8 research outputs found

    SEGMENTASI TULANG PADA CITRA CT MENGGUNAKAN ACTIVE CONTOUR

    Get PDF
    ABSTRAK Tingginya tingkat kecelakaan lalu lintas dan bencana di Indonesia berakibat pada banyaknya korban yang mengalami kerusakan struktur tulang, patah tulang ataupun keretakan pada tulang. Tindakan rehabilitasi medis bisa dilakukan dengan menggunakan prostesis atau implan. Selama ini ketergantungan terhadap pihak luar sangat tinggi karena sebagian besar prostesis merupakan produk impor, dan harganya cukup mahal. Akibatnya pasien dari kalangan ekonomi rendah merasa terbebani bahkan tidak bisa mendapatkan layanan tersebut. Selain itu, prostesis ini tidak cocok dari segi ukuran karena pasien Indonesia mempunyai dimensi tulang yang berbeda. Oleh karena itu, pembuatan prostesis Indonesia yang dibuat berdasar anatomi dan fisiologi orang Indonesia sangat diperlukan. Untuk mendukung hal tersebut diperlukan data tentang dimensi umum tulang orang Indonesia. Penelitian ini bertujuan untuk mendapatkan dimensi tersebut dengan melakukan segmentasi tulang orang indonesia, kususnya tulang yang mengalami kerusakan. Untuk mendapatkan dimensi sebuah tulang diperlukan proses segmentasi tulang dari citra medis. Masukan proses segmentasi ini adalah citra medis yang berasal dari CT (Computed Tomography), karena struktur tulang yang terlihat pada citra CT lebih jelas. Metode segmentasi yang dipilih adalah metode dari kelompok deformable model/active contour yaitu level set, karena metode ini cocok untuk segmentasi objek bentuk bebas (free-form object). Penelitian dilakukan pada citra CT tulang iliac, sebanyak 90 slice. Untuk menguji kinerja dari metode yang diusulkan, hasil segmentasi level set dibandingkan dengan segmentasi manual, dan diperoleh hasil bahwa dengan menggunakan metode level set, segmentasi yang dihasilkan mempunyai nilai rata-rata sensitifitas 96,806%, akurasi 99,809% dan spesifitas 99,981%. Kata kunci : prostesis, citra CT, active contour, level se

    A region-based algorithm for automatic bone segmentation in volumetric CT

    Get PDF
    In Computed Tomography (CT), bone segmentation is considered an important step to extract bone parameters, which are frequently useful for computer-aided diagnosis, surgery and treatment of many diseases such as osteoporosis. Consequently, the development of accurate and reliable segmentation techniques is essential, since it often provides a great impact on quantitative image analysis and diagnosis outcome. This chapter presents an automated multistep approach for bone segmentation in volumetric CT datasets. It starts with a three-dimensional (3D) watershed operation on an image gradient magnitude. The outcome of the watershed algorithm is an over-partioning image of many 3D regions that can be merged, yielding a meaningful image partitioning. In order to reduce the number of regions, a merging procedure was performed that merges neighbouring regions presenting a mean intensity distribution difference of ±15%. Finally, once all bones have been distinguished in high contrast, the final 3D bone segmentation was achieved by selecting all regions with bone fragments, using the information retrieved by a threshold mask. The bones contours were accurately defined according to the watershed regions outlines instead of considering the thresholding segmentation result. This new method was tested to segment the rib cage on 185 CT images, acquired at the São João Hospital of Porto (Portugal) and evaluated using the dice similarity coefficient as a statistical validation metric, leading to a coefficient mean score of 0.89. This could represent a step forward towards accurate and automatic quantitative analysis in clinical environments and decreasing time-consumption, user dependence and subjectivity.The authors acknowledge to Foundation for Science and Technology (FCT) - Portugal for the fellowships with the references: SFRH/BD/74276/2010; SFRH/BD/68270/2010; and, SFRH/BPD/46851/2008. This work was also supported by FCT R&D project PTDC/SAU-BEB/103368/2008

    Fast and accurate computation of the Euclidean distance transform in medical imaging analysis software

    Get PDF
    Se implementó una aplicación utilizando el lenguaje de programación Phyton y las librerías ITK y VTK para un cálculo rápido y preciso de la transformada Euclidiana de distancia. Se compararon dos algoritmos, el propuesto por Saitho y el algoritmo de Danielsson en la versión four-points Sequencial Euclidean distance (4SED). Se evaluó la precisión y la velocidad computacional de ambos algoritmos, encontrando que la versión propuesta por Saitho es más rápida. Se implementó una aplicación de software para el cálculo de la transformada Euclidiana de distancia, incluyendo herramientas para la segmentacion de imágenes de micro-CT de estructuras óseas. A futuro esta aplicación puede ser usada en conjunto con otros software para análisis de imágenes en el procesamiento de estructuras oseasFast and accurate computation of the Euclidean distance map transformation is presented using the python programming language in conjunction with the vtk and itk toolkits. Two algorithms are compared on the basis of their efficiency and computational speed; Saitho algorithm and Danielsson’s four-points Sequential Euclidean Distance (4SED). An algorithm is used to compute a scalar distance map from a 3D data set or volume, which can be used to extract specific distance values. The performance time for the Saitho computation speed was less than the Danielsson’s 4SED computation allowing a faster calculation of the Euclidean distance map. A software analysis application was implemented using the Saitho algorithm for the computation of the scalar distance maps; it also included an underlying segmentation method to allow the computation of Euclidean distance maps on micro-CT images of segmented bone structures. In the future, this application could be used in conjunction with other image processing software applications of bone analysi

    Progressive collapsing foot deformity: how to use new knowledge in developing countries

    Get PDF
    The 2019 progressive collapsing foot deformity (PCFD) consensus did not only change the disease nomenclature and provided a new classification for the condition formerly known as flatfoot deformity. It was also the pinnacle of a revolution in the field in terms of knowledge and clinical perspectives. The use of advanced imaging, such as weight-bearing computed tomography, three-dimensional algorithms, and magnetic resonance, expanded the way we understand peritalar subluxation and how we can address it. However, much of these improvements felt short in terms of global reproducibility due to economic restraints. The objective of this review study is to present PCFD new concepts through the lens and realities of developing countries, considering their potentially limited access to novel technologies. Level of Evidence V; Expert opinion

    Biomechanical importance of proximal human femur morphology and mechanics in orthopaedic purposes

    Get PDF
    Bone morphology is essential in orthopedic surgery to perform precise preoperative planning and surgery as well as to appropriately design optimal medical implants. In this study we provided a database of surgically important morphological parameters of proximal human femur for orthopedic and biomedical research purposes (study 1), indicated accuracy of the 3D reconstructed images in comparison with the optical 3D scan of real human femur (study 2), and reported the accuracy and reliability of the developed image-based finite element model in comparison with the experimental results (study 3)

    Analysis, Segmentation and Prediction of Knee Cartilage using Statistical Shape Models

    Get PDF
    Osteoarthritis (OA) of the knee is one of the leading causes of chronic disability (along with the hip). Due to rising healthcare costs associated with OA, it is important to fully understand the disease and how it progresses in the knee. One symptom of knee OA is the degeneration of cartilage in the articulating knee. The cartilage pad plays a major role in painting the biomechanical picture of the knee. This work attempts to quantify the cartilage thickness of healthy male and female knees using statistical shape models (SSMs) for a deep knee bend activity. Additionally, novel cartilage segmentation from magnetic resonance imaging (MRI) and estimation algorithms from computer tomography (CT) or x-rays are proposed to facilitate the efficient development and accurate analysis of future treatments related to the knee. Cartilage morphology results suggest distinct patterns of wear in varus, valgus, and neutral degenerative knees, and examination of contact regions during the deep knee bend activity further emphasizes these patterns. Segmentation results were achieved that were comparable if not of higher quality than existing state-of-the-art techniques for both femoral and tibial cartilage. Likewise, using the point correspondence properties of SSMs, estimation of articulating cartilage was effective in healthy and degenerative knees. In conclusion, this work provides novel, clinically relevant morphological data to compute segmentation and estimate new data in such a way to potentially contribute to improving results and efficiency in evaluation of the femorotibial cartilage layer

    Fusion and Analysis of Multidimensional Medical Image Data

    Get PDF
    Analýza medicínských obrazů je předmětem základního výzkumu již řadu let. Za tu dobu bylo v této oblasti publikováno mnoho výzkumných prací zabývajících se dílčími částmi jako je rekonstrukce obrazů, restaurace, segmentace, klasifikace, registrace (lícování) a fúze. Kromě obecného úvodu, pojednává tato disertační práce o dvou medicínsky orientovaných tématech, jež byla formulována ve spolupráci s Philips Netherland BV, divizí Philips Healthcare. První téma je zaměřeno na oblast zpracování obrazů subtrakční angiografie dolních končetin člověka získaných pomocí výpočetní X-Ray tomografie (CT). Subtrakční angiografie je obvykle využívaná při podezření na periferní cévní onemocnění (PAOD) nebo při akutním poškození dolních končetin jako jsou fraktury apod. Současné komerční metody nejsou dostatečně spolehlivé už v předzpracování, jako je například odstranění pacientského stolu, pokrývky, dlahy, apod. Spolehlivost a přesnost identifikace cév v subtrahovaných datech vedoucích v blízkosti kostí je v důsledku Partial Volume artefaktu rovněž nízká. Automatické odstranění kalcifikací nebo detekce malých cév doplňujících nezbytnou informaci o náhradním zásobení dolních končetin krví v případě přerušení hlavních zásobujících cév v současné době rovněž nesplňují kritéria pro plně automatické zpracování. Proto hlavním cílem týkající se tohoto tématu bylo vyvinout automatický systém, který by mohl současné nedostatky v CTSA vyšetření odstranit. Druhé téma je orientováno na identifikaci patologických změn na páteři člověka v CT obrazech se zaměřením na osteolytické a osteoblastické léze u jednotlivých obratlů. Tyto změny obvykle nastávají v důsledků postižení metastazujícím procesem rakovinového onemocnění. Pro detekci patologických změn je pak potřeba identifikace a segmentace jednotlivých obratlů. Přesnost analýzy jednotlivých lézí však závisí rovněž na správné identifikaci těla a zadních segmentů u jednotlivých obratlů a na segmentaci trabekulárního centra obratlů, tj. odstranění kortikální kosti. Během léčby mohou být pacienti skenováni vícekrát, obvykle s několika-mesíčním odstupem. Hodnocení případného vývoje již detekovaných patologických změn pak logicky vychází ze správné detekce patologií v jednotlivých obratlech korespondujících si v jednotlivých akvizicích. Jelikož jsou příslušné obratle v jednotlivých akvizicích obvykle na různé pozici, jejich fúze, vedoucí k analýze časového vývoje detekovaných patologií, je komplikovaná. Požadovaným výsledkem v tomto tématu je vytvoření komplexního systému pro detekci patologických změn v páteři, především osteoblastických a osteolytických lézí. Takový systém tedy musí umožnovat jak segmentaci jednotlivých obratlů, jejich automatické rozdělení na hlavní části a odstranění kortikální kosti, tak také detekci patologických změn a jejich hodnocení. Ačkoliv je tato disertační práce v obou výše zmíněných tématech primárně zaměřena na experimentální část zpracování medicínských obrazů, zabývá se všemi nezbytnými kroky, jako je předzpracování, registrace, dodatečné zpracování a hodnocení výsledků, vedoucími k možné aplikovatelnosti obou systému v klinické praxi. Jelikož oba systémy byly řešeny v rámci týmové spolupráce jako celek, u obou témat jsou pro některé konkrétní kroky uvedeny odkazy na doktorskou práci Miloše Malínského.Analysis of medical images has been subject of basic research for many years. Many research papers have been published in the field related to image analysis and focused on partial aspects such as reconstruction, restoration, segmentation and classification, registration (spatial alignment) and fusion. Besides the introduction of related general concepts used in medical image processing, this thesis deals with two specific medical problems formulated in cooperation with Philips Netherland BV, Philips Healthcare division. The first topic is focused on subtraction angiography in patients’ lower legs utilizing image data from X-Ray computed tomography (CT). CT subtraction angiography (CTSA) is typically used for indication of the Peripheral Artery Occlusive Disease (PAOD) and for examination of acute injuries of lower legs such as acute fractures, etc. Current methods in clinical praxis are not sufficient regarding the pre-processing such as masking of patient desk, cover, splint, etc. The subtraction of blood vessels adjacent to neighboring bones in lower legs is of low accuracy due to the Partial Volume artifact. Masking of calcifications and detection of tiny blood vessels complementing necessary information about the alternative blood supply in lower legs in case of obstruction in main arteries is also not reliable for fully automated process presently. Therefore, the main aim regarding this topic was to develop an automated framework that could overcome current shortcomings in CTSA examination. The second topic is oriented on the identification and evaluation of pathologic changes in human spine, focusing on osteolytic and osteoblastic lesions in individual vertebrae in CT images. Such changes occur typically as a consequence of metastasizing process of cancerous disease. For the detection of pathologic changes, an identification and segmentation of individual vertebrae is necessary. Moreover, the analysis of individual lesions in vertebrae depends also on correct identification of vertebral body and posterior segments of each vertebra, and on segmentation of their trabecular centers. Patients are typically examined more than once during their therapy. Then, the evaluation of possible tumorous progression is based on accurate detection of pathologies in individual vertebrae in the base-line and corresponding follow-up images. Since the corresponding vertebrae are in mutually different positions in the follow-up images, their fusion leading to the analysis of the lesion progression is complicated. The main aim regarding this topic is to develop a complex framework for detection of pathologic lesions on spine, with the main focus on osteoblastic and osteolystic lesions. Such system has to provide not only reliable segmentation of individual vertebrae and detection of their main regions but also the masking of their cortical bone, detection of their pathologic changes and their evaluation. Although this dissertation thesis is primarily oriented at the experimental part of medical image processing considering both the above mentioned topics, it deals with all necessary processing steps, i.e. preprocessing, image registration, post-processing and evaluation of results, leading to the future use of both frameworks in clinical practice. Since both frameworks were developed in a team, there are some chapters referring to the dissertation thesis of Milos Malinsky.
    corecore