



102 Chapter 4: Curve and Surface Geometric Primitives

S= W, Wu, WV

7• = Wn

u

Figure 4.10) Partial mesh of aligned and orthogonal edges

The 'e' functions are rational polynomials and have a singularity in the evaluation of the

cross derivative wuv at the triangle vertices. This singularity is required of a triangle that

enforces C1 continuity without using 2nd order derivatives at the corner nodes. The reason
for this has to do with the requirement that the geometry along an edge. be defined in terms
of the information of the nodes on that edge. Consider the partial mesh shown in Figure
4.10. The edges of the mesh are aligned with the u and v coordinate axes. The shape on
edgel 2, W12, is completely defined by the information at nodel, node2 and node4.
Likewise, the shape of edge23, w23, is defined by node2, node3 and node5. The derivative

values of shape along the edges, and u, will similarly only depend on the data

from the same nodes.

Swh2(nodenode2,node4) wh 4.66w2 = 2(nodel,node2,node4) 2 = { node ,node2,node 4) 4.662v =v

w3 =w3(nodendesnde) = (node2,node3,nodes)

I v
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A C1 surface that has no singularities in the second order derivatives will have the property

that at any point avau =uav . Calculate the cross derivatives for both of the above

expressions and evaluate them at the common vertex at node2.

a2w2(0,1,0) hw 1,0 4.672h(01)= -w12(0 1,0) (nodel ,node2,node4) 4.67
avau av

a2wh 3(0,1,0) afw3(01,0)2w3(00= 0) (node2,node3,nodes)
auav au

In general, these two cross derivatives calculated at the same point will not be the same. If
these two cross derivatives happen to be the same, then the information at node2 and node4

could always be changed while fixing the values at node2, node3 and node5 to make the

two terms unequal. As long as the cross derivatives are calculated and not set by a unique

degree of freedom at each vertex this will be a problem. Although the derivatives are
defined and are continuous everywhere on the surface, the twist derivatives will not be
defined at the vertices.

To build C1 surfaces two approaches can be taken, include higher order derivatives as
degrees of freedom at the vertices or introduce functions which support discontinuities in
the higher order derivatives. In the CAGD literature it is common to include the twist
vector at each vertex. This resolves the problem as long as the angles at all the edge
intersections are the same such as in rectangular or parallel lined grids. But for arbitrarily
meshed regions where any number of edges can meet in any number of angles at a point the
entire second order derivative information of the curve will be required, wuu, wuv, and
ww. The alternative of including singular functions, like the 'e' function, to make
continuous surfaces without explicitly including higher order derivatives was introduced
into the CAGD community by Gregory and Barnhill as an extension to the Coons patch

[Gregory_74].

It is felt that supporting arbitrary meshes is essential and that adding three extra degrees of
freedom at each vertex would be excessive and not intuitive and thus the above shape
functions are used as the basis of the ShapeWright surface finite element. In this work the
singularity of the twist vector has presented no problem. The actual surfaces that have been
generated are continuous and appear well behaved in the neighborhood of the element
vertices.
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4.4.d) Geometric Constraint Set with a 12 Degree of Freedom Element

The shape functions are required to be able to support the ShapeWright geometric
constraint set as a linear function of the explicit degrees of freedom of the 12 degree of
freedom triangle. This set of constraints consists of free, pinned, hinged, and fixed edges.
The free and pinned constraints are supported directly because a free edge is unconstrained,
and a pinned edge can be made by fixing the position degrees of freedom of a triangular
element edge. All that remains is to show that the hinged and fixed edge conditions can be
enforced with the current shape functions.

The hinged edge constraint is defined as the case where the edge geometry is fixed and the
normal tangent along the edge is free to vary. The edge geometry of the 12 degree of
freedom shape functions varies cubically along an edge. The geometry of a cubic curve can
be completely specified by four parameters. When a cubic function is represented with
Hermite polynomials those four parameters are the positions and the tangents at the ends of
a curve segment. Hermite polynomials for cubic curves are discussed in detail in section
4.6.

n
wu

It "vt

a. Default coordinate b. Tangent axes c. Combined tangent
axes and normal axes

Figure 4.11) Alternative coordinate systems for vertex nodal tangents
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To demonstrate that these shape functions can indeed support the hinged edge, all that

needs to be done is to transform the current degrees of freedom, ae, into a new set, ae, as

shown in Figure 4.1 Ib, that defines the degrees of freedom as;

Wi

Wlt12

WIt31

W 2

w2t23

W2t12

W3

W3 t31

w3t23

Wn12

Wn23

- Wn31

4.68

In the transformed coordinates, any combination or all of the edges can be made hinged by

fixing the degrees of freedom as;

hinged edgel 2 -= Fixed wl, wit12, 2, w2t12 4.69

hinged edge23 -• Fixed W2, W2t23, 3, W3t23

hinged edge31 => Fixed w3, w3t31, W3, W3t31

The transformation of a nodal coordinate system from w2u, W2v to W2t12, W2t23 can be
made as follows;

au
a

Lav I
cos(y12) -sin(y12)1
sin(y12) cos(712) J

[cos(Y23) -sin(y23)]Ssin(723) cos(723)

at12
a
an12 J

at23 I
an23

4.70
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Eliminating the normal derivatives from these equations yields;

[ 1 tan(y72) au cos(712) tan(y12)sin(y12) t a12 I 4.71
tan(y23) 1 = [cos(y23) tan(Y23)sin(Y23) a

Lav t23.

and inverting yields;

1 [ sin(y23) -sin(y 12) a4.72
u= -cos(Y23) cos(y12) t12
a sin(Y 23)COS(712)-sin(1Y2)cos(y23) at 4.72

This transformation allows the degrees of freedom of that node to be 'rotated' into its
tangent coordinates. When edgel2 is perpendicular to edge23 the transformation reduces to

an orthonormal pure rotational transformation as it should. This transformation is valid as

long as Y23 * Y12, which is true as long as the three vertices of the element are not co-linear.

A fixed edge constraint is characterized by fixing both the shape and the surface normal
along an edge. The surface normal is defined to be the unit vector in the direction of the
cross product of wu and w,. Since the tangent plane at a point is unique, it can be
specified by any two independent tangent vectors, not just wu and w,. Fixing the edge

geometry also fixes the edge tangent derivative. The combination of fixing the edge tangent
and normal derivatives acts to fix the surface normal along the edge as well. A fixed edge

constraint may be characterized as fixing the geometry and the surface normal along an

edge, but is enforced by fixing the geometry and the normal derivative along the edge.
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The normal derivative of an edge of a 12 degree of freedom triangle varies parabolically.
The normal derivative along the edge can be set independently if like, the hinged edge

constraint, the vertex degrees of freedom are rotated to an appropriate coordinate system.

The w,, and w, derivatives at a vertex node can be rotated so that they align with an edge's

tangent and normal directions by the simple rotation matrix;

Sa 4.73
5[ Fcos(TYij) -sin(Tij) 4tij
va sin(Yij) cos(Yij) a

-av @nij

The edge normal derivative can now be set independently of the rest of the geometry by

rotating the vertices at both ends of an edge so that the three normal derivatives, Winl2,

wnl2, and W2n12 are now explicit. Any parabolic variation in the normal derivative can be

made by adjusting these three values. A fixed edge is supported by fixing all 7 degrees of

freedom along an edge, the positions and tangents at the vertex nodes are fixed to define the

edge shape, and the normals at the vertex and mid-edge nodes are fixed to set the edge's

normal derivative

In summary, the constraints for both hinged and fixed edges are enforced by transforming

the tangent degrees of freedom at the nodes, [wu wy], into the appropriate basis, [wtij

wtii] or [wtij Wnij] and then the explicit degrees of freedom are fixed as required. When

two constrained edges come together at a vertex some overlapping of the constraints is

achieved. For example, two fixed edges meeting at a vertex will both require that all three

degrees of freedom of the vertex be fixed. Internally, the basis set that is used to fix the

degrees of freedom of the system are not important. Fixing three degrees of freedom is

fixing three degrees of freedom, and so in this case any basis set is appropriate. Figure

4.13 shows which degrees of freedom are fixed in which basis for all the combinations of

intersecting cbnstrained edges as shown in Figure 4.12.

3

5

Figure 4.12) Partial mesh for intersecting constrained edges
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Edge 12 Constraint State (see Figure 4.12)

Edgel2
Pinned

wi

w1

W1,Wtl5

W l, t5,

Wn 5

Edge12

Hinged

W1,Wtl2

W1,Wtl2

W1,Wtl2,

Wt 1 5

W ,Wtl5,

Wn15 or Wt12

Edge12

Fixed

W1,Wtl2,

Wn12

W1,Wtl2,

Wn12

W1,

Wt12

Wn12 or Wt15,

W1,

Wn1 2 or Wt15,

Wn15 or Wtl 2

Figure 4.13) Node constraint state due to edge constraints (see Figure 4.12)

In normal practice the user is not required to set the numerical values of these constraints.

Typically the user will freeze a shape, by selecting a free edge and constraining it to remain
in its current configuration. Once an edge is fixed the user can incrementally adjust the

values of the constraints. As shown in section 4.4, this modification of a constraint value

can be done as quickly as sculpting with forces. In the system implementation to be

discussed later this is fast enough to support real time animation of the surface

modifications.

These constraints are all enforced using the reduced transformation constraint technique

mentioned in section 4.4.a. Fortunately these transformations only couple the degrees of
freedom of individual nodes together. More general linear constraints can be imagined that
could couple all the degrees of freedom of a triangle together or even the degrees of
freedom of adjacent triangles. The implementation can take advantage of this fact. The
rotations can be applied to each node individually which is done by executing a 2x2 matrix
multiplication instead of modifying the whole system matrix in one full matrix multiply.

Edge15

con-
strain

state

Edge15s
Free

Edge 15

Pinned

Edge 15

Hinged

Edges5
Fixed

Edge12

Free

0

w1

W1 ,Wt15

W1,Wt15,

Wn15
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Because of this the constrained transformed matrix equations can be generated in barely
more time than some equivalent untransformed constrained system.

4.4.e) Triangular Surface Stiffness and Forcing Matrices

Now that the shape functions, N12, element degrees of freedom, ae and the quadratic
minimum principle of chapter 3 have been selected the actual generation of the element
stiffness and forcing matrices becomes an exercise in algebra and calculus. The stiffness
and forcing matrix integrals are evaluated approximately with Gaussian quadrature because
the actual shape functions are too complicated to bother evaluating them analytically due to
the rational 'e' functions.

The first step is to rewrite the original minimum principle as the sum of a set of integrals
taken over each triangular element of the surface;

4.74
Esurface =  W b + a Ws dudv = Y WTb Wb + Wsc Ws dudv

a elementi

Where Wb= Wvv], Ws= Wu
-- 2Wuv- Wv

The next step is to substitute the current shape approximation, wh = N12 ae , for each
element into each element integral;

4.75
Ehlementi= J T (N12T 13 N12 + N2T a N2) a dudv

ai

1 Nul 2
Where Nb2 = N12 N12= -N 2

L 2Nu J
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The derivatives of the shape functions are evaluated as;

N12= J 2
- 1 VL2 (N12) VL2 (N 12) N22 4.76

where
N1 2  J1-1 VL (N12) VL (N12) NLI

The minimum principle written in terms of known matrices can now be written as;

S1 4.77
Ei N12T J-+T - J2 -1NL+N T N12) a- 2f N'2 ae 4udv

The element degrees of freedom, ae, can be taken out of the integral since they are constant

over the integral domain of u and v yielding;

Ei = ae Kai ae - 2Fai ae 4.78

with Ki N2TJ2-T 2-1N + Na1N dudv

L2 J2 L2  x1  X JlLl

Fai =  fT N12 dudv
Jai

The remaining integrals define the element stiffness matrix, Kai and the element forcing

vector, Fai. It is not necessary, or even advisable to take these integrals analytically.

Consider any single term of the element stiffness matrix. It will be the integral of the

product of any two of the shape functions, a rational polynomial of 6th order, up to 21

terms in the numerator and the denominator. Expanding the Kai matrix multiplies in the

above equation will require multiplying matrices of the following sizes together;

[12x6] [6x3][3x3] [3x6] [6x12]
+ [12x3][3x2][2x2] [2x3][3x12]

There will be 144 integrals to solve, each with up to 3*2*2*3 + 6*3*3*6 = 360 terms for a

total of more than 50,000 terms to integrate. Symmetry reduces this number considerably
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and even with the aid of an on line symbolic manipulation package the analytic evaluation
of these integrals will result in a form of equations inconvenient for implementation and
prone to errors. The alternative is to approximate the integrals numerically with a form of
quadrature. Here the integral of the function is approximated as the weighted sum of the
values of function taken at a few locations;

I.

J g(u,v) dudv = 5i 8g[ui,vi]
4.79

Figure 4.14 lists the locations and the weights needed to integrate these element matrices.

Order Fig. Error Points Triangular Weights
Co-ordinates

Linear O(h2) a 1/3,1/3,1/3 1

Quadratic O(h3) a 1/2,1/2,0 1/3
b 0,1/2,1/2 1/3
c 1/2,0,1/2 1/3

Cubic O(h4) a 1/3,1/3,1/3 -27/48
b .6,.2,.2 25/48
c .2,.6,.2 25/48
d .2,.2,.6 25/48

Quintic O(h6) a 1/3,1/3,1/3 .22500,0000C
b al,bl,bl .13239,41527
c bl,al,bl
d bl,bl,al
e a2,b2,b2  .12593,91805
f b2,a2,b2
g b2,b2,a2

with
al = .0597158717
b1 = .4701420641
a2 = .7974269853
b2 = .1012865073

Figure 4.14) Numerical integration formulae for triangles [Zienkiewicz_67]

In the actual implementation the above matrix integral is separated into components that
depend either on the Barycentric coordinates, (L1,L2,L3), or the Barycentric
transformation, terms derivable from 1. At run time all the elements that depend on
(L1,L2,L3) are evaluated and stored into memory once. During equation building, the
actual triangles determine the values of the Barycentric Mapping and those components of
the stiffness and forcing matrices that depend on terms in the I matrix are evaluated and the
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final element stiffness matrix is evaluated. Each element stiffness matrix remains valid as

long as the shape of the triangle and the user material properties, at and P are not modified.

Changing these values causes the recalculation of the associated stiffness matrix. Figure
4.15 list the matrices needed for each matrix and their properties. The element stiffness

matrices do not need to be reevaluated due to changes in the element degree of freedom
values, ae, the applied forcing loads, or the values of the applied constraints.

Matrix Size Dependency Consistency

L [3x3] element shape
NL2 [6x12] (L1,L 2,L3) and L changes with

NL [3x12] (L1,L 2,L3) and I every remeshing

N'12  [1x12] (L1,L 2,L3) and L of the uv plane

J2-1  [3x6] L

J1-1 [2x3] 1
p [3x3] user input bending user modifiable

weights

ac [2x2] user input user modifiable
stretching weights

ae  [12x1] Element changes each
(of 3x1 vectors) degrees of iteration

freedom

f [lx1] Element loading changes each

(of 3x1 vector) function iteration

Figure 4.15) Intermediate matrix sizes and dependencies

4.4.f) Assembly of the System Matrix

To build the system matrix all the element degrees of freedom are combined into the system

degrees of freedom. Since many of the elements in a mesh will share nodes there will be

considerable overlap in the system degree of freedom vector. The simplest scheme to

generate the total system degrees of freedom without redundancy is to concatenate the

degrees of freedom for all the nodes of the system. Each degree of freedom for each node

is assigned a unique number running form 1 to n in the finite element mesh. Each element
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will connect 12 of these degrees of freedom together. The 12 degrees of freedom of the

element matrix will not necessarily be next to each other in the global degree of freedom list
because the global degree of freedom ordering is arbitrary.

F W4.80

X-
Wi

To determine how the individual element stiffness matrices are combined to make the

system matrix, each element stiffness integral is now evaluated over the whole domain. To

do this the original shape functions have to be augmented so that;

wh N 12  ae X 4.81

elementi = elementi elementi = Nelementi

The Nlementi shape functions are defined to equal the Nelement i functions whenever the

global degree of freedom Xi happens to equal one of the element degree of freedom aei else

they are zero. So although Nelementi is a [lxn] vector it will have only 12 nonzero

functions. The element stiffness matrices can now be taken as;

Ki = N 2i J' T  2 L2i Xli •J - X dud

F fT NX dudvXi elementi dudv

Each Kji integral is a [nxn] matrix and each Fji forcing term is a [nxl] vector. Where

only the 12x12=144 terms associated with the original element stiffness matrix are

nonzero. The locations of these terms are now appropriate so that all the element stiffness

matrices can be added together to form the system matrix. In an implementation the

mapping of the terms of the individual element stiffness matrices to their locations in the

system matrix can be handled directly by keeping a map of the element degree of freedom

numbers to the global degree of freedom numbers for each element. To build the system

matrix each term of the element stiffness matrices are added into the system matrix based on
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that mapping. For example, a 12 degree of freedom element degree of freedom mapping

can be described as an [1x12] integer array as;

[1, 4, 8, 3, -1, -1, 2, 65, 13, 18, -1, 23]

related to the element degrees of freedom;

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

This mapping indicates that element degree of freedom number 2 maps to the global degree

of freedom number 4. The -1 s in the mapping indicate that element degrees of freedom 5,
6, and 11 are constrained and will not appear in the system stiffness matrix. The mapping

is used to decide to add the element stiffness term, [3,4] to the global location [8,3]. After
all the terms in all the element stiffness matrices are added the system matrix is complete.

4.5 A Deformable Curve Primitive

In this section the finite element method is applied to the curve equations to develop a
deformable curve primitive. The resulting curve is piecewise cubic, C1 continuous and like
the surface primitives, opportunistically fair seeking. The curves were made C1 piecewise
cubic so that they could easily interface with the surface primitive during the skinning step.
Each segment of a deformable character line will map to one edge of a deformable surface
primitive.

4.5.a) Cubic Shape Functions

Any set of piecewise cubic basis functions can be used as the shape functions of the
deformable curve finite element. Like the surface primitive, the actual choice of basis
functions was determined by the ease of implementing boundary conditions. At a
minimum, a curve will need to be able to support point location and tangent geometric
constraints for the development of well defined artifacts.
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Hermite polynomials, like any other parametric representation of a piecewise cubic curve
represent each cubic segment as a weighted sum of 4 terms.

3

wh(u) = Xjpi
i=0

4.83

Hermite polynomials have the advantage that the four weights xi correspond to the end
point locations and end point tangents of the curve. As a counter-example, Bernstien
polynomials have weights that correspond to the control point locations somewhere nearby
the curve. In this work the Hermite polynomials were adopted as the basis functions for
the deformable curve primitive. The Hermite polynomials and their associated geometric
weights are listed below in Figure 4.16.

i Xi Pi
0 w(O) 1 - 3(u/h) 2 + 2(u/h)3

1 w·(O) h(u/h - 2(u/h)2 + (u/h)3)
2 .w(1) 3(u/h)2 - 2(u/h)3

3 w~(1) h(-(u/h) 2 + (u/h)3)
where 0 < u 5 h = length of element

Figure 4.16) Hermite polynomials

The finite element primitive based on Hermite polynomials is shown in Figure 4.17. It has
4 degrees of freedom distributed between two nodes located at the ends of the curve
segment. The degrees of freedom at each node correspond to its position and tangent.

w(O)

w (O)

w(1)

0 =W,W t

Figure 4.17) Curve element, 4 degrees of freedom
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Hermite polynomials are not used commonly as the foundations for a CAGD tool. They
are notably unstable if the user is required to directly select the positions and tangents at
each node. For example, variations in the magnitude of the tangent can introduce large
oscillations, extra inflection points and even cusp and loop singularities in between the
nodal points. Hermite polynomials, along with any other piecewise cubic representation,
will be well behaved with the energy minimization algorithm. The shape that is being
found is the closest shape to the actual solution of the original minimization problem prior
to the finite element discretization approximation. By letting the energy minimization select
all but the geometrically constrained degrees of freedom for a curve instead of the user any
curve stability problems are resolved. One caveat, if the user constrains all the degrees of
freedom of a curve, the user is essentially turning off the energy minimization algorithm
and returning to the direct manipulation of the parametric weights.

The Hermite polynomials were selected as the shape functions because they explicitly
represent the geometric terms that will be constrained. This simplifies the implementation,
increases the understanding of the system, and uses the reduced transformation constraint
approach in its simplest form. The reduced transformation constraint strategy can also be
extended to all constraints that can be expressed as a linear function of the element degrees
of freedom. This fact greatly relaxes the constraint on selecting a shape basis function. If
desired, any piecewise cubic parametric representation could serve as acceptable shape
functions for the curve element. For curves the selection of the shape basis functions is a
question of preference and convenience.

4.5.b) The Curve Stiffness Matrix

The stiffness and curve matrices are made by substituting the approximate shape into the

3
energy minimum principles. With wh = xi(pi = Tae so that;

i=0

l90 W1 4.84
S= (P11 and ae= I

(P2 w2
_P3 W2u J
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The approximate curve equation becomes;

4.85
Ecurve = Wu 13 Wu + WU a Wu - 2 fTW du

S a((u 13 ( in + C (u ) - 2 fT (e du

The stiffness matrix can be evaluated as the a and f weighted sum of two terms;

Kcurve = aKs + fKb 4.86

12 6h -12 6h
6h 4h2  -6h 2h 2

where Kb = fm uu du = ]
h' -12 -6h 12 -6h

6h 2h2  -6h 4h 2

36 3h -36 3h
Ks u (Du du =  3h 4h2  -3h -h2

du 30h 36 -3h 36 -3h

L 3h -h2  -3h 4h2

The element stiffness and bending matrices are functions of h, the length of the element in

the parametric space. Unlike the solution derived by the finite difference method for these

equations, each element in the model can be of different length. The advantage of this is

that in regions of complicated geometry several small elements can be used, while relatively

simple geometries can be captured by a few large elements saving on the size of the model

and hence the number of calculations.

4.5.c) The Curve Forcing Matrix
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The element forcing vector is found by evaluating the phii weighted integrals of the forcing
functions,

Fc = f (du 4.87

Taking this integral exactly requires a unique calculation for every type of forcing function
supplied to the user. To simplify the implementation, all forcing functions are
approximated by a linear interpolation between the actual force nodal values. 'Integrating
this linear force function in the above equation is simple and gives a uniform method of
handling any kind of force field that might be added at a later date for the user's
convenience in manipulating the deformable curves. The force element distribution integral
becomes;

4.88

Fc (fo + h(fl - fo)) D du

where fo = applied force on nodeo and

ft = applied force on node1

And for cubic Hermite polynomials this integral can be taken to yield the element force
distribution matrix equation;

21 9
4.89

Fc 3h 2h f
60 9 21 fl

-2h -3h

where f0o = applied force on nodeo and

ft = applied force on node1

Assembling a system stiffness and forcing matrix for the curve is done exactly the same as
for surfaces using these curve element stiffness and forcing matrices.

4.6 Chapter 4 Summary
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The first half of this chapter was a tutorial style review of the mathematical foundations of
the deformable primitives developed in the second half of the chapter. A solution technique
for solving for deformable shapes based on the finite difference method was shown to
result in surface representations inappropriate for manufacture and of limited topological
range. Such solutions do not yield continuous surface models.

The mechanics and the theory of the Ritz finite element method were presented. It was
shown that the solution found with the finite element theory is the closest possible solution
to the actual solution as measured by the energy of the error. Because of this property, C1

shape functions can be used to find solutions that tend to C3 shapes as the number of

degrees of freedom of the model is increased. As such we found that extremely fair shape

could be generated with only C1 continuity between shape patches. The finite element

method can be applied to any space of shape functions. For example it is possible to

develop deformable Bezier patches. In this work shape functions which simplified the

enforcement of geometric constraints were selected.

Finite elements for both surface and curve elements were developed. The surface finite

element is triangular instead of square to extend the range of topological shapes that can be
modeled. The shape of the element varies cubically along each edge and has a surface
normal that varies parabolically. The shape functions enforce C1 continuity between

adjacent elements. The element has twelve degrees of freedom which include the position

and parametric tangents at all the triangle vertices plus the three mid-side tangents normal to
the edge direction. It was shown how these shape functions can directly enforce the
pinned, hinged and fixed edge geometric constraints required by the ShapeWright
paradigm.

A curve finite element was presented to be used as the basis of the character lines used in
the first step of the ShapeWright paradigm. The elements were made C1 continuous,
piecewise cubic and represented by Hermitian shape functions to maximize their ability to
interface easily with the shape primitives. Each element has four degrees of freedom, the
elements end point positions and tangents.
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5 Survey of Constraint Methods

At the heart of the ShapeWright design paradigm is the notion that surfaces can be sculpted
while they continually maintain a set of geometric constraints where they skin the set of
character lines. Geometric constraints are defined here as the class of constraints which
limits the space in which a shape can move. An example of a geometric constraint is a bead
fixed to slide along a curve or surface.

For an implementation, these geometric constraints will have to be enforced numerically at
each time integration step. In the first half of this chapter the mechanics and properties of
enforcing geometric constraints sufficient to support the ShapeWright paradigm are
discussed. The Lagrange multiplier, the penalty method and-the reduced transformation
techniques for constraint enforcement are developed and compared. A technique by,
Baumgarte [Baumgarte_72] that shows how to use Lagrange multipliers in a manner
appropriate for the explicit integration of the dynamic equations is also given.

The last half of the chapter presents a proposal on how to enforce geometric constraints that
are described parametrically. The need for parametrically described geometric constraints
will be common in a parametric shape modeler. If parametric constraints can be applied to
geometric surfaces then the internal representation used for constraints and geometry can be
the same. For the user this means that any geometry that is built can be used as a constraint
on geometry to be added.

Example applications for parametric geometric constraints include making one piece of
geometry interact with another and solving the lightly scattered data problem. Imagine
attaching a handle to a cup and then being able to slide the handle over the surface of the
cup until a desirable location for it is found. One major difficulty in solving the lightly
scattered data problem is how to assign the measured point locations to particular
parametric locations in the surface. The parametric constraints can be used to accomplish
this step automatically and optimally. For example, interpolating a curve through a set of
points can be accomplished if a deformable curve could be made to slide continuously over
the set of points in space like a rope going through a network of pulleys. One small step
and its easy to imagine a surface sliding through a set of two dimensional pulleys to
interpolate a set of measured surface points.
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In general a geometric modeling package will be limited by the range of geometric

constraints it can enforce. The very limited set of constraints implemented in this work,

including free, pinned, hinged and fixed edges, are sufficient for the ShapeWright

program. Extending the set of constraints in future work will extend the range of

applications to which deformable models can be applied. Parametrically described

geometric constraints represent a uniform method for supporting a wide range of

constraints and applications.

5.1 Reduced Transformation Equations

The reduced transformation technique is the simplest and best behaved method for

enforcing geometric constraints on a linear set of equations such as AX = B. This

technique can enforce geometric constraints which are described as linear functions of the

explicit degrees of freedom of the unconstrained system. This includes the most common

constraint of fixing a particular system degree of freedom to a set value. The technique is

best described by example. Consider the following [3x3] symmetric system of equations;

4 3 1 x1 fl 5.1
3 5 2 x2 f2
1 2 1 iLx3 Lf3

A X= B

The desire will be to find values of xl and x2 for arbitrary values of f, and f2 when x3 is set

equal to 3; x3 = 3. This constraint written as a general linear equation of the original

variables is expressed as;

x2 1 0 y 0 5.2
x2 = 0 1 y + 0
x34 -0 0 J 3 J

X = Do Y + D1

where the Y vector is a reduced set of degrees of freedom that automatically

accommodate the constraint of equation 5.2.
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Substituting the constraint equation into the original equation set and pre-multiplying by

Do0 to preserve symmetry yields;

4][ 3 1 1 0 ][ [  ]fl 4 3 00 431 0 5.3100 F431 10 100 100-523
0 1 0 2 01 0 1 0 0 1 0S 2 121 0J Lf3o -1 2 10]3

DoT A Do Y= DoT  B - DoT A D 1

which when multiplied out is just;

[43 ] [Y1[f1 f _ [ 113 5.43 5 Y2 f2J 2 J
Do ADo Y = DoTB -Do AD 1

The reduced transformation method replaces the original system equations, AX = B, with

a linear constraint equation, X = Do Y + D1, and a transformed set of system equations,
DoTADo Y = DoTB - DoTAD 1.The new system equations are solved for Y, and the
constraint equation is used to find X.

For the case in this example, of constraining one degree of freedom to a fixed value, the

transformation is remarkably simple. The matrix DoTADo is made by deleting a row and a

column from the original A matrix. The vector Do B is made by deleting the row of the

constrained degree of freedom from the original B matrix. The extra forcing term is made

by subtracting the deleted column of the A matrix multiplied by the value of the constraint
from the forcing vector. Changing the value of the constraint, for example from x3 = 3 to

x3 = 4, will result in changing the new load vector but not in changing the system matrix.

The general properties of the reduced transformation approach for enforcing a set of fixed

degree of freedom constraints will be the same as for this example of enforcing a single

constraint. The new stiffness matrix will be made by deleting rows and columns from the

original stiffness matrix preserving its symmetry and positive definiteness while reducing

its size. Each constraint will add forcing terms to the new system of equations. Modifying

the value of a constraint (a term in the D1 matrix) will only change the forcing vector and
not the system matrix. In an implementation, moving a fixed node can happen as quickly
and simply as applying a force.
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In general the transformation can be used to enforce any constraint as long as it can be
expressed in the linear form given above. As long as the rank of the Do matrix is equal to
its shortest dimension the transformed system matrix will preserve the symmetry and
positive definiteness of the original A matrix.

5.2 Penalty Methods

The Reduced transformation technique compares favorably to the well known penalty
method of constraint enforcement. The penalty method applies to the same range of
constraints as the reduced transformation equations but fails to enforce the constraints

exactly and causes some numerical difficulties. The idea is that constraints can be enforced

approximately by augmenting the minimum principle related to the AX = B system of

equations. The linear constraints can be written as;

0 = Do X + D 1 = Dpenalty 5.5

Each row of the [mxn] Dpenalty matrix represents a different constraint. The minimum

principle related to AX = B is;

I(w) = XTAX - 2XTB 5.6

It is augmented so that energy is added to the system whenever any of the constraints are
violated.

Ip(w) = XTAX - 2XTB + Dpenalty 1F Dpenalty 5.7

with F =
0 Ym

Each of the Ti are gains that weight the relative importance of each constraint. As a
constraint weight Yi is increased the system of equations increasingly acts to reduce the
error of that constraint. The terms of Ip(w) can be expanded as;

Ip(w) = XTAX - 2XTB + XTDoT F DoX + 2D 1T F DoX + D 1T r D 1 5.8
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The minimum of this augmented functional can be found by solving the following equation

set;

(A + DoT r Do)X = B - D 1
T r Do 5.9

When the constraints are simple, as in the previous example of constraining a single degree
of freedom to a particular value, the above matrices are very simple. The matrix added to

the A matrix becomes zero everywhere except for one term, equal to Yi , to be added to the
diagonal element of the row for the constrained degree of freedom. The forcing function is
also modified by only one term, equal to the degree of freedom value*Yi , added to the row

of the constrained degree of freedom.

The advantage of the penalty method is that it is very easy to add the few terms needed to
enforce a constraint to the current A and B matrices. The disadvantages are that the
constraints are not enforced exactly and that as the Ti gets large the numerical condition
number of the augmented A matrix becomes poor making it difficult for numerical
algorithms to run accurately.

The one advantage the penalty method has over the reduced transformation approach is that
conflicting constraints can be accommodated. The penalty method will enforce neither
precisely. The reduced transformation technique avoids such problems by the limitation
placed on the rank of the Do matrix. Since the reduced transformation technique enforces
its constraints exactly while preserving the numerical stability of the original problem
without increasing the implementation difficulties, it is generally preferable to the penalty
method.
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5.3 Lagrange Multipliers

Constraints enforced by Lagrangian multipliers can be much more general than the linear

constraints supported by the reduced transformation equations. The Lagrange multiplier

method works with the energy functional statement of the problem. We seek some shape,

w, which is the one shape out of all allowed shapes which minimizes the energy

functional,

I(w)= f(w,w',w") du 5.10

where f(w,w ',w ") is some arbitrary function of w and its derivatives.

We wish to constrain the search for w such that only shapes that meet some constraint

g(w) = 0 are considered. The problem is now to minimize I(w) subject to the constraint

g(w) = 0.

The constraint g(w) is integrated into the variational framework by adding it to the energy

functional as;

I(w) = ff(w,w',w") - Xg(w) du = i h(w,w',w",X) du 5.11

where w,w',w", and X are all functions of u E a

This augmented energy functional will have a minimum when its related Euler differential

equations are solved as;

d2(ah/aw") d (ah/Aw") h 5.12
+ -• 0 and g(w) = 0

du2  du aw

or equivalently;

d2 (af/Aw") d (af/aw") +f dg 5.13du+ -- 0 and g(w) = 0
du2 du aw dw
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Examination of the Euler equations reveals that the minimum of the augmented functional

will indeed satisfy the constraint exactly. The original constraint equation, g(w) is

generated as one of the Euler equations. A physical insight to Lagrange variables can be

made by considering the simpler minimum principle,

I(w) = f(w) - Xg(w) du 5.14

Which is minimized when:

df _ dg and g(w) = 0 5.15
dw dw

When w is a vector of two variables, u and v, so that f = f(u,v) and g(u,v) = 0 the Euler

equations become,

Vf = X Vg 5.16

which has a simple geometric interpretation. Figure 5.1a shows the constraint g(u,v) as a

curve in the plane and the function f(u,v) as a set of contour lines. In Figure 5.1b an

arbitrary point on the constraint is considered. The gradient of the constraint and the
gradient of the minimizing function are not aligned. In such a situation it will be possible to

continue decreasing the value of f(u,v) while satisfying the constraint g(u,v) by moving

along the constraint to the position shown in Figure 5.1c. Here the gradient of the

constraint and the minimizing function are aligned. This is the solution to the problem.

There is no other point on the constraint that has a lower value of f(u,v) than this point.
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g(u,v

U

g(u,v)

1

a. A constraint, g(u,v), and a b. A point on the constraint c. The point minimizing
function, f(u,v), defined without minimizing f(u,v) f(u,v) on the constraint.
over the whole uv plane

Figure 5.1) The geometry of Lagrangian constraints

Physically, the lambda weighted term in the Euler equations can be interpreted as a force

that acts to eliminate the component of the net force acting on the body that would act to

violate the constraint. In this view, Figure 5.1 can be interpreted as a bead constrained to

stay on a wire, g(u,v), subject to forces generated by the potential field, f(u,v). At any

moment of time the total force acting on the bead will always point along the direction of

the constraint, only allowing the bead to move along the length of the wire and not off the

wire. At the equilibrium location, the body force will be equal and opposite the constraint

force and the potential energy of the system, the value of f(u,v), will be minimized.

To see how the Lagrange multiplier method effects the system of equations being solved by

the Ritz finite element method consider a general non-linear constraint g(w). Such

constraints can be used to make the volume of a closed container remain constant during

deformation or to cause two points in a system to remain in contact. Applying the Ritz

approximation to shape, wh = x i pi, and to the lambda function itself, Xh = X Xi (Pxi
i 1

the constraint and the lambda function becomes;

g(w) = g(wh) = g(x1 , x2,..., Xn) and 5.17

k(u) = Xh =~X i •pxi = X A



128 Chapter 5: Survey of Constraint Methods

The linear approximation to g(wh) for the current configuration, who = ( Xo is given by;

g(Xo+dX) = g(Xo) + , ' dxiAy 5.18

Using Taylor series expansions about the shape who = I Xo for the quadratic and linear

terms of the functional yields;

(Xo+dX)TKo (Xo+dX) = XoTKo Xo + 2XOTKo dX + dXTKo dX and 5.19

Fo* (Xo+dX) = FoXo + Fa dX

and the resulting minimum principle after dropping constant terms and taking the integrals

becomes;

IX(wh) = dXTKo dX + 2XoTKa dX - 2F, dX - A TKdX

- Dg/Dxl
where K = • T C da and C~ = [g/jx2

which can be solved as the augmeg/nted equation set;

which can be solved as the augmented equation set;

Ko

K T

5.20

5.21KX dX [F 0X K,

0 LA 0

This new system matrix is symmetric but has lost its positive definite property. This can be

s.een by using elimination to rewrite the system matrix from its current form to an upper sub

matrix form as,

[Ko Kx] FK; K becomes
XK T j L

KX
-KITK Kx_

5.22Ko

0

This related matrix is non-definite because Ka is positive definite which implies KT1 and
K K&'Kx will be positive definite, meaning that -KTK 1 KX is negative definite. The

combination of a positive and negative sub matrix on the diagonal guarantees the non-

1
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definiteness of the system matrix. In general, standard Gaussian elimination will not work

for such a system of equations.

One strategy for using the Lagrange multiplier method for nonlinear constraints is to build

the above equation set every time the geometry of the system is changed and then solve for

the augmented set of unknowns, dX and A. Unlike the reduced transformation constraint

method the number of unknowns is increased and the positive definiteness of the original

matrix equations is not preserved. The advantage of such an approach is that very arbitrary

constraints can be enforced.

5.4 Stabilized Constraints

The Lagrange multiplier method results in an augmented system matrix that is non-positive

definite. This loss of positive definiteness implies that the step to invert the system matrix

required by the implicit integration of the dynamic deformable model equations may not

work. Explicit instead of implicit integration can be used to solve the dynamic equations

through time without inverting the system matrix. In this section a variation of the

Lagrange multiplier technique, developed by J. Baumgarte [Baumgarte_72], appropriate

for the stable explicit integration of a set of dynamic equations subject to nonlinear

constraints is presented.

5.4.a) Constrained Equations of Motion

Baumgarte considered the problem of explicitly integrating a set of dynamic equations

subject to algebraic constraints.

As a simple example he considered the equations of motion for a system of n distinct mass

particles with locations expressed as wi. The equations of motion for this system are;

Mi d 2W i - Fi 0 for i = 1,2,3,...,3n 5.23
dt2

where Mi are the masses of the particles
Fi are the applied external forces
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The geometric constraints to be applied to the particles are limited to functions which are
linear in the acceleration of the particles as;

g(w'l,lWl;t) = Y gi(Wl,il;t)Wi + G(w l,•lI;t) = 0 5.24

where wl= a subset of the degrees of freedom

The Lagrange multiplier technique for enforcing these constraints starts by augmenting the
associated minimization principle for the original equations of motion as;

1. M( i - . g(2  w g( 1, i 41, 1;t)
1

5.25

Setting the partials of this new constrained minimization principle with respect to all the
accelerations and the Lagrange X variable to zero, yields the following set of equations to
be solved;

5.26M K F
Kg 0 ~ ] = -G

where F = column vector of all applied external forces
X = column vector of all system degrees of freedom
M = Mass matrix of all particles

Kt = column vector of all gi values

This system of equations can now be used by an explicit integration scheme to find the

accelerations of the system based on its current state to simulate its performance through
time.

5.4.b) Holonomic Constraints

Holonomic constraints are expressed as functions of the positions of the current system.

N(xl,t) = 0 5.27
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This constraint can be differentiated twice in time to cast it into the form required by the
previous section as;

aN . aN
-- i+-=0
awi at

aN..
aWi

+

1;=

w2 N 2

awi2

5.28

5.29a2N
+ =t2

at2

= gigjwi + G;
i

wN
where gi =

awi

The minimization principle can be written as,

_M i( _ Fi)
1

The resulting equations of motion from this system will guarantee that

N=0

5.4.c) Stabilized Constraints

5.30

5.31

Baumgarte points out that this system of equations is unstable for the value of N. The
solution of N = 0 is,

N = Nt=0t + Nt=o 5.32

As long as the initial conditions of the integration are such that

;Nt=o = 0 and Nt=o = 0

131

5.33
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The resulting integration will yield a state that evolves through time with N = 0 always
being true. However, initial condition errors or perturbations introduced through numerical
methods will cause N to diverge linearly through time. Baumgarte suggests one remedy to
this problem by changing the differential operator, D, applied to the holonomic constraint N

from D()= d2  to D() + 23ol + O
dt2  dt2  dt

The new operator is the familiar second order oscillator. By setting 4 = 1 the constraint
system becomes critically damped. Any errors in N caused by initial conditions or
perturbations will be eliminated as the integration proceeds through time without overshoot.

Setting 4 = .707 will cause the constraint to be enforced in fewer time steps but will allow
overshoot.

In general, this system will cause the constraint to be enforced exactly as time runs to
infinity. In practice, the constraint will be effectively enforced in a few time steps. The
constraint enforcing natural frequency, oon, can be chosen so that the constraints are
enforced much faster than the dynamics of the system being simulated. A rapid constraint
natural frequency will affect the requirements placed on the time step used in the integration
scheme to ensure accuracy and stability.

In matrix form this change in the equations will effect only the G term.

d2(N) 2c N)+ 5.35
D(N)- d 2  + 2 dN)+ N) = gii + 5.35

dt2  dt

D 2 N a2 N aN. aN
where G= -- i1 2 +w  24n -t i + - + cOn2(N)

2 at2  awi at

yielding

M K = 5.36
K 0 L 1 L-G iJ
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5.5 Stabilized Parametric Constraints

In this section a technique is proposed to enforce parametrically described constraints. The
technique is an extension of the Lagrange multiplier technique and as such can support
nonlinear constraints. Also like the Lagrange multiplier technique, the resulting system of
equations can be described by a non-positive definite system matrix. As such the
Baumgarte stabilized constraint idea can be used to generate a system of equations suitable
for explicit integration.

The major advantage of considering explicitly represented parametric constraints is that the

internal representations used in an implementation of a shape modeler for geometry and
constraints can be the same. In this manner any geometry built by a user can be used as a
constraint on geometry to be built.

Conceptually, this constraint strategy can be thought of as creating a bead for each
constraint. Each constraint bead exists in the parametric space of its associated constraint.
A constraint bead is subject to the forces applied to its related degree of freedom projected
into the constraint space. As the bead moves through the constraint space it traces out a
trajectory in 3 space as defined by the parametric constraint. Baumgarte's stabilized
Lagrange multiplier technique is then used to force the constrained degree of freedom to
follow the bead's trajectory through space and time.

An alternative to this idea is to use the constraint equations to eliminate the constrained
degrees of freedom from the system of equations. The advantage of the parametric
constraint being maintained explicitly in the constraints is that the resulting equations can be

-easily divided into sub-sections consisting of terms that are constant through the integration
and terms that change with each iteration. This serves as a potential benefit for organizing
the implementation of the resulting equations.

The following equations were written in a form suggested by Baumgarte's stabilized
constraints appropriate for explicit integration. The same ideas of parameterized constraints
and constraint beads subject to projected forces that track with the degrees of freedom of
the original system could have been included in the original energy functions as written in
the section on Lagrange constraints resulting in a set of equations more appropriate for
implicit integration. In retrospect, after experimenting with explicit integration, it probably
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would have been wiser to have taken this alternative and investigated solution techniques
capable of solving the non-positive definite matrices of the Lagrange multiplier method in a
rapid fashion. Such techniques probably already exist and are just not known to the author
since the Lagrange multiplier matrices can be made to be invertible even though they are not
positive definite.

5.5.a) Geometric Parametric Constraint

The geometry of the surface or curve acting as a constraint can be expressed in parametric
form as a set of functions depending on a parametric vector, s.

Rp = [x(s), y(s), z(s)] 5.37

where s = [s1, s2,. , sp]

When p = 1, s is just a scalar and the shape described is a curve. When p = 2 the shape is a
surface and so forth.

A three space point geometric constraint applied to the system of particles considered in the
previous sections can be written as the set of parametric equations,

Np R(s) - Ri = 0 5.38

where Ri = location of the Mi particle

This equation can be thought of as requiring the location of the ith particle of the system to
be the same as the position of the constraint determined by the parametric variable, s. The
parametric variable s is an unknown that will be determined.

The Lagrange multiplier method for enforcing constraints by augmenting a minimization
principle require that the constraint be a function of only the state variables. To meet this
requirement the original state vector of particle accelerations is augmented by the
acceleration of the parametric variable, i.
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Each equation in the parametric constraint can be introduced into the minimization principle

using the stabilized constraint procedure of the previous section.

1 M i - 2 -2 Y, (N,) 5.39
1 J

where D(Np) = Cp " + G,

and Cp aRP and, Gp M 2R + 2~n(Cp s - Ii) + (n2(Rp - Ri)
as as2

Seeking the minimum of this relation by taking the partial with respect to the free variables

and setting each such result to zero yields the following matrix equation set.

M 0 -I R - F 5.40
0 0C, 5 = 0

-I Cp 0 - A- -Gp

Unfortunately, this set of equations is not well behaved. The bottom row of the above
matrix equation is R = CP9 which state that the acceleration of the particle will be equal to

the acceleration of a point moving along the parametric constraint up to linear order. This is

the equation which binds the acceleration of the constraint bead to the acceleration of the

constrained degree of freedom. As long as the particle and the constraint bead start out at

the same location and no perturbations this equation will act to fix the degree of freedom's

location to the constraint bead's location. There are two major problems with the constraint

equations a presented. In addition to the Baumgarte stabilization problem, these equations

lack any information which specify where the constraint bead is supposed to move in the

parametric constraint space. Over time any initial error in the relation between a fixed

particle and location of the constraint bead will not be eliminated.

5.5.b) Change of Basis

One solution to this problem is to subject the imagined constraint bead to the same forces
applied to the moving particle. Since the constraint bead can only move in the parameter

space only those forces which project into that space are actually applied. The acceleration
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of a particle in three space subject to a constraint can be related to the acceleration of the

parametric variable by differentiating the constraint twice with respect to time.

RpSand Rp 2Rp 2  5.41
Rp - s and +P=- s

as as as2

Rewriting yields,

Rp = Cp § + Bp 5.42

where Bp = 2R
as2

Matrices Cp and Bp define a transformation from the vector s in parameter space to the
vector Ri in 3 space. The original dynamic equation can now be expressed in the

parametric subspace. Starting with,

Mkip =F 5.43

and substituting the change of basis yields,

M (Cp + Bp) = F 5.44

and pre-multiplying by CpT gives the relation,

Cp MCp § = CpTF - CpTMBp 5.45

This relation states that the bead on the wire is subjected to the projection of the external
forces into the space of the constraint plus a term generated by the parameterization of the

constraint. A little work will show that CpTMBp will be zero whenever the

parameterization of the constraint is linear in arc length. The leading term CpTMCp will be

diagonal whenever the components of the parametric vector si are orthogonal in the
subspace of the constraint. With properly crafted constraint parameterizations this equation
set will be very easy to build.
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This information can be included in the minimization principle as,

M T~(_1i +2 + T MCp(§ -(CgTMC )' (CTF - C T MBp))2 - XiNp) 5.46
1 j

Seeking the minimum of this equation set results in the following matrix equation set.

M 0 -1 F 5.47

0 CpT MCp Cp Ir = CPT F - CPT MBp

-1 Cp 0 -A -G

The advantage of this scheme is that the original equations of the unconstrained system

remain unaltered and the geometric constraints can be expressed explicitly as parametric

functions. The bulk of the above matrix equations will remain constant for the entire time

integration. All terms depending on the linearization of the constraint trajectory

acceleration, Cp will have to be rebuilt at each time step.

5.6 Chapter 5 Summary

The range and sophistication of a geometric modeler will be limited by the range of

geometric constraints that can be enforced. A scheme that uniformly enforces as large a

range of constraints as possible is desirable for the ease of implementation and consistency

of use. Constraint schemes appropriate for enforcing the ShapeWright paradigm were

reviewed. The range of constraints needed for this purpose are defined to be the pinned,

hinged and fixed edge constraints. It was pointed out that the simplest and stablest

constraint technique, the reduced transformation equations, can be used for this purpose.

Lagrange multiplier constraint methods result in matrix equations that are non-positive

definite. Explicit time integration of the dynamic deformable model equations can be used

to solve for the deformable shape without having to invert the system stiffness matrix.

Baumgarte's stabilized constraints represent a scheme to enforce Lagrangian multiplier

geometric constraints using explicit integration in a stable fashion, enforcing constraints

exactly in the limit as time runs to infinity.
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Extending Baumgarte's idea, a proposal was made to enforce explicitly represented
geometric constraints. Such geometric constraints would be very valuable to a geometric
modeler allowing both geometry and constraints to share the same internal representation.

Actual implementations using the explicit integration techniques failed to produce systems
that were interactive due to the small time steps required to make the integrations stable.
Future research on extending the range of geometric constraints suitable for deformable
models would probably be well spent on developing implicitly integrated schemes that can
support the Lagrange multiplier non-positive definite matrices.
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6 Implementations

In this chapter the structure and some sample output from three different programs that
have been written to implement the material presented in chapters 3 and 4 are discussed. In
addition, some of the steps taken to guarantee the rapid rendering of objects are presented.
All of these programs were implemented on a Silicon Graphics 4D/70GT work station in
the C language using the Unix operating system.

The first program discussed is GGT, which solves the surface equation using a finite
difference approach. This program, the first to be written, was created to verify the notion
of using deformable surfaces for shape design. The next two programs in the chapter,
CUBIC and ECS, were written to demonstrate that the positive attributes of deformable
surface design could be integrated with an approach appropriate for the definition of
manufacturable objects. These programs are based on the finite elements discussed in
chapter 4. CUBIC is an implementation of the deformable curve and ECS is an
implementation of the deformable surface.

Both ECS and CUBIC have been implemented in an object oriented style and are
appropriate for future integration into a single program.

6.1 A Finite Difference Program for Deformable Surface Design, GGT

The program GGT is a finite difference based implementation of the deformable surface
equations. It limits itself to surfaces that are represented as a uniform grid of points defined
over the unit square in the uv domain. Each solution point on the surface can be assigned
its own a matrix, f3 matrix, and applied force. Any point in the array can be fixed to a

location in xyz space. Additionally, the grid can support periodic boundary conditions
where the column of grid points bounding the u dimensions are treated as if they are next to
each other. This is useful for the design of cylindrical type objects.

The interface to this package has been designed so that any of the input commands can be
used to parameterize the surface. One such example is the pressure command. Loads have
been written to simplify the task of assigning an applied load to each point in the solution
array. A pressure applies a load in the direction of the surface normal to every affected
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point. A pressure load can be applied to any subset of the solution points be they adjacent
or not. The interface command to apply a pressure load is;

pr(value) 6.1

where value is the magnitude of the applied pressure load.

When the user types pr(?), an instance of a slider bar is placed on the screen that allows the
value of the pressure command to be set interactively. Adjusting the slider bar allows for
the animation of the design process. The current hardware can render a scene at a
maximum of 30 cycles per second. For moderate size problems, GGT can solve the
system of equations, update the applied load and render the image at about 10 cycles per
second. At these speeds the animation of the parameterized commands seems completely
interactive and is satisfactory to use. All user command arguments can be adjusted
dynamically in this fashion to parameterize a design.

6.1.a) Program Structure

The general structure of the program has been designed to allow for the continuous
simulation of the energy equations. All I/O is treated as interrupt to the basic simulation
that never ceases. The general structure of the program is shown in Figure 6.1.

modify data structures)

for each surface)

Figure 6.1) Program structure to support interactive simulations
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The system of equations is solved continuously. Whenever the user chooses to modify the

environment be it forces, loads, constraints, or material properties, the surface will begin to

respond immediately. Surfaces may come to rest in equilibrium configurations, but the

solver never stops running.

The solver consists of two parts, a problem building piece and a problem solving piece.

The bulk of the user commands will not require the rebuilding of the system equations.

However, whenever the user modifies the constraint state, by freeing or fixing a surface

point, or changes the material properties of a point, the system equations need to be rebuilt

and refactored. Since the bulk of user input consists of modifying constraint locations and

applying loads, this separation of the solver results in a considerable savings in iteration

time. The time to build and factor an equation set is greater than the time to solve it.

6.1.b) A Deformable surface Data Structure

The information required for a finite difference surface can be broken down into the

following general classes;

o Geometry
o Solver data
o Constraint data
o Load data

The geometry consists of a set of points. Each point needs to know the following;

o current location
o previous location (needed for the time dynamic simulation)
o ( matrix (array of stretch resistances)

o 3 matrix (array of bending resistances)

The points are stored in a two dimensional array. The index location of the point in the

array defines its uv location. All the points are restricted to lie on a regular grid of the uv

space. This constraint is required by the finite difference solving scheme that has been

used for this program.

The solver data consists of a system matrix, in either its pre or post factorization state, and

an applied load vector. The size of these matrices is determined by the number of free

points in the surface. When the number of free points in a surface is n, the size of the
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system matrix will be [nxn] and the size of the applied load vector will be [nx3] since each

load like the solution is defined in x, y and z. The system matrix does not have to be part

of the data structure since it is completely derivable from the geometry, constraint and load

data. However, including it in the data structure makes it possible to reuse the factored

system matrix during the simulation loop resulting in a considerable saving in time for each

time iteration of the solution. Whenever the user changes the constraint state, the uv unit

square grid density, or the cx or 3 matrices the system equations have to be rebuilt and

refactorized.

GGT only supports two kinds of geometric constraints, the point location constraint and

the periodic boundary condition. The constraint status of each point, either free or fixed, is

stored with each point data structure. The system equation building algorithm uses this

information to directly build the constrained state equations. The algorithm is structured in

this manner to save the time of having to build the full set of equations only to have to then

reduce them to enforce the constraints. The state of the periodic boundary condition is

saved by two bits. Either the u sides are periodic or the v sides are. Once again the system

build algorithm is sensitive to these parameters and appropriately maps the finite difference

template across borders as needed.

The finite difference template is not saved as data, but instead has been hard coded into the

equation building algorithm. Storing the template with the surface would greatly generalize

the range of the solver and could be exploited to marry together shape and analysis

packages, but in this program only one template was used.

The load data in GGT was stored as a unique forcing vector acting on each point in the

solver. This approach limited the applicability of parameterizing shape with loads. See the

ECS program description for a simple and superior technique for load management.

In addition to this basic data, each surface also records enough information to define how it

is to be rendered and positioned in space.
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6.1.c) Sample Deformable Applications and Designs

6.1.c.1) A Deformable Surface Design of a Goblet

As an example of the geometry that can be made, the look and feel of the program, and the

ease at which shape can be generated, this section presents a step by step account of the

generation of a goblet.

Start with a surface that has been divided into a [12x171 grid of points subject to a periodic

boundary condition in the u direction. This surface has also been constrained so that the

top and bottom row of points lie on circles both centered on the z-axis. Only the

constrained points on the edges of the circle have been placed by the user. All other points

are free to select their positions based on the applied loads, their neighbors positions, and

their desire to minimize the surface energy. Figure 6.2 shows the resulting shape as a set

of points in space, a grid line drawing and a shaded interpolated surface. The shape is
hyperbolic because the surface is responding to its c weighted term which tends to

minimize the surface area.

The upper left corner of the GGT window consists of a plot of the uv parametric plane. Its

included in the interface so that particular points in the surface can be easily selected using a

mouse. Color coding of the points in the surface report the state of the point. Points are

either fixed or free, and either selected or unselected.

Additional constraints are applied to make the surface more interesting in the center of the

goblet. The commands;

shape(7,2,1,-3) (equation set is rebuilt) and
shape(9,2,3,0) (equation set is rebuilt)

cause the 7th and the 9th rows of points to be placed evenly on squares centered on the z

axis with cross diagonal sizes of 1 and 3 units at the z = -3 and z = 0 heights. Geometric

constraints enforce explicit shape requirements and require the geometry input to be

complete as in a typical CAD package. Figure 6.3 shows how the goblet has changed its

geometry to accommodate the local change. Applying these constraints is equivalent to

attaching a deformable surface to more and more complicated character line sets. The
surface naturally blends the shape between the squares and circles in a smooth manner.

The final shape of the goblet is achieved with sculpting.
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constrained 
rows 

constrained 
rows 

Figure 6.2) Goblet shape after skinning initial character line set 

circle constraint 

circle constraint 

square constraints 

Figure 6.3) Goblet shape after skinning augmented character line set 
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The command, tsens(l), is executed so that GGT knows to add future loads only to those
points that have been preselected in the uv window. The default for many loads is to be
applied to all points in the surface. Using the mouse in the uv window all the points above
the square constraints are selected interactively. Typing the command pr(?), brings up a
pressure slider bar which can be used to sculpt the surface interactively. Interactive
manipulation of the slider bar varies the amount of pressure applied to the selected points.
The sculpting continues until the bowl of the goblet achieves a pleasant looking shape.
Figure 6.4 shows how the applied pressure on the top section has modified the shape.

Now the stem of the goblet is sculpted. Once again the uv window is used to define a
reasonable set of points to receive the pressure loads. The bottom two rows of free points
are selected and the top section of points is unselected. Pressures with negative magnitudes
are applied to the bottom of the goblet to cause the stem to become lighter. Not
surprisingly, people's aesthetics are very sensitive to small changes in shape. A little
sculpting and the weight of the stem is reduced to produce a shape more suggestive of a
wine glass instead of a water glass, Figure 6.5. During the sculpting phase, loads are
applied to regions of the goblet, but all the unconstrained points in the system are free to
respond. Order is maintained by the energy minimizing algorithm. All the sculpted shapes
were acceptably smooth. Sculpting helps to rapidly find the one shape, out of an infinite
selection of smooth shapes, that meets the current design needs and satisfies personal taste.

Just for fun, Figure 6.6 shows the goblet after a large point force has been applied to the
surface to cause it to collapse. Note that even though the forcing functions are highly
discontinuous, the resulting surface still struggles to maintain its fairness.

The speed at which the goblet is made is limited by how quickly the commands can be
issued. The character lines were created in 4 commands, 2 for the outer circle shapes and 2
for the inner 'square shapes. The system was parameterized with 2 more commands,
tsens(l) and pr(?). The final shape was defined by sculpting which was executed as a
search of the parameter space consisting of the pressure magnitude. The sculpting required
the selection of regions in the uv command which was accomplished in 3 more mouse
driven commands. Sculpting is interactive and animated and the pressure magnitude can be
modified at about 10 times per second. This total design sequence can be re-executed in
less than a minute. The original design session, including the selection and placement of
the character lines, the selection of the load parameterization and a good amount of
alternative shape exploration took about 10 minutes.
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Figure 6.4) Sculpting on the body of the goblet

Figure 6.5) Sculpting on the stem of the goblet
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applied
force

Figure 6.6) A point force dents the goblet

Figure 6.7) An outer body panel for an automobile
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6.1.c.2) The Design of a Car Hood Inner Body Panel

The GGT program was used to demonstrate the possibility of designing inner body panels

for automobiles. Inner body panels are sheet metal pieces that are formed by stamping and

are attached to outer body panels to increase their stiffness. Inner body panels are the rib

like structures that can be seen in the hood of any car when the hood is raised.

The design requirements of the inner body panels are that they attach to the outer body

shape, increase the stiffness for a minimum of weight, and not interfere with the

components on the inside of the car. The proposal to use deformable surfaces to

accomplish this design task is presented by example as follows.

The starting point is the shape of the outer body panel, generated by deformable surfaces or

in any other manner. Figure 6.7 shows an outer body panel shape that was made by

constraining the edges of the geometry to follow character line data sent from ford motor

company. The interior shape was made by sculpting forces. The uv window is used to

select regions of the outer body panel where the rib like structure can be added.

All points out of the ribbing area are fixed in space. The points in the ribbing structure are

then subjected to pressures until reasonable size ribbing is made. Alternatively, ribs can

also be made by offsetting some of the points in the surface an appropriate distance and

using the others to create the necessary blends. Figure 6.8 shows a series of increasing rib

sizes to produce the inner body panel design.

Deformable surfaces can also be made to automatically satisfy the non-interference

requirement for the ribs in the panel. Deformable surfaces respond to their environment

through forces. Surfaces can be taught to avoid intersecting other surfaces by placing a

repulsive force field around each surface. Figure 6.9 suggests how this might be used to

help the inner body design problem. The deformable surface in Figure 6.9 is the square.

Imagine that it represents one small section of the bottom of an inner body panel rib. As

pressure is increased it is forced closer and closer to the ellipsoid which might represent an

air filter on a car. When the deformations are large enough to cause intersection the

repulsive force field makes the surface deform to avoid the intersection of the car air filter.
In this manner low level design rules can be enforced directly by the behavior of the
deformable surface freeing the user to work on other design considerations.
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Figure 6.8) Design of the matching inner body panel
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Figure 6.9) A surface avoids an object when sculpted with increasing pressure



Chapter 6: Implementations 151

The GGT experiment was very successful. It demonstrated the strengths and the
weaknesses of the finite difference formulation of the deformable surface design. Primarily
we conclude that deformable surface design can be made to work. We also conclude that
this formulation of the problem is inadequate due to limitations on the manufacturability and
topology of the class of shapes that can be generated. The shape representation remains a
set of points in space that map to the unit square in the uv parameter domain.

6.2 A Finite Element Program for Deformable Surfaces, ECS

The program ECS is a finite element based implementation of the deformable surface

equations. Any number of triangular elements can be made to tessellate any polygon shape
in the uv domain. Each element can be assigned a load, can have any shape and size in the
uv plane and maps to a continuous region in the xyz space. Each element has its own a
and 13 matrices, but in ECS these are currently set to the same value throughout the surface.

The finite elements have been made to support the free, pinned, fixed and hinged boundary
conditions needed for the ShapeWright skinning step. Adjacency constraints such as a
periodic boundary condition could be implemented but have not. With such constraints
cylindrical and closed surfaces can be designed.

The ECS program has been created under the same interface as GGT and enjoys the same
opportunities to parameterize the input for animation. ECS also runs under the same
continuous simulation program structure as GGT.

6.2.a) A Finite Element Deformable Surface Data Structure

The information required of the finite element deformable surface falls into the same
categories as the finite difference data structure;

o Geometry
o Solver data
o Constraint data
o Load data

The ShapeWright surface element data structure is shown in Figure 6.10.
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Deformable surface

array of nodes
array of elements

array of loads
array of cstrns

A matrix = system matrix
B matrix = system forcing vectors
dt = integration step size

draw state
Li = set of plotted point locations
Wp = set of Shape functions

evaluated at Li locations
dWp = set of Shape function tangents

evaluated at Li

cstrn (constraint)

location
list of (global dof-gain) pairs

load

type
gain
location
list of elements

vertex node:

parameter location = [u,v]
displacement = a = [w,wu,wv]
last disp = oa = [ow,owu,owv]

dof numbers = a dof number for each
displacement

ncstate = free,fixed, 1slope, or 2slope
ncrot = nodal constraint rotation matrix

mid-edge node:

parameter location = [u,v]
displacement = a = [wn]
last disp =oa= [own]
vertex nodel
vertex node2
gamma = mid-edge orientation angle

dof numbers = a dof number for each
displacement

ncstate = free,fixed
ncrot = nodal constraint rotation matrix

Figure 6.10) ShapeWright deformable surface data structures

The geometry of a deformable surface consists of a set of nodes and a set of elements.

Each node is either a vertex node or a mid-edge node. The geometric information at each

element:

array of 3 mid-edge nodes =
array of 3 vertex nodes =
alpha = array of stretch weights
beta = array of bending weights
area = 2 * area

L = barycentric mapping matrix
Tnl = transformation matrix for

normal vectors
Z = shape function sub-matrix
Ke = element stiffness matrix
dof map = local to global dof

number map

_ I

-1
I
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vertex node consists of the node's xyz space position , the node's xyz space surface
tangents in the u and v parametric directions, and the node's location in the uv space. The

mid-edge nodes only store the value of the xyz space surface tangent in the direction normal
to the element edge in the uv plane. Each mid-edge node data structure points to two vertex

nodes. The node's position and edge slope angle are both calculated from these vertex

node positions. Each mid-edge node is assumed to be placed half way between an edge

that stretches between the two pointed vertex nodes. Moving the uv position of a vertex

node will always move all the mid-edge nodes that point to it. All xyz space location data is

stored for the current and previous time step to support the dynamics in the time integration

of the system equations.

An element consists of a list of 6 nodes; 3 vertex and 3 mid-edge nodes. The position of

the 3 vertex nodes completely defines the Barycentric transformation for the element saved

in terms of the L matrix, the Tt transformation matrix used to calculate tangent derivatives

in the edge normal directions and the Zienkiewicz Z matrix needed to extend the 9 degree of

freedom shape functions into the 12 degree of freedom shape functions. These matrices are

all stored with the element to increase the speed of calculating the element stiffness matrix,

Ke, and of rendering the element in its deformed xyz space shape. The element stiffness

matrix is also stored to save time in assembling the system matrix equations.

Constraint information affects the nodes, the building of the system matrix and the content

of the system forcing vector. Each constraint has a data structure. In this data structure the

value of the constraint is stored e.g. the position in space of a fixed node, and a column of

gains to be added to the forcing vector. This column is made by concatenating the columns

of all the effected element stiffness matrices. At run time each constraint adds a set of

values to the forcing vector that are weighted by the value of the constraint. Modifying the

position of a fixed point changes the value of the constraint gain in the associated constraint

data structure'that modifies the terms of the forcing vector. In this manner constraints can

be enforced as quickly as loads can be applied. This technique supports the animated

interactive manipulation of constraint locations in the xyz window.

Some constraints require that a vertex node be rotated into an appropriate space. Each

vertex node has a rotation matrix that defaults to the identity matrix when unconstrained and

is set to the appropriate transformation matrix when constrained. All nodes store their

constraint state so that the system equation building algorithms can act accordingly. The

vertex node constraint state can be one of, FREE, FIXED, 1SLOPE, or 2SLOPE indicating
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whether the node is free, has a fixed xyz location, or has a fixed location and 1 or 2 fixed
tangent directions as well.. The mid-edge node constraint can be one of FREE or FIXED.

Loads affect the content of the system forcing vector. Each load has its own load data

structure to support the parameterization of the surface through the parameterization of the
loads. The load data structure records which type of load is applied, the magnitude and
location of the load and a list of the affected nodes and elements. At run time the load

structures are used to generate the set of forces that are applied to the surface at each time
iteration. The user can manipulate the gains and locations of a load data structure

dynamically. Elements and nodes can be added or removed from the load by command
based on their select state. Each node and element stores its current select state to simplify
this and other I/O activities.

This scheme of storing loads as separate entities allows the user to parameterize any
number of surface shaping effects simultaneously. Any desired load parameters can be

assigned to a slider bar which can then be used to sculpt shape as an interactive, dynamic

search of a parameter space. The advantage of this particular parameter space is that it can
be designed and modified to simplify the control of the shape. In the previous goblet
example, the loads for sculpting the bowl and the stem of the goblet could now be placed
on separate slider bars and manipulated on the screen in any order to achieve more rapid
flexibility in design. The goblet has been parameterized by two variables, one that controls
the bowl size and one that controls the weight of the stem. The flexibility of the approach

allows any number of alternative parameterizations. For example, the size and locations of
the square character line constraints could also be used to parameterize the goblet. Figure
6.11 shows how the load concept and the energy minimization algorithm can make the
controlled modification of a free-form surface as simple as changing the radius on a sphere.

The solver information, like the GGT program, consists of a system stiffness matrix and
load vector. Additionally, a mapping which assigns each degree of freedom of all the
nodes a unique system degree of freedom number is saved. To save time during the
building of the system stiffness and load matrices each element stores a local map of how
the element degrees of freedom numbers line up with the system degree of freedom
numbers.
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* = control point

parameter space size = 3 * # control points

b.) Control Point Surface: Parameters = locations of control points
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c.) Deformable Surface: Parameter (user defined and modifiable) = pressure

Figure 6.11) User leverage through parameterization of shape

6.2.b) Some, Continuous Deformable Surface Applications and Results

6.2.b.1) The Sample Surface

Figure 6.12 shows a sample ECS surface consisting of five triangular elements. The

parametric shape is shown in the plot of the uv window in the upper left hand corner. It

has been selected to be a pentagon so that it would not look like a square. In general it can

be any polygon shape. The resulting xyz deformed shape is made by pinning the five

outside edges to xyz point locations. Figure 6.13 shows the surface in different views and

• r

!
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in different rendering modes to try and convey the extreme fairness of the surface. In these

static images, destined to be reproduced in black and white, the best plot for conveying

surface shape is the contour line image. Additionally, some plots have been made where

the rendering of some of the elements have been suppressed so that the shape of the internal

edges can be seen better.

This shape can be modified by applying loads, moving the constrained points, changing the

constrained state of the edges and changing the original uv shape. Figure 6.14 shows

some of the shapes that were generated in that fashion. The images in the column of Figure

6.14a were made by moving a control point location of an edge in the pinned'and hinged

fixed states. The sequence of images in the column of Figure 6.14b were made by

applying an increasing pressure to the original pinned shape. The angles of the original

parametric shape are preserved in the object's deformed shape. A uv pentagon shape will

have five corresponding corners in its deformed shape. Figure 6.15 shows how the uv

shape of the pentagon can be manipulated into a triangle to yield a surface that interpolates

the original five points with only three corners.

6.2.b.2) The Ford Door and an Interface to Artifact Analysis

The ECS program was used to model a shape suggestive of a Ford car door as an exercise

in more controlled geometry building as shown in Figure 6.16. The general shape of the

door was made by applying hinged constraint conditions on all the outer edges and using a

pressure to generate a nicely convex shape. The rib in the door panel was made in two

steps. First the appropriate edges were constrained in advance so that the rib deformation

would be controlled and isolated from the rest of the door shape. To do this the edges

bordering the rib were all fixed. This isolated the deformations in the rib region from the

rest of the door. Then the edge running along the center of the rib was constrained as a

hinge. Once the appropriate constraints were in place the actual shape of the rib was made

by moving the hinged edge a fixed distance normal to the surface. In this manner the

doubly curved shape of the door is reflected in the geometry of the rib.
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Figure 6.12) A 5 element ShapeWright surface constrained to interpolate 5 point locations

lit
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Figure 6.13) Views of a shape
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Figure 6.14) Variations on a theme of shape
a.) changing point and edge shape constraint locations
b.) sculpting with increasing pressure
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Figure 6.15) 3 corners in uv shape map to 3 corners in 3D shape
interpolating same 5 points as Figure 6.12
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a.) b.)

c.)

Figure 6.16) The Ford door; interfacing shape and analytic modeling
a.) finite element shape model
b.) automatically generated finite element application model
c.) constant displacement contours resulting from a point load
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One of the advantages of using finite elements for modeling shape is that the same finite

element model can be exploited for analytic applications. The final images in Figure 6.16

show a linear elastic finite element model of the final door panel shape. The material

properties for this analysis were assumed to be that of steel. The final image shows the

results of a displacement analysis of the steel panel subject to a applied point load. The

contours show the magnitude of the displacement from the original shape. Adding the

linear elastic finite element analysis capability to the ECS program was done by Dr. Hiroshi

Sakurai of the MIT CADlab. In industry today the generation of an acceptable finite element

model from a shape model is a labor intensive task. This work identifies an approach

which automatically integrates the generation of shape and analysis models.

6.3 A Finite Element Program for Deformable Curves, CUBIC

The program CUBIC is a finite element based implementation of the deformable curve

equations. In Cubic, any number of finite element curve segments can be connected

together to generate a deformable curve. The lengths of each element can be set

independently so that areas of rich geometry can be modeled with several elements while

smooth and simple geometry can be modeled with a few elements. Theses curve segments

have been implemented so that they can support fixed point and tangent constraints at any
of the nodes between elements.

The CUBIC program is written using the same interface and continuous simulation

structure as ECS. In fact these two programs have been implemented in an object oriented

fashion so that both primitives can be used in the same package.

6.3.a) A Deformable Curve Data Structure

The deformable curve data structure is a simplification of the deformable surface data

structure. The information storage and usage is the same for loads, constraints and the

solver. The only difference in the storage of information is in the geometry. The

deformable curve is a set of order nodes. Elements are presumed to exist between each pair

of neighboring nodes. Each node stores its position and curve tangent in the xyz space and

the distance between it and its neighbor in the uv space. As before all xyz location data is

stored for the current and the previous time steps to support dynamics in the time
integration of the system equations.
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6.3.b) Some Continuous Deformable Curve Applications and Results

6.3.b.1) A Simple Curve Avoiding an Obstacle

A very simple 3 element curve with fixed end point constraints is shown in Figure 6.17.
An obstacle, modeled as a i/distance repulsive force field, has been added to show how the
deformable curve can be made to react to its environment and how smoothly it deforms.
Figure 6.17b shows the object rendered as a set of straight line interpolations to show
clearly where the finite elements connect.

Figure 6.17c shows the curvature report for the curve. A deformable curve's
fairness is evaluated by examining its curvature. The most effective curvature report for a
curve is the curvature comb. In such a curvature plot a vector is drawn in the normal
direction to the curve whose length is equal to the local curvature. The resulting drawing,
makes it easy to see how the curvature is changing over the length of the curve and
highlights points of inflection.

Note in Figure 6.17c how the curvature is not only continuous between elements but also
exhibits a strong degree of C1 continuity. Although the shape basis functions enforce only
C1 continuity between elements, the energy minimization algorithm attempts to find C3

solutions to the input constraints and loads. The final image shows how the same shape is
maintained even though the grid has been refined on the left hand side of the curve.
Allowing for grid refinement is important in modeling complicated shapes where large and
small details are mixed together. The small discontinuity of curvature on the right hand
side of the curve is due to the curve grid density and the effect of the constraint. Refining
the grid on the right side of the curve would allow it to more closely find the actual C3

shape that the energy algorithm is approximating.

One thought, which was not implemented, was to automate the deformable curve's grid
refinement based on the magnitude of discontinuities in curvature between elements.



164 Chapter 6: Implementations

A

nodes-

obstacle

B

Figure 6.17) Curve deforming to avoid an obstacle
a.) A 3 element curve deforming to avoid an obstacle.
b.) Same curve shown as a linear interpolation of the nodes.
c.) The curve's curvature report.
d.) An 8 variable length element curve avoiding the same obstacle.

6.3.b.2) An Application of Deformable Curves to Fairing Input Data

The deformable curves were used in an application of fairing hand drawn fully three
dimensional curves. Andy Roberts and Dave Stoops have created the 3-Draw program at
the MIT CADlab. The program, 3-Draw, using a magnetic detector made by the
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Polhemous Company, captures discrete point locations while a user draws three

dimensional curves in space. This package has been optimized to assist a user in drawing

complicated geometric wire frame models. The geometric primitives of the package
included static linear interpolations of the sampled points and the dynamic deformable

curves.

The preferred method of use that evolved for developing 3-D models was a three step
procedure. First, the basic shape of the curve is captured as a set of sampled points.

Second, the position and size of the curve are adjusted to match the model. Finally, the

curve is faired using the properties of the deformable curves.

The fairing scheme used in 3-Draw captures the original curve as a set of discrete points.

Then the user is allowed to select a sub-region of the curve to be faired. The ends of the

sub-region are geometrically fixed in position and slope and all of the intervening point

locations are associated with the nodes of a deformable curve. The time simulation is run

by the user until either the curve comes to equilibrium or a desired intermediate state is

achieved. Iterating through over-lapping sections of the curve allows the user to preserve

the desired general curve shape while eliminating unnecessary deviations.

Figure 6.18 shows a curve as originally captured in 3-Draw and subsequently as it is

faired. The curve dynamics act to eliminate high frequency shape more rapidly than low

frequency shape. The first application of fairing is applied to the whole curve and executed

just long enough to eliminate the noise (shown amplified for the example) in the shape

signal. The second phase of fairing allows the user to artfully smooth out larger scale

disturbances in the curve.
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Figure 6.18) Fairing a curve.
a.) Curve as input.
b.) Curve after initial smoothing
c.) Curve after final smoothing

Figure 6.19 shows some examples of the wire frame models that can be built with 3-Draw..
Figure 6.19a is a sketch of a winged keeled sail boat and Figure 6.19b is the right front
bumper of an imaginary sports car. These models took from 30 minutes to one hour to
draw and are fully 3-dimensional.
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Figure 6.19) Sample 3-Draw sketches (by Andrew Roberts, MIT CADlab)

6.4 Rendering

6.4.a) Shaded Images

Rendering a deformable surface can take almost as much time as solving the energy

minimization problem. As such it was important to structure the render loops in such a

fashion as to speed up the rendering of the surface.

The Silicon Graphics work station has the capacity to render light shaded polygons in

hardware so long as the position and the surface normal direction at each vertex is supplied.
The surfaces were rendered as sets of polygons to take advantage of this capability. To do

this, a set of points has to be computed that can be used to generate the polygons that
represent the surface. Figure 6.20 shows the rendering grid patterns for a variety of
precisions.



168 Chapter 6: Implementations

Figure 6.20) Different precisions for a deformable surface rendering grid

.......... ...... .. ........__·
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As much of the calculation of the grid points is accomplished off line as possible and saved

for use during the rendering loop. The shape at a particular uv value is given by;

w(u,v) = (Pi(L,L 1,L2,L3) xi 6.2

Ideally, the p(i functions could be saved at each point to be rendered in the triangles and

then during the simulation loop only 12 multiplies and 11 adds need be executed to generate

each of the rendering mesh point locations. Similar actions can be taken for calculating the

surface tangents needed to calculate the surface normal. This would require

4*12*number of points_rendered*no_of_elements of storage to store the functions

needed to calculate shape and the surface tangents.

To save on the amount of data that needs to be stored for rendering, each element is plotted

with the same array of (L1,L2,L3) values. The shape functions are rewritten to separate

the functions of L1, L2 and L3 from the functions depending on triangle Shape as;

w(u,v) = (Pai(L) (Pbi(LlL2,L3) Xi 6.3

The functions depending on qpbi are the same for all elements and are calculated once and

stored for use in the rendering cycle of all elements. The (pai(L) elements are stored as the

1, Ttn, and the Z matrices for each element. The amount of storage needed for the

program rendering is limited to;

[plot_point_count] *[max_part_count] *[4] 6.4

where plot_point_count = number of rendering grid points per element
max_part_count = number of functions needed to describe the shape of the

surface
max_part_count is multiplied by 4 because the first partials with respect to

L1, L2, and L3 are stored to speed the calculation of the tangent
derivatives of the surface.

This scheme has increased the speed of rendering by an order of magnitude with only

moderate costs in data storage.
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6.4.b) Contour Plots

We have found that the perception of surface shape can be greatly enhanced if the surfaces

are rendered as a combination of shaded light models and contour lines. Anomalies in the

surface become very evident in the behavior of the contours. In the interest of speed only

the contours of the approximate polygon rendering model are plotted and not the actual

contours shape. Since the precision of the surface rendering grid can be made to be as high

as desired any accuracy of the surface contours can be achieved this way.

6.4.c) Curvature Combs

The fairness of a curve was found to be best displayed with the curvature comb. The

curvature comb is made by adding a vector whose magnitude is equal to the local curvature

of the curve pointing in the direction of the surface normal to a set of the points of the

curve. Curvature combs were implemented so that each element of the curve displayed the

same number of curvature points regardless of the length of the elements.

6.4.d) Curvature Plots of the Surface

Surface curvature plots were made by color coding the surface based on the local curvature.

These plots were not effective at helping to understand the shape of the object, but did

highlight regions of rapid change. This capability, implemented in GGT was not extended

to the ECS package.
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7 Conclusions and Future Work

Because the requirements for shape are ubiquitous, the potential impact of the deformable
shape technology is large. Shape representations are needed for analysis, simulation,
manufacturing, and design. The energy based modeling of shape represents a method to
greatly reduce the amount of user management required to define and modify shape.
Designing with intelligent shapes that automatically seek to satisfy a set of design rules
offer the potential to integrate the various phases of design together. The more design rules
that the deformable models can be taught by increasing the sophistication of the energy
functionals and the range of constraints that can be enforced, the more uses to which this
technology can be applied.

In this chapter the general ShapeWright modeling paradigm and the work contribution
made in this thesis is reviewed. The conclusions that have been derived in the course of
this work are then presented. The final section suggests three general areas to which future
work in this field might be applied.

7.1 Thesis Summary

Energy based shape modeling is the combination of parametrically described geometry plus
an energy minimization algorithm that acts to give the geometry natural properties. This
supplies a means to control shape behavior during an interactive modeling process that can
greatly reduce the amount of input effort it takes to build or modify shape. The savings in
input effort comes because the energy minimization algorithm directly controls the
simultaneous manipulation of the huge number of degrees of freedom needed to
parametrically represent free-from shapes while the user indirectly modifies shape with
global operators described as forces, material properties and geometric constraints.

This thesis proposes a new paradigm, the ShapeWright paradigm, for the generation of
free-form shapes founded on energy based shape modeling.The approach comes from the
observation that people have a rich experiential exposure to deformable surfaces. It's easy
to imagine folding a piece of paper or expanding a soap bubble with an internal pressure.
Historically, such physical surfaces have commonly been employed as the basis for free-
form design. Thin wooden splines were used to loft the shape of ship hulls and aircraft
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wings. Actual soap films were used to design the roof of the Olympic stadium in Munich,
Germany.

The ShapeWright paradigm is a three step procedure for generating objects as shown in
Figure 1.2 and reproduced here as Figure 7.1. First, the essence of the object is defined as
a set of three dimensional character lines. These are lines which define hard geometric
constraints for the shape such as edges and creases. These do not include lines typically
used to characterize the interior shape of a surface such as silhouette lines. Then the object
is skinned. Imagine dipping the wire frame object into a bucket of soap and pulling it out
slowly such that over every face their is now a deformable soap film like surface. Finally,
the object shape is completed by interactively sculpting the surfaces with forces.
Modifying the shape can be achieved by changing the character lines or the sculpting
forces.

a. character lines b. skinned c. sculpted

Figure 7.1) The ShapeWright design paradigm

The exciting part of the paradigm, that can support endless innovation, is that the energy
functional to be minimized can be designed. In this manner it is possible to engineer
surfaces with different natural and desirable properties. Surfaces which minimize their area
and distribute their curvature smoothly are built in this thesis to create geometry which is
opportunistically fair seeking.

The work contribution of this thesis consists of defining the mathematical foundations
appropriate for solving the energy based shape problem in such a way as to support a wide
range of topologies, automatic free-from surface manufacture, and interactive speeds.
Geometric curve and surface primitives were developed that are appropriate for the
ShapeWright shape definition paradigm.
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7.2 Conclusions

The ShapeWright deformable surface modeling paradigm works well for the interactive
definition of free-form surfaces. The notion that shape can be defined indirectly with the
use of minimum principles subject to geometric constraints and loads acts to greatly reduce
the user input in manipulating the surface. Complicated free-form shapes were defined
with very few commands. Additionally, they can be parameterized with the use of loads so
that the design of shape can be accomplished as a search in a small user built parameter
space independent of the number of degrees of freedom in the surface. The essence of this
idea and how it compares to other shape representations is shown in Figure 6.11,
reproduced here as Figure 7.2;



174 Chapter 7: Conclusions and Future Work

radius i
/ shape 3

shape 2
shape 1

Parameter Space

a.) Sphere: Parameters = location(x) and radius

e = control point

parameter space size = 3 * # control points

b.) Control Point Surface: Parameters = locations of control points

shape 2
t.· :;1?~~:e:l"I::~~

Sshape shape 2-
0 shape 1 shape 2

shape 1 paramater space

c.) Deformable Surface: Parameter = pressure (user defined and modifiable)

Figure 7.2) User leverage through parameterization of shape

The artful design of the energy functional resulted in the creation of surfaces which could
be used interactively, opportunistically seek fair shapes and are well "behaved" during the

interactive manipulation of shape. This was done by weighting the resistance to bending

and the resistance to stretch in such a way that the energy minimization principle could be
built in a quadratic form.

The energy principles selected for these geometric primitives are equivalent to a differential

equations that map functions from the HO Hilbert space to the H 4 Hilbert space. If the
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user is limited to applying piecewise continuous and point loads to surfaces spanning well
behaved boundaries, the solutions for shape will be C3 continuous. Corners in the
boundary conditions are accommodated by introducing corners into the parametric domain
of the surface. Surfaces built in this manner will be very smooth and fair.

Solving the deformable model equations using the Ritz finite element method supports
continuous shape models suitable for aesthetic design and automatic manufacture of the
resulting shapes. A review of the mechanics and the theory of the Ritz finite element
method showed that only C1 continuity be required of the functions used in the finite
element solution. It was shown that the solution found with the finite element theory is the
closest possible solution to the actual solution as measured by the energy of the error.
Because of this property, the C1 shape functions used to find solutions tend to C3 shapes
as the number of degrees of freedom of the model is increased. As such we extremely fair
shapes were generated with only C1 continuity enforced between shape patches. The
conclusion is that shape fairness is a global property and not solely determined by the
degree of smoothness enforced at the bounding edges between adjacent shape patches.

The theory of the finite element method and the needs of aesthetic design require the
generation of shape functions which are C1 continuous between finite elements. Several
C1 continuous shape functions are available in the literature and any of them could be used.
The shape functions that were used in the development of the finite elements were selected
based on their ability to directly enforce the limited set of geometric constraints needed for
the ShapeWright design paradigm. As an aside we conclude that the many properties for
which Bezier-Bernstein basis functions are usually selected are satisfied by the use of the
energy minimization algorithm.

The range of topological structures that could be supported was greatly extended by
developing triangular instead of rectangular surface finite elements. Triangular shape
patches introduced no difficulties in the implementation and yet greatly enhanced the range
of topological structures. Future CAGD systems should seriously consider the use of
triangular patch elements over rectangular patches.

Using the finite element method to define shape results in finite element shape models.
These finite element shape models can be directly exploited to automatically create
application finite element models of the final shape. Thus this technique can be used to
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automate the integration of the shape design process and the derivation of the finite element

model for analytic purposes.

7.3 Future Directions

The deformable shape design algorithm can be thought of as a kind of expert system. It

divides the tasks of free-form design between the user and the computer. The computer

based algorithm automatically enforces a class of design rules while the user is freed to

work on higher level design tasks. In this thesis the design rules built into the energy

algorithm were to opportunistically seek fair shapes while exactly enforcing a set of design

constraints. This acted to reduce the user load considerably by freeing the user from these

tasks to concentrate on overall shape design. Future work can be applied to greatly

extending the set of design rules that are built into the energy functional. The variety of
this set directly defines the range of applications to which this technology can be applied.

What follows is a list of application areas that might be supported if very general design
rules could be built into the deformable surfaces. These areas include generalizing the

kinds of geometric constraints that can be supported, the automatic definition of complete
geometry given partial geometric descriptions of shape, and the automated integration of
part shape and part manufacturing process design.

One large class of design rules deals with setting, minimizing or maximizing the value of
different geometric properties of the shape. Aircraft applications constantly seek to
minimize weight while maximizing strength through variations in shape geometry.
Industrial designers are constantly designing packaging of fixed volume and free-form
shape. The work in this thesis needs to be extended to support in a uniform method the
rich range of geometric constraints that can be defined as functionals of the entire surface.
Lagrange constraint methods can be used to do this but some efforts will be needed to make
such an system stable and interactive.

If such constraints can be supported by the deformable models they could be used to help
automate the generation of part shapes in assemblies. In an assembly about 10% of the
surfaces are actually used to define the function of the artifact. The rest of the surfaces are
made in some sense to hold the functional surfaces in their proper place. An ideal assembly
level modeler would allow a user to define the minimum number of surfaces to define the
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function of the assembly. Then the system using deformable surfaces would automatically
fill in the partial geometry of the parts subject to non-interference, minimum strength, and
maximum weight criterions.

Deformable surfaces can also be used in such an assembly functional modeler to help

abstract shape. Imagine shrink wrapping an engine of an automobile with a deformable
surface. The resulting shape would capture the essence of the size and shape of the engine
without needing to know of the hidden complexities. This abstracted engine could then be
used in a higher level assembly to guarantee non-interference between the engine and other
parts of the car such as the hood. Resolving interference conflicts could be automated with

deformable surfaces. The hood, modeled in a deformable manner, changes its shape to

accommodate a taller engine. If the hood model were supporting constraints that capture

the aerodynamics of the problem, the hood could be made to deform automatically while

preserving the fuel economy of the car. Once again we are back at the need to model more

sophisticated constraints in the energy functional.

Another promising area of future application is to integrate the design of shape and process

for free-form shapes. Instead of using an artificial energy functional designed for fairness
and its ability to mimic familiar deformable surface behaviors, use an energy functional that
accurately models the materials and processes to be used to build the part. That way the

forces used to sculpt the surface could be used to automatically define the manufacturing of
the surface. Additionally, the model could be sophisticated enough to detect when the

material was being stressed beyond its failure limits and prevent the user from designing a
free-form surface that can't be built much like the current deformable models help the user
to build only fair shapes.

Accurate process models for such processes as stamping and casting are a current research

area. Instead of waiting for these models to be developed it might be possible to build an

approximate energy functional which could guarantee manufacturability of the surface
without being able to define the actual behavior during a failure mode.

Many new manufacturing processes are being developed that will greatly increase the range
of shapes that can be easily built. Laser lithography and 3-D printing of ceramic materials
can produce very free-form shape prototypes automatically. Standard multi-axis machine
technology is widely available to industry. The current shape design practices are restricted

by the range and difficulty in developing shape inherent in the current shape modeling
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technologies and the need to guarantee part manufacturability and functionality. The design
and manufacture of shape is rapidly becoming limited by software practices. The
deformable modeling technology as embodied in the ShapeWright modeling paradigm
represents a path to extending the range of shape modeling while providing a means to
integrate the needs of manufacturing, analysis and design.
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