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ABSTRACT

Song, Tao PhD, Purdue University, December 2016. A Sharp Interface Isogeometric
Strategy for Moving Boundary Problems. Major Professor: Ganesh Subbarayan,
School of Mechanical Engineering.

Moving boundary problems that include crack propagation, solidification and

shape optimization occur in a variety of natural and engineered systems. A significant

difficulty in solving the moving boundary problems, in addition to computationally

modeling the moving interface, is to capture the interfacial behavior. Commonly,

moving boundary problems are solved by diffuse interface techniques such as the

phase field method that is challenged by high computational cost or by the level set

method in which considerable care needs to be exercised to ensure stable evolution

of the interface. The challenges with phase field method include the need to develop

alternative (diffuse) mathematical forms of the governing equations that must be

proven to converge to the sharp interface form. The phase-field equations are also

usually non-linear and non-convex, and the diffuse transition region has to be very

thin to converge to the physical solution. This last fact in turn requires the mesh

to span several orders of magnitude in length scale and to be very refined near the

interfacial region. In the case of level set method, the solution to the Hamilton-Jacobi

equation needs stabilization to minimize the oscillation and an auxiliary velocity field

equation needs to be posed and solved to extend the velocity from the interface into

the domain. Finally, but most importantly, due to the geometrically implicit nature

of these methods (the boundary is not explicitly represented, but inferred from the

value of the phase field or level set parameter), the necessary geometric quantities

such as normals and curvatures are difficult to compute with C 0 continuous finite

elements and can be accurately computed only in the limit of mesh refinement.
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To circumvent these challenges, a sharp interface isogeometric formalism that en-

ables efficient analysis and accurate capture of interfacial behavior is proposed. In

this modeling strategy, the approximation of the underlying domain is isoparamet-

rically enriched with lower-dimensional features such as domain boundaries, crack

surfaces and phase interfaces, and the geometry of the enriching entities is explicitly

tracked. The blending of the enrichment with the underlying approximation requires

an estimate of distance to the enriching geometry from a quadrature point and the

parametric value of the footpoint on the enriching geometry. In the present research,

utilizing algebraic geometry concepts, purely algebraic estimates of distance coupled

with an algebraic point projection are proposed. These algebraic techniques rely on

implicitization of the parametric curve, and are shown to be more efficient and robust

than Newton-Raphson iterations. Since, in the sharp interface isogeometric frame-

work, the enriching geometry is immersed in the underlying domain and intersects

with the domain mesh grid, the numerical integration of the regions created by the

enrichment process is challenging. Here, a novel Kd-tree based adaptive quadrature

scheme is developed to enhance integration accuracy and efficiency. The quadrature

cells are generated through a smart subdivision process based on the signed distance

of the endpoints and midpoints of parent cells, and then stored in a Kd-tree data

structure. The proposed integration scheme effectively minimizes the inefficient and

excessive number of quadrature cells resulting from classical quad-tree/oct-tree subdi-

vision. Moreover, in many immersed boundary problems, including crack propagation

and shape optimization, the behavioral field may exhibit a high local gradient (such

as stress concentration) near the boundaries. An accurate solution of these problems

necessitates a refinement of the underlying approximation. To this end, the truncated

hierarchical B-splines (THB-splines), maintaining high smoothness of the isogeomet-

ric basis while enabling local refinement, are utilized to facilitate the analysis. Two

efficient a-priori mesh refinement algorithms based on the signed and unsigned dis-

tance fields are developed to generate a hierarchical mesh adaptive to the immersed

boundaries. It is also shown that the THB-splines may, theoretically, introduce a
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large number of active basis functions at a quadrature point, which can degrade the

efficiency during matrix assembly. This drawback is mitigated through a newly pro-

posed all-at-once algorithm which calculates all the active THB-spline basis functions

simultaneously.

The proposed methodology is first utilized to model stationary and propagating

cracks. The crack face is enriched with the Heaviside function which captures the

displacement discontinuity. Meanwhile, the crack tips are enriched with asymptotic

displacement functions to reproduce the tip singularity. The enriching degrees of

freedom associated with the crack tips are chosen as stress intensity factors (SIFs)

such that these quantities can be directly extracted from the solution without a-

posteriori integral calculation.

As a second application, the Stefan problem is modeled with a hybrid func-

tion/derivative enriched interface. Since the interface geometry is explicitly defined,

normals and curvatures can be analytically obtained at any point on the interface, al-

lowing for complex boundary conditions dependent on curvature or normal to be nat-

urally imposed. Thus, the enriched approximation naturally captures the interfacial

discontinuity in temperature gradient and enables the imposition of Gibbs-Thomson

condition during solidification simulation.

The shape optimization through configuration of finite-sized heterogeneities is

lastly studied. The optimization relies on the recently derived configurational deriva-

tive that describes the sensitivity of an arbitrary objective with respect to arbitrary

design modifications of a heterogeneity inserted into a domain. The THB-splines,

which serve as the underlying approximation, produce sufficiently smooth solution

near the boundaries of the heterogeneity for accurate calculation of the configura-

tional derivatives.
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1. INTRODUCTION

The study of moving boundary problems, including crack propagation, solidification

and shape optimization, is important to understanding many natural phenomena

as well as guaranteeing the performance of engineered objects. Often, the behavioral

characteristics associated with the immersed boundaries is known a-priori. Figure 1.1

illustrates different types of boundaries that may occur in engineering systems. A

discontinuity can appear in the heat flux across the phase boundary, and in the

normal strain across the material interface. The fracture is also characterized by

a displacement jump across the crack face. In addition to the weak and strong

discontinuities, the interface may also possess many geometry-dependent properties

and boundary conditions. Therefore, the capability to capture the discontinuities

across the interface, as well as an accurate geometric representation of the interface,

plays an important role in modeling the moving boundary problems.

Ω"
Ω#

Crack

Phase	
boundary

Hole

Figure 1.1. Schematic of typical immersed boundaries in engineering sys-
tems. Ωl and Ωs represents liquid and solid phases, respectively. The
phase boundary, material interface and crack face possess specific behav-
iors involving strong or weak discontinuities.
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To address the computational challenges, a straightforward approach is to force the

mesh align with the interface. This in turn requires remeshing as the interface evolves.

Alternatively, fixed mesh frameworks with enriching degrees of freedom (GFEM [1,2]

or XFEM [3]) may be used. In these methods, the evolving interface is commonly

tracked with an implicit geometry such as level-sets [4]. While the mesh regenera-

tion is avoided in GFEM/XFEM, the enriched node set need to be updated during

interface evolution. Another non-conforming mesh based technique is the phase-field

method [5] where the interface is represented by a diffuse phase-field variable. Due to

the implicit nature of the level-sets and phase-field, the geometric quantities such as

interfacial normal and curvature are not explicitly known at a point on the interface.

Since, the interface intersects with a non-conforming mesh, an accurate and efficient

numerical integration over the cut elements remains a challenge.

In general, finite element based solutions also suffer from another drawback in that

the classical Lagrangian elements are piecewise smooth but globally C 0-continuous.

The inherent element discontinuity would affects application of interface conditions,

and gives rise to a large analysis error when the interface exhibiting weak disconti-

nuities is too close to the element boundaries. In this case, a C 1-continuous mesh

is desired [6]. However, there are very few two-dimensional finite element imple-

mentations (e.g., Hermite elements) possessing C 1-continuity and almost none in

three-dimension.

Renken and Subbarayan [7] first exploited the geometric representation in com-

puter aided dsegin (CAD) for analysis. To enable a seamless integration between

design and analysis, Natekar et al. [8] proposed constructive solid analysis (CSA) in

analogy to the constructive solid geometry (CSG) of CAD. The methodology relied

on the same mathematical representation (e.g., non-uniform rational B-splines, or

NURBS) for geometry and behavioral field, an idea that was later referred as iso-

geometric analysis (IGA) [9]. The NURBS, along with other spline variants, do not

only enable a precise representation of complex geometries, but also provide a C 1 or

higher-order global continuity. Following the spirit of GFEM/XFEM, one can add
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the enriching degrees of freedom to a fixed set of NURBS control points to model

the moving boundaries without remeshing [10–12]. However, there is still a need for

identifying and enriching the control points. In contrast, Tambat et al. [13] developed

isogemetric enriched field approximation where the interface is explicitly represented

by a lower-dimensional NURBS entity, and the additional degrees of freedom are di-

rectly associated with the control points of the interface. The methodology has been

successfully applied to study crack propagation in layered structures [14]. Never-

theless, several numerical issues such as point projection, non-homogeneous interface

conditions and local refinement, were not addressed in the early research.

1.1 Survey of Computational Techniques for Moving Boundary Problems

Based on the previous discussion, the computational modeling of moving boundary

problems typically involves three challenges:

1. Accurate geometric representation of the underlying domain and the interface,

2. Construction of a solution space that accurately and efficiently captures the

behavior near the interface, and

3. Ability to efficiently update and reanalyze the problem as the interface evolves.

The established techniques for modeling moving boundary problems can be first classi-

fied by the type of mesh used: Conforming mesh or non-conforming mesh or mesh-free

(particle methods). The non-conforming mesh methods can be further categorized

based on the representation of the interface. An interface is identified as explicit if

its geometric quantities (e.g., normal, tangent, curvature, etc.) can be analytically

obtained. In contrast, for an implicit interface, the material phase is known at a

spatial point, but not the geometric quantities such as tangents or normals. The

classification is pictorially illustrated in Figure 1.2 and further discussed below.
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Underlying	nodes
Explicit	boundary

Underlying	mesh
Explicit	boundary

(a) Conforming mesh/explicit interface

Underlying	mesh
Implicit	boundary
Enriched	nodes

Underlying	mesh
Explicit	boundary
Enriched	nodes

(b) Non-conforming mesh/implicit interface

Underlying	mesh
Implicit	boundary
Enriched	nodes

Underlying	mesh
Explicit	boundary
Enriched	nodes

(c) Non-conforming/explicit interface

Underlying	nodes
Explicit	boundary

Underlying	mesh
Explicit	boundary

(d) Particle method

Figure 1.2. Classification of the techniques for modeling moving
boundary problems: (a) Conforming mesh-explicit interface, e.g., fi-
nite element method (FEM); (b) non-conforming mesh/implicit inter-
face, e.g., eXtended Finite Element Method (XFEM); (b) non-conforming
mesh/explicit interface, e.g., Enriched Isogeometric Analysis (EIGA); (d)
particle methods, e.g., Element Free Galerkin (EFG) method.

1.1.1 Conforming Mesh/Explicit Interface

A typical technique using the conforming mesh/explicit interface is the common

implementation of the finite element method in commercial codes. The C 0-continuous

Lagrangian elements, despite causing a discontinuous gradient field across the element

boundaries, may be used to represent weakly discontinuous behavior when the inter-

face is aligned with the element boundaries. For instance, in the early literature, a

moving mesh method [15,16] was proposed to model the solidification problem (Ste-

fan problem). According to the physics of the Stefan problem, the evolution speed of
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the interface is proportional to the heat flux jump across the interface. Such a value

can be readily calculated from the C 0-continuous elements. Besides, the alignment of

the interface with element boundaries also enables a strong imposition of the interface

conditions.

However, the finite element approximation, with its inherent geometrical approx-

imation, is accurate only in the limit of mesh refinement. The interface also becomes

piecewise linear/planar while aligning with the element boundaries. In general, a

great number of degrees of freedom are needed to model complex geometries and

interfaces [17]. In addition, the tracking of the moving boundaries require remeshing

at every step [18], and may cause a strong mesh distortion [19].

1.1.2 Non-conforming Mesh/Implicit Interface

The non-conforming mesh methods can avoid the inefficient mesh regeneration but

require auxiliary techniques to capture the various interfacial behaviors. Babuska

et al. developed the Partition of Unity Finite Element Method (PUFEM) which

can incorporate a-priori knowledge of local behavior into solution space. Based on

the PUFEM, Strouboulis et al. [2] proposed the Generalized Finite Element Method

(GFEM) by adding behavior-dependent degrees of freedom to the underlying finite

element nodes. A general expression of the GFEM approximation is given by

uGFEM =
∑
i∈I

Niai +
∑
j∈Ie

Nj

(∑
k

g
(j)
k ψ

(j)
k

)
(1.1)

where, I and Ie are the regular and enriched node sets, respectively. Ni is the classical

FE basis function at node i and ai is the corresponding nodal field. ψ
(j)
k is the k-th

enriching function at node j and b
(j)
k represents the enriching degree of freedom associ-

ated with ψ
(j)
k . A variety of the enriching functions were provided in [20] for different

behavioral fields. Belytschko et al. [3] proposed eXtended Finite Element Method

(XFEM) to model the singular stress at crack tips by using asymptotic displacement
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inspired enriching functions. Dolbow et al. [21] next added the Heaviside function to

the enriching function space to model the displacement jump across the crack face.

The level-sets [4], a tool to implicitize the immersed boundary, have been combined

with XFEM to solve a variety of moving boundary problems including crack prop-

agation [22], dislocation [23, 24] and phase evolution [25–27]. The level set method

suffers from several drawbacks. First, the level sets are described by the Hamilton-

Jacobi equation, which is a difficult to solve, first-order hyperbolic equation and needs

stabilization to minimize the oscillation [28]. Further, due to the geometrically im-

plicit nature, the interfacial geometric quantities are not analytically known. Since

the enriching degrees of freedom are associated with the domain nodes, the interface

conditions have to be (weakly) applied on mesh than the interface.

The Phase-field method in which the interface is represented by a thin region

defined by the phase-field variable, has also been utilized to model moving bound-

ary problems such as crack growth [29, 30] and solidification [31–34]. A significant

challenge with phase field method is the need to develop alternative (diffuse) mathe-

matical forms of the governing equations, which is typically much more complex that

those of the sharp interface models. An comparison of the governing equations for the

Stefan problem is shown in Table 1.1. The phase-field equations are often non-linear

and non-convex, and the diffuse transition region has to be very thin to converge

to the physical solution, which in turn requires the mesh to span several orders of

magnitude in length scale and to be highly refined near the interfacial region. Thus,

adaptive mesh refinement is strongly desired to improve the efficiency. Further, the

introduction of phase-field variables often gives rise to a forth or higher order partial

differential equation, which necessitates C 1-continuous elements or other complicated

numerical schemes.
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Table 1.1.
Sharp and diffuse interface governing equations for the Stefan problem.

Sharp Interface Diffuse Interface [32]

In the bulk :

∂T

∂t
=α∇2T

On the phase boundary :

JqnK =− ρLvn
Tm =Tm − εc(n)κ− εv(n)vn

In the bulk:

∂T

∂t
=α∇2T +

1

2

∂L(φ)

∂t

τ(n)
∂φ

∂t
=[φ− λ(1− φ2)](1− φ2)

+∇ · [W 2(n)∇φ]

+
∂

∂x

(
|∇φ|2W (n)

∂W (n)

∂φ,x

)
+

∂

∂y

(
|∇φ|2W (n)

∂W (n)

∂φ,y

)

1.1.3 Non-conforming Mesh/Explicit Interface

In this work, a non-conforming mesh, explicit interface method, termed as En-

riched Isogeometric Analysis (EIGA), is proposed for modeling moving boundary

problems. The method retains the meshing convenience while preserving the geomet-

ric exactness of the interface with a explicit representation (see Figure 1.2c). The

behavior-dependent, enriching degrees of freedom are directly associated with the

interface than the underlying domain, avoiding cumbersome update of the enriched

node set. More importantly, a strong imposition of interface conditions becomes

possible. The advantages of the proposed method are compared against existing

mesh-dependent techniques in Table 1.2.

The EIGA approximation is composed of the underlying approximation which has

a continuous contribution over the problem domain, and the enriched approximation

whose influence decays with distance. Both constitutive approximations are isogeo-

metric to enable direct CAD&E integration and provide higher global smoothness.

The influence of an interface on a spatial point can be estimated by constructing a

distance field from the interface. Further, in order to specifically identify the active

enriched nodes that influence the point, as illustrated Figure 1.3, a geometric point
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Table 1.2.
Comparison of modeling techniques for moving boundary problems.

Finite Level-set & Enriched
Element Phase-field Isogeometric
Method Method Analysis

Mesh
Type

7 Conforming mesh: 3 Non-conforming
mesh:

3 Non-conforming
mesh:

• Remeshing at
every step

• No remeshing • optional remeshing

• C 1 or higher order
continuity

Inter-
face
Type

3 Explicit interface: 7 Implicit interface: 3 Explicit interface:

• Direct imposition
of interface conditions

• Computationally
expensive

• Direct imposition of
interface conditions

• Hard-to-solve
equations

• Simpler governing
equations

• Geometric
quantities not known

• Accurate calculation
of geometric quantities

projection becomes necessary. The non-conforming mesh, albeit providing flexibility

in mesh generation, leads to a difficulty in numerical integration. To accurately inte-

grate over the cells that are intersected by the interface, an efficient cell subdivision

algorithm is desired. In addition, if the behavioral field exhibits high gradient in

a region, according to the a-posteriori error estimator [35, 36], this region needs to

be sufficiently refined to achieve a smaller computational error. However, the local

refinement within isogeometric framework is still non-trivial.

1.1.4 Particle Methods

To eliminate the time-consuming mesh generation step, several particle methods,

including Element Free Galerkin (EFG) method [37], Reproducing Kernel Particle

Method (RKPM) [38] and Meshless Local Petrov-Galerkin (MLPG) method [39],
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Underlying	mesh
Enriching	boundary
Enriched	nodes

?

?

?

?

?

?𝒙

Figure 1.3. The enriched nodes that influence a given point x can be
identified by point projection.

have been developed. These methods typically rely on a class of least-squares in-

terpolants which do not require mesh connectivities. Thus, the nodes can be freely

moved to account for complex moving boundaries. The particle methods have been

successfully applied to model quasi-static and dynamic crack propagation [40–43].

But, the absence of mesh brings two major challenges: imposition of boundary con-

ditions and numerical integration. Due to the non-interpolative nature of the particle

approximations, the boundary conditions can only be weakly applied through La-

grange multiplier or penalty method [44]. Since, the domain integration by Gauss

quadrature is very cumbersome in particle methods, many nodal integration tech-

niques have been investigated [45–48]. Nevertheless, a stable and efficient numerical

integration remains a challenge.

1.2 Research Objectives

The goal of this work is to develop a non-conforming mesh, sharp interface for-

malism for modeling moving boundary problems. The behavioral approximation is a

weighted composition of the continuous approximation associated with the underlying

domain and the enriching approximation associated with the interface. A variety of
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enriching functions and degrees of freedom are designed to strongly impose interface

conditions, and to capture different interfacial behaviors such as singularity, weak and

strong discontinuity. Consistent with the isogeometric philosophy, the same mathe-

matical representation is used for geometry as well as behavioral field, maintaining a

tight connection between CAD models and engineering analysis. In order to describe

the contribution of the enrichment to a spatial point in the domain, and in particu-

lar, the region of the enriching geometry that influences the point, there is a critical

need to construct a distance field from the interface, and to calculate the parametric

value of the footpoint onto the interface. The recently proposed algebraic distance

field [49], providing highly efficient distance estimates without loss of geometric exact-

ness, is utilized in the current work. Furthermore, extending the algebraic distance,

a novel algebraic point projection method is next proposed. The proposed method is

demonstrated to be faster and more robust than Newton-Raphson iterations. Next,

to address the challenge in numerical integration of non-conforming mesh methods, a

kd-tree based adaptive quadrature scheme is developed. The scheme relies on a smart,

dimension-wise subdivision process which results in fewer quadrature sub-cells than

classical quad-/oct-tree schemes with less overall computational cost. However, an

accurate integration can not guarantee an accurate solution of the behavioral field in-

volving high local gradients. The truncated hierarchical B-splines (THB-splines) [50],

retaining C 1 or higher-order smoothness while supporting local refinement, are used

to produce accurate field solutions. Several novel algorithms for mesh generation and

basis function evaluation are proposed to improve the efficiency during these steps.

The enriched isogemetric analysis concept is implemented in a parallel computational

framework termed OOF-HiDAC (Object-Oriented Fortran based Hierarchical Design

and Analysis Code). The proposed methodology is first applied to model stationary

and propagating cracks. The stress intensity factors are selected as the tip enriching

degrees of freedom, such that they can be directly obtained from the solution without

a-posteriori integral calculation. Next, the proposed methodology is utilized to model

classical and dendritic Stefan problem. The enriched approximation naturally cap-
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tures the interfacial discontinuity in temperature gradient and naturally enables the

imposition of Gibbs-Thomson condition. Lastly, the shape optimization through con-

figuration of finite sized heterogeneities is studied. The stress concentration resulting

from material interfaces can be effectively represented by the THB-splines.

1.3 Outline

The rest of this dissertation is structured as the following. In Chapter 2, the

mathematical form of the enriched isogeometric approximation is proposed. The con-

tinuous and enriching approximations that are composed together are formulated. In

Chapter 3, the construction of the algebraic distance field, as well as an algebraic

manipulation for fast calculation, is reviewed. In Chapter 4, a new algebraic point

projection technique for two-dimensional parametric curves and three-dimensional

parametric surfaces is developed. The technique provides exact on-curve solution and

an accurate near-curve solution, and is faster and more robust than Newton-Raphson

iterations. A novel kd-tree based adaptive quadrature scheme, aimed at accurately in-

tegrating the cells intersected by the immersed boundaries, is developed in Chapter 5.

The truncated hierarchical B-splines, along with their advantages and challenges for

engineering analysis, are discussed in Chapter 6. To address the challenges, several

new mesh refinement and basis function evaluation algorithms are proposed. In Chap-

ter 7, the implementation of the enriched isgoemetric framework and the supporting

techniques in a Fortran code termed as OOF-HiDAC is described. The implementa-

tion relies on a hybrid OpenMP/MPI parallelism and is capable of solving problems

with a large number of degrees of freedom. In the next three chapters, the proposed

techniques are applied to three different types of moving boundary problems: crack

modeling (Chapter 8), Stefan problem (Chapter 9) and shape optimization (Chap-

ter 10), respectively. Different enriched approximations are constructed is designed

in these problems to capture different interfacial behaviors. Finally, the thesis is

summarized in Chapter 11 with the novel contribution and proposed future work.
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2. ENRICHED ISOGEOMETRIC ANALYSIS

The general form of the enriched isogeometric approximation is developed in this

chapter. The behavioral field is represented by a weighted composition of a continuous

approximation on the underlying domain and enriched approximations associated

with the moving boundaries. The approximations are usually chosen to be the same

as those representing the geometry to enable a tight integration between the geometry

construction and analysis.

2.1 Non-Uniform Rational B-Splines (NURBS) Based Approximation

Spaces

In this study, both the underlying domain and the moving boundaries are modeled

using Non-Uniform Rational B-Splines (NURBS). NURBS can represent complex free

surfaces and conics exactly with fewer degrees of freedom, and are therefore widely

used in the Computer-Aided Design (CAD) [51]. It has been shown that the NURBS

basis is analysis-suitable and can yield higher convergence rates than classical linear

basis functions [7–9]. The use of the same approximation (e.g., NURBS) to repre-

sent the geometry and the behavioral field enables a seamless CAD/CAE integration

without a loss of the geometric accuracy. This methodology is usually referred as

Isogeometric Analysis (IGA) [9].

The NURBS approximations for a three-dimensional domain and a behavioral

field may be written as [51]:

x(ξ, η, ζ) =

ni∑
i=1

nj∑
j=1

nk∑
k=1

Rijk(ξ, η, ζ)x̄ijk (2.1a)

f(ξ, η, ζ) =

ni∑
i=1

nj∑
j=1

nk∑
k=1

Rijk(ξ, η, ζ)f̄ijk (2.1b)
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respectively. x̄ijk is the ijkth control point and f̄ijk is the nodal field associated with

x̄ijk. ni, nj and nk are the number of control points in the ith, jth and kth directions,

respectively. Rijk is the rational basis function defined as the tensor product:

Rijk(ξ, η, ζ) =
Ni,p(ξ)Nj,q(η)Nk,r(ζ)wijk∑ni

i=1

∑nj
j=1

∑nk
k=1 Ni,p(ξ)Nj,q(η)Nk,r(ζ)wijk

(2.2)

where, Ni,p is the degree p B-spline basis function defined on a set of non-uniform

knot vectors written as:

Ξ = {ξ1, ξ2, . . . , ξni+p+1}. (2.3)

Based on the knot vectors, the B-spline basis functions are given by:

Ni,0 (ξ) =

 1 if ξi ≤ ξ < ξi+1

0 otherwise
(2.4a)

Ni,p (ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1 (ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) . (2.4b)

The B-spline basis functions have the following properties:

1. Non-negativity:

Ni,p(ξ) ≥ 0 ∀ ξ. (2.5)

2. Partition of unity:

ni∑
i=1

Ni,p(ξ) = 1. (2.6)

3. Local support: Ni,p(ξ) has a compact support and is non-zero in the interval

[ξi, ξi+p+1).

4. Smoothness: Ni,p(ξ) has continuous derivates of order p−m, with knot mul-

tiplicity of m.
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The NURBS basis functions, which are normalized tensor products of the B-spline

basis functions, possess similar properties.

2.2 Enriched Field Approximations

Based on the Partition of Unity Finite Element Method (PUFEM) [52], Sub-

barayan and co-workers [53, 54] developed the Hierarchical Partition of Unity Field

Compositions (HPFC) theory where the global domain is a hierarchical composition

of local sub-domains or primitives. The geometry, materials and the behavioral fields

are constructed in the manner analogous to the Constructive Solid Geometry (CSG)

procedure of CAD (see Figure 2.1). The HPFC theory states that at any given point

in the domain, the following representation of the composed field is possible:

f(x) =
∑
i

wi(x)fΩi(x) (2.7)

where, in order to ensure the convergence of analysis, the weight function wi satisfies

the following conditions :

∑
i

wi(x) = 1 (2.8a)

0 ≤ wi(x) ≤ 1 (2.8b)

‖wi(x)‖∞ ≤ C∞ (2.8c)

‖∇wi(x)‖∞ ≤
CG

diamΩi

. (2.8d)

Tambat and Subbarayan [13] extended the HPFC theory to lower dimensional

entities. The behavioral field can be constructed to form a partion of unity as follows:

f(x) =

(
1−

ne∑
i=1

wi

)
fΩ(x) +

ne∑
i=1

wifΓi(P(x)) (2.9)
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ΩE ΩF

∪

−

ΩH

Figure 2.1. Hierarchical compositions of primitive geometrical entities in
constructive solid geometry.

where, fΩ is the continuous approximation associated with the underlying domain

Ω and fΓi is the enrichment approximation defined isoparametrically on the ith ex-

ternal/internal boundary Γi. Not only can the enrichment fΓi be a known function

to apply boundary/interface conditions, it may also contain unknowns correspond-

ing to the apriori knowledge of local behavior. Since each enrichment is defined on

a lower-dimensional geometric entity C(u), a projection uf = P(x) is necessary to

map the spatial point x to the parameter uf of footpoint on C(u). The methodology

where the base approximation fΩ is enriched with lower-dimensional approximations

fΓi , is termed as Enriched Isogeometric Analysis (EIGA). An enriched isogeometric
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approximation with a single enrichment is illustrated in Figure 2.2. One approach to

constructing the function wi is to use the normalized inverse distance [55] as follows:

wi(x) =
d−µi (x)∑ne
j=1 d

−µ
j (x)

(2.10)

where, dj(x) is the distance from the spatial point x to the boundary Γi. The function

wi(x) is µ−1 times differentiable at the boundary. Thus, an exponent µ > 1 is chosen

to satisfy Eq. (2.8d)

∪

Ω

6×6	mesh	(36	DOFs)

Γ1

Curve	with	4
control	points
(4	DOFs)

Blending	
approximation
(40	DOFs)

Figure 2.2. Illustration of a two-dimensional enriched isogeometric ap-
proximation.

If there is only one enrichment, the Eq. (2.9) can be reduced to:

f(x) = (1− w) fΩ(x) + wfΓ(P(x)). (2.11)
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In this case, a natural candidate for w is the exponential function of d(x):

w = w(d(x)) = e−|
d(x)
ds
|µ (2.12)

where, ds is a scaling factor. The weight function with different exponent µ is shown

in Figure 2.3. Likewise, the exponent µ > 1 is chosen to assure the differentiability

of w(x) at the boundary.

d

-3 -2 -1 0 1 2 3

w

0

0.2

0.4

0.6

0.8

1
µ = 1

µ = 2

µ = 5

µ = 20

Figure 2.3. The exponential weight function (Eq. (2.12)) with different
µ values. The scaling factor is chosen as ds = 1.
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3. ALGEBRAIC DISTANCE FIELD

As described by Eqs. (2.10) and (2.12), the construction of the weight functions

necessitates a monotonic measure of distance from the boundaries. Since the distance

needs to be evaluated at each quadrature point during numerical integration, efficient

calculation of distance is critical. In this chapter, an approach relying on algebraic

geometry to compute the distance is discussed. This technique possesses several useful

properties to facilitate the enriched isogeometric analysis.

3.1 Introduction to Distance Measure

Given a parametric curve or surface entity C(u) ∈ Rn (u is treated as a vector

when the entity is a surface), the Euclidian distance function d(x) is defined as the

shortest distance from physical test point x to C(u) given by:

d(x) = inf‖x−C(u)‖. (3.1)

The distance function d(x) is continuous for all x ∈ Rn and differentiable almost

everywhere.

A classical approach to find continuously varying distance is the Newton-Raphson

scheme [51, 56–58]. This scheme is very sensitive to smoothness and local curvature

of the target curve or surface, as well as the initial guess. No only is the iterative

scheme computationally expensive, the calculated distance field is often not suffi-

ciently smooth for many engineering applications due to the imperfect geometry.

The efficiency can be substantially improved by approximating the geometry with

piecewise lines or planes. [59–61]. However, the resulted distance field is only piece-

wise continuous, and not exact on the boundary. Biswas and Shapiro [62] utilized

R-functions [63] to construct a global distance field from the individual distances
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to each linear segment, which provides a smooth solution but still compromises the

exactness of the boundary.

Upreti et al [49] discussed in detail the efficient computation of algebraic distance

estimates from curves and surfaces. The main idea is to implicitize the parametric

entity and use the level set of the implicitized function as a measure of distance.

Pre-processing by decomposing the NURBS entity into constituent Bezier patches

and post-processing by blending using R-functions were utilized to generate the dis-

tance fields from the NURBS entities. The algebraic distance field has the following

properties:

1. Exact locally near the surface

2. Monotonic function of exact distance

3. Sufficiently smooth for engineering applications

4. Efficiently obtained without numerical iterations

For the sake of completeness, we briefly review the computation of algebraic dis-

tance field and illustrate the procedure through simple examples.

3.2 Implicitization of a Parametric Curve

Given a rational parametric curve C(X(u), Y (u),W (u)) of degree p with x =

X(u)
W (u)

, y = Y (u)
W (u)

, one can construct two auxiliary polynomials:

g1(x, u) = W (u)x−X(u) = 0 (3.2a)

g2(y, u) = W (u)y − Y (u) = 0. (3.2b)
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The above polynomial equations can be rearranged in descending power of u as fol-

lows:

g1(u) = apu
p + ap−1u

p−1 + · · ·+ a1u+ a0 (3.3a)

g2(u) = bpu
p + bp−1u

p−1 + · · ·+ b1u+ b0. (3.3b)

From the above, the following resultant system may be obtained through algebraic

manipulations [64]:


(apbp−1) · · · (apb0)

...
. . .

...

(apb0) · · · (a1b0)



up−1

up−2

...

1

 =
[
MB

]
p×p


up−1

up−2

...

1

 = 0 (3.4)

where, (aibj) = aibj − ajbi, MB is Bezout matrix and is a function of x and y having

the following important property:

MB(x, y) = MB
x x+ MB

y y + MB
w (3.5)

where, MB
x ,M

B
y and MB

w depend on control point coordinates and weights. There-

fore, these matrices can be pre-computed for a given rational parametric curve and

re-used given any new physical point x. The determinant, det(MB(x)), is de-

fined as the Bezout resultant. Since all the allowable parameter values u for curve

C(X(u), Y (u),W (u)) are roots of Eq. (3.4), det(MB(x)) = 0 gives the equation of

the implicitized curve. Thus, the algebraic level sets corresponding to a rational

parametric curve (e.g., Bezier curve) are given by:

Γ(x) = det(MB(x)). (3.6)

An example of algebraic level sets is shown in Figure 3.1.
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Figure 3.1. Implicitization of a quartic Bezier curve. Level set Γ(x) =
det(M(x)) can be used as a measure of distance.

3.2.1 Boolean Operations by R-functions

As observed in Figure 3.1, the direct implicitization extends the parametric curve

beyond its end points, and yields an invalid distance measure in the extended region.

Therefore, it is desirable to trim the curve C(X(u), Y (u),W (u)) within its parameter

range u ∈ [a, b]. In related prior work, Biswas and Shapiro [62] constructed an

approximate distance from a line segment as:

g =

√
Γ2 +

(|φ| − φ)2

4
(3.7)

with Γ being the normal distance from the line, and φ being a set of points that are

positive in a region formed by a circle circumscribing the line and negative outside.

This form yields a smooth distance function across the boundary φ = 0. Upreti et

al. [49] extended the above idea by carrying out boolean operations on fields obtained

on (individual segments of) an arbitrarily shaped parametric curve and an enclosing

convex region using R-functions (Figure 3.2). The R-functions [63,65] enable a smooth
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and purely algebraic boolean operation, and result in a continuous distance measure.

Two specific R-functions used in this study are:

1. R-conjunction, equivalent to boolean intersection:

g1 ∧ g2 = g1 + g2 −
√
g2

1 + g2
2. (3.8)

2. R-disjunction, equivalent to boolean union:

g1 ∨ g2 = g1 + g2 +
√
g2

1 + g2
2. (3.9)

𝑪(𝑢)
Γ(𝐱) = 0

𝜙 ≥ 0

Figure 3.2. A convex region φ ≥ 0 is used to trim the implicitized curve
Γ(x) = 0 to a parametric curve C(u) within the allowable parameter
range.

Upreti et al. [49] used the convex hull property of Bezier and NURBS curves

to provide a natural convex region bounded by control points for curve trimming.

Assume that the i-th hyper-plane of the convex hull is expressed as:

hi(x) = ni · x+ bi = 0 (3.10)

where, x ∈ Rn is a spatial point, ni ∈ Rn is inner normal and bi ∈ R is offset. Thus,

the exact distance from any point x to the hyper-plane hi(x) = 0 is hi(x). The
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function φ can be obtained by applying R-conjunction operation of Eq. (3.8) to all

hi(x), i = 1, 2, ..., n. An example of a cubic Bezier curve is shown in Figure 3.3.

ℎଵ

ℎଶ

ℎଷ

ℎସ
𝑪(𝑢)

𝒏ଵ

𝒏ଶ

𝒏ଷ

𝒏ସ

𝜙 ≥ 0

𝜙 < 0

Figure 3.3. Control points of a cubic Bezier curve C(u) forms a convex
hull consisting of four hyper-planes h1, h2, h3 and h4 with inner normals
n1,n2,n3 and n4 respectively. Boolean intersection of the four hyper-
planes using R-function yields a trimming region φ ≥ 0.

3.3 Normalization and Composition of Algebraic Distance Fields

The aforementioned procedure generates a monotonic and continuous distance

measure for a basic parametric curve such as a Bezier curve. Piecewise polynomial

curves such as NURBS curves, on the other hand, require decomposition to Bezier

segments and composition of distance sub-fields of the obtained segments. Further,

normalization for each distance sub-field is desired to yield a monotonically varying

composed field. Considering a physical footpoint xf , one can approximate Γ(xf ) to

a first order using Taylor expansion:

Γ(xf ) = Γ(x)− ∂Γ(x)

∂n
d. (3.11)
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Since the resultant has exact zero set on a parametric curve, i.e., Γ(xf ) = 0. one can

derive a normalized distance function as follows:

d =
Γ(x)
∂Γ(x)
∂n

=
Γ

‖∇Γ‖ . (3.12)

After obtaining normalized algebraic distance sub-fields for each decomposed Be-

zier segment, one can compose them using R-conjunction operation (Eq. (3.8)) and

thereby generate the desired algebraic distance field. As demonstrated in [49], the

R-conjunction operation preserves the normalization of individual Bezier segments.

However, an implicitized curve obtained from a Bezier curve of degree p may have as

many as 1
2
(p − 1)(p − 2) self-intersections or double points [66]. Any double points

inside the convex hull will affect the algebraic distance construction, and therefore

need to be moved out by sub-divisions of the Bezier curve. The algorithm to carryout

this process is discussed in reference [49]. Thus, for practical reasons of avoiding

more than one double point while enabling sufficient generality in modeling complex

geometries, the methodology is restricted to low degree NURBS curves (p ≤ 3).

Figure 3.4 shows an example of algebraic distance field of an open curve containing

two points with G 0 continuity.

3.4 Extension to NURBS Surface

The algebraic distance field construction can be extended to three-dimensional

NURBS surfaces in a straightforward manner by implicitizing the rational para-

metric surface with the Dixon resultant [64]. Given a rational parametric surface
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Figure 3.4. Algebraic distance field of a symmetric cubic curve. G 0 con-
tinuity is present at (x, y) = (−1, 0) and (1, 0). The generated algebraic
level sets retain the symmetry while ensuring the smoothness of the field.

S(X(u, v), Y (u, v), Z(u, v),W (u, v)) of degree p × q with x = X(u,v)
W (u,v)

, y = Y (u,v)
W (u,v)

and

z = Z(u,v)
W (u,v)

, three auxiliary polynomials can be formed as follows:

g1(x, u, v) = W (u, v)x−X(u, v) = 0 (3.13a)

g2(y, u, v) = W (u, v)y − Y (u, v) = 0 (3.13b)

g3(z, u, v) = W (u, v)z −X(u, v) = 0. (3.13c)

As before, using algebraic elimination theory, one can derive the corresponding resul-

tant system for surface S:

[
MD

]
2pq×2pq

(
1 u · · · up−1 · · · v2q−1 uv2q−1 · · · up−1v2q−1

)T
= 0 (3.14)

where, the vector is indexed lexicographically. MD is the Dixon matrix which also

possesses a property analogous to Eq. (3.5) of linearity with respect to x, y, and z:

MD(x) = MD
x x+ MD

y y + MD
z z + MD

w (3.15)
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where, as before, MD
x ,M

D
y ,M

D
z and MD

w depend on control point coordinates and

weights. The determinant of the Dixon matrix is the Dixon resultant:

Γ(x) = det(MD(x)). (3.16)

An example of the algebraic distance field from a free surface is illustrated in Fig-

ure 3.5. The pseudo-code in Alg. 1 shows the generic steps in algebraic distance

computation for NURBS curves and surfaces. Both NURBS curves and surfaces are

denoted by C(u) here for notational convenience, with the implicit understanding

that u = (u) for curves and u = (u, v) for surfaces.
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Figure 3.5. Algebraic distance field from a symmetric quadratic NURBS
surface. (a) The valley of the surface contains only a G 0 continuity across
the plane of symmetry. The distance field is plotted over three principal
planes slicing the surface: (b) x-y plane (c) y-z plane and (d) x-z plane.
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Algorithm 1 Algebraic Distance Field Algorithm

Input: NURBS curve or surface C(u) and given test point x
Output: Algebraic distance d from x to the NURBS entity C(u)

1: function Algebraic Distance(C, x)
2: B(C) ← Split NURBS entity C into a Bezier set with segments Bi, i =

1, 2, · · · , n
3: for i← 1, n do . Loops are independent and parallelizable
4: hi ← Create convex hull for Bi ∈ B(C)
5: di ← Carryout boolean union of distance fields of hi obtained using

Eq. (3.7) with Bi

6: end for
7: d ← Carryout boolean intersection of distance sub-fields di, i = 1, 2, · · · , n

using Eq. (3.8)
8: end function
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4. ALGEBRAIC POINT PROJECTION

Point projection is an important need in Computer Aided Design, to estimate the

parametric value of the nearest point on a curve or surface from a given spatial lo-

cation. In the enriched isogeometric analysis, the influence of the enriching geometry

to a spatial point can also be determined through point projection. In this chapter,

a non-iterative, algebraic technique for point projection is presented for low degree

NURBS curves and surfaces. The method is extended from the algebraic distance

field, providing exact on-curve/surface solution and accurate near-curve/surface so-

lution. Examples are presented to illustrate the efficiency and robustness of the de-

veloped method. The computational expense is demonstrated on the examples to be

comparable or lower than that required for a single Newton-Raphson iteration. The

method is shown to be robust and able to generate valid solutions even for curves and

surfaces with high local curvature or G0 continuity – problems where the Newton-

Raphson method fails due to discontinuity in the projected points or because the

numerical iterations fail to converge to a solution, respectively.

4.1 Introduction to Point Projection

Given a test point and a parametric entity (curve or surface), the generalized point

projection problem is to find the closest point (footpoint) on the entity as well as the

corresponding parameter value. Since the footpoint is the closest point on the curve

or surface, the line connecting the test point to the footpoint is normal to the curve

or the surface [56]:

g(u) = C ′(u) · (x−C(u)) = 0. (4.1)
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The footpoint of projection in parametric space uf can be thus defined as

uf = P(x) = arg min
C′(u)·(C(u)−x)=0

‖x−C(u)‖, (4.2)

This problem is of importance in geometric modeling. For instance, while fitting a

curve or surface to sampled data, one may need to compute corresponding parameter

values and errors at data points since the error is the distance between the data point

and the fitting curve or surface [67].

Point projection also plays an important role in computer aided engineering (CAE).

Analysis of interaction with explicitly defined boundaries in a domain requires point

projection to compute the influence of the domain point on the appropriate location

of the inserted boundary (see Figure 4.1). For example, in solutions to mechanical

contact problems [68, 69], point projection is needed to define the normal gap and

tangential slip between two bodies. In fluid-structure interaction (FSI) problems,

point projection has been utilized to transfer kinematic and traction data between

non-matching fluid-structure interface [70]. Recently, point projection has been used

to enrich the base approximations with those on lower-dimensional geometrical fea-

tures such as crack surfaces and phase boundaries, enabling simulations of fracture

propagation [13,14] and solidification [71]. A fast and robust point projection method

is critical to efficiently solving these problems.

The use of Newton-Raphson (NR) iterations for solving Eq. (4.1) is well established

at this time. These iterative methods mainly consist of two steps:

1. Seek an initial point or segment

2. Iterate by Newton-Raphson scheme until convergence

The robustness and the efficiency of Newton-Raphson scheme depends significantly

on the initial guess. Therefore, to assure convergence of the second step, careful

selection of initial position is needed.

To this end, a significant focus of the existing literature is on eliminating portions

of the curve or surface where the solution cannot lie. Piegl and Tiller [67] developed
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Figure 4.1. Mechanical analysis in the presence of complex free form
embedded surface. The spatial point may only influence a local region of
the surface with the highlighted control points, which can be identified by
point projection.

a non-iterative, heuristic algorithm where a NURBS surface was decomposed into

quadrilaterals and test points were projected onto the closest quadrilateral. Ma and

Hewitt [57] described a search for the initial guess of the footpoint by recursively

sub-dividing the Bezier segment associated with a valid control polygon. However,

using the control polygon to eliminate segments of the curve may exclude the correct

solution [72]. Selimovic [73] improved Ma and Hewitt’s method using selective sub-

division of the NURBS curve (surface) based on distance to the end (corner) point

of the entity. Chen et al. [74] pointed out the need for all control points to lie

on different sides of a hyperplane in Selimovic’s algorithm and proposed a circular

clipping method with a sufficiency condition for a curve to lie outside an elimination

circle. Other iterative methods in the physical space have also been proposed for

point projection including the geometric second order iteration method [75,76].
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On the other hand, uf (x) calculated from orthogonal projection (Eq. (4.2)) may

be non-unique, discontinuous or non-existent as illustrated in Figure 4.2. The foot-

point of a test point near the curve or surface segment with high local curvature can

be non-unique, leading to discontinuity of point projection process as illustrated in

Figure 4.2a. The non-existence is illustrated in Figure 4.2b, and occurs around points

where C(u) has only G 0 continuity.

(a) Illustration of the discontinuity of point
projection

(b) Illustration of non-existence of point
projection

Figure 4.2. Special cases encountered during point projection: (a) Exact
projection from points on a straight line to a bell-shaped curve. Discon-
tinuity occurs at the circled central point due to non-uniqueness of point
projection. (b) Projection from points on a straight line to a cone-shaped
curve. The dashed line segment has no footpoint on the curve.

To circumvent the challenges, a purely algebraic, and therefore non-iterative, non-

recursive and efficient, near-orthogonal point projection technique for low degree two-

dimensional (2D) NURBS curve and three-dimensional (3D) NURBS surface is devel-

oped. The projection solution is obtained in finite time since the solution does not rely

on numerical iteration or recursion. The proposed technique preserves the geometric

exactness of NURBS curve and surface, and therefore gives an exact on-curve/surface

solution. In addition, the technique is robust for curves and surfaces with high local

curvature or G0 continuity compared to techniques that rely on derivatives.
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4.2 Algebraic Point Projection for NURBS Curve

As illustrated using Figure 4.2, iterative numerical solution for point projection

may lead to a discontinuity in the projected point or may miss the correct solution.

Hence, we develop in this section a purely algebraic point projection algorithm with

the following properties:

1. Exact at any point on the curve or surface, i.e., exact point inversion

2. Controllable accuracy when projected from points near the curve or surface

3. Efficient, non-iterative and non-recursive solution procedure

4. Projected points are continuous even near curve segments with high curvature

5. Valid solutions even when projected onto curves with only G 0 continuity

The present method consists of two steps: estimation of the footpoint in physical

space and point inversion based on resultant system.

4.2.1 Projection in Physical Space

From Eq. (3.12), the gradient of normalized approximate distance function is

derived as

∇d =

(
I− Γ

‖∇Γ‖2 H

) ∇Γ

‖∇Γ‖ (4.3)

where, I is the identity matrix and H is the Hessian of function Γ(x). Using the

above distance gradient, the physical footpoint xf can now be approximately located

as

xf = x− d ∇d‖∇d‖ . (4.4)
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To calculate d and∇d using Eqs. (3.12) and (4.3), it would appear at first glance as

though Γ,∇Γ and H need to be evaluated for every test point. However, the following

derivation as well as procedural detail show that d and∇d can be computed efficiently

without explicitly calculating Γ,∇Γ or H. One can express ∇Γ and H in terms of

Bezout matrix MB and its components MB
x and MB

y (the superscript B is dropped

in the following for ease of reading):

∇Γ = |M|

 tr
(
M−1 ∂

∂x
M
)

tr
(
M−1 ∂

∂y
M
) = |M|

tr
(
M−1Mx

)
tr
(
M−1My

)
 = Γg̃ (4.5)

H = |M|



tr2
(
M−1Mx

)
tr
(
M−1Mx

)
tr
(
M−1My

)
−tr

((
M−1Mx

)2
)

−tr
((

M−1Mx

) (
M−1My

))
tr
(
M−1My

)
tr
(
M−1Mx

)
tr2
(
M−1My

)
−tr

((
M−1My

) (
M−1Mx

))
−tr

((
M−1My

)2
)


= ΓH̃. (4.6)

where, g̃ and H̃ are the vector/matrix multiplying |M| in the above equations, re-

spectively. Substituting Eqs. (4.5) and (4.6) back into Eqs. (3.12) and (4.3), one

obtains

d =
1

‖g̃‖ (4.7)

∇d =
g̃

‖g̃‖ −
H̃g̃

‖g̃‖3 . (4.8)

The efficiency of algebraic point projection in two-dimensional physical space is

summarized as follows:

1. Component matrices Mx, My and Mw are constant for a given rational para-

metric curve. Therefore, they can be pre-computed and repeatedly used at a

point x.

2. Only matrix M needs to be factorized, and the procedure extensively reuses the

products M−1Mx and M−1My when computing H̃ and g̃.
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3. For a Bezout matrix M of the size p × p, where p is the degree of the rational

parametric curve, the typical computational cost is low since p is usually small

in engineering applications.

Algebraic point projection in two-dimensional physical space is validated in Fig-

ure 4.3, where the developed method is compared against the Newton-Raphson it-

erations for various test distances. The developed method converges to the exact

footpoint as the test distance decreases.

4.2.2 Inversion to Parametric Space

Given a footpoint xf in physical space, finding a corresponding parameter uf such

that C(uf ) = xf is the point inversion problem. The direct approach to carrying out

point inversion is by solving a system of polynomial equations, which may result in

numerical tolerance related challenges, especially when xf is not exactly on curve

C(u) [51]. This drawback can be overcome by using the Bezout matrix [64] as shown

in the following. Evaluate MB(xf ) with xf = (xf , yf ):

MB(xf ) = MB
x xf + MB

y yf + MB
w = [mij]p×p. (4.9)

Then, Eq. (3.4) can be rewritten as the following over-constrained linear system:

Aũ ≡


m11 m12 · · · m1(p−1)

m21 m22 · · · m2(p−1)

...
...

...
. . .

...

mp1 mp2 · · · mp(p−1)




up−1

up−2

...

u

 = −


m1p

m2p

...

mpp

 . (4.10)

Matrix A is full ranked if Eq. (3.3) has only one common root, i.e., if xf is not a

double point [77]. Thus, uf can be obtained by solving a linear least square problem

resulting from Eq. (4.10), which requires bounded computational cost unlike numer-
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Figure 4.3. Point projection in two-dimensional physical space using the
developed algebraic method as well as Newton-Raphson iterations for (a)
test distance d̄ = 0.25, (b) test distance d̄ = 0.15 and (c) test distance
d̄ = 0.05

ical iterations using Newton-Raphson method. Also, if a physical test point x is

initially on the curve, then xf = x, and the point inversion can be directly applied.

In order to compute uf on a NURBS curve, which is piece-wise polynomial, pro-

jection onto the appropriate Bezier segment is required. For this purpose, one can

identify the closest Bezier segment using algebraic distance sub-fields, and apply

algebraic point projection on the closest Bezier segment. Denoting the computed
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parameter on the closest Bezier curve as uBf , the corresponding parameter on the

original NURBS curve uNf can be obtained by purely linear scaling and offset. Unlike

iterative or recursive schemes, the algebraic method guarantees the existence of a

definite footpoint without needing to manipulate user-controlled parameters such as

stop criterion or recursion limit in an effort to coax a solution. If a test point is close

to the connection node of two adjacent Bezier segments, a result of uBf < 0 or uBf > 1

may be obtained. In this case, higher projection precision can be achieved when a

second point projection to the adjacent Bezier segment is attempted (Figure 4.4).

0 𝑢𝐵1

0 𝑢𝑁

1𝑠𝑡 projection

2𝑛𝑑 projection
(𝑢𝑓

𝐵 ∉ [0, 1])

Figure 4.4. Illustration of the second projection onto an adjacent Bezier
curve segment if the first projection yields an out-of-span solution.

4.3 Extension to NURBS surfaces

Analogous to the algebraic distance field in three-dimensions, the algebraic point

projection can be naturally extended to three-dimensional Bezier and NURBS sur-

faces by replacing Bezout matrix MB with Dixon matrix MD. Since the Dixon matrix

also has the linearity property as given in Eq. (3.15), the basic procedure for point

projection remains the same as outlined in Section 4.2.
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4.3.1 Projection in Physical Space

Utilizing the linearity property (Eq. (3.15)), one can rewrite∇Γ and H in Eq. (4.3)

as follows (as before, superscript D is dropped for ease of reading):

∇Γ = |M|


tr
(
M−1 ∂

∂xM
)

tr
(
M−1 ∂

∂yM
)

tr
(
M−1 ∂

∂zM
)
 = |M|


tr
(
M−1Mx

)
tr
(
M−1My

)
tr
(
M−1Mz

)
 = Γg̃ (4.11)

H = |M|



tr2
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−tr
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)
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tr
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−tr

((
M−1My

) (
M−1Mx

))
−tr
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tr
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tr2
(
M−1Mz

)
−tr

((
M−1Mz

) (
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−tr

((
M−1Mz

) (
M−1My

))
−tr

((
M−1Mz
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
= ΓH̃. (4.12)

Next, as before, Eqs. (4.4), (4.7) and (4.8) can be exploited to obtain the physical

footpoint xf in three-dimensional space. Earlier statements on efficiency of the alge-

braic point projection for rational parametric curves also apply to rational parametric

surfaces except that the size of the Dixon matrix MD is 2pq × 2pq, where p and q

are the degrees of the rational parametric surface in each dimension. Algebraic point

projection in three-dimensional physical space is demonstrated in Figure 4.5, where

test points are projected onto a target Bezier surface using the proposed method and

the Newton-Raphson iterations. Again, one can observe that the proposed method

leads to accurate solutions for test points closer to the surface.
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Figure 4.5. Point projection in 3D physical space using the proposed
algebraic method and Newton-Raphson iterations.

4.3.2 Inversion to Parametric Space

The point inversion for rational parametric surfaces can be carried out using Dixon

matrix as well. Substituting the physical coordinates of the footpoint xf = (xf , yf , zf )

in MD we get

MD(xf ) = MD
x xf + MD

y yf + MD
z zf + MD

w = [mij]2pq×2pq. (4.13)

Thus, as before, the homogeneous system Eq. (3.14) can be converted into an over-

constrained non-homogeneous system as follows:


m12 · · · m1(1+i+jp) · · · m1(2pq)

...
. . .

...
. . .

...

m(2pq)2 · · · m(2pq)(1+i+jp) · · · m(2pq)(2pq)





u
...

uivj

...

up−1v2q−1


= −


m11

...

m(2pq)1

 . (4.14)
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The parameters (uf , vf ) of the footpoint xf can be computed by solving the above

non-homogeneous system using QR factorization or singular value decomposition.

As before, the computation of parameters (uNf , v
N
f ) on a NURBS surface requires

sub-division of the surface into a set of Bezier segments. One can apply algebraic

point projection to the Bezier segment with shortest algebraic distance, and acquire

(uNf , v
N
f ) from the Bezier parameters (uBf , v

B
f ) by simple linear scaling and offset. As

illustrated in Figure 4.6, a second projection may be necessary when uBf or vBf is

outside the range [0, 1].

𝑢𝐵

𝑣𝐵

𝑢𝑁

𝑣𝑁

1𝑠𝑡 projection

2𝑛𝑑 projection
(𝑢𝑓

𝐵 ∉ 0, 1 ⊕ 𝑣𝑓
𝐵 ∉ [0, 1])

2𝑛𝑑 projection
(𝑢𝑓

𝐵 ∉ 0, 1 ∧ 𝑣𝑓
𝐵 ∉ [0, 1])

Figure 4.6. Illustration of the second projection onto an adjacent Bezier
surface segment if the first projection yields an out-of-span solution.

The generic pseudo-code of algebraic point projection for both NURBS curves and

surfaces is listed in Alg. 2. As can be seen from Alg. 1 and Alg. 2, algebraic distance

field (ADF) and algebraic point projection (APP) are closely connected. Algebraic

distance field provides the closest Bezier segment for the first point projection, but

also restricts the target curve or surface to be low degree (p, q ≤ 3) so as to avoid

double points.
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Algorithm 2 Algebraic Point Projection Algorithm

Input: NURBS curve or surface C(u) and given point x
Output: Parameter uNf of footpoint on NURBS entity C.

1: function Algebraic Point Projection(C, x)
2: B(C) ← Split NURBS entity C into a Bezier set with segments Bi, i =

1, 2, · · · , n
3: for i← 1, n do . Loops are independent, parallelization is possible
4: hi ← Initialize convex hull for Bi ∈ B(C)
5: di ← Carryout boolean union of distance fields of hi and Bi by Eq. (3.7)
6: end for
7: xf ← x− dBj(x)

∇dBj (x)

‖∇dBj (x)‖ , where j = arg mini∈[1,n] di

8: uBf ← Solve Eq. (4.10) with MB(xf ) or Eq. (4.14) with MD(xf )
9: if uBf is out of span then

10: uBf ← Carryout the second projection based on Figure 4.4 or Figure 4.6
11: if Second projection is infeasible or uBf is still out of span then
12: uBf ← Compute corresponding parameter value on Bj boundary
13: end if
14: end if
15: uNf ← Scale and offset uBf based on knot span of C
16: end function

4.4 Numerical Examples of Algebraic Point Projection

Four numerical examples are presented to demonstrate the algebraic point projec-

tion: two curve examples and two surface examples. The first curve example shows

the performance of algebraic point projection in a simple test to estimate compu-

tational accuracy. In this example, it is shown that a quadratic convergence rate is

achieved. The second curve example and both surface examples show the performance

of the proposed method in complex tests involving discontinuous and/or non-existent

footpoints. The computational efficiency of the developed method is demonstrated

through a comparison with the Newton-Raphson iterations in all examples.
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4.4.1 Curve Tests

The first curve example is illustrated in Figure 4.7, where physical points in the

underlying domain are projected onto a given NURBS curve using both Newton-

Raphson iterations as well as algebraic point projection. Contour levels indicate the

value of parameter uNf of the predicted footpoint.
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(a) Parameter values of the footpoints obtained through Newton-Raphson iterations
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(b) Parameter values of the footpoints obtained through algebraic point projection

Figure 4.7. Parameter values of footpoints obtained using (a) Newton-
Raphson method and (b) algebraic point projection. Parameter range of
NURBS curve is [0, 1].

As may be observed from Figure 4.7, the algebraic point projection provides an

exact on-curve solution and a good approximate solution to the parameter values from

points near the curve. A quadratic convergence rate was achieved as the distance

between test points and curve decreased (Figure 4.8). Also, one may observe that

there are two regions, at bottom-left and upper-right of Figure 4.7a respectively,

where due to high curvature of nearby curve segments, a jump in parameter value

occurs. Such discontinuities disappear when algebraic point projection is used. The

computational cost per point of algebraic point projection, as listed in Table 4.1, is

only 21% of that of the Newton-Raphson method. In fact, the computational cost of
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Figure 4.8. Relative error
|uNRf −uAPPf |

b−a vs. normalized distance of test

points d(x), where uNRf and uAPPf are parameter values of footpoints ob-
tained using the Newton-Raphson method and the algebraic point pro-
jection respectively. [a, b] is the parameter range of the NURBS curve.
As the test point moves closer to the target curve, the projection error
decreases quadratically.

the proposed method is comparable to or lower than the average cost per iteration

when using the Newton-Raphson scheme.

Table 4.1.
The results of point projection for NURBS curves. The tolerance in
Newton-Raphson iterations was chosen as ε = 10−8. The time required to
find an initial guess for the Newton-Raphson method was excluded in the
time per iteration calculation.

Example Newton-Raphson Iterations Proposed Method

Curve
Time per Number of Time per Time per
point (µs) iterations iteration (µs) point (µs)

#1 (Figure 4.7) 33.86 3.93 7.12 7.14
#2 (Figure 4.9) 251.6 15.03 16.74 8.11
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The second curve example shown in Figure 4.9 demonstrates the robustness of

the algebraic point projection when the footpoint is either discontinuous or non-

existent. One can observe from Figure 4.9b that at the discontinuous point, the

Newton-Raphson method causes a large jump in parameter value, whereas the alge-

braic method yields a continuous parameter value. In general, the projected solution

is smoother (fewer oscillations) and matches the Newton-Raphson solution well. Fi-

nally, since the Newton-Raphson iterations failed because maximum allowed iterations

were reached for utrace ∈ [0.53, 0.77], in this example, the computational cost of the

algebraic method (see Table 4.1) was only 3% of the cost of the Newton-Raphson

method, and significantly smaller than that required for a single Newton-Raphson

iteration.

4.4.2 Surface Tests

The first and second surface examples demonstrate the robustness of the algebraic

point projection for NURBS surfaces involving discontinuous and non-existent foot-

points, respectively. In the first example (Figure 4.10), the discontinuous projection

occurs again when the Newton-Raphson method is applied on a surface segment with

high mean curvature. In the second example (Figure 4.11), the Newton-Raphson

method failed in the regions where the mathematical footpoints do not exist. Not

only does the algebraic point projection overcome those problems, but it also produces

an accurate and efficient solution. According to Table 4.2, the computational cost per

point of the proposed method is only 22% and 8.9% of that of the Newton-Raphson

method in the first and second surface examples, respectively.

4.5 Concluding Remarks

In the present study, a novel algebraic projection method for low degree two-

dimensional NURBS curves and three-dimensional NURBS surfaces was proposed.

The procedure utilizes the recently developed algebraic distance field construction
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Table 4.2.
The results of point projection for NURBS surfaces. The tolerance in
Newton-Raphson iterations was chosen as ε = 10−8. Note that the time
of finding an initial point is excluded in the time per iteration.

Example Newton-Raphson Iterations Proposed Method

Surface
Time per Number of Time per Time per
point (µs) iterations iteration (µs) point (µs)

#1 (Figure 4.10) 94.74 5.00 18.33 20.89
#2 (Figure 4.11) 328.8 11.26 27.89 29.25

methodology. As a first step, the procedure exploits the differential property of the

resultant matrix to obtain the footpoint in physical space. Next, the parameter value

of the footpoint is computed by solving the over-constrained resultant system. Al-

gebraic point projection eliminates inefficient iterative/recursive computations and

challenging search for an initial guess by providing an exact on-curve solution and

good approximate solution for points near the curve. Through numerical examples,

the algebraic method is demonstrated to be faster and more robust than Newton-

Raphson iterations. The computational cost of the developed method is comparable

or lower than that required for a single Newton-Raphson iteration. While the al-

gebraic point projection has many advantages, for points far away from the target

NURBS entity, the estimated footpoint may not be accurate. For at least isogeometric

analysis using explicitly defined surfaces [13,71], inaccuracy in estimating footpoints

from Gauss points far from the entity is less important relative to robustness of so-

lution and the overall computational cost of projection from a very large number of

quadrature points.
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(b) Parameter values of footpoints vs. those of the trace curve.

Figure 4.9. Illustration of the robustness of the 2D algebraic point pro-
jection for the NURBS curve. (a) Trace of points that were projected
onto target curve. (b) Solution parameter of footpoints on target curve vs
parameter of trace curve for the two methods. Parameter discontinuity in
Newton-Raphson solution occurs due to non-uniqueness of the footpoint
near the local minimum at utrace ≈ 0.176, and the solution does not exist
when utrace ∈ [0.53, 0.77] as shown in the inset magnified region.
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(a) Trace of test points, bowl-shaped target surface and the identified footpoints.
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(b) Parameter values (utarget, vtarget) of footpoints shown in (a).

Figure 4.10. Illustration of the robustness of the 3D algebraic point pro-
jection algorithm involving discontinuous footpoints. (a) Trace of points
that were projected onto bowl-shaped target surface using the proposed
algebraic method and the Netwon-Raphson method. (b) Parameters of
footpoints on the target obtained by both the methods. Discontinuity
occurs due to non-unique footpoints for test points near the bottom of
the surface.
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(a) Trace of test points, mountain-shaped target surface and consequent foot-
points.
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(b) Parameter values (utarget, vtarget) of footpoints.

Figure 4.11. Illustration of the robustness of the 3D algebraic point
projection algorithm involving test points whose mathematical footpoints
do not exist. (a) Trace of points which are projected onto mountain-
shaped target surface using both methods. (b) Parameters of footpoints
on target. The solution does not exist near the four mountain ridges of
G 0 continuity as shown in the four corner regions of (b).
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5. EFFICIENT ALGORITHMS FOR IMMERSED BOUNDARY PROBLEMS.

PART I: KD-TREE BASED ADAPTIVE QUADRATURE

In the enriched isogeometric analysis, the underlying domain mesh does not neces-

sarily conform to the boundaries. While the non-conforming mesh provides great

flexibility and convenience for mesh generation, this in turn requires a sophisticated

scheme to integrate over the elements that are intersected by the boundaries. In this

chapter, a novel kd-tree based adaptive quadrature algorithm is proposed to carry

out the numerical integration in the cut elements/cells. This technique is demon-

strated to be cheaper as well as producing fewer quadrature sub-cells than classical

quad-/oct-tree based schemes.

5.1 Introduction to Adaptive Quadrature

The modeling of immersed boundary problems, using a mesh that does not nec-

essarily fit to the boundaries, has been extensively studied in the computational fluid

dynamics (CFD) community [78–81]. Many immersed boundary methods based on

the finite element approximation were proposed to solve the fluid-structure interac-

tion problems [82–86]. The generation of the non-conforming mesh is, in general,

much faster than that of a boundary-fitted mesh. However, in the former case, many

elements are intersected by the boundaries, and therefore the traditional element-

wise numerical integration is no longer feasible for these elements. As illustrated

in Figure 5.1, the immersed boundary problems necessitate a separate integration

on each side of the boundary, but an accurate integration over such cut elements is

challenging.

To this end, many subdivision based adaptive quadrature algorithms were devel-

oped to generate boundary-fitted quadrature sub-cells in the cut elements. Rüberg
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(a) Boundary-fitted mesh (b) Non-conforming mesh in the pres-
ence of an immersed boundary

Figure 5.1. Different types of analysis mesh: (a) The mesh conforming to
the boundary, and (b) the mesh grid intersected by a immersed boundary.

and Cirak [85] planarized the immersed surfaces and then subdivided the hexahedral

elements into boundary-fitted tetrahedral sub-cells. Chen and Fries [87] approxi-

mated the boundary segment within each cut element with a polynomial, followed by

a subdivision of the cut element into a few serendipity elements. Kudela et al. [88]

developed a directly integratable blending formulation for the curved triangles or

quadrilaterals resulting from the cut elements. While the curved-element methods

yield very few quadrature sub-cells and preserve the geometric accuracy, a robust

implementation accounting for all the special cases is still non-trivial. Furthermore,

these methods can not be extended to three-dimensional (3D) problems.

Another popular subdivision scheme relies on the space tree, i.e., quad-tree (2D)

and oct-tree (3D). This scheme works robustly for any geometry without complicated

case-by-case solution, and has been extensively applied to quadrilateral and hexahe-

dral elements, such as the patches in isogeometric analysis [13, 53, 89–91]. Recently,

the space tree based subdivision scheme was employed to facilitate the numerical in-

tegration in finite cell method (FCM) [92–94]. However, the classical quad-/oct-tree

subdivision introduces superfluous quadrature cells and significantly increases the
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computational time during matrix assembly. A quad-tree based adaptive quadrature

example is shown in Figure 5.2, where the total number of quadrature cells increases

276% after a three-level subdivision. The computational performance is even worse

if more elements are intersected by the immersed boundaries, or if a higher level of

subdivision is desired.

Underlying domain
Immersed boundary
Sub-cell grid

Figure 5.2. Illustration of the quad-tree based adaptive quadrature in the
presence of a circular boundary. The initial number of quadrature cells is
25. After a three-level quad-tree subdivision, the number increases to 94.

Recently, several non-subdivision approaches, including the adaptive weight me-

thod [95] and the variational collocation method [96,97], were proposed. The former

approach yields much fewer Gauss points than the subdivision based methods, but re-

quire handling of a large number of special cases. The variational collocation method

produces a Galerkin solution by carefully choosing the collocation points (termed as

Cauchy-Galerkin points), and thus avoids explicit numerical integration. However,

analytical solution for the Cauchy-Galerkin points only exists for uniform meshes and

non-singular problems.
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5.2 Kd-tree Based Adaptive Quadrature Algorithm

The existing adaptive quadrature schemes either introduce unnecessary Gauss

points or require special rules or evaluation points. To circumvent the two chal-

lenges, a novel adaptive quadrature algorithm based on the kd-tree data structure, is

developed.

5.2.1 Motivation

The magnified bottom right 2×2 elements in Figure 5.2 is shown in Figure 5.3. It

can be observed that many adjacent, non-intersected quad-tree sub-cells (separated

by dash lines) can be combined into one cell. By removing these dash lines, the

number of sub-cells is reduced without loss of quadrature accuracy. Thus, for certain

cells, a complete subdivision into four (2D) or eight (3D) sub-cells is not necessary.

A partial subdivision can be carried out by either splitting the cells direction-wise

or combining the sub-cells during post-processing. As shown in Figure 5.3, the total

number of quadrature sub-cells decreases by 17% with partial subdivisions. This

method is analogous to the kd-tree data structure in computer geometry, and is

therefore termed as Kd-Tree based Adaptive Quadrature (KTAQ).

Underlying domain
Immersed boundary
Sub-cell grid
Removable cell grid
Guass point

Figure 5.3. Illustration of the sub-cell coalescence by removing non-
intersected cell grids.
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5.2.2 Algorithm

k-dimensional tree, also referred as kd-tree, is a binary space tree that partitions

the space dimension-wise, and is also a superset of the quad-tree and oct-tree. The

kd-tree structure has a long tradition in computational geometry [98] to solve range

searching problems. Specifically, given a set of spatial points, the kd-tree can store

the points in an orderly manner so that quick range searching can be achieved. In this

work, the kd-tree is used to store the quadrature sub-cells instead of spatial points.

A two-dimensional example is shown in Figure 5.4.
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Figure 5.4. Illustration of the kd-tree based adaptive quadrature. The
maximum level illustrated here is three. Each level consists of two depths
that represent different splitting directions. li (stored in nodes) and Ci
(stored in leaves) denote a splitting line and a sub-cell, respectively.

In the standard kd-tree, each level has k depths, i.e., k times of splitting (e.g.,

2d-tree splits in x and y directions successively whereas 3d-tree splits in x, y and z

directions). As for the kd-tree based adaptive quadrature, extra flexibility is provided

to the splitting procedure by enabling an arbitrary order of the splitting direction

within each level. First, we explore all the possible splitting directions at each depth,

and choose the direction in which the splitting line/plane l does not intersect with the
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boundary. If the intersection can not be avoided in any direction, a default splitting

direction will be chosen. Each split produces two new sub-cells. If any of the sub-cells

is not intersected by the boundary, a corresponding leaf will be created in the kd-tree.

Otherwise, the split continues until the maximum level is reached. A pseudocode of

the proposed algorithm is described in Alg. 3. The KTAQ is only necessary for cut

elements. The regular elements can handled with the standard Gaussian quadrature.

Remarks :

1. Once the kd-tree is constructed for a given cut element, a tree traversal algo-

rithm such as Depth First Search (DFS) or Breadth First Search (BFS) can

be employed to extract all the leaves of the kd-tree and obtain the quadrature

sub-cells stored therein. The tree traversal step is, in general, much faster than

the tree construction.

2. The intersection between the splitting line/plane and the boundary can be iden-

tified by checking the signed algebraic distance [99] between them. A line or

plane is assumed to intersect the boundary if the bounding vertices of the

line/plane have opposite signs. The algebraic distance field is exact to the

NURBS boundary, enabling an accurate judgment of the intersection.

5.2.3 Comparison with Quad-/Oct-tree

The kd-tree structure is compared with quad-tree and oct-tree in the following

three aspects:

1. Number of Quadrature Sub-cells Generated : Table 5.1 summarizes the worst-

and best-case ratios of the number of sub-cells generated by kd-tree to that

by quad-/oct-tree. In the worst-case scenario, the immersed boundary is suffi-

ciently complex such that all the cells have to be completely subdivided in each

level. Therefore, the number of sub-cells generated by the kd-tree subdivision
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Algorithm 3 Kd-tree Based Adaptive Quadrature Algorithm

Input: Cell C, depth of tree depth, splitting direction vector dir and auxiliary flag
nocheck

Output: Kd-tree v containing quadrature sub-cells in leaves

1: function BuildKdTree(C, depth, dirs, nocheck)
2: if depth mod Dim = 0 then . Reinitialize at the first depth of each level
3: dir ← [x, y](2D) or [x, y, z](3D)
4: nocheck ← false
5: end if
6: SplitDir ← dir(1) . Set the first element in dir as the default splitting

direction
7: if nocheck = false then
8: if C not intersect boundary or depth = MaxDepth then
9: return leaf containing C

10: else if length(dir) ≥ 2 then . No further check is needed if only one
direction is available

11: for i← 1, length(dir) do
12: nocheck ← true
13: if Splitting line(2D)/plane(3D) in dir(i) not intersect boundary

then
14: nocheck ← false
15: SplitDir ← dir(i)
16: end if
17: end for
18: end if
19: end if
20: C ′half , C

′′
half ← Split C in SplitDir

21: dirnew ← Exclude SplitDir from dir
22: vleft ← BuildKdTree(C ′half , depth+1, dirnew, nocheck)
23: vleft ← BuildKdTree(C ′′half , depth+1, dirnew, nocheck)
24: return v with two branches vleft and vright
25: end function

is the same as that by quad-tree and oct-tree. The best-case ratio is proved in

Theorem 5.2.1.

Theorem 5.2.1 Given an arbitrary immersed boundary, the number of quadra-

ture sub-cells generated by the kd-tree subdivision is no smaller than 2/3 of that

by a quad-tree, and 3/7 of that by an oct-tree.



55

Table 5.1.
Worst- and best-case ratios of the number of sub-cells generated by kd-tree
to that by quad-tree and oct-tree.

Problem Dimension Worst Case Best Case
2D (N2d−tree/Nquad−tree) 1 2/3
3D (N3d−tree/Noct−tree) 1 3/7

Proof The minimum kd-tree splits of a 2D as well as a 3D cell are illustrated

in Figure 5.5. A complete, single-level 2D subdivision operation increases the

number of sub-cells by 4 − 1 = 3 whereas an incomplete, single-level 2D sub-

division only increases it by 3 − 1 = 2. Assume the total number of complete

and incomplete subdivision operations is given by Sc and Si, respectively. The

total number of sub-cells in a 2d-tree is given by

N2d−tree = 1 + 3Sc + 2Si. (5.1)

Next, assume the total number of subdivision is Stotal. If Sc = Stotal and Si = 0,

the kd-tree is degenerated to a quad-tree, i.e.,

Nquad−tree = 1 + 3Stotal. (5.2)

Given an arbitrary immersed boundary, the N2d−tree/Nquad−tree ratio is given by

N2d−tree

Nquad−tree

=
1 + 3(Stotal − Si) + 2Si

1 + 3Stotal

≥ 1 + 2Stotal

1 + 3Stotal

>
2

3
. (5.3)

Likewise, a complete, single-level 3D subdivision operation adds 8− 1 = 7 sub-

cells. However, the number of sub-cells added by an incomplete 3D subdivision

may vary from 3 to 6. If a real number c ∈ [3, 6] is used to represent the average
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sub-cell increment per subdivision, the total number of sub-cells in a 3d-tree

can be expressed as

N3d−tree = 1 + 7Sc + cSi. (5.4)

The N3d−tree/Noct−tree ratio can be next obtained as follows:

N3d−tree

Noct−tree

=
1 + 7(Stotal − Si) + cSi

1 + 7Stotal
≥ 1 + cStotal

1 + 7Stotal

>
c

7
≥ 3

7
. (5.5)

(a) Minimum 2d-tree splits. (b) Minimum 3d-tree splits.

Figure 5.5. Minimum kd-tree splits within a single level. (a) The 2d-tree
and (b) 3d-tree splits produce three and four sub-cells, respectively.

2. Computational Cost in Tree Construction: Given a quadrature cell to be subdi-

vided, the vertices that need to be checked in the kd-tree are a subset of those

in quad-/oct-tree. Furthermore, the kd-tree yields fewer number of sub-cells in

each level (see Figure 5.5). Therefore, the kd-tree results in a faster algorithm

than quad-/oct-tree.

3. Aspect Ratio of Generated Sub-cells : Table 5.2 lists the worst- and best-case

aspect ratios of the sub-cells generated by quad-, oct- and kd-tree subdivisions.
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Since the cell splits are symmetric and the splitting direction changes at different

depths of each level, no aspect ratio worse than 1:2 (2d-tree) or 1:1:2 (3d-tree)

would occur.

Table 5.2.
Aspect ratios of the sub-cells generated by quad-, oct- and kd-tree subdi-
vision. The initial element shape is assumed to be square (2D) or cubic
(3D).

Tree Type Worst Case Best Case
Quad-tree 1:1
Oct-tree 1:1:1
2d-tree 1:2 1:1
3d-tree 1:1:2 1:1:1

5.3 Numerical Examples

Four numerical examples are presented to demonstrate the kd-tree based adaptive

quadrature. The proposed technique is robust and applicable for both 2D and 3D

immersed boundary problems without the need for deal with cumbersome special

cases. It is further shown that the kd-tree based scheme effectively reduces the number

of quadrature sub-cells while taking less amount of time than the classical quad-/oct-

tree based schemes.

5.3.1 Hyper-planar Boundary

The first example, as shown in Figure 5.6, involves a hyper-plane immersed bound-

ary (line in 2D and plane in 3D). A hierarchical sub-cell structure can be observed in

this example. The number of generated sub-cells is listed in Table 5.3.
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(a) Immersed line at y = 0.95. (b) Immersed plane at z = 0.95.

Figure 5.6. Kd-tree subdivision of a unit cell in the presence of (a) a 2D
immersed line and (b) a 3D immersed plane. The maximum level is three
in both examples. The domain color represents a signed distance to the
immersed boundary.

Table 5.3.
Comparison of the kd-tree and quad-/oct-tree subdivision in the presence
of a hyper-planar boundary as shown in Figure 5.6.

Tree Type Nsubcell Ratio of Nsubcell

2d-tree 15
0.682

Quad-tree 22
3d-tree 85

0.574
Oct-tree 148

5.3.2 Hyper-spherical Boundary

The second example is illustrated in Figure 5.7, where a hyper-spherical bound-

ary is embedded in the domain. The corresponding number of created sub-cells are

summarized in Table 5.4
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(a) Immersed circle (R = 0.72) (b) Immersed spherical surface (R = 0.72)

Figure 5.7. Kd-tree subdivision of a unit cell in the presence of (a) a
quadrant and (b) an 1/8 spherical surface. The hyper-spheres are centered
at a corner and have a radius of R. The maximum level is four in both
examples. The domain color represents a signed distance to the immersed
boundary.

Table 5.4.
Comparison of the kd-tree and quad-/oct-tree subdivision in the presence
of a hyper-spherical boundary as shown in Figure 5.7.

Tree Type Nsubcell Ratio of Nsubcell

2d-tree 48
0.787

Quad-tree 61
3d-tree 521

0.722
Oct-tree 722
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6. EFFICIENT ALGORITHMS FOR IMMERSED BOUNDARY PROBLEMS.

PART II: TRUNCATED HIERARCHICAL B-SPLINES AND LOCAL

REFINEMENT

For the immersed boundary problems that involve a high local gradient of the behav-

ioral field, an accurate numerical integration is usually insufficient to assure an accu-

rate solution. In addition, a refinement of the underlying (continuous) approximation

is also desired. In this chapter, Truncated Hierarchical B-Splines (THB-splines) are

utilized to enable local refinement in the enriched isogeometric analysis. Two new

a-priori mesh generation algorithms based on the signed and unsigned distance field

are first developed. To accelerate the stiffness/mass matrix assembly, we next develop

an efficient, all-at-once algorithm to evaluate all the active THB-spline basis functions

at a given point.

6.1 Introduction to Isogeometric Local Refinement

In many immersed boundary problems, the behavioral fields may vary rapidly or

even discontinuously across the boundaries. As illustrated in Figure 6.1, a coarse,

uniform approximation of the underlying domain may lead to an inaccurate solution

to these problems. A global refinement (Figure 6.2a) of the continuous approximation

may improve the accuracy, but also introduces redundant degrees of freedom (DOFs).

Alternatively, a local refinement (Figure 6.2b) requires fewer degrees of freedom while

achieving the same accuracy of solution.

There are many well-established approaches to realizing local refinement in finite

element methods, e.g., hanging nodes and graded meshes. However, in the isogeomet-

ric framework, the tensor product NURBS surfaces only support global refinement

(p-refinement [9, 51]) through knot insertion. To address the challenge of isogeo-
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(a) Problem description (b) Strain energy density field

Figure 6.1. Elastostatic Analysis of a cubic domain with a ellipsoidal
hole. (a) The schematic of the problem. A quadratically distributed load
is applied to the top surface of the domain while the bottom surface is
fixed. (b) The strain energy density field obtained from a coarse, uniform
B-spline approximation. The domain is clipped diagonally for a better
view of the hole region. It can be observed from the contours that the
resulting strain energy density is oscillatory near the hole.

(a) Global refinement (b) Local refinement

Figure 6.2. Schematics of (a) global refinement and (b) local refinement.
The goal is to refine the central element.

metric local refinement, many extensions of tensor-product representations, such as

T-splines [100, 101] and THB-splines [50], were developed. The T-splines, which can

represent complex CAD models with fewer control points, has become a powerful
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enabling tool for advanced geometric modeling. Bazilevs et al. [102] first applied

the T-splines to isogeometric analysis. Nevertheless, the linear independence of the

T-spline basis functions, a condition that may be relaxed for CAD but required by

CAE, is only guaranteed in a specific subset of T-splines [103, 104]. Although sev-

eral algorithms [105,106] were proposed to generate analysis-suitable T-splines, these

procedures may cause a propagation of the refinement regions. Another technique for

isogeometric local refinement is Hierarchical B-splines (HB-splines, see Figure 6.3a).

Similar to the T-splines, the HB-splines were originally proposed for computer aided

geometric design [107], and were later applied to analysis problems [108]. A critical

drawback of the HB-splines is that the corresponding basis functions do not form a

partition of unity. To circumvent the issue, Giannelli et al. [50] developed truncated

hierarchical B-splines (Figure 6.3b), which retain the partition of unity property and

also have a smaller support than the HB-splines. The properties of T-splines and

THB-splines are summarized in Table 6.1.

𝑁J

𝑁JKE
removed	𝑁J

𝑁J

trunc	𝑁J

𝑁JKE
removed	𝑁J

(a) HB-spline

𝑁J

𝑁JKE
removed	𝑁J

𝑁J

trunc	𝑁J

𝑁JKE
removed	𝑁J

(b) THB-spline

Figure 6.3. The basis functions of a two-level (a) hierarchical B-spline and
(b) truncated hierarchical B-spline. TheN l in dash line can be represented
by a linear combination of N l+1, and is therefore removed to avoid linear
dependence.

The THB-splines are chosen for local refinement in the enriched isogeometric

framework. However, as will be shown in Section 6.4, the number of active THB-spline

basis functions at a point can be much larger than those of the original B-splines or
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Table 6.1.
Typical properties of T-splines and THB-splines. In general, the T-splines
provide more flexibility from the prospectives of non-uniformity and ra-
tionality, whereas the THB-splines enable a simpler and more robust im-
plementation.

Spline Non- Linear Partition Refinement
Type uniformity Independence of Unity Propagation

T-spline Yes Partial Partial Medium
THB-spline No Yes Yes Little

NURBS. Therefore, an efficient algorithm for evaluating all the active basis functions

is desired.

6.2 Mathematical Description of Truncated Hierachical B-splines

Define a sequence of k-variate B-spline bases Bl, l = 0, 1, . . . , L− 1 satisfying the

nesting relation:

spanB0 ⊂ spanB1 ⊂ · · · ⊂ spanBL−1. (6.1)

Thus, any lower-level B-spline basis function N l
i ∈ Bl, l = 0, 1, . . . , L − 2 can be

represented by a linear combination of higher-level B-spline basis functions N l+1
j ∈

Bl+1 as follows:

N l
i =

∑
suppN l+1

j ⊂suppN l
i

αjN
l+1
j . (6.2)

For the case of one-dimensional dyadic refinement (i.e., the knot vectors are uniform

and each knot span is halved from V l to V l+1), Eq. (6.2) takes the form:

Ni,p = 2−p
p+1∑
j=0

(
p+ 1

j

)
N l+1

2i−1+j,p (6.3)
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where, p the degree of the B-spline. We further define a sequence of nested domains:

Ω0 ⊇ Ω1 ⊇ · · · ⊇ ΩL−1 (6.4)

where, each Ωl ∈ Rk represents a k-dimensional refinement region at level l and its

boundary ∂Ωl is aligned with the knot grid of Bl. A two-dimensional hierarchical

mesh example is shown in Figure 6.4.

ΩL

ΩE

ΩF

ΩH

(a) Nested domains (b) Overlaid hierarchical mesh

Figure 6.4. A two-dimensional, four-level dyadic hierarchical mesh: (a)
The nested domains contain level-wise sub-meshes. (b) The sub-meshes
are overlaid to generate the hierarchical mesh.

The hierarchical B-spline basis H is defined as:

H =
L−1⋃
l=0

{
N l
∣∣N l ∈ Bl ∧ suppN l ⊆ Ωl ∧ suppN l * Ωl+1

}
. (6.5)
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As illustrated in Figure 6.3a, the hierarchical B-spline basis functions do not satisfy

the partition of unity property. Giannelli et al. [50] proposed a truncation operator

to remove the higher-level B-spline components from a current-level basis function:

truncl+1 N l
i = N l

i −
∑

suppN l+1
j ⊂suppN l

i

suppN l+1
j ⊆Ωl+1

αjN
l+1
j (Subtractive Representation) (6.6a)

=
∑

suppN l+1
j ⊂suppN l

i

suppN l+1
j *Ωl+1

αjN
l+1
j (Additive Representation). (6.6b)

Figure 6.5 illustrates the subtractive and additive representation of a THB-spline

basis function. The general THB-spline basis T can be constructed as follows:

T =
L−1⋃
l=0

{
N̂ l
∣∣∣N̂ l = truncL−1 · · · truncl+2 truncl+1N l ,

N l ∈ Bl ∧ suppN l ⊆ Ωl ∧ suppN l * Ωl+1
}
. (6.7)

6.3 Adaptive Mesh Generation

The THB-splines are defined over a sequence of nested domains which form a

hierarchical mesh. An efficient representation of the hierarchical mesh as well as a

robust mesh generator plays an important role in the performance of the THB-spline

based local refinement.

6.3.1 Kd-tree based Mesh Representation

Kiss et al. [109] proposed a quad-tree data structure to represent two-dimensional

THB-spline meshes. As will be shown later, the quad-tree results in an exponential

space complexity in the worst case. Recently, an alternative binary tree data struc-
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Figure 6.5. Illustration of the truncation operator: (a) The non-truncated
B-spline basis function N l, and the truncated N l in a (b) subtractive
representation and a (c) additive representation.

ture was utilized [110] for multi-dimensional meshes. The internal nodes of the tree

store splitting lines during domain subdivision whereas the leaves of the tree con-

tains homogeneous pieces of the domain. The nature of the new data structure is, in

fact, a kd-tree. Figure 6.6 illustrates an example of the kd-tree representation for a

two-dimensional hierarchical mesh.

A significant advantage of the kd-tree representation over the quad-/oct-tree is

that the former approach enables unequal subdivision of the domain, which results in

fewer splits during tree construction. Consequently, the number of leaves generated

by a kd-tree subdivision is smaller than that generated by a quad-tree or oct-tree.
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(a) Splitting lines and cells in the hier-
archical mesh
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(b) Kd-tree representation

Figure 6.6. Kd-tree representation of a two-dimensional hierarchical
mesh. (a) The domain is subdivided into homogeneous cells of which
each only belongs to one hierarchical level. (b) The splitting lines and the
cells are stored in the internal nodes and leaves of a kd-tree data structure,
respectively.

Figure 6.7 illustrates an instance of successive stripe refinement on a square domain.

Since the boundaries of the refinement regions are not aligned with bisection planes,

a quad-tree representation will contain 3 · 2n − 3 internal nodes and 9 · 2n − 8 leaves,

leading to a space complexity of O(2n). In contrast, its kd-tree counterpart only needs

n internal nodes and n+ 1 leaves, of which the space complexity is O(n).

6.3.2 Mesh Refinement Algorithms

The kd-tree data structure is chosen in current work due to its lower space com-

plexity. However, the overall computational performance also depends on the effi-

ciency of the tree construction algorithm. The classical mesh refinement schemes

were based on a-posteriori error estimators [35,36], which requires a trial solution be-
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Successive	stripe	refinement	on	a	
4x4	initial	grid.	The	line	!, splitting	level	
- and	- + 1 is	given	by	0 = 4 − 3 ⋅ 2"7,

0 4

4

9

0

• K-d	Tree	is	a	super	set	of	Quad-tree
and	Oct-tree

• K-d	Tree	allows	asymmetric	splitting,
leading	to	lower	space	complexity	in
space	partitioning

• Worst	case	analysis	(see	LHS	example):
Ø K-d	Tree	has	- internal	nodes	and	- + 1

leaves,	space	complexity	is	: -
Ø Quad-tree	has	3 ⋅ 2, − 3 internal	nodes	and
9 ⋅ 2, − 8 leaves,	space	complexity	is	:(2,)

Figure 6.7. n-stripe refinement on a 4× 4 domain. The left boundary of
each refinement region Ωi is given by ξ = 4− 3 · 21−i and the right bound-
aries coincide at ξ = 4. The splitting lines during kd-tree subdivision are
labeled with li, i = 1, 2, · · · , n.

fore the adaptive mesh is generated. In the context of immersed boundary problems,

it is expected that the behavioral fields vary rapidly near the boundaries. Therefore,

given the position of the immersed boundaries, a-priori mesh refinement is possible.

Two adaptive refinement algorithms based on signed [99] and unsigned [49] distance

field, are proposed as follows:

1. Sign-based Refinement Algorithm (SRA): The cut cells and their neighbors are

recursively subdivided until the maximum level is reached. The cut cells are

identified by checking the signed distance of the cell vertices to the immersed

boundaries. As illustrated in Figure 6.8, a cell is marked as a cut cell if its ver-

tices have opposite signs. To minimize the number of sign checkings, the vertex

signs of the cut cells (uncircled in Figure 6.8a) are stored in memory. As the

subdivision continues, the cut cells in the next level can be determined by addi-

tionally checking the signs of edge, face and cell centers (circled in Figure 6.8a).

A first-in-first-out (FIFO) queue data structure (Figure 6.8b) is utilized to man-
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age the cells. The cut cells in the current level are first popped out from the

front of the queue. After sign checking, the cut cells in the next level are gen-

erated and then pushed into the back of the queue. The checking and new cell

generation stop when the maximum level is reached.Refinement	Algorithm • Sign-based	Algorithm	
(SBA)
• Store	the	corner	signs	of	
cells	of	level	n	(red	signs),	
and	calculate	the	signs	of	
edge	centers	and	cell	
centers	(green	signs)	to	
justify	the	cells	of	level	l+1
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nearest	neighbors
Ø Push	level	n+1	cells	into	the	back	of	

the	queue

(a) Sign-based cell subdivision with respect to a circular bound-
ary

Refinement	Algorithm • Sign-based	Algorithm	
(SBA)
• Store	the	corner	signs	of	
cells	of	level	n	(red	signs),	
and	calculate	the	signs	of	
edge	centers	and	cell	
centers	(green	signs)	to	
justify	the	cells	of	level	l+1
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Queue:

• Use	a	queue	to	manage	cells	
Ø Pop	level	n	cells	from	the	front	of	the	

queue
Ø Refine	the	level	n	cells	and	their	k-th

nearest	neighbors
Ø Push	level	n+1	cells	into	the	back	of	

the	queue

(b) Cell queue corresponding to (a)

Figure 6.8. Illustration of the sign-based refinement algorithm. (a) The cut
cells in level l are subdivided into four (2D) or eight (3D) candidate sub-
cells. The new cut cells in level l+ 1 are identified by the newly calculated
(circled) signs and the previously obtained (uncircled) signs, and (b) then
pushed to the back of a queue and wait for the next level subdivision.

2. Distance-based Refinement Algorithm (DRA): The algorithm is similar to the

SRA except that the cut cells are determined by checking the magnitude of the

distance instead of the sign. This is particularly useful when the feature size

dfeature of the immersed boundaries is smaller than the cell size dcell, in which
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case the sign-based algorithm may fail to detect a cut cell (see Figure 6.9a). In

the distance-based refinement, a cell is marked as a cut cell if:

max
i
|di| <

√
kdcell (6.8)

where, k is the dimension of the domain and di is the distance of the ith vertex of

the cell to the closest boundary. As shown in Figure 6.9b, the missing cell can be

found by DRA. Nevertheless, the criterion of the DRA is looser than that of the

SRA, which can result in many redundant cut cells. To mitigate the problem,

it is suggested to dynamically switch between the two algorithms based on dcell.

The distance-based criterion is chosen if dcell > dfeature. Otherwise, the sign-

based criterion is preferred. The inset magnified picture of Figure 6.9b shows a

sign-based subdivision in the cut cell detected by the distance-based algorithm.

6.3.3 Numerical Examples

The efficiency and robustness of the proposed algorithms are demonstrated through

several numerical examples. Figure 6.10 shows a seven-level hierarchical refinement

of a square domain with respect to a rectangular immersed boundary. The computa-

tional cost as a function of the number of levels is listed in Table 6.2. The hierarchical

mesh generation only takes tens of microseconds even for very large number of levels.

Table 6.2.
Computer time for the hierarchical refinement of the geometry shown in
Figure 6.10.

Number of Levels 1 2 3 4 5 6 7
Time Cost (µs) 0.1 0.7 1.4 3.2 6.8 14.8 36.7

In order to have a larger local refinement region, it may be desired to not just refine

the cut cells but also their ith neighbors. As illustrated in Figure 6.11, the order i

controls the bandwidth of a single level mesh. In contrast to the level-wise hierarchical
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(a) Sign-based refinement for a
complex boundary
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(b) Combination of distance-based and sign-based refinement

Figure 6.9. (a) Determination of the level l cut cells by the sign-based
criterion. A cut cell is missed due to the small feature size. (b) Determi-
nation of the level l cut cells by the distance-based criterion, followed by
a sign-based subdivision which generates the level l + 1 cut cells. Given a
cell size of dcell = 1, the distances of the C l

5 vertices to the boundary are
annotated in the figure.

refinement, the refinement within a level is referred as Horizontal Refinement. A two-

dimensional example of horizontal refinement is shown in Figure 6.12.

The mesh refinement algorithms and the kd-tree data structure can be directly

extended to three-dimensional problems due to their dimension independence. Fig-

ure 6.13 shows a six-level hierarchical refinement of a cubic domain in the presence

of an ellipsoidal boundary. The corresponding computational cost is summarized in



72Ω"
Ω#

Ω$ Ω% Ω& Ω' Ω(
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mersed boundary

Ω"
Ω#

Ω$ Ω% Ω& Ω' Ω(

(b) Exploded view of the nested sub-meshes

Figure 6.10. A two-dimensional, seven-level hierarchical refinement of a
square domain with respect to a rectangular immersed boundary: (a) The
hierarchical mesh and (b) the sub-meshes in each level.

Table 6.3. Compared to the time cost during matrix assembly and system solution,

the sub-second mesh generation time is almost negligible.
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Horizontal Refinement

(a) A	single cut	cell and	its	1st
and	2nd nearest neighbors

(b) All cut	cells	and	the	union	of
their	1st and	2nd nearest
neighbors

Immersed	boundary
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1st nearest	neighbors

2nd nearest	neighbors

• Often	time,	we	want	not	only 
to	refine	the	intersected	cells 
but	also	their	k-th neighbors
Ø The	k	controls	the	bandwidth	of	a 

single	level	mesh	

(a) A single cut cell and its first
and second nearest neighbors

Horizontal Refinement

(a) A	single cut	cell and	its	1st
and	2nd nearest neighbors

(b) All cut	cells	and	the	union	of
their	1st and	2nd nearest
neighbors

Immersed	boundary

Cut	cells

1st nearest	neighbors

2nd nearest	neighbors

• Often	time,	we	want	not	only 
to	refine	the	intersected	cells 
but	also	their	k-th neighbors
Ø The	k	controls	the	bandwidth	of	a 

single	level	mesh	

(b) All the cut cells and the union of their first and second
nearest neighbors

Figure 6.11. Schematic of horizontal refinement. (a) The neighbors of a
cut cell provide a larger refinement region. (b) The union of the neighbors
forms a refinement band.Horizontal Refinement	Examples

(a) Only intersected	cells	are refined (b)	Intersected	cells	and	their first
nearest neighbors are	refined

(c) Intersected	cells	and	up	to the
second	nearest neighbors are refined

(a) i = 0

Horizontal Refinement	Examples

(a) Only intersected	cells	are refined (b)	Intersected	cells	and	their first
nearest neighbors are	refined

(c) Intersected	cells	and	up	to the
second	nearest neighbors are refined

(b) i = 1

Horizontal Refinement	Examples

(a) Only intersected	cells	are refined (b)	Intersected	cells	and	their first
nearest neighbors are	refined

(c) Intersected	cells	and	up	to the
second	nearest neighbors are refined

(c) i = 2

Figure 6.12. Horizontal refinement with different bandwidth. (a) Only
the cut cells are refined. (b) First order refinement: The cut cells and
their first nearest neighbors are refined. (c) Second order refinement: The
cut cells and up to the second nearest neighbors are refined.
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(a) Hierarhical mesh around the immersed
boundary

ΩLΩEΩF

ΩHΩTΩW
(b) Exploded view of the nested sub-meshes

Figure 6.13. A three-dimensional, six-level hierarchical refinement of a
cubic domain with respect to an ellipsoidal boundary: (a) The hierarchical
mesh and (b) the sub-meshes in each level.
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Table 6.3.
Computer time for the hierarchical refinement of the geometry shown in
Figure 6.13.

Number of Levels 1 2 3 4 5 6
Time Cost (µs) 0.1 2.4 8.6 47.9 166.3 434.8

6.4 Maximum Number of Active THB-spline Basis Functions at a Point

The active THB-spline basis at a given point x ∈ Ω0 is defined as

A(x) =
{
N̂
∣∣∣N̂ ∈ T ∧ N̂(x) 6= 0

}
(6.9)

where, T is the general THB-spline basis given by Eq. (6.7). The B-splines and

NURBS possess an important property that the number of active basis functions (nB

for B-splines and nN for NURBS) at any point is a constant:

nB = nN =
k∏
i=1

(pi + 1) (6.10)

where, pi is the degree of the spline in ith direction. However, this property does

not hold for THB-splines. As illustrated in Figure 6.14, the number of active THB-

spline basis functions (nTHB) may vary between different knot spans. Consequently,

if the THB-spline framework is utilized as an analysis tool, the size of the elemental

matrix, as well as the number of non-zeros in each row of the stiffness/mass matrix,

also varies. The varied size of the elemental matrix necessitates a dynamic memory

allocation during matrix assembly, which is computationally very expensive [111].

Therefore, an estimate of the maximum number of active THB-spline basis functions

(max {nTHB}) , which enables a preallocation of the memory, is of great importance

to reduce the computational overhead. The range of the max {nTHB} is discussed in

Theorem 6.4.1.
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Figure 6.14. Number of non-zero THB-spline basis functions in each knot
span.

Theorem 6.4.1 The maximum number of active basis functions of a k-dimensional,

L-level THB-spline satisfies

k∏
i=1

(pi + 1) + (L− 1)

[
k∏
i=1

pi −
k∏
i=1

⌊pi
2

⌋]
≤ max {nTHB} < L

k∏
i=1

(pi + 1) . (6.11)

Proof

Upper bound: Neglecting the truncation and removal of B-spline basis functions,

Eq. (6.10) must be satisfied in every level. For a L-level THB-spline, we have

max {nTHB} ≤ L
k∏
i=1

(pi + 1) . (6.12)

However, if any higher level B-spline basis is complete at a point, all the lower level B-

spline basis functions covering that point will be truncated, and therefore the equality

in Eq. (6.12) can not be achieved.

Lower bound: To prove the lower bound, we simply need to find a special case

that can produce the bound with arbitrary pi, k and L. The construction of such

case is described as follows:

1. Define the base level: Ω0 =
⊗k

i=1[−p1 − 1,+∞),

2. Define the lth level, l = 1, 2, · · · , L− 1: Ωl =
⊗k

i=1[−pi2−l,+∞),

3. Define the knot interval in each level and direction: ∆ξli = 2−l.
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In this manner, ∀x ∈⊗k
i=1[−pi2−L, 0],

nlTHB(x) =


∏k

i=1 (pi + 1)−∏k
i=1

⌊
pi
2

⌋
l = 0∏k

i=1 pi −
∏k

i=1

⌊
pi
2

⌋
l = 1, 2, · · · , L− 2∏k

i=1 pi l = L− 1

. (6.13)

Thus,

nTHB(x) =
k∏
i=1

(pi + 1) + (L− 1)

[
k∏
i=1

pi −
k∏
i=1

⌊pi
2

⌋]
. (6.14)

Figures 6.15 and 6.16 show two examples based on the proposed construction

procedure.

Ω"

Ω#

0−6

−2.5 0

Ω*
−1.25 0

Figure 6.15. Construction of an one-dimensional, three-level quintic
THB-spline based on the procedure described in the proof of Theo-
rem 6.4.1. The solid lines and dash lines represent non-truncated and
truncated basis functions, respectively. The max {nTHB} = 12 occurs in
the knot span where the cross point resides.
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Anchors	of	𝑁01#
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Figure 6.16. Construction of a two-dimensional, three-level quartic THB-
spline based on the procedure described in the proof of Theorem 6.4.1.
The max {nTHB} = 49 occurs in the blue cell. The anchors of all the
active basis functions in the cell are marked with circles.

6.5 Evaluation of the Active Basis Functions

The THB-spline framework has already shown its potential as a powerful ap-

proximation technique for isogemetric analysis [94, 110, 112]. Compared to uniform

B-splines, the THB-splines require far fewer degrees of freedom to achieve the same ac-

curacy of solution. However, according to Theorem 6.4.1, the max {nTHB} increases

exponentially with the dimension k. Consider a typical scenario that k = 3, pi =

3, L = 5, the nTHB can be as large as 168, whereas the corresponding nB for B-splines

is only 64. This would adversely influence both the matrix assembly and the system

solving as follows:

1. In the matrix assembly phase, the THB-splines may need to evaluate a much

larger number of basis functions at a gauss point.

2. Given the same number of degrees of freedom, the matrix system created by a

THB-spline approximation is much denser than that from a B-spline approx-
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imation. Therefore, in the system solving phase, the THB-splines cost more

memory space and computational time than the B-splines.

The second issue, due to the nature of the THB-splines, is difficult to resolve.

Nevertheless, the first issue may be mitigated through an efficient algorithm for basis

function evaluation. To this end, we first review two existing algorithms and next

propose a new all-at-once algorithm that can evaluate all the active THB-spline basis

functions simultaneously.

6.5.1 Naive Algorithm

The naive algorithm is based on the subtractive representation (Eq. (6.6a)). Given

a point, the algorithm caches the active B-spline basis functions in all levels and then

subtracts the higher level basis functions from the lower level ones. The implemen-

tation of this algorithm is straightforward, but it suffers from two drawbacks:

1. In the worst case, it is necessary to evaluate L
∏k

i=1(pi + 1) B-spline basis

functions at a point.

2. It is difficult to determine the support of the THB-spline basis functions since

the support of a THB-spline basis function can only be known after the subtrac-

tion is completed. In the instance shown in Figure 6.17, although N̂0
1 and N̂0

2

are not active at the cross point, the values of N0
1 and N0

2 will still be calculated

by this algorithm.

6.5.2 Giannelli’s Algorithm

To a-priori identify the support of THB-spline basis functions as well as reducing

the number of B-spline function evaluated, Giannelli et al [110] proposed an algorithm

based on the additive representation Eq. (6.6b). For any N̂ l ∈ T , there exists a
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(a) B-spline basis functions and their support
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(b) THB-spline basis functions and their support

Figure 6.17. Illustration of the support change after truncation. (a) Two
active B-spline basis functions at the cross point and (b) the corresponding
THB-spline basis functions, which do not cover the point any longer.

representation level lr ≤ L−1 such that N̂ l can be represented by a linear combination

of the level lr B-spline basis functions, i.e.,

N̂ l =
∑
j

αjN
lr
j . (6.15)

In Eq. (6.7), a level l THB-spline basis function is defined as a successive truncation of

a level l B-spline basis function up to the maximum level. In fact, it is not necessary

to truncate the function to the maximum level but just its representation level lr, i.e.,

N̂ l = trunclr · · · truncl+2 truncl+1N l. (6.16)
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The Giannelli’s algorithm stores the representation level lr and coefficients αj for all

N̂ l ∈ T . When the value of a THB-spline basis function is needed, one only needs

to calculate the active B-spline functions in the representation level and substitute

them into Eq. (6.15). This algorithm has two major advantages:

1. Since many THB-spline basis functions possess the same representation level,

the average number of evaluated B-spline basis functions is smaller than that

of the naive algorithm.

2. The support of a THB-spline basis function can be easily determined from the

additive representation.

However, in the worst case, if the active THB-spline basis functions at a point have

distinct representation levels, the algorithm still needs to evaluate L
∏k

i=1(pi + 1)

B-spline basis functions at the point.

6.5.3 All-at-Once Algorithm

Due to the subdivisability of B-spline (Eq. (6.2)), Eq. (6.15) can be extended to

any level l ≥ lr. Given a point x ∈ Ω0, there exist an integer set S containing the

representation levels of all the N̂ ∈ A(x). Next let

lA = max
lr∈S

lr (6.17)

be the representation level of A(x). Then all the N̂ ∈ A(x), no matter how many

there are, can be expressed by a linear combination of the
∏k

i=1(pi + 1) B-spline

basis functions in the level lA. Based on this idea, an all-at-once algorithm can be

developed to evaluate all the N̂ ∈ A(x) simultaneously.

An arbitrary B-spline function β ∈ spanBl can be written as

β =
∑
i

N l
iu
l
i =

[
Nl
] {
ul
}

=
[
Nl+1Rl+1

] {
ul
}

(6.18)
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where, Rl+1 is the refinement matrix which can be determined through the binomial

relation (Eq. (6.3)) for a dyadic domain, or a knot insertion algorithm for a general

domain. The level l + 1 truncation of β can be expressed as

truncl+1 β =
[
Nl+1

(
Il+1 −Xl+1

)
Rl+1

] {
ul
}

(6.19)

where, Il+1 is identity matrix and Xl+1 is the characteristic matrix [110] given by

Xl+1 = diag(xl+1
i ), xl+1

i =

 1 if N l+1
i is active

0 otherwise
. (6.20)

Therefore, the level l+1 truncation of the active B-spline basis matrix can be defined

as

truncl+1 Nl = Nl+1
(
Il+1 −Xl+1

)
Rl+1. (6.21)

If the THB-spline has only two levels: level l and l + 1, the A(x) should include all

the active, truncated basis functions in the level l and the active, non-truncated basis

functions in the level l + 1 as follows:

N̂ =
[
truncl+1 NlX̃

l
Nl+1X̃

l+1
]

=
[
Nl+1

(
Il+1 −Xl+1

)
Rl+1X̃

l
Nl+1X̃

l+1
]

= Nl+1
[(

Il+1 −Xl+1
)
Rl+1X̃

l
X̃
l+1
]

≡ Nl+1Cl+1 (6.22)

where, X̃
l

is a sub-matrix that contains all the non-zero column vectors of Xl. A

general algorithm for multi-level THB-splines is formulated in Alg. 4.

Remarks :

1. The all-at-once algorithm inherits all the merits of Giannelli’s algorithm, for

instance, the easy determination of function supports. Furthermore, at any
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Algorithm 4 All-at-Once Algorithm for Evaluating all the Active THB-spline Basis
Functions

Input: Characteristic matrices Xl, l = 0, 1, · · · , lA, refinement matrices Rl, l =
1, 2, · · · , lA and B-spline basis matrix in the level lA, i.e., NlA

Output: Active THB-spline basis matrix N̂

1: function Active THB Spline Basis(Xl, Rl, NlA)

2: C0 ← X̃
0

3: for l← 1, lA do

4: Cl ←
[(

Il −Xl
)
RlCl−1 X̃

l
]

5: end for
6: N̂ ← NlAClA

7: end function

point of interest, only
∏k

i=1(pi+1) B-spline basis functions need to be evaluated

regardless of the number of active basis functions at that point.

2. In the case of k-dimensional dyadic refinement, there are only 2k distinct re-

finement matrices, which can be computed a-priori and cached to improve the

efficiency.

3. The refinement matrix ClA keeps constant in each element of the hierarchical

mesh.

Example 6.5.1 Given a THB-spline shown in Figure 6.18, the refinement matrix C2

at the cross point can be derived as follows:

1. Input :

X0 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 ,X
1 =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 ,X
2 =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 .
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Figure 6.18. An one-dimensional, three-level cubic THB-spline. There
are six active THB-spline basis functions at the cross point.

R1 = R2 =
1

8


1 6 1 0

0 4 4 0

0 1 6 1

0 0 4 4

 .

2. Initialization:

C0 = X̃
0

=


1 0 0

0 1 0

0 0 1

0 0 0

 .

3. First Iteration:

(I1 −X1)R1C0 =
1

8


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1




1 6 1 0

0 4 4 0

0 1 6 1

0 0 4 4




1 0 0

0 1 0

0 0 1

0 0 0

 =
1

8


1 6 1

0 4 4

0 0 0

0 0 4

 .
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Thus,

C1 =
1

8


1 6 1 0

0 4 4 0

0 0 0 8

0 0 4 0

 .

4. Second Iteration:

(I2 −X2)R2C1 =
1

64


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




1 6 1 0

0 4 4 0

0 1 6 1

0 0 4 4




1 6 1 0

0 4 4 0

0 0 0 8

0 0 4 0



=
1

64


1 30 25 8

0 16 16 32

0 0 0 0

0 0 0 0

 .

Thus,

C2 =
1

64

N̂0
1 N̂0

2 N̂0
3 N̂1

3 N̂2
3 N̂2

4


1 30 25 8 0 0

0 16 16 32 0 0

0 0 0 0 64 0

0 0 0 0 0 64

.

It may be noticed that the row sum of C2 is equal to one. Therefore, when a B-

spline basis matrix N2 is multiplied with C2, every basis function in N2 is partitioned

into parts of the THB-spline basis functions.
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7. IMPLEMENTATION: HIERARCHICAL DESIGN AND ANLYSIS CODE

The techniques and algorithms described earlier in Chapters 2 to 6 are implemented

in an Object Oriented Fortran Based Hierarchical Design and Anlysis Code (OOF-

HiDAC). The OOF-HiDAC relies on the Fortran 2008 standard [113], with its advan-

tages derived from the high efficiency of compiled languages and the code reusability

of object-oriented programming. This chapter describes the outstanding features and

architecture of the code. A typical analysis flow using the code is also provided.

7.1 Code Features

Fortran, considered to be the first widely used programming language in the world,

remains a popular choice for scientific programming due to several reasons. First, as

a compiled language, Fortran usually generates faster and more efficient code than

the interpreted languages. Compared to C/C++, Fortran has built-in vector/matrix

operations, which is very appealing for finite element and isogeometric analysis. More-

over, modern Fortran standards (Fortran 2003/2008) introduce many object-oriented

features, which provide more flexibility in programing and produces more succinct

code.

The OOF-HiDAC contains more than 30,000 lines of Fortran 2008 code, and has

been used to solve many moving boundary problems including crack propagation,

solidification and shape optimization. Several features of the code are highlighted as

follows:

1. Problem Dimension Independence: All the classes and functions are generically

implemented to support one-, two- and three-dimensional problems.

2. Polymorphism: Sibling types are encapsulated with a unified function interface.

For instance, both the NURBS Approximation and the THBS Approximation in-
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herit from the same abstract type Approximation, and therefore share the same

function interface for higher level modules such as Domain. The Domain mod-

ule can freely switch between these approximations without concerning possible

interface changes.

3. Hybrid OpenMP/MPI Parallelism: In order to have the capability to solve

large problems, parallel computing [114] is utilized in matrix assembly and

system solution. In the matrix assembly phase, the calculation of each elemental

matrix is independent and therefore can be parallelized. Two different parallel

programing paradigms, Open Multi-Processing (OpenMP) [115] and Message

Passing Interface (MPI) [116], are employed to facilitate the matrix assembly.

The OpenMP provides many user-friendly directives for quick implementation

but only works for shared memory machines, whereas the MPI is capable for

large distributed memory environments such as supercomputers. As for the

system solving phase, the OOF-HiDAC relies on the MUltifrontal Massively

Parallel sparse direct Solver (MUMPS) [117, 118] which is based purely on the

MPI.

4. Visualization Support : A VTK writer is included in the code for the conve-

nience of visualizing two- and three-dimensional meshes, geometries and behav-

ioral fields. The writer generates unstructured, XML format, binary VTK files

which can be directly read by many visualization softwares such as Paraview or

Techplot.

7.2 Architecture

The architecture of OOF-HiDAC is schematically shown in Figure 7.1. The key

modules are briefly described below.

1. Approximation: The Approximation module contains several spline types, in-

cluding Bezier spline, NURBS and THB-spline. These splines provide ge-
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OOF-HiDAC

Main Analysis	System

Heat	conduction
Elastostatics
…

Approximation

NURBS,	Bezier,
THB-spline,
…

Domain

Primitive,
Enrichment,
…

Quadrature
Kd-tree	quadrature,
Direct	quadrature,
…

Material
Isotropic,
Thermo-elastic,
…

Solver
Direct	solver,
Iterative	solver,
…

Utility
Distance	field,
Point	projection,
…

External	Packages
Qhull,	Lapack,
MUMPS,	PETSc,
…

Figure 7.1. Architecture and design of OOF-HiDAC.

ometry representation and behavioral approximation space for the isogeomet-

ric analysis. Furthermore, they are extended from the same abstract type

Approximation which defines the following methods:

• getValue

• getDerivative

• getJacobian

Two additional methods are implemented for NURBS and THB-splines to sup-

port matrix assembly:

• getNmatrix

• getBmatrix
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2. Material : Material types and properties are handled in this module. The mod-

ule defines an abstract type Material which is next extended to a variety of

materials (e.g., elastic, thermal, etc.) by adding different material properties.

3. Domain: This module defines an analysis domain consisting of primitives and

enrichments. In the context of enriched isogeometric analysis, the first primitive

provides a base approximation of the underlying domain, meanwhile, the en-

richments contain behavior-dependent enriching degrees of freedom. Additional

primitives can be added to the domain to model possible heterogeneities such

as holes and stiffeners.

4. Utility : The proposed algebraic distance field and point projection are imple-

mented in this module. The algebraic distance calculation requires a robust

convex hull algorithm. Benefiting from the interoperability with C [113], the

OOF-HiDAC is directly linked to the Qhull [119] C library for convex hull con-

struction. This module also contains the aforementioned VTK writer and many

other mathematical functions.

5. Quadrature: The Quadrature module mainly provides two numerical integration

techniques – the standard Gaussian quadrature and the kd-tree based adaptive

quadrature. The latter method requires distance calculation which is enabled

by the Utility module.

6. Solver : The linear system for a boundary value problem is assembled and solved

in this module. There are two solvers available in the current implementation –

Lapack [120] and MUMPS. While the Lapack introduces less amount of compu-

tational overhead, it uses dense matrices and is only suitable for small problems

(nDOF < 20000). The MUMPS has a specific representation for sparse matrices

and is therefore suitable for much larger problems. To enable a seamless con-

nection to other popular solvers such as PETSc [111] in the future, an abstract

type Solver is defined in the module as a portal for all numerical solvers. The

following abstract methods are declared in the Solver type:
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• initialize

• assemble

• solve

• postprocess

• finalize

7. Analysis System: All the problem-dependent systems are implemented in this

module. The currently available systems include heat conduction, phase tran-

sition, elastostatics, fracture and sensitivity analysis. Different systems consist

of different boundary conditions, materials, and enrichment types. To commu-

nicate with the Solver module through a unified interface, we designed another

abstract type Analysis as well as the associated abstract methods as follows:

• getInitializationInfo

• getElementalMatrix

• getElementalRHS

• updateField

These methods are separately implemented in each system based on the physics

of that system.

7.3 Analysis Flow

Figure 7.2 shows a typical analysis flow for heat conduction problem. Given a

problem domain, an appropriate approximation is first constructed. The user speci-

fied material properties are assigned to the domain. Meanwhile, enrichments are gen-

erated for each immersed and external boundary, followed by assignment of boundary

conditions. The domain and enrichments are next composed into an augmented do-

main. If a THB-spline is chosen as the approximation, a hierarchical mesh generation

is also carried-out in this step. Once the mesh, material properties and boundary
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conditions are well defined, a linear system for the problem is parallelly assembled

and solved. It may be desirable to use the kd-tree based adaptive quadrature to

improve the integration accuracy during matrix assembly. Eventually, the results are

output to a VTK file and displayed through visualization softwares.

Geometry	construction	
of	the	problem	domain Ω

Assignment	of	material	
properties 𝑘, 𝑐

Geometry	construction	
of	enriching	boundaries

Γ&

Assignment	of	boundary	
conditions

𝑇& = 0

Domain-enrichment	
composition

Assembly	of	stiffness	
and	mass	matrices	

(OpenMP/MPI)

Kd-tree	based	adaptive	
quadrature

Parallel	solving	process	
(MPI	solvers:	MUMPS/PETSc)

Figure 7.2. Analysis flow for heat conduction problem.
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8. MODELING OF STATIONARY AND GROWING CRACKS

The proposed enriched isogeometric analysis is first applied to crack modeling in

this chapter. The crack face is enriched with the Heaviside function to represent

the displacement discontinuity, while the crack tips are enriched with asymptotic

displacement field functions to reproduce the tip singularity. The stress intensity

factors (SIFs) are chosen as tip degrees of freedom such that the SIFs can be directly

obtained without post-processing. The proposed method is demonstrated through

several static and quasi-static crack growth problems.

8.1 Introduction to Crack Modeling

The analysis of failure modes, including fracture, is of great importance to assess

the performance of many engineering materials and structures. Crack modeling has

been an active research topic in the computational mechanics, and particularly, using

the finite element method. The classical finite element method requires the crack

face be aligned with the element edges and the mesh be regenerated as the crack

propagates. To alleviate the issues, many mesh-free methods, including Element Free

Galerkin (EFG) method [37], Reproducing Kernel Particle Method (RKPM) [38] and

Meshless Local Petrov-Galerkin (MLPG) method [39] were proposed. Despite the

avoidance of a structured mesh, the mesh-free methods introduce new challenges

in the numerical integration and application of boundary conditions. Belytschko et

al. [3] developed the eXtended Finite Element Method (XFEM) in which the mesh is

retained for convenience of integration, while enriching degrees of freedom are added

locally to capture the crack behavior. In this manner, only the additional degrees of

freedom rather than the mesh need to be updated during crack growth.
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Recently, several crack modeling techniques were developed within the isogeomet-

ric framework. Verhoosel et al. [121] utilized locally discontinuous T-splines to model

cohesive cracks. The discontinuity was created by knot insertion and needed to be

updated at every propagation step. Borden et al. [29, 30] combined IGA with phase

field method to model quasi-static and dynamic brittle fracture. While the phase-field

method naturally enables crack branching and coalescence, the governing equations

are usually non-convex and non-linear, and are therefore difficult to solve. Following

the philosophy of XFEM, the eXtended Isogeometric Analysis (XIGA) method [10–12]

was proposed by adding enriching degrees of freedom to local domain control points.

Since the additional degrees of freedom are on the domain, the necessity to identify

new enriching nodes still exists in the crack propagation.

In the enriched isogemetric framework, the crack-dependent degrees of freedoms

are directly associated with crack control points such that no enriching node identi-

fication is needed. Tambat and Subbarayan [13, 14] successfully modeled stationary

cracks by enriching the crack face with the Heaviside function. However, the suggested

approximation only allows homogeneous boundary conditions. In the current study,

a new enriched isogeometric approximation is developed to account for mixed-mode

cracks subjected to non-homogeneous boundary conditions. Furthermore, inspired by

the research work of Liu et al. [122], we use the SIFs as the tip degrees of freedom

and modify the William’s crack tip solution [123] to form the tip enriching func-

tions. Thus, the SIFs can be directly extracted from the problem solution without

a-posteriori calculation of the path independent integrals [124].

8.2 Isogeometric Formulation

The enriched isogeometric approximation is derived based on linear elastic fracture

mechanics (LEFM). The enriching functions that capture the crack face discontinu-

ity and crack tip asymptotic field are first described. The approximation is next

discretized to enable numerical analysis.



94

8.2.1 Governing Equations

Consider a problem domain Ω with an internal crack Γc as illustrated in Figure 8.1.

The equilibrium equation is given by:

∇ · σ + b = 0 in Ω (8.1)

where, σ and b are stress and body force, respectively. Classical Dirichlet and Neum-

man boundary conditions are enforced on the domain boundary and the crack face:

u = ū on Γu (8.2a)

σ · n = t̄ on Γt (8.2b)

σ · n = 0 on Γ+
c and Γ−c (8.2c)

where, ū and t̄ are prescribed displacement and traction, respectively. n is the

outward normal of surface. The weak form of Eq. (8.1), i.e., the principle of virtual

work, is written as:

∫
Ω

σ : δε dΩ =

∫
Ω

b · δu dΩ +

∫
Γt

t̄ · δu dΓ (8.3)

where, δε and δu are compatible virtual strain and displacement, respectively.

8.2.2 Construction of the Enriched Approximation

As described earlier in Eq. (2.11), the behavioral field in the presence of one

enrichment can be constructed as follows:

f(x) = (1− w)fΩ(x) + wfΓ(P(x)). (8.4)
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Figure 8.1. Definition of the problem domain and boundaries.

In the proposed method, the displacement field is approximated as:

u =

uxuy
 = uc(x) + (we − wt)H(x)ce(P(x)) + wtkt(r, θ) (8.5)

where, the continuous approximation uc is non-vanishing on the crack to account

for all possible rigid body modes as well as the deformation modes including the

T-stress. The enriching approximation ce, along with the Heaviside function H(x),

models the strong displacement discontinuity across the crack face. we and wt are

the weight functions depending on the distance to the crack face (d) and the crack

tips (r), respectively. As suggested in Eq. (2.12), the weight functions can take the

exponential forms:

we = we(d(x)) = e−|
d(x)
ds
|µ (8.6a)

wt = wt(r(x)) = e−|
r(x)
ds
|µ . (8.6b)

The Eq. (8.6a) for a line crack is shown in Figure 8.2. It may be noticed that the

effective weight associated with the crack face is chosen to be we − wt such that it
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vanishes at the crack tips (see Figure 8.2c). Therefore, the enrichment term Hce is

active near the crack face but excluding the tip region.
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Figure 8.2. Weight functions (a) we, (b) wt and (c) the effective weight
we − wt for the crack face. The given line crack spans from (0.3, 0.5) to
(0.7, 0.5). ds = 0.06 and µ = 2 are chosen in the plots.
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The enriching function kt represents the tip asymptotic displacement field. A

common choice of the asymptotic field function space is given by [3]:

{gi(r, θ)}4
i=1 ≡

{√
r sin

(
θ

2

)
,
√
r cos

(
θ

2

)
,
√
r sin(θ) sin

(
θ

2

)
,
√
r sin(θ) cos

(
θ

2

)}
.

(8.7)

However, the degrees of freedom associated with the enriching functions in Eq. (8.7)

are not directly related to the stress intensity factors. In this manner, the calculation

of SIFs necessitates an additional post-processing step based on the path independent

integrals is necessary. Liu et al. [122] proposed a new class of tip enriching functions

where the SIFs themselves are chosen as the degrees of freedom. The proposed asymp-

totic displacement field takes the form:

kt =

ntip∑
j=1

n∑
i=1

g(j)
11,i g

(j)
12,i

g
(j)
21,i g

(j)
22,i

K
(j)
I,i

K
(j)
II,i

 , (8.8)

where, ntip is the number of crack tips and n is the order of expansion. Based on the

William’s crack tip field [123, 125], the angular functions g11i, g12i, g21i and g22i are

given by:

g11,i

g12,i

g21,i

g22,i


=

ri/2

2µi
√

2π



[
κ+ i

2
+ (−1)i

]
cos
(
i
2
θ
)
− i

2
cos
(
i−4

2
θ
)[

κ+ i
2
− (−1)i

]
sin
(
i
2
θ
)
− i

2
sin
(
i−4

2
θ
)[

κ− i
2
− (−1)i

]
sin
(
i
2
θ
)

+ i
2

sin
(
i−4

2
θ
)

−
[
κ− i

2
+ (−1)i

]
cos
(
i
2
θ
)
− i

2
cos
(
i−4

2
θ
)


. (8.9)

Following this procedure, the SIFs can be directly obtained from the problem solution.

As shown in [125], the KI,1 and KII,1 represent the mode I and II SIFs in homogeneous,

isotropic materials.
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8.2.3 Discretized Equations

The discretization of uc and ce are chosen to be of the following form:

uc =
nc∑
i=1

N c
i u

c
i = [Nc]{υc} (8.10a)

ce =
ne∑
i=1

N e
i c

e
i = [Ne]{γe} (8.10b)

where, N c
i and N e

i are the NURBS basis functions defined on the underlying domain

and the enriching lower-dimensional entity, respectively. The kt is self-discretized,

and can be rearranged into a grand matrix-vector multiplication as follows:

kt =

f (1)
11,1 f

(1)
12,1 f

(1)
11,2 · · · f

(1)
11,r f

(1)
12,n f

(2)
11,1 · · · f

(2)
12,n

f
(1)
21,1 f

(1)
22,1 f

(1)
21,2 · · · f

(1)
21,r f

(1)
22,n f

(2)
21,1 · · · f

(2)
22,n





K
(1)
I,1

K
(1)
II,1

K
(1)
I,2

...

K
(1)
I,n

K
(1)
II,n

K
(2)
I,1

...

K
(2)
II,n



≡ [Nt]{κt}.

(8.11)

With the discretization given in Eqs. (8.10) and (8.11), Eq. (8.5) can be rewritten in

a matrix form as

u =
[
Nc (we − wt)HNe wtNt

]
υc

γe

κt

 ≡ [N]{d}. (8.12)
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The corresponding strain field is given by

ε = ∇su ≡ [B]{d} (8.13)

where, ∇s is the symmetric gradient operator defined as

∇s =


∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x

 (8.14)

The B matrix takes the following form:

B =


[∇sN

c]T

(we − wt)H[∇sN
e]T +H[Ne]T [∇s(w

e − wt)]T

wt[∇sN
t]T + [Nt]T [∇sw

t]T


T

. (8.15)

The final discrete form of Eq. (8.3) can be written as

Kd = f t + f b (8.16)

where,

K =

∫
Ω

[B]T [D][B] dΩ (8.17a)

f t =

∫
Γt

[N]T {t̄} dΓ (8.17b)

f b =

∫
Ω

[N]T {b} dΩ. (8.17c)

8.3 Numerical Examples

The developed methodology is first validated by calculating the SIFs of an inclined

crack under uniaxial tension. Next, the domain with a curved crack is analyzed with

the proposed algebraic distance and point projection techniques. The last example
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shows a quasi-static crack propagation where the crack growth direction can be readily

determined by the enriching degrees of freedom.

8.3.1 Inclined Crack under Uniaxial Tension

Figure 8.3 illustrates a square cracked plate with side W = 100 and crack length

a/W = 0.06. The plate is subjected to a uniform tension σ = 1, and possesses a

Young’s modulus and Poisson’s ratio of E = 100 and ν = 0.3, respectively. For

an infinite plate under uniaxial loading, the analytical solutions of the Mode I and

Mode II SIFs are given by [126]

KI = σ
√
aπ cos2(β) (8.18a)

KII = σ
√
aπ sin(β) cos(β) (8.18b)

where, β is the incline angle of the crack to the horizontal.

Crack

𝛽

W

Figure 8.3. An inclined crack under uniaxial tension.

A two-dimensional, seven-level quadratic THB-spline approximation was used to

solve the problem (see Figure 8.4). The base level mesh size was chosen as 20 × 20.
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A second order horizontal refinement was carried-out to strengthen the local control.

Only the leading terms in the asymptotic solution (Eq. (8.8)) were considered in this

problem. The numerical results are shown in Figure 8.5. It can be noticed that a

large KI error occurs at small incline angles. This may be mitigated by considering

the higher order terms in Eq. (8.8). A good agreement with the analytical solution

can be observed when β > 20◦.

8.3.2 Plate with a Curved Crack

In this example, a curved crack is present in the center of a square plate with side

W = 20 (see Figure 8.6). The geometry of the crack is given by

y = 10 + sin
(π

4
x
)
, x ∈ [6, 14]. (8.19)

A uniaxial loading of σ = 1 is applied to the plate. The Young’s modulus and

Poisson’s ratio are taken as 100 and 0.3, respectively.

This problem was also solved using a seven-level quadratic THB-spline approxi-

mation with a base discretization of 20 × 20. Figure 8.7 illustrates the hierarchical

mesh adaptive to the crack geometry. In addition, the algebraic distance field and

point projection are utilized to facilitate the matrix assembly phase. The solved dis-

placement field along y axis is shown in Figure 8.8, where a very smooth displacement

field and open crack surfaces can be observed.

8.3.3 Quasi-static Crack Propagation

In this example, a crack in a square plate propagates in a quasi-static state. As

shown in Figure 8.9, the plate with side W = 20 is subjected to a uniaxial loading
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(a) Hierarhical mesh around the crack

Ω"

Ω#
Ω$ Ω% Ω& Ω' Ω(

(b) Exploded view of the nested sub-meshes

Figure 8.4. A two-dimensional, seven-level hierarchical refinement of a
square domain with an inclined crack: (a) The hierarchical mesh and (b)
the sub-meshes in each level. The incline angle β was chosen as 30◦.
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Figure 8.5. (a) Mode I and (b) Mode II stress intensity factors as a
function the crack angle.
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W W
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𝑥
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Figure 8.6. A square plate with a sinusoidal crack.
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(a) Hierarhical mesh around the crack

Ω"

Ω#
Ω$ Ω% Ω& Ω' Ω(

(b) Exploded view of the nested sub-meshes

Figure 8.7. A two-dimensional, seven-level hierarchical refinement of a
square domain with a sinusoidal crack: (a) The hierarchical mesh and (b)
the sub-meshes in each level.

of σ = 1. The same Young’s modulus (E = 100) and Poisson’s ratio (v = 0.3) are

considered. The initial geometry of the crack is given by

y = 10− cos
(π

4
x
)
, x ∈ [7.2, 12.8]. (8.20)
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(a) Undeformed body (b) Deformed body

Figure 8.8. y-displacement of the problem described in Figure 8.6. The
displacement field is shown on (a) an undeformed body and (b) a deformed
body. Examples	– Quasi-static	crack	propagation

11/29/16 Tao	Song,	PhD	Defense 75

W

Crack

𝑥
𝑦

Initial	Crack: 	𝑦 = 10 − cos
𝜋
4 𝑥 , 𝑥 ∈ 7.2,13.8

Deflection	Angle: Δ𝜃 = 2tanFG
1 ± 1 + 8 𝐾KK/𝐾K M� 	

4 𝐾KK/𝐾K
	

	𝐸 = 100; 	𝜈 = 0.3;
𝑊 = 20; 			𝜎 = 1

Displacement	along	y	axis

Von	Mises	stress

Figure 8.9. A propagating crack in a square plate under uniform tension.
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The deflection angle at every propagation step is determined by the maximum

tensile stress criterion [126] as follows:

∆θ = 2 tan−1

1±
√

1 + 8 (KII/KI)
2

4KII/KI

 (8.21)

where, the stress intensity factors KI and KII can be directly extracted from the

solution without the need for path-independent integral calculation. The simulation

totally took 25 steps, and was terminated when the crack reached the plate boundary.

Figure 8.10 illustrates the y-displacement and adaptive mesh at four different steps.

As expected, the crack propagated horizontally under the model I loading. The von

Mises stress on a deformed body is shown in Figure 8.11, where the singular stress is

accurately captured with the THB-spline based local refinement.
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(a) Initial state (b) 3rd iteration

(c) 7th iteration (d) Final configuration

Figure 8.10. y-displacement and adaptive mesh at (a) initial state, (b) 8th
step, (c) 16th step, and (d) final state (25th step) of the crack propagation.
The behavioral field was approximated using a six-level quadratic THB-
spline.
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(a) Initial state (b) 3rd iteration

(c) 7th iteration (d) Final configuration

Figure 8.11. Von Mises stress at (a) initial state, (b) 8th step, (c) 16th
step, and (d) final state (25th step) of the crack propagation.
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9. SIMULATION OF THE STEFAN PROBLEM

In this chapter, the Stefan problem is solved by enriching an underlying NURBS-based

isogeometric approximation with an explicitly defined (sharp) interface on which a

hybrid function/derivative condition is isoparametrically described. Since the geom-

etry of the enrichment is explicitly defined, normals and curvatures are explicitly

computed at any point on the interface. Thus, the enriched approximation naturally

captures the interfacial discontinuity in temperature gradient and naturally enables

the imposition of Gibbs-Thomson condition. The blending of the enrichment with the

underlying approximation requires an estimate of distance to the enriching geometry

from a quadrature point and the parametric value of the footpoint on the enriching

geometry. These quantities are computed efficiently using the algebraic distance and

point projection methods described in Chapters 3 and 4. Procedures for adaptive

time stepping, refinement and coarsening of geometry are developed to increase the

stability and efficiency of the developed methodology. Several numerical examples of

classical and dendritic Stefan problem are presented to demonstrate the methodology.

9.1 Introduction to the Stefan Problem

The Stefan problem, mathematically describing solidification or melting [127],

is a moving boundary problem of importance in many engineering applications. A

significant difficulty in solving the Stefan problem, in addition to computationally

modeling the moving interface, is in applying the two interface conditions: the Stefan

condition and the Gibbs-Thomson condition. The first condition requires numerical

approximation to accurately calculate the jump in temperature gradient across the

interface, while the second condition requires the accurate computation of curvature
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and normal of the phase interface to account for the effects of surface tension and

kinetic mobility.

Early literature on computationally modeling the Stefan problem was based on

moving mesh methods [15, 16], which may be classified as being geometrically and

behaviorally explicit since the mesh is updated to conform to the explicitly (sharply)

defined phase interface at each step. Since the interface coincides with element bound-

ary, the Gibbs-Thomson condition can be prescribed on the interface and the govern-

ing equations can be solved separately in each phase. However, a significant drawback

of these methods is that remeshing is necessary at every time step. In addition, signif-

icant distortion of elements typically occurs as interface evolves making it challenging

to simulate complex evolution. Diffuse interface methods, or methods that are both

geometrically and behaviorally implicit, are often proposed as an alternative to the

moving mesh methods to overcome the above challenges. These are briefly reviewed

below.

The level set method (LSM, [4]), which is widely used to solve moving boundary

problems, was first introduced to solve Stefan problem in [128, 129] in combination

with finite difference solution to the underlying field. Ji et al. [6] and Chessa et al. [25]

used level sets to evolve solidification fronts defined on a fixed underlying mesh using

the eXtended Finite Element Method (XFEM). Zabaras et al. [130] advanced this

hybrid XFEM/LSM scheme to solve dendritic Stefan problem. However, there are

inherent disadvantages to level set method. First, level set method requires addi-

tional, difficult to solve, equation that describe the evolution of the level set: the

Hamilton-Jacobi equation is a first-order hyperbolic equation and needs stabilization

to minimize the oscillation [28]. In the Stefan problem, the speed field is known only

on the phase interface and has to be extended to the rest of the domain necessitating

even more governing equations. Often, an auxiliary velocity field equation is posed

for this purpose [131]. Further, due to the geometrically implicit nature of the diffuse

interface methods, the computed geometric quantities such as normals and curvatures

are accurate only in the limit of mesh refinement. Due to its behaviorally implicit na-
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ture (being a non-interpolative approximation), additional constraints on the degrees

of freedom are needed to enforce the Stefan condition or the Gibbs-Thomson condi-

tion [6, 25, 130]. Finally, when piecewise smooth but globally C 0-continuous linear

elements are used with level sets, they yield an inaccurate solution when the phase

interface is close to element boundaries. This is because the discontinuity in temper-

ature gradient across element boundaries may affect the interfacial Stefan condition,

necessitating a C 1-continuous Hermite mesh for accurate solution [6].

The Phase-field method in which the interface is represented by a thin region

defined by the phase-field variable, has also been utilized to simulate the dendritic

Stefan problem [31–34]. The phase-field model for Stefan problem can be derived

from the thermodynamics of phase transition. While, in the phase-field method, the

Stefan condition and Gibbs-Thomson condition are typically incorporated into the

diffuse governing equations, this does increase the complexity of the governing equa-

tions. The phase-field equations are often non-linear and non-convex, and the diffuse

transition region has to be very thin to converge to the physical solution, which in

turn requires the mesh to span several orders of magnitude in length scale and to

be highly refined near the interfacial region. A large number of additional degrees of

freedom are required to represent the geometry relative to a sharp interface model in

which the boundary is described by an explicit parametrized geometric entity. This

makes adaptive mesh refinement as well as efficient computational solution strongly

desired. Recently, several adaptive meshing techniques were introduced to alleviate

these issues in the simulation of interfacial fluid dynamics: Ceniceros et al. [132] pro-

posed a block-structured, hierarchical mesh refinement method, Yue et al. [133] and

Zhou et al [134] introduced an unstructured, grading meshing method with gradually

refinement and coarsening. However, either a complex non-linear system or a few

linear equations have to be solved in these methods.

In general, the ability to naturally generate C 1 or higher-order continuity approxi-

mations is an important and powerful feature of isogeometric analysis (IGA [8,9]). Re-

lated to the computational techniques for phase transition problems, in the isogeomet-
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ric literature, Gomez et al. [135] developed a phase-field solution to the Cahn-Hilliard

equation to effect phase separation. Recently, Tambat and Subbarayan [13] devel-

oped explicit lower-dimensional enrichments to impose Dirichlet, Neumann boundary

conditions as well as to model discontinuities and singularities. They demonstrated

the use of these enrichments for simulating crack propagation. Extending this isogeo-

metric enrichment philosophy, in this work, a hybrid function/derivative enrichment

is proposed for solving the Stefan problem. This sharp interface strategy retains and

evolves a geometrically explicit interface, eliminates additional level set or phase field

variables as well as their associated evolution equations. Also, curvature and normal

are readily obtained from the explicitly defined interface geometry. The developed en-

riched approximation, however, retains the desirable features of behaviorally implicit

methods by not requiring conforming discretization or remeshing. Approximations of

C 1 or higher order continuity are adopted to assure continuous temperature gradient

in underlying domain other than the phase interface. The Dirichlet enrichment en-

ables direct imposition of prescribed Gibbs-Thomson condition, while the Neumann

enrichment enables the discontinuity in temperature gradient across phase interface

as required by the Stefan condition.

9.2 Governing Equations

The problem domain Ω consists of liquid sub-domain Ωl and solid sub-domain Ωs,

between which is the phase interface Γint (see Figure 9.1). ns is the outward normal

of solid sub-domain. The goal of the Stefan problem is to determine the domain

temperature field and to track with time the position of the phase interface [127].

The governing equation for each of the phases is

ρ
∂

∂t
(cT ) = ∇ · (k∇T ) + s, x ∈ Ωl ∪ Ωs (9.1)
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Figure 9.1. Definition of the Stefan problem.

where, parameter ρ, c and k represent material density specific heat and thermal

conductivity respectively. c and k are discontinuous across Γint, whereas ρ was chosen

to be the same for both phases to avoid analysis of volume change.

Classical Dirichlet and Neumann boundary conditions are to be enforced on the

domain boundary:

T = T̄ , x ∈ΓT (9.2a)

−k∇T · n = q̄, x ∈Γq. (9.2b)

To satisfy energy balance of phase transition, the Stefan condition on the interface

also needs to be enforced:

JqnK = −ρLvn, x ∈ Γint (9.3)

where, L is the latent heat, vn is normal velocity of interface. The sign of vn needs

care in its definition. Using the convention given in [25], vn in Eq. (9.3) is defined as

vn = −JqnK
ρL

= −qns + qnl
ρL

=
(ks∇Ts − kl∇Tl) · ns

ρL
(9.4)
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where, ks and kl are the thermal conductivities of the solid and liquid phases respec-

tively. Direction of vn is defined in reference to ns. That is, the interface moves in the

direction ns with positive vn (solidifying system) or in the direction −ns with nega-

tive vn (melting system). Finally, the generalized Gibbs-Thomson condition must be

satisfied on the interface [136]:

T − Tm +
Tm(cl − cs)

L

(
T ln

T

Tm
+ Tm − T

)
+
γ(n)Tm

L
κ+ εv(n)vn = 0, x ∈ Γint

(9.5)

where, Tm is the melting temperature, γ(n) is the capillary length indicating surface

tension effect and κ is the mean surface curvature. To model the inherent non-

equilibrium nature of phase transition, the εv(n)vn term is appended to the equation,

where εv(n) is the kinetic mobility coefficient. Assuming cl = cs = c and εc(n) =

γ(n)Tm
L

, Eq. (9.5) is reduced to the classical Gibbs-Thomson condition Eq. (9.6a) for

the dendritic Stefan problem. Further assumption of εc(n) = εv(n) = 0 gives the

constant temperature condition Eq. (9.6b) for the classical Stefan problem.

T = Tm − εc(n)κ− εv(n)vn, x ∈Γint (9.6a)

T = Tm, x ∈Γint. (9.6b)

9.3 Isogeometric Formulation

The Stefan problem raises significant challenges to achieving computational ac-

curacy and efficiency. Here, to accurately capture the discontinuity in temperature

gradient across the interface and to directly impose Gibbs-Thomson condition, an

isogeometric approximation with hybrid function/derivative enrichment is proposed.

This enriched approximation is a smooth blending of C 1 or higher order continu-

ous isogeometric approximation of underlying domain enriched with a C 0-continuous

local approximation. Since the enriching field is isogeometrically described on the
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enriching geometrical entity, auxiliary governing equations to indirectly describe the

evolution of the interface are not necessary.

9.3.1 Construction of the Enriched Approximation

As introduced earlier in Eq. (2.11), the enriched behavioral field can be constructed

to form a partition of unity as follows:

f(x) = (1− w)fΩ(x) + wfΓ(P(x), d(x)) (9.7)

where, the weight field w, chosen as Eq. (2.12), satisfies on Γint:

w = 1 (9.8a)

‖∇w‖ = 0. (9.8b)

In the proposed method, the temperature field is approximated as

T (x) = (1− w)T c(x) + w [T e(P(x)) +Ge
i (P(x))d(x)] (9.9)

Ge
i (P(x)) =

 Ge
l (uf )|uf=P(x) x ∈ Ωl

Ge
s(uf )|uf=P(x) x ∈ Ωs

. (9.10)

where, T c is the continuous temperature field of the underlying domain and T e is the

enriching temperature field defined by

T e(u) = T |Γint = T (C(u)), (9.11)

such that Eq. (9.6) is automatically enforced. The subdomain functions Ge
l and Ge

s

represent the interfacial temperature gradient on liquid and solid side respectively.

Thus, the jump function Ge
i can capture the discontinuity in temperature gradient

across the interface. Its value depends on location of x relative to the interface,

which can be readily discerned from the signed distance field d(x). Per the usual
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convention, the sign of d(x) is positive for the liquid phase and negative for the solid

phase, i.e., ∇d|Γint = ns. In present work, all the functions with superscript e imply

the extension from lower dimensional entity Γint to domain Ω by point projection

P(x). A two-dimensional example of isogeometric enrichment functions is shown in

Figure 9.2. The enrichment with both temperature function T e and gradient-like

function Ge
i is termed here as a hybrid function/derivative enrichment.
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Figure 9.2. Illustration of isogeometric enrichment functions T e =∑4
I=1N

e
I (u)T eI , Ge

l =
∑4

I=1 N
e
I (u)(Ge

l )I and Ge
s =

∑4
I=1 N

e
I (u)(Ge

s)I ,
where T eI , (Ge

l )I and (Ge
s)I are enriching degrees of freedoms attached

to control point PI and N e
I is the shape function. xf is the footpoint of

both xs and xl on the curve.

The gradient ∇T is obtained from the enriched approximation of Eq. (9.10):

∇T (x) = (1− w)∇T c + w(∇T e + d∇Ge
i +Ge

i∇d) +∇w(T e +Ge
id− T c). (9.12)

Thus, the heat flux on interface is obtained by applying Eq. (9.8):

qn|Γint = − k∇T · n|Γint = − k(∇T e + d∇Ge
i +Ge

i∇d) · n|Γint = −kGe
ins · n.

(9.13)
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Here, d = 0 and ∇d = ns on the interface were used to arrive at the final result.

Also, on the interface, it is shown in [71] that ∇T e · n = 0 on a parametric curve or

surface. Particularly, ∇T e = 0 can be obtained for the classical Stefan problem with

condition Eq. (9.6b).

Finally, one can obtain the normal speed of interface from Eq. (9.4) and Eq. (9.13)

as

vn =
ksG

e
sns · ns + klG

e
lns · nl

ρL
=
ksG

e
s − klGe

l

ρL
. (9.14)

9.3.2 Discretized Equations

The discretization of T c, T e and Ge are chosen to be of the following form:

T c =
n∑
I=1

N c
IT

c
I = [Nc]{T c} (9.15a)

T e =
ne∑
I=1

N e
IT

e
I = [Ne]{T e} (9.15b)

Ge
i =


∑ne

I=1N
e
I (Ge

l )I = [Ne]{Ge
l } x ∈ Ωl∑ne

I=1N
e
I (Ge

s)I = [Ne]{Ge
s} x ∈ Ωs

. (9.15c)

where, N c
I and N e

I are the NURBS basis functions for the underlying domain and the

enriching lower-dimensional entity respectively. N c
I is required to be C 1 or higher or-

der continuous function to ensure continuous temperature gradient in the underlying

domain. With the discretization given in Eq. (9.15), Eq. (9.10) can be rewritten in

matrix form as

T (x) =
[
(1− w)Nc wNe wdNe

l wdNe
s

]

T c

T e

Ge
l

Ge
s


= [N]{d} (9.16)
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where,

Ne
l =

 Ne x ∈ Ωl

O x ∈ Ωs

, Ne
s =

 O x ∈ Ωl

Ne x ∈ Ωs

. (9.17)

Thus, Eq. (9.12) for temperature gradient can be written in discretized form as

∇T (x) = [B]{d} (9.18)

where,

[B] =


(1− w)[∇Nc]T − [Nc]T [∇w]T

w[∇Ne]T + [Ne]T [∇w]T

wd[∇Ne
l ]
T + [Ne

l ]
T [∇(wd)]T

wd[∇Ne
s]
T + [Ne

s]
T [∇(wd)]T



T

. (9.19)

Now, the weak form of energy equation (Eq. (9.1)) is:

∫
Ω

δTρ
∂

∂t
(cT ) dΩ +

∫
Ω

∇(δT ) · (k∇T ) dΩ = −
∫

Γq

δT q̄ dΓ +

∫
Ω

δTs dΩ. (9.20)

Using the above equation, one can derive the discrete form of the energy equation

using a backward Euler time integration scheme [25]:

(
1

∆t
M +K

)
T n+1 =

1

∆t
M∗T n + fn+1

q + fn+1
s (9.21)
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where,

M =

∫
Ω

ρcn+1[Nn+1]T [Nn+1] dΩ (9.22a)

M∗ =

∫
Ω

ρcn+1[Nn+1]T [Nn] dΩ (9.22b)

K =

∫
Ω

kn+1[Bn+1]T [Bn+1] dΩ (9.22c)

fn+1
q = −

∫
Γq

[Nn+1]T q̄n+1 dΓ (9.22d)

fn+1
s =

∫
Ω

[Nn+1]T sn+1 dΩ. (9.22e)

The above integrals need extra care due to location-dependent definition of Ne
l and

Ne
s in Eq. (9.17). It is more convenient to integrate separately in the solid and

liquid sub-domains Ωs and Ωl respectively. To enable this the integration is carried

in the manner illustrated for the mass matrix (Eq. (9.22a)) below in Eq. (9.23). For

notational simplicity, superscript n+1 is neglected here. The remaining integrals can

also be computed in a similar manner.

M =

∫
Ωl

ρcl


(1− w)2[Nc]T [Nc] w(1− w)[Nc]T [Ne] wd(1− w)[Nc]T [Ne] 0

w(1− w)[Ne]T [Nc] w2[Ne]T [Ne] w2d[Nc]T [Ne] 0

wd(1− w)[Ne]T [Nc] w2d[Ne]T [Nc] (wd)2[Nc]T [Ne] 0

0 0 0 0

dΩ

+

∫
Ωs

ρcs


(1− w)2[Nc]T [Nc] w(1− w)[Nc]T [Ne] 0 wd(1− w)[Nc]T [Ne]

w(1− w)[Ne]T [Nc] w2[Ne]T [Ne] 0 w2d[Nc]T [Ne]

0 0 0 0

wd(1− w)[Ne]T [Nc] w2d[Ne]T [Nc] 0 (wd)2[Nc]T [Ne]

dΩ.

(9.23)

Consistent with the fixed mesh philosophy, the control net of the underlying do-

main is fixed during solution process. The moving interface defining the integration

sub-domains together with the non-linearity of the enriching fields cause challenges to

accurate integration. To resolve this problem, the kd-tree based adaptive quadrature,
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as described in Chapter 5, is utilized to integrate over the cells that are intersected

by interface. The point containment problem of identifying a point with the solid

or liquid subdomain is easy to perform once the signed distance field is algebraically

computed.

To obtain the speed at the control points of the enriching entity, the velocity

defined by Eq. (9.14) is discretized as follows:

vn =
ks
∑ne

I=1 N
e
I (Ge

s)I − kl
∑ne

I=1 N
e
I (Ge

l )I
ρL

=
ne∑
I=1

N e
I

ks(G
e
s)I − kl(Ge

l )I
ρL

=
ne∑
I=1

N e
I v̄I

(9.24)

where,

v̄I =
ks(G

e
s)I − kl(Ge

l )I
ρL

. (9.25)

In order to recover the control point velocity from the scalar speed, the following

unconstrained least square problem of lower dimension is solved to determine velocity

at control points:

minimize

∫
Γint

∥∥∥∥∥
ne∑
I=1

N e
I (vI − v̄Ins)

∥∥∥∥∥
2

2

dΓ (9.26)

where, vI = (vIx, vIy, vIz). The control point velocities, vI , can be obtained by solving

following normal equation:

(∫
Γint

[Ne]T [Ne] dΓ

)
[V ] =

∫
Γint

[Ne]T [Ne]{v̄}ns dΓ (9.27)
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where,

[V ] =


vx1 vy1 vz1

vx2 vy2 vz2
...

...
...

vxne vyne vzne

 , {v̄} =


v̄1

v̄2

...

v̄ne

 . (9.28)

The normal equation given in Eq. (9.27) is of one dimension lower than the governing

equation, Eq. (9.21), since it involves unknowns only on the control points defining the

enriching entity. Since the degrees of freedom on the interface ne � n, computational

cost of solving Eq. (9.27) is negligible compared with solving the governing equation,

Eq. (9.21).

9.3.3 Validation of Approximation

The enriched approximation was validated by solving three-dimensional melting

system with a planar moving interface. A uniform cube of solid was initially set to

the melting temperature Tm = 0 as illustrated in Figure 9.3. The constant melting

temperature condition, Eq. (9.6b), was enforced on the interface. The temperature

on the upper face was raised to a constant value of Tw = 1 at time t = 0. The latent

heat value was chosen as L = 10 and all other parameters were set to a unit value.

The analytical and numerical solutions for the position of the interface in z di-

rection as a function of time are shown in Figure 9.4. A good agreement with the

analytical solution was observed even when the interface was close to the bottom

face. Further, temperature fields corresponding to three time instants are illustrated

in Figure 9.5. As can be seen, the spatial variation of the temperature at each instant

is also in very good agreement with the analytical solution. In Figure 9.6, an analysis

of convergence under four different discretizations is presented. Nearly quadratic rate

of convergence was observed.
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Figure 9.3. Illustration of 3D planar melting problem.
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Figure 9.4. Comparison of interface position obtained using the developed
method against the Neumann analytical solution. Discretization size of
40× 40× 40 control points was used.
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(a) 3D temperature field at t = 13ms
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(b) Temperature along z axis at t = 13ms

(c) 3D temperature field at t = 40ms
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(d) Temperature along z axis at t = 40ms

(e) 3D temperature field at t = 117ms
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(f) Temperature along z axis at t = 117ms

Figure 9.5. 3D Temperature distribution (a),(c),(e) as well as plots of
temperature along z axis compared to the Neumann analytical solution
(b),(d),(f) at t = 13, 40, 117ms. The plane shown in the interior of the
cube indicates the physical position of interface at that instant.
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Figure 9.6. Convergence analysis in 3D planar interface example. Nearly
quadratic convergence rate was achieved.

9.4 Adaptive Time Stepping and Enrichment

In the Stefan problem, the behavioral field near the interface may undergo signifi-

cant changes during the course of the interface evolution, causing the interface shape

to undergo correspondingly large changes. Thus, there is a need to adaptively refine

the representation of the interface during the course of the interfacial shape evolution.

In this work, a two-dimensional adaptive refinement and coarsening algorithm is pro-

posed to model the complex evolving interface. An auxiliary adaptive time stepping

scheme is developed to ensure geometrical stability and computational robustness.

9.4.1 Adaptive Refinement and Coarsening of Enrichment

In the finite element method, a common adaptive refinement scheme is based on

gradient jump across element boundary [35, 137, 138]. Inspired by these studies, an
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aposteriori refinement criteria based on jump in heat flux at the interface may be

developed as

ηi =
max JqinK−min JqinK

‖JqnK‖∞
(9.29)

where, superscript i represents the index of the knot whose span is [ui, ui+1]. Using

the Stefan condition Eq. (9.4) and the convex hull property of the NURBS entity,

Eq. (9.29) can be simplified as

ηi =
max vin −min vin

‖vn‖∞
≥ max vin −min vin

‖v̄‖∞
. (9.30)

During adaptive refinement, the knot value ū = 1
2
(ui + ui+1) will be inserted into

the knot span [ui, ui+1] when

max vin −min vin
‖v̄‖∞

≥ Cg (9.31)

where, Cg ∈ (0, 1] is a refinement coefficient. The smaller the value of the chosen

Cg, the more knot spans where new knots are inserted, and therefore more refined

the enriching entity becomes. This criteria is equivalent to refining knot spans where

large differences in heat flux jump and, therefore, large differences in the evolving

speed of the interface occur.

Adaptive coarsening becomes necessary when self-intersection of the enriching

entity is imminent. As illustrated in Figure 9.7, a large time step than acceptable

results in the self-intersection of the NURBS curve. To eliminate this possibility, a

two-dimensional geometrical non-self-intersection (NSI) condition is introduced.

In general, the self-intersection of parametric curve is difficult to detect. Therefore,

it is challenging to predict the ∆t at which self-intersection would occur. However,

for a NURBS entity, due to the convex hull property, the self-intersection becomes

possible to detect. In general, two segments of a NURBS curve will not intersect if

their corresponding control hulls do not intersect each other. The problem of detecting
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Figure 9.7. Detection of self-intersection. If the control net of a quadratic
NURBS curve changes from the left configuration to the one on the right
right after ∆t, self-intersection will occur. Crosses in the right figure
indicate points of self-intersection of the curve. vi, vi+1 and vj are moving
velocities of Pi, Pi+1 and Pj respectively.

the self-intersection of a NURBS curve can therefore be converted into detecting the

self-intersection of its control net. In Figure 9.7, consider the two adjacent control

points Pi(xi, yi) and Pi+1(xi+1, yi+1) with nodal velocities vi = (vxi , v
y
i ) and vi+1 =

(vxi+1, v
y
i+1) respectively. After time step ∆t, another control point Pj(xj, yj) intersects

the segment connecting Pi and Pi+1. One can then derive the equations of motion:

k(xi + vxi ∆tij) + (1− k)(xi+1 + vxi+1∆tij) = xj + vxj ∆tij (9.32a)

k(yi + vyi ∆tij) + (1− k)(yi+1 + vyi+1∆tij) = yj + vyj∆tij (9.32b)

where, k ∈ [0, 1] is the partition coefficient and vj = (vxj , v
y
j ). Thus, from Eq. (9.32),

one can obtain:

∆tij = −k(xi − xi+1) + (xi+1 − xj)
k(vxi − vxi+1) + (vxi+1 − vxj )

= − k(yi − yi+1) + (yi+1 − yj)
k(vyi − vyi+1) + (vyi+1 − vyj )

. (9.33)
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Therefore, the two-dimensional non-self-intersection condition is:

∆t ≤ ∆tNSI ≡ min
i,j

∆tij>0

{∆tij}. (9.34)

The computational cost of determining ∆tNSI is O(n2
e), and is insignificant since

ne � n, with ne being the degrees of freedom of the enriching entity and n that

of the underlying domain. If potential self-intersection is detected, then a time step

∆t = ∆tNSI is chosen in Eq. (9.34). Note the general intersection event could cause

three different types of rearrangement of control nets as well as NURBS curves as

illustrated in Figure 9.8:

1. Interfacial rupture increases the genus of the enrichment by one

2. Interfacial coalescence decreases the genus of the enrichment by one

3. The genus is unchanged, but a small number of control points are isolated and

removed

The first and second cases involve multiple enrichments and introduce topological

changes. The proposed method can be extended to these cases by enrichment-wise

approximation:

T (x) = (1− wk)T c(x) + wk [T ek(Pk(x)) +Gek
i (Pk(x))dk(x)] (9.35)

where, subscript k is the index of dominant enrichment for given point x, T ek and

Gek
i are the enriching temperature and gradient fields attached to kth enrichment.

wk, Pk and dk are the weight, projection and distance functions with regards to kth

enrichment respectively. Although second case is not self-intersection, the condition

Eq. (9.34) is still applicable. The third case, frequently encountered when the adjacent

control points move close, could reduce the number of control points and trigger

adaptive coarsening. We focus on the third case where adaptive coarsening could

effectively improve robustness of interfacial evolution in present work, and postpone

the implementation of the cases with topological changes to our future work.



128

∆𝑡ଵ ∆𝑡ଶ

(a) Illustration of genus increase
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(b) Illustration of genus decrease

∆𝑡ଵ ∆𝑡ଶ

(c) Illustration of unchanged genus

Figure 9.8. Three different circumstances in the rearrangement of control
net/NURBS curve: (a) Genus increased by interfacial rupture, (b) Genus
decreased by interfacial coalescence and (c) Genus unchanged under adap-
tive coarsening (number of control points decreases).

A change in number of control points requires a change of number of knots. In

the present work, centripetal method [51, 139] with averaging technique is used to

generate the knots. The procedure is as follows. Define

l =
ne∑
i=2

√
‖Pi − Pi−1‖2. (9.36)



129

The centripetal parameters corresponding to each control point are:

ū1 = 0, ūne = 1,

ūi = ūi−1 +

√
‖Pi−Pi−1‖2

l
, i = 2, · · · , ne − 1.

(9.37)

Next, for the open curve, the following averaging of centripetal parameters is used to

identify the new knot values:

u0 = · · · = up = 0, une = · · · = une+p = 1,

ui+p = 1
p

∑i+p
j=i+1 ūj, i = 1, · · · , ne − p− 1.

(9.38)

9.4.2 Adaptive Time Stepping and Update Procedure

When solving a hyperbolic partial differential equation with forward Euler time

stepping, the CFL condition needs to be imposed [4, 140]:

∆t ≤ ∆tCFL ≡ Ct min
i

{
h

|v̄i|

}
(9.39)

where, h is the discretization size and Ct ∈ (0, 1) is the Courant coefficient. Although

hyperbolic partial differential equation is not involved in the present work, the CFL

condition is used to increase the stability of the interface evolution. Taking account

of both NSI condition of Eq. (9.34) and the CFL condition of Eq. (9.39), the final

time step length is chosen as

∆t = min{∆tNSI ,∆tCFL}. (9.40)

The update procedure is summarized in Alg. 5.

9.5 Numerical Examples

The developed method is first validated by modeling the infinite corner solidifica-

tion problem which has an analytical solution. Next, complex benchmark problems of
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Algorithm 5 Update Procedure for Solving the Stefan problem with Enriched IGA

Input: Phase interface Cn and Solution T n at nth step
Output: Phase interface Cn+1 and Solution T n+1 at (n+ 1)th step

1: function Update Stefan Problem(Cn, T n)
2: v̄ ← Obtain nodal speed using Eq. (9.25)
3: V ← Fit nodal velocity by solving normal equation Eq. (9.27)
4: ∆t ← min{∆tNSI ,∆tCFL}, given ∆tNSI from Eq. (9.34) and ∆tCFL from

Eq. (9.39)
5: if ∆t == ∆tNSI then
6: Cn+1 ← Apply adaptive coarsening on Cn

7: else
8: Cn+1 ← Apply adaptive refinement based on Eq. (9.31)
9: end if

10: T n+1 ← Given Cn+1, compute matrices and vectors to solve Eq. (9.21)
11: end function

isotropic crystal solidification and anisotropic dendritic solidification in supercooled

liquid are solved. Unlike piece-wise linear approximation of the interface in the level

set method, the NURBS representation of the interface achieves sufficient smooth-

ness both in the geometrical shape of the interface and in the solved temperature field

during evolution.

9.5.1 Infinite Corner Solidification Problem

An infinite quarter-space corner, shown in Figure 9.9, contains liquid initially at

the temperature Ti ≥ Tm, where Tm is the melting temperature. At time t = 0, the

temperature of corner surface is decreased to Tw < Tm, leading to solidification of the

quarter-space.

Analytical solution for cases with constant melting temperature (Eq. (9.6b)) and

equal diffusivities αl = αs = α was given by Rathjen and Jiji [141]:

y∗ =

(
λ+

C

x∗m − λm
) 1

m

(9.41)
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Figure 9.9. Definition of two-dimensional infinite corner solidification
problem [141].

where, x∗ = x√
4αt

and y∗ = y√
4αt

are dimensionless coordinates of x and y, λ is the

stationary interface position, C and m are parameters depending on Ti, Tm, Tw and L.

The problem was simulated in a unit square region with Ti = Tm = 0 and Tw = −1.

The parameters k, ρ, c and L were chosen to have unit values. The adaptivity re-

lated coefficients were chosen as Cg = 0.25 and Ct = 1. The temperature field and

interface of four transient states are illustrated in Figure 9.10, where the numerically

determined interface positions are compared against the analytical solution. Excel-

lent agreement was observed during whole solidification process. As a result of the

adaptive refinement and coarsening, the corner arc of interface was approximated well

by ensuring a high density of control points during interface evolution. The interface

position along the diagonal of the domain versus time is shown in Figure 9.11.
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(b) t = 17ms

x

y

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Control points

Numerical solution

Analytical solution

(c) t = 41ms
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Figure 9.10. The solved temperature field at (a) t = 3ms, (b) t = 17ms,
(c) t = 41ms and (d) t = 65ms. Numerical solution is compared to the
analytical solution. Control points of the NURBS numerical interface are
shown to illustrate adaptive refinement and coarsening. Discretization
size of 100× 100 was used.

9.5.2 Crystal Solidification in a Supercooled Liquid

In this example, a small solid seed is placed in a region containing a supercooled liq-

uid, leading to crystal solidification beginning from the seed site. Several researchers

have previously solved this problem using the level-set method [128, 142, 143]. The
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Figure 9.11. Comparison of interface position along diagonal for proposed
method and Rathjen’s analytical solution.

Gibbs-Thomson condition (Eq. (9.6a)) with constant coefficients εc and εv was en-

forced as the interface temperature condition. Due to the explicit geometrical repre-

sentation of the interface, the curvature κ was obtained readily and without approxi-

mation. The simulation domain was [0, 2]× [0, 2] quarter-space that was insulated on

all sides. Melting temperature and supercooled initial temperature were set as Tm = 0

and Ti = −0.5 respectively. The parameters in the Gibbs-Thomson condition were

chosen as εc = 5× 10−3 and εv = 2× 10−2. These parameters correspond to isotropic

crystal growth. The remaining parameters, namely k, ρ, c and L, were chosen to have

unit values. At t = 0, a small petal-shaped solid seed was added at the origin of the

computational domain. The geometry of the seed was

x(u) = (R + P cos(8πu)) cos(2πu) (9.42a)

y(u) = (R + P cos(8πu)) sin(2πu) (9.42b)

where, R = 0.1 and P = 0.02. In the implementation of this example, two different

discritization sizes (100 × 100 and 200 × 200) with same refinement and Courant
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coefficients Cg = Ct = 0.5 were tested. Results are presented in Figure 9.12. In the

figure, the area of final solid region is exactly one half of the computational domain.

These results match well with the solutions in the literature [128, 143]. They also

demonstrate a solution that is not dependent on the level of discretization.
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Figure 9.12. Simulations of crystal growth with effect of isotropic surface
tension and kinetic mobility solved using two different discretizations (a)
100× 100 and (b) 200× 200. The profiles correspond to time increments
of 0.05 ending with a final time of 1.0.

To study the supercooling phenomenon influenced by surface tension and kinetic

mobility, the temperature fields of four intermediate states are shown in Figure 9.13.

Unlike the corner solidification case (Figure 9.10), the phase interface doesn’t coincide

with zero temperature level due to supercooling. In all sub-figures, the temperature

around the interface with negative curvature are positive because of the effect of

surface tension. As time increases, the region with positive temperature increases

because the evolution speed decreases and the supercooling effect of kinetic mobility

is weakened.
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Figure 9.13. Obtained temperature fields during crystal solidification at
(a) t = 9ms, (b) t = 30ms, (c) t = 57ms and (d) t = 97ms. The computed
interface is also shown overlaid on the temperature contour plots.

9.5.3 Steady-state Dendritic Solidification

Another class of anisotropic dendritic problem is one that has steady-state features

of dendritic growth including the characteristic dendritic shape and tip velocity. This

dendritic problem was also studied by several researchers using the level-set method

[129, 130] as well as the phase-field method [32, 33, 144]. To model this problem, the
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usual assumptions of Tm = 0, εv(n) = 0 and εc(n) = a(1− 15b cos(4θ)) were applied

as the Gibbs-Thomson condition, resulting in the interface temperature condition:

T = −a(1− 15b cos(4θ))κ, x ∈Γint (9.43)

where, a is the capillary scaling factor, b is anisotropic strength and θ is the angle

between interfacial normal vector and x-axis. Due to anisotropy, an initially circular

seed grows into a dendrite with four-fold axis of symmetry.

One quarter of a domain of size 250×250 units was simulated exploiting symmetry.

At t = 0, a circular seed with radius R = 5 was placed at the center of the domain

which was initially at a supercooled temperature of Ti = −0.55. The parameters in

Eq. (9.43) were chosen as a = 0.4 and b = 0.05. As before, the parameters k, ρ, c and

L were chosen to have unit values. Discretization size of 100 × 100 and parameters

Cg = 0.6 and Ct = 0.4 were used in the simulation. The evolution of the interface and

the contours of steady-state temperature are illustrated in Figure 9.14, where time is

non-dimensionalized as τ = tα
a2

.

One can again observe that in Figure 9.14b, the undercooled region near the

interface where curvature is positive (for example, the dendritic tips). A similar

observation was made earlier in [130]. Tip velocity is plotted in Figure 9.15, where

the velocity is non-dimensionalized as ξtip =
vtipa

α
. According to microscopic solvability

theory, the tip velocity, which is much larger than at other points of the dendritic

interface, would converge to an asymptotic limit. The dimensionless velocity is plotted

against dimensionless time in Figure 9.15. In order to investigate the influence of

adaptivity, two cases with different initial number of control points (n0
e) were tested.

It may be observed that the velocity reduction is not monotonic and that two distinct

local minima exist for each case. This was due to extensive adaptive refinement

during time τ ∈ [2200, 2700] for case n0
e = 4 and during time τ ∈ [3600, 4400] for case

n0
e = 6, which drastically changed the number of control points and therefore affected

the tip velocity. Such adaptive refinement can occur at any time but do not affect
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Figure 9.14. Steady-state dendritic solidification with four-fold growth
axis of symmetry: (a) evolution of interface with step length ∆τ = 500
and (b) steady-state temperature field at τ = 6150. Initial number of
control points n0

e = 4 was used.

the steady-state tip velocity. In fact, during time steps before as well as after the

adaptive refinement, the tip velocity decreases monotonically towards the asymptotic

limit.

9.6 Summary

The Stefan problem was modeled in this chapter with a geometrically explicit

evolving interface isogeometrically enriched with appropriate hybrid function/deriva-

tive values. This method combines the fixed mesh characteristic of XFEM with C 1

or higher smoothness naturally enabled by isogeometric analysis, while allowing one

to explicitly compute normals and curvature at any point on the interface. The func-

tion enrichment allows direct imposition of the Gibbs-Thomson condition, while the

derivative enrichment allows one to model the temperature gradient discontinuity aris-

ing from the Stefan condition. The recently developed algebraic distance estimations
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e = 4 and n0
e = 6. The asymptotic limit is ξ̄tip = 0.017

and sampling step length is ∆τ ≈ 250.

was coupled with a newly developed algebraic point projection method to efficiently

carryout quadrature. Adaptive strategies for both interface geometry refinement and

time stepping were employed to improve efficiency and robustness. The accuracy of

the proposed method was demonstrated on validation problems that possessed an

analytical solution. Further, complex benchmark problems of isotropic crystal solid-

ification and anisotropic dendritic solidification in supercooled liquid were presented

to demonstrate the power of the developed method.
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10. SHAPE OPTIMIZATION USING CONFIGURATIONAL DERIVATIVE

In this chapter, a method for shape optimization through configuration of finite sized

heterogeneities is demonstrated. The method relies on the recently derived con-

figurational derivative that describes the sensitivity of an arbitrary objective with

respect to arbitrary design modifications of a heterogeneity inserted into a domain

with moving boundary. The configurational derivative takes special forms when the

heterogeneity is subject to translation, rotation and uniform scaling. The configura-

tional derivative may be further simplified for special objectives such as compliance.

The computational implementation is based on the THB-splines which can accurately

represent the behavioral field near the heterogeneity boundaries. Several two- and

three-dimensional numerical examples are presented to demonstrate the methodology.

10.1 Introduction to Configurational Optimization

Many engineering problems, including the design of mechanical parts, necessitate

an optimal placement of finite-sized, regular-shaped geometries within the structure.

A widely used technique for topological design of structures is Solid Isotropic Material

with Penalization (SIMP) method [145, 146], which attempts to obtain the optimal

topology by distributing material in a fixed region. However, the SIMP method

requires a sophisticated numerical scheme to avoid the checkerboad problem [147] and

often leads to a skeletal or irregular shaped machinable structure. In contrast, the

shape optimization [148, 149] is aimed at determining the optimal external/internal

boundary shapes of (typically homogeneous) bodies with given constraints (minimum

mass, etc.). Extensive studies [150–152] have been conducted on integrating topology

and shape optimization, and in particular, automating transition between them.
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In practice, the availability of analytical design sensitivities plays an important role

in the efficiency of topology and shape optimization. Shape optimization by placing

finite-sized heterogeneities within a homogeneous domain necessitates a sensitivity

analysis of arbitrary functionals with respect to translation, rotation and scaling of

the heterogeneities. Such sensitivities of arbitrary functionals for the configuration

of the heterogeneities appear to have been investigated only in [153]. The derivation

was founded on the conservation rules of elasticity. While the conservation rules have

served as a powerful tool in fracture mechanics [124, 154–156], the configurational

sensitivities do not appear to have been applied to shape optimization. Very recently,

a new technique for optimal topological design of solids, termed as configurational

optimization, was proposed [157]. The derived sensitivities of arbitrary functionals

to translation, rotation or scaling of a finite-sized heterogeneity were shown to be a

generalization of the classical topological derivative, and were exploited to determine

the optimal configuration of the heterogeneities inserted into the solid structure.

Since the position, orientation or size of the inserted heterogeneities are changed at

every iteration of the configurational optimization, ans since the accuracy of solution

can not be assured without an appropriate mesh refinement near the heterogeneity

boundaries (see Figure 6.1), an adaptive, easy-to-regenerate mesh is strongly desired

in the procedure. However, the regeneration of a boundary-fitted finite element mesh

is in general very time-consuming. Thus, there are relatively few numerical exam-

ples in the literature that realize shape optimization through the growth of explicitly

defined heterogeneities. In this work, the THB-splines, which allows efficient local

refinement as described in Chapter 6, is utilized to facilitate the configurational op-

timization. The methodology is demonstrated through a series of examples.

10.2 Mathematical Description

The configurational optimization, originally proposed in Lin’s doctoral research

[158], is briefly reviewed here. The configurational optimization problem for arbitrary
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objectives is first posed. The material time derivative of the objective with respect

to arbitrary boundary modifications, referred as Configurational Derivative, is pre-

sented and further simplified for special design velocities (i.e., translation, rotation

and scaling).

10.2.1 Configurational Optimization Problem

Given a homogeneous linear elastic solid Ω as shown in Figure 10.1a, the principle

of virtual work is given by

∫
Ω

ε0 : C0 : εa0 dΩ =

∫
Γt

t0 · ua0 dΓ. (10.1)

where, ε0 is infinitesimal strain, C0 is isotropic material tensor and t0 is prescribed

traction. εa0 and ua0 are compatible virtual strain and displacement, respectively.

The body force term is neglected in Eq. (10.1). It is also assumed that ua0 = 0 on

Γu. Next, we choose an arbitrary subdomain Ωs bounded by Γs (see Figure 10.1b)

for design purposes. The corresponding Dirichlet and Neumann boundary conditions

are defined on Γsu and Γst, respectively. Likewise, the principle of virtual work takes

the form:

∫
Ωs

ε0 : C0 : εa0 dΩ =

∫
Γs

ts0 · ua0 dΓ. (10.2)

A design transformation along with a pseudo design time t is defined within the

homogeneous subdomain as follows:

x0 = x0(X0, t) X0 ∈ Ωs, t ∈ [0,+∞) (10.3)
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where, X0 is the position of a material point at t = 0. Correspondingly, the design

velocity can be defined as

v0(x0, t) =
∂x0

∂t
. (10.4)

Next, a heterogeneity Ωp bounded by Γp is introduced to Ωs at the point xp (see

Figure 10.1c). The corresponding principle of virtual work is stated as

∫
Ωs

ε : C : εa dΩ =

∫
Γs

ts · ua dΓ (10.5)

where, compared to Eq. (10.2), the superscript 0 is removed to represent the quantities

in the heterogeneous subdomain.

Arbitrary objectives defined on the homogeneous and heterogeneous subdomains

are now posed as

f 0(t) =

∫
Ωs

ψ0(t, ε0) dΩ +

∫
Γs

φ0(t,n,x0,u0, t0) dΓ (10.6a)

f(t) =

∫
Ωs

ψ(t, ε) dΩ +

∫
Γs

φ(t,n,x,u, t) dΓ (10.6b)

respectively. n is outward normal to Γs and therefore identical for both subdomains.

Given the material density ρ0(t,x0)/ρ(t,x) in the homogeneous/heterogeneous sub-

domains, the total mass can be written as

m0(t) =

∫
Ωs

ρ0(t, ε0) dΩ (10.7a)

m(t) =

∫
Ωs

ρ(t, ε) dΩ (10.7b)

It is worth noting that the heterogeneity can be stiffer
(
m
f
> m0

f0

)
or softer

(
m
f
< m0

f0

)
than the homogeneous subdomain. The limit of a soft heterogeneity

(
m
f
→ 0

)
is a
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Figure 10.1. Definition of the configurtional optimization problem: (a)
Original problem domain, (b) homogeneous subdomain of interest and
(c) corresponding heterogeneous subdomain by introducing an arbitrary
heterogeneity to (b).

hole. The configurational optimization problem is to find xp,np and optimized shape

of the heterogeneity to

minimize g(t) = (1− w)
[
m(t)−m0(t))

]
+ w

[
m(t)−m0(t))

]
, w ∈ [0, 1]

subject to c0(t) =

∫
Ωs

ε0 : C0 : εa0 dΩ−
∫

Γs

ts0 · ua0 dΓ = 0

c(t) =

∫
Ωs

ε : C : εa dΩ−
∫

Γs

ts · ua dΓ = 0. (10.8)
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where, w is the weight of the pareto-optimal problem which reflects the designer’s

preference between the performance and mass terms. Without loss of generality, it is

assumed that the design transformation, as well as the design velocities, is identical

in both subdomains, i.e., x = x0 and v = v0.

10.2.2 Configurational Derivative

The material derivative of the Lagrangian G(t) corresponding to Eq. (10.8) can

be derived as [158]

Ġ(t) =(1− w)

{[ ∫
Γp

Jn ·ΣK · v dΓ +

∫
Γs

n ·Σ · v dΓ

+

∫
Γs

[(φ+ t · ua) (∇ · v − n · ∇v · n) +∇φ · v + φ,n · ṅ] dΓ

+

∫
Γst

ṫ
s · (φ,t + ua) dΓ +

∫
Γsu

(φ,u · u̇s + t · u̇as) dΓ

]

−
[∫

Γs

n ·Σ0 · v dΓ

+

∫
Γs

[(
φ0 + t0 · ua0

)
(∇ · v − n · ∇v · n) +∇φ0 · v + φ0

,n · ṅ
]

dΓ

+

∫
Γst

ṫ
s0 ·
(
φ0
,t0 + ua0

)
dΓ +

∫
Γsu

(
φ0
,u0 · u̇s0 + t0 · u̇as0

)
dΓ

]}
+ w

∫
Γp

Jρ(v · n)K dΓ. (10.9)

where, Σ is the configurational tensor defined as

Σ = (ψ − σ : εa) I + σa · ∇uT + σ · ∇uaT . (10.10)
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The Ġ(t) is termed as configurational derivative. Given three special design velocities

corresponding to translation, rotation and scaling of the heterogeneity boundary Γp

(see Figure 10.2):

v = v̄ (10.11a)

v = ω̄ × rp (10.11b)

v = α(t)rp. (10.11c)

Eq. (10.9) can be simplified to the following path-independent integral forms:

ĠT (t) =− (1− w)

{∫
Γs

n · Σ dΓ

}
· v̄

≡− (1− w)IT · v̄ (10.12a)

ĠR(t) =− (1− w)

{∫
Γs

[n · (−Σ× rp) + ta × u+ t× ua + t] dΓ

}
· ω̄

≡− (1− w)IR · ω̄ (10.12b)

ĠS(t) =− (1− w)

{∫
Γs

[
n · Σ · rp +

(
k − p
p

)
tau+

(
qk − q − k

q

)
tua
]

dΓ

}
α

+

(
w

∫
Γp

Jρ (n · rp)K dΓ

)
α

≡− (1− w)ISα +

(
w

∫
Γp

Jρ (n · rp)K dΓ

)
α (10.12c)

where, k is problem dimension and Γs is an arbitrary surface that encloses Γp. Implicit

in the Eq. (10.12c) is the assumption that the bulk objective function ψ is a qth order

function of strain ε, i.e., ψ(cε) = cqψ(ε).

A common choice of the design objective is the structural compliance given by

Θ(t) =

∫
Ωs

ε : C : ε dΩ =

∫
Ωs

2U dΩ (10.13)
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Figure 10.2. Three special design velocities: (a) Translation, (b) rotation
around an axis passing through xp and (c) uniform scaling with respect
to xp.

where, U = 1
2
σ : ε is strain energy density. Comparing Eq. (10.13) with Eq. (10.6),

the bulk and surface objective functions for structural compliance can be written as

ψ(ε) = ε : C : ε in Ωs (10.14a)

φ(t,u) = 0 on Γs. (10.14b)

As shown in [158], the general forms of Eqs. (10.12a) to (10.12c) can be further

simplified for the compliance objective to the following:

ĠT
Θ(t) =(1− w)

{
2

∫
Γs

[
Un− t · ∇uT

]
dΓ

}
· v̄ (10.15a)

ĠR
Θ(t) = (1− w)

{
2

∫
Γs

[
U(rp × n)− rp × (t · ∇uT ) + u× t

]
dΓ

}
· ω̂ (10.15b)

ĠS
Θ(t) = (1− w)

{
2

∫
Γs

[
U(n · rp)− t · ∇uT · rp −

(
d− 2

2

)
(t · u)

]
dΓ

}
α

+ w

(∫
Γp

Jρ (n · rp)K dΓ

)
α. (10.15c)

Again, the boundary Γp, as long as it encloses the heterogeneity, can be chosen

arbitrarily for the convenience of numerical integration.



147

10.3 Numerical Examples

The configurational derivative described above has been implemented in the OOF-

HiDAC framework. The problem domain is discretized using THB-splines to obtain

a smooth behavioral field near the heterogeneity boundaries. The optimization direc-

tion is next determined through a steepest descent algorithm [159]. The methodology

is first validated by optimizing the location of a circular hole within a square domain.

Next, the optimal location of different types of heterogeneity in a cracked plate is

studied. A three-dimensional example, involving simultaneous optimization of posi-

tion and orientation of an ellipsoidal hole, is finally presented.

10.3.1 Optimal Location of a Circular Hole

As illustrated in Figure 10.3, a circular hole of radius R = 1.5 is inserted in a

square plate with side W = 10. The plate is subjected to a quadratic load given by

σ =

(
1− 2x

W

)2

(10.16)

A plane stress state, with Young’s modulus E = 1 and Poisson’s ratio ν = 0.3 was

considered. The position of the hole, starting from (3, 3), was optimized to minimize

the total structural compliance of the domain.

The stopping criterion was chosen as∥∥IT∥∥
Θmax

≤ 10−7, (10.17)

and it took 31 iterations to converge. The von Mises stress field at initial configu-

ration, 10th, 20th and 31st iterations, along with the corresponding hole locations,

is shown in Figure 10.4. As can be observed, the hole moves towards a low stress

location. Figure 10.5 illustrates the change in the objective during optimization. The

structural compliance of the final configuration is 11.3% less than that of the initial

configuration.
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Figure 10.3. Optimization of location of a circular hole within a square
plate subjected to a quadratic loading.

10.3.2 Optimal Location of a Heterogeneity in the Presence of a Crack

In this example, the location of two different types of heterogeneities (hole and

stiffener) is optimized within a cracked plate to minimize the system structural com-

pliance. As shown in Figure 10.6, the plate has a side length of W = 20 and the

crack spans from (0.7W, 0.36W ) to (W, 0.36W ). The radius of the heterogeneity is

R = 0.12W . The problem is solved under plain stress state. The Young’s modulus

of the plate and the stiffener are taken as 1 and 100, respectively, while the Poisson’s

ratio is chosen as 0.3 for the whole problem domain. A uniform tension of σ = 1 is

applied to the plate.

Due to the different nature of the heterogeneities, the hole is initially placed in the

vicinity of the crack whereas the stiffener is placed far away from the crack. The von

Mises stress field in the presence of a hole and a stiffener is illustrated in Figures 10.7

and 10.8, respectively. It can be observed that, during the configurational optimiza-

tion, the hole moves away from the crack tip to avoid interaction with the singular

stress. On the contrary, the stiffener tends to move towards the crack tip to mitigate
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(a) Initial configuration (b) 10th iteration

(c) 20th iteration (d) Final configuration

Figure 10.4. Von Mises stress field and hole location at (a) initial config-
uration, (b) 10th iteration, (c) 20th iteration and (d) final configuration
(31st iteration). The behavioral field was approximated using a seven-level
quadratic THB-spline.

the singular stress. The objective change for both problems is shown in Figure 10.9,

where the structural compliance is shown to reduce by 5% in both cases. It may be

noted that the final configuration of the stiffener is not a converged solution since the

iteration was terminated to avoid collision with the crack. This example shows the

potential of configurational derivative as a powerful tool for fracture-resistant design.
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Figure 10.5. Structural compliance of the plate shown in Figure 10.3
against iteration count.
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Figure 10.6. Optimization of location of (a) a hole and (b) a stiffener
within a cracked plate. Different initial locations are chosen for different
heterogeneities.
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(a) Initial configuration (b) Intermediate configuration

(c) Final configuration

Figure 10.7. Von Mises stress field and hole location at (a) initial con-
figuration, (b) intermediate configuration (10th iteration) and (c) final
configuration (49th iteration). The behavioral field was approximated
using a six-level quadratic THB-spline.
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(a) Initial configuration (b) Intermediate configuration

(c) Final configuration

Figure 10.8. Von Mises stress field and stiffener location at (a) initial
configuration, (b) intermediate configuration (30th iteration) and (c) final
configuration (49th iteration). The behavioral field was approximated
using a six-level quadratic THB-spline.

10.3.3 Simultaneous Optimization of Location and Orientation of an El-

lipsoidal Hole

This example involves an ellipsoidal hole whose location and orientation are simul-

taneously updated at every iteration. The problem domain, as shown in Figure 10.10,

has a side length of W = 10 and is subjected to a quadratic load given by

σ =

(
1− 2x

W

)2

+

(
1− 2y

W

)2

. (10.18)
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Figure 10.9. Structural compliance of the plate in the presence of a
heterogeneity as shown in Figure 10.6.

The semi-principal axis lengths of the ellipsoidal hole are

La = 0.15W, Lb = Lc = 0.1W. (10.19)

The hole is initially placed at (0.35W, 0.35W, 0.35W ) with the long principal axis (La)

pointing along the line

x = y, z = 0.35W (10.20)

The Young’s modulus and Poisson’s ratio are taken as 1 and 0.3, respectively.

In this problem, the stopping criterion was chosen as√
‖IT‖2 + ‖IR‖2

Θmax

≤ 10−7. (10.21)

The optimal location and orientation of the hole were obtained after 44 iterations.

The von Mises stress field at four different iterations is shown in Figure 10.11. After
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Figure 10.10. Simultaneous optimization of location and orientation of
an ellipsoidal hole within a cubic domain. A quadratic load is applied to
the top surface of the domain.

the configurational optimization, the hole moves to the central axis of the domain

due to the influence of the quadratic loading. Meanwhile, the long principal axis of

the ellipsoidal hole becomes aligned with the z-axis to reduce the stress concentration

around the hole.
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(a) Initial configuration (b) 3rd iteration

(c) 7th iteration (d) Final configuration

Figure 10.11. Von Mises stress field and hole configuration at (a) ini-
tial configuration, (b) 3rd iteration, (b) 7th iteration, and (d) final con-
figuration (44th iteration). The domain was clipped diagonally for vi-
sualization of the hole. The behavioral field was approximated using a
three-dimensional, five-level quadratic THB-spline.
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11. CLOSURE

11.1 Summary and Novel Contributions

The main theme of this thesis was to develop a sharp interface formalism that

enables efficient modeling of moving boundary problems. To begin with, a survey of

existing modeling techniques was presented. These techniques were classified accord-

ing to their meshing need and interface representation. Conforming mesh, explicit

interface techniques, such as finite element method, often need a great number of de-

grees of freedom to model complex geometries and interfaces. Moreover, the analysis

mesh needs to be updated at every step of boundary evolution. The generation of

a boundary-fitted mesh is, in general, very time-consuming. While non-conforming

mesh, implicit interface methods alleviate the need for remeshing, these methods of-

ten introduce additional, hard-to solve equations and numerous auxiliary unknowns

(e.g., level-set and phase-field variables). Due to the implicit nature of the inter-

face, geometric quantities are not explicitly known and boundary conditions can only

be weakly applied on mesh than the interface. Such mesh generation step can be

completely eliminated by mesh-free methods. However, in addition to the indirect

imposition of boundary conditions, the numerical integration of these methods re-

mains a significant challenge.

A non-conforming mesh, explicit interface method, termed as enriched isogeomet-

ric analysis, was proposed to mitigate the cumbersome remeshing step while maintain-

ing the geometric exactness through CAD-standard representation of the domain and

interface geometries. The behavioral field is represented by a weighted composition

of a continuous domain approximation and enriched boundary approximations where

problem-dependent enriching functions and degrees of freedom are defined. The en-

richments are constructed according to a-priori knowledge of interfacial behavior such
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as singularity, weak and strong discontinuities, and interface conditions. The recently

developed algebraic distance technique was utilized to construct the weight fields in

the composition. Furthermore, the influence of a boundary on a point of interest can

be determined by geometrically projecting the point to the boundary. This is realized

in a new algebraic point projection algorithm, which was demonstrated to be faster

and more robust than classical Newton-Raphson iterations.

In order to effectively integrate over the elements intersected by the immersed

boundaries in the non-conforming mesh methods, a novel kd-tree based adaptive

quadrature scheme was developed. In contrast to the quad-tree and oct-tree sub-

division where all dimensions are bisected simultaneously, the kd-tree subdivision

allows dimension-wise splits of quadrature cells and can produce up to 33% and 57%

fewer sub-cells than quad-tree and oct-tree, respectively. Furthermore, the truncated

hierarchical B-splines were employed to support local refinement in the enriched iso-

geometric analysis. The efficiency of the adaptive mesh generation is assured through

newly proposed sign-based and distance-based refinement algorithms. More impor-

tantly, the maximum number of active THB-spline basis functions at a given point,

which does not appear to be addressed in prior literature, was studied in this work.

An all-at-once algorithm was developed to compute the large number of active THB-

spline basis functions efficiently.

The developed techniques are implemented in a 30000-line Fortran 2008 code

(OOF-HiDAC). The code is based on hybrid OpenMP/MPI parallelism and is capa-

ble for large two- and three-dimensional problems. The methodology was first used

to model stationary cracks and crack growth. The Heaviside function and William’s

tip displacement functions were chosen as crack face and tip enriching functions, re-

spectively. The former function can represent the displacement jump across the crack

face whereas the latter functions are used to reproduce the tip singularity. Next,

the Stefan problem was modeled with a sharp phase interface that is enriched with

hybrid function/derivative values. The function enrichment enables direct imposition

of the Gibb-Thomson condition, while the derivative enrichment can naturally cap-
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ture the heat flux jump across the interface. Several benchmark problems including

isotropic and anisotropic solidification in supercooled liquid were modeled. Finally,

the shape optimization through configuration of regular-shaped, finite-sized hetero-

geneities were studied. The optimization sensitivity is determined by the recently

derived configurational derivative. Choosing the THB-spline as domain approxima-

tion, a sufficiently smooth behavioral field were obtained near material interfaces for

accurate calculation of the configurational derivative. Several numerical examples, in-

cluding two-dimensional fracture-resistant design and three-dimensional simultaneous

optimization of hole location and orientation, were presented.

11.2 Recommendations for Future Research

11.2.1 Technique: T-splines

The T-splines [100,101] were initially developed for computer-aided geometric de-

sign and later applied to engineering analysis [102]. As an alternative local refinement

technique, the T-spline framework was compared with THB-splines in Table 6.1. It is

worth noting that the main disadvantages of T-splines may be overcome with a good

algorithm. In contrast, the drawbacks of THB-splines, such as the need for uniform

mesh, are intrinsic limitations.

In this work, the local refinement was enabled by the THB-spline framework due

to its ease of implementation. Having already been widely adopted in CAD models,

the T-splines will be a powerful analysis tool when a mature algorithm for analysis-

suitable T-spline generation becomes available.

11.2.2 Technique: Variational Collocation Method

In the context of computational mechanics, the partial differential equations (PDEs)

are solved through weak forms, which are constructed by multiplying the PDEs with

a weight function and then integrating over the problem domain. A widely used
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approach to solving the weak forms is the Galerkin method which selects the same

space for the solution and weight function. Alternatively, the strong form of a PDE

can be directly solved by the collocation method which enforces the PDE at a set of

collocation points. A significant advantage of the collocation method is that it only

requires one point evaluation per unknown whereas the Galerkin method typically

needs a full Gauss quadrature over all of the elements. Thus, the collocation method

is much faster than the Galerkin method on a per degree of freedom basis. However,

without a careful selection of the collocation points, the accuracy of the collocation

method per degree of freedom is much lower than that of the Galerkin method.

Recently, Gomez and De Lorenzis [96] proposed a variational collocation method

which can produce an exact Galerkin solution by collocation at a special set of points,

referred as Cauchy-Galerkin points. Montardini et al. [97] further improved the per-

formance of this method for odd-degree splines. The variational collocation method,

achieving the efficiency and accuracy simultaneously, is a potential substitute for the

Gaussian quadrature. However, this method currently suffers from two limitations:

1. The approximation needs to have C 1 or higher order smoothness, i.e., no sin-

gularity, weak and strong discontinuity. This constraint strongly hinters the

application of the variational collocation method to multi-phase and moving

boundary problems.

2. The analytical solution for the Cauchy-Galerkin points is only known at this

time for uniform meshes. Therefore, although the Cauchy-Galerkin points exist

for general non-uniform B-splines, THB-splines and T-splines, it is not clear

how to obtain them in these cases.

The technique will be a very powerful tool to facilitate the enriched isogeometric

analysis if the above two issues can be addressed.
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11.2.3 Application: Three-dimensional (3D) Crack Propagation

Several fracture examples were presented in Chapter 8 to demonstrate the pro-

posed enriched isogeometric formulation. A natural extension of this work is the

simulation of 3D crack propagation. In the existing literature, majority of techniques

for modeling 3D crack propagation rely on an implicit description of the crack surface

such as level-sets [160–163]. Recently, an explicit crack representation by means of tri-

angulation was developed to overcome the weakness of the level-set method. However,

the crack surface is piece-wise planar (C 0 continuous) and is exact only in the limit

of refinement. In the enriched isogeometric analysis, the crack can be represented by

a sufficiently smooth NURBS (or T-spline) entity, allowing an accurate calculation of

the geometric quantities as the crack propagates. The possible challenges that may

be encountered in the extension to 3D crack growth are summarized as follows:

1. Update of the crack surface based on linear elastic fracture mechanics while

maintaining a C 1 or higher order continuity.

2. Development of new enriching functions and degrees of freedom associated with

3D crack front. Although the Heaviside function naturally works for the 3D

crack surface, the proposed tip enriching functions of Eq. (8.9) only supports

two-dimensional cracks.

3. Regeneration of the underlying mesh. It was shown that the generation of the

adaptive THB-spline mesh was highly efficient. In fact, the efficiency can be

further improved by exploiting the nature of crack propagation by observing

that the existing crack does not change in each update. Therefore, it is not

necessary to update the whole adaptive mesh but just the region around the

crack front. Since the THB-spline mesh is stored in a kd-tree structure, the

partial update of the mesh, also referred as semi-remeshing, can be carried out

by simply expanding the tree.
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11.2.4 Application: Diffusion Driven Phase Evolution Problems

The complex physics of diffusion driven phase evolution involves, in addition to

bulk diffusion of species, surface phenomena such as surface diffusion motion of voids,

grain boundary evolution, and possibly interfacial reactions [164]. The dynamics of

the formation, growth and motion of new phases such as voids and intermetalic com-

pounds, are affected by the geometric properties (e.g., interface normal and curvature)

and the physical state of stress in the solid as well as the thermal and electrical loads

on the solid. As an example, the intermetalic growth in solder joints is illustrated in

Figure 11.1.

Solder (~95% Sn)

Cu

IMC (1) CuΩ→ CuΓ

(2) 6CuΓ+5Sn → Cu6Sn5

Figure 11.1. Schematic of intermetallic compound (IMC) growth in solder
joints. The formation of Cu6Sn5 is the consequence of the diffusion of Cu
through the Cu6Sn5 followed by the reaction with the Sn that constitute
over 95% of the modern solder alloys.

The primary challenges to modeling the phase evolution are the tracking of the

interface and the application of boundary conditions on the moving interfaces. The

classical phase-field solution to the phase evolution problems relies on implicit repre-

sentation of the geometry, and models the interfaces as being diffuse increasing the

mathematical complexity of the resulting equations. The phase-field equations are

often non-linear and non-convex, and the phase-field variables require a large number

of additional degrees of freedom to represent the geometry relative to a sharp inter-

face model. Alternatively, the enriched isogeometric analysis can be utilized to model
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the diffusion driven phase evolution problems. The technique relies on explicit mod-

eling of the phase boundary and so normals and curvatures are explicitly computed

at any point on the boundary, which enables a strong imposition of the interfacial

conditions. Meanwhile, the high local concentration gradient around the interface

can be captured with the THB-spline approximation. Procedures for adaptive time

stepping, refinement and coarsening of geometry may also be developed to increase

the stability and efficiency of the proposed methodology.
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