131 research outputs found

    An Efficient Algorithm for Maximum Boolean Satisfiability Based on Unit Propagation, Linear Programming, and Dynamic Weighting

    Get PDF
    Maximum Boolean satisfiability (max-SAT) is the optimization counterpart of Boolean satisfiability (SAT), in which a variable assignment is sought to satisfy the maximum number of clauses in a logical formula. A branch-and-bound algorithm based on the Davis-Putnam-Logemann-Loveland procedure (DPLL) is one of the most efficient complete algorithms for solving max-SAT. In this paper, We propose and investigate a number of new strategies for max-SAT. Our first strategy is a set of unit propagation rules for max-SAT. As unit propaga-tion is a very efficient strategy for SAT, we show that it can be extended to max-SAT, and can greatly improve the performance of an extended DPLL-based algorithm. Our second strategy is an effective lookahead heuristic based on linear programming. We show that the LP heuristic can be made effective as the number of clauses increases. Our third strategy is a dynamic-weight variable ordering, which is based on a thorough analysis of two well-known existing branching rules. Based on the analysis of these strategies, we develop an integrated, constrainedness-sensitive max-SAT solver that is able to dynamically adjust strategies ac-cording to problem characteristics. Our experimental results on random max-SAT and some instances from the SATLIB show that our new solver outperforms most of the existing com-plete max-SAT solvers, with orders of magnitude of improvement in many cases

    Multi-objective optimization in graphical models

    Get PDF
    Many real-life optimization problems are combinatorial, i.e. they concern a choice of the best solution from a finite but exponentially large set of alternatives. Besides, the solution quality of many of these problems can often be evaluated from several points of view (a.k.a. criteria). In that case, each criterion may be described by a different objective function. Some important and well-known multicriteria scenarios are: · In investment optimization one wants to minimize risk and maximize benefits. · In travel scheduling one wants to minimize time and cost. · In circuit design one wants to minimize circuit area, energy consumption and maximize speed. · In knapsack problems one wants to minimize load weight and/or volume and maximize its economical value. The previous examples illustrate that, in many cases, these multiple criteria are incommensurate (i.e., it is difficult or impossible to combine them into a single criterion) and conflicting (i.e., solutions that are good with respect one criterion are likely to be bad with respect to another). Taking into account simultaneously the different criteria is not trivial and several notions of optimality have been proposed. Independently of the chosen notion of optimality, computing optimal solutions represents an important current research challenge. Graphical models are a knowledge representation tool widely used in the Artificial Intelligence field. They seem to be specially suitable for combinatorial problems. Roughly, graphical models are graphs in which nodes represent variables and the (lack of) arcs represent conditional independence assumptions. In addition to the graph structure, it is necessary to specify its micro-structure which tells how particular combinations of instantiations of interdependent variables interact. The graphical model framework provides a unifying way to model a broad spectrum of systems and a collection of general algorithms to efficiently solve them. In this Thesis we integrate multi-objective optimization problems into the graphical model paradigm and study how algorithmic techniques developed in the graphical model context can be extended to multi-objective optimization problems. As we show, multiobjective optimization problems can be formalized as a particular case of graphical models using the semiring-based framework. It is, to the best of our knowledge, the first time that graphical models in general, and semiring-based problems in particular are used to model an optimization problem in which the objective function is partially ordered. Moreover, we show that most of the solving techniques for mono-objective optimization problems can be naturally extended to the multi-objective context. The result of our work is the mathematical formalization of multi-objective optimization problems and the development of a set of multiobjective solving algorithms that have been proved to be efficient in a number of benchmarks.Muchos problemas reales de optimización son combinatorios, es decir, requieren de la elección de la mejor solución (o solución óptima) dentro de un conjunto finito pero exponencialmente grande de alternativas. Además, la mejor solución de muchos de estos problemas es, a menudo, evaluada desde varios puntos de vista (también llamados criterios). Es este caso, cada criterio puede ser descrito por una función objetivo. Algunos escenarios multi-objetivo importantes y bien conocidos son los siguientes: · En optimización de inversiones se pretende minimizar los riesgos y maximizar los beneficios. · En la programación de viajes se quiere reducir el tiempo de viaje y los costes. · En el diseño de circuitos se quiere reducir al mínimo la zona ocupada del circuito, el consumo de energía y maximizar la velocidad. · En los problemas de la mochila se quiere minimizar el peso de la carga y/o el volumen y maximizar su valor económico. Los ejemplos anteriores muestran que, en muchos casos, estos criterios son inconmensurables (es decir, es difícil o imposible combinar todos ellos en un único criterio) y están en conflicto (es decir, soluciones que son buenas con respecto a un criterio es probable que sean malas con respecto a otra). Tener en cuenta de forma simultánea todos estos criterios no es trivial y para ello se han propuesto diferentes nociones de optimalidad. Independientemente del concepto de optimalidad elegido, el cómputo de soluciones óptimas representa un importante desafío para la investigación actual. Los modelos gráficos son una herramienta para la represetanción del conocimiento ampliamente utilizados en el campo de la Inteligencia Artificial que parecen especialmente indicados en problemas combinatorios. A grandes rasgos, los modelos gráficos son grafos en los que los nodos representan variables y la (falta de) arcos representa la interdepencia entre variables. Además de la estructura gráfica, es necesario especificar su (micro-estructura) que indica cómo interactúan instanciaciones concretas de variables interdependientes. Los modelos gráficos proporcionan un marco capaz de unificar el modelado de un espectro amplio de sistemas y un conjunto de algoritmos generales capaces de resolverlos eficientemente. En esta tesis integramos problemas de optimización multi-objetivo en el contexto de los modelos gráficos y estudiamos cómo diversas técnicas algorítmicas desarrolladas dentro del marco de los modelos gráficos se pueden extender a problemas de optimización multi-objetivo. Como mostramos, este tipo de problemas se pueden formalizar como un caso particular de modelo gráfico usando el paradigma basado en semi-anillos (SCSP). Desde nuestro conocimiento, ésta es la primera vez que los modelos gráficos en general, y el paradigma basado en semi-anillos en particular, se usan para modelar un problema de optimización cuya función objetivo está parcialmente ordenada. Además, mostramos que la mayoría de técnicas para resolver problemas monoobjetivo se pueden extender de forma natural al contexto multi-objetivo. El resultado de nuestro trabajo es la formalización matemática de problemas de optimización multi-objetivo y el desarrollo de un conjunto de algoritmos capaces de resolver este tipo de problemas. Además, demostramos que estos algoritmos son eficientes en un conjunto determinado de benchmarks

    On Amplify-and-Forward Relaying Over Hyper-Rayleigh Fading Channels

    Get PDF
    Relayed transmission holds promise for the next generation of wireless communication systems due to the performance gains it can provide over non-cooperative systems. Recently hyper-Rayleigh fading, which represents fading conditions more severe than Rayleigh fading, has received attention in the context of many practical communication scenarios. Though power allocation for Amplify-and-Forward (AF) relaying networks has been studied in the literature, a theoretical analysis of the power allocation problem for hyper-Rayleigh fading channels is a novel contribution of this work. We develop an optimal power allocation (OPA) strategy for a dual-hop AF relaying network in which the relay-destination link experiences hyper-Rayleigh fading. A new closed-form expression for the average signal-to-noise ratio (SNR) at destination is derived and it is shown to provide a new upper-bound on the average SNR at destination, which outperforms a previously proposed upper-bound based on the well-known harmonic-geometric mean inequality. An OPA across the source and relay nodes, subject to a sum-power constraint, is proposed and it is shown to provide measurable performance gains in average SNR and SNR outage at the destination relative to the case of equal power allocation

    Mathematical methods for valuation and risk assessment of investment projects and real options

    Get PDF
    In this thesis, we study the problems of risk measurement, valuation and hedging of financial positions in incomplete markets when an insufficient number of assets are available for investment (real options). We work closely with three measures of risk: Worst-Case Scenario (WCS) (the supremum of expected values over a set of given probability measures), Value-at-Risk (VaR) and Average Value-at-Risk (AVaR), and analyse the problem of hedging derivative securities depending on a non-traded asset, defined in terms of the risk measures via their acceptance sets. The hedging problem associated to VaR is the problem of minimising the expected shortfall. For WCS, the hedging problem turns out to be a robust version of minimising the expected shortfall; and as AVaR can be seen as a particular case of WCS, its hedging problem is also related to the minimisation of expected shortfall. Under some sufficient conditions, we solve explicitly the minimal expected shortfall problem in a discrete-time setting of two assets driven by correlated binomial models. In the continuous-time case, we analyse the problem of measuring risk by WCS, VaR and AVaR on positions modelled as Markov diffusion processes and develop some results on transformations of Markov processes to apply to the risk measurement of derivative securities. In all cases, we characterise the risk of a position as the solution of a partial differential equation of second order with boundary conditions. In relation to the valuation and hedging of derivative securities, and in the search for explicit solutions, we analyse a variant of the robust version of the expected shortfall hedging problem. Instead of taking the loss function l(x)=[x]+l(x) = [x]^+ we work with the strictly increasing, strictly convex function Lϵ(x)=ϵlog(1+exp{x/ϵ}exp{x/ϵ})L_{\epsilon}(x) = \epsilon \log \left( \frac{1+exp\{−x/\epsilon\} }{ exp\{−x/\epsilon\} } \right). Clearly limϵ0Lϵ(x)=l(x)lim_{\epsilon \rightarrow 0} L_{\epsilon}(x) = l(x). The reformulation to the problem for L_{\epsilon}(x) also allow us to use directly the dual theory under robust preferences recently developed in [82]. Due to the fact that the function Lϵ(x)L_{\epsilon}(x) is not separable in its variables, we are not able to solve explicitly, but instead, we use a power series approximation in the dual variables. It turns out that the approximated solution corresponds to the robust version of a utility maximisation problem with exponential preferences (U(x)=1γeγx)(U(x) = −\frac{1}{\gamma}e^{-\gamma x}) for a preferenes parameter γ=1/ϵ\gamma = 1/\epsilon. For the approximated problem, we analyse the cases with and without random endowment, and obtain an expression for the utility indifference bid price of a derivative security which depends only on the non-traded asset

    Exact methods for Bayesian network structure learning and cost function networks

    Get PDF
    Les modèles graphiques discrets représentent des fonctions jointes sur de grands ensembles de variables en tant qu'une combinaison de fonctions plus petites. Il existe plusieurs instanciations de modèles graphiques, notamment des modèles probabilistes et dirigés comme les réseaux Bayésiens, ou des modèles déterministes et non-dirigés comme les réseaux de fonctions de coûts. Des requêtes comme trouver l'explication la plus probable (MPE) sur un réseau Bayésiens, et son équivalent, trouver une solution de coût minimum sur un réseau de fonctions de coût, sont toutes les deux des tâches d’optimisation combinatoire NP-difficiles. Il existe cependant des techniques de résolution robustes qui ont une large gamme de domaines d'applications, notamment les réseaux de régulation de gènes, l'analyse de risques et le traitement des images. Dans ce travail, nous contribuons à l'état de l'art de l'apprentissage de la structure des réseaux Bayésiens (BNSL), et répondons à des requêtes de MPE et de minimisation des coûts sur les réseaux Bayésiens et les réseaux de fonctions de coûts. Pour le BNSL, nous découvrons un nouveau point dans l'espace de conception des algorithmes de recherche qui atteint un compromis différent entre la qualité et la vitesse de l'inférence. Les algorithmes existants optent soit pour la qualité maximale de l'inférence en utilisant la programmation linéaire en nombres entiers (PLNE) et la séparation et évaluation, soit pour la vitesse de l'inférence en utilisant la programmation par contraintes (PPC). Nous définissons des propriétés d'une classe spéciale d'inégalités, qui sont appelées "les inégalités de cluster" et qui mènent à un algorithme avec une qualité d'inférence beaucoup plus puissante que celle basée sur la PPC, et beaucoup plus rapide que celle basée sur la PLNE. Nous combinons cet algorithme avec des idées originales pour une propagation renforcée ainsi qu'une représentation de domaines plus compacte, afin d'obtenir des performances dépassant l'état de l'art dans le solveur open source ELSA (Exact Learning of bayesian network Structure using Acyclicity reasoning). Pour les réseaux de fonctions de coûts, nous identifions une faiblesse dans l'utilisation de la relaxation continue dans une classe spécifique de solveurs, y compris le solveur primé "ToulBar2". Nous prouvons que cette faiblesse peut entraîner des décisions de branchement sous-optimales et montrons comment détecter un ensemble maximal de telles décisions qui peuvent ensuite être évitées par le solveur. Cela permet à ToulBar2 de résoudre des problèmes qui étaient auparavant solvables uniquement par des algorithmes hybrides.Discrete Graphical Models (GMs) represent joint functions over large sets of discrete variables as a combination of smaller functions. There exist several instantiations of GMs, including directed probabilistic GMs like Bayesian Networks (BNs) and undirected deterministic models like Cost Function Networks (CFNs). Queries like Most Probable Explanation (MPE) on BNs and its equivalent on CFNs, which is cost minimisation, are NP-hard, but there exist robust solving techniques which have found a wide range of applications in fields such as bioinformatics, image processing, and risk analysis. In this thesis, we make contributions to the state of the art in learning the structure of BNs, namely the Bayesian Network Structure Learning problem (BNSL), and answering MPE and minimisation queries on BNs and CFNs. For BNSL, we discover a new point in the design space of search algorithms, which achieves a different trade-off between inference strength and speed of inference. Existing algorithms for it opt for either maximal strength of inference, like the algorithms based on Integer Programming (IP) and branch-and-cut, or maximal speed of inference, like the algorithms based on Constraint Programming (CP). We specify properties of a specific class of inequalities, called cluster inequalities, which lead to an algorithm that performs much stronger inference than that based on CP, much faster than that based on IP. We combine this with novel ideas for stronger propagation and more compact domain representations to achieve state-of-the-art performance in the open-source solver ELSA (Exact Learning of bayesian network Structure using Acyclicity reasoning). For CFNs, we identify a weakness in the use of linear programming relaxations by a specific class of solvers, which includes the award-winning open-source ToulBar2 solver. We prove that this weakness can lead to suboptimal branching decisions and show how to detect maximal sets of such decisions, which can then be avoided by the solver. This allows ToulBar2 to tackle problems previously solvable only by hybrid algorithms
    corecore