260 research outputs found

    Modeling the environment with egocentric vision systems

    Get PDF
    Cada vez más sistemas autónomos, ya sean robots o sistemas de asistencia, están presentes en nuestro día a día. Este tipo de sistemas interactúan y se relacionan con su entorno y para ello necesitan un modelo de dicho entorno. En función de las tareas que deben realizar, la información o el detalle necesario del modelo varía. Desde detallados modelos 3D para sistemas de navegación autónomos, a modelos semánticos que incluyen información importante para el usuario como el tipo de área o qué objetos están presentes. La creación de estos modelos se realiza a través de las lecturas de los distintos sensores disponibles en el sistema. Actualmente, gracias a su pequeño tamaño, bajo precio y la gran información que son capaces de capturar, las cámaras son sensores incluidos en todos los sistemas autónomos. El objetivo de esta tesis es el desarrollar y estudiar nuevos métodos para la creación de modelos del entorno a distintos niveles semánticos y con distintos niveles de precisión. Dos puntos importantes caracterizan el trabajo desarrollado en esta tesis: - El uso de cámaras con punto de vista egocéntrico o en primera persona ya sea en un robot o en un sistema portado por el usuario (wearable). En este tipo de sistemas, las cámaras son solidarias al sistema móvil sobre el que van montadas. En los últimos años han aparecido muchos sistemas de visión wearables, utilizados para multitud de aplicaciones, desde ocio hasta asistencia de personas. - El uso de sistemas de visión omnidireccional, que se distinguen por su gran campo de visión, incluyendo mucha más información en cada imagen que las cámara convencionales. Sin embargo plantean nuevas dificultades debido a distorsiones y modelos de proyección más complejos. Esta tesis estudia distintos tipos de modelos del entorno: - Modelos métricos: el objetivo de estos modelos es crear representaciones detalladas del entorno en las que localizar con precisión el sistema autónomo. Ésta tesis se centra en la adaptación de estos modelos al uso de visión omnidireccional, lo que permite capturar más información en cada imagen y mejorar los resultados en la localización. - Modelos topológicos: estos modelos estructuran el entorno en nodos conectados por arcos. Esta representación tiene menos precisión que la métrica, sin embargo, presenta un nivel de abstracción mayor y puede modelar el entorno con más riqueza. %, por ejemplo incluyendo el tipo de área de cada nodo, la localización de objetos importantes o el tipo de conexión entre los distintos nodos. Esta tesis se centra en la creación de modelos topológicos con información adicional sobre el tipo de área de cada nodo y conexión (pasillo, habitación, puertas, escaleras...). - Modelos semánticos: este trabajo también contribuye en la creación de nuevos modelos semánticos, más enfocados a la creación de modelos para aplicaciones en las que el sistema interactúa o asiste a una persona. Este tipo de modelos representan el entorno a través de conceptos cercanos a los usados por las personas. En particular, esta tesis desarrolla técnicas para obtener y propagar información semántica del entorno en secuencias de imágen

    Interfaz de software Autonavi3at para navegar de forma autónoma en vías urbanas mediante visión omnidireccional y un robot móvil

    Get PDF
    The design of efficient autonomous navigation systems for mobile robots or autonomous vehicles is fundamental to perform the programmed tasks. Basically, two kind of sensors are used in urban road following: LIDAR and cameras. LIDAR sensors are highly accurate but expensive and extra work is needed for human understanding of the point cloud scenes; however, visual content is understood better by human beings, which should be used to develop human-robot interfaces. In this work, a computer vision-based urban road following software tool called AutoNavi3AT for mobile robots and autonomous vehicles is presented. The urban road following scheme proposed in AutoNavi3AT uses vanishing point estimation and tracking on panoramic images to control the mobile robot heading on the urban road. To do that, Gabor filters, region growing, and particle filters were used. In addition, laser range data are also employed for local obstacle avoidance. Quantitative results were achieved using two kind of tests, one uses datasets acquired at the Universidad del Valle campus, and field tests using a Pioneer 3AT mobile robot. As a result, important improvements in the vanishing point estimation of 68.26 % and 61.46 % in average were achieved, which is useful for mobile robots and autonomous vehicles when they are moving on urban roads.El diseño de sistemas de navegación autónomos eficientes para robots móviles o vehículos autónomos es fundamental para realizar las tareas programadas. Básicamente, se utilizan dos tipos de sensores en el seguimiento de vías urbanas: LIDAR y cámaras. Los sensores LIDAR son muy precisos, pero costosos y se necesita trabajo adicional para la comprensión humana de las escenas de nubes de puntos; sin embargo, los seres humanos entienden mejor el contenido visual, lo que debería usarse para desarrollar interfaces humano-robot. En este trabajo, se presenta una herramienta de software de seguimiento de carreteras urbanas basada en visión artificial llamada AutoNavi3AT para robots móviles y vehículos autónomos. El esquema de seguimiento de vías urbanas propuesto en AutoNavi3AT utiliza la estimación del punto de fuga y el seguimiento de imágenes panorámicas para controlar el avance del robot móvil en la vía urbana. Para ello se utilizaron filtros Gabor, crecimiento de regiones y filtros de partículas. Además, los datos de alcance del láser también se emplean para evitar obstáculos locales. Los resultados cuantitativos se lograron utilizando dos tipos de pruebas, una utiliza conjuntos de datos adquiridos en el campus de la Universidad del Valle y pruebas de campo utilizando un robot móvil Pioneer 3AT. Como resultado, se lograron mejoras importantes en la estimación del punto de fuga de 68.26% y 61.46% en promedio, lo cual es útil para robots móviles y vehículos autónomos cuando se desplazan por vías urbanas

    Towards Robust Visual Localization in Challenging Conditions

    Get PDF
    Visual localization is a fundamental problem in computer vision, with a multitude of applications in robotics, augmented reality and structure-from-motion. The basic problem is to, based on one or more images, figure out the position and orientation of the camera which captured these images relative to some model of the environment. Current visual localization approaches typically work well when the images to be localized are captured under similar conditions compared to those captured during mapping. However, when the environment exhibits large changes in visual appearance, due to e.g. variations in weather, seasons, day-night or viewpoint, the traditional pipelines break down. The reason is that the local image features used are based on low-level pixel-intensity information, which is not invariant to these transformations: when the environment changes, this will cause a different set of keypoints to be detected, and their descriptors will be different, making the long-term visual localization problem a challenging one. In this thesis, five papers are included, which present work towards solving the problem of long-term visual localization. Two of the articles present ideas for how semantic information may be included to aid in the localization process: one approach relies only on the semantic information for visual localization, and the other shows how the semantics can be used to detect outlier feature correspondences. The third paper considers how the output from a monocular depth-estimation network can be utilized to extract features that are less sensitive to viewpoint changes. The fourth article is a benchmark paper, where we present three new benchmark datasets aimed at evaluating localization algorithms in the context of long-term visual localization. Lastly, the fifth article considers how to perform convolutions on spherical imagery, which in the future might be applied to learning local image features for the localization problem

    Low-Resolution Vision for Autonomous Mobile Robots

    Get PDF
    The goal of this research is to develop algorithms using low-resolution images to perceive and understand a typical indoor environment and thereby enable a mobile robot to autonomously navigate such an environment. We present techniques for three problems: autonomous exploration, corridor classification, and minimalistic geometric representation of an indoor environment for navigation. First, we present a technique for mobile robot exploration in unknown indoor environments using only a single forward-facing camera. Rather than processing all the data, the method intermittently examines only small 32X24 downsampled grayscale images. We show that for the task of indoor exploration the visual information is highly redundant, allowing successful navigation even using only a small fraction (0.02%) of the available data. The method keeps the robot centered in the corridor by estimating two state parameters: the orientation within the corridor and the distance to the end of the corridor. The orientation is determined by combining the results of five complementary measures, while the estimated distance to the end combines the results of three complementary measures. These measures, which are predominantly information-theoretic, are analyzed independently, and the combined system is tested in several unknown corridor buildings exhibiting a wide variety of appearances, showing the sufficiency of low-resolution visual information for mobile robot exploration. Because the algorithm discards such a large percentage (99.98%) of the information both spatially and temporally, processing occurs at an average of 1000 frames per second, or equivalently takes a small fraction of the CPU. Second, we present an algorithm using image entropy to detect and classify corridor junctions from low resolution images. Because entropy can be used to perceive depth, it can be used to detect an open corridor in a set of images recorded by turning a robot at a junction by 360 degrees. Our algorithm involves detecting peaks from continuously measured entropy values and determining the angular distance between the detected peaks to determine the type of junction that was recorded (either middle, L-junction, T-junction, dead-end, or cross junction). We show that the same algorithm can be used to detect open corridors from both monocular as well as omnidirectional images. Third, we propose a minimalistic corridor representation consisting of the orientation line (center) and the wall-floor boundaries (lateral limit). The representation is extracted from low-resolution images using a novel combination of information theoretic measures and gradient cues. Our study investigates the impact of image resolution upon the accuracy of extracting such a geometry, showing that centerline and wall-floor boundaries can be estimated with reasonable accuracy even in texture-poor environments with low-resolution images. In a database of 7 unique corridor sequences for orientation measurements, less than 2% additional error was observed as the resolution of the image decreased by 99.9%

    An original approach for automatic plane extraction by omnidirectional vision

    Full text link

    Extending the stixel world using polynomial ground manifold approximation

    Get PDF
    Stixel-based segmentation is specifically designed towards obstacle detection which combines road surface estimation in traffic scenes, stixel calculations, and stixel clustering. Stixels are defined by observed height above road surface. Road surfaces (ground manifolds) are represented by using an occupancy grid map. Stixel-based segmentation may improve the accuracy of real-time obstacle detection, especially if adaptive to changes in ground manifolds (e.g. with respect to non-planar road geometry). In this paper, we propose the use of a polynomial curve fitting algorithm based on the v-disparity space for ground manifold estimation. This is beneficial for two reasons. First, the coordinate space has inherently finite boundaries, which is useful when working with probability densities. Second, it leads to reduced computation time. We combine height segmentation and improved ground manifold algorithms together for stixel extraction. Our experimental results show a significant improvement in the accuracy of the ground manifold detection (an 8% improvement) compared to occupancy-grid mapping methods
    corecore