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ABSTRACT

Song, Tao PhD, Purdue University, December 2016. A Sharp Interface Isogeometric
Strategy for Moving Boundary Problems. Major Professor: Ganesh Subbarayan,
School of Mechanical Engineering.

Moving boundary problems that include crack propagation, solidification and
shape optimization occur in a variety of natural and engineered systems. A significant
difficulty in solving the moving boundary problems, in addition to computationally
modeling the moving interface, is to capture the interfacial behavior. Commonly,
moving boundary problems are solved by diffuse interface techniques such as the
phase field method that is challenged by high computational cost or by the level set
method in which considerable care needs to be exercised to ensure stable evolution
of the interface. The challenges with phase field method include the need to develop
alternative (diffuse) mathematical forms of the governing equations that must be
proven to converge to the sharp interface form. The phase-field equations are also
usually non-linear and non-convex, and the diffuse transition region has to be very
thin to converge to the physical solution. This last fact in turn requires the mesh
to span several orders of magnitude in length scale and to be very refined near the
interfacial region. In the case of level set method, the solution to the Hamilton-Jacobi
equation needs stabilization to minimize the oscillation and an auxiliary velocity field
equation needs to be posed and solved to extend the velocity from the interface into
the domain. Finally, but most importantly, due to the geometrically implicit nature
of these methods (the boundary is not explicitly represented, but inferred from the
value of the phase field or level set parameter), the necessary geometric quantities
such as normals and curvatures are difficult to compute with €° continuous finite

elements and can be accurately computed only in the limit of mesh refinement.
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To circumvent these challenges, a sharp interface isogeometric formalism that en-
ables efficient analysis and accurate capture of interfacial behavior is proposed. In
this modeling strategy, the approximation of the underlying domain is isoparamet-
rically enriched with lower-dimensional features such as domain boundaries, crack
surfaces and phase interfaces, and the geometry of the enriching entities is explicitly
tracked. The blending of the enrichment with the underlying approximation requires
an estimate of distance to the enriching geometry from a quadrature point and the
parametric value of the footpoint on the enriching geometry. In the present research,
utilizing algebraic geometry concepts, purely algebraic estimates of distance coupled
with an algebraic point projection are proposed. These algebraic techniques rely on
implicitization of the parametric curve, and are shown to be more efficient and robust
than Newton-Raphson iterations. Since, in the sharp interface isogeometric frame-
work, the enriching geometry is immersed in the underlying domain and intersects
with the domain mesh grid, the numerical integration of the regions created by the
enrichment process is challenging. Here, a novel Kd-tree based adaptive quadrature
scheme is developed to enhance integration accuracy and efficiency. The quadrature
cells are generated through a smart subdivision process based on the signed distance
of the endpoints and midpoints of parent cells, and then stored in a Kd-tree data
structure. The proposed integration scheme effectively minimizes the inefficient and
excessive number of quadrature cells resulting from classical quad-tree/oct-tree subdi-
vision. Moreover, in many immersed boundary problems, including crack propagation
and shape optimization, the behavioral field may exhibit a high local gradient (such
as stress concentration) near the boundaries. An accurate solution of these problems
necessitates a refinement of the underlying approximation. To this end, the truncated
hierarchical B-splines (THB-splines), maintaining high smoothness of the isogeomet-
ric basis while enabling local refinement, are utilized to facilitate the analysis. Two
efficient a-priori mesh refinement algorithms based on the signed and unsigned dis-
tance fields are developed to generate a hierarchical mesh adaptive to the immersed

boundaries. It is also shown that the THB-splines may, theoretically, introduce a
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large number of active basis functions at a quadrature point, which can degrade the
efficiency during matrix assembly. This drawback is mitigated through a newly pro-
posed all-at-once algorithm which calculates all the active THB-spline basis functions
simultaneously.

The proposed methodology is first utilized to model stationary and propagating
cracks. The crack face is enriched with the Heaviside function which captures the
displacement discontinuity. Meanwhile, the crack tips are enriched with asymptotic
displacement functions to reproduce the tip singularity. The enriching degrees of
freedom associated with the crack tips are chosen as stress intensity factors (SIFs)
such that these quantities can be directly extracted from the solution without a-
posteriori integral calculation.

As a second application, the Stefan problem is modeled with a hybrid func-
tion/derivative enriched interface. Since the interface geometry is explicitly defined,
normals and curvatures can be analytically obtained at any point on the interface, al-
lowing for complex boundary conditions dependent on curvature or normal to be nat-
urally imposed. Thus, the enriched approximation naturally captures the interfacial
discontinuity in temperature gradient and enables the imposition of Gibbs-Thomson
condition during solidification simulation.

The shape optimization through configuration of finite-sized heterogeneities is
lastly studied. The optimization relies on the recently derived configurational deriva-
tive that describes the sensitivity of an arbitrary objective with respect to arbitrary
design modifications of a heterogeneity inserted into a domain. The THB-splines,
which serve as the underlying approximation, produce sufficiently smooth solution
near the boundaries of the heterogeneity for accurate calculation of the configura-

tional derivatives.



1. INTRODUCTION

The study of moving boundary problems, including crack propagation, solidification
and shape optimization, is important to understanding many natural phenomena
as well as guaranteeing the performance of engineered objects. Often, the behavioral
characteristics associated with the immersed boundaries is known a-priori. Figure|l.1
illustrates different types of boundaries that may occur in engineering systems. A
discontinuity can appear in the heat flux across the phase boundary, and in the
normal strain across the material interface. The fracture is also characterized by
a displacement jump across the crack face. In addition to the weak and strong
discontinuities, the interface may also possess many geometry-dependent properties
and boundary conditions. Therefore, the capability to capture the discontinuities
across the interface, as well as an accurate geometric representation of the interface,

plays an important role in modeling the moving boundary problems.

=
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,'Phase

.7 boundary /\/
Crack

Figure 1.1. Schematic of typical immersed boundaries in engineering sys-
tems. €); and () represents liquid and solid phases, respectively. The
phase boundary, material interface and crack face possess specific behav-
iors involving strong or weak discontinuities.



To address the computational challenges, a straightforward approach is to force the
mesh align with the interface. This in turn requires remeshing as the interface evolves.
Alternatively, fixed mesh frameworks with enriching degrees of freedom (GFEM [1,2]
or XFEM [3]) may be used. In these methods, the evolving interface is commonly
tracked with an implicit geometry such as level-sets [4]. While the mesh regenera-
tion is avoided in GFEM/XFEM, the enriched node set need to be updated during
interface evolution. Another non-conforming mesh based technique is the phase-field
method [5] where the interface is represented by a diffuse phase-field variable. Due to
the implicit nature of the level-sets and phase-field, the geometric quantities such as
interfacial normal and curvature are not explicitly known at a point on the interface.
Since, the interface intersects with a non-conforming mesh, an accurate and efficient
numerical integration over the cut elements remains a challenge.

In general, finite element based solutions also suffer from another drawback in that
the classical Lagrangian elements are piecewise smooth but globally ¢°-continuous.
The inherent element discontinuity would affects application of interface conditions,
and gives rise to a large analysis error when the interface exhibiting weak disconti-
nuities is too close to the element boundaries. In this case, a €*-continuous mesh
is desired [6]. However, there are very few two-dimensional finite element imple-
mentations (e.g., Hermite elements) possessing %'-continuity and almost none in
three-dimension.

Renken and Subbarayan [7] first exploited the geometric representation in com-
puter aided dsegin (CAD) for analysis. To enable a seamless integration between
design and analysis, Natekar et al. [8] proposed constructive solid analysis (CSA) in
analogy to the constructive solid geometry (CSG) of CAD. The methodology relied
on the same mathematical representation (e.g., non-uniform rational B-splines, or
NURBS) for geometry and behavioral field, an idea that was later referred as iso-
geometric analysis (IGA) [9]. The NURBS, along with other spline variants, do not
only enable a precise representation of complex geometries, but also provide a € or

higher-order global continuity. Following the spirit of GFEM/XFEM, one can add



the enriching degrees of freedom to a fixed set of NURBS control points to model
the moving boundaries without remeshing [10-12]. However, there is still a need for
identifying and enriching the control points. In contrast, Tambat et al. [13] developed
isogemetric enriched field approximation where the interface is explicitly represented
by a lower-dimensional NURBS entity, and the additional degrees of freedom are di-
rectly associated with the control points of the interface. The methodology has been
successfully applied to study crack propagation in layered structures |14]. Never-
theless, several numerical issues such as point projection, non-homogeneous interface

conditions and local refinement, were not addressed in the early research.

1.1 Survey of Computational Techniques for Moving Boundary Problems

Based on the previous discussion, the computational modeling of moving boundary

problems typically involves three challenges:
1. Accurate geometric representation of the underlying domain and the interface,

2. Construction of a solution space that accurately and efficiently captures the

behavior near the interface, and
3. Ability to efficiently update and reanalyze the problem as the interface evolves.

The established techniques for modeling moving boundary problems can be first classi-
fied by the type of mesh used: Conforming mesh or non-conforming mesh or mesh-free
(particle methods). The non-conforming mesh methods can be further categorized
based on the representation of the interface. An interface is identified as explicit if
its geometric quantities (e.g., normal, tangent, curvature, etc.) can be analytically
obtained. In contrast, for an implicit interface, the material phase is known at a
spatial point, but not the geometric quantities such as tangents or normals. The

classification is pictorially illustrated in Figure and further discussed below.
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Figure 1.2. Classification of the techniques for modeling moving

boundary problems: @ Conforming mesh-explicit interface, e.g., fi-
nite element method (FEM); [(b)] non-conforming mesh/implicit inter-
face, e.g., eXtended Finite Element Method (XFEM); @ non-conforming
mesh/explicit interface, e.g., Enriched Isogeometric Analysis (EIGA); @
particle methods, e.g., Element Free Galerkin (EFG) method.

1.1.1 Conforming Mesh/Explicit Interface

A typical technique using the conforming mesh/explicit interface is the common
implementation of the finite element method in commercial codes. The €°-continuous
Lagrangian elements, despite causing a discontinuous gradient field across the element
boundaries, may be used to represent weakly discontinuous behavior when the inter-
face is aligned with the element boundaries. For instance, in the early literature, a
moving mesh method [15]/16] was proposed to model the solidification problem (Ste-

fan problem). According to the physics of the Stefan problem, the evolution speed of



the interface is proportional to the heat flux jump across the interface. Such a value
can be readily calculated from the €°-continuous elements. Besides, the alignment of
the interface with element boundaries also enables a strong imposition of the interface
conditions.

However, the finite element approximation, with its inherent geometrical approx-
imation, is accurate only in the limit of mesh refinement. The interface also becomes
piecewise linear/planar while aligning with the element boundaries. In general, a
great number of degrees of freedom are needed to model complex geometries and
interfaces [17]. In addition, the tracking of the moving boundaries require remeshing

at every step [18], and may cause a strong mesh distortion [19).

1.1.2 Non-conforming Mesh/Implicit Interface

The non-conforming mesh methods can avoid the inefficient mesh regeneration but
require auxiliary techniques to capture the various interfacial behaviors. Babuska
et al. developed the Partition of Unity Finite Element Method (PUFEM) which
can incorporate a-priori knowledge of local behavior into solution space. Based on
the PUFEM, Strouboulis et al. [2] proposed the Generalized Finite Element Method
(GFEM) by adding behavior-dependent degrees of freedom to the underlying finite

element nodes. A general expression of the GFEM approximation is given by

UGFEM = Z Nia; + Z N; (Z g;ﬁ”i/f;i”) (1.1)
iel j€le k

where, I and I, are the regular and enriched node sets, respectively. N; is the classical
FE basis function at node ¢ and a; is the corresponding nodal field. z/J,gj ) is the k-th
enriching function at node j and bl(cj ) represents the enriching degree of freedom associ-
ated with @Z),(j A variety of the enriching functions were provided in [20] for different
behavioral fields. Belytschko et al. [3] proposed eXtended Finite Element Method
(XFEM) to model the singular stress at crack tips by using asymptotic displacement



inspired enriching functions. Dolbow et al. [21] next added the Heaviside function to
the enriching function space to model the displacement jump across the crack face.
The level-sets [4], a tool to implicitize the immersed boundary, have been combined
with XFEM to solve a variety of moving boundary problems including crack prop-
agation [22], dislocation [23,]24] and phase evolution [25-H27]. The level set method
suffers from several drawbacks. First, the level sets are described by the Hamilton-
Jacobi equation, which is a difficult to solve, first-order hyperbolic equation and needs
stabilization to minimize the oscillation [28]. Further, due to the geometrically im-
plicit nature, the interfacial geometric quantities are not analytically known. Since
the enriching degrees of freedom are associated with the domain nodes, the interface
conditions have to be (weakly) applied on mesh than the interface.

The Phase-field method in which the interface is represented by a thin region
defined by the phase-field variable, has also been utilized to model moving bound-
ary problems such as crack growth [29,30] and solidification [31H34]. A significant
challenge with phase field method is the need to develop alternative (diffuse) mathe-
matical forms of the governing equations, which is typically much more complex that
those of the sharp interface models. An comparison of the governing equations for the
Stefan problem is shown in Table The phase-field equations are often non-linear
and non-convex, and the diffuse transition region has to be very thin to converge
to the physical solution, which in turn requires the mesh to span several orders of
magnitude in length scale and to be highly refined near the interfacial region. Thus,
adaptive mesh refinement is strongly desired to improve the efficiency. Further, the
introduction of phase-field variables often gives rise to a forth or higher order partial
differential equation, which necessitates € *-continuous elements or other complicated

numerical schemes.



Table 1.1.
Sharp and diffuse interface governing equations for the Stefan problem.

Sharp Interface Diffuse Interface [32]
In the bulk : In the bulk:
oT ) or _ opn, 10L(9)
o —ovT o VT
On the phase boundary : T(n)% —[p— A1 — ¢2>](1 _ ¢2)
[a.] = = pLv., o :
+ V- W (n) V]
T =T, — ec(n)k — €,(n)v,
+ 2 (1wopwm )
Ox 0¢ 2
0 8W(n))
+— (Vo'W
o (1verwm %

1.1.3 Non-conforming Mesh/Explicit Interface

In this work, a non-conforming mesh, explicit interface method, termed as FEn-
riched Isogeometric Analysis (EIGA), is proposed for modeling moving boundary
problems. The method retains the meshing convenience while preserving the geomet-
ric exactness of the interface with a explicit representation (see Figure . The
behavior-dependent, enriching degrees of freedom are directly associated with the
interface than the underlying domain, avoiding cumbersome update of the enriched
node set. More importantly, a strong imposition of interface conditions becomes
possible. The advantages of the proposed method are compared against existing
mesh-dependent techniques in Table [1.2]

The EIGA approximation is composed of the underlying approximation which has
a continuous contribution over the problem domain, and the enriched approximation
whose influence decays with distance. Both constitutive approximations are isogeo-
metric to enable direct CAD&E integration and provide higher global smoothness.
The influence of an interface on a spatial point can be estimated by constructing a
distance field from the interface. Further, in order to specifically identify the active

enriched nodes that influence the point, as illustrated Figure [1.3, a geometric point



Table 1.2.
Comparison of modeling techniques for moving boundary problems.

Finite Level-set & Enriched
Element Phase-field Isogeometric
Method Method Analysis
Mesh X Conforming mesh: v Non-conforming v Non-conforming
Type mesh: mesh:
e Remeshing at . . .
e No remeshing e optional remeshing
every step

e %! or higher order
continuity

Inter-
face v Explicit interface: X Implicit interface: v Explicit interface:
Type

e Direct imposition e Computationally e Direct imposition of
of interface conditions expensive interface conditions
e Hard-to-solve e Simpler governing
equations equations
e Geometric e Accurate calculation

quantities not known  of geometric quantities

projection becomes necessary. The non-conforming mesh, albeit providing flexibility
in mesh generation, leads to a difficulty in numerical integration. To accurately inte-
grate over the cells that are intersected by the interface, an efficient cell subdivision
algorithm is desired. In addition, if the behavioral field exhibits high gradient in
a region, according to the a-posteriori error estimator [35,36], this region needs to
be sufficiently refined to achieve a smaller computational error. However, the local

refinement within isogeometric framework is still non-trivial.

1.1.4 Particle Methods

To eliminate the time-consuming mesh generation step, several particle methods,
including Element Free Galerkin (EFG) method [37], Reproducing Kernel Particle
Method (RKPM) [38] and Meshless Local Petrov-Galerkin (MLPG) method [39),
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Figure 1.3. The enriched nodes that influence a given point & can be
identified by point projection.

have been developed. These methods typically rely on a class of least-squares in-
terpolants which do not require mesh connectivities. Thus, the nodes can be freely
moved to account for complex moving boundaries. The particle methods have been
successfully applied to model quasi-static and dynamic crack propagation [40-43].
But, the absence of mesh brings two major challenges: imposition of boundary con-
ditions and numerical integration. Due to the non-interpolative nature of the particle
approximations, the boundary conditions can only be weakly applied through La-
grange multiplier or penalty method [44]. Since, the domain integration by Gauss
quadrature is very cumbersome in particle methods, many nodal integration tech-
niques have been investigated [45-48|. Nevertheless, a stable and efficient numerical

integration remains a challenge.

1.2 Research Objectives

The goal of this work is to develop a non-conforming mesh, sharp interface for-
malism for modeling moving boundary problems. The behavioral approximation is a
weighted composition of the continuous approximation associated with the underlying

domain and the enriching approximation associated with the interface. A variety of
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enriching functions and degrees of freedom are designed to strongly impose interface
conditions, and to capture different interfacial behaviors such as singularity, weak and
strong discontinuity. Consistent with the isogeometric philosophy, the same mathe-
matical representation is used for geometry as well as behavioral field, maintaining a
tight connection between CAD models and engineering analysis. In order to describe
the contribution of the enrichment to a spatial point in the domain, and in particu-
lar, the region of the enriching geometry that influences the point, there is a critical
need to construct a distance field from the interface, and to calculate the parametric
value of the footpoint onto the interface. The recently proposed algebraic distance
field [49], providing highly efficient distance estimates without loss of geometric exact-
ness, is utilized in the current work. Furthermore, extending the algebraic distance,
a novel algebraic point projection method is next proposed. The proposed method is
demonstrated to be faster and more robust than Newton-Raphson iterations. Next,
to address the challenge in numerical integration of non-conforming mesh methods, a
kd-tree based adaptive quadrature scheme is developed. The scheme relies on a smart,
dimension-wise subdivision process which results in fewer quadrature sub-cells than
classical quad-/oct-tree schemes with less overall computational cost. However, an
accurate integration can not guarantee an accurate solution of the behavioral field in-
volving high local gradients. The truncated hierarchical B-splines (THB-splines) [50],
retaining 6! or higher-order smoothness while supporting local refinement, are used
to produce accurate field solutions. Several novel algorithms for mesh generation and
basis function evaluation are proposed to improve the efficiency during these steps.
The enriched isogemetric analysis concept is implemented in a parallel computational
framework termed OOF-HiDAC (Object-Oriented Fortran based Hierarchical Design
and Analysis Code). The proposed methodology is first applied to model stationary
and propagating cracks. The stress intensity factors are selected as the tip enriching
degrees of freedom, such that they can be directly obtained from the solution without
a-posteriori integral calculation. Next, the proposed methodology is utilized to model

classical and dendritic Stefan problem. The enriched approximation naturally cap-
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tures the interfacial discontinuity in temperature gradient and naturally enables the
imposition of Gibbs-Thomson condition. Lastly, the shape optimization through con-
figuration of finite sized heterogeneities is studied. The stress concentration resulting

from material interfaces can be effectively represented by the THB-splines.

1.3 Outline

The rest of this dissertation is structured as the following. In Chapter [2| the
mathematical form of the enriched isogeometric approximation is proposed. The con-
tinuous and enriching approximations that are composed together are formulated. In
Chapter [3| the construction of the algebraic distance field, as well as an algebraic
manipulation for fast calculation, is reviewed. In Chapter [4, a new algebraic point
projection technique for two-dimensional parametric curves and three-dimensional
parametric surfaces is developed. The technique provides exact on-curve solution and
an accurate near-curve solution, and is faster and more robust than Newton-Raphson
iterations. A novel kd-tree based adaptive quadrature scheme, aimed at accurately in-
tegrating the cells intersected by the immersed boundaries, is developed in Chapter [5
The truncated hierarchical B-splines, along with their advantages and challenges for
engineering analysis, are discussed in Chapter [f] To address the challenges, several
new mesh refinement and basis function evaluation algorithms are proposed. In Chap-
ter [7, the implementation of the enriched isgoemetric framework and the supporting
techniques in a Fortran code termed as OOF-HiDAC is described. The implementa-
tion relies on a hybrid OpenMP /MPI parallelism and is capable of solving problems
with a large number of degrees of freedom. In the next three chapters, the proposed
techniques are applied to three different types of moving boundary problems: crack
modeling (Chapter , Stefan problem (Chapter @ and shape optimization (Chap-
ter , respectively. Different enriched approximations are constructed is designed
in these problems to capture different interfacial behaviors. Finally, the thesis is

summarized in Chapter [11] with the novel contribution and proposed future work.



12

2. ENRICHED ISOGEOMETRIC ANALYSIS

The general form of the enriched isogeometric approximation is developed in this
chapter. The behavioral field is represented by a weighted composition of a continuous
approximation on the underlying domain and enriched approximations associated
with the moving boundaries. The approximations are usually chosen to be the same
as those representing the geometry to enable a tight integration between the geometry

construction and analysis.

2.1 Non-Uniform Rational B-Splines (NURBS) Based Approximation

Spaces

In this study, both the underlying domain and the moving boundaries are modeled
using Non-Uniform Rational B-Splines (NURBS). NURBS can represent complex free
surfaces and conics exactly with fewer degrees of freedom, and are therefore widely
used in the Computer-Aided Design (CAD) [51]. It has been shown that the NURBS
basis is analysis-suitable and can yield higher convergence rates than classical linear
basis functions [7H9]. The use of the same approximation (e.g., NURBS) to repre-
sent the geometry and the behavioral field enables a seamless CAD /CAE integration
without a loss of the geometric accuracy. This methodology is usually referred as
Isogeometric Analysis (IGA) [9].

The NURBS approximations for a three-dimensional domain and a behavioral

field may be written as [51]:

ng njg  ng

§ 7, C ZZZRz]k 5 n, C wl]k (21&)

i=1 j=1 k=1

ng L] ng

5 777 ZZZRmk 5 777 fljk (21b)

i=1 j=1 k=1
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respectively. &;j is the ij k™ control point and ﬁjk is the nodal field associated with

Zijk- i, nj and ny are the number of control points in the ith 5t and k' directions,

respectively. R;;j, is the rational basis function defined as the tensor product:

Nip(§)Nj (1) N (Qwiji

Rijk(f? m, C) =

a Z?zl Z?]ﬂ Zil Nip(§)Nj g (1) Ni o (Q)wign

(2.2)

where, NN;, is the degree p B-spline basis function defined on a set of non-uniform

knot vectors written as:

E={&, &, .. Enapi1 )
Based on the knot vectors, the B-spline basis functions are given by:

1 it <E<é&n

N; =
0 (&) 0 otherwise
' & §ivpr1 —&
Nz,p (5) - é’i—‘,—p _ fz Nz,p—l (5) + §i+p+1 _ €i+1 Nz+1,p—1 (5) .

The B-spline basis functions have the following properties:

1. Non-negativity:

Nip(§) 20 V¢

2. Partition of unity:

(2.3)

(2.4a)

(2.4D)

(2.5)

(2.6)

3. Local support: N;,(£) has a compact support and is non-zero in the interval

[gz ) gi—l—p—i—l) .

4. Smoothness: N;,(£) has continuous derivates of order p — m, with knot mul-

tiplicity of m.
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The NURBS basis functions, which are normalized tensor products of the B-spline

basis functions, possess similar properties.

2.2 Enriched Field Approximations

Based on the Partition of Unity Finite Element Method (PUFEM) [52], Sub-
barayan and co-workers [53}/54] developed the Hierarchical Partition of Unity Field
Compositions (HPFC) theory where the global domain is a hierarchical composition
of local sub-domains or primitives. The geometry, materials and the behavioral fields
are constructed in the manner analogous to the Constructive Solid Geometry (CSG)
procedure of CAD (see Figure 2.1)). The HPFC theory states that at any given point

in the domain, the following representation of the composed field is possible:
fl@) =) wi(x)fo,(@) (2.7)

where, in order to ensure the convergence of analysis, the weight function w; satisfies

the following conditions :

sz(m) =1 (2.8a)

0 < wi(z) <1 (2.8b)

Jevi(@)]. < Cu (2.80)
C,

IVwi@)l,, < ——2. (2.8)

Tambat and Subbarayan [13] extended the HPFC theory to lower dimensional

entities. The behavioral field can be constructed to form a partion of unity as follows:

fa) - (1 -y wz) fola) + > wifo,(P(@) 29)
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O
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Figure 2.1. Hierarchical compositions of primitive geometrical entities in
constructive solid geometry.

where, fq is the continuous approximation associated with the underlying domain
Q and fr, is the enrichment approximation defined isoparametrically on the #*" ex-
ternal/internal boundary I';. Not only can the enrichment fr, be a known function
to apply boundary /interface conditions, it may also contain unknowns correspond-
ing to the apriori knowledge of local behavior. Since each enrichment is defined on
a lower-dimensional geometric entity C(u), a projection uy = P(x) is necessary to
map the spatial point @ to the parameter u of footpoint on C(u). The methodology
where the base approximation fq is enriched with lower-dimensional approximations

fr,, is termed as Enriched Isogeometric Analysis (EIGA). An enriched isogeometric
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approximation with a single enrichment is illustrated in Figure 2.2l One approach to

constructing the function wj is to use the normalized inverse distance [55] as follows:

d; " (x)

]

S () (2.10)

wi(x) =
where, d;() is the distance from the spatial point « to the boundary I';. The function

w;(x) is p—1 times differentiable at the boundary. Thus, an exponent 1 > 1 is chosen

to satisfy Eq. (2.8d))

/ g Blending
AN # approximation
\;7 (40 DOFs)
U
¥

Curve with 4

6x6 mesh (36 DOFs) control points
(4 DOFs)

Figure 2.2. [Illustration of a two-dimensional enriched isogeometric ap-
proximation.

If there is only one enrichment, the Eq. (2.9)) can be reduced to:

f(@) = (1 —w) fo(®) + wfr(P(x)). (2.11)
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In this case, a natural candidate for w is the exponential function of d():
w=w(d(x)) =e I'ds (2.12)

where, d is a scaling factor. The weight function with different exponent p is shown
in Figure Likewise, the exponent g > 1 is chosen to assure the differentiability
of w(x) at the boundary.

Figure 2.3. The exponential weight function (Eq. (2.12))) with different
w1 values. The scaling factor is chosen as ds = 1.
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3. ALGEBRAIC DISTANCE FIELD

As described by Egs. and , the construction of the weight functions
necessitates a monotonic measure of distance from the boundaries. Since the distance
needs to be evaluated at each quadrature point during numerical integration, efficient
calculation of distance is critical. In this chapter, an approach relying on algebraic
geometry to compute the distance is discussed. This technique possesses several useful

properties to facilitate the enriched isogeometric analysis.

3.1 Introduction to Distance Measure

Given a parametric curve or surface entity C(u) € R" (u is treated as a vector
when the entity is a surface), the Euclidian distance function d(x) is defined as the

shortest distance from physical test point & to C(u) given by:
d(x) = inf||xz — C(u)||. (3.1)

The distance function d(x) is continuous for all & € R"™ and differentiable almost
everywhere.

A classical approach to find continuously varying distance is the Newton-Raphson
scheme [51,56-58]. This scheme is very sensitive to smoothness and local curvature
of the target curve or surface, as well as the initial guess. No only is the iterative
scheme computationally expensive, the calculated distance field is often not suffi-
ciently smooth for many engineering applications due to the imperfect geometry.
The efficiency can be substantially improved by approximating the geometry with
piecewise lines or planes. [59-61]. However, the resulted distance field is only piece-
wise continuous, and not exact on the boundary. Biswas and Shapiro [62] utilized

R-functions [63] to construct a global distance field from the individual distances
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to each linear segment, which provides a smooth solution but still compromises the
exactness of the boundary.

Upreti et al [49] discussed in detail the efficient computation of algebraic distance
estimates from curves and surfaces. The main idea is to implicitize the parametric
entity and use the level set of the implicitized function as a measure of distance.
Pre-processing by decomposing the NURBS entity into constituent Bezier patches
and post-processing by blending using R-functions were utilized to generate the dis-
tance fields from the NURBS entities. The algebraic distance field has the following

properties:
1. Exact locally near the surface
2. Monotonic function of exact distance
3. Sufficiently smooth for engineering applications
4. Efficiently obtained without numerical iterations

For the sake of completeness, we briefly review the computation of algebraic dis-

tance field and illustrate the procedure through simple examples.

3.2 Implicitization of a Parametric Curve

Given a rational parametric curve C(X(u),Y (u), W(u)) of degree p with x =

I);/((Z)) Y = v}I//((Z))v one can construct two auxiliary polynomials:

gi(z,u) =W(uwz — X(u) =0 (3.2a)
92y, u) = W(u)y —Y(u) = 0. (3.2b)
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The above polynomial equations can be rearranged in descending power of u as fol-

lows:

g1(v) = apu? + a, uPt + -+ agu+ ag (3.3a)

g2 (1) = byu? + by uP™ 4 -+ byu + by. (3.3b)

From the above, the following resultant system may be obtained through algebraic

manipulations [64]:

uP uP~1
(apbp-1) -+ (apbo) -2 -2
. . . B
= | }W =0 (3.4)
ayb -+ (a1b
(apbo) (a1bo) . .

where, (a;b;) = a;b; — a;b;, M* is Bezout matrix and is a function of  and y having

the following important property:
M”(z,y) = MZz + My + M5 (3.5)

where, Mf , MyB and Mg depend on control point coordinates and weights. There-
fore, these matrices can be pre-computed for a given rational parametric curve and
re-used given any new physical point . The determinant, det(M?(a)), is de-
fined as the Bezout resultant. Since all the allowable parameter values u for curve
C(X(u),Y (u), W(u)) are roots of Eq. (3.4), det(MP?(x)) = 0 gives the equation of
the implicitized curve. Thus, the algebraic level sets corresponding to a rational

parametric curve (e.g., Bezier curve) are given by:
[x) = det(MB(w)). (3.6)

An example of algebraic level sets is shown in Figure [3.1]
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distance

Figure 3.1. Implicitization of a quartic Bezier curve. Level set I'(x) =
det(M(x)) can be used as a measure of distance.

3.2.1 Boolean Operations by R-functions

As observed in Figure the direct implicitization extends the parametric curve
beyond its end points, and yields an invalid distance measure in the extended region.
Therefore, it is desirable to trim the curve C'(X (u), Y (u), W (u)) within its parameter
range u € [a,b]. In related prior work, Biswas and Shapiro constructed an

approximate distance from a line segment as:

gz\/FQ+M (3.7)

with I" being the normal distance from the line, and ¢ being a set of points that are
positive in a region formed by a circle circumscribing the line and negative outside.
This form yields a smooth distance function across the boundary ¢ = 0. Upreti et
al. extended the above idea by carrying out boolean operations on fields obtained
on (individual segments of) an arbitrarily shaped parametric curve and an enclosing

convex region using R-functions (Figure. The R-functions enable a smooth
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and purely algebraic boolean operation, and result in a continuous distance measure.
Two specific R-functions used in this study are:

1. R-conjunction, equivalent to boolean intersection:

91/\92:91+92—\/9%+9§- (3.8)

2. R-disjunction, equivalent to boolean union:

GVg@=ag+3g+\/9i+9; (3.9)

Figure 3.2. A convex region ¢ > 0 is used to trim the implicitized curve
['(x) = 0 to a parametric curve C(u) within the allowable parameter
range.

Upreti et al. [49] used the convex hull property of Bezier and NURBS curves
to provide a natural convex region bounded by control points for curve trimming.

Assume that the i-th hyper-plane of the convex hull is expressed as:

where, € R" is a spatial point, n; € R" is inner normal and b; € R is offset. Thus,

the exact distance from any point @ to the hyper-plane h;(x) = 0 is h;(x). The
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function ¢ can be obtained by applying R-conjunction operation of Eq. (3.8) to all
hi(x),i =1,2,...,n. An example of a cubic Bezier curve is shown in Figure .

M

hy

Figure 3.3. Control points of a cubic Bezier curve C(u) forms a convex
hull consisting of four hyper-planes hq, ho, h3 and hy with inner normals
ni,no,n3 and ny respectively. Boolean intersection of the four hyper-
planes using R-function yields a trimming region ¢ > 0.

3.3 Normalization and Composition of Algebraic Distance Fields

The aforementioned procedure generates a monotonic and continuous distance
measure for a basic parametric curve such as a Bezier curve. Piecewise polynomial
curves such as NURBS curves, on the other hand, require decomposition to Bezier
segments and composition of distance sub-fields of the obtained segments. Further,
normalization for each distance sub-field is desired to yield a monotonically varying
composed field. Considering a physical footpoint x, one can approximate I'(xf) to
a first order using Taylor expansion:

oI'(x)

D(zy) = (@) - — -

d. (3.11)
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Since the resultant has exact zero set on a parametric curve, i.e., I'(zf) = 0. one can

derive a normalized distance function as follows:

B ['(x) T
d= o = [T (3.12)

After obtaining normalized algebraic distance sub-fields for each decomposed Be-
zier segment, one can compose them using R-conjunction operation (Eq. ) and
thereby generate the desired algebraic distance field. As demonstrated in [49], the
R-conjunction operation preserves the normalization of individual Bezier segments.
However, an implicitized curve obtained from a Bezier curve of degree p may have as
many as 5(p — 1)(p — 2) self-intersections or double points [66]. Any double points
inside the convex hull will affect the algebraic distance construction, and therefore
need to be moved out by sub-divisions of the Bezier curve. The algorithm to carryout
this process is discussed in reference [49]. Thus, for practical reasons of avoiding
more than one double point while enabling sufficient generality in modeling complex
geometries, the methodology is restricted to low degree NURBS curves (p < 3).

Figure shows an example of algebraic distance field of an open curve containing

two points with Y continuity.

3.4 Extension to NURBS Surface

The algebraic distance field construction can be extended to three-dimensional
NURBS surfaces in a straightforward manner by implicitizing the rational para-

metric surface with the Dixon resultant [64]. Given a rational parametric surface



25

distance

Figure 3.4. Algebraic distance field of a symmetric cubic curve. 4° con-
tinuity is present at (z,y) = (—1,0) and (1,0). The generated algebraic
level sets retain the symmetry while ensuring the smoothness of the field.
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S(X(u,v),Y (u,v), Z(u,v), W(u,v)) of degree p x ¢ with z = ff,((ijj)),y = Vl‘/,(&’?) and

Z(u,v)
W (u,w)?

z= three auxiliary polynomials can be formed as follows:

g1(z,u,v) = W(u,v)z — X(u,v) =0 (3.13a)
g2(y,u,v) = W(u,v)y —Y(u,v) =0 (3.13b)
g3(z,u,v) = W(u,v)z — X(u,v) = 0. (3.13¢)

As before, using algebraic elimination theory, one can derive the corresponding resul-

tant system for surface S
D T
[M }2pq><2pq (1 u e ouPTl ool p2ael gp2el Ll up—IUZq—l) =0 (314)

where, the vector is indexed lexicographically. M” is the Dixon matrix which also

possesses a property analogous to Eq. (3.5)) of linearity with respect to x, y, and z:

MP”(z) = M2z + M)y + MPz + M) (3.15)
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where, as before, Mf ,Mf 71\/IZD and Mg depend on control point coordinates and

weights. The determinant of the Dixon matrix is the Dixon resultant:
['(x) = det(MP”(x)). (3.16)

An example of the algebraic distance field from a free surface is illustrated in Fig-
ure (3.5 The pseudo-code in Alg. [1| shows the generic steps in algebraic distance
computation for NURBS curves and surfaces. Both NURBS curves and surfaces are
denoted by C'(u) here for notational convenience, with the implicit understanding

that w = (u) for curves and u = (u,v) for surfaces.

distance
0.3
N 0.25
0.8 0.8 0.2
0.7 0.7 0.15
0.6 0.6 0.1
0.5 0.5
z 04 z 04 0.05
0.3 0.3 0
0.2 0.2 1
0.1 0.1
0 0 )
10 '
(a) A quadratic NURBS surface (b) Slicing in x-y plane
distance distance
0.25 0.25
0.2 T 0.2
0.8 0.15 0.8
0.7 0.7 0.15
0.6 0.1 0.6 0.1
0.5 0.05 0.5 0.05
z 04 z 04
0.3 0 0.3 0
0.2 0.2 1
0.1 0.1
0 0 0
10 '
(c) Slicing in y-z plane (d) Slicing in x-z plane

Figure 3.5. Algebraic distance field from a symmetric quadratic NURBS
surface. @ The valley of the surface contains only a ¢° continuity across
the plane of symmetry. The distance field is plotted over three principal

planes slicing the surface: x-y plane y-z plane and x-7 plane.
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Algorithm 1 Algebraic Distance Field Algorithm

Input: NURBS curve or surface C(u) and given test point x
Output: Algebraic distance d from @ to the NURBS entity C(u)

1: function ALGEBRAIC_DISTANCE(C), x)
2: A(C) < Split NURBS entity C' into a Bezier set with segments B;,i =
1,2,--,n

3: for i <+ 1,n do > Loops are independent and parallelizable
h; < Create convex hull for B; € #(C)
5: d; < Carryout boolean union of distance fields of h; obtained using
Eq. with B;
6: end for
7: d < Carryout boolean intersection of distance sub-fields d;,7 = 1,2,--- ,n

using Eq. (3.8))

8: end function
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4. ALGEBRAIC POINT PROJECTION

Point projection is an important need in Computer Aided Design, to estimate the
parametric value of the nearest point on a curve or surface from a given spatial lo-
cation. In the enriched isogeometric analysis, the influence of the enriching geometry
to a spatial point can also be determined through point projection. In this chapter,
a non-iterative, algebraic technique for point projection is presented for low degree
NURBS curves and surfaces. The method is extended from the algebraic distance
field, providing exact on-curve/surface solution and accurate near-curve/surface so-
lution. Examples are presented to illustrate the efficiency and robustness of the de-
veloped method. The computational expense is demonstrated on the examples to be
comparable or lower than that required for a single Newton-Raphson iteration. The
method is shown to be robust and able to generate valid solutions even for curves and
surfaces with high local curvature or ¢, continuity — problems where the Newton-
Raphson method fails due to discontinuity in the projected points or because the

numerical iterations fail to converge to a solution, respectively.

4.1 Introduction to Point Projection

Given a test point and a parametric entity (curve or surface), the generalized point
projection problem is to find the closest point (footpoint) on the entity as well as the
corresponding parameter value. Since the footpoint is the closest point on the curve
or surface, the line connecting the test point to the footpoint is normal to the curve

or the surface [56]:

g(u)=C'(u) - (x — C(u)) = 0. (4.1)
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The footpoint of projection in parametric space uy can be thus defined as

uf=P(x)= argmin |z — C(u)l, (4.2)
C'(u)-(C(u)—x)=0
This problem is of importance in geometric modeling. For instance, while fitting a
curve or surface to sampled data, one may need to compute corresponding parameter
values and errors at data points since the error is the distance between the data point
and the fitting curve or surface [67].

Point projection also plays an important role in computer aided engineering (CAE).
Analysis of interaction with explicitly defined boundaries in a domain requires point
projection to compute the influence of the domain point on the appropriate location
of the inserted boundary (see Figure . For example, in solutions to mechanical
contact problems [68,/69], point projection is needed to define the normal gap and
tangential slip between two bodies. In fluid-structure interaction (FSI) problems,
point projection has been utilized to transfer kinematic and traction data between
non-matching fluid-structure interface [70]. Recently, point projection has been used
to enrich the base approximations with those on lower-dimensional geometrical fea-
tures such as crack surfaces and phase boundaries, enabling simulations of fracture
propagation [13}/14] and solidification [71]. A fast and robust point projection method
is critical to efficiently solving these problems.

The use of Newton-Raphson (NR) iterations for solving Eq. is well established

at this time. These iterative methods mainly consist of two steps:

1. Seek an initial point or segment

2. Iterate by Newton-Raphson scheme until convergence

The robustness and the efficiency of Newton-Raphson scheme depends significantly
on the initial guess. Therefore, to assure convergence of the second step, careful
selection of initial position is needed.

To this end, a significant focus of the existing literature is on eliminating portions

of the curve or surface where the solution cannot lie. Piegl and Tiller [67] developed
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Figure 4.1. Mechanical analysis in the presence of complex free form
embedded surface. The spatial point may only influence a local region of
the surface with the highlighted control points, which can be identified by
point projection.

a non-iterative, heuristic algorithm where a NURBS surface was decomposed into
quadrilaterals and test points were projected onto the closest quadrilateral. Ma and
Hewitt [57] described a search for the initial guess of the footpoint by recursively
sub-dividing the Bezier segment associated with a valid control polygon. However,
using the control polygon to eliminate segments of the curve may exclude the correct
solution [72]. Selimovic 73] improved Ma and Hewitt’s method using selective sub-
division of the NURBS curve (surface) based on distance to the end (corner) point
of the entity. Chen et al. [74] pointed out the need for all control points to lie
on different sides of a hyperplane in Selimovic’s algorithm and proposed a circular
clipping method with a sufficiency condition for a curve to lie outside an elimination
circle. Other iterative methods in the physical space have also been proposed for

point projection including the geometric second order iteration method [75,/76].
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On the other hand, uy(«) calculated from orthogonal projection (Eq. (4.2)) may
be non-unique, discontinuous or non-existent as illustrated in Figure 4.2 The foot-
point of a test point near the curve or surface segment with high local curvature can
be non-unique, leading to discontinuity of point projection process as illustrated in
Figure[4.2al The non-existence is illustrated in Figure [d.2b] and occurs around points
where C(u) has only 4° continuity.

(a) Nustration of the discontinuity of point  (b) Ilustration of non-existence of point
projection projection

Figure 4.2. Special cases encountered during point projection: @ Exact
projection from points on a straight line to a bell-shaped curve. Discon-
tinuity occurs at the circled central point due to non-uniqueness of point
projection. @ Projection from points on a straight line to a cone-shaped
curve. The dashed line segment has no footpoint on the curve.

To circumvent the challenges, a purely algebraic, and therefore non-iterative, non-
recursive and efficient, near-orthogonal point projection technique for low degree two-
dimensional (2D) NURBS curve and three-dimensional (3D) NURBS surface is devel-
oped. The projection solution is obtained in finite time since the solution does not rely
on numerical iteration or recursion. The proposed technique preserves the geometric
exactness of NURBS curve and surface, and therefore gives an exact on-curve/surface
solution. In addition, the technique is robust for curves and surfaces with high local

curvature or ¢, continuity compared to techniques that rely on derivatives.
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4.2 Algebraic Point Projection for NURBS Curve

As illustrated using Figure iterative numerical solution for point projection
may lead to a discontinuity in the projected point or may miss the correct solution.
Hence, we develop in this section a purely algebraic point projection algorithm with

the following properties:

1. Exact at any point on the curve or surface, i.e., exact point inversion

2. Controllable accuracy when projected from points near the curve or surface

3. Efficient, non-iterative and non-recursive solution procedure

4. Projected points are continuous even near curve segments with high curvature

5. Valid solutions even when projected onto curves with only 4° continuity

The present method consists of two steps: estimation of the footpoint in physical
space and point inversion based on resultant system.
4.2.1 Projection in Physical Space

From Eq. (3.12)), the gradient of normalized approximate distance function is

derived as

I \v4h
Vd=|1I- H 4.3
( A >HVFII (43)

where, I is the identity matrix and H is the Hessian of function I'(x). Using the
above distance gradient, the physical footpoint ; can now be approximately located

as

Vvd

Tr=o —d——-—-.
! V||

(4.4)
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To calculate d and Vd using Eqs. and ([£.3)), it would appear at first glance as
though I', VI" and H need to be evaluated for every test point. However, the following
derivation as well as procedural detail show that d and Vd can be computed efficiently
without explicitly calculating I', VI or H. One can express VI' and H in terms of
Bezout matrix M? and its components Mf and Mf (the superscript B is dropped

in the following for ease of reading):

o (M2 M) (MM, |
VT = M| — M =Tg (4:5)

_tr <M*1 gyM) tr (M_lMy)

62 (MM tr (M7'M,) tr (M7'M,) |
(ML) (e ()|
H=|M| =TH. (4.6)
tr (MM, tr (M™'M,,) tr? (M™'M,)
—tr (M7'M,) (M™'M,)) —o(MUM)T)

where, § and H are the vector/matrix multiplying M| in the above equations, re-

spectively. Substituting Eqs. (4.5) and (4.6) back into Eqs. (3.12) and (4.3)), one

obtains
1
d=— 4.7
. D
= i - I?gg. (4.8)
gl llg]

The efficiency of algebraic point projection in two-dimensional physical space is

summarized as follows:

1. Component matrices M,, M, and M,, are constant for a given rational para-
metric curve. Therefore, they can be pre-computed and repeatedly used at a

point x.

2. Only matrix M needs to be factorized, and the procedure extensively reuses the

products M™'M, and M_ll\/Iy when computing H and g.
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3. For a Bezout matrix M of the size p X p, where p is the degree of the rational
parametric curve, the typical computational cost is low since p is usually small

in engineering applications.

Algebraic point projection in two-dimensional physical space is validated in Fig-
ure 4.3 where the developed method is compared against the Newton-Raphson it-
erations for various test distances. The developed method converges to the exact

footpoint as the test distance decreases.

4.2.2 Inversion to Parametric Space

Given a footpoint x in physical space, finding a corresponding parameter uy such
that C(us) = xy is the point inversion problem. The direct approach to carrying out
point inversion is by solving a system of polynomial equations, which may result in
numerical tolerance related challenges, especially when ¢ is not exactly on curve
C(u) [51]. This drawback can be overcome by using the Bezout matrix [64] as shown

in the following. Evaluate M”(zx;) with z; = (z,y;):
M (zy) = Myz; + My; + My, = [mij]p. (4.9)

Then, Eq. (3.4) can be rewritten as the following over-constrained linear system:

~1
mir Miz - Myp_1) uP mip
Mo1 Mz -+ Mapoi) uP=? Mo
. p— p
Au = = — (4.10)
Mpt My Mo | u My

Matrix A is full ranked if Eq. (3.3) has only one common root, i.e., if x; is not a
double point |77]. Thus, us can be obtained by solving a linear least square problem

resulting from Eq. (4.10)), which requires bounded computational cost unlike numer-
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Figure 4.3. Point projection in two-dimensional physical space using the
developed algebraic method as well as Newton-Raphson iterations for @

test distance d = 0.25, @ test distance d = 0.15 and test distance
d=0.05

ical iterations using Newton-Raphson method. Also, if a physical test point x is
initially on the curve, then x; = @, and the point inversion can be directly applied.

In order to compute uy on a NURBS curve, which is piece-wise polynomial, pro-
jection onto the appropriate Bezier segment is required. For this purpose, one can
identify the closest Bezier segment using algebraic distance sub-fields, and apply

algebraic point projection on the closest Bezier segment. Denoting the computed
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parameter on the closest Bezier curve as u? , the corresponding parameter on the
original NURBS curve uﬁcv can be obtained by purely linear scaling and offset. Unlike
iterative or recursive schemes, the algebraic method guarantees the existence of a
definite footpoint without needing to manipulate user-controlled parameters such as
stop criterion or recursion limit in an effort to coax a solution. If a test point is close
to the connection node of two adjacent Bezier segments, a result of ujl? <Oor u? > 1
may be obtained. In this case, higher projection precision can be achieved when a

second point projection to the adjacent Bezier segment is attempted (Figure [4.4)).

........... | I I I Lo 14 projection

- . 2,4 projection
(uf €10,1])

Figure 4.4. Tllustration of the second projection onto an adjacent Bezier
curve segment if the first projection yields an out-of-span solution.

4.3 Extension to NURBS surfaces

Analogous to the algebraic distance field in three-dimensions, the algebraic point
projection can be naturally extended to three-dimensional Bezier and NURBS sur-
faces by replacing Bezout matrix M? with Dixon matrix M”. Since the Dixon matrix
also has the linearity property as given in Eq. , the basic procedure for point

projection remains the same as outlined in Section [4.2]
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4.3.1 Projection in Physical Space

Utilizing the linearity property (Eq. (3.15])), one can rewrite VI" and H in Eq. (4.3))

as follows (as before, superscript D is dropped for ease of reading):

VI = M|
H = M|
=TH.

tr (M2 M) tr (M™'M,)
tr (M1 2M) | = M| o (M'M,) | =T§ (4.11)
tr (M M) tr (M'M.,)
[ 2 (M~!M,) o (M7IM,) tr (M7'M,) o (M7'M,) tr (M7'M.) |
—o(MTML)F) e (MOTM) (MTM)) e (MCTM) (MTML))
tr (M™'M,) tr (M™'M,) tr? (M™"M,)) tr (M™'M,) tr (M~'M.,)
—w (MM (MUML) e (MT'M,)°) e (M'M) (MT'ML))
tr (MT'M,) tr (MT'M,) o (MM, tr (M'M,) tr? (M~'M.)
o (MTTML) (MTTML)) e (MTTML) (M) e (MOML)®)

Next, as before, Egs. (4.4), (4.7) and (4.8) can be exploited to obtain the physical

footpoint @ in three-dimensional space. Earlier statements on efficiency of the alge-

braic point projection for rational parametric curves also apply to rational parametric

surfaces except that the size of the Dixon matrix MP” is 2pg x 2pq, where p and ¢

are the degrees of the rational parametric surface in each dimension. Algebraic point

projection in three-dimensional physical space is demonstrated in Figure 4.5 where

test points are projected onto a target Bezier surface using the proposed method and

the Newton-Raphson iterations. Again, one can observe that the proposed method

leads to accurate solutions for test points closer to the surface.
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Trace of points to be projected
Newton-Raphson method
Algebraic point projection

0.5

Figure 4.5. Point projection in 3D physical space using the proposed
algebraic method and Newton-Raphson iterations.

4.3.2 Inversion to Parametric Space

The point inversion for rational parametric surfaces can be carried out using Dixon
matrix as well. Substituting the physical coordinates of the footpoint x; = (zy, yr, 2f)

in M? we get
MP () = MPzp + M)y + MDzp + ML = [mi;]apgw2pg- (4.13)

Thus, as before, the homogeneous system Eq. (3.14) can be converted into an over-

constrained non-homogeneous system as follows:

U
mi2 ot Ma(14ityp) Tt Mi(2pg) : mi1
win? =— ; . (4.14)
M@2pg)2  *+ M2pq)(1+i+ip) “° T(2pq)(2pg) : M(2pqg)1
p—1,,2q—1

(% (%



39

The parameters (us,vs) of the footpoint x; can be computed by solving the above
non-homogeneous system using QR factorization or singular value decomposition.
As before, the computation of parameters (uﬁy ,v}v ) on a NURBS surface requires
sub-division of the surface into a set of Bezier segments. One can apply algebraic
point projection to the Bezier segment with shortest algebraic distance, and acquire
(uf’,v}’) from the Bezier parameters (uf,v) by simple linear scaling and offset. As

illustrated in Figure a second projection may be necessary when u]]? or UJ]? is

outside the range [0, 1].

|:| 14 projection

2,4 projection
wf ¢[0,1]1 @ vf ¢ [0,1])

I:l 24 Projection
(uf ¢[0,1]Avf ¢[0,1])

Figure 4.6. Illustration of the second projection onto an adjacent Bezier
surface segment if the first projection yields an out-of-span solution.

The generic pseudo-code of algebraic point projection for both NURBS curves and
surfaces is listed in Alg. [2] As can be seen from Alg. [T and Alg. [2] algebraic distance
field (ADF) and algebraic point projection (APP) are closely connected. Algebraic
distance field provides the closest Bezier segment for the first point projection, but
also restricts the target curve or surface to be low degree (p,q < 3) so as to avoid

double points.
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Algorithm 2 Algebraic Point Projection Algorithm
Input: NURBS curve or surface C(u) and given point @
Output: Parameter u}v of footpoint on NURBS entity C.

1: function ALGEBRAIC_POINT_PROJECTION(C, x)

2: A(C) < Split NURBS entity C into a Bezier set with segments B;,i =

1,2,---.,n
3: for i + 1,n do > Loops are independent, parallelization is possible
4: h; < Initialize convex hull for B; € Z(C)
5: d; < Carryout boolean union of distance fields of h; and B; by Eq. (3.7))
6: end for

Vg, (

7 x; < x —dp,(x )HVdB H where j = argmin,¢(; ,,; d;

8¢ uf « Solve Eq. (4.10) with M”(a;) or Eq. (1.14) with M"(z;)
9: if 'u,f is out of span then
10: u®? 7 < Carryout the second projection based on Figure or Figure

11: if Second projection is infeasible or u? is still out of span then

12: u? < Compute corresponding parameter value on B; boundary
13: end if

14: end if

15: u} < Scale and offset u} based on knot span of C

16: end function

4.4 Numerical Examples of Algebraic Point Projection

Four numerical examples are presented to demonstrate the algebraic point projec-
tion: two curve examples and two surface examples. The first curve example shows
the performance of algebraic point projection in a simple test to estimate compu-
tational accuracy. In this example, it is shown that a quadratic convergence rate is
achieved. The second curve example and both surface examples show the performance
of the proposed method in complex tests involving discontinuous and/or non-existent
footpoints. The computational efficiency of the developed method is demonstrated

through a comparison with the Newton-Raphson iterations in all examples.
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4.4.1 Curve Tests

The first curve example is illustrated in Figure [£.7, where physical points in the
underlying domain are projected onto a given NURBS curve using both Newton-
Raphson iterations as well as algebraic point projection. Contour levels indicate the

value of parameter uﬁy of the predicted footpoint.

parameter
0.8

0.6

> 0.4
0.2

0

0 0.5 1 15 2 25 3 3.5 4 4.5
(a) Parameter values of the footpoints obtained through Newton-Raphson iterations

parameter

0 0.5 1 1.5 2 25 3 3.5 4 4.5
X

(b) Parameter values of the footpoints obtained through algebraic point projection

Figure 4.7. Parameter values of footpoints obtained using @ Newton-
Raphson method and algebraic point projection. Parameter range of
NURBS curve is [0, 1].

As may be observed from Figure the algebraic point projection provides an
exact on-curve solution and a good approximate solution to the parameter values from
points near the curve. A quadratic convergence rate was achieved as the distance
between test points and curve decreased (Figure . Also, one may observe that
there are two regions, at bottom-left and upper-right of Figure respectively,
where due to high curvature of nearby curve segments, a jump in parameter value
occurs. Such discontinuities disappear when algebraic point projection is used. The
computational cost per point of algebraic point projection, as listed in Table 4.1} is

only 21% of that of the Newton-Raphson method. In fact, the computational cost of
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points d(x), where ujfv R and u?P P are parameter values of footpoints ob-
tained using the Newton-Raphson method and the algebraic point pro-
jection respectively. [a,b] is the parameter range of the NURBS curve.
As the test point moves closer to the target curve, the projection error

decreases quadratically.

vs. normalized distance of test

when using the Newton-Raphson scheme.

Table 4.1.
The results of point projection for NURBS curves. The tolerance in
Newton-Raphson iterations was chosen as € = 10~%. The time required to
find an initial guess for the Newton-Raphson method was excluded in the
time per iteration calculation.

Example Newton-Raphson Iterations Proposed Method
Curve Time per Number of Time per Time per
point (us)  iterations iteration (us) point (us)
#1 (Figure 4.7 33.86 3.93 7.12 7.14

#2 (Figure 4.9 251.6 15.03 16.74 8.11
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the proposed method is comparable to or lower than the average cost per iteration
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The second curve example shown in Figure demonstrates the robustness of
the algebraic point projection when the footpoint is either discontinuous or non-
existent. Ome can observe from Figure that at the discontinuous point, the
Newton-Raphson method causes a large jump in parameter value, whereas the alge-
braic method yields a continuous parameter value. In general, the projected solution
is smoother (fewer oscillations) and matches the Newton-Raphson solution well. Fi-
nally, since the Newton-Raphson iterations failed because maximum allowed iterations
were reached for uyqc € [0.53,0.77], in this example, the computational cost of the
algebraic method (see Table was only 3% of the cost of the Newton-Raphson
method, and significantly smaller than that required for a single Newton-Raphson

iteration.

4.4.2 Surface Tests

The first and second surface examples demonstrate the robustness of the algebraic
point projection for NURBS surfaces involving discontinuous and non-existent foot-
points, respectively. In the first example (Figure , the discontinuous projection
occurs again when the Newton-Raphson method is applied on a surface segment with
high mean curvature. In the second example (Figure , the Newton-Raphson
method failed in the regions where the mathematical footpoints do not exist. Not
only does the algebraic point projection overcome those problems, but it also produces
an accurate and efficient solution. According to Table the computational cost per
point of the proposed method is only 22% and 8.9% of that of the Newton-Raphson

method in the first and second surface examples, respectively.

4.5 Concluding Remarks

In the present study, a novel algebraic projection method for low degree two-
dimensional NURBS curves and three-dimensional NURBS surfaces was proposed.

The procedure utilizes the recently developed algebraic distance field construction
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Table 4.2.
The results of point projection for NURBS surfaces. The tolerance in
Newton-Raphson iterations was chosen as € = 1078, Note that the time
of finding an initial point is excluded in the time per iteration.

Example Newton-Raphson Iterations Proposed Method
Surface Time per  Number of Time per Time per
point (us) iterations iteration (us) point (us)
#1 (Figure 4.10 94.74 5.00 18.33 20.89
#2 (Figure 4.11 328.8 11.26 27.89 29.25

methodology. As a first step, the procedure exploits the differential property of the
resultant matrix to obtain the footpoint in physical space. Next, the parameter value
of the footpoint is computed by solving the over-constrained resultant system. Al-
gebraic point projection eliminates inefficient iterative/recursive computations and
challenging search for an initial guess by providing an exact on-curve solution and
good approximate solution for points near the curve. Through numerical examples,
the algebraic method is demonstrated to be faster and more robust than Newton-
Raphson iterations. The computational cost of the developed method is comparable
or lower than that required for a single Newton-Raphson iteration. While the al-
gebraic point projection has many advantages, for points far away from the target
NURBS entity, the estimated footpoint may not be accurate. For at least isogeometric
analysis using explicitly defined surfaces [13}71], inaccuracy in estimating footpoints
from Gauss points far from the entity is less important relative to robustness of so-
lution and the overall computational cost of projection from a very large number of

quadrature points.
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Figure 4.9. Illustration of the robustness of the 2D algebraic point pro-
jection for the NURBS curve. Trace of points that were projected
onto target curve. @ Solution parameter of footpoints on target curve vs
parameter of trace curve for the two methods. Parameter discontinuity in
Newton-Raphson solution occurs due to non-uniqueness of the footpoint
near the local minimum at ... ~ 0.176, and the solution does not exist
when g € [0.53,0.77] as shown in the inset magnified region.
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(a) Trace of test points, bowl-shaped target surface and the identified footpoints.
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Figure 4.10. TIllustration of the robustness of the 3D algebraic point pro-
jection algorithm involving discontinuous footpoints. Trace of points
that were projected onto bowl-shaped target surface using the proposed
algebraic method and the Netwon-Raphson method. Parameters of
footpoints on the target obtained by both the methods. Discontinuity
occurs due to non-unique footpoints for test points near the bottom of
the surface.
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(a) Trace of test points, mountain-shaped target surface and consequent foot-
points.
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Figure 4.11.  Illustration of the robustness of the 3D algebraic point
projection algorithm involving test points whose mathematical footpoints
do not exist. @ Trace of points which are projected onto mountain-
shaped target surface using both methods. @ Parameters of footpoints
on target. The solution does not exist near the four mountain ridges of
49 continuity as shown in the four corner regions of @
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5. EFFICIENT ALGORITHMS FOR IMMERSED BOUNDARY PROBLEMS.
PART I: KD-TREE BASED ADAPTIVE QUADRATURE

In the enriched isogeometric analysis, the underlying domain mesh does not neces-
sarily conform to the boundaries. While the non-conforming mesh provides great
flexibility and convenience for mesh generation, this in turn requires a sophisticated
scheme to integrate over the elements that are intersected by the boundaries. In this
chapter, a novel kd-tree based adaptive quadrature algorithm is proposed to carry
out the numerical integration in the cut elements/cells. This technique is demon-
strated to be cheaper as well as producing fewer quadrature sub-cells than classical

quad-/oct-tree based schemes.

5.1 Introduction to Adaptive Quadrature

The modeling of immersed boundary problems, using a mesh that does not nec-
essarily fit to the boundaries, has been extensively studied in the computational fluid
dynamics (CFD) community [78-81]. Many immersed boundary methods based on
the finite element approximation were proposed to solve the fluid-structure interac-
tion problems [82-86]. The generation of the non-conforming mesh is, in general,
much faster than that of a boundary-fitted mesh. However, in the former case, many
elements are intersected by the boundaries, and therefore the traditional element-
wise numerical integration is no longer feasible for these elements. As illustrated
in Figure 5.1} the immersed boundary problems necessitate a separate integration
on each side of the boundary, but an accurate integration over such cut elements is
challenging.

To this end, many subdivision based adaptive quadrature algorithms were devel-

oped to generate boundary-fitted quadrature sub-cells in the cut elements. Riiberg
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(a) Boundary-fitted mesh (b) Non-conforming mesh in the pres-
ence of an immersed boundary

Figure 5.1. Different types of analysis mesh: @ The mesh conforming to
the boundary, and @ the mesh grid intersected by a immersed boundary.

and Cirak [85] planarized the immersed surfaces and then subdivided the hexahedral
elements into boundary-fitted tetrahedral sub-cells. Chen and Fries [87] approxi-
mated the boundary segment within each cut element with a polynomial, followed by
a subdivision of the cut element into a few serendipity elements. Kudela et al. [8§]
developed a directly integratable blending formulation for the curved triangles or
quadrilaterals resulting from the cut elements. While the curved-element methods
yield very few quadrature sub-cells and preserve the geometric accuracy, a robust
implementation accounting for all the special cases is still non-trivial. Furthermore,
these methods can not be extended to three-dimensional (3D) problems.

Another popular subdivision scheme relies on the space tree, i.e., quad-tree (2D)
and oct-tree (3D). This scheme works robustly for any geometry without complicated
case-by-case solution, and has been extensively applied to quadrilateral and hexahe-
dral elements, such as the patches in isogeometric analysis [13,53,/89-91]. Recently,
the space tree based subdivision scheme was employed to facilitate the numerical in-
tegration in finite cell method (FCM) [92-94]. However, the classical quad-/oct-tree

subdivision introduces superfluous quadrature cells and significantly increases the
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computational time during matrix assembly. A quad-tree based adaptive quadrature
example is shown in Figure [5.2] where the total number of quadrature cells increases
276% after a three-level subdivision. The computational performance is even worse
if more elements are intersected by the immersed boundaries, or if a higher level of

subdivision is desired.

Underlying domain
— Immersed boundary
Sub-cell grid

Figure 5.2. Illustration of the quad-tree based adaptive quadrature in the
presence of a circular boundary. The initial number of quadrature cells is
25. After a three-level quad-tree subdivision, the number increases to 94.

Recently, several non-subdivision approaches, including the adaptive weight me-
thod [95] and the variational collocation method [96,97], were proposed. The former
approach yields much fewer Gauss points than the subdivision based methods, but re-
quire handling of a large number of special cases. The variational collocation method
produces a Galerkin solution by carefully choosing the collocation points (termed as
Cauchy-Galerkin points), and thus avoids explicit numerical integration. However,
analytical solution for the Cauchy-Galerkin points only exists for uniform meshes and

non-singular problems.
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5.2 Kd-tree Based Adaptive Quadrature Algorithm

The existing adaptive quadrature schemes either introduce unnecessary Gauss
points or require special rules or evaluation points. To circumvent the two chal-
lenges, a novel adaptive quadrature algorithm based on the kd-tree data structure, is

developed.

5.2.1 Motivation

The magnified bottom right 2 x 2 elements in Figure is shown in Figure It
can be observed that many adjacent, non-intersected quad-tree sub-cells (separated
by dash lines) can be combined into one cell. By removing these dash lines, the
number of sub-cells is reduced without loss of quadrature accuracy. Thus, for certain
cells, a complete subdivision into four (2D) or eight (3D) sub-cells is not necessary.
A partial subdivision can be carried out by either splitting the cells direction-wise
or combining the sub-cells during post-processing. As shown in Figure [5.3] the total
number of quadrature sub-cells decreases by 17% with partial subdivisions. This

method is analogous to the kd-tree data structure in computer geometry, and is

therefore termed as Kd-Tree based Adaptive Quadrature (KTAQ).

Underlying domain

—— Immersed boundary

— Sub-cell grid

—————— Removable cell grid
+ Guass point

Figure 5.3. Illustration of the sub-cell coalescence by removing non-
intersected cell grids.
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5.2.2 Algorithm

k-dimensional tree, also referred as kd-tree, is a binary space tree that partitions
the space dimension-wise, and is also a superset of the quad-tree and oct-tree. The
kd-tree structure has a long tradition in computational geometry [98] to solve range
searching problems. Specifically, given a set of spatial points, the kd-tree can store
the points in an orderly manner so that quick range searching can be achieved. In this
work, the kd-tree is used to store the quadrature sub-cells instead of spatial points.

A two-dimensional example is shown in Figure [5.4]

b
level=1
G
level=2
C; I8
(6
[
C C 8/_ A level=3
4 6 /Cg G
LA [,
7 6
[e] ©
[

Figure 5.4. Illustration of the kd-tree based adaptive quadrature. The
maximum level illustrated here is three. Each level consists of two depths
that represent different splitting directions. I; (stored in nodes) and C;
(stored in leaves) denote a splitting line and a sub-cell, respectively.

In the standard kd-tree, each level has k depths, i.e., k times of splitting (e.g.,
2d-tree splits in x and y directions successively whereas 3d-tree splits in x, y and z
directions). As for the kd-tree based adaptive quadrature, extra flexibility is provided
to the splitting procedure by enabling an arbitrary order of the splitting direction
within each level. First, we explore all the possible splitting directions at each depth,

and choose the direction in which the splitting line/plane [ does not intersect with the
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boundary. If the intersection can not be avoided in any direction, a default splitting
direction will be chosen. Each split produces two new sub-cells. If any of the sub-cells
is not intersected by the boundary, a corresponding leaf will be created in the kd-tree.
Otherwise, the split continues until the maximum level is reached. A pseudocode of
the proposed algorithm is described in Alg. [3] The KTAQ is only necessary for cut
elements. The regular elements can handled with the standard Gaussian quadrature.

Remarks:

1. Once the kd-tree is constructed for a given cut element, a tree traversal algo-
rithm such as Depth First Search (DFS) or Breadth First Search (BFS) can
be employed to extract all the leaves of the kd-tree and obtain the quadrature
sub-cells stored therein. The tree traversal step is, in general, much faster than

the tree construction.

2. The intersection between the splitting line/plane and the boundary can be iden-
tified by checking the signed algebraic distance [99] between them. A line or
plane is assumed to intersect the boundary if the bounding vertices of the
line/plane have opposite signs. The algebraic distance field is exact to the

NURBS boundary, enabling an accurate judgment of the intersection.

5.2.3 Comparison with Quad-/Oct-tree

The kd-tree structure is compared with quad-tree and oct-tree in the following

three aspects:

1. Number of Quadrature Sub-cells Generated: Table summarizes the worst-
and best-case ratios of the number of sub-cells generated by kd-tree to that
by quad-/oct-tree. In the worst-case scenario, the immersed boundary is suffi-
ciently complex such that all the cells have to be completely subdivided in each

level. Therefore, the number of sub-cells generated by the kd-tree subdivision
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Algorithm 3 Kd-tree Based Adaptive Quadrature Algorithm

Input: Cell C', depth of tree depth, splitting direction vector dir and auxiliary flag
nocheck

Output: Kd-tree v containing quadrature sub-cells in leaves

1: function BUILDKDTREE(C, depth, dirs, nocheck)
2 if depth mod Dim = 0 then > Reinitialize at the first depth of each level
3 dir < [z,y](2D) or [z,y, z](3D)
4: nocheck < false
5 end if
6 Split Dir < dir(1) > Set the first element in dir as the default splitting
direction
7: if nocheck = false then
8: if C not intersect boundary or depth = MaxDepth then
9: return leaf containing C
10: else if length(dir) > 2 then > No further check is needed if only one
direction is available
11: for i < 1,length(dir) do
12: nocheck < true
13: if Splitting line(2D)/plane(3D) in dir(i) not intersect boundary
then
14: nocheck < false
15: SplitDir < dir(i)
16: end if
17: end for
18: end if
19: end if
20: hatfs Chary < Split C in Split Dir

21: dirpew < Exclude Split Dir from dir

22: Vst < BuildKdTree(Cy, ¢, depth+1, dirye,, nocheck)
23: Ugeft BuildeTree(C;{alf, depth+1, diryew, nocheck)
24: return v with two branches v ¢, and v,ign

25: end function

is the same as that by quad-tree and oct-tree. The best-case ratio is proved in

Theorem [(.2.7]

Theorem 5.2.1 Given an arbitrary immersed boundary, the number of quadra-
ture sub-cells generated by the kd-tree subdivision is no smaller than 2/3 of that

by a quad-tree, and 3/7 of that by an oct-tree.
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Table 5.1.
Worst- and best-case ratios of the number of sub-cells generated by kd-tree
to that by quad-tree and oct-tree.

Problem Dimension Worst Case Best Case
2D (N2d7tree/Nquadftree> 1 2/3
3D (N3dftree/N0ctftree) 1 3/7

Proof The minimum kd-tree splits of a 2D as well as a 3D cell are illustrated
in Figure 5.5 A complete, single-level 2D subdivision operation increases the
number of sub-cells by 4 — 1 = 3 whereas an incomplete, single-level 2D sub-
division only increases it by 3 —1 = 2. Assume the total number of complete
and incomplete subdivision operations is given by S. and S;, respectively. The

total number of sub-cells in a 2d-tree is given by
Nog_tree = 1 + 35, + 285;. (5.1)

Next, assume the total number of subdivision is Siyiq;. If Se = Siotar and S; = 0,

the kd-tree is degenerated to a quad-tree, i.e.,
Nquadftree =1+ 3Stotal- (52)

Given an arbitrary immersed boundary, the Naog_tree /Nyuad—tree Tatio is given by

N2dftree o 1 + 3(St0tal - Sz) + 251 > 1 + 2Stotal
Nquadftree 1 + 3Stotal 1 + 3St0tal

> ; (5.3)

Likewise, a complete, single-level 3D subdivision operation adds 8 — 1 = 7 sub-
cells. However, the number of sub-cells added by an incomplete 3D subdivision

may vary from 3 to 6. If a real number ¢ € [3, 6] is used to represent the average
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sub-cell increment per subdivision, the total number of sub-cells in a 3d-tree

can be expressed as

Ni3g—iree = 1 + 7S, + ¢S;. (54)

The N3q—tree/Noct—tree ratio can be next obtained as follows:

N3dftree _ 1 + 7(Stotal - Sz) + CSi > 1 + CStotal >

c_ 3
- > —, 9.5
Noct—tree 1 + 7Stotal 1 + 7St0tal 7T ( )

(a) Minimum 2d-tree splits. (b) Minimum 3d-tree splits.

Figure 5.5. Minimum kd-tree splits within a single level. @ The 2d-tree
and 3d-tree splits produce three and four sub-cells, respectively.

2. Computational Cost in Tree Construction: Given a quadrature cell to be subdi-
vided, the vertices that need to be checked in the kd-tree are a subset of those
in quad-/oct-tree. Furthermore, the kd-tree yields fewer number of sub-cells in
each level (see Figure . Therefore, the kd-tree results in a faster algorithm
than quad-/oct-tree.

3. Aspect Ratio of Generated Sub-cells: Table lists the worst- and best-case

aspect ratios of the sub-cells generated by quad-, oct- and kd-tree subdivisions.
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Since the cell splits are symmetric and the splitting direction changes at different
depths of each level, no aspect ratio worse than 1:2 (2d-tree) or 1:1:2 (3d-tree)

would occur.

Table 5.2.
Aspect ratios of the sub-cells generated by quad-, oct- and kd-tree subdi-
vision. The initial element shape is assumed to be square (2D) or cubic
(3D).

Tree Type Worst Case Best Case

Quad-tree 1:1
Oct-tree 1:1:1
2d-tree 1:2 1:1
3d-tree 1:1:2 1:1:1

5.3 Numerical Examples

Four numerical examples are presented to demonstrate the kd-tree based adaptive
quadrature. The proposed technique is robust and applicable for both 2D and 3D
immersed boundary problems without the need for deal with cumbersome special
cases. It is further shown that the kd-tree based scheme effectively reduces the number
of quadrature sub-cells while taking less amount of time than the classical quad-/oct-

tree based schemes.

5.3.1 Hyper-planar Boundary

The first example, as shown in Figure involves a hyper-plane immersed bound-
ary (line in 2D and plane in 3D). A hierarchical sub-cell structure can be observed in

this example. The number of generated sub-cells is listed in Table [5.3
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(a) Immersed line at y = 0.95. (b) Immersed plane at z = 0.95.

Figure 5.6. Kd-tree subdivision of a unit cell in the presence of @ a 2D
immersed line and @ a 3D immersed plane. The maximum level is three
in both examples. The domain color represents a signed distance to the
immersed boundary.

Table 5.3.
Comparison of the kd-tree and quad-/oct-tree subdivision in the presence
of a hyper-planar boundary as shown in Figure [5.6

Tree Type Nsubcell Ratio of Nsubcell
2d-tree 15

Quad-tree 22
3d-tree 85
Oct-tree 148

0.682

0.574

5.3.2 Hyper-spherical Boundary

The second example is illustrated in Figure where a hyper-spherical bound-
ary is embedded in the domain. The corresponding number of created sub-cells are

summarized in Table [5.4]
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(a) Immersed circle (R = 0.72) (b) Immersed spherical surface (R = 0.72)

Figure 5.7. Kd-tree subdivision of a unit cell in the presence of @ a
quadrant and@ an 1/8 spherical surface. The hyper-spheres are centered
at a corner and have a radius of R. The maximum level is four in both
examples. The domain color represents a signed distance to the immersed
boundary.

Table 5.4.
Comparison of the kd-tree and quad-/oct-tree subdivision in the presence
of a hyper-spherical boundary as shown in Figure

Tree Type Nsubcell Ratio of Nsubcell

2d-tree 48
Quad-tree 61 0.787
3d-tree 521 0.792

Oct-tree 722
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6. EFFICIENT ALGORITHMS FOR IMMERSED BOUNDARY PROBLEMS.
PART II: TRUNCATED HIERARCHICAL B-SPLINES AND LOCAL
REFINEMENT

For the immersed boundary problems that involve a high local gradient of the behav-
ioral field, an accurate numerical integration is usually insufficient to assure an accu-
rate solution. In addition, a refinement of the underlying (continuous) approximation
is also desired. In this chapter, Truncated Hierarchical B-Splines (THB-splines) are
utilized to enable local refinement in the enriched isogeometric analysis. Two new
a-priori mesh generation algorithms based on the signed and unsigned distance field
are first developed. To accelerate the stiffness/mass matrix assembly, we next develop
an efficient, all-at-once algorithm to evaluate all the active THB-spline basis functions

at a given point.

6.1 Introduction to Isogeometric Local Refinement

In many immersed boundary problems, the behavioral fields may vary rapidly or
even discontinuously across the boundaries. As illustrated in Figure [6.1] a coarse,
uniform approximation of the underlying domain may lead to an inaccurate solution
to these problems. A global refinement (Figure of the continuous approximation
may improve the accuracy, but also introduces redundant degrees of freedom (DOFs).
Alternatively, a local refinement (Figure requires fewer degrees of freedom while
achieving the same accuracy of solution.

There are many well-established approaches to realizing local refinement in finite
element methods, e.g., hanging nodes and graded meshes. However, in the isogeomet-
ric framework, the tensor product NURBS surfaces only support global refinement

(p-refinement [9,51]) through knot insertion. To address the challenge of isogeo-
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(a) Problem description (b) Strain energy density field

Figure 6.1. Elastostatic Analysis of a cubic domain with a ellipsoidal
hole. @ The schematic of the problem. A quadratically distributed load
is applied to the top surface of the domain while the bottom surface is
fixed. @ The strain energy density field obtained from a coarse, uniform
B-spline approximation. The domain is clipped diagonally for a better
view of the hole region. It can be observed from the contours that the
resulting strain energy density is oscillatory near the hole.

(a) Global refinement (b) Local refinement

Figure 6.2. Schematics of global refinement and local refinement.
The goal is to refine the central element.

metric local refinement, many extensions of tensor-product representations, such as
T-splines [100,[101] and THB-splines [50], were developed. The T-splines, which c