124 research outputs found

    Generalizations of dung frameworks and their role in formal argumentation

    Get PDF
    This article provides a short survey of some of the most popular abstract argumentation frameworks available today. The authors present the general idea of abstract argumentation, highlighting the role of abstract frameworks in the argumentation process, and review the original Dung frameworks and their semantics. A discussion of generalizations of these frameworks follows, focusing on structures taking preferences and values into account and approaches in which not only attack but also support relations can be modeled. Finally, the authors review the concept of abstract dialectical frameworks, one of the most general systems for abstract argumentation providing a flexible, principled representation of arbitrary argument relations

    Labeled bipolar argumentation frameworks

    Get PDF
    An essential part of argumentation-based reasoning is to identify arguments in favor and against a statement or query, select the acceptable ones, and then determine whether or not the original statement should be accepted. We present here an abstract framework that considers two independent forms of argument interaction-support and conflict-and is able to represent distinctive information associated with these arguments. This information can enable additional actions such as: (i) a more in-depth analysis of the relations between the arguments; (ii) a representation of the user's posture to help in focusing the argumentative process, optimizing the values of attributes associated with certain arguments; and (iii) an enhancement of the semantics taking advantage of the availability of richer information about argument acceptability. Thus, the classical semantic definitions are enhanced by analyzing a set of postulates they satisfy. Finally, a polynomial-time algorithm to perform the labeling process is introduced, in which the argument interactions are considered.Fil: Escañuela Gonzalez, Melisa Gisselle. Universidad Nacional de Santiago del Estero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Budan, Maximiliano Celmo David. Universidad Nacional de Santiago del Estero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentin

    Formalising Human Mental Workload as a Defeasible Computational Concept

    Get PDF
    Human mental workload has gained importance, in the last few decades, as a fundamental design concept in human-computer interaction. It can be intuitively defined as the amount of mental work necessary for a person to complete a task over a given period of time. For people interacting with interfaces, computers and technological devices in general, the construct plays an important role. At a low level, while processing information, often people feel annoyed and frustrated; at higher level, mental workload is critical and dangerous as it leads to confusion, it decreases the performance of information processing and it increases the chances of errors and mistakes. It is extensively documented that either mental overload or underload negatively affect performance. Hence, designers and practitioners who are ultimately interested in system or human performance need answers about operator workload at all stages of system design and operation. At an early system design phase, designers require some explicit model to predict the mental workload imposed by their technologies on end-users so that alternative system designs can be evaluated. However, human mental workload is a multifaceted and complex construct mainly applied in cognitive sciences. A plethora of ad-hoc definitions can be found in the literature. Generally, it is not an elementary property, rather it emerges from the interaction between the requirements of a task, the circumstances under which it is performed and the skills, behaviours and perceptions of the operator. Although measuring mental workload has advantages in interaction and interface design, its formalisation as an operational and computational construct has not sufficiently been addressed. Many researchers agree that too many ad-hoc models are present in the literature and that they are applied subjectively by mental workload designers thereby limiting their application in different contexts and making comparison across different models difficult. This thesis introduces a novel computational framework for representing and assessing human mental workload based on defeasible reasoning. The starting point is the investigation of the nature of human mental workload that appears to be a defeasible phenomenon. A defeasible concept is a concept built upon a set of arguments that can be defeated by adding additional arguments. The word ‘defeasible’ is inherited from defeasible reasoning, a form of reasoning built upon reasons that can be defeated. It is also known as non-monotonic reasoning because of the technical property (non-monotonicity) of the logical formalisms that are aimed at modelling defeasible reasoning activity. Here, a conclusion or claim, derived from the application of previous knowledge, can be retracted in the light of new evidence. Formally, state-of-the-art defeasible reasoning models are implemented employing argumentation theory, a multi-disciplinary paradigm that incorporates elements of philosophy, psychology and sociology. It systematically studies how arguments can be built, sustained or discarded in a reasoning process, and it investigates the validity of their conclusions. Since mental workload can be seen as a defeasible phenomenon, formal defeasible argumentation theory may have a positive impact in its representation and assessment. Mental workload can be captured, analysed, and measured in ways that increase its understanding allowing its use for practical activities. The research question investigated here is whether defeasible argumentation theory can enhance the representation of the construct of mental workload and improve the quality of its assessment in the field of human-computer interaction. In order to answer this question, recurrent knowledge and evidence employed in state-of-the-art mental workload measurement techniques have been reviewed in the first place as well as their defeasible and non-monotonic properties. Secondly, an investigation of the state-of-the-art computational techniques for implementing defeasible reasoning has been carried out. This allowed the design of a modular framework for mental workload representation and assessment. The proposed solution has been evaluated by comparing the properties of sensitivity, diagnosticity and validity of the assessments produced by two instances of the framework against the ones produced by two well known subjective mental workload assessments techniques (the Nasa Task Load Index and the Workload Profile) in the context of human-web interaction. In detail, through an empirical user study, it has been firstly demonstrated how these two state-of-the-art techniques can be translated into two particular instances of the framework while still maintaining the same validity. In other words, the indexes of mental workload inferred by the two original instruments, and the ones generated by their corresponding translations (instances of the framework) showed a positive and nearly perfect statistical correlation. Additionally, a new defeasible instance built with the framework showed a better sensitivity and a higher diagnosticity capacity than the two selected state-of-the art techniques. The former showed a higher convergent validity with the latter techniques, but a better concurrent validity with performance measures. The new defeasible instance generated indexes of mental workload that better correlated with the objective time for task completion compared to the two selected instruments. These findings support the research question thereby demonstrating how defeasible argumentation theory can be successfully adopted to support the representation of mental workload and to enhance the quality of its assessments. The main contribution of this thesis is the presentation of a methodology, developed as a formal modular framework, to represent mental workload as a defeasible computational concept and to assess it as a numerical usable index. This research contributes to the body of knowledge by providing a modular framework built upon defeasible reasoning and formalised through argumentation theory in which workload can be optimally measured, analysed, explained and applied in different contexts

    Computational Complexity of Strong Admissibility for Abstract Dialectical Frameworks

    Get PDF
    Abstract dialectical frameworks (ADFs) have been introduced as a formalism for modeling and evaluating argumentation allowing general logical satisfaction conditions. Different criteria used to settle the acceptance of arguments arecalled semantics. Semantics of ADFs have so far mainly been defined based on the concept of admissibility. Recently, the notion of strong admissibility has been introduced for ADFs. In the current work we study the computational complexityof the following reasoning tasks under strong admissibility semantics. We address 1. the credulous/skeptical decision problem; 2. the verification problem; 3. the strong justification problem; and 4. the problem of finding a smallest witness of strong justification of a queried argument

    Integrating ontologies and argumentation for decision-making in breast cancer

    Get PDF
    This thesis describes some of the problems in providing care for patients with breast cancer. These are then used to motivate the development of an extension to an existing theory of argumentation, which I call the Ontology-based Argumentation Formalism (OAF). The work is assessed in both theoretical and empirical ways. From a clinical perspective, there is a problem with the provision of care. Numerous reports have noted the failure to provide uniformly high quality care, as well as the number of deaths caused by medical care. The medical profession has responded in various ways, but one of these has been the development of Decision Support Systems (DSS). The evidence for the effectiveness of such systems is mixed, and the technical basis of such systems remains open to debate. However, one basis that has been used is argumentation. An important aspect of clinical practice is the use of the evidence from clinical trials, but these trials are based on the results in defined groups of patients. Thus when we use the results of clinical trials to reason about treatments, there are two forms of information we are interested in - the evidence from trials and the relationships between groups of patients and treatments. The relational information can be captured in an ontology about the groups of patients and treatments, and the information from the trials captured as a set of defeasible rules. OAF is an extension of an existing argumentation system, and provides the basis for an argumentation-based Knowledge Representation system which could serve as the basis for future DSS. In OAF, the ontology provides a repository of facts, both asserted and inferred on the basis of formulae in the ontology, as well as defining the language of the defeasible rules. The defeasible rules are used in a process of defeasible reasoning, where monotonic consistent chains of reasoning are used to draw plausible conclusions. This defeasible reasoning is used to generate arguments and counter-arguments. Conflict between arguments is defined in terms of inconsistent formulae in the ontology, and by using existing proposals for ontology languages we are able to make use of existing proposals and technologies for ontological reasoning. There are three substantial areas of novel work: I develop an extension to an existing argumentation formalism, and prove some simple properties of the formalism. I also provide a novel formalism of the practical syllogism and related hypothetical reasoning, and compare my approach to two other proposals in the literature. I conclude with a substantial case study based on a breast cancer guideline, and in order to do so I describe a methodology for comparing formal and informal arguments, and use the results of this to discuss the strengths and weaknesses of OAF. In order to develop the case study, I provide a prototype implementation. The prototype uses a novel incremental algorithm to construct arguments and I give soundness, completeness and time-complexity results. The final chapter of the thesis discusses some general lessons from the development of OAF and gives ideas for future work
    corecore