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Abstract

Many real-life optimization problems are combinatorial, i.e. they concern

a choice of the best solution from a finite but exponentially large set of

alternatives. Besides, the solution quality of many of these problems can

often be evaluated from several points of view (a.k.a. criteria). In that

case, each criterion may be described by a different objective function. Some

important and well-known multicriteria scenarios are:

• In investment optimization one wants to minimize risk and maximize

benefits.

• In travel scheduling one wants to minimize time and cost.

• In circuit design one wants to minimize circuit area, energy consump-

tion and maximize speed.

• In knapsack problems one wants to minimize load weight and/or volume

and maximize its economical value.

The previous examples illustrate that, in many cases, these multiple cri-

teria are incommensurate (i.e., it is difficult or impossible to combine them

into a single criterion) and conflicting (i.e., solutions that are good with re-

spect one criterion are likely to be bad with respect to another). Taking into

account simultaneously the different criteria is not trivial and several no-

tions of optimality have been proposed. Independently of the chosen notion

of optimality, computing optimal solutions represents an important current

research challenge [41].
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Graphical models are a knowledge representation tool widely used in the

Artificial Intelligence field. They seem to be specially suitable for combi-

natorial problems. Roughly, graphical models are graphs in which nodes

represent variables and the (lack of) arcs represent conditional independence

assumptions. In addition to the graph structure, it is necessary to specify its

micro-structure which tells how particular combinations of instantiations of

interdependent variables interact. The graphical model framework provides

a unifying way to model a broad spectrum of systems and a collection of

general algorithms to efficiently solve them.

In this Thesis we integrate multi-objective optimization problems into the

graphical model paradigm and study how algorithmic techniques developed in

the graphical model context can be extended to multi-objective optimization

problems. As we show, multi-objective optimization problems can be for-

malized as a particular case of graphical models using the semiring-based

framework [17]. It is, to the best of our knowledge, the first time that

graphical models in general, and semiring-based problems in particular are

used to model an optimization problem in which the objective function is

partially ordered. Moreover, we show that most of the solving techniques

for mono-objective optimization problems can be naturally extended to the

multi-objective context. The result of our work is the mathematical formal-

ization of multi-objective optimization problems and the development of a

set of multiobjective solving algorithms that have been proved to be efficient

in a number of benchmarks.



Chapter 1

Introduction

1.1 Motivation

Graphical models [35, 111, 148, 71, 29] provide a common formalism to de-

scribe a wide range of systems. Graphical models have been adopted in a

wide variety of application areas, including genetics [46, 93], error-correcting

codes [102], speech processing [116], image analysis [49, 9, 142], computational

biology [130, 117], scheduling [12] and electronic commerce [78].

A graphical model consists on a set of variables, a finite set of domain

values, and a set of functions. The variables represent the objects or items

that can undertake different domain values. The set of possible domain val-

ues that each variable can take is its domain. Finally, the set of functions

associate valuations to the different possible variable assignments. The val-

uation tells how good or bad the assignment is from a local perspective.

Valuations may represent preferences, priorities, costs or probabilities among

assignments. Different instantiations of the graphical model framework differ

in the meaning of the valuations, the way valuations are combined in order

to get a global view, and the type of queries asked to the model [17].

Many important formalisms fall into the category of graphical models.

The conceptually simplest case is constraint networks [96] which formalize

real world deterministic problems, such as scheduling, timetabling, proposi-

1



2 CHAPTER 1. INTRODUCTION

tional reasoning, etc. Functions in constraint networks are called constraints

and return a boolean value. Value true means that the assignment is permit-

ted and false means that it is forbidden. In other words, constraints impose

limitations on the domain values that a given set of variables can take. So-

lutions are assignments of domain values to variables respecting the problem

constraints. The common task over constraint networks, called constraint

satisfaction problem (CSP), is to find a solution, or to prove that there is

none. Many research has been devoted to constraint satisfaction in the last

three decades. In particular, Constraint Programming is a research field

whose main goal is the development of languages and algorithms to model

and solve problems that can be expressed as CSPs [35, 126].

Another important instantiation of the graphical model framework are

cost networks [35]. Functions in cost networks return a number which indi-

cates how good a partial assignment is. They are able to model many real

world mono-objective optimization problems. The most common task over

cost networks, called weighted constraint satisfaction problem (WCSP), is to

find an optimal (i.e., maximal or minimal) solution.

Although mono-objective optimization is an extremely important class

of problems, many important real world optimization problems are multi-

objective. They involve multiple, conflicting, and non commensurate objec-

tives. The simultaneous optimization of different measures differ with the

single measure optimization in that there does not exist an unique perfect

solution, but a set of incomparable ones. Multi-objective optimization is a

well-established research field in Mathematical Programming. However, we

observed that very little work has been done in the context of Artificial In-

telligence. The repeated identification of multi-objective problems and the

lack of specific solving techniques from Artificial Intelligence in general and

graphical models in particular, led us to explore multi-objective optimization

problems in the graphical model context. To the best of our knowledge, this

is a novel approach.

The common view given by the graphical model framework has many
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advantages. In particular, specialized techniques that have been developed

for one type of graphical model can be transferred to another. This Thesis is

built upon previous work on cost networks. Our work is concerned with the

development of efficient algorithms for multi-objective optimization. The

central idea of this Thesis is to model multi-objective optimization tasks

within the graphical model framework and extend previous mono-objective

techniques to the multi-objective case. Our study takes into account the

two main solving techniques: systematic search and complete inference. In

addition, we consider lower bounding methods that compute quasi-optimal

solutions. Such methods play a fundamental role in combination with search

because they can be used to prune regions of the search space.

1.2 Scope and Orientation

The boundaries of this work are established by the following decision:

• Additive objective functions. With the exception of Chapter 4, we re-

strict our work to problems with all objective functions being additive.

An objective function is additive if it has the form F (X ) =
∑

i fi(Xi),

where X is the set of variables and Xi ⊆ X is the scope of function

fi. It is important to remark that this type of objective functions are

very general and include many significant applications. Moreover, it

is worth noting that many ideas developed for additive objective func-

tions can be directly used in other types of objective functions (e.g.,

F (X ) = maxi{fi(Xi)} or F (X ) =
∏

i fi(Xi)).

• Optimization as minimization. We assume optimization as minimiza-

tion. This decision is done without loss of generality, as the maxi-

mization of any measure can be expressed as the minimization of its

complementary.

• Pareto optimality. The simultaneous optimization of multiple objec-

tives deviates from single objective optimization in that it does not
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admit a single, optimal solution. The study of notions of optimality

that are both simple and practical is very important. In this work,

we adopt the very general notion of pareto-optimality which is char-

acterized by a family of solutions which must be considered equivalent

in the absence of information concerning the relevance of each objec-

tive relative to the others. These solutions are optimal in the wider

sense that no other solutions in the space of possibilities are superior

to them when all objectives are considered. It is important to note

that although the number of pareto optimal solutions can be exponen-

tially large, in practice many problems have a relatively small number

of pareto-optimal solutions.

• General-purpose algorithms. In our work we only develop general pur-

pose techniques. We do not make any assumption about the problems

that we attempt to solve. In practice, it means that our algorithms

takes the problem in its implicit way, and cannot take advantage of its

peculiarities. For this reason, our methods are expected to be appli-

cable to a broad spectrum of domains. It is clear that dedicated algo-

rithms may perform better in their specific domains. However, general

algorithms are a reasonable first step toward more efficient specialized

algorithms.

• Local search methods. In our work we disregard local search meth-

ods. They are approximation methods based on search. Local search

methods have recently become very popular because they work ex-

tremely well in some problem. In particular, genetic algorithms have

been widely studied in the multi-objective optimization context. We

restrict ourselves to the less studied exact methods.

• Empirical evaluation. Most of the algorithms that we present have

an exponential worst-case behaviour. However, it is well known that

some particular instances may be easy for these algorithms. Therefore,

we assess the efficiency of each new algorithm empirically. We run all
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the experiments in a Pentium IV at 3 GHz. with 2 Gb. of memory,

over linux. The final objective of our work is to contribute to the

development of algorithms that can actually be applied in real domains.

In that sense, every idea that we explore has immediate algorithmic

implications that we motivate and develop. Therefore, the end-product

of our contributions are specific algorithms that have been implemented

and can be tested on any graphical model problem.

We also want to say upfront that it is not our goal to outperform

Mathematical Programming techniques. It would be unrealistic and

way too ambitious to expect to improve several decades of previous

research. Our only goal is to provide the foundations of a fresh point

of view to multi-objective optimization.

• Benchmarks. In our empirical evaluation, we use an heterogeneous set

of benchmarks composed by both academic (i.e., random) and real-

world inspired problems. The ciclicity of the graph representation of

these instances covers all degrees, from very low (almost a tree) to very

high (almost a clique). As we will see, the degree of ciclicity of each

instance will determine the a priori more suitable algorithm for solving

it. Finally, all our benchmarks are bi-objective. This decision is made

without loss of generality and for simplicity reasons. It is important

to note that, in general, real-world problems will not have more than

three or four objectives.

1.3 Contributions

1.3.1 Algebraic Formalization of Multi-objective Prob-

lems

The Semiring CSP (SCSP) framework [18] axiomatically describes reasoning

tasks on graphical models. Its main goal is to capture many optimization
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problems in a common formal framework. Then, algorithmic techniques can

also be described within the SCSP framework. As a result, any new problem

expressed as a SCSP immediately inherits the techniques developed for the

framework.

It is well-known that SCSPs capture the most important mono-objective

problems such as CSP, fuzzy CSP, weighted CSP, etc. Moreover, it has

been claimed that the SCSP framework is able to model problems where the

measure to be optimized is partially ordered. Arguably, the most frequent

case of such problems is multi-objective optimization. Up to now, there is

no completely satisfactory formalization of pareto-optimality optimization

within the SCSP framework.

Our first contribution is the formalization of multi-objective problems as

particular instances of the SCSP framework. In particular, we show how to

build from a partially ordered semiring K a new semiring L(K) such that the

result of the corresponding optimization task is the set of incomparable costs

associated with each optimal assignment in K. This formalization is pivotal

to our work and it is used through the rest of the dissertation.

1.3.2 Multi-objective Branch-and-Bound Search

Depth-First Branch-and-Bound (DF-BB) [106] is a well-known systematic

search algorithm widely used for mono-objective optimization tasks. It tra-

verses depth-first a tree where each node is associated with a partial assign-

ment. In each step, the algorithm guesses which is the next variable and the

next domain value to assign. If the guess does not succeed, the algorithm

undoes the assignment (i.e., prunes the current subtree) and tries a different

one. Else, it proceeds recursively. During the search, the algorithm keeps

track of the best solution found so far, which is an upper bound of the opti-

mal solution. In each node, DF-BB computes a lower bound of the best-cost

solution that can extend the current assignment. When the current lower

bound is greater or equal to the upper bound the algorithm backtracks to

a previous node, because the current path cannot lead to a better solution



1.3. CONTRIBUTIONS 7

than the current best one.

Our second contribution is the extension of DF-BB to multi-objective op-

timization problems. The resulting algorithm is called multi-objective branch-

and-bound (MO-BB). The relevance of this contribution is two-fold:

• We formally define the concepts of lower and upper bound frontiers,

which are the multi-objective extensions of the lower and upper bounds

used in DF-BB, and redefine the pruning condition in terms of these

multi-objective bounds.

• We empirically demonstrate that MO-BB is an efficient solving tech-

nique for some multi-objective problems.

1.3.3 Multi-objective Russian Doll Search

Russian Doll Search (RDS) [145] is a well-known mono-objective depth-first

branch-and-bound search algorithm which invests in high quality bounds.

The idea of RDS is to replace one search by n successive searches on nested

subproblems, where n is the number of variables in the problem. The key of

the algorithm is that the optimal cost of each solved subproblem is system-

atically recorded in order to help future searches.

Our third contribution is the extension of RDS from mono-objective

to multi-objective optimization. The resulting algorithm is called Multi-

objective Russian Doll Search (MO-RDS). MO-RDS is an interesting refine-

ment of MO-BB that appears to be efficient for solving problems with rela-

tively small bandwidth. In particular, MO-RDS solves for the first time an

open instance from the Spot5 benchmark.

1.3.4 Multi-objective Bucket Elimination

Bucket Elimination [34, 15] (BE) is one of the most significant inference

algorithms for graphical models. BE eliminates variables one by one, while

deducing the effect of the eliminated variables on the rest of the problem.
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The elimination of the last variable produces a constant which is the optimal

cost of the problem.

Our fourth contribution is the extension of BE to multi-objective opti-

mization problems. The resulting algorithm is called multiobjective bucket

elimination (MO-BE). We prove the theoretical complexity of the algorithm

which clearly indicates the suitability of MO-BE for problems with small in-

duced width. We demonstrate empirically the efficiency of the algorithm on

those problems.

1.3.5 Multi-objective Mini-Bucket Elimination

Algorithms that compute lower bounds are a fundamental component of

branch-and-bound because they can be executed at every branch node in

order to detect and prune redundant subtrees. Moreover, they can be used

to approximate the solution of a difficult problem that cannot be solved

exactly.

Many lower bounding algorithms have been proposed in the mono-objective

context. In particular, mini-bucket elimination (MBE) [38], the approxima-

tion version of BE, is a powerful mechanism for lower bound computation.

Our fifth contribution is the extension of MBE to multi-objective op-

timization problems. The resulting algorithm, called multi-objective mini-

bucket elimination (MO-MBE), can be used to compute multi-objective lower

bounds of different accuracies. The relevance of this contribution is three-

fold:

• We address the lack of general approximation algorithms that prevents

multi-objective branch-and-bound from being widely used [41].

• We embed MO-MBE in MO-BB, and empirically demonstrate the per-

formance of the new search approach.

• We demonstrate the accuracy of MO-MBE when used as an standalone

approximation algorithm.
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1.3.6 Multi-objective Constraint Propagation

In the context of constraint programming, propagation is the process of de-

tecting whether a partial assignment cannot be extended to a solution. Typ-

ically, constraint propagation takes place after each assignment in a search

algorithm. Most propagation algorithms detect and discard domain values

that are inconsistent with the current assignment. If some variable loses all

its values, the algorithm backtracks. Typically, each constraint is propagated

independently. Namely, a domain value is removed if it is shown to be in-

consistent with respect to one of the constraints. The only communication

between constraints is through domain value pruning (pruning one domain

value due to one constraint, may produce the pruning of another domain

value due to another constraint, yielding a cascade effect). This solving

approach may not be strong enough for problems with several conflicting

constraints of the form
∑

f∈Fj

f < Kj .

Our sixth contribution is a novel propagation schema. Roughly, we pro-

pose to jointly propagate these constraints using multi-objective approxima-

tion algorithms. We demonstrate empirically the efficiency of this approach.

1.3.7 Engineering Mini-bucket Elimination

As we have seen, mini-bucket elimination (MBE) is one of the most popular

bounding techniques for mono-objective optimization problems [38, 74, 109].

However, the time and space complexity of MBE is exponential in a control

parameter z. It is important to note that, with current computers, it is the

space, rather than the time, that prohibits the execution of the algorithm

beyond certain values of z.

Our seventh contribution is the development of two methods to improve

the practical applicability of MBE. Given a value for the control parameter

z,

• the first approach decreases its space demands and obtains the same

lower bound as the original MBE; and
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• the second one increases its lower bound and maintains the same space

demands as the original MBE.

For simplicity reasons, this contribution have been developed in the con-

text of mono-objective optimization. However, their multi-objective exten-

sion is direct.

1.4 Publications

[123] ”Multi-Objective Russian Doll Search”. Emma Rollon and Javier Lar-

rosa. Proc. of the 22th AAAI Conference on Artificial Intelligence,

AAAI 2007.
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pp. 307-328. September 2006.
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and Javier Larrosa. Proc. of the 12th International Conference on

Principles and Practice of Constraint Programming, LNCS 4204, pp.

484-498, CP 2006.

[122] ”Multi-Objective Propagation in Constraint Programming”. Emma

Rollon and Javier Larrosa. Proc. of the 17th European Conference on

Artificial Intelligence, ECAI 2006.

[119] ”Depth-First Mini-bucket Elimination”. Emma Rollon and Javier Lar-

rosa. Proc. of the 11th International Conference on Principles and

Practice of Constraint Programming. LNCS 3709, pp. 563-577, CP
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[92] ”Bucket Elimination with Capacity Constraints”. Javier Larrosa and

Emma Rollon. 6th Workshop on Preferences and Soft Constraints. At-

tached to the 10th International Conference on Principles and Practice

of Constraint Programming 2004, CP 2004.

[91] ”Adaptive Consistency with Capacity Constraints”. Javier Larrosa

and Emma Rollon. Workshop on Modeling and Solving Problems with

Constraints. Attached to the 16th European Conference on Artificial

Intelligence. ECAI 2004.

1.5 Overview

This Thesis is structured in ten Chapters and two Appendices. Chapter 2

introduces and motivates the main elements that will be used throughout

our work: multi-objective optimization and graphical models. The first one is

the type of problems we consider and the second one is the main tool we use

to solve them. Moreover, it presents some basic notation used in this Thesis.

Chapter 3 revises previous work on graphical models and multi-objective

optimization. Regarding graphical models, we present the most important

general algorithms for mono-objective optimization. It covers search and

inference algorithms as the main exact solving methods, along with local

consistency and mini-bucket elimination algorithms as the main approxima-

tion methods. Regarding multi-objective optimization, we overview relevant

algorithms developed in the Artificial Intelligence and Operational Research

areas.

Chapter 4 describes multi-objective optimization problems in terms of

graphical models. We develop this formalization inside of the Semiring CSP

framework, a well-known algebraic framework to axiomatize graphical mod-

els. Moreover, we show that previous attempts to describe multi-objective

optimization as a particular graphical model do not capture the notion of

pareto optimality. Finally, we specialize the formalization to the case of min-

imizing additive objective functions, which are the type of problems selected
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for our algorithmic study.

Chapter 5 extends branch-and-bound (BB) to multi-objective optimiza-

tion. The resulting algorithm is called multi-objective branch-and-bound

(MO-BB). Moreover, we present some direct extensions of the classic mono-

objective lower bounds to the multi-objective case. The experimental results

show that these multi-objective lower bounds must be the starting point to

more sophisticated ones.

Chapter 6 extends russian doll search (RDS) to multi-objective opti-

mization. More precisely, we extend the standard and specialized versions

of russian doll search. The resulting algorithms are called multi-objective

russian doll search (MO-RDS) and specialized multi-objective russian doll

search (SMO-RDS). The key point in these extensions is the use of the pre-

vious MO-BB algorithm along with more sophisticated multi-objective lower

bounds. Moreover, we empirically demonstrate that sometimes it may be

convenient to solve mono-objective optimization problems as if they were

multi-objective. Specifically, this transformation allows us to solve for the

first time an open instance of the Spot5 benchmark using MO-RDS.

Chapter 7 extends bucket elimination (BE) to multi-objective optimiza-

tion. The resulting algorithm is called multi-objective bucket elimination

(MO-BE). We prove that its complexity is exponential in an structural pa-

rameter called induced width. This complexity renders MO-BE feasible for

problems with small induced width. We assess the suitability of MO-BE on

bi-objective optimization random and real-world inspired problems.

Chapter 8 extends mini-bucket elimination (MBE), a well-known mono-

objective approximation algorithm, to multi-objective optimization. The

resulting algorithm is called multi-objective mini-bucket elimination (MO-

MBE). It computes multi-objective lower bounds. MO-MBE can be used

as an stand-alone algorithm to compute an approximation of the pareto op-

timal solutions or as a bounding evaluation function inside multi-objective

branch-and-bound. We assess the suitability of the new algorithm in both

cases on bi-objective random and real-world inspired problems.
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Chapter 9 proposes a new method to simultaneously propagate a set

of constraints while solving constraint satisfaction problems during search.

After presenting how CSP solvers propagate each constraint independently,

we propose a more convenient approach. Essentially, the approach consists in

considering CSP problems as multi-objective minimization problems. Then,

we compute a multi-objective lower bound using multi-objective mini-bucket

elimination that, if large enough, allows backtracking. We demonstrate the

suitability of this approach on two domains inspired on real-world problems.

Chapter 10 gives the conclusions of our work and proposes some lines of

future work.

Appendix A describes two methods to improve the practical applicability

of MBE. For simplicity reasons these two methods are proposed for mono-

objective optimization. However, they can be also extended to the multi-

objective case. In the first part of the Appendix, we introduce a method

to reduce the space demands while obtaining the same lower bound as the

original MBE algorithm. In the second part of the Appendix, we introduce

a method to increase the lower bound while maintaining the same space

demands as the original MBE algorithm. We assess the improvements of both

approaches empirically on mono-objective random and real-world inspired

problems.

Appendix B describes the benchmarks used throughout our work. For

each benchmark, we describe the problems, the instances included and how

they have been generated, and how they are encoded in the graphical model

framework. Moreover, we indicate their important structural properties as

the induced width and the graph bandwidth.
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Chapter 2

Preliminaries

The purpose of this chapter is to introduce the two main elements that will

be used throughout this thesis: multi-objective optimization and graphical

models. Recall that multi-objective problems are the type of problems that

we address and graphical models are the conceptual tool that we use to view

and efficiently solve them.

After presenting basic notation on tuples and functions (Section 2.1),

we introduce the main notions around multi-objective optimization and the

type of problems that we consider (Section 2.2). Afterward, we overview the

notion of graphical model (Section 2.3) which constitutes the central tool

of our work. We show the expressive power of the graphical framework by

presenting its two most prominent instantiations (i.e., constraint networks

and bayesian networks) and extensions. Finally, we review some important

graph concepts and show their connection with the complexity of solving

tasks posed to graphical models (Section 2.4).

2.1 Basic Notation

The type of problems addressed in this Thesis are defined in terms of a set of

variables taking values on finite sets of domain values and a set of functions

defined over these variables. Roughly, solving a problem is somehow related

15
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to assigning domain values to the variables and evaluating the functions in

those assignments.

In the following, X = (x1, . . . , xn) is an ordered set of variables and

D = (D1, . . . , Dn) is and ordered set of domains, where Di is the finite set of

potential domain values for xi.

2.1.1 Tuples

The assignment (i.e, instantiation) of variable xi with domain value a ∈ Di

is noted (xi = a). A tuple is an ordered set of assignments to different

variables (xi = ai, . . . , xj = aj). The scope of tuple t, noted var(t), is the set

of variables that it assigns. When the scope of a tuple is clear by the context

we only write its domain values.

We need two basic operations over tuples: join and projection. Let t and t′

be two tuples such that both assign the same value to their common variables.

Their join, noted t · t′, is a new tuple which contains the assignments of both

t and t′. The projection of t over Y ⊆ var(t), noted t[Y ], is a sub-tuple of t

containing only the instantiation of variables in Y . Projecting a tuple t over

the empty set t[∅] produces the empty tuple, noted λ. A complete assignment

is an assignment of all the variables in X and we will usually refer to it as

X.

Example 2.1.1 Consider three variables X = {x1, x2, x3} taking domain

values over a common domain D1 = D2 = D3 = {a, b, c}. Consider three

tuples t = (x1 = a, x3 = b), t′ = (x1 = a, x2 = c) and t′′ = (x1 = b, x2 = c).

The join of t and t′ is t · t′ = (x1 = a, x2 = c, x3 = b). The join of t and t′ is

not applicable because they assign a different value to the common variable

x1. The projection of t over variable x1 is t[x1] = (x1 = a).

2.1.2 Functions

For a subset of variables Y ⊆ X , we note l(Y) the set of tuples over Y . Let

f : l(Y) → A be a function defined over Y . The scope of f , noted var(f), isY .
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The arity of f , noted |var(f)|, is the size of its scope. The set A is called the

set of valuations and it is problem specific. The instantiation of function f

by tuple t, noted f(t), is a new function in which variables in var(f)∩var(t)

are fixed as indicated by t. The scope of f(t) is var(f) − var(t)1. When

the scope of f(t) is not empty, the function f has been partially instantiated.

Otherwise, the function f has been totally instantiated and f(t) is a singleton

of A.

Example 2.1.2 Consider a function f(x1, x2) = 3x1x2 where x1 and x2 take

values on some interval of the naturals. The scope of f is var(f) = {x1, x2}.
The set of valuations is N. Let t = (x1 = 1, x3 = 2) be a tuple. The

instantiation of f by t (i.e., f(t)) is a new function g(x2) = 3x2. Note

that, since var(t) 6⊆ var(f), just the assignment of x1, which is the common

variable between t and f , is relevant in f(t). Moreover, the instantiation is

partial, because the scope of the new function is not empty. Let t′ = (x2 = 3)

be a new tuple. The instantiation g(t′) is a new function g′() = 9. Since all

the variables in var(g) has been instantiated by t′, g(t′) is totally instantiated.

In the previous example both variables and functions were numeric (over

the naturals). However, it is important to note that in general, variables

can take domain values on arbitrary finite domains, and functions can return

values from an arbitrary set of valuations.

There are two operations over valuations: combination and addition.

Definition 2.1.1 A valuation structure is a triple K = (A,⊗,⊕) such that

A is an arbitrary set of valuations, ⊗ is a binary operation ⊗ : A × A → A

called combination and ⊕ is a binary operation ⊕ : A × A → A called

addition. Both operators are associative and commutative.

In Chapter 4 we discuss in detail the algebraic properties that valuation

structures must satisfy in the graphical models context.

1We denote by Z −W the usual set difference defined as Z −W = {a ∈ Z | a 6∈ W}
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Abusing notation we extend the combination and addition operators to

operate also over functions. The combination of two functions f and g is a

new function f
⊗

g that aggregates their information.

Definition 2.1.2 Let f : l(var(f)) → A and g : l(var(g)) → A be two

functions. Their combination, noted f
⊗

g, is a new function h with scope

var(f)∪ var(g) which returns for each tuple t ∈ l(var(f)∪ var(g)) the com-

bination of valuations of f and g. Formally,

∀ t ∈ l(var(f) ∪ var(g)), h(t) = f(t)⊗ g(t)

Example 2.1.3 Typical combination operators are logical and (i.e., ∧) over

booleans and sum (i.e., +) over numbers. For instance, if x1, x2 and x3 are

boolean variables, f1(x1, x2) = x1 ∨ x2 and f2(x2, x3) = ¬x2 ∨ x3 then (f1 ∧
f2)(x1, x2, x3) = (x1∨x2)∧(¬x2∨x3). If x1, x2 and x3 are numerical variables,

f1(x1, x2) = x1x2 and f2(x2, x3) = 2x2 + x3 then (f1 + f2)(x1, x2, x3) =

x1x2 + 2x2 + x3).

The marginalization of a subset of variables W ⊆ X from a function f

is a new function
⊕

W
f that joins/chooses information among the different

possible alternatives for the variables in W. Specifically,
⊕

W
f removes from

the scope of f the variables in W, while summarizing via addition ⊕ the

eliminated information. Therefore, the marginalization operator narrows the

focus of the valuations of f to the remaining variables.

Definition 2.1.3 Let f : l(var(f)) → A be a function and W ⊆ X be a set

of variables. The marginalization of W from f , noted
⊕

W
f , is a new function

h with scope var(f) −W that returns for each tuple t ∈ l(var(f) −W) the

addition of the valuations over the different extensions to W. Formally,

∀ t ∈ l(var(f) −W), h(t) = ⊕
t′∈l(W)

f(t · t′)

Sometimes, the marginalization operator is also called elimination oper-

ator because it removes W from the scope of f .
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Example 2.1.4 Typical marginalization operators are the logical or (i.e.,

∨), the minimum (i.e., min), or the sum (i.e., +). For instance, if x1 and

x2 are boolean variables, f(x1, x2) = x1 ∨ x2 and the marginalization oper-

ator is the logical or, then
⊕

x2

f = ∨x2∈{true,false}{x1 ∨ x2} = (x1 ∨ true) ∨
(x2 ∨ false) = true. If x1 and x2 are numerical variables in the interval

[1, . . . , 5], f(x1, x2) = x1x2 and the marginalization operator is min, then
⊕

x2

f = minx2∈[1,...,5]{x1x2} = min{1x1, 2x1, 3x1, 4x1, 5x1} = x1.

2.2 Multi-objective Optimization

A (mono-objective) optimization problem is the problem of finding the best

solution according to some criterion expressed by means of a function F .

For the purposes of this Thesis, an optimization problem P is defined by a

set of variables X = {x1, . . . , xn} restricted to finite sets of domain values

D = {D1, . . . , Dn} and an objective function F : l(X ) → A, where A is

a totally ordered set (usually a number). The task is to find a complete

assignment X such that ∀X ′, F (X) ≤ F (X ′) (i.e., minimization).

Multi-objective optimization problems deal with multiple objectives, which

should be simultaneously optimized [143, 41, 69]. Consider a problem Pmo

with p objective functions F1, . . . , Fp. Given a complete assignment X, the

problem associates a cost Fj(X) to each objective j. These Fj(X) costs can

be represented as a vector F (X) = (F1(X), . . . , Fp(X)). Given two complete

assignments X and X ′, their associated cost vectors can be compared in

order to decide which one is better.

Definition 2.2.1 F (X) dominates F (X ′), noted F (X) < F (X ′), iff they

are different and Fj(X) is better than Fj(X
′) for all the objectives. Formally,

F (X) < F (X ′) iff F (X) 6= F (X ′) and ∀ 1 ≤ j ≤ p, Fj(X) ≤ Fj(X
′)

We say that F (X) ≤ F (X ′) iff F (X) < F (X ′) or F (X) = F (X ′). We

say that F (X) and F (X ′) are incomparable iff F (X) 6≤ F (X ′) and F (X ′) 6≤
F (X). Observe that the domination relation is a partial order among vectors.



20 CHAPTER 2. PRELIMINARIES

2

1

F

F

(a) (b)

R

R’

Figure 2.1: A set of cost vectors.

Example 2.2.1 Consider bi-dimensional cost vectors. Figure 2.1 (a) depicts

a vector ~v as a dot in the 2D space. ~v is the top-right corner of a rectangle

R. Any point inside R would dominate ~v. ~v is also the bottom-left corner of

an infinitely large rectangle R′. Any point inside R′ would be dominated by

~v. Moreover, any cost vector ~u outside R and R′ is incomparable with respect

~v.

The domination order among vectors also defines a partial order among

complete assignments. This partial order captures the notion of preference

among assignments. Clearly, we prefer X over X ′ (i.e., X is better than X ′)

if its associated cost vector F (X) dominates F (X ′).

A complete assignment X is pareto optimal or an efficient solution if

there is no better complete assignment. Since domination is a partial order,

there may be a set of incomparable efficient solutions. The set of vectors

associated to each efficient solution is called efficient frontier.

Definition 2.2.2 Let X and X ′ denote complete assignments. The set of

efficient or pareto optimal solutions is XE = {X| ∀X ′, F (X ′) 6< F (X)}. The

efficient frontier is E = {F (X)|X ∈ XE}.

A very important task of interest in a multi-objective optimization prob-

lem Pmo is to compute its efficient frontier E (and, possibly, one or all efficient

solutions for each of its elements).
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Example 2.2.2 Consider a problem represented by one integer variable x1

in the range [−2, . . . , 2], and two objective functions F1(x1) = x1 + 2 and

F2(x1) = x2
1. Figure 2.1 (b) depicts the set of all cost vectors where ef-

ficient vectors are emphasized with dotted circles. The efficient frontier is

E = {(0, 4), (1, 1), (2, 0)}. The set of efficient solutions XE is the set {(x1 =

−2), (x1 = −1), (x1 = 0)}.

2.3 Graphical Models

The graphical model framework provides a common formalism to model

several systems such as probabilistic models, which includes Markov and

Bayesian networks [111], and deterministic models, which includes constraint

networks and decision diagrams [35]. In general, a graphical model is defined

by a collection of functions F over a set of variables X . Depending on each

particular case, functions may express probabilistic, deterministic or pref-

erential information. As we will show in the next section, the structure of

graphical models is naturally captured by a graph which expresses condi-

tional independences between variables.

Definition 2.3.1 A graphical model is a tuple M = (X ,D, A,F ,
⊗

) where:

• X = {x1, . . . , xn} is a finite set of variables,

• D = {D1, . . . , Dn} is the set of their corresponding finite domains,

• A is a set of valuations,

• F = {f1, . . . , fe} is a set of discrete functions such that var(fk) ⊆ X
and fk : l(var(fk)) → A,

• ⊗
is a combination operator over functions as defined in Definition

2.1.2.
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Each function fk ∈ F expresses local information concerning the inter-

action of variables in its scope var(fk). The combination operator allows

to aggregate this local information and get a wider view. The global view

of a graphical model is represented by the combination of all its functions
⊗e

k=1 fk. Note that the scope of the global function may be the whole set

of variables. Therefore, it has an exponentially large number of entries with

respect to the number of variables. As a result, it is not practical to store it

explicitly or even to inspect it exhaustively. What all graphical models have

in common is that the global view comes into small pieces (f ∈ F), usually

called factors, that makes it manageable. In other words, graphical models

represent a system as a factorization of its global information.

In many domains of application of graphical models some variables may

have a pre-assigned domain value. Therefore, the original graphical model

is conditioned to the domain value of those variables. The result is a new

graphical model where those variables have been fixed to its corresponding

domain value.

Definition 2.3.2 Consider a tuple t such that var(t) ⊆ X and a graphical

model M = (X ,D, A,F ,
⊗

) where F = {f1, . . . , fe}. M conditioned to t,

noted M(t) = (X ,D, A,F(t),
⊗

), is a new graphical model where F(t) =

{f1(t), . . . , fe(t)}. Namely, each function in F has been instantiated by t.

Once a problem has been modeled as a graphical model, the user usually

wants to ask queries on it. These queries, also called reasoning tasks, depend

on the marginalization operator
⊕

.

Definition 2.3.3 A reasoning task is a tuple P = (X ,D, A,F ,
⊗

,
⊕

) where

(X ,D, A,F ,
⊗

) is a graphical model and
⊕

is a marginalization operator

over functions as defined in Definition 2.1.3. The reasoning task is the com-

putation of
⊕

X (
⊗e

i=1 fi).

The instantiation of the
⊗

and
⊕

operators fixes a graphical model and

its associated reasoning task, respectively. Two main families of reasoning
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tasks have been exhaustively studied. They can be distinguished by looking

at the particular instantiation of the
⊕

operator. If
⊕

is min or max, then

the reasoning task is called optimization and the function F =
⊗

f∈F f is

called the objective function. If
⊕

is +, then the reasoning task is called

counting.

In the following, we describe two well known instantiations of the graph-

ical model framework: constraint networks and belief networks, as well as

their typical extensions and reasoning tasks. Constraint and weighted con-

straint networks are introduced because their multi-objective extension will

be used throughout this Thesis. Belief networks are only presented to illus-

trate the generality of the model.

2.3.1 Constraint Networks and Extensions

Constraint networks [35] provide a framework for formulating real world de-

terministic problems, such as scheduling, design, planning or diagnosis. The

feature that makes constraint networks unique over other graphical mod-

els is that variables take domain values on arbitrary finite domains and

functions are boolean (i.e., they associate a boolean valuation to each as-

signment of variables). In constraint networks boolean functions are called

constraints. The purpose of constraints is to specify that some partial assign-

ments are forbidden (i.e., inconsistent). More precisely, given a tuple t such

that var(f) ⊆ var(t), if f(t) is false it means that constraint f forbids tuple

t. If f(t) is true it means that tuple t satisfies constraint f . We say that t

is consistent if it satisfies all its completely assigned functions. Accordingly,

the combination operator in constraint networks is the logical and ∧.

Definition 2.3.4 A constraint network is a graphical model

(X ,D, {true, false}, C,∧)

where X and D are variables and associated domains, respectively. C =

{f1, . . . , fe} is a set of boolean functions (i.e., fk : l(var(fk)) → {true, false}),
called constraints. The combination operator is the logical and (i.e., ∧).
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The usual task posed to a constraint network is called constraint satis-

faction problem and consists on finding whether it is consistent or not. A

constraint network is consistent if there exists a solution, that is, an assign-

ment of all the variables, that does not violate any constraint.

Definition 2.3.5 A constraint satisfaction problem (CSP) is a reasoning

task P = (X ,D, {true, false}, C,∧,∨).

Clearly, if the constraint network is consistent the result of solving the

CSP is true. Otherwise, the constraint network is inconsistent and the result

is false.

Example 2.3.1 Consider a problem in which we have four objects that we

must either take or leave behind and some constraints about the different

object incompatibilities. We can represent this with four variables X =

{x1, x2, x3, x4}, one for each object, and two values per domain Di = {true, false}
(meaning take and discard, respectively). Object incompatibilities can be

modeled as constraints between variables. Suppose that there are the follow-

ing:

• either x1 or x3 should be chosen, but not both at the same time:

h1(x1, x3) = (x1 ∨ x3) ∧ (x1 ∨ x3)

• either x3 or x4 must be chosen:

h2(x3, x4) = x3 ∨ x4

• x4 and x2 cannot be chosen at the same time:

h3(x2, x4) = x4 ∨ x2

The corresponding constraint network is M = (X ,D, A, C,
⊗

) where

• X = {x1, . . . , x4}
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• D = {Di = {true, false}}4
i=1

• A = {true, false}

• C = {h1, h2, h3}

• ⊗
= ∧

The global view of this constraint network is a new constraint C(X ) =

h1(x1, x3) ∧ h2(x3, x4) ∧ h3(x2, x4). Since C is a boolean function, it can be

represented as a truth table on all possible instantiations of its set of variables,

x1 x2 x3 x4

f f f f f

f f f t f

f f t f t

f f t t t

f t f f f

f t f t f

f t t f t

f t t t f

t f f f f

t f f t t

t f t f f

t f t t f

t t f f f

t t f t f

t t t f f

t t t t f

where t and f are short-hands for true and false, respectively. Consider

an assignment X of all variables in X . Since the constraints in C(X ) are

combined via ∧, C(X) = false means that X does not satisfy all constraints

in C. Similarly, C(X) = true means that it satisfies all the constraints in C.
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Consider the CSP P = (X ,D, A, C,
⊗

,
⊕

) defined over M, where the

marginalization operator
⊕

is ∨. The result of the reasoning task ∨XC is

true. Note that it is easy to see whether the CSP problem is satisfiable or

not by just inspecting the global truth table. The only requirement for a CSP

to be satisfiable is that one entry of the global view evaluates to true.

Finally, observe that the problem has four consistent assignments: (x1 =

f, x2 = f, x3 = t, x4 = f), (x1 = f, x2 = f, x3 = t, x4 = t), (x1 = f, x2 =

t, x3 = t, x4 = f) and (x1 = t, x2 = f, x3 = f, x4 = t).

Observation 2.3.1 Note that constraint networks can also be defined in

terms of numbers where boolean value true is associated to 1 and boolean

value false is associated to 0 in the set of valuations A. Consequently, the

logical and ∧ must be replaced by the multiplication. Formally, a constraint

network is a graphical model (X ,D, {1, 0}, C,×) and a CSP is a reasoning

task (X ,D, {1, 0}, C,×, max). Note that the logical or (i.e., ∨) is replaced by

max. Therefore, CSPs can be seen as a (degenerated) case of optimization

task, with only two possible valuations 1 and 0. It is easy to see that the

constraint network is consistent if the result of solving the CSP is 1, and

inconsistent otherwise.

Another task over a constraint network is to count the number of so-

lutions. This reasoning task is better defined over a constraint network as

stated in the previous observation.

Definition 2.3.6 A counting problem is a reasoning task (X ,D, {1, 0}, C,×, +).

Example 2.3.2 Consider the problem from example 2.3.1 and the reasoning

task of counting its solutions. Constraints are now expressed as 1/0 functions,

h1(x1, x3) =

{

1, (x1 ∨ x3) ∧ (x1 ∨ x3)

0, otherwise

h2(x3, x4) =

{

1, x3 ∨ x4

0, otherwise
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h3(x2, x4) =

{

1, x2 ∨ x4

0, otherwise

The constraint network is equivalent to that in example 2.3.1 but defined

in terms of numbers. Therefore, its global view is the same constraint C

expressed as a 1/0 function (i.e., boolean valuations t and f are interpreted

as natural valuations 1 and 0, respectively). Consider an assignment X of all

variables in X . Since the 1/0 functions in C are combined via ×, C(X) =

0 means that X does not satisfy all constraints in C. Similarly, C(X) =

1 means that X satisfies all the constraints in C (i.e., X is a consistent

assignment).

The counting task corresponds to the number of 1’s in the global view. It

is easy to see that the result of this counting problem is 4.

Observation 2.3.2 Note that constraint networks can also be defined as

(X ,D, {0,∞}, C, +). Now, boolean value true is associated to 0, boolean

value false is associated to ∞ in the set of valuations A, and the logical and

is replaced by the sum. Constraints are expressed as 0/∞ functions. If a

tuple is forbidden, its associated cost is ∞. Otherwise, its associated cost is

0. Consequently, a CSP is defined as (X ,D, {0,∞}, C, +, min). In this case,

optimization is minimization. It is easy to see that the constraint network

is consistent if the result of solving the CSP is 0, and inconsistent otherwise

(i.e., the result is ∞).

Cost networks [126] extends constraint networks in order to deal with op-

timization tasks (that we assume as minimization). They assume constraint

networks expressed as in the previous observation and increase the number

of possible valuations. In cost networks, functions specify the cost of the

assignments (i.e., they are cost functions). We make the usual assumption of

restricting costs to the set of naturals with infinity, noted N∞. The purpose

of cost functions is to specify how much a partial assignment is preferred.

Given a tuple t, if f(t) is 0 it means that t is cost free and, therefore, is
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a perfect assignment, that is, the specified function is satisfied and it does

not change the overall level of preference for the given tuple. If f(t) is ∞
it means that t is totally undesired and, therefore, is a totally disliked as-

signment, that is, the assignment t is forbidden (or inconsistent, in terms of

constraint satisfaction) and it has to be avoided. In general, the lower the

valuation is, the most preferred the assignment is.

Definition 2.3.7 A cost network is a graphical model (X ,D, N∞,F , +),

where X and D are variables and associated domains. F = {f1, . . . , fe}
is a set of natural valued cost functions (i.e., fk : l(var(fk)) → N∞). The

combination operator is the sum +.

The main task posed to a cost network is to find its optimal cost, that is,

the best among the costs of all complete assignments. The cost of a complete

assignment X is F (X) =
∑e

k=1 fk(X). The best cost F (X) is the one with

minimum cost.

Definition 2.3.8 A weighted CSP (WCSP) is a reasoning task

(X ,D, N∞,F , +, min)

Example 2.3.3 Consider Example 2.3.1. Suppose that discarding object i

has an associated penalty pi = i. Besides, objects 2 and 3 are complementary,

meaning that if they are not taken together we get an additional penalty p23 =

3. This numerical information can be modeled as cost functions between

variables. Making the most profitable selection of objects can be expressed as

a minimization WCSP, where the task is to minimize the aggregated penalty

of discarded objects. Constraints are expressed as 0/∞ functions,

h1(x1, x3) =

{

0, (x1 ∨ x3) ∧ (x1 ∨ x3)

∞, otherwise

h2(x3, x4) =

{

0, x3 ∨ x4

∞, otherwise
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h3(x2, x4) =

{

0, x2 ∨ x4

∞, otherwise

Unary and binary cost functions are the following,

fi(xi) =

{

i, xi = 0

0, otherwise
f23(x2, x3) =

{

0, x2 ∧ x3

3, otherwise

The corresponding cost network is M = (X ,D, A,F ,
⊗

) where

• X = {x1, . . . , x4}

• D = {Di = {true, false}}4
i=1

• A = N∞

• F = {h1, h2, h3, p1, p2, p3, p4, p23}

• ⊗
= +

The global view of this cost network is F (X ) =
∑

f∈F f . We can express

F (X ) extensionally with the following cost table,
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x1 x2 x3 x4

f f f f ∞
f f f t ∞
f f t f 10

f f t t 6

f t f f ∞
f t f t ∞
f t t f 5

f t t t ∞
t f f f ∞
t f f t 8

t f t f ∞
t f t t ∞
t t f f ∞
t t f t ∞
t t t f ∞
t t t t ∞

Consider the WCSP problem P = (X ,D, A, C,
⊗

,
⊕

) defined over cost

network M, where the marginalization operator
⊕

is min. Recall that since

the marginalization operator is min, P is an optimization task and F (X ) is

its objective function. The result of the WCSP problem P (i.e., the optimal

cost of M) is minX{F (X )} = 5, which is the minimum among all the entries

of F (X ). The corresponding optimal complete assignment is (x1 = f, x2 =

t, x3 = t, x4 = f).

2.3.2 Belief Networks and Extensions

Belief networks [111], also known as bayesian networks, provide a formalism

for reasoning about partial beliefs under conditions of uncertainty. They are

used in a variety of applications including medical diagnosis, troubleshooting

in computer systems, circuit diagnosis, traffic control, and signal processing.
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The fundamental characteristic of belief networks is that functions are real

valued in the interval [0, 1] ⊆ R. The purpose of functions in belief networks is

to specify conditional probabilities. Each function fi contains a distinguished

variable in its scope noted xi. Function fi denotes the probability of xi

conditioned to the remaining variables in var(fi).

Definition 2.3.9 A belief network is a graphical model (X ,D, [0, 1],P,×),

where X and D is a set of variables and its associated domains, respectively.

P = {P1, . . . , Pn} is a set of real valued functions (i.e., Pi : l(var(Pi)) →
[0, 1]), where Pi = P (xi|var(Pi)−xi) are conditional probability tables (CPT)

associated with each xi. The combination operator is the multiplication ×.

A belief network represents in a space efficient way a probability distri-

bution over each complete assignment X, P (X) =
∏n

i=1 Pi(X[var(Pi)]).

There are two important reasoning tasks posed to belief networks: belief

updating and most probable explanation. Both are based on some observa-

tions (i.e., instantiations) of some variables called evidence. Therefore, given

a belief network M and an evidence e, both tasks are posed on M(e) (i.e.,

belief network M conditioned to the evidence e).

The first task, called belief updating, consists on computing the posterior

marginal probability of query node(s) given some evidence.

Definition 2.3.10 The belief updating problem of variable xi when assigned

to domain value a ∈ Di is a reasoning task B(xi, a) = (X ,D, [0, 1],P(e · xi =

a),×, +) where P(e ·xi = a) is the original set of CPTs P conditioned on the

evidence e and on variable xi taking domain value a. The marginalization

operator is the sum over the reals.

The belief updating of variable xi is the result of computing

∀
a∈Di

B(xi, a)

Similarly, the belief updating of a set of variables Y is the result of computing

∀
xi∈Y
a∈Di

B(xi, a)
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The second main task, called most probable explanation, consists on find-

ing a complete assignment which agrees with the evidence, and which has

the highest probability among all such assignments.

Definition 2.3.11 The most probable explanation (MPE) problem is a rea-

soning task (X ,D, [0, 1],P(e),×, max) where P(e) is the original set of CPTs

P conditioned on evidence e, and the marginalization operator is maximum.

Influence Diagrams [65] (also called decision networks) is a generalization

of bayesian networks where not only probabilistic information on the envi-

ronment, but also utilities expressing preferences and feasibility constraints

on the decisions are captured. An influence diagram can be used to visualize

the probabilistic dependencies in a decision analysis and to specify the states

of information for which independences can be assumed to exist. The main

task posed in an influence diagram is to find an assignment to the decision

nodes that maximizes the expected utility.

A large number of frameworks have been proposed to model and solve

such problems. In particular, the formalization of influence diagrams as a

particular instantiation of the graphical model framework, aiming to capture

locality of information and independence, was shown in [113, 112].

2.4 Graph Concepts and Complexity Impli-

cations

Essential to a graphical model is its underlying graph, called interaction

graph. It captures the interdependency of the knowledge encoded in the

graphical model. Roughly, the graph connects pairs of variables that interact

directly in the problem.

Definition 2.4.1 The interaction graph G of a graphical model (X ,D, A,F ,⊗)

is an undirected graph G = (V, E) having a node for each variable (i.e., V =

{i | xi ∈ X}), and an edge between every two variables included in the scope

of the same function (i.e., E = {(i, j) | ∃ f ∈ F s.t. {xi, xj} ⊆ var(f)}).
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Typical reasoning tasks over a graphical model M with n variables can

be solved with depth-first search in space polynomial and time exponential

on n (see Chapter 5). These trivial bounds may be improved by looking at

the interaction graph of M. This inspection allows us to gain insights into

the structural properties of the model. In particular, there are two important

features worth to check and exploit in the graph: its degree of ciclicity and

its connectivity.

Consider connected graphs of a certain number of vertices. Clearly, the

trees have the lowest level of ciclicity (they are acyclic), and cliques have the

highest level of ciclicity (they have all the possible cycles). There are several

measures of ciclycity that take into account the intermediate cases [57]. We

consider the induced width.

Let G = (V, E) be an undirected graph and o be an ordering of V , then:

Definition 2.4.2 The width of node xi subject to o, noted w(o, xi) is the

number of adjacent to xi which are before xi in o. The width of G subject to

o, noted w(o), is the maximum width among the nodes.

Definition 2.4.3 The induced graph G∗(o) is computed as follows: nodes

are processed in reverse order, according to o. When processing node i, edges

are added as needed in order to make a clique with all its adjacent which are

still unprocessed.

Definition 2.4.4 The width of the induced graph is called the induced width

and is noted w∗(o). The minimum induced width over all its possible order-

ings is the induced width of a graph and is noted w∗.

Finding the minimum induced width is NP-complete [35]. Observe that

an obvious upper bound of w∗ is |V |.

Example 2.4.1 Figure 2.2 (a) depicts the interaction graph G of the cost

network in example 2.3.3. Figure 2.2 (b) shows the induced graph G∗(o)

along ordering o = (x1, x2, x3, x4). G∗(o) has one new edges. The new edge,
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Figure 2.2: Interaction graph and induced graphs.

between x2 and x1 (doted line), is added when processing x3. The induced

width w∗(o) = 2. Figure 2.2 (c) shows the induced graph G∗(o) along ordering

o = (x1, x2, x4, x3). G∗(o) has two new edges (doted lines), both added when

processing x3. The induced width w∗(o) = 3.

Observation 2.4.1 Most reasoning tasks on graphical models can be solved

in time and space exponential on the induced width of the interaction graph

using inference (see Chapter 7).

A related structural parameter is the bandwidth. Let G = (V, E) be an

undirected graph and o be an ordering of V . The bandwidth of an ordering

is the maximum distance, according to this ordering, between two connected

vertices.

Definition 2.4.5 The bandwidth of a graph G [149] is the minimum band-

width on all its possible vertex orderings.

For our purposes, bandwidth is important because it is always greater

than the induced width.

The second main property is the graph connectivity. In an undirected

graph G, two vertices u and v are called connected if G contains a path from
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Figure 2.3: Micro-structure of a graphical model.

u to v. Otherwise, they are called disconnected. A graph is called connected

if every pair of distinct vertices in the graph is connected. A connected

component is a maximal connected subgraph of G.

Observation 2.4.2 Most reasoning tasks on graphical models can be solved

by solving independently each connected component. The global solution is

trivially computed using the combination operator
⊗

of the model. Note that,

in this case, the complexity of solving the entire reasoning task is given by

the worst complexity among the different connected component.

Example 2.4.2 Consider a graphical model M with underlying interaction

graph G = (V, E) such that G = G1 ∪ . . .∪Gk, where each Gi = (Vi, Ei) is a

connected component. Typical reasoning tasks over M can be solved in time

exponential over max{|V1|, . . . , |Vk|} and space polynomial on |V |. The time

complexity can be improved as a trade-off increasing the space complexity.

Let w∗
i be the induced width of Gi. Then, typical reasoning tasks over M can

be solved in time and space exponential on max{w∗
1, . . . , w

∗
k}.

Very often, it is useful to look at the interdependencies between the do-

main values of variables. To that end, the interaction graph can be further
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extended with its micro-structure. The micro-structure of the interaction

graph is as follows. As before, each variable is represented by a node. The

domain values of each variable are depicted circled inside the correspond-

ing node. Only valuations different from ⊥ are indicated. Unary valuations

coming from unary functions are indicated below each domain value. N-arity

valuations coming from n-arity functions are indicated as weighted edges

connecting the n dependant domain values. Consider the micro-structure of

Figure 2.3. It represents a cost network with three variables {x1, x2, x3} and

two domain values per domain Di = {a, b}. The set of functions is composed

by two binary functions fx1x2
(x1, x2) and fx1x3

(x1, x3) such that

fx1x2
(a, a) = 3, fx1x2

(a, b) = fx1x2
(b, a) = fx1x2

(b, b) = 0

fx1x3
(a, a) = 3, fx1x3

(a, b) = 1, fx1x3
(b, a) = fx1x3

(b, b) = 0

and one unary function fx1
(x1) such that fx1

(a) = 0 and fx1
(b) = 6.



Chapter 3

Related Work

The purpose of this chapter is to overview the related state-of-the-art. It is

divided into two sections. The first section is devoted to mono-objective op-

timization techniques in graphical models. So it includes the algorithms that

are the source of inspiration for our work. It covers search, inference, and

lower bounding algorithms. The second section is devoted to multi-objective

optimization algorithms. So it includes work related to ours. It covers two

different areas: Artificial Intelligence and Mathematical Programming. We

do not attempt to be exhaustive, but only to give a comprehensive introduc-

tion to the most relevant topics.

3.1 Optimization in Graphical Models

Efficient algorithms for mono-objective optimization tasks in graphical mod-

els (e.g., WCSP or MPE problems) have been exhaustively studied during

three decades. They can be roughly divided into two general types: search

and inference.

Search algorithms (e.g., depth-first branch-and-bound, best-first branch-

and-bound) solve the problem by a sequence of variable assignments. In its

traditional form, they search a tree such that each tree level corresponds

to a problem variable and different tree nodes correspond to the different

37
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assignment alternatives. The main disadvantage of this tree structure is that

it does not exploit the independences represented in the underlying graphical

model. More sophisticated search tree schemas (e.g., AND/OR trees) have

been proposed in order to address this issue.

Inference algorithms (e.g., Variable Elimination, Tree Clustering) solve

the problem by a sequence of transformations. Each transformation gener-

ates an equivalent but simpler problem. Roughly, the idea is that the new

problem contains explicitly some knowledge that was only implicit in the

initial problem.

In the following we review these two approaches.

3.1.1 Search

Search in graphical models is particularly adequate because the set of all

total assignments can be naturally expressed as a tree with bounded depth.

Therefore, there is no danger to get lost in infinite branches. The set of all

total assignments is the search space.

Traditionally, the search tree is generated with the following procedure

based on a predefined or static ordering among variables and domain values.

The root of the tree is the empty assignment. Its children are the m possible

domain values of the first variable. For each node, its children are the m

possible domain values of the second variable, and so on. If the process is

done for the n variables, it generates a tree with depth n such that each tree

level corresponds to a variable and each node in that level corresponds to

its assignment to one of its domain values. Figure 3.1 (b) shows this tree

for the problem of example 2.3.3 (see interaction graph in Figure 3.1 (a))

along ordering o = (x3, x4, x2, x1). Note that, in this case, the order in which

variables and domain values are selected were established before search and

is respected throughout all the search. However, it can be set dynamically

during search without losing its completeness. Thus, using dynamic variable

and domain value orderings the next current variable and the order in which

its domain values are assigned is decided at each search node. Figure 3.1 (c)
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Figure 3.1: Constraint graph of a graphical model with 4 variables and 2

domain values per variable and two possible search trees.

shows the search tree for the same example along a possible dynamic variable

and domain value orderings. Note that, in this case, search trees are more

flexible. Since the children of a certain node represent the set of alternatives

for the chosen variable, we will refer to this type of trees as OR trees.

Each internal node in an OR tree corresponds to a partial assignment.

Following any path from the tree root to a leaf, each step extends the partial

assignment (initially empty) including one more variable. Thus, the internal

nodes are subproblems where only the remaining variables have to be assigned

and a solution is a path from the tree root to a leaf. As a consequence,

solving an optimization problem consists on finding a path with the minimum

associated cost.
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Branch-and-bound is the main search schema to solve mono-objective

optimization problems. It traverses the search tree while keeping the cost

of the best solution found so far, which is an upper bound of the optimal

solution. The upper bound allows the search to use a bound strategy in order

to prune unfeasible branches. In each node branch-and-bound computes an

underestimation or lower bound of the best solution that can extend the

current node. When this lower bound is greater or equal than the current best

solution, the algorithm has discovered a branch that cannot deal to a better

solution and can be discarded. As a consequence, the current search branch

is pruned. The order in which branch-and-bound visits the nodes determines

the particular search algorithms (e.g., depth-first branch-and-bound search

(DF-BB) [53] and best-first branch-and-bound search (BF-BB)). In DF-BB,

the search begins at the root node and explores as far as possible along

each branch. Namely, DF-BB explores one path at each step. In BF-BB, the

search begins at the root node and expands (i.e., generates the children of) the

most promising node chosen according to some heuristic function. Namely,

BF-BB may explore a different path at each step. The time complexity of

both search schemas is exponential in the number of variables of the problem.

However, the space complexity of DF-BB is linear in the number of variables,

while BF-BB is also exponential in the number of variables for graphical

models. DF-BB is the usual algorithm of choice (see Chapter 5 for more

details).

OR trees do not exploit the independences among variables. Consider

the example in Figure 3.1 (a). As clearly shown in the interaction graph,

variable x1 only interacts with variable x3. Once x3 is assigned, subproblems

composed by x1, and x4 and x2, respectively do not interact. Therefore,

given each assignment of x3, the search space it roots is decomposed into

two independent subproblems. Each independent subproblem could be then

solved independently. However, its associated OR search tree in Figure 3.1

(b) does not take into account such independences. Instead, it considers the

assignment of x1 for each different assignment of x4 and x2. Since incompat-
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ibilities in the assignment of x1 comes from the assignment of x3, the search

algorithm wastes time until changing the assignment of x3. An alternative to

address this issue is to generate the search space following a tree-like ordering

of the variables, called pseudo-tree.

A pseudo tree arrangement of an interaction graph G [52] is a rooted tree

with the same set of vertices as G and the property that adjacent vertices in G

must be in the same branch of the rooted tree. Figure 3.2 (a) shows one of the

many pseudo-tree arrangements for our running example. Solid lines indicate

the edges in the tree. Dotted lines are the edges in the original interaction

graph. The pseudo tree highlights the independences among variables. Note

that there is no edge (i.e., dependency) between branches. Therefore, if a

given node has q > 1 children in the pseudo-tree, once the variables in its

path to the root node are assigned, the subproblem it roots is divided into q

independent subproblems. These subproblems can be solved independently.

The search tree associated with a given pseudo tree is called AND/OR

search tree. An AND/OR search tree is a tree structure with alternating

levels of AND and OR nodes. The OR nodes are labeled xi and correspond

to variables. The AND nodes are labeled 〈xi = aj〉 and correspond to the

assignment of variable xi with value aj ∈ Di. The procedure to generate an



42 CHAPTER 3. RELATED WORK

AND/OR search space is as follows. The root of the AND/OR search tree

is an OR node labeled by the root node of its associated pseudo tree. The

children of the OR nodes are AND nodes labeled with assignments 〈xi = aj〉
for all aj ∈ Di. The children of an AND node 〈xi = aj〉 are OR nodes labeled

with the children of variable xi in the pseudo tree.

Example 3.1.1 Consider our running example. Figure 3.2 (b) shows the

AND/OR search space under the pseudo tree shown in figure 3.2 (a). The

equivalent traditional search space is given in figure 3.1 (b), where AND levels

are omitted. Note that the underlying pseudo-tree in the traditional search

tree is a chain organization of its variables.

In AND/OR search spaces, OR nodes represent alternative ways of solv-

ing the problem while the AND nodes represent problem decomposition into

independent subproblems, all of which need to be solved. Therefore, a solu-

tion is not a path but a subtree of the AND/OR search tree. The solution

subtree contains the root node of the AND/OR tree and, for every OR node

it contains one of its children and for each of its AND node it contains all

its children. As a consequence, solving an optimization problem consists on

finding a solution subtree with the minimum associated cost.

Depth-first AND/OR search [37] traverse depth-first AND/OR trees in

order to find the best solution subtree. Since each node roots an independent

subproblem, solving a problem is solving the independent subproblems it

roots and using their valuations in a convenient way. The manner they are

used depends on the kind of node. OR rooted problems join the solutions

found in its subproblems using the ⊕ operator over valuations. AND rooted

problems aggregate the solution obtained for each of its child subproblems

using the ⊗ operator over valuations. The algorithm solves each subproblem

progressively, from leaf nodes to the root. Each node is labeled with the

optimal cost of the subproblem it roots until the root node is labeled. Then,

the whole problem is solved and its optimal cost is the one hold in the root

node. The efficiency of the algorithm can be also improved thanks to a
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bounding evaluation function which underestimates the best-cost solution

of the remaining search tree. The time complexity is O(exp(m)), where

m is the depth of the AND/OR search tree. Note that the depth of the

AND/OR search tree is the same as the depth of its underlying pseudo-tree.

The minimal depth m over all pseudo trees satisfies m ≤ w∗ log n, where

w∗ is the induced width of the interaction graph of the graphical model,

and n is the number of variables [8, 20]. Note that the time complexity

over a traditional search tree along any ordering is O(exp(n)). Therefore, an

AND/OR search tree may sometimes reduce the search time exponentially.

The space complexity is linear in the number of variables.

Recursive conditioning (RC) [30] and Value Elimination [7, 6] are similar

algorithms described for bayesian networks. Although the algorithms use

different notation, its essence is the same as for depth-first AND/OR search,

as demonstrated in [37].

AND/OR search algorithms can trade space for time using caching schemas.

As we have said, each search node roots a subproblem. Different nodes may

root identical subproblems. The idea of caching is to store the solutions of

already solved identical subproblems. Therefore, each subproblem will be

solved only once. At each search node, the algorithm checks whether that

subproblem was already solved. If that is the case, it retrieves the stored so-

lution and does not solve it again. The more solutions the algorithm stores,

the less subproblems will be solved more than once and the more space will

be needed to store them. Therefore, there is a trade-off between the space

and the time of the algorithm. We refer the interested reader to [101, 30] for

more details.

3.1.2 Inference

Inference algorithms (also known as decomposition methods) solve a prob-

lem by a sequence of transformations that create simpler equivalent problems.

These transformations make explicit some knowledge that is implicit in the

network. Two problems are equivalent if they have the same set of solu-
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tions. The inference process generates equivalent problems with respect to

the original one, but easier to solve.

Usually, complete inference algorithms simplify problems by e.g. eliminat-

ing variables. These methods process (eliminates) variables in a certain order

and infer new dependencies among the remaining variables of the problem.

We focus on bucket elimination, which is a unifying algorithmic framework

that generalizes variable elimination algorithms to accommodate many com-

plex problem solving and reasoning tasks, as mono-objective optimization.

Bucket elimination (BE) [15, 34] process variables one by one in a given

order. Processing a variable means generating an equivalent representation

that excludes, or eliminates that variable. The elimination of variable xi is

done as follows. First, the algorithm generates its associated bucket, which

contains all the functions defined on variable xi. Next, BE computes a new

function by combining (via
⊗

) all the functions in that bucket and elim-

inating xi (via
⊕

). The new function summarizes the effect of xi on the

rest of the problem. Therefore, the graphical model can be updated by re-

moving the functions in the processed bucket and adding the new function.

The problem is simplified because the eliminated variable disappears from

the problem. Moreover, it is equivalent as it preserves the optimal cost. The

algorithm terminates when all variables are processed. The elimination of

the last variable produces an empty scope function (i.e., a constant) which

is the optimal cost of the problem. A more detailed description will be given

in Chapter 7.

It can be shown that the complexity of bucket elimination algorithms is

time and space exponential in w∗(o). Clearly, the induced width will vary

with the variable ordering. Although finding a minimum induced width

ordering is NP-hard, good heuristic algorithms are available [35].

It has been recently discovered that AND/OR search with full caching

is essentially equivalent to BE [37]. There is a solid line of current research

that investigates the potential benefits of this new perspective of BE (e.g.

dynamic variable and value orderings, data structures, etc).
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Another line of fruitful research is the specialization of inference algo-

rithms to particular frameworks. For instance, the idempotency of constraint

networks (i.e. implicit constraints can be safely added to the network) has

allowed the improvement of complexity bounds for the CSP problem (e.g.

Hyper-tree decompositions [57]). Recently, the instantiation of BE to Max-

SAT has been re-discovered as a natural extension of directional resolution

[31, 21, 90]

3.1.3 Lower Bounds

As we saw in Section 3.1.1, search algorithms for optimization problems follow

the branch-and-bound strategy. These algorithms need to compute a lower

bound at every visited search node. It is well known that the quality of the

lower bound is central to the pruning power of the search algorithm. However,

better lower bounds are usually more expensive to compute and the overhead

may not pay-off the pruning gains. The goal then is to find parameterized

families of lower bounds where the parameter is used to control the accuracy

and the computation cost. There are two prominent types of lower bounding

algorithms: local consistency and mini-bucket elimination.

Local consistency is a family of increasingly harder properties about the

problem [104, 96, 51, 89, 32, 27]. The control parameter is the size of the

subnetwork involved. The more variables involved, the harder the property is.

The simplest form of local consistency is node consistency, which only takes

into account unary functions. The next local consistency is arc consistency,

which takes into account binary functions. In general, i-consistency takes into

account functions with i + 1 variables in its scope. Each local consistency

property comes with its enforcing algorithm, which works in polynomial time.

In weighted constraint networks, the effect of the transformation is a

movement of costs. For instance, the enforcement of arc-consistency produces

a movement of costs from binary to unary and zero-arity functions. The zero-

arity function turns to be a lower bound of the optimal cost. The idea is to

enforce local consistency at each node during search. If the current node
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cannot lead to a better solution and this situation is not detected by the

search algorithm, achieving some level of local consistency may lead to its

discovery. In this way, search does not need to unsuccessfully visit deeper

nodes of the current subtree. All changes made by the local consistency

enforcing algorithm in the current subproblem remain in its children, so the

local consistency does not have to be computed from scratch at every node.

As far as local consistency enforcing preserve the problem semantics, this

schema is valid with any search strategy, from the usual depth or best first,

to more sophisticated ones.

Another lower bounding algorithm is mini-bucket elimination. Mini-

bucket elimination (MBE) [38] is the approximation version of BE. By elimi-

nating a variable, BE makes explicit the impact of this variable on the rest of

the variables. Instead, MBE eliminates a variable from restricted subsets of

these constraints, thus reducing the computation. The result is an approxi-

mation of the optimal cost. MBE has a control parameter z which indicates

the level of accuracy. The higher the value of z, the tighter the approxima-

tion obtained. In the limit, when z equals the number of variables n, MBE

is equivalent to BE and, as a result, it computes the optimal cost. The time

and space complexity is exponential in the parameter z. Therefore, there is

a trade-off between the accuracy and resources. Further details will be given

in Chapter 8.

3.2 Multi-objective Optimization

Multi-objective optimization has been studied in different research areas and

from different points of view. In this Section, we review some of the tech-

niques used to solve this kind of problems in Artificial intelligence and Op-

erations research.
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Figure 3.3: A possible initial state and the final state of the 8-puzzle problem.

3.2.1 Artificial Intelligence

Although mono-objective optimization has been studied in depth within AI,

there is little work on multi-objective optimization. In the following we re-

view the main contributions in heuristic search and constraint programming.

Each one of this research fields considers slightly different types of problems.

Heuristic Search

Heuristic search has traditionally been one of the fundamental problem solv-

ing tools in AI. It considers problems modeled as a set of configurations or

states that the problem can be in. The set of states, called state space, in

general form a graph where two states are connected if there is an operation

that can be performed to transform the first state into the second. Typically,

each taken action has an associated cost. The path cost function combines

in a certain way the costs of the actions in a path. The task is to compute

the best path from an initial state to a goal state with a desired property

according to a given path cost function.

Example 3.2.1 The 8-puzzle problem is a well-known mono-objective exam-

ple. It consists of a 3 × 3 board with eight numbered tiles and a blank space.

A tile adjacent to the blank space can slide into the space. The objective is

to reach a specified goal state from a start state, as the ones shown in Figure

3.3. The standard formulation is as follows:
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• States: a state description specifies the location of each of the eight

tiles and the blank in one of the nine squares.

• Initial state: any state can be designated as the initial state.

• Actions: the possible set of actions is the move of blank to left, right,

up, or down.

• Goal state: any state can be designated as a goal state.

• Path cost: each step costs 1, so the path cost is the number of steps

in the path.

Multi-objective optimization problems are modeled in the same way, the

only different being that the cost of an action is a vector (each component

corresponds to an objective). As a result, the cost of a path is also a vector.

Since vectors are partially ordered, there does not exist an unique best path,

but a set of incomparable or non-dominated paths. Then, the task is to

compute the set of non-dominated best paths, according to a given path

function.

Example 3.2.2 Consider a road map where each road between two cities has

two associated values: the distance between the cities and the driving-time.

The task is to find the shortest and quickest way to get from one location to

another. We can formulate this problem as,

• States: the cities.

• Initial state: a given city.

• Actions: driving from one city to another, if there is a road that links

them.

• Goal state: a given city.
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• Path cost: each step costs (dij, tij), where dij and tij is the distance

and driving-time to from city i to city j, respectively. The cost of a

path is the pairwise sum of each step cost.

These problems are solved by searching through the state space. The

most important mono-objective algorithms are A∗, IDA∗, and frontier search.

These algorithms have been extended to multi-objective optimization. In the

following, we outline these extensions.

Multiobjective A∗. A∗ [60, 61, 106, 110] is a best-first search algorithm

that finds the least-cost path from a given initial state to one goal state (out

of one or more possible goals). The basic operations of the algorithm are

node selection and expansion at each iteration. Nodes are selected according

to a given evaluation heuristic function (usually denoted f(x)). In A∗ each

open node is associated to a single path that can be further expanded. The

main limitation of A∗ is its exponential space requirements.

Multiobjective A∗ (MOA∗) [139] maintains the structure and basic oper-

ations of A∗ accommodated to the new multiobjective context. Each open

node is now associated with a set of non-dominated paths. The heuristic

function, noted f(x), is a vector of heuristic functions. Nodes are selected

according to f(x) and another domain specific heuristic function to break

ties. When a node is selected for expansion, all known non-dominated paths

reaching that node are extended.

Mandow and Pérez [97] propose NAMOA∗, a new approach to MOA∗.

The algorithm considers path selection and expansion as basic operations.

It maintains a list of open paths, instead of open nodes. Then, individual

paths are selected for expansion. This strategy results in a more efficient

space management since only the paths that can lead to new non-domination

solutions are expanded.

Multiobjective Iterative Deepening A∗. Iterative deepening A∗ (IDA∗)

[83] is a space-efficient refinement of A∗. The idea of the algorithm is to re-

peatedly increase a threshold value and to perform depth-first search where

the objective function is bounded by the threshold. The threshold is in-
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creased until the algorithm finds a solution. The main advantage of IDA∗

over A∗ is its polynomial space complexity. The main disadvantage is the

repeated expansion of nodes. In a tree, or a graph with very few cycles, a

IDA∗ search is usually the best choice.

Multi-objective iterative deepening A∗ (IDMOA∗) [59] is the generalization

of IDA∗ to the multi-objective context. In IDMOA∗ the threshold is a vec-

tor where each component is the threshold value for each objective function.

First, the algorithm finds the best solution according to the first objective

function. Then, the algorithm sequentially adjust the threshold of each ob-

jective function and finds the non-dominated solutions that do not surpass

this threshold. The set of solutions found in each search is used to set the

maximum threshold for each objective. The algorithm terminates when all

the objectives have been considered. A similar strategy has been also pro-

posed in the operations research field under the name of ǫ-constraint (see

Section 3.2.2, Figure 3.4).

Constraint programming

Constraint programming (CP) [3] is a research field whose main goal is the

development of languages and algorithms to model and solve problems that

can be expressed as a constraint satisfaction problem (or any of its exten-

sions) (see Section 2.3.1). One approach to solve mono-objective optimization

problems with constraint programming technology is to replace the objec-

tive function F (X ) by a constraint F (X ) < K where K is initially set to

a sufficiently large number. Each time a solution is found, the constraint

is tightened by decreasing the value of K. The process goes one until the

solver reports failure. The last value of K is the optimum. This algorithm

is a variation of IDA∗ in which the threshold decreases instead of increasing.

This can be done because the search tree has bounded depth..

The efficiency of a CP solver depends on its ability to model and propa-

gate constraints. When solving mono-objective optimization problems, that

means its ability to express and propagate F (X ) < K. We can say that
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current CP solvers are only efficient for very specific forms of F (X ) (e.g.,

linear functions).

Gavanelli [54] extends this idea to multi-objective optimization. His al-

gorithm maintains the set of non-dominated solutions found so far because

they are candidates to be in the problem’s efficient frontier. Moreover, every

time the algorithm finds a new solution, it explicitly adds a set of constraints

that limit the next solutions to be better, in the non-dominated sense, than

the already achieved ones. In other words, a (tentative) possible solution

will be pruned off if it is worst in all the objective functions than an already

obtained solution. In some sense, this constraints mimics the role of the

upper bound and the pruning condition in the mono-objective case. How-

ever, since the algorithm solves a multi-objective problem as a sequence of

constraint satisfaction problems, these two concepts are hidden. Moreover,

the algorithm does not detail the lower bounding used.

Junker [72] studies the potential of constraint programming in preference-

based optimization problems. His main concern is the preference elicitation

process of a user that may have multiple criteria in mind. His proposal

consists in solving a sequence of mono-objective optimization problems with

which the user refines his preferences. The procedure, called preference-based

search (PBS), consists of two modules: a master-PBS explores the criteria

in different orders and assigns optimal valuations to them. The optimal

valuation of a selected criterion is determined by a sub-PBS, which performs a

mono-objective branch-and-bound search through the original problem space.

Through successive mono-objective optimizations, the algorithm explores the

whole search space and finds the non-dominated solutions.

Other works related to Junker’s study the transformation of the partial

order defined by multi-objective optimization problems to a total order. That

is the case of leximim preorder [105] used in social choice theory [76] or the

order induced by the Choquet integral aggregation function used in multi-

attribute utility theory (MAUT) [76]. In the first case, Bouveret and Lemaitre

[22] introduce three different generic algorithms based on branch-and-bound
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that finds the optimal solution in terms of the leximin preorder. In the

latter, Le Huédé et. al [66] introduce MCS, a general search branch-and-

bound algorithm that alternates mono-objective searches following various

mono-criterion strategies to find solutions of increasing quality with respect

to the aggregation function.

3.2.2 Operations Research

In the Operations Research (OR) field, problems are mathematically modeled

as a set of real or integer variables and a real objective function subject to

some constraints. The set of feasible assignments, noted Q ⊂ Rn, is called

feasible set. Usually, Q is given implicitly through constraints in the form of

mathematical functions, i.e., Q = {X ∈ Rn|gj(X) ≤ 0, j = 1, . . . , l; hj(X) =

0, j = 1, . . . , m}, where X is a complete assignment. In the case of multi-

objective optimization, the objective function is a real vector-valued function

f : Rn → Rp composed of p real-valued objective functions, f = (f1, . . . , fp),

where fk : Rn → R for k = 1, . . . , p. Formally, the problem is stated as

min(f1(X), . . . , fp(X)) subject to X ∈ Q

The symbol min is generally understood as finding optimal values of f in

terms of the usual non-domination partial order. In this context, the set of

optimal vectors is called solution set.

There are two general approaches to generate the solution set of multi-

objective optimization problems: scalarization and non-scalarization meth-

ods. These approaches convert the multi-objective problem into one mono-

objective problem, a sequence of mono-objective problems, or another multi-

objective problem. Under some assumptions solution sets of these new pro-

grams yield solutions of the original problem. Scalarization methods explic-

itly employ a scalarizing function that combine in a certain way the multiple

objectives into one single objective. Non-scalarizing methods transform the

original problem using other methods. Solving the mono-objective problem
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typically yields one solution of the original problem so that a repetitive so-

lution scheme is needed to obtain a subset of solutions of the multi-objective

problem.

The weighted sum approach [56, 67, 41] is one of the most popular meth-

ods based on scalarization. It is based on the aggregation of the different

objectives via a weighted sum. The problem solved is,

min{
p∑

j=1

λjfj(X) : X ∈ Q}

where 0 ≤ λj ≤ 1 and
∑p

j=1 λj = 1. Different weighted vectors (λ1, . . . , λp)

would ideally lead to finding different elements of the solution set, but for an

unknown problem it is not clear what weight combination to choose. Even if

all possible weight combinations were used, it cannot be guaranteed to find

Pareto-optimal solutions in concave regions of the solution set.

The ǫ-constraint approach [24] is another traditional scalarization method

to generate the whole solution set. In this method one objective function is

retained as a sclalar-valued objective while all the other objective functions

are bounded from below by means of additional constraints. An intermediate

ǫ-constraint sub-problem is formulated as

minimize fk(X)

subject to fi(X) ≤ ǫi, i = 1, . . . , p, i 6= k

X ∈ Q

By a systematic modification of the constraint bounds ǫi, the algorithm ob-

tains different elements of the solution set. The method relies on the avail-

ability of a procedure to solve single-objective optimization problems.

Since we use this method in some of our experiments on bi-objective prob-

lems, Figure 3.4 shows an implementation for the case of two objectives. The

algorithm receives two objective functions f1 and f2, and their correspond-

ing lower and upper bounds (l1, l2) and (u1, u2), respectively. The algorithm

executes a sequence of minimizations of f1 subject to different constraints
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function ǫ-constraint((f1, f2), (l1, l2), (u1, u2))

return set of pairs

1. E := ∅;
2. ǫ1 := u1; ǫ2 := l2;

3. do

4. X := minimize(f1) subject to f2 < ǫ2 and f1 < ǫ1;

5. if 6 ∃(v1, v2) ∈ E such that (v1, v2) < (f1(X), f2(X)) then

6. E := E ∪ {(f1(X), f2(X))};
7. endif

8. ǫ1 := f1(X); ǫ2 := ǫ2 + 1;

9. while ǫ1 > l1 and ǫ2 < u2;

10. return E ;

endfunction

Figure 3.4: ǫ-constraint algorithm for two objective functions.

on f2 < ǫ2 (line 4). The first constraint is f2 < l2 (line 2) and iteratively

increasing ǫ2 and decreasing ǫ1 using the valuation of f1 on the optimum of

the previous single-objective run (line 8). The output of the algorithm is the

Pareto set defined by the objective function f = (f1, f2).

The lexicographic approach [39, 40, 10] is one of the most popular non-

scalarazing methods. It assumes a ranking of the objective functions ac-

cording to their importance. The lexicographical total order is defined as:

f(X) <lex f(X ′) if fj(X) < fj(X
′), where j is the smallest index such that

fj(X) 6= fj(X
′). The lexicographic problem can be solved with respect to

one, or all permutations of the objective functions fj .

There are some specially structured problems for which dedicated algo-

rithms have been proposed. The most important case are the multi-objective

linear problems (MOLP), where both objective functions and constraint func-

tions are linear. Formally, a MOLP is
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min Cx

subject to Ax = b

x ≥ 0

where C is a p×n objective function matrix, A is an l×n constraint matrix,

and b ∈ Rl. It is usually assumed that the rows of A are linearly independent.

This problems can be solved with Multi-objective Simplex methods [43, 42, 68,

138, 4], an extension of the Simplex methods used for solving mono-objective

linear problems. They proceed in three phases. Roughly, first, an auxiliary

mono-objective linear problem is solved to check feasibility. There exists a

solution if and only if the optimal value of this linear problem is 0. If that is

the case, phase 2 founds an initial extreme point or the algorithm stops with

the conclusion that the solution set is empty. Finally, phase 3 explores all

efficient extreme points or efficient bases. In order to determine the whole

solution set, it is necessary to find subsets of efficient extreme points, the

convex hulls of which determine maximal efficient faces.

When it is difficult or impossible to obtain the whole Pareto set due

to the computational effort involved, one may use heuristic approaches for

approximating the solution set. The most widely studied approximation

methods are the so called population-based metaheuristics, which maintain

a while set of solutions (the population) and try to evolve the population

toward the solution set. Many different techniques, described in the litera-

ture as evolutionary and genetic algorithms (see [25, 48, 41] for a detailed

review), have been developed to evaluate the fitness of individual solutions

in a multi-objective context and guarantee enough diversity to achieve a uni-

form distribution of solutions over the whole solution set. Research on this

topic was initiated by Schaffer’s vector evaluated genetic algorithm (VEGA

[128]). Other important references in this area include Fonseca and Fleming

with the multi-objective genetic algorithm (MOGA [47]), Srinivas and Deb

with the nondominated sorting genetic algorithm (NSGA [137]), Horn et al.

with the niched pareto genetic algorithm (NPGA [64]), Knowles and Corne

with the pareto archived evolution strategy (PAES [79]) and Zitler and Thiele
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with the strength pareto evolutionary algorithm (SPEA [150]).



Chapter 4

Using Semirings to model

Multiobjective optimization1

The main objective of this Thesis is to solve multi-objective optimization

problems under the graphical model framework. A first necessary step that

we address in this chapter is to rephrase multi-objective optimization with

graphical models terminology. More precisely, if Pmo is a multiobjective

problem we need to define a graphical model and an optimization task able to

compute the efficient frontier of Pmo. We achieve that goal by combining two

types of constructors: the p-composition and the frontier algebra. Namely,

if we combine the p objectives of Pmo via p-composition and extend the

result via its frontier algebra, the resulting optimization problem computes

the efficient frontier of Pmo. Note that the frontier algebra is an original

constructor never used before.

We develop our formalization inside of the so-called semiring CSP (SCSP)

framework. In other words, we show that our formalization is built over an

algebraic structure that satisfies all the axioms that the SCSP framework

assumes as necessary for graphical models. For the sake of generality, we

relax (only in this Chapter) our assumption of additive objective functions.

1The contributions of this Chapter have benefited from discussion with Stefano

Bistarelli and Fabbio Gadduci.

57
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Namely, we consider problems with more than one objective function where

the only requirement is that the independent optimization of each objective

function can be expressed as a SCSP problem. In this way, we depict our

contributions in the most general context.

The structure of this Chapter is the following: In the next section we

review the main algebraic frameworks that have been proposed in the lit-

erature to axiomatize graphical models. As we show, the semiring-based

approach seems to be the best option for our purposes because it can deal

with partially ordered optimization problems. Then, we introduce the two

semiring constructors that we need to model multi-objective problems: p-

composition and frontier algebra. Next, we show that given a multiobjective

problem defined on p totally ordered c-semirings, the frontier algebra of their

p-composition can be used to model the computation of its efficient frontier.

Finally, we instantiate the framework to the case in which all the individ-

ual c-semirings are additive. Such instantiation, that we call multi-objective

weighted CSPs (MO-WCSP), is especially important because it will be used

in all the subsequent chapters.

4.1 Algebraic Frameworks for modeling Op-

timization Tasks

Consider a reasoning task P = (X ,D, A,F ,
⊗

,
⊕

). Its valuation structure is

the triple K = (A,⊗,⊕) (see Section 2.1). In the previous chapter, valuation

structures were defined in a very imprecise form, that is, without justifying

the properties that they must satisfy. However, the behaviour of valuation

structures of the most usual tasks implicitly give us the desired common

properties for each operator. In the context of optimization:

• The set A is used to specify how good or bad are the different assign-

ments of the variables. This means, that there must be an order ≤K to

compare the values (i.e., ∀ a, b ∈ A, a ≤K b means that a is better than
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b).

• The operator ⊗ is used to combine valuations from the different func-

tions.

– Since graphical models are defined by a set of functions, the order

in which those functions are combined has to be irrelevant. This

means that the ⊗ operator must be associative and commutative.

– The combination of valuations must produce higher valuations.

Formally, this means that the ⊗ operator must be monotone (i.e.,

∀ a, b ∈ A, a ≤K a⊗ b). This property is heavily exploited by

algorithms and plays a key role in their performance.

– For modeling purposes, it is convenient that A contains a spe-

cial value ⊤, called top, expressing the notion of total dislike or

inconsistency of an assignment. Any tuple receiving such valua-

tion from a function should immediately be identified as incon-

sistent. Consequently, ⊤ must be the absorbing element of ⊗
(∀ a ∈ A, a⊗⊤ = ⊤).

– Similarly, it is convenient to have a value ⊥, called bottom, ex-

pressing the notion of total like or perfect assignment. If a tuple

receives such valuation from a function, it should not increase its

overall valuation. Consequently, ⊥ must be the unit element of ⊗
(∀ a ∈ A, a⊗⊥ = a).

• The operator ⊕ is used to select valuations from different entries of the

same function (i.e. different assignments of the same variables).

– There is no implicit order over the different assignments of the

variables. This means that the ⊕ operator must also be associative

and commutative.

– Since the ⊕ operator is used for choosing the best alternative, it

must work in coherence with the order ≤K.
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There are two approaches to incorporate the previous list of requirements:

Valued CSP (VCSP) [129] and Semiring CSP (SCSP) [17].

• In the Valued CSP framework the valuation structure K = (A,⊗,⊕) is

required to satisfy the following conditions:

– A must be a totally ordered set with ⊤ and ⊥ being the highest

and lowest values, respectively.

– The ⊗ operator must be commutative and associative.

– The ⊗ operator must satisfy that ∀ a, b, c ∈ A a ≤K b ⇒ a⊗ c ≤K

b⊗ c.

– The ⊥ element is unit with respect ⊗.

– The ⊤ element is absorbing with respect ⊗.

– The ⊕ operator is the min with respect to the total order.

A Valued CSP problem is a reasoning task such that its valuation struc-

ture satisfies the previous conditions.

• In the Semiring CSP framework the valuation structure K = (A,⊗,⊕)

is required to satisfy that:

– A is an arbitrary set containing ⊤ and ⊥.

– ⊗ is commutative and associative.

– The ⊥ element is unit with respect ⊗.

– The ⊤ element is absorbing with respect ⊗.

– ⊕ is commutative and associative.

– ⊕ is idempotent.

– ⊗ distributes over ⊕.
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Task CSP WCSP #CSP MAP MPE

K ({true, false},∧,∨) (N∞,+, min) ({1, 0},×,+) ([0, 1],×,+) ([0, 1],×,max)

VCSP
√ √ √

SCSP
√ √ √

SS
√ √ √ √ √

Figure 4.1: Relation between reasoning tasks and algebraic frameworks.

– The order over A is defined as2 a ≤K b iff a⊕ b = a.

Valuation structures that satisfy the previous conditions are called c-

semirings because they are semirings with some additional require-

ments. A Semiring CSP problem is a reasoning task such that its

valuation structure is a c-semiring.

It is easy to see that the SCSP framework is strictly more general than

the VCSP framework [17]. The essential difference is that SCSP gives more

freedom to the ⊕ operator which allows A to be partially ordered. In multi-

objective optimization problems, it is clear that we need to deal with partially

ordered valuations.

At this point it may be worth to mention the existence of another frame-

work called Shenoy Shaffer (S-S) [133]. Initially, its algebraic structure,

called valuation algebra, has been described by means of three axioms and

related to inference algorithms. It has been further extended and studied in

detail in [134, 81, 80]. Mainly, it verifies the same properties as the SCSP

framework except for the idempotency of the ⊕ operator. This absence al-

lows the S-S framework to capture not only optimization, but also counting

tasks. This framework is specially appropriate for modeling bayesian net-

works, where both types of tasks are posed. Since we are only interested in

optimization problems, we do not consider the S-S framework in our work.

2In the original formulation of SCSP optimization was assumed to be maximization.

Therefore, a higher value of the semiring was interpreted as a better value. For coherence,

≤K was defined as a ≤K b iff a + b = b. Since we are dealing with minimization tasks we

reverse the semantics of the order and interpret small values as better.
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Table 4.1 relates algebraic frameworks and graphical model tasks by

telling the expressive power of each framework. The first and second rows

contain the main reasoning tasks on graphical models and their associated

valuation structures, respectively. The following three rows tell, for each al-

gebraic framework (i.e., VCSP, SCSP, S-S), if it can be used to model the

corresponding reasoning task. As it can be seen, S-S is the only framework

that can model counting tasks. Regarding VCSP and SCSP, we see that the

two of them can model the most usual optimization tasks. However, as we

show in the rest of this chapter, SCSP can model multi-objective optimiza-

tion while VCSP cannot. The obvious reason is that VCSP cannot deal with

partially ordered valuation sets. This is true by definition of VCSP.

4.2 Important properties of c-semirings

In the following, we list a number of properties that any c-semiring K =

(A,⊗,⊕) accomplishes. We only refer to those theorems that will be useful

thoughout the Thesis.

Theorem 4.2.1 ≤K is a partial order (i.e., reflexive, transitive and antysim-

metric).

Proof Theorem 2.3 in [17].

Theorem 4.2.2 ⊗ and ⊕ are monotone over ≤K. Formally,

∀ a, b, c ∈ A if a ≤K b then a⊗ c ≤K b⊗ c and a⊕ c ≤K b⊕ c

Proof Theorem 2.4 in [17].

Theorem 4.2.3 Let a, b, c, d ∈ A. If a ≤K b and c ≤K d then a⊗ c ≤K

b⊗ d.

Proof By monotonicity of ≤K, a⊗ c ≤K b⊗ c and c⊗ b ≤K d⊗ b. Then, the

theorem holds by commutativity of ⊗ and transitivity of ≤K.
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Theorem 4.2.4 ⊗ is intensive, that is, ∀ a, b ∈ A, a ≤K a⊗ b.

Proof Theorem 2.5 in [17].

Theorem 4.2.5 Let P be a reasoning task defined over the c-semiring K.

Let F be its set of functions. Let F ′ be a subset of F and P ′ the reasoning

task defined over this subset. If the optimal valuation of P is α, then the

optimal valuation of P ′ is β, with β ≤K α, where ≤K is the partial order

defined by the c-semiring K.

Proof Theorem 3.18 in [17].

4.3 Semiring-based multi-objective optimiza-

tion

Consider a multi-objective problem Pmo with multiobjective function F =

(F1, . . . , Fp). Recall that we are concerned with the computation of its ef-

ficient frontier E(Pmo) = {F (X) | ∀X ′ F (X ′) 6< F (X)}, where < is the

domination partial order among vectors (see Definition 2.2.1).

We assume that the independent optimization of each objective Fj can

be modeled as an optimization task Pj = (X ,D, Aj,Fj,
⊗

j ,
⊕

j) such that

Kj = (Aj,⊗j ,⊕j) is a c-semiring with top element ⊤j and bottom element

⊥j . The objective function is,

Fj(X ) =
⊗

j
f∈F

f

and its optimum is,
⊕

j
X

Fj(X )

The set of variables X and their domain values D is common to all the

objectives.
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4.3.1 p-composition SCSP

p-Dimensional c-semiring

The composition of p c-semirings Kj is a new c-semiring KC that combines

them in a cartesian product manner.

Definition 4.3.1 Given p c-semirings Kj = (Aj ,⊕j,⊗j), for j = 1, . . . , p,

their composition is KC = (AC,⊕C,⊗C) where:

• AC = A1 × A2 × . . . × Ap

• (a1, . . . , ap)⊕C(b1, . . . , bp) = (a1 ⊕1 b1, . . . , ap ⊕p bp)

• (a1, . . . , ap)⊗C(b1, . . . , bp) = (a1 ⊗1 b1, . . . , ap ⊗p bp)

Theorem 4.3.1 [17] KC is a c-semiring whose top and bottom elements are

(⊤1, . . . ,⊤p) and (⊥1, . . . ,⊥p), respectively.

Property 4.3.1 The order ≤KC
induced by ⊕C is,

(a1, . . . , ap) ≤KC
(b1, . . . , bp) iff ∀

1≤j≤p
aj ≤Kj

bj

In general, ≤KC
is a partial order, even if each of the ≤Kj

is a total

order. Observe that ≤KC
coincides with the partial order used in multi-

objective optimization (see Definition 2.2.1). For that reason, some authors

have claimed that the p-composition of the p semirings associated to the

p objectives can be used to model and solve multi-objective optimization

problems [18, 19]. Now we develop this idea and show that it cannot be

considered fully satisfactory because their notion of solution is only very

loosely related to the concept of pareto-optimality.

p-composition SCSP Problems

The p-composition of p SCSP problems is a new SCSP problem over the

p-composition of their c-semirings.
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Definition 4.3.2 Given p SCSP problems Pj = (X ,D, Aj,Fj,
⊗

j ,
⊕

j), their

p-composition is a new SCSP problem PC = (X ,D, AC,FC,
⊗

C,
⊕

C). PC uses

c-semiring KC = (AC,⊗C,⊕C) .

Each function f : l(var(f)) → Aj belonging to each Fj is transformed

into a new function f ′ : l(var(f)) → AC defined as

f ′(t) = (⊥1, . . . ,⊥j−1, f(t),⊥j+1 . . . ,⊥p)

In words, function outcomes of f are transformed to an equivalent vectorial

representation in f ′. Then, the set FC contains the new f ′ functions.

Note that the optimization problem PC does not return a set of vectors,

but a single cost vector ~v. Therefore, in general PC does not compute the

efficient frontier of Pmo. Next, we show that the jth component of ~v is the

optimum of problem Pj , that is, the optimum of the jth objective function

of Pmo when its p objective functions are considered independently. As a

consequence, it may not even exist any complete assignment X such that

F (X) = ~v. The following proposition characterizes the optimum of PC in

terms of the original multi-objective problem Pmo.

Property 4.3.2 Consider a multi-objective problem Pmo. Let E(Pmo) denote

its efficient frontier. Let PC be the p-composition of the p objectives of Pmo

and ~v be its optimum. Namely,
⊕

C
X

(
⊗

C
f∈FC

f) = ~v

Then, it can be shown that ~v is the greatest vector that is lower or equal to

every element in E(Pmo).

Formally, ~v is the greatest lower bound of E(Pmo) (i.e., ~v = glb(E(Pmo)).

A straightforward consequence of the previous proposition is that PC com-

putes the efficient frontier of the original problem Pmo if and only if the effi-

cient frontier is a singleton. Otherwise, PC only computes the best singleton

underapproximation.

The previous results are illustrated with the following example.
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Example 4.3.1 Consider a bi-objective optimization problem Pmo. Let X =

{x1, x2} and let D1 = D2 = {0, 1}. The first objective function is F1 =

f1 + f2 where f1(x1) = x1 and f2(x2) = x2. The second objective function is

F2 = h1 + h2 where h1(x1) = 1 − x1 and h2(x2) = x2. The multi-objective

function is F = (F1, F2). It is easy to see that the efficient frontier of Pmo

is E(Pmo) = {(1, 0), (0, 1)}. Note that cost vectors (1, 2) and (2, 1) are not

efficient because they are dominated by the cost vectors in E(Pmo).

Let us consider the SCSP problem PC. First, the independent optimization

of each objective function Fj can be modeled as a WCSP problem

Pj = ({x1, x2}, {0, 1}, N∞,Fj, +, min)

over c-semiring

Kj = 〈N∞, +, min〉
with ⊤j = ∞ and ⊥j = 0. The set of functions for the first and second

WCSPs are F1 = {f1, f2} and F2 = {h1, h2}, respectively.

The 2-composition of c-semirings K1 and K2 is

KC = 〈−→A,
−→
+ ,

−−→
min〉

where,

• −→
A = N∞ × N∞

• −−→
min = (min, min)

• −→
+ = (+, +)

• ⊤ = (∞,∞)

• ⊥ = (0, 0)

Then, the SCSP problem defined over KC is

PC = ({x1, x2}, {0, 1},
−→
A,FC,

−→
+ ,

−−→
min)

The set of functions is FC = {f ′
1, f

′
2, h

′
1, h

′
2} where
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f ′
1(x1) = (x1, 0) f ′

2(x2) = (x2, 0)

h′
1(x1) = (0, 1 − x1) h′

2(x2) = (0, x2)

Note that the set of functions in FC represents the same information as the

corresponding functions in F1 and F2 but extended to the vectorial context of

PC. The optimization problem PC computes,

−−→
min
X

{
−−→∑

f∈FC

f}

which is equivalent to,

(min
X

(F1), min
X

(F2))

The result of the previous expression is the vector (0, 0), which is not the

efficient frontier E(Pmo). It is easy to see that 0 is the optimum of both

optimization problems P1 and P2 when considered independently.

4.3.2 Frontier SCSP

We have shown that solving the p-composition of p objective functions does

not capture the efficient frontier of a multi-objective problem Pmo. The main

reason is that its valuations are single cost vectors while the efficient frontier

is a set of cost vectors.

In the following, we show how to build from a generic c-semiring K a new

c-semiring L(K) whose elements are not-empty sets of elements of K. Then,

we demonstrate that if a SCSP problem P over c-semiring K is rephrased

over L(K), its optimum is the set of optima of P .

Frontier algebra

Consider a c-semiring K = (A,⊗,⊕), where ≤K is the (possibly partial) order

of A. We introduce the set of non-dominated elements of a subset S ⊆ A.

Definition 4.3.3 Let S be a subset of A. The set of non-dominated elements

of S is,

‖S‖ = {a ∈ S | ∀ b ∈ S, b 6<K a}
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The idea of the set of non-dominated elements is to keep only the best

valuations in S according to the partial order. We say that a set S is a set

of non-dominated elements if it does not contain dominated elements (i.e.

S = ‖S‖). We adopt the usual multi-objective terminology where a set of

non-dominated elements is called a frontier.

Definition 4.3.4 Let A be a set of valuations. The frontier space of A,

noted L(A), is the set of subsets of A that do not contain dominated elements.

Formally, L(A) = {S ⊆ A | S = ‖S‖}.

The frontier algebra of K is a new c-semiring L(K) whose set of valuations

is the frontier space of A.

Definition 4.3.5 Let K = (A,⊗,⊕) be a c-semiring. Then, its frontier

algebra is

L(K) = (L(A), ⊗L, ⊕L)

where,

• L(A) is the frontier space of A

• S ⊗L T = ‖{a⊗ b | a ∈ S, b ∈ T}‖

• S ⊕L T = ‖S ∪ T‖

Theorem 4.3.2 Let K be a c-semiring with top element ⊤ and bottom el-

ement ⊥. Then, its frontier algebra L(K) is a c-semiring whose top and

bottom elements are {⊤} and {⊥}, respectively.

Proof Let S, T , R be arbitrary elements of L(A). We proof, one by one,

the required conditions.

• commutativity of ⊗L. By definition, S ⊗L T = ‖{a⊗ b | a ∈ S, b ∈ T}‖.
Since ⊗ is commutative, the previous expression is equal to ‖{b⊗ a |
b ∈ T, a ∈ S}‖ = T ⊗L S.
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• associativity of ⊗L. We have to proof that (S ⊗L T )⊗L R = S ⊗L(T ⊗L R).

Suppose that the previous equality does not hold. Then, it would imply

that:

i. there may exist an element a ∈ (S ⊗L T )⊗L R, such that a 6∈
S ⊗L(T ⊗L R); or,

ii. there may exist an element a ∈ S ⊗L(T ⊗L R), such that a 6∈
(S ⊗L T )⊗L R.

We show that both cases are impossible.

Consider the first case. Since a 6∈ S ⊗L(T ⊗L R), it means that there

exist an element a′ ∈ S ⊗L(T ⊗L R) such that a′ <K a. Element a

comes from the combination of three elements a = (s⊗ t)⊗ r where

s ∈ S, t ∈ T and r ∈ R. Element a′ comes from the combination of

three elements a′ = s′⊗(t′ ⊗ r′) where s′ ∈ S, t′ ∈ T and r′ ∈ R. By

associativity of operator ⊗, a′ = (s′ ⊗ t′)⊗ r′. Then, either s′ ⊗ t′ ∈
S ⊗L T or s′⊗ t′ 6∈ S ⊗L T :

- If s′⊗ t′ ∈ S ⊗L T , since a′ <K a and by definition of ⊗L, a 6∈
(S ⊗L T )⊗L R, which contradicts the hypothesis.

- If s′ ⊗ t′ 6∈ S ⊗L T , by definition of ⊗L, there exists an element

s′′ ∈ S, t′′ ∈ T such that s′′ ⊗ t′′ ∈ S ⊗L T and s′′ ⊗ t′′ <K s′ ⊗ t′.

By monotonicity of <K, (s′′ ⊗ t′′)⊗ r′ <K (s′ ⊗ t′)⊗ r′. By transi-

tivity of <K, (s′′ ⊗ t′′)⊗ r′ <K (s⊗ t)⊗ r. Then, by definition of

⊗L, a 6∈ (S ⊗L T )⊗L R, which contradicts the hypothesis.

The proof for the second case is the same as above, but interchanging

the role of a and a′, and S and R.

• {⊥} is the identity element of ⊗L. We have to proof that {⊥}⊗L S = S.

By definition, {⊥}⊗L S = {⊥⊗ a | a ∈ S}. Since ⊥ is the identity of

⊗, the previous expression is equal to {a | a ∈ S} = S.
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• {⊤} is the absorbing element of ⊗L. We have to proof that {⊤}⊗L S =

{⊤}. By definition, {⊤}⊗L S = {⊤⊗ a | a ∈ S}. Since ⊤ is the

absorbing element of ⊗, the previous expression is equal to {⊤}.

• commutativity of ⊕L. By definition, S ⊕L T = ‖S∪T‖. Since set union

is commutative, ‖S ∪ T‖ = ‖T ∪ S‖ which is by definition T ⊕L S.

• associativity of ⊕L. By definition, (S ⊕L T )⊕L R = ‖‖S ∪ T‖ ∪ R‖
and S ⊕L(T ⊕L R) = ‖S ∪ ‖T ∪ R‖‖. Clearly, the two expressions are

equivalent to ‖S ∪ T ∪ R‖.

• idempotency of ⊕L. We have to proof that S ⊕L S = S. By definition,

S ⊕L S = ‖S ∪ S‖. Since set union does not allow repeted elements,

the previous expression is equal to ‖S‖ = S.

• ⊗L distributes over ⊕L. We have to proof that S ⊗L(T ⊕L R) =

(S ⊗L T )⊕L(S ⊗L R). Suppose that the previous equality does not

hold. Then, it would imply that:

i. there exists an element a ∈ A such that a ∈ S ⊗L(T ⊕L R) but

a 6∈ (S ⊗L T )⊕L(S ⊗L R); or

ii. there exists an element a ∈ A such that a ∈ (S ⊗L T )⊕L(S ⊗L R)

but a 6∈ S ⊗L(T ⊕L R).

We show that both cases are not possible.

Consider the first case. Since a 6∈ (S ⊗L T )⊕L(S ⊗L R), it means that

there exists an element a′ ∈ A such that a′ ∈ (S ⊗L T )⊕L(S ⊗L R)

and a′ <K a. Element a′ comes from the combination of two elements

s′, u′ ∈ A such that a′ = s′ ⊗u′ where s′ ∈ S, and u′ ∈ T or u′ ∈ R.

Element u′ can either belong to T ⊕L R or not:

- If u′ ∈ T ⊕L R, since s′⊗ u′ <K a and by definition of ⊗L, a 6∈
S ⊗L(T ⊕L R), which contradicts the hypothesis.
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- If u′ 6∈ T ⊕L R, by definition of ⊕L, there exists an element w′ ∈
T ⊕L R such that w′ <K u′. By monotonicity of <K, s′ ⊗w′ <K

s′⊗ u′. By transitivity of <K, s′ ⊗K w′ <K a. Then, by definition

of ⊗L, a 6∈ S ⊗L(T ⊕L R), which contradicts the hypothesis.

Consider the second case. Since a 6∈ S ⊗L(T ⊕L R), it means that there

exists an element a′ ∈ A such that a′ ∈ S ⊗L(T ⊕L R) and a′ <K a.

Moreover, since a ∈ (S ⊗L T )⊕L(S ⊗L R), then either a ∈ S ⊗L T or

a ∈ S ⊗L R. Element a′ comes from the combination of two elements

s′, u′ ∈ A such that a′ = s′ ⊗u′ where s′ ∈ S and u′ ∈ T ⊕L R. As a

consequence, either u′ ∈ T or u′ ∈ R.

If u′ ∈ T , then either a′ ∈ S ⊗L T or a′ 6∈ S ⊗L T :

- If a′ ∈ S ⊗L T , then either by definition of ⊗L when a ∈ S ⊗L T or

by definition of ⊕L when a ∈ S ⊗L R, a 6∈ (S ⊗L T )⊕L(S ⊗L R),

which contradicts the hypothesis.

- If a′ 6∈ S ⊗L T , then there exists an element a′′ ∈ A such that

a′′ ∈ S ⊗L T and a′′ <K a′. By transitivity of <K, a′′ <K a. As

a consequence, either by definition of ⊗L when a ∈ S ⊗L T or

by definition of ⊕L when a ∈ S ⊗L R, a 6∈ (S ⊗L T )⊕L(S ⊗L R),

which contradicts the hypothesis.

When u′ ∈ R, the reasoning is the same as above but interchanging the

role of T and R.

It is worthwhile to see the ordering ≤L(K) that the SCSP approach as-

sociates to the frontier algebra L(K), because it will be pivotal in multi-

objective branch and bound (Chapter 5).

Property 4.3.3 Let S, T ∈ L(A). Then, S ≤L(K) T iff for each b ∈ T there

exists a ∈ S such that a ≤K b.
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Proof By definition, S ≤L(K) T iff S ⊕L T = S. Clearly, S ⊕L T = S iff

every element of T is dominated by some element of S, which corresponds

to the statement of the proposition.

Property 4.3.4 Let S, T ⊆ A. If S ⊆ T then ‖T‖ ≤L(K) ‖S‖.

Proof We proceed by contradiction. Suppose that ‖T‖ 6≤L(K) ‖S‖. This

means that ∃ s ∈ ‖S‖ such that s 6∈ ‖T‖ and ∀ t ∈ ‖T‖, t 6≤K s. Since

S ⊆ T , s 6∈ ‖T‖ and by definition of ‖T‖, ∃ t′ ∈ ‖T‖ such that t′ ≤K s, which

contradicts the hypothesis.

Moreover, since L(K) is proved to be a c-semiring, ≤L(K) is a partial

order, operators ⊗L and ⊕L are monotone with respect to ≤L(K), and ⊗L is

intensive.

Frontier SCSP Problems

The frontier extension of a SCSP problem P is a new SCSP problem L(P )

that, in a way, is able to consider different incomparable optimal alternatives

of P .

Definition 4.3.6 Let P = (X ,D, A,F ,
⊗

,
⊕

) be a SCSP problem defined

over a c-semiring K = (A,⊗,⊕). Its frontier extension is a new SCSP

problem L(P ) = (X ,D,L(A),L(F),
⊗

L,
⊕

L) over the frontier c-semiring

L(K) = (L(A),⊗L,⊕L).

Each function f : l(var(f)) → A is trivially transformed into a new

function f ′ : l(var(f)) → L(A) defined as f ′(t) = {f(t)}. In words, function

outcomes of f are transformed to singleton sets in f ′. Then, the set L(F)

contains the new f ′ functions.

The following theorem shows that the optimum of L(P ) corresponds to

the set of valuations associated with the optimal solutions in P .
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Theorem 4.3.3 Consider a SCSP problem P = (X ,D, A,F ,
⊗

,
⊕

) defined

over a (possibly partially ordered) c-semiring K. Let F (X ) =
⊗

f∈F f be its

objective function. Let L(P ) = (X ,D,L(A),L(F),
⊗

L,
⊕

L) be the frontier

extension of P and let

FL(X ) =
⊗

L
f∈L(F)

f

be its objective function. The optimization task L(P ) computes the set of

optimal solutions of P . Formally,

⊕

L
X

FL(X ) = {F (X) | ∀X ′, F (X ′) 6<K F (X)}

Proof By definition of
⊕

L
,

⊕

L
X

FL(X ) = ‖
⋃

X∈l(var(X ))

FL(X)‖

By definition of FL,

⊕

L
X

FL(X ) = ‖
⋃

X∈l(var(X ))

( ⊗L
f∈L(F)

f(X))‖

By definition of L(F),

⊕

L
X

FL(X ) = ‖
⋃

X∈l(var(X ))

(⊗L
f∈F

{f(X)})‖

Since all {f(X)} are singletons, then {f(X)}⊗L{g(X)} = {f(X)⊗ g(X)}.
Then,

⊕

L
X

FL(X ) = ‖
⋃

X∈l(var(X ))

{ ⊗
f∈F

f(X)}‖

By definition of F ,

⊕

L
X

FL(X ) = ‖
⋃

X∈l(var(X ))

{F (X)}‖
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By definition of the set union,
⊕

L
X

FL(X ) = ‖{F (X) | X ∈ l(var(X )))}‖

By definition of the set of non-dominated elements,
⊕

L
X

FL(X ) = {F (X) | ∀X ′, F (X ′) 6<K F (X)}

4.3.3 Multi-objective SCSP

Finally, we can put all the pieces together and show how to construct from a

multiobjective problem Pmo a SCSP problem whose optimization task com-

putes the efficient frontier of Pmo.

Let K1, . . . ,Kp be the c-semirings of the objectives of Pmo. Let P1, . . . , Pp

be the optimization problems of objective functions F1, . . . , Fp when consid-

ered independently. Let KC denote the p-composition of the p c-semirings

Kj and let PC be the p-composition of the p optimization problems. Let FC

be the objective function of PC. Therefore, FC = (F1, . . . , Fp). As a conse-

quence, the set of optimal complete assignments of PC corresponds to the set

of efficient solutions of Pmo.

Now, let L(KC) be the frontier algebra of KC and let L(PC) be the frontier

extension of PC. From Theorem 4.3.3, the optimization problem L(PC) com-

putes the set of valuations associated with incomparable optimal solutions

of PC. Since this set of optimal solutions corresponds to the set of efficient

solutions of Pmo, a direct consequence is that L(PC) computes the efficient

frontier of Pmo.

The following property and theorem will be useful in future Chapters.

Property 4.3.5 Let P = (X ,D, A,F ,
⊗

L,
⊕

L) and P = (X ,D, A,F ′,
⊗

L,
⊕

L)

be two multi-objective SCSP problems such that F ′ ⊆ F . Then E(P ′) ≤L(KC)

E(P ).

Proof This property is the straighforward consequence of Theorem 4.2.5

and the fact that L(KC) is a c-semiring.
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Theorem 4.3.4 Let P = (X ,D, A,F ,
⊗

L,
⊕

L) be a multi-objective SCSP

problem. Let (F1,F2, . . . ,Fk) be a partition of F and (P1, P2, . . . , Pk) be the

problems induced by each partition. Then,

k∑mo

i=1

E(Pi) ≤L(KC) E(P )

Proof Let ~u ∈ E(P ) and let X(~u) be the complete assignment such that

F (X(~u)) =
∑

Fi(X(~u)) = ~u. Clearly, ∀ i = 1, . . . , k E(Pi) ≤L(KC) {Fi(X(~u))}.

By Theorem 4.2.3,

k∑mo

i=1

E(Pi) ≤L(KC) {F (X(~u))} = {~u}, which means that

∃~v ∈
k∑mo

i=1

E(Pi) such that ~v ≤KC
~u. Since ~u was an arbitrary element of

E(P ), it holds that

k∑mo

i=1

E(Pi) ≤L(KC) E(P ).

4.4 Multiobjective weighted CSP

In this section we summarize the main definitions and results of the Chap-

ter instantiated to the case of additive objective functions. Now, Pmo is

a multi-objective optimization problem with p additive objective functions

Fj =
∑

f∈Fj
f . The objective function of Pmo is F = (F1, . . . , Fp).

A cost vector ~v = (v1, . . . , vp) is a vector of p components where each

vj ∈ N∞. Let ~A be the set of all possible cost vectors. Let ~v, ~u ∈ ~A be

two distinct cost vectors. ~v dominates ~u (noted ~v < ~u), if
−−→
min{~v, ~u} = ~v,

where
−−→
min is the pointwise minimum of their components. The sum of cost

vectors, noted
−→
+, is defined as the pointwise sum of its components (i.e.,

~v
−→
+~u = (v1 + u1, . . . , vp + up)).

Let S be a set of cost vectors. Its set of non-dominated elements is

‖S‖ = {~v ∈ S | ∀
~u∈S

~u 6< ~v}

A set of non-dominated elements S (i.e., S = ‖S‖) is called frontier.
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T

S

R

Figure 4.2: Domination and transitivity among frontiers.

Definition 4.4.1 The valuation structure Kmo = (Amo, +mo, minmo) is,

• Amo = {S ⊆ ~A | S = ‖S‖}

• S +mo T = ‖{~v−→+~u | ~v ∈ S, ~u ∈ T}‖

• minmo{S, T} = ‖S ∪ T‖

Note that elements of Amo are, by definition, non-dominated sets of cost

vectors (i.e., frontiers).

The partial order over frontiers is,

Definition 4.4.2 ∀S, T ∈ Amo S ≤Kmo
T iff minmo{S, T} = S.

In words, frontier S is better than or dominates frontier T iff for all cost

vectors ~u ∈ T there exists a cost vector ~v ∈ S such that ~v dominates ~u. This

notion of preference on frontiers will be crucial in multi-objective search

(Chapters 5 and 6).

Example 4.4.1 Consider bi-dimensional cost vectors. Figure 4.2 depicts

three sets of vectors S as dots, T as crosses and R as triangles. All sets are

frontiers since no point is dominated by any other of the same set. Frontier

S dominates any frontier which vectors are in the light gray area. Therefore,

S <Kmo
T (resp. T <Kmo

R) because S 6= T (resp. T 6= R) and the area
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dominated by S contains all the elements of T (resp. T contains all the

elements of R).

Since ≤Kmo
is a partial order, it is transitive (i.e., ∀S, T, R, S ≤mo T ≤mo

R ⇒ S ≤mo R). The intuition (in a bi-objective problem) is as follows.

Consider the 2D space and the frontier S in Figure 4.2. As shown in the

previous example, frontier S dominates any frontier which vectors are in the

light gray area. Let T be such a frontier. Frontier T dominates any frontier

containing vectors in the dark gray area (e.g., frontier R). Since the dark

gray area is contained in the light gray area and S dominates any frontier in

the light gray area, it is clear that S also dominates any frontier in the dark

gray area.

Definition 4.4.3 A frontier function is a function f : l(var(f)) → Amo .

As mentioned in Section 2.1, we extend the +mo and minmo operators

from valuations in Amo to functions over Amo.

Example 4.4.2 Consider the biobjective frontier functions f and g in Fig-

ure 4.3 under domains {a, b}. The ⊤ value is {(∞,∞)}. The combination

f +mo g is a biobjective function (f +mo g)(x1, x2, x3) (see Figure 4.3). The

elimination of variable x3 from f ⊗ g is a biobjective function minmo

x3

(f +mo

g)(x1, x2) (see Figure 4.3). Note that in minmo

x3

(f +mog)(a, a), the cost vector

(4, 9) has been removed because it is dominated by the cost vector (4, 4).

Definition 4.4.4 A multiobjective weighted CSP (MO-WCSP) is an opti-

mization task (X ,D, Amo,Fmo, +mo, minmo) over c-semiring Kmo = (Amo, +mo, minmo).

The task of computing the efficient frontier E of problem Pmo can be ex-

pressed as a MO-WCSP problem (X ,D, Amo,Fmo, +mo, minmo) where F is a

set of frontier functions defined as follows. Each function f : l(var(f)) → N∞

from Pmo belonging to the jth criterion of Pmo is transformed into a new fron-

tier function f ′ : l(var(f)) → Amo defined as f ′(t) = {(0, . . . , 0, f(t), 0, . . . , 0)},
where f(t) is the jth component of the singleton vector.



78 CHAPTER 4. ALGEBRAIC FORMALIZATION

f : x1 x2

a a {(3, 2), (2, 8)}
a b {(4, 10)}
b a ⊤
b b ⊤

g: x2 x3

a a {(1, 2)}
a b {(2, 1)}
b a {(6, 2), (11, 1)}
b b ⊤

f +mo g: x1 x2 x3

a a a {(4, 4), (3, 10)}
a a b {(5, 3), (4, 9)}
a b a {(10, 12), (15, 11)}
a b b ⊤
b a a ⊤
b a b ⊤
b b a ⊤
b b b ⊤

minmo

x3

(f +mo g): x1 x2

a a {(4, 4), (3, 10), (5, 3)}
a b {(10, 12), (15, 11)}
b a ⊤
b b ⊤

Figure 4.3: Combination and marginalization over biobjective functions.

⊤ = {(∞,∞)}.

Example 4.4.3 Consider the bi-objective optimization problem Pmo of Ex-

ample 4.3.1. Recall that the set of variables is X = {x1, x2} with domains

D1 = D2 = {0, 1}. The set of functions for the first and second objective func-

tions is F1 = {f1(x1) = x1, f2(x2) = x2} and F2 = {h1(x1) = 1−x1, h2(x2) =

x2}, respectively.

This problem can be modeled as a MO-WCSP problem

P = ({x1, x2}, {0, 1}, Amo,Fmo, +mo, minmo)

The set of frontier functions is Fmo = {f ′
1(x1), f

′
2(x2), h

′
1(x1), h2(x2)} where,

f ′
1(x1) = {(x1, 0)} f ′

2(x2) = {(x2, 0)}
h′

1(x1) = {(0, 1 − x1)} h′
2(x2) = {(0, x2)}

The objective function of P is F mo(X ) =
∑mo

f∈Fmo

f . F mo(X ) can be expressed

extensionally as the following table,
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x1 x2

0 0 {(0, 1)}
0 1 {(1, 2)}
1 0 {(1, 0)}
1 1 {(2, 1)}

The reasoning task defined by P is,

minmo

X
{F mo(X )}

The result of computing the previous expression is {(0, 1), (1, 0)}, which is the

efficient frontier of Pmo. Note that (1, 2) and (2, 1) are not efficient, because

they are dominated by either (0, 1) or (1, 0).

In the following chapters we focus on the resolution of MO-WCSP prob-

lems. For readability reasons, we will write +, min and < instead of +mo,

minmo and <mo, respectively, when it is clear by the context.

4.5 Conclusions

In this Chapter we have described multi-objective tasks within the semiring

CSP framework. This means that multi-objective tasks can be axiomati-

cally described in terms of a partially ordered c-semiring. For the first time,

we have proposed a SCSP instance over a new c-semiring able to compute

the efficient frontier of a multi-objective problem. Moreover, we show that

previous attempts described in the literature were not completely satisfac-

tory since they only characterized the greatest lower bound of the efficient

frontier.

We do not make any assumption about the nature of the objectives in

the problem. The only requirement is that each objective function can be

independently expressed as an instance of the SCSP framework. Therefore,

our formalization is valid for any multi-objective problem satisfying this as-

sumption.
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Chapter 5

Branch and Bound

Branch and Bound (BB) is a well-known search schema typically used to solve

mono-objective optimization problems. The purpose of this chapter is to ex-

tend depth-first BB from mono-objective to multi-objective optimization.

Essentially, we extend the three main elements of BB: the lower bound, the

upper bound and the pruning condition. Interestingly, the extension of these

three notions follow naturally the results of Chapter 4: bounds are valuations

of the L(KC) c-semiring and the pruning condition is naturally expressed in

terms of its induced partial order ≤mo. Apparently, the resulting algorithm is

identical to the mono-objective case, although the low level details are com-

pletely different because frontiers rather than scalar values are used, along

with the operators +mo and minmo of multi-objective WCSP (MO-WCSP)

problems which are much more complex than their mono-objective counter-

part. It is the merit of the graphical model framework to unify in such an

elegant way mono-objective and multi-objective BB.

The structure of the chapter is as follows. Section 5.1 recalls depth-

first branch-and-bound search for WCSP problems along with some classic

lower bounds from the literature. Then, Section 5.2 formally defines what

a multi-objective bound is and presents the extension of depth-first branch-

and-bound to solve MO-WCSP problems. Moreover, it presents some direct

extensions of the classic mono-objective lower bounds to the multi-objective

81
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context. Section 5.3 shows some experimental results. Section 5.4 discusses

related work and points out its differences with respect to our extension.

Finally, Section 5.5 gives some conclusions.

5.1 (Mono-objective) Branch-and-Bound

Branch-and-Bound Search (BB) [53] is a general search algorithm for combi-

natorial optimization. Given an optimization problem P , BB systematically

enumerates all its total assignments, discarding large subsets of fruitless com-

plete assignments by using upper and lower bounds of the criteria being opti-

mized. The set of total assignments is the search space. It can be represented

as a tree: Given an arbitrary node, its children represent the assignment of

one new variable to each one of its domain values. Then, each node repre-

sents an assignment where only the variables included in the path from the

root to this node have been assigned. Each node roots a subtree where the

variables in the path from the node to the leaves remains unassigned. This

subtree represents a subproblem of P resulting from instantiating the set of

functions in P to t (i.e., P (t)), where t is the assignment associated with

that node. When the node is a leaf, t is complete and P (t) is composed by

a set of totally instantiated functions. The combination of these functions

(i.e., sum of costs) is the cost of t.

When BB solves problem P , it traverses the search tree in a specific

order (e.g., depth-first, breath-first). During the traversal, the branch-and-

bound schema stores the cost of the best complete assignment found so far.

This cost is an upper bound (ub) of the problem optimum (opt(P )) (i.e.,

opt(P ) ≤ ub). Consider an arbitrary search node and let t be its associated

assignment. The subproblem rooted at this node (i.e., P (t)) does not lead

to a better solution if its optimum (opt(P (t))) cannot improve the best cost

found so far (i.e., ub ≤ opt(P (t))). In order to foresee this situation without

solving P (t), BB computes an underestimation or lower bound (lb) of the

optimum of P (t) (i.e., lb ≤ opt(P (t))). If the lower bound is higher than
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procedure DF-BB((X ,D,F), ub)

1. if X = ∅ then

2. ub :=
∑

f∈F f(); /* Note that ∀ f ∈ F , var(f) = ∅ */

3. else

4. xi := Select(X );

5. for each a ∈ Di do

6. F ′ := {f(xi = a) | f ∈ F}; X ′ := X − {xi}; D′ := D − {Di};
7. P ′ := (X ′,D′,F ′); /* P ′ is the new current subproblem */

8. lb := LB(P ′);

9. if lb < ub then DF-BB (P ′, ub);

10. endfor

11. endif

endprocedure

Figure 5.1: Depth-first Branch-and-Bound Algorithm. The input of the al-

gorithm is a WCSP problem P = (X ,D,F) and an upper bound ub. The

algorithm returns the optimal cost of P in ub.

or equal to the upper bound (i.e., ub ≤ lb), it is clear that exploring P (t) is

useless. Formally,

ub ≤ lb ∧ lb ≤ opt(P (t)) ⇒ ub ≤ opt(P (t))

When that is the case, BB prunes the current subtree (i.e., it discards the

current search branch) and backtracks to a previous node. Note that the

condition to continue the search is ub 6≤ lb, which is equivalent to lb < ub

due to the total order < on naturals. When the whole search tree is traversed,

ub is the optimal cost of the problem P .

Figure 5.1 shows a recursive description of depth-first branch-and-bound

(DF-BB) algorithm for WCSP problems. The input of the algorithm is

a WCSP instance (X ,D,F), and an upper bound ub. In the initial call,
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(X ,D,F) is the original problem P and ub is set to a known upper bound

for its optimal solution (∞ if a better bound is not known). In each recursive

call, the algorithm tries to assign one new variable in order to move down

in the search tree. Then, in an arbitrary call, (X ,D,F) is a subproblem

P (t), where t is the current assignment, and ub is the best cost found so

far. When X is empty (lines 1-3), all the variables has been assigned, so

the algorithm has reached a leaf node. Then, the cost of the current total

assignment (stored in F as a set of totally assigned functions) is the best

one found so far. Therefore, ub is updated (line 2). When X is not empty

(lines 4-11), there exist some unassigned variables, so the algorithm is in an

internal search node. Then, DF-BB selects an unassigned variable (line 4)

and sequentially attempts the assignment of its domain values (line 5). Each

assignment xi = a leads to a new subproblem P ′ (line 7) of (X ,D,F) re-

sulting from conditioning the cost functions in F to the current assignment

and removing variable xi and its domain Di from X and D, respectively

(line 6). The algorithm computes a lower bound lb of P ′ using a bounding

evaluation function LB (line 8). If the ub is better or equal than the lb, the

algorithm prunes the current line of search since it does not lead to a better

solution. Otherwise, the algorithm proceeds recursively (line 9). When the

whole search tree is traversed, clearly ub = opt(P ).

The performance of the search algorithm can be increased by improving

its pruning capabilities. This reduction greatly depends on the bounding

evaluation function LB. Tighter bounds allows the algorithm to prune earlier

in the search tree, thus reducing the number of visited nodes. In general, more

computational effort results in better bounds. However, since the algorithm

computes a lower bound in every visited node, there is a trade-off between

the computational overhead and the pruning capability.

5.1.1 Basic mono-objective lower bounds

Many lower bounds have been proposed in the mono-objective optimization

context. In this Section, we outline some basic approaches proposed for WC-
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SPs, which are the basis for more elaborated ones. Chapter 6 and Chapter

8 will describe two more sophisticated lower bounds.

Let P = (X ,D,F) be the original WCSP problem to be solved. Consider

an arbitrary node being visited by DF-BB and let t be its associated partial

assignment. At this point, functions in F has been conditioned to t. Namely,

P (t) is the current WCSP subproblem to be solved. The simplest lower bound

lbs considers the sum of costs of every totally instantiated function,

lbs =
∑

f∈P (t)
|var(f)|=0

f()

This lower bound can be improved by considering necessary costs from

extending the current assignment to unassigned variables. The most usual

approach is to consider the minimum contribution from the extensions to one

new variable [53]. Let xk 6∈ var(t) be an unassigned variable and a ∈ Dk one

of its domain values. The inconsistency count associated with domain value

a of variable xk (noted icka) is the cost of extending the current assignment

t to one new variable xk taking domain value a ∈ Dk. Namely,

icka =
∑

f∈P (t)
var(f)={xk}

f(xk = a)

Then, the inconsistency count associated to variable xk (noted ick), is the

necessary cost to extend the current assignment t to xk, no matter what

domain value is assigned to variable xk. Namely,

ick = min
a∈Dk

{icka}

The sum of inconsistency counts,
∑

xk 6∈var(t) ick is a lower bound of the cost

that will necessary have any extension of t to a complete assignment. There-

fore, it can be added to lbs in order to obtain a better lower bound at the

current node. Thus,

lbic = lbs +
∑

xk 6∈var(t)

ick

is the lower bound computed when considering the inconsistency counts.
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Figure 5.2: WCSP instance.

Example 5.1.1 Consider the WCSP instance of Figure 5.2. It has three

variables {x1, x2, x3} and two domain values per domain Di = {a, b}. There

are three binary cost functions: fx1x2
(x1, x2), fx1x3

(x1, x3) and fx2x3
(x2, x3).

All unary costs are 0. Binary costs are 1 when there exists an edge con-

necting the corresponding pair of values. Otherwise, the cost is 0. Let

t = (x1 = a, x2 = a) be the current partial assignment. At this point in

search, the simplest lower bound is lbs = 1 because there is only one totally

assigned function (i.e., fx1x2
) and its valuation in t is fx1x2

(t) = 1. The only

unassigned variable is x3. Its inconsistency counts are as follows. ic3a = 2 be-

cause there are two functions with scope {x3} after they are partially assigned

with t (i.e., fx1x3
(t) and fx2x3

(t)) and fx1x3
(t ·x3 = a) + fx2x3

(t ·x3 = a) = 2.

Similarly, ic3b = 1 because fx1x3
(t ·x3 = b)+ fx2x3

(t ·x3 = b) = 1. Any exten-

sion of the current partial assignment to variable x3 will have, at least, a cost

of 1 (i.e., ic3 = min{ic3a, ic3b}). Therefore, the lower bound considering

inconsistency counts is lbic = 1 + 1 = 2.
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5.2 Multi-objective Branch and Bound

Multi-objective problems can also be solved with a branch-and-bound schema.

The idea of the multi-objective approach is the same as for the mono-objective

case. Given a multi-objective optimization problem P , the algorithm enu-

merates all possible complete assignments, which can be represented as a

tree, and tries to prune branches that cannot lead to a new optimal solution.

Each node represents an assignment t and roots a multi-objective optimiza-

tion problem P (t). However, there exist some differences, that we discuss in

the following.

During search, mono-objective BB maintains the cost ub of the best solu-

tion found so far. Since multi-objective optimization is characterized by a set

of optimal solutions, the algorithm must store a set of cost vectors ubf. Each

vector in ubf is the valuation of one solution which is not dominated by any

other found so far. Therefore, it is a candidate for being part of the efficient

frontier of P (E(P )). When a new solution is found, in mono-objective BB

the value of ub is updated because the old value cannot be the optimum.

In multi-objective optimization the value of ubf is also updated by adding

the cost vector ~v of the new solution to ubf and by removing all those that

are dominated because they cannot be part of the efficient frontier E(P ).

According with our notation, the updating of ubf can be expressed as,

ubf = minmo{ubf, ~v}

Note that each cost vector ~w in ubf comes from a complete assignment.

Moreover, during search ~w will either be removed because a better solution

has been found or it will remain because it is part of E(P ). Then, by con-

struction of ubf, it is easy to see that the following condition is an invariant,

∀
~w∈ubf

∃
~v∈E(P )

~v ≤ ~w

In words, all vectors in ubf are dominated by or equal to at least one vector

in the efficient frontier of the problem E(P ). According to the partial order
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on frontiers (see Definition 4.4.2), this is equivalent to

E(P ) ≤mo ubf

The clear parallelism between the role of ub in BB and the role of ubf in

multi-objective BB leads us to call ubf the upper bound frontier.

Definition 5.2.1 Given a MO-WCSP problem P , we say that a frontier S

is a ( valid) upper bound frontier iff E(P ) ≤mo S, where E(P ) is the efficient

frontier of P .

Consider an arbitrary search node and let t be its associated assignment.

In mono-objective optimization, the current subproblem P (t) can be safely

pruned (i.e., discarded) when it cannot lead to a better solution. That is the

case when the optimal solution of P (t) is greater than or equal to the best

found so far (i.e., ub ≤ opt(P (t))). In multi-objective optimization, P (t) can

be discarded when it cannot lead to any efficient solution. That is the case

when all efficient solutions of P (t) are dominated by or equal to any other

found so far. In other words, when each cost vector in E(P (t)) is dominated

by or equal to at least one vector in ubf. Formally,

ubf ≤mo E(P (t))

In order to foresee this situation, mono-objective BB computes a lower

bound lb of the optimum of P (t). In multi-objective optimization, the algo-

rithm must compute an underestimation lbf of the efficient frontier of P (t)

(i.e., E(P (t))). The necessary condition is that each cost vector in E(P (t))

must be dominated by at least one cost vector in lbf. This property can be

formally written as,

lbf ≤mo E(P (t))

This condition can be seen as very demanding. We could think of a relaxed

condition where it is enough for lbf to contain at least one cost vector that

dominates one cost vector in E(P (t)). However, as we will show, this alter-

native definition will not lead to a sufficient condition for pruning. Again,
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the clear parallelism between the role of lb in BB and the role of lbf in

multi-objective BB leads us to call lbf the lower bound frontier.

Definition 5.2.2 Given a MO-WCSP problem P , we say that a frontier S

is a valid lower bound frontier iff S ≤mo E(P ), where E(P ) is the efficient

frontier of P .

According with this definition, lbf(P (t)) can be computed by any bound-

ing evaluation function such that lbf(P (t)) ≤mo E(P (t)).

Since lbf ≤mo E(P (t)) is true by definition, if all cost vectors in lbf are

dominated by at least one vector in ubf (i.e., ubf ≤mo lbf), it is easy to see

that all cost vectors in E(P (t)) will also be dominated by some vector in ubf

(i.e., ubf ≤mo E(P (t))). Formally,

ubf ≤mo lbf ∧ lbf ≤mo E(P (t)) ⇒ ubf ≤mo E(P (t))

When that is the case, the algorithm prunes the subproblem P (t) and back-

tracks to a previous node. It is worth noting that the previous statement

holds bacause the partial order ≤mo is transitive (as proved in Theorem

4.2.1).

It is also important to remark that ubf ≤mo lbf is a sufficient condition

to prune because lbf ≤mo E(P (t)) is true by definition. Any other weaker

definition of lbf will be insufficient for the algorithm to decide whether to

backtrack or not, as we demonstrate in the following. Consider a frontier lbf

and let E(P (t)) be divided into two sets: S is the subset of vectors dominated

by some vector in lbf (i.e., lbf ≤mo S), and T is the subset of vectors not

dominated by any vector in lbf (i.e., lbf 6≤mo T ). The search algorithm will

prune subproblem P (t) when ubf ≤mo S ∧ ubf ≤mo T . It is easy to see that,

ubf ≤mo lbf ∧ lbf ≤mo S ⇒ ubf ≤mo S

However, from

ubf ≤mo lbf ∧ lbf 6≤mo T
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(a) (b)

Figure 5.3: (a) Backtrack and (b) continue condition in multi-objective

branch-and-bound algorithm for a bi-objective optimization problem. The

current ubf and lbf are depicted as dots and crosses, respectively.

we cannot conclude neither that ubf 6≤mo T nor ubf ≤mo T . As a conse-

quence, we cannot conclude whether ubf ≤mo E(P (t)) holds or not unless

T = ∅. When T = ∅, then E(P (t)) = S and lbf ≤mo E(P (t)), which is

exactly the condition we impose for a frontier to be a (valid) lower bound

frontier.

Example 5.2.1 Consider a bi-objective optimization problem being solved by

multi-objective branch-and-bound. Figure 5.3 (a) shows the ubf (depicted as

dots) and lbf (depicted as crosses) at the current search node. Dotted lines

show the domination area of each cost vector. Note that ubf dominates lbf.

By definition, the efficient frontier E ′ of the subproblem rooted at the current

node will be dominated by lbf. As a consequence, ubf will also dominate

E ′, which means that E ′ does not contain any possible candidate to be part of

the efficient frontier of the original problem. Then, the algorithm can safely

backtrack because it will not discard any potential efficient solution.

It is also important to note that the condition to continue the search is

ubf 6≤mo lbf, which is not equivalent to lbf ≤mo ubf because ≤mo is a

partial order.

Example 5.2.2 Consider the bi-objective optimization problem of the previ-
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procedure MO-BB((X ,D,F), ubf)

1. if X = ∅ then

2. ubf := minmo{ubf,
∑mo

f∈F
f()};

3. else

4. xi := Select(X );

5. for each a ∈ Di do

6. F ′ := {f(xi = a) | f ∈ F}; X ′ := X − {xi}; D′ := D − {Di};
7. P ′ := (X ′,D′,F ′);

8. lbf := LBF(P ′);

9. if ubf �mo lbf then MO-BB (P ′, ubf);

10. endfor

11. endif

endprocedure

Figure 5.4: Multi-objective Depth-First Branch-and-Bound Algorithm. The

input of the algorithm is a MO-WCSP problem P = (X ,D,F) and an upper

bound frontier ubf. The algorithm returns the efficient frontier of P in ubf.

ous example. Figure 5.3 (b) shows the ubf and lbf at another search node.

Consider that lbf = {~v} is exactly the efficient frontier of the subproblem

rooted at that node. In this situation, ~v is a new potential element of the effi-

cient frontier of the original problem because it is not dominated by any cost

vector in ubf. As a consequence, the algorithm should continue the search.

However, if the continue condition was lbf ≤mo ubf, the algorithm would

backtrack, missing this potential efficient solution. The reason is that the

previous condition does not capture the fact that a cost vector in lbf that is

not dominated by any other in ubf represents a potential new candidate to

be part of the efficient frontier.

MO-BB (Figure 5.4) is a recursive description of depth-first multi-objective

branch-and-bound algorithm for MO-WCSP problems. The input of the al-
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gorithm is a MO-WCSP instance (X ,D,F) and an upper bound frontier ubf.

In the initial call, (X ,D,F) is the original problem P and ubf is set to a

known upper bound frontier ({(∞, . . . ,∞)} if a better bound in not known).

In an arbitrary call, (X ,D,F) is a subproblem P (t), where t is the current

assignment, and ubf is the set of non-dominated cost vectors found so far.

In each recursive call, the algorithm tries to assign one new variable. First

of all, if no variable remains, all the functions in F are totally assigned and
∑mo

f∈F
f() is a frontier with one vector. In that case, ubf is updated with

the cost vector of the current assignment using the minmo operator (line 2).

If X is not empty, an arbitrary unassigned variable xi is selected (line 4).

Then, the algorithm sequentially attempts the assignment of its domain val-

ues (line 5). Each assignment leads to a new subproblem P ′ (line 8) resulting

from conditioning the functions in F to the current assignment and removing

xi and Di from X and D, respectively (lines 6-7). After each assignment,

the algorithm computes a lower bound frontier lbf of P ′ with the bounding

evaluation function LBF (line 9). If the pruning condition does not hold

(line 10), the search procedure proceeds by making a recursive call (line 11).

Otherwise, the algorithm backtracks since the current search branch does

not lead to any new candidate to be part of the efficient frontier. When the

whole search tree is traversed, clearly ubf = E(P ).

Theorem 5.2.1 During the execution of the algorithm ubf is a valid upper

bound frontier.

Proof The theorem is an obvious consequence of Theorem 4.3.4. By con-

struction, ubf is a set of non-dominated elements coming from a subset of

complete assignments while E(P ) is a set of non-dominated elements coming

from all complete assignments.

It is worth noting that the structure of DF-BB (Figure 5.1) and MO-BB

(Figure 5.4) is identical. This observation is hardly a surprise because the

graphical model framework provides a unifying view of algorithms developed
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for graphical model instances. However, it is also important to note that

there are significant differences encapsulated in the particular instantiation

of the operators used to combine, choose and compare valuations.

Property 5.2.1 When considering a WCSP problem (i.e., p = 1), the algo-

rithm MO-BB is equivalent to BB.

Proof When p = 1, cost vectors have one component. Then, the partial

order ≤mo reduces to the usual total order < among naturals. Therefore,

minmo is equivalent to min, ubf 6≤mo lbf is equivalent to ub > lb, and

ubf ≤mo E(P (t)) is equivalent to ub ≤ opt(P (t)).

The performance of the search algorithm depends on the quality of the

upper and lower bound frontiers, because tight bounds prune at early stages

of the search. The simplest ubf is {(∞, . . . ,∞)}. Better approximations can

be obtained, for example, with multi-objective local search heuristics [41].

Regarding lower bound frontiers, we propose in the next Section some basic

lbf resulting from adapting the classic mono-objective optimization bounds

described in Section 5.1.1.

5.2.1 Basic multi-objective lower bounds

Classic mono-objective optimization bounds can be easily extended to the

multi-objective context. They also combine the contributions of assigned

and unassigned variables. It is important to note that in this context those

contributions are frontiers and the operators are the corresponding defined

in the multi-objective context. As their mono-objective counterparts, these

bounds are the basis for more elaborated ones (see Chapters 6 and 8).

Let P = (X ,D,F) be the MO-WCSP problem to be solved. Consider an

arbitrary search node and let t be the current partial assignment. P (t) is the

current MO-WCSP subproblem to be solved. The simplest lbf is a single-

ton frontier resulting from the sum of cost vectors from totally instantiated
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frontier functions,

lbfs =
∑mo

f∈P (t)
|var(f)|=0

f()

Essentially, lbfs is a frontier with one cost vector.

The idea of inconsistency counts described for mono-objective optimiza-

tion can be also extended to multi-objective optimization. In this case,

icfka =
∑mo

f∈P (t)
var(f)={xk}

f(xk = a)

is the multi-objective cost (i.e., cost vector) of assigning one new variable

xk to its domain value a ∈ Dk. Note that icfka is a frontier with one cost

vector. Then, the best costs that can be obtained if xk is assigned to any of

its domain values is

icfk = minmo

a∈Dk

{icfka}

It is worth noting that, in this case, icfk is a frontier with (possibly) many

cost vectors. Each incomparable alternative comes from a different domain

value a ∈ Dk.

Likewise, the combination of the icfk for all unassigned variable xk is the

set of best incomparable alternatives that can be obtained when extending

the current assignment to a total one, no matter what domain values are

assigned to unassigned variables. Since the subset of functions taken into ac-

count by this frontier (functions with just one unassigned variable) is disjunct

with respect the subset of functions taken into account by lbfs (completely

assigned functions), they can be added in order to obtain a tighter lower

bound frontier at the current node. Then,

lbfic = lbfs +mo
∑mo

xk 6∈var(t)

icfk

is a lower bound frontier of P (t).

Theorem 5.2.2 The frontier lbfic is a valid lower bound frontier.
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Proof Let P = (X ,D,F) be the original MO-WCSP problem and t be the

current partial assignment. Thus, P (t) is the current subproblem solved by

MO-BB. For clarity reasons, P (t) will be called P ′. Let F ′ and X ′ be the

set of functions and the set of unassigned variables in P ′, respectively. Let

E(P ′) be its efficient frontier. We have to prove that lbfic ≤mo E(P ′).

The set of functions F ′ can be partitioned into three sets: completely as-

signed functions, unary functions, and functions with more than one variable

in its scope. We call P ′
1, P ′

2 and P ′
3 the induced problems of each subset,

respectively. By Theorem 4.3.4,

E(P ′
1) +mo E(P ′

2) +mo E(P ′
3) ≤mo E(P ′) (5.1)

It is easy to see that E(P ′
1) = lbfs. The efficient frontier of P ′

2 is,

E(P ′
2) = minmo

X∈l(X ′)
{(

∑mo

f∈F ′

|var(f)|=1

f)(X)}

Since it only contains unary functions, it can be rewritten as,

E(P ′
2) =

∑mo

xk 6∈var(t)

minmo

a∈Dk

{
∑mo

f∈F ′

var(f)={xk}

f(xk = a)} =
∑mo

xk 6∈var(t)

icfk

Expression (5.1) can be rewritten as,

lbfs +mo
∑mo

xk 6∈var(t)

icfk +mo E(P ′
3) = lbfic +mo E(P ′

3) ≤mo E(P ′) (5.2)

Since +mo is intensive (see Theorem 4.2.4),

lbfic ≤mo lbfic +mo E(P ′
3) (5.3)

By monotonicity of ≤mo (see Theorem 4.2.2) on expressions (5.3) and (5.2) ,

lbfic ≤mo E(P ′)
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Figure 5.5: MO-WCSP instance.

Example 5.2.3 Consider the MO-WCSP instance of Figure 5.5. It is based

on the WCSP of Example 5.2 adding one new objective. The problem has

three variables {x1, x2, x3} and two domain values per domain Di = {a, b}.
There are three binary frontier functions: fx1x2

(x1, x2), fx1x3
(x1, x3) and

fx2x3
(x2, x3). All unary valuations are {(0, 0)}. Binary valuations are de-

picted as frontier labeled edges connecting the corresponding pair of val-

ues. Only non-zero frontiers are shown. Let t = (x1 = a, x2 = a) be

the current partial assignment. At this point in search, the simplest lower

bound frontier is lbfs = {(1, 2)} because the only totally assigned function

is fx1x2
, and its valuation in t is fx1x2

(a, a) = {(1, 2)}. The only unas-

signed variable is x3. Its inconsistency counts are as follows. icf3a =

{(2, 3)} because fx1x3
(t · x3 = a) + fx2x3

(t · x3 = a) = {(1, 1)} + {(1, 2)}.
icf3b = {(1, 4)} because fx1x3

(t · x3 = b) + fx2x3
(t · x3 = b) = {(1, 4)}.

Therefore, icf3 = minmo{icf3a, icf3b} = {(1, 4), (2, 3)} (i.e., ). Then,

lbfic = {(1, 2)}+mo {(1, 4), (2, 3)} = {(2, 6), (3, 5)}.
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5.3 Experimental Results

The goal of these experiments is to give a first insight on the suitability

of MO-BB using a basic multi-objective lower bound to solve MO-WCSP

problems. In particular, we assess the adequacy of MO-BB using the lower

bound frontier lbficf, noted MO-BBicf. It is worth noting that, although

being multi-objective in nature (i.e., it is a frontier rather than a single vector

of costs), lbficf is very näıve. We use an implementation based on Toolbar1.

We compare the performance of MO-BBicf versus the following two al-

ternative multi-objective algorithms:

• ǫ-constraint. As described in Section 3.2.2, this algorithm transforms

the multi-objective problem into a sequence of CSPs. In our experi-

ments, we use Ilog Solver 6.12 as CSP solver. Recall that ǫ-constraint

receives as a parameter a lower bound on each objective function when

considered independently, noted (l1, l2). In our experiments, we run

the algorithm with l1 and l2 being the optimal costs on each objective

function. The time spent to compute them is not taken into account.

• MO-BBfdac. MO-BB enforcing FDAC [88] independently in each ob-

jective function. This lower bound has been proved very efficient in

mono-objective optimization. Note that the lower bound computed by

FDAC is a singleton vector of costs. The components of the vector

approximate the optimal cost of each objective function when consid-

ered independently. It is worth noting that, although being much more

sophisticated than lbficf, FDAC is mono-objective in nature. We use

an implementation based on Toolbar.

We test their performance in four different domains: Max-SAT-ONE,

biobjective minimum vertex cover, risk-conscious combinatorial auctions and

scheduling of an EOS benchmarks (for a detailed description of each bench-

mark see Appendices B.3, B.4, B.1, B.2, respectively).

1http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
2http://www.ilog.fr
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The time limit for all the experiments is 1800 seconds.

As we will see next, the main conclusion from these experiments is that it

is reasonable to develop (more sophisticated) pure multi-objective optimiza-

tion algorithms to deal with multi-objective optimization problems. The

following Chapters are devoted to those new algorithms.

5.3.1 Max-SAT-ONE

Figure 5.6 shows the results for the Max-SAT-ONE instances. We only report

the results for the instances solved within the time limit by at least one of

the three studied algorithms. The first, second and third columns contain

the name of the instance, the number of variables and the number of clauses,

respectively. The fourth column indicates the size of the efficient frontier

of each problem. The last three columns contain the cpu time in seconds

required by the three algorithms. A ”-” indicates that the algorithm does

not terminate in 1800 seconds.

In general, MO-BBicf outperforms the other two approaches. Notably,

it is the only algorithm able to solve aim–50–6 0 instances within the time

limit. The improvement of MO-BBicf with respect to ǫ-constraint is up

to various orders of magnitude (see aim instances). Its performance with

respect to MO-BBfdac is not so prominent. However, for some instances, as

for example aim–50–2 0–yes1–4, aim–50–3 4–yes1–3 and aim–50–3 4–yes1–4,

MO-BBicf is up to 4 times faster than MO-BBfdac.

Dubois instances and pret60 75 require additional discussion. They can

be considered as degenerated multi-objective instances because their efficient

frontier has size 1. It is important to note that we only know that after

solving the instances. As noted in Property 4.3.2, when the efficient frontier

has only one efficient cost vector, each component of this vector is the optimal

cost of each objective function when considered independently. Therefore,

they can be solved as two independent mono-objective problems. ǫ-constraint

is very efficient on these instances for two reasons. First, the lower bound

(l1, l2) received by the algorithm is already the efficient frontier. Therefore,
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Instance nb. nb. |E| Time (sec.)

vars clauses mo-bbicf ǫ-constraint mo-bbfdac

dubois20 60 160 1 125.98 0.002 34.87

dubois21 63 168 1 260.11 0.003 72.01

dubois22 66 176 1 543.91 0.003 149.16

dubois23 69 184 1 1131.71 0.001 308.26

dubois24 72 192 1 - 0.002 637.2

dubois25 75 200 1 - 0.003 1313.52

pret60 60 60 160 6 630.34 - 1646.27

pret60 75 60 160 1 165.03 0.002 99.03

aim-50-1 6-no-1 50 80 8 48.91 1663.47 39.83

aim-50-1 6-no-2 50 80 10 30.62 1202.1 197.69

aim-50-1 6-no-3 50 80 10 46.95 - 60.71

aim-50-1 6-no-4 50 80 10 18.44 - 112.93

aim-50-1 6-yes1-1 50 80 10 20.89 - 51.55

aim-50-1 6-yes1-2 50 80 8 24.93 - 12.28

aim-50-1 6-yes1-3 50 80 10 24.6 - 25.62

aim-50-1 6-yes1-4 50 80 8 5.74 780.23 9

aim-50-2 0-no-1 50 100 12 67.35 - 319.44

aim-50-2 0-no-2 50 100 10 45.61 - 87.88

aim-50-2 0-no-3 50 100 10 17.06 1603.98 32.08

aim-50-2 0-no-4 50 100 10 25.2 - 70.05

aim-50-2 0-yes1-1 50 100 14 97.99 - 725.26

aim-50-2 0-yes1-2 50 100 12 69.68 - 345.93

aim-50-2 0-yes1-3 50 100 14 72.11 - 443.72

aim-50-2 0-yes1-4 50 100 14 150.78 - 1000.52

aim-50-3 4-yes1-1 50 170 15 71.06 - 211.56

aim-50-3 4-yes1-2 50 170 17 199.91 - 520.62

aim-50-3 4-yes1-3 50 170 19 309.71 - 1535.47

aim-50-3 4-yes1-4 50 170 19 184.12 - 900.66

aim-50-6 0-yes1-1 50 300 27 1475.08 - -

aim-50-6 0-yes1-2 50 300 26 1525.85 - -

aim-50-6 0-yes1-3 50 300 23 791.3 - -

aim-50-6 0-yes1-4 50 300 23 690.42 - -

Figure 5.6: Experimental results on Max-SAT-ONE problems. Time limit

1800 seconds.

ǫ-constraint reduces to solving one CSP problem. Besides, it turns out that

l2 = 0. Therefore, the bounding constraint imposed by ǫ-constraint on the

second objective function prohibits any variable to be assigned to 0. This

situation is rapidly detected by the CSP solver and all the variables are

assigned to 1 almost instantaneously.
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N E |E| mo-bbicf ǫ-constraint mo-bbfdac

(nb. vars) (nb. edges) time (sec.) % time (sec.) % time (sec.) %

60 7,52 4,8768 100 253,616 100 0,4592 100

70 100 8,64 43,684 100 1403,49 48 2,4208 100

80 8,04 231,737 100 1786,62 8 9,6908 100

90 8,72 984,612 91,6 1800 0 32,7044 100

60 5,04 1,7016 100 24,0557 100 0,3276 100

70 250 6,68 16,0724 100 393,654 100 1,6968 100

80 8,6 110,581 100 1723,12 8 10,6772 100

90 8,76 698,592 96 1800 0 53,9536 100

60 4,72 0,3684 100 2,99779 100 0,112 100

70 500 5,4 3,0384 100 36,263 100 0,5588 100

80 6,6 16,9736 100 323,253 100 2,932 100

90 7,76 117,463 100 1744,17 12 15,7836 100

60 3,76 0,082 100 0,33099 100 0,0348 100

70 950 4,04 0,4992 100 1,78573 100 0,1376 100

80 5,92 2,0096 100 20,434 100 0,5384 100

90 5,56 11,5052 100 126,26 100 2,634 100

Figure 5.7: Experimental results on biobjective weighted minimum vertex

cover problems. Parameter C is set to 5. Mean values on 25 instances for

each parameter configuration. Time limit 1800 seconds.

5.3.2 Biobjective Minimum Weighted Vertex Cover

Figure 5.7 reports the results obtained in the biobjective minimum weighted

vertex cover. The first and second columns show the number of variables and

edges, respectively. The third column contains the mean size of the efficient

frontier for each class of problem. The remaining columns report the mean

cpu time and the percentage of solved instances within the time limit for the

three studied algorithms.

MO-BBfdac is the best option for all parameter configurations, while ǫ-

constraint is the worst approach. The poor performance of MO-BBicf with

respect to MO-BBfdac is hardly a surprise. The structure of the problem leads

the lower bound frontier lbficf to be very loose, as shown in the following

example.

Consider the graph in Figure 5.8 (a). It has three nodes {x, y, z}. Each

node has two associated weights, depicted underneath it. Figure 5.8 (b)
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Figure 5.8: (a) A graph where each node has two weights. (b) Graphical

representation of the biobjective weighted minimum vertex cover problem on

the previous graph as a MO-WCSP.

shows the graphical representation as a MO-WCSP of the biobjective mini-

mum weighted vertex cover problem associated to the previous graph. Only

frontiers different from {(0, 0)} are depicted. Let x be the selected variable

to be assigned by MO-BB and let us consider the contribution of each unas-

signed variable to lbficf. Variable z will not contribute to the lower bound

because its inconsistency count is icfz = {(0, 0)}. In general, variables not

connected to the assigned variables do not contribute to lbficf. The con-

tribution of variable y depends on the value assigned to x. If x is assigned

to 1, then icfy = {(0, 0)}. Note that in this case lbficf equals lbfs. If x

is assigned to 0, then icfy = {(0, 2)} (because the domain value 1 of y is

pruned). Note that in this case, lbficf equals lbfs when y is assigned to its

remaining domain value 0. Namely, lbficf only adds to lbfs the costs given

by unassigned variables with a single domain value.

On the other hand, FDAC is able to simplify the network extracting to

the lower bound necessary costs that any variable assignment will cause.

For instance, when the graph is acyclic (as in Figure 5.8), the lower bound

computed by FDAC is the optimal cost of each objective function when

considered independently. Since this lower bound is always tighter than the

one computed by lbficf and it is computed very efficiently, the cpu time

spent by MO-BBfdac is lower than the one spent by MO-BBicf.
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The good results obtained by MO-BB using a lower bound that is mono-

objective in nature seems to indicate that these instances can be solved by

MO-BB without using very elaborated lower bound frontiers. We will go

back to this hypothesis in Chapters 6 and 8.

Finally, the cpu time of each algorithm with respect to each different class

of problem follows the same pattern. When fixing the number of constraints

and increasing the number of variables, the efficiency of all the approaches

decreases. When fixing the number of variables and increasing the number

of constraints, the efficiency of all the approaches increases.

5.3.3 Combinatorial Auctions

Figure 5.9 reports the results obtained for risk-conscious auctions instances

with 20 (left) and 50 goods (right). We report mean cpu time (top) and

mean solved percentage within the time limit (bottom). We consider the

time limit as the cpu time for unsolved instances. We do not plot the results

of ǫ-constraint for instances with 50 goods because it fails in solving all

instances.

ǫ-constraint is clearly the worst approach. It does not solve all the in-

stances of any parameter configuration. Moreover, it is only able to solve

some instances with 20 goods and 80 to 100 bids. Its solved percentage for

instances with 80 bids is quite low (28%) and it decreases as the number of

bids increases. From 100 to 150 bids, its solved percentage is 0.

Regarding MO-BBicf and MO-BBfdac there is no clear winner. Their

behaviour depend on the number of goods. For instances with 20 goods,

MO-BBfdac is slightly superior than MO-BBicf. The percentage of solved

instances by MO-BBfdac surpasses the one obtained by MO-BBicf. Moreover,

the time spent by MO-BBfdac to solve each parameter configuration is also

better than that spent by MO-BBicf. For instances with 50 goods, the

performance of both algorithms is very similar. However, note that MO-

BBicf is able to completely solve instances from three configurations more

than MO-BBfdac (from 95 to 105 bids). From 80 to 105 bids MO-BBicf is a
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Figure 5.9: Experimental results on risk-conscious combinatorial auctions for

20 and 50 goods, respectively. Path distribution. Mean values on samples of

size 25. Time limit 1800 seconds.

little more efficient than MO-BBfdac. From 110 to 150 bids is the other way

around.

It is important to recall the main difference between MO-BBicf and MO-

BBfdac. The first algorithm uses a multi-objective lower bound that is quite

naive. The latter uses a mono-objective lower bound that is very sophis-

ticated and efficient. The results in this benchmark justify the interest of

finding wiser multi-objective lower bounds. We will address this issue in

Chapter 8.
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Instance # vars # constrs Time (sec.)

mo-bbicf ǫ-constraint mo-bbfdac

1504(0,183)∗ 184 1329 - - -

1504(184,206)∗ 23 112 0.36 1246.4 60.2

1504(462,508)∗ 47 301 - - -

1506(0,150) 151 1440 - - -

1506(151,228) 78 1107 - - -

1506(229,317) 89 1349 - - -

1506(679,761)∗ 83 1243 - - -

1405(762,854)∗ 93 2193 - - -

1407(0,147) 148 1442 - - -

1407(148,247) 100 1678 - - -

1407(248,378) 131 3063 - - -

1407(379,409)∗ 31 220 0.18 - -

1407(413,429)∗ 17 87 0.02 16.6 2

1407(447,469)∗ 23 129 0 16.8 0

1407(494,553)∗ 60 1333 - - -

1407(580,700) 121 2299 - - -

1407(701,761) 61 445 - - -

1407(762,878)∗ 117 2708 - - -

Figure 5.10: Experimental results on subproblems of the Spot5 instances

with capacity constraint. Time limit 1800 seconds.

5.3.4 Scheduling of an EOS

Figure 5.10 reports the results obtained for the scheduling of an EOS bench-

mark. We break the multiple orbit Spot5 instances into subinstances (as

described in Appendix B.2) and run the three algorithms on them. Subin-

stances which are connected components with less than 20 variables or with

trivially satisfiable capacity constraints can be solved almost instantly by any

method and we do not report them. The first column of the figure indicates

the name of each instance. The second and third columns tell the number of

variables and the number of constraints, respectively. The following columns

report cpu time in seconds required by each algorithm. Symbol ”-” indicates

that the algorithm cannot solve the subproblem within the time limit.

The most remarkable observation is that none of the algorithms is able

to solve but very few instances. This fact suggests that MO-BB may not be

suitable for this kind of instances. Actually, we will see in Chapter 6 that
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other multi-objective branch-and-bound algorithm using more sophisticated

multi-objective lower bounds is very appropriate in this benchmark.

5.4 Related Work

Other works in the literature explore the extension of the branch-and-bound

schema to solve multi-objective optimization problems. One good example

is the work by Gavanelli [54], presented in the context of Constraint Pro-

gramming (CP). As we have seen in Section 3.2.1, mono-objective branch-

and-bound is emulated in CP as an iterative process where, at each step, the

algorithm solves a CSP problem. Initially, the objective function F (X ) is

added as a constraint F (X ) < K, where K is an upper bound of the opti-

mum. If there exists an assignment X such that the problem is satisfiable,

then the algorithm adds a new constraint F (X ) < F (X), and solves it again.

This process is iterated until the problem is unsatisfiable. Then, the cost of

the last satisfiable assignment is the optimum of the original optimization

problem. The parallelism between the updating of the upper bound ub in

BB and the added constraints is clear. However, the pruning condition and

the lower bound are hidden in the internal management (or propagation) of

the constraints by the solver.

Gavanelli shows that the multi-objective case can be implemented using

similar ideas. Initially, the constraint programming solver adds a set of con-

straints Fj(X ) < Kj , where Fj(X ) and Kj are the jth objective function

and its upper bound, respectively. Then, the algorithm iterative solves a

sequence of CSP problems. At each step, it adds to the previous satisfiable

CSP problem a set of constraints that restricts the new solution to be non-

dominated with respect the ones previously found. When the CSP problem

is unsatisfiable, the set of non-dominated solutions found during this process

is the efficient frontier of the original multi-objective problem. Again, there is

a parallelism between the new set of constraints and the ubf updating. How-

ever, it is not easy to see the parallelism between the propagation done by
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the CP solver, and the pruning condition and lower bound frontier. In some

sense, the CP approach hides the main elements of the branch-and-bound

schema.

The work of Harikumar et. al in [59] is also related to ours. They extend

the iterative deepening A∗ algorithm to multi-objective optimization. In its

description, they propose a multi-objective depth-first branch-and-bound al-

gorithm to compute the efficient solutions of a restricted area of the search

space. Its algorithmic structure is quite close to ours. However, it does not

explicit a lower bound in the pruning condition. A careful reading of their

work shows that their algorithm implicitly uses the simplest lower bound

lbfs to determine whether to continue the search. They do not develop the

idea of using bounds to improve the search.

5.5 Conclusions

In this Chapter, we have extended the branch-and-bound schema from mono-

objective to multi-objective optimization. The formalization of multi-objective

optimization problems as instances of the semiring CSP framework gives us

the main elements to extend the three key concepts of branch-and-bound:

the upper bound, the lower bound and the pruning condition. As a conse-

quence, the resulting algorithm, called MO-BB, exhibits the same structure

as its mono-objective counterpart.

Since the role of upper and lower bounds are clearly defined, it allows

MO-BB to use any valid bound without changing its description. We have

presented some preliminary upper and lower bound frontiers. These basic

bounds are the starting point to more sophisticated multi-objective bounds

that will be analyzed in Chapter 6 and Chapter 8.

It is important to note that the generalization of MO-BB to deal with

other multi-objective optimization tasks expressed as instances of the semir-

ing CSP framework is straightforward. The only difference being the used

of the convenient combination operator and the partial order defined by its
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corresponding c-semiring.

Finally, it is also important to recall that branch-and-bound does not

take into account the independences among variables, as explained in Sec-

tion 3.1.1. AND/OR search overcomes this issue by generating the search

space following a tree-like ordering of the variables. Initially, AND/OR search

was described in the context of mono-objective heuristic search in Artificial

Intelligence [106]. Some attempts have been done to extend this approach

to multi-objective heuristic search for a particular search space [107]. Re-

cently, [37, 99] describe AND/OR search in the context of graphical models.

This approach has been shown very effective for mono-objective optimization

tasks [98]. In our current research, we want to investigate the extension of

AND/OR search from mono-objective to multi-objective optimization in the

context of graphical models.
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Chapter 6

Russian Doll Search

Russian doll search (RDS) is a well-known branch-and-bound search schema

that solves mono-objective optimization problems by using sophisticated up-

per and lower bounds. In this Chapter we extend RDS to the multi-objective

context. The new algorithm, called multi-objective russian doll search (MO-

RDS), involves the definition of new valid upper and lower bound frontiers.

Our experimental results show that, as RDS, MO-RDS appears to be effi-

cient in problems with relatively small bandwidth. Moreover, this Chapter

points out that in some cases it may be convenient to solve mono-objective

optimization problems as if they were multi-objective because they can be

broken into independent subproblems. We demonstrate this idea by solving

for the first time mono-objective SPOT5 instance 1504 using MO-RDS.

The structure of the chapter is as follows. Section 6.1 describes RDS along

with its specialized version. Section 6.2 presents the extension of RDS and

its specialized version to multi-objective optimization and analyzes the lower

and upper bound frontier that they use. Section 6.3 empirically proves the

efficiency of the new algorithms in some class of problems. Finally, Section

6.4 gives some conclusions and points out some future work.

109
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6.1 (Mono-objective) Russian Doll Search

Russian doll search (RDS) [145] is a branch-and-bound algorithm which in-

vests in high quality upper and lower bounds. The idea of RDS is to re-

place one search by n successive searches on nested subproblems, where n

is the number of variables in the problem. The first subproblem involves

only one variable. Each successive subproblem results from adding one new

variable to the previous one. Finally, the last subproblem is the whole prob-

lem. Each subproblem is solved to optimality using depth-first branch-and-

bound search. The optimal cost of the original problem is obtained with the

last search, but the key of the algorithm is that the optimal assignments of

the solved subproblems, along with their costs, are used to help subsequent

searches. The essence of RDS is to exploit the following straightforward prop-

erty: the optimal cost of a problem is greater than or equal to the optimal

cost of its subproblems.

Let P = (X ,D,F) be a WCSP. Consider an arbitrary static variable

ordering, that we assume lexicographic without loss of generality. Subproblem

P i is the problem induced by variables (xi, . . . , xn). Formally,

P i = (X i,Di,F i)

where

• X i = {xi, . . . , xn}

• Di = {Di, . . . , Dn}

• F i = {f ∈ F | var(f) ⊆ X i}

Note that P 1 = P . Let Xj
i be a short-hand for an assignment involving

variables (xi, xi+1, . . . , xj) and F i be the objective function of P i.

RDS sequentially solves subproblems of P , starting with subproblem P n

down to subproblem P 1. Each subproblem P i is solved to optimality using

DF-BB as described in Figure 5.1. The execution of DF-BB for solving P i

is characterized by:
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1. An initial upper bound of P i which is computed from the optimal

solution of the previously solved subproblem P i+1.

2. The assignment of variables is done according to the static order of

RDS (i.e., xi, xi+1, . . . , xn).

3. An specific lower bound lbrds which is used in each search node for

pruning purposes.

The optimum of the original problem P (i.e., opt(P )) is obtained when sub-

problem P 1 is solved (because P 1 = P ).

Consider an execution of RDS. Let P i be the problem being solved by

DF-BB. First, the optimal solution of the previously solved subproblem P i+1

can be used to compute an initial upper bound of P i. The idea is that any

extension of an optimal assignment of P i+1 to variable xi is likely to be near-

optimal in P i (because the two problems are very similar), so the best one is

used. Note that, since P i+1 was solved to optimality in the previous iteration

of RDS, its optimal assignment is known when solving P i. Thus, the initial

upper bound of P i is,

ub = min
a∈Di

{F i((xi = a) · t)}

where t is the optimal assignment of P i+1.

Now, consider an arbitrary search node during the resolution of P i by

DF-BB and let Xj−1
i be its associated partial assignment. At this point, DF-

BB decides whether to prune the current line of search or not on the basis

of an underestimation of the current subproblem P i(Xj−1
i ). As we have seen

in Section 5.1.1, DF-BB can use lbic = lbs +
∑n

k=j ick as a lower bound.

Since DF-BB assigns the variables in the static order of RDS, it can also

use the optimum of the subproblem induced by the current set of unassigned

variables (xj , . . . , xn) (i.e., opt(P j)) to improve this bound. Formally,

lbrds = lbs +

n∑

k=j

ick + opt(P j)
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Figure 6.1: WCSP instance.

Note that when solving P i, opt(P j) is already known because P j was solved

to optimality in a previous iteration of RDS. As in the original paper [145], we

assume that F in the original problem does not contain unary cost functions.

Otherwise, the definition of icka needs to be modified in order to disregard

original unary functions (because unary functions are already considered in

opt(P j)). It is easy to see that lbrds is a lower bound of P i(Xj−1
i ) because

the subset of functions taken into account by each of its three components

(i.e., lbs,
∑n

k=j ick and opt(P j)) are disjunct and each component itself is

a lower bound of the optimum of the corresponding subset of functions.

Example 6.1.1 Consider the WCSP instance of Figure 6.1. It has three

variables {x1, x2, x3} and two domain values per domain Di = {a, b}. There

are three binary cost functions: fx1x2
(x1, x2), fx1x3

(x1, x3) and fx2x3
(x2, x3).

Unary costs are 0. Binary costs are 1 when there exists an edge connecting

the corresponding pair of values. Otherwise, the cost is 0. Let t = (x1 = a)

be the current partial assignment. At this point in search, the lower bound

used by BB is as follows. The simplest lower bound is lbs = 0 because none

of the functions are completely assigned with t. There are two unassigned

variables: x2 and x3. The inconsistency count of x2 is ic2 = 0 because

fx1x2
(t · x2 = a) = 1 and fx1x2

(t · x2 = b) = 0. The inconsistency count of

x3 is ic3 = 1 because fx1x3
(t · x3 = a) = 1 and fx1x3

(t · x3 = b) = 1. The
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function RDS(P ) return int

1. rds[n + 1] := 0;

2. for each i from n downto 1 do

3. rds[i] :=UB(rds, i + 1);

4. DF-BB(P i, rds[i]);

5. endfor

6. return rds[1];

endfunction

Figure 6.2: Russian Doll Search algorithm. The input of the algorithm is a

WCSP instance P = (X ,D,F). The output of the algorithm is its optimal

cost.

optimal cost of subproblem P 2 is opt(P 2) = 0 (the optimal assignment is

(x2 = a, x3 = b)). The lower bound considered at the current search node is

lbrds = 0 + (1 + 0) + 0 = 1.

Figure 6.2 shows an algorithmic description of RDS. The input of the

algorithm is the WCSP problem P = (X ,D,F) to be solved. It uses an

array of costs rds. Cost rds[i] plays the role of the upper bound ub during

the resolution of subproblem P i, so at the end of its resolution it will contain

its optimum opt(P i). For algorithmic convenience, we define rds[n + 1] = 0.

The algorithm solves P i in decreasing order of i (line 2). First, rds[i] is

initialized with a valid upper bound (line 3). Then, P i is solved with a call

to DF-BB (line 4), which assigns variables in the order of RDS and uses the

lower bound lbrds. When RDS solves the last subproblem P 1, its optimal

cost stored in rds[1] is the optimum of P .

6.1.1 Specialized RDS

In RDS, two consecutive subproblems (e.g., P i and P i+1) differ in one variable

only. Each iteration of RDS can be seen as the computation of the cost of
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including that new variable in the previously solved subproblem. Sometimes,

it may be convenient to compute the cost of including each domain value of

that variable in the previously solved subproblem. This new approach, called

Specialized RDS (SRDS) [103], performs RDS specialized per domain value.

The main motivation is that including the domain values of one variable in

the previously solved subproblem is not necessaryly homogeneous, that is,

good domain values (with low cost) and bad domain values (with high cost)

may be present in the variable domain. Using this specialized contribution,

SRDS is able to develop pruning conditions stronger than RDS ones.

SRDS performs up to n×d independent searches (where n is the number

of variables and d the maximum domain size), one for including every domain

value of every new variable. Let P ia be a short-hand for P i(xi = a), that is,

subproblem P i conditioned to assignment (xi = a). Each subproblem P ia is

solved to optimality with DF-BB. The execution of DF-BB for solving P ia

is characterized by:

1. An initial upper bound of P ia computed from the best extension to

xi = a of the optimal assignments of P i+1,b for all b ∈ Di+1.

2. The assignment of variables according to the static order of RDS.

3. The use of an specific lower bound lbsrds in each search node.

The optimum of P i is the best alternative among opt(P ia), for all a ∈ Di.

Formally, opt(P i) = mina∈Di
{opt(P ia)}. Then, it is clear that the optimum

of P is opt(P ) = mina∈D1
{opt(P 1a)}.

Consider an execution of SRDS. Let P ia be the problem to be solved by

DF-BB. First, the optimal solutions of the previously solved problems P (i+1)b

can be used to compute an initial upper bound of P ia. The minimum among

the cost of extending the optimal assignment of each subproblem P (i+1)b to

xi = a is an upper bound of P i(xi = a). Formally,

ubia = min
b∈Di+1

{F i(tb · xi+1 = b)}
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where tb is the optimal assignment of problem P i+1(xi+1 = b). Note that

this upper bound takes advantage of the specialization of P i+1 on each of its

domain values b ∈ Di+1.

Now, consider an arbitrary search node during the resolution of P ia by

DF-BB and let Xj−1
i be the current partial assignment (note that xi = a).

Since DF-BB assigns variables in the static order of SRDS (i.e., (xi, xi+1, . . . , xn)),

it can underestimate P ia(Xj−1
i ) using the following lower bound,

lbsrds = lbs +
n∑

k=j+1

ick + min
b∈Dj

{icjb + opt(P jb)}

It is easy to see that lbrds ≤ lbsrds.

Example 6.1.2 Consider the WCSP instance of Example 6.1.1, being t =

(x1 = a) the current partial assignment. At this point in search, the spe-

cialized lower bound used by BB is as follows. As before, the simplest lower

bound is 0 and the inconsistency count of x3 is ic3 = 1. The inconsistency

counts of the next variable to be assigned (i.e., x2) are specialized for each

of its domain values. Then, ic2a = 1, and ic2b = 0. The optimal cost of

subproblem P 2 is also specialized for each of the domain values of x2. Then,

opt(P 2a) = 0 and opt(P 2b) = 1. The lower bound considered at the current

search node is lbsrds = 0+1+min{1+0, 0+1} = 2. Note that in this example

lbrds < lbsrds.

Figure 6.3 shows a basic description of SRDS1. The input of the algorithm

is the WCSP problem P = (X ,D,F) to be solved. Its structure is very

similar to RDS, but specialized to each domain value. Now, rds is a matrix

of costs where rds[i, a] is the optimal cost of problem P ia. Cost rds[i, a]

plays the role of the ub when solving P ia, so at the end of its resolution

rds[i, a] = opt(P ia). For convenience, we suppose that the problem has a

dummy variable xn+1 with just one domain value 0 and initialize rds[n +

1The original algorithmic description includes some subtle technical improvements. For

clarity reasons, we describe the basic structure only.
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function SRDS(P ) return int

1. rds[n + 1, 0] := 0;

2. for each i from n downto 1 do

3. for each a ∈ Di do

4. rds[i, a] :=UB(rds, i + 1, a);

5. DF-BB(P ia, rds[i, a]);

6. endfor

7. endfor

8. return mina∈D1
{rds[1, a]};

endfunction

Figure 6.3: Specialized Russian Doll Search algorithm.

1, 0] = 0 (line 1). SRDS solves P i in decreasing order of i and for each of

its domain values a ∈ Di (line 2-3). First, rds[i, a] is initialized with a valid

upper bound (line 4). Then, P i(xi = a) is solved by DF-BB (line 5) using

the static order of SRDS and the lower bound lbsrds. When SRDS solves

the last subproblem P 1, the minimum among the optimums of problem P 1

specialized to its domain values a ∈ D1 is the optimum of P (line 8).

6.2 Multi-objective Russian Doll Search

Multi-objective optimization problems can also be solved using a russian doll

search schema. Let P be a MO-WCSP problem. The algorithm computes

the efficient frontier of P by n successive searches on nested subproblems

from P n down to P 1. Now, the result of solving subproblem P i is its efficient

frontier E(P i). The output of the algorithm is the efficient frontier E(P 1),

that is, the efficient frontier of the original problem P .

As before, the key of the algorithm is that information from previous

resolutions is used to compute new upper and lower bounds (in this case

frontiers) that help to solve subsequent subproblems. It is based in Property
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iE(P  )

Figure 6.4: Efficient frontier of a bi-objective optimization problem. Vectors

in the gray rectangle will dominate the vector in its top-right corner.

4.3.5, which in this context states that: given a problem P i, its efficient

frontier E(P i) is dominated by the efficient frontier E(P j) of any subproblem

P j. Formally,

∀ 1 ≤ i ≤ j ≤ n, E(P i) ≥mo E(P j)

This Property, which was straightforward in the mono-objective case, may

not be so direct when considering two or more objectives. We illustrate it by

means of an example. Let P i be a bi-objective problem and let the frontier

of Figure 6.4 be its efficient frontier E(P i). Each cost vector ~v ∈ E(P i)

is the valuation of one complete assignment in the objective function F i.

Let X(~v) be the complete assignment such that F i(X(~v)) = {~v}. Each

vector ~v ∈ E(P i) is the top right corner of a gray rectangle. Let P j be a

subproblem of P i. Since F j ⊆ F i, then F i = F j +
∑

f∈F i−Fj f . It is clear

that the valuation of X(~v) in F j is a cost vector contained in the rectangle

associated to ~v. Namely, F j(X(~v)) = {~w} such that ~w ≤ ~v. If ~w ∈ E(P j),

then it dominates ~v. Otherwise, it would mean that there is another vector

~u ∈ E(P j) that dominates ~w, and as a consequence, ~u also dominates ~v. As a

result, ∀~v ∈ E(P i), ∃ ~u ∈ E(P j) such that ~u ≤ ~v, namely E(P j) ≤mo E(P i).

Multi-objective russian doll search (MO-RDS) sequentially solves sub-

problems P i in decreasing order of i. Each subproblem P i is solved with
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a call to MO-BB (described in Figure 5.4). Each execution of MO-BB is

characterized by:

1. An initial upper bound frontier computed from the efficient solutions

of the previously solved subproblem.

2. The assignment of variables in the static order of MO-RDS.

3. The use of the lower bound frontier lbfrds in each search node.

The efficient frontier of the original problem P is obtained with the last

search.

Consider an execution of MO-RDS. Let P i be the subproblem being solved

by MO-BB. In the following, we define the initial upper bound frontier and

the lower bound frontier used by MO-BB.

Initial upper bound frontier

As noted in classical RDS, the resolution of P i+1 contains useful infor-

mation to compute an initial upper bound frontier of P i. Now, the best

extensions of the efficient solutions of P i+1 form an upper bound frontier of

P i. Formally, let ~v ∈ E(P i+1) and let Xn
i+1(~v) be the optimal assignment of

P i+1 such that F i+1(Xn
i+1(~v)) = {~v}. We define

W~v =
⋃

a∈Di

{F i((xi = a) · Xn
i+1(~v))}

(i.e., the set of extensions of one efficient solution of P i+1). Then, ubf is the

set of best cost vectors among all sets W~v,

ubf = minmo

~v∈E(P i+1)
{W~v}

Theorem 6.2.1 ubf is a valid upper bound frontier of problem P i.

Proof The theorem is an obvious consequence of Property 4.3.4. By def-

inition, ubf is a set of non-dominated elements coming from a subset of
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complete assignments (the set of efficient solutions of E(P i+1) extended to

variable xi), while E(P i) is a set of non-dominated elements coming from all

complete assignments.

Lower bound frontier

Consider an arbitrary search node during the resolution of P i by MO-BB

such that Xj−1
i is its current partial assignment. As we have seen in Section

5.2.1, MO-BB can use the lower bound frontier lbfic = lbfs +
∑n

k=i icfk

to underestimate E(P i(Xj−1
i )). Now, since MO-BB assigns the variables in

the order of MO-RDS, the algorithm can improve this bound by adding the

efficient frontier of subproblem P j. Formally,

lbfrds = lbfs +
n∑

k=j

icfk + E(P j)

Theorem 6.2.2 lbfrds is a valid lower bound frontier of problem P i.

Proof Let P i be the subproblem being solved by MO-RDS. Consider an arbi-

trary search node such that Xj−1
i is the current assignment. Thus, P i(Xj−1

i )

is the subproblem associated to the current search node. For clarity reasons,

P i(Xj−1
i ) will be called P ′. Let F ′ be the set of functions of P ′ and E(P ′)

be its efficient frontier. We have to prove that lbfrds ≤mo E(P ′).

The set of functions F ′ can be partitioned into three sets: completely

assigned functions in P ′, partially assigned functions in P i by Xj−1
i , and

functions in P i that has not been modified by Xj−1
i (i.e., functions of sub-

problem P j). By Theorem 4.3.4,

∑

f∈P ′

|f |=0

f() + minmo

X∈l(X ′)
{(

∑

f∈P ′

f /∈P j

f)(X)} + E(P j) ≤mo E(P ′)

which can be rewritten as

lbfs + minmo

X∈l(X ′)
{(

∑

f∈P ′

f /∈P j

f)(X)} + E(P j) ≤mo E(P ′) (6.1)
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Figure 6.5: MO-WCSP instance.

By definition of icfk,
∑n

k=j icfk is the efficient frontier of a problem that

only contains unary functions from the set {f ∈ P ′ | f 6∈ P j}. Then, by

Property 4.3.5,
n∑

k=j

icfk ≤mo minmo

X∈l(X ′)
{(

∑

f∈P ′

f /∈P j

f)(X)}

By monotonicity of ≤mo on the previous expression,

lbfs +
n∑

k=j

icfk + E(P j) ≤mo lbfs + minmo

X∈l(X ′)
{(

∑

f∈P ′

f /∈P j

f)(X)} + E(P j) (6.2)

Finally, by transitivity of ≤mo on (6.2) and (6.1),

lbfs +

n∑

k=j

icfk + E(P j) ≤mo E(P ′)

Example 6.2.1 Consider the MO-WCSP instance of Figure 6.5. It is based

on the WCSP of Example 6.1 adding one new objective. The problem has

three variables {x1, x2, x3} and two domain values per domain Di = {a, b}.
There are three binary frontier functions: fx1x2

(x1, x2), fx1x3
(x1, x3) and
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function MO-RDS(P ) return frontier

1. rdsf[n + 1] := {~0};
2. for each i from n downto 1 do

3. rdsf[i] :=UBF(rdsf, i + 1);

4. MO-BB(P i, rdsf[i]);

5. endfor

6. return rdsf[1];

endfunction

Figure 6.6: Multi-objective Russian Doll Search algorithm. The input of

the algorithm is a MO-WCSP instance P = (X ,D,F). The output of the

algorithm is its efficient frontier E(P ).

fx2x3
(x2, x3). Unary valuations are {(0, 0)}. Binary valuations are depicted

as vector labeled edges connecting the corresponding pair of values. Only non-

zero frontiers are shown. Let t = (x1 = a) be the current partial assignment.

At this point in search, the simplest lower bound frontier is lbfs = {(0, 0)}
because none of the frontier functions are totally assigned by t. There are

two unassigned variables x2 and x3. The inconsistency count of x2 is icf2 =

{(0, 1)} because fx1x2
(t · x2 = a) = {(1, 2)}, fx1x2

(t · x2 = b) = {(0, 1)},
and icf2 = minmo{{(1, 2)}, {(0, 1)}}. The inconsistency count of x3 is

icf3 = {(1, 1)} because fx1x3
(t·x3 = a) = {(1, 1)}, fx1x3

(t·x3 = b) = {(1, 4)},
and icf3 = minmo{{(1, 1)}, {(1, 4)}}. The efficient frontier of subprob-

lem P 2 is E(P 2) = {(0, 4), (1, 1)} with efficient solutions (x2 = a, x3 = b)

and (x2 = b, x3 = a), respectively. The lower bound frontier used by MO-

BB at the current search node is lbfrds = {(0, 0)} + {(0, 1)} + {(1, 1)} +

{(0, 4), (1, 1)} = {(1, 6), (2, 3)}.

Algorithmic description

Figure 6.6 is an algorithmic description of MO-RDS. The input of the

algorithm is a MO-WCSP problem P = (X ,D,F). It uses an array of
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frontiers rdsf. Frontier rdsf[i] plays the role of the upper bound frontier

ubf during the resolution of subproblem P i, so at the end of its resolution it

will contain its efficient frontier E(P i). The algorithm solves P i in decreasing

order of i (line 2). First, rdsf[i] is initialized with a valid upper bound

frontier (line 3). Then, each subproblem P i is solved with a call to MO-BB

(line 4). As we have seen, the important features of MO-BB are that it uses

the static order of MO-RDS to assign variables and the lower bound frontier

lbfrds. The efficient frontier of the original problem P is obtained when the

last subproblem P 1 is solved. Thus, rdsf[1] is the efficient frontier of P .

Property 6.2.1 When considering a WCSP problem (i.e., p = 1), the algo-

rithm MO-RDS is equivalent to RDS.

6.2.1 Specialized MO-RDS

As shown in the mono-objective case, it may be convenient to ask russian

doll to solve more subproblems in order to obtain more accurate bounds.

This idea can also be applied to multi-objective optimization.

Specialized MO-RDS (SMO-RDS) solves P ia for each variable i from n

down to 1 and for each domain value a ∈ Di. Each subproblem P ia is solved

to optimality by MO-BB, with the following features:

1. The initial upper bound frontier of P ia is computed from the efficient

solutions of the previously solved subproblems P i+1 conditioned to each

domain value b ∈ Di+1.

2. The assignment of variables follows the static order of SMO-RDS.

3. A specific lower bound frontier lbfsrds is used in each search node.

The efficient frontier of the original MO-WCSP problem P is obtained when

problem P 1a has been solved for all a ∈ D1. Vectors in the efficient frontier

of problem P 1a represent the best alternatives when variable x1 is assigned to
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domain value a. Then, the best alternatives among all possible assignments

of variable x1 is E(P ) = minmo

a∈D1

{E(P 1a)}.
Consider an execution of SMO-RDS. Let P ia be the problem being solved

by MO-BB. Before solving it, SMO-RDS computes an initial upper bound

frontier of the subproblem, following the same idea as in MO-RDS. Each

efficient solution of P (i+1)b is extended to variable xi assigned to a. Formally,

let ~v ∈ E(P (i+1)b) and let Xn
i+1(~v)) be an optimal assignment with respect to

P (i+1)b such that F (i+1)b(Xn
i+1) = {~v}. We define

Wb =
⋃

~v∈E(P i+1,b)

{F i((xi = a) · Xn
i+1(~v))}

(i.e., the set of extensions of subproblem P i+1,b). Then, ubfia is the set of

best cost vectors among all Wb,

ubfia = minmo

b∈Di+1

{Wb}

Theorem 6.2.3 ubfia is a valid upper bound frontier of problem P ia.

Proof The proof follows the same structure as Theorem 6.2.1.

Now, consider an arbitrary search node during the resolution of P ia by

MO-BB and let Xj−1
i be the current partial assignment. Then, the lower

bound frontier used by MO-BB is,

lbfsrds = lbfs +
n∑

k=j+1

icfk + minmo

b∈Dj

{icfjb + E(P jb)}

Theorem 6.2.4 lbfsrds is a valid lower bound frontier of problem P ia.

Proof The structure of the proof is the same as for Theorem 6.2.2. In this

case, P ′ = P ia(Xj−1
i ) and its set of functions F ′ is partitioned into three

sets: completely assigned functions in P ′, partially assigned functions in P ia

by Xj−1
i except unary functions with scope {xj}, and functions in P ia that
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has not been modified by Xj−1
i (i.e., functions of subproblem P j) plus unary

functions with scope {xj}. We call P j+ the problem induced by the last

subset of functions.

The proof relies in that: by Property 4.3.5

n∑

k=j+1

icfk ≤mo minmo

X∈l(X ′)
{(

∑

f∈P ′

f /∈P j

xk 6∈var(f)

f)(X)}

and

minmo

b∈Dj

{icfjb + E(P jb)} = E(P j+)

The following theorem shows that the lower bound frontier of SMO-RDS

is always tighter than the lower bound of MO-RDS.

Theorem 6.2.5 lbfrds ≤mo lbfsrds.

Proof Let P i be the problem being solved by DF-BB, and let Xj−1
i be the

current partial assignment. Then, by definition of lbfrds and lbfsrds, we

must prove that:

n∑

k=j+1

icfk + icfj + E(P j) ≤mo

n∑

k=j+1

icfk + minmo

b∈Dj

{icfjb + E(P jb)}

Observe that:

minmo

b∈Dj

{icfjb + E(P jb)} = E(P j+)

where P j+ is a problem containing all the functions of problem P j plus unary

functions in P i(Xj−1
i ) with scope {xj}. Moreover, icfj is the efficient frontier

of a problem containing only unary functions in P i(Xj−1
i ) with scope {xj}.

Then, by Theorem 4.3.4,

icfj + E(P j) ≤mo minmo

b∈Dj

{icfjb + E(P jb)}
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By monotonicity of ≤mo,

n∑

k=j+1

icfk + icfj + E(P j) ≤mo

n∑

k=j+1

icfk + minmo

b∈Dj

{icfjb + E(P jb)}

Example 6.2.2 Consider the MO-WCSP instance of Example 6.2.1, being

t = (x1 = a) the current partial assignment. At this point in search, the

specialized lower bound used by MO-BB is as follows. As before, the sim-

plest lower bound frontier lbfs is {(0, 0)} and the inconsistency counts of

x3 is icf3 = {(1, 1)}. The inconsistency counts of the next variable to

be assigned (i.e., x2) is specialized for each of its domain values. Then,

icf2a = {(1, 2)}, and icf2b = {(0, 1)}. The efficient frontier of subproblem

P 2 is also specialized for each of the domain values of x2. Then, E(P 2a) =

{(1, 2), (0, 4)} and E(P 2b) = {(1, 1)}. The lower bound frontier considered at

the current search node is lbfsrds = {(0, 0)} + {(1, 1)} + minmo{{(1, 2)} +

{(0, 4), (1, 1)}, {(0, 1)} + {(1, 1)}} = {(2, 3)}. Note that in this example

lbfrds <mo lbfsrds.

Figure 6.7 describes SMO-RDS. The input of the algorithm is the MO-

WCSP problem P = (X ,D,F) to be solved. It uses a matrix of efficient

frontiers rdsf, where rdsf[i, a] is the efficient frontier of problem P ia. Fron-

tier rdsf[i, a] plays the role of the ubf when solving P ia, so at the end of

its resolution rdsf[i, a] = E(P ia). For convenience, rdsf has to be defined

in position n + 1. We suppose that there exists a dummy variable xn+1 with

just one domain value 0 and initialize rdsf[n+1, 0] to the unit element {−→0 }
of the combination operator (line 1). The algorithm solves P ia in decreasing

order of i and for each domain value a ∈ Di (lines 2-3). First, rdsf[i, a]

is initialized with a valid upper bound frontier (line 3). Then, each P ia is

optimally solved by MO-BB (line 5) using the static order of SMO-RDS to

assign its variables and the lower bound frontier lbfsrds. Finally, the efficient

frontier of the overall problem is obtained as minmo
a∈D1

{rdsf[1, a]} (line 9).
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function SMO-RDS(P ) return frontier

1. rdsf[n + 1, 0] := {~0};
2. for each i from n downto 1 do

3. for each a ∈ Di do

4. rdsf[i, a] :=UBF(rdsf, i + 1, a);

5. MO-BB(P ia, rdsf[i, a]);

6. endfor

7. endfor

8. return minmo

a∈D1

{rdsf[1, a]};
endfunction

Figure 6.7: Multi-objective Specialized Russian Doll Search algorithm. The

input of the algorithm is a MO-WCSP problem P = (X ,D,F). The output

of the algorithm is its efficient frontier.

6.3 Experimental Results

The purpose of these experiments is to evaluate the suitability of multi-

objective russian doll algorithms for solving MO-WCSP problems. This eval-

uation analyzes three aspects: (i) the performance of MO-RDS and SMO-

RDS with respect to other multi-objective algorithms; (ii) the performance

of MO-RDS with respect to SMO-RDS; and (iii) the performance of both

russian doll algorithms with respect to the graph bandwidth of the problem.

We compare the performance of MO-RDS and SMO-RDS versus the best

approach from the previous Chapter. Namely, the best out of:

• MO-BBicf.

• ǫ-constraint.

• MO-BBfdac.

We test their performance on the same benchmarks as in the previous

Chapter. Namely, Max-SAT-ONE, biobjective minimum vertex cover, risk-
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conscious combinatorial auctions and scheduling of an EOS benchmarks (for

a detailed description of the benchmarks see Appendices B.3, B.4, B.1 and

B.2, respectively).

As shown in the mono-objective case [145], russian doll algorithms are

proved to be efficient in problems with relatively small bandwidth. To as-

sess the influence of the graph bandwidth on the relative performance of

multi-objective russian doll algorithms, we experiment with different variable

orderings. In particular, we run MO-RDS and SMO-RDS using the lexico-

graphical ordering and using the variable ordering leading to the smallest

graph bandwidth (in each particular benchmark) considering the following

heuristics:

• Greedy min-fill heuristic [35].

• Minimal width order (MWO) [50].

• Minimal triangulation (LEX-M) [125].

Moreover, we go one step further and show that a high graph bandwidth

does not always mean that russian doll algorithms are not convenient. Note

that, since the graph bandwidth is the maximum among the bandwidth of

each node of the graph, a high graph bandwidth only means that there exists

at least one node with that bandwidth. However, the intuition is that if very

few constraints are responsible of a high bandwidth, russian doll methods

may still be efficient. We give a first insight on this claim by executing

SMO-RDS on special instances from the biobjective minimum vertex cover

benchmark.

The time limit for all the experiments is 1800 seconds.

6.3.1 Max-SAT-ONE

Figure 6.8 reports the results of the Max-SAT-ONE benchmark. The first and

second columns contain the name of the instance and the size of the efficient

frontier. The third column shows the graph bandwidth of each instance using
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Instance |E| Lex / LEX-M

band. mo–rds smo–rds mo–bbicf ǫ–constr. mo–bbfdac

dubois20 1 41 / 4 543.24 / 116.95 - / 143.78 125.98 0.002 34.87

dubois21 1 43 / 4 1192.67 / 226.34 - / 279.28 260.11 0.003 72.01

dubois22 1 45 / 4 - / 499.57 - / 623.57 543.91 0.003 149.16

dubois23 1 47 / 4 - / 956.7 - / 1200.17 1131.71 0.001 308.26

dubois24 1 49 / 4 - / - - / - - 0.002 637.2

dubois25 1 51 / 4 - / - - / - - 0.003 1313.52

pret60 40 14 56 / 11 - / 457.28 - / 641.44 - - -

pret60 60 6 56 / 11 - / 209.67 - / 255.34 630.34 - 1646.27

pret60 75 1 56 / 11 1540.85 / 215.57 - / 248.47 165.03 0.002 99.03

aim-50-1 6-no-1 8 49 / 35 - / - - / - 48.91 1663.47 39.83

aim-50-1 6-no-2 10 45 / 33 976.29 / - - / - 30.62 1202.1 197.69

aim-50-1 6-no-3 10 45 / 28 - / - - / - 46.95 - 60.71

aim-50-1 6-no-4 10 48 / 37 - / - - / - 18.44 - 112.93

aim-50-1 6-yes1-1 10 49 / 32 1421.85 / 610 -/ - 20.89 - 51.55

aim-50-1 6-yes1-2 8 49 / 35 - / - - / - 24.93 - 12.28

aim-50-1 6-yes1-3 10 48 / 32 - / 278.34 - / 958.45 24.6 - 25.62

aim-50-1 6-yes1-4 8 49 / 34 - / 498.78 - / - 5.74 780.23 9

aim-50-2 0-no-1 12 47 / 38 - / 1057.38 - / - 67.35 - 319.44

aim-50-2 0-no-2 10 47 / 32 - / 1500.73 - / - 45.61 - 87.88

aim-50-2 0-no-3 10 46 / 40 1273.79 / 530.66 - / 764.73 17.06 1603.98 32.08

aim-50-2 0-no-4 10 48 / 36 - / 1554.22 - / - 25.2 - 70.05

aim-50-2 0-yes1-1 14 48 / 38 - / - - / - 97.99 - 725.26

aim-50-2 0-yes1-2 12 43 / 44 - / - - / - 69.68 - 345.93

aim-50-2 0-yes1-3 14 46 / 45 - / - - / - 72.11 - 443.72

aim-50-2 0-yes1-4 14 45 / 29 - / - - / - 150.78 - 1000.52

aim-50-3 4-yes1-1 15 48 / 42 - / - - / - 71.06 - 211.56

aim-50-3 4-yes1-2 17 49 / 42 - / - - / - 199.91 - 520.62

aim-50-3 4-yes1-3 19 49 / 39 - / - - / - 309.71 - 1535.47

aim-50-3 4-yes1-4 19 48 / 42 - / - - / - 184.12 - 900.66

aim-50-6 0-yes1-1 27 49 / 39 - / - - / - 1475.08 - -

aim-50-6 0-yes1-2 26 47 / 44 - / - - / - 1525.85 - -

aim-50-6 0-yes1-3 23 48 / 43 - / - - / - 791.3 - -

aim-50-6 0-yes1-4 23 47 / 42 - / - - / - 690.42 - -

Figure 6.8: Experimental results on Max-SAT-ONE problems. Time limit

1800 seconds.

the lexicographical and LEX-M ordering (which lead to the smallest graph

bandwidths w.r.t. min-fill and MWO orderings as shown in B.4) separated

by a ”/”. The fourth and fifth columns indicate the cpu time in seconds

required by MO-RDS and SMO-RDS for solving each instance using the two
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previous orderings. The remaining columns indicate the cpu time required by

MO-BBicf, ǫ-constraint and MO-BBfdac, respectively. A ”-” indicates that

the algorithm does not terminate within the time limit.

The main thing to be observed is that russian doll search is not very suit-

able in this benchmark. In general, MO-RDS and SMO-RDS are the worst

options. The only exception is in pret60 40 and pret60 60 instances, where

both russian doll algorithms using LEX-M order are the best approaches.

The previous results are consistent with the hypothesis that russian doll

algorithms are not very convenient for problems with relatively large graph

bandwidth. Note that the graph bandwidth for all but dubois and pret in-

stances is almost the number of variables. It is worth noting that dubois and

pret instances are precisely the instances where MO-RDS and SMO-RDS

obtain their best relative performance.

The efficiency of MO-RDS and SMO-RDS seems to depend on the graph

bandwidth. For each instance, both algorithms are more efficient using the

order that leads to the smallest graph bandwidth. The only exception is

in aim-50-1 6-no-2 instance, where MO-RDS using lexicographical ordering

outperforms the same algorithm using LEX-M ordering.

Regarding the relative efficiency between MO-RDS and SMO-RDS, it

seems that SMO-RDS does not take advantage of its specialized lower bound.

This fact suggests that the lower bound of a given subproblem P i is very

similar to the lower bound of each subproblem P i(xi = a). As a consequence,

MO-RDS outperforms SMO-RDS because the time spent to compute the

specialized lower bound does not lead to a great improve in the pruning

capabilities.

6.3.2 Biobjective Minimum Vertex Cover

Figure 6.9 reports the results obtained in the biobjective minimum weighted

vertex cover benchmark. The first and second columns indicate the number

of variables and edges, respectively. The third column reports the mean

graph bandwidth of each parameter configuration using the lexicographical
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N E Lex / Lex-M

bandwidth mo–rds smo–rds mo-bbfdac

60 55.24 / 45.68 213,87 / 240,98 298,91 / 171.66 0,45

70 100 64.44 / 54.32 1198,08 (56%) / 735,64 (80%) 1472,21 (40%) / 673.33 (80%) 2,42

80 72.52 / 57.52 1639,28 (20%) / 1343,46 (56%) 1770,68 (4%) / 1236.9 (68%) 9,69

90 79.68 / 60.8 1752,61 (8%) / 1367,1 (40%) 1800 (0%) / 1307.42 (48%) 32,70

60 56.96 / 47.32 333,16 / 118,3 259,65 / 82.31 0,32

70 250 66.32 / 58.28 1800 (0%) / 1488,47 (40%) 1800 (0%) / 1284.61 (75%) 1,69

80 75.84 / 66.28 1800 (0%) / 1800 (0%) 1800 (0%) / 1800 (0%) 10,67

90 84.68 / 73.36 1800 (0%) / 1800 (0%) 1800 (0%) / 1800 (0%) 53,95

60 57.64 / 49.88 35,34 / 17,54 16,39 / 9.82 0,11

70 500 67.6 / 58.92 708,33 / 281 385,64 / 161.98 0,55

80 76.72 / 66.68 1800 (0%) / 1716,9 (24%) 1800 (0%) / 1573.32 (36%) 2,93

90 87.12 / 73.92 1800 (0%) / 1800 (0%) 1800 (0%) / 1800 (0%) 15,78

60 58.36 / 53.48 2,05 / 1,47 0,74 / 0.57 0,03

70 950 68 / 61.88 32,92 / 14,88 10,53 / 6.37 0,13

80 77.56 / 69.12 11145,3 / 178,72 157,96 / 77.13 0,53

90 87.32 / 78.08 1800 (0%) / 1697,21 (32%) 1768,4 (12%) / 1075.99 (88%) 2,63

Figure 6.9: Experimental results on biobjective weighted minimum vertex

cover problems. Parameter C is set to 5. Mean values on 25 instances for

each parameter configuration. Time limit 1800 seconds.

and LEX-M orders. The fourth and fifth columns report the mean cpu time

in seconds required by MO–RDS and SMO–RDS for solving each parameter

configuration and the percentage of solved instances between parenthesis

using the previous variable orderings. The sixth column shows the cpu time

required by MO-BBfdac (i.e., the best approach in this benchmark among

MO-BBicf, ǫ-constraint and MO-BBfdac), and the solved percentage between

parenthesis when different from 100%.

MO-RDS and SMO-RDS are not very convenient in this benchmark ei-

ther. MO-BBfdac outperforms MO-RDS and SMO-RDS in all parameter

configurations.

These results also support the hypothesis that the graph bandwidth af-

fects the performance of russian doll algorithms. If we compare the per-

formance of MO-RDS and SMO-RDS in each parameter configuration with

respect to each variable order, both algorithms obtain their best results with
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LEX-M order. Observe that the graph bandwidth using LEX-M order is

always the smallest. Therefore, it seems that MO-RDS and SMO-RDS are

more efficient in problems with small bandwidth.

6.3.3 Combinatorial Auctions

Figure 6.10 reports the results obtained for risk-conscious auctions instances

with 20 (left) and 50 goods (right). We report mean cpu time (top) and mean

solved percentage within the time limit (bottom). We consider the time limit

as the cpu time for unsolved instances. We disregard the results obtained by

ǫ-constraint because, as seen in the previous Chapter, it is outperformed by

MO-BBicf and MO-BBfdac.

Multi-objective russian doll search algorithms seem to be not very con-

venient for these instances. One reason could be the high bandwidth of all

parameter configurations given by either the lexicographical as the LEX-M

order. Among the russian doll algorithms, SMO-RDS using LEX-M variable

ordering is the best approach. However, its solved percentage is below the

80% in any case.

If we focus on the relative performance among russian doll algorithms,

it seems that the benefit comes from using a variable ordering leading to

small bandwidth rather than using an specialized lower bound. Observe that

the efficiency of MO-RDS and SMO-RDS using the same variable ordering

is quite similar. Thus, it seems that it does not payoff the time spent to

compute tighter lower bounds. However, both algorithms perform better

when using the LEX-M variable ordering. Note that, as shown in Section

B.1, the bandwidth given by LEX-M ordering is always smaller than the ones

given by lexicographical ordering.

6.3.4 Scheduling of an EOS

Figure 6.11 reports the results on the scheduling of an EOS benchmark. The

first column of the figure indicates the name of the instance. The second
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Figure 6.10: Experimental results on risk-conscious combinatorial auctions

for 20 and 50 goods, respectively. Path distribution. Mean values on samples

of size 25. Time limit 1800 seconds.

column tells the number of constraints. The third column indicates the

graph bandwidth using the lexicographical and MWO order separated by

an ”/”. The fourth and fifth columns show the cpu time in seconds for

MO–RDS and SMO–RDS using the previous two variable orderings. The

last column contains the cpu time of the best algorithm from the previous

chapter (i.e., MO-BBicf). Symbol ”-” indicates that the algorithm cannot

solve the subproblem within the time limit.

MO-RDS and SMO-RDS are clearly the best alternatives for this bench-

mark. These results indicates that the time spent in computing a lower bound

frontier more sophisticated than lbficf is worthy. This result is somehow ex-

pectable, since mono-objective RDS already proved its efficiency in the single
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Instance # vars # constrs Lex / MWO

bandwidth mo-rds smo-rds mo-bbicf

1504(0,183)∗ 184 1329 46 / 54 - / - 1114 / - -

1504(184,206)∗ 23 112 8 / 8 0 / 0 0 / 0 0.36

1504(462,508)∗ 47 301 21 / 20 0.61 / 0.58 0 / 0.3 -

1506(0,150) 151 1440 77 / 78 - / - - / - -

1506(151,228) 78 1107 71 / 69 424 / 41.22 - / 7.8 -

1506(229,317) 89 1349 69 / 72 90 / - 62 / - -

1506(679,761)∗ 83 1243 30 / 30 1 / 2.5 1 / 3.3 -

1405(762,854)∗ 93 2193 49 / 49 2.31 / 3.58 1.58 / 3.14 -

1407(0,147) 148 1442 79 / 80 - / - 1625 / - -

1407(148,247) 100 1678 80 / 80 866 / 26.12 - / 17.12 -

1407(248,378) 131 3063 103 / 112 366 / - 680 / - -

1407(379,409)∗ 31 220 12 / 12 0 / 0 0 / 0 0.18

1407(413,429)∗ 17 87 9 / 9 0 / 0 0 / 0 0.02

1407(447,469)∗ 23 129 10 / 10 0 / 0 0 / 0 0

1407(494,553)∗ 60 1333 46 / 51 267 / - - / - -

1407(580,700) 121 2299 86 / 86 - / - 1769 / - -

1407(701,761) 61 445 28 / 30 7 / 44.5 3 / 98.35 -

1407(762,878)∗ 117 2708 49 / 49 27 / 5.04 96 / 4.8 -

Figure 6.11: Experimental results on subproblems of the Spot5 instances

with capacity constraint. Time limit 1800 seconds.

orbit instances and our algorithms are a natural generalization.

The efficiency of MO-RDS and SMO-RDS depends on the structure of

each subinstance. When the lower bound of a given subproblem P i is similar

to the lower bound of each subproblem P i(xi = a), MO-RDS outperforms

SMO-RDS because the latter cannot take advantage of the specialized lower

bound. However, when this is not the case, SMO-RDS computes a tighter

lower bound and, as a result, SMO-RDS is more efficient than MO-RDS.

Finally, observe that for those instances where the two orderings lead

to different bandwidth, MO-RDS and SMO-RDS are more efficient using

the variable ordering leading to the smallest graph bandwidth. When both

orderings lead to the same graph bandwidth, it seems that (S)MO-RDS using

MWO outperforms the same algorithm using the lexicographical ordering (see

1407(148,247) and 1407(762,878) instances).

Since SMO-RDS has been proved to be an efficient alternative to solve

each connected subpart of multiple-orbit instances, we focus on the resolution
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Instance constr. SMO-RDS (sec.)

1504(0,183)∗ 1329 1114

1504(184,206)∗ 112 0

1504(356,461)∗ 840 13418

1504(462,508)∗ 301 0

Figure 6.12: Experimental results on instance 1504.

of instance 1504. This instance is very challenging and remains unsolved since

its capacity constraint is not trivially satisfied. We solve to optimality each

connected part of the problem using SMO-RDS with no time restriction.

Figure 6.12 reports the cpu time for the most difficult subinstances. The

most difficult piece, 1504(356, 461), is solved in less than 4 hours. As a

consequence, we can sum the efficient frontier of each subproblem and extract

the solution of the original problem: 161301. This instance is solved for the

first time.

6.3.5 More Biobjective Minimum Vertex Cover

From these experiments, it may seem that russian doll algorithms are only

able to solve problems with relatively small bandwidth. As noted in Section

2.4, the bandwidth of a constraint graph under a given order is always greater

than its induced width under the same order. As we will see in the next

Chapter, inference algorithms can solve this kind of problems very efficiently.

Under these circumstances, it may seem that RDS algorithms would not be

very useful.

The next experiment shows that RDS can solve problems with high band-

width and induced width (and as a consequence, they cannot be solved by

inference algorithms). This experiment also indicates that the graph band-

width is not a very accurate measure to predict how hard the problem is for

RDS.

We test on instances from the class of problems (90, 500, 5), with two

extra parameters: the initial graph bandwidth, noted B, and a percentage of

constraints, noted P . The instances are generated as follows. We randomly
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generate 500(1−P ) constraints whose scope variables are separated by a dis-

tance lower than or equal to B according to lexicographical ordering. Then,

we randomly generate 500P constraints without any limitation. We experi-

ment on samples of size 25 for B ∈ {9, 18, 27, 36} and varying the percentage

of constraints P from 0.1 to 0.5 in steps of 0.05.

Figure 6.13 reports the cpu time in seconds for SMO-RDS algorithm un-

der the lexicographical order for B = 9 and B = 18 (top left and top right,

respectively), and B = 27 and B = 36 (middle left and middle right, respec-

tively). All these plots report also the bandwidth (noted b∗), the induced

width (noted w∗), and an alternative measure of the bandwidth that con-

siders the mean bandwidth of each node (noted b∗m) under lexicographical

ordering. The figure also reports the solved percentage for each value of B

(bottom).

Observe that the graph bandwidth as well as the induced width of each

parameter configuration is relatively high. In particular, the induced width

renders the application of inference algorithms unfeasible (as we will see in

the next chapter). Although the graph bandwidth is almost the number

of variables for all parameter configurations, the behaviour of SMO-RDS

depends on the values of both B and P . As expected, if we fix the value

of B and increase the percentage P , the efficiency of SMO-RDS decreases.

Moreover, if we fix P and increase the value of B, the performance of SMO-

RDS also decreases. The link between B and P is also exemplified in the

plot of the solved percentage. Observe that as the value of B increases, the

value of P for which SMO-RDS is able to solve completely the sample of each

parameter configuration decreases.

6.4 Conclusions

This chapter has two main contributions. The first one is algorithmic, since

we extend RDS and SRDS from mono-objective to multi-objective optimiza-

tion. The new algorithms define two new valid lower and upper bound fron-
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Figure 6.13: Influence of graph bandwidth on biobjective minimum weighted

vertex cover instances with 90 nodes and 500 edges. Samples of size 25. Time

limit 1800 seconds.

tiers, which improve the ones described in Section 5.2.1. The second contribu-

tion comes from our empirical work, where we show that our multi-objective
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RDS is an efficient alternative in an important class of problems. Moreover,

using multiple orbit Spot5 instances, we illustrate that sometimes it may be

convenient to reformulate pure satisfaction or mono-objective optimization

problems as multi-objective problems. This may be counterintuitive at first

sight because multi-objective optimization is in general more difficult than

mono-objective optimization. However, we show that the multi-objective

perspective may bring to light desirable structural properties.

As suggested in the experimental results of the biobjective minimum ver-

tex cover benchmark, the parameter able to characterize the efficiency of

russian doll search algorithms should balance in an appropriate way the im-

pact of nodes with high bandwidth with respect to nodes with relatively small

bandwidth. Our proposal is to study some parameters as the mean (weighted

or unweighted) among all nodes’ bandwidth of the problem. Clearly, this

matter deserves further research.

It is known that russian doll algorithms are very sensitive to heuristic

decisions [103]. The current implementation of SMO-RDS is far from being

fully optimized with respect to available mono-objective versions2. Thus,

more efficient implementations may lead to improved results.

2ftp://ftp.cert.fr/pub/lemaitre/LVCSP
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Chapter 7

Bucket Elimination

Decomposition methods are widely used in mono-objective optimization and

bucket elimination is probably the most popular one. To the best of our

knowledge, there is no previous research on decomposition method explicitly

applied to multi-objective optimization problems. The purpose of this chap-

ter is to address this lack by extending bucket elimination to multi-objective

optimization. The new algorithm, called multi-objective bucket elimination

(MO-BE), is a general inference algorithm able to solve multi-objective op-

timization problems with small induced width, as we theoretically and em-

pirically demonstrate. Moreover, MO-BE is the starting point to describe

its approximated version that computes a lower bound frontier of the given

multi-objective problem (see Chapter 8).

The structure of the chapter is as follows. Section 7.1 describes bucket

elimination. Then, Section 7.2 depicts a non-standard implementation of

bucket elimination which will facilitate the comprehension of its extension to

multi-objective optimization problems, introduced in Section 7.3. Section 7.4

reports some experimental results. Section 7.5 discusses related work and,

finally, Section 7.6 gives some conclusions.

139
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7.1 Bucket Elimination

Inference is a general problem solving technique for graphical models. This

approach transforms a problem into an equivalent one through problem re-

formulation. The idea is to make explicit some knowledge that is implicit

in the original problem. A brute-force inference can be described simply as

marginalizing all variables out of the combination of all functions. Given a

WCSP problem P = (X ,D,F), this naive approach will explicitly compute

the expression

min
X

{
∑

f∈F
f} (7.1)

in two steps. First, it will compute the sum of all functions F (X ) =
∑

f∈F f ,

and then it will compute the minimum entry minX{F (X )}. This approach is

time and space exponential in the number of variables, and thus impractical.

Bucket Elimination (BE) [34] (non-serial dynamic programming in [15]

and fusion algorithm in [135]) solves mono-objective optimization problems

by a sequence of problem transformations. These transformations are based

in the sequential elimination of variables and taking advantage of the proper-

ties of the combination and marginalization operators and of the modularity

of graphical models, as follows.

Given a static variable ordering, that we assume lexicographic without

loss of generality, the previous expression can be rewritten as a recursion

F i = min
xi

{F i+1} (7.2)

from i = n down to 1 where, by definition, F n+1 =
∑

f∈F f . By construction,

given a tuple t = (x1 = a1, . . . , xi−1 = ai−1), F i(t) is the optimal cost of

extending t to the eliminated variables xi, xi+1, . . . , xn. Then F 1, resulting

from the elimination of the last variable x1, is a zero-arity function (i.e., a

constant) which is the optimal cost of P .

If F i were computed näıvely, the space and time complexity of this re-

cursion would be the same as for the naive approach. Instead, the following

property, based on the commutativity and associativity of the + and min
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operator (a.k.a. distributivity of marginalization over combination in [135]),

can be exploited in each step of the recursion:

min
xi

{
∑

f∈S
f} =

∑

f∈S
xi 6∈var(f)

f + min
xi

{
∑

f∈S
xi∈var(f)

f}

where S is an arbitrary set of functions. In words, when eliminating variable

xi, the only relevant functions are the ones containing xi in their scope. This

set of functions is the so-called bucket of xi, noted Bi. Then, the ith step of

the previous recursion can be further rewritten as,

F i = min
xi

{
∑

f∈F i+1

f∈Bi

f} +
∑

f∈F i+1

f 6∈Bi

f (7.3)

The elimination of variable xi implies the replacement of the sum of the set

of functions in Bi by a new function

gi = min
xi

{
∑

f∈F i+1

f∈Bi

f}

which does not mention xi. gi is the only function that must be computed

explicitly. It is easy to see that the space and time complexity of comput-

ing this function is exponential in its arity |var(gi)| = |⋃f∈Bi
var(f)|. As

a consequence, the space and time complexity of the previous recursion is

exponential in the largest arity function computed.

It is also important to note that gi results from the elimination of variables

xi, xi+1, . . . , xn from a subset of original functions. Then, by construction,

tuple t = (x1 = a1, . . . , xi−1 = ai−1) can be consistently extended to the

eliminated variables xi, xi+1, . . . , xn from those original functions with cost

gi(t).

Finally, the modularity of graphical models allows us to describe the pre-

vious recursion as a sequence of problem transformations. Each function F i

is the objective function of a problem whose set of functions F i is composed
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function BE(X ,D,F)

1. for each i = n . . . 1 do

2. Bi := {f ∈ F | xi ∈ var(f)}
3. gi := minxi

{∑f∈Bi
f};

4. F := (F ∪ {gi}) − Bi;

5. endfor

6. t := λ;

7. for each i = 1 . . . n do

8. v := argmina∈Di
{(∑f∈Bi

f)(t · (xi = a))}
9. t := t · (xi = v);

10. endfor

11. return (g1, t);

endfunction

Figure 7.1: Bucket Elimination. Given a WCSP P = (X ,D,F), the algo-

rithm returns a constant function g1 (i.e, var(g1) = ∅) with the optimal cost

of P , along with one optimal assignment t.

by each summation of F i. Then, the execution of BE can be viewed as a

recursion

F i = {min
xi

{
∑

f∈F i+1

f∈Bi

f}} ∪ {f ∈ F i+1 | f 6∈ Bi} (7.4)

from i = n down to 1 where, by definition, Fn+1 is the set of original functions

F . In each step, BE transforms the set of functions of the previous problem

by replacing the set of functions in Bi by a new function gi that summarizes

their effect. The elimination of the last variable computes the set F1, which

contains one zero-arity function g1. As we have seen, g1() is the optimal cost

of P .

Figure 7.1 shows an algorithmic description of BE for solving WCSP
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problems. The input of the algorithm is the WCSP problem P = (X ,D,F)

to be solved. The output is the optimum cost of P (opt(P )) along with one

optimal assignment t (i.e., F (t) = opt(P )).

BE works in two phases. In the first phase (lines 1-5), the algorithm

implements the recursion in expression 7.4. That is, it eliminates variables

one by one, from last to first, according to a given order o, that we assume

lexicographic. The elimination of variable xi is done as follows: the algorithm

computes bucket Bi (line 2). Next, it computes a new function gi by summing

all functions in Bi and subsequently eliminating xi (line 3). Then, the set of

current functions F is updated by removing the functions in Bi and adding

gi (line 4). The new F does not contain xi (all functions mentioning xi

were removed and gi, by construction, does not contain xi) but preserves the

value of the optimal cost. The elimination of the last variable produces an

empty-scope function g1 (i.e., a constant) which is the optimal cost of the

problem.

The second phase (lines 6-11) generates an optimal assignment of vari-

ables. It uses the set of buckets that were computed in the first phase.

Starting from an empty assignment t (line 6), variables are assigned from

first to last according to o. The optimal domain value for xi is the best one

regarding the extension of t with respect to the sum of functions in Bi (lines

8,9). We use argmin to denote the argument producing the minimum valua-

tion. Let the gi-subproblem denote the subproblem formed by all the original

cost functions involved in the computation of gi. Let t be an assignment

of variables x1, . . . , xi−1. The correctness of BE is a direct consequence of

the fact that when processing bucket Bi, gi(t[var(gi)]) is the cost of the best

extension of t to variables xi, xi+1, . . . , xn in the gi-subproblem. Note that

the g1-subproblem is the original problem P .

Example 7.1.1 Consider a WCSP instance with seven variables and the

following set of cost functions,

F = {f1(x6, x5, x4), f2(x6, x5, x3), f3(x5, x3, x2), f4(x6, x4, x2),
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f5(x7, x2, x1), f6(x7, x6, x1)}
The execution of BE along the lexicographical variable ordering leads to

the following trace,

Bucket

B7: f6(x7, x6, x1), f5(x7, x2, x1)

B6: g7(x6, x2, x1) = minx7
{f6 + f5},

f4(x6, x4, x2), f2(x6, x5, x3), f1(x6, x5, x4)

B5: g6(x5, x4, x3, x2, x1) = minx6
{f1 + f2 + f4 + g7}, f3(x5, x3, x2)

B4: g5(x4, x3, x2, x1) = minx5
{f3 + g6}

B3: g4(x3, x2, x1) = minx4
{g5}

B2: g3(x2, x1) = minx3
{g4}

B1: g2(x1) = minx2
{g3}

Result: g1() = minx1
{g2}

The first column indicates the bucket Bi being treated, and the second

column shows the functions included in that bucket. Since the algorithm

considers the lexicographical ordering of the variables, buckets are processed

from B7 down to B1. The first bucket processed is B7. It contains functions f6

and f7 because they are the functions in the problem having x7 in their scope.

The combination of these two functions and the subsequent elimination of

variable x7 leads to function g7. Since the highest variable in the scope of

g7 according to the variable ordering is x6, it is place in the bucket of this

variable B6. Bucket B6 also contains the original functions f4, f2 and f1,

because x6 is the highest variable in their scope. Then, a new function g6 is

computed summing all the functions in B6 and eliminating variable x6. g6 is

placed in bucket B5 for the same reason as before. When processing the last

bucket B1, the result is a zero-arity function g1, which is the optimal cost of

the problem.

In general, the result of combining functions or eliminating variables can-

not be expressed intensionally by algebraic expressions. Therefore, we assume
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functions to be extensionally stored in tables. Thus, the space complexity of

storing function f is O(d|var(f)|).

Theorem 7.1.1 [34] The complexity of BE along ordering o is time O(e ×
dw∗(o)+1) and space O(n × dw∗(o)), where e is the number of functions, d is

the largest domain size, n is the number of variables and w∗(o) is the induced

width under the corresponding variable ordering (see Definition 2.4.4).

A clear consequence of Theorem 7.1.1 is that BE is a suitable algorithm

for WCSP problems with small induced width. Otherwise, the algorithm

suffers from large storage demands, which renders BE unfeasible with current

technology.

7.2 A non-standard implementation of Bucket

Elimination

In this section we provide a non-standard implementation of the second phase

of the BE algorithm (Figure 7.1, lines 6-10). Actually, it is a slight modifica-

tion of the approach used in [135] for retrieving an optimal solution. Although

it may look unnecessarily complex for BE, it will facilitate the comprehen-

sion of the new algorithm MO-BE introduced in the next section. The idea

is to retrieve the optimal solution by keeping track of the optimal cost of the

different subproblems contained in each bucket.

Let Bi = {fi1 , . . . , fimi
} be the set of cost functions of bucket Bi. Each

cost function fik is either an original function or the result of processing a

higher bucket Bj (i.e., fik = gj). We define db(fik) as the departure bucket for

function fik , that is, the bucket where the function was generated. Therefore,

db(fik) = i if fik is an original function, and db(fik) = j if fik = gj. For

instance, in the previous example the departure bucket of f6 is db(f6) = 7,

because f6 is an original function of bucket B7. Similarly, db(f3) = 5. The

departure bucket of g7 is db(g7) = 7, because g7 is the result of computing

the functions in B7. Similarly, db(g5) = 5.
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6. t := λ;

7. C[1] := g1;

8. for each i = 1 . . . n do

9. let Bi = {fi1, fi2 , . . . , fimi
}

10. b := pop({a ∈ Di | (
∑mi

k=1 fik)(t · (xi = a)) = C[i]});
11. t := t · (xi = b);

12. (v1, . . . , vmi
) := (fi1(t), . . . , fimi

(t));

13. for each k = 1 . . .mi do if db(fik) 6= i then C[db(fik)] := fik(t);

14. return(g1, t);

Figure 7.2: Second phase of the Bucket Elimination with a non-standard

implementation.

As in standard BE, the new second phase of the algorithm (Figure 7.2)

generates in t an optimal assignment of variables, considering them one at

the time, from first to last. We use an array C[1 . . . n]. Each C[i] will store

the cost contribution of gi to the optimal solution (namely, the contribution

of the gi-subproblem). Initially, t is an empty assignment λ (line 6). Clearly,

C[1] is set to g1 (line 7). The optimal value for x1 is any domain value b ∈ D1

such that C[1] =
∑mi

k=1 f1k
(t · (x1 = b)). In line 10 one such value is selected

and in line 11 added to t (i.e., t = t · (x1 = b)). The contribution of each

function f1k
∈ B1 to the cost C[1] is f1k

(t). Therefore, each contribution

f1k
(t) is propagated to the C entry of the corresponding departure bucket

C[db(f1k
)] (lines 12-13). The same procedure is repeated for each variable xi

in increasing order.

7.3 Multi-objective Bucket Elimination

Multi-objective Bucket Elimination (MO-BE) [120] extends bucket elimi-

nation to the multiobjective context. Given a MO-WCSP problem P =
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(X ,D,F), MO-BE computes the efficient frontier of P (i.e., E(P )) by a se-

quence of problem reductions where, at each step, the algorithm eliminates

one new variable.

The execution of MO-BE can be described as a recursion

F i = {minmo

xi

{
∑mo

f∈F i+1

f∈Bi

f}} ∪ {f ∈ F i+1 | f 6∈ Bi} (7.5)

from i = n down to 1 where, by definition, Fn+1 = F . It is worth noting that

F i is a set of frontier functions. Let t = (x1 = a1, . . . , xi−1 = ai−1) be a tuple

and let gi be the new frontier function computed during the elimination of xi.

It is important to note that gi involves the elimination of variables xi, . . . , xn

from a subset of original functions. By construction, gi(t) is a frontier such

that each cost vector ~v ∈ gi(t) is a non-dominated extension of t to the

eliminated variables xi, . . . , xn in those original functions. In other words,

tuple t can be consistently extended to variables xi, . . . , xn with cost vj for

the jth objective function, where vj is the jth component of ~v. The efficient

frontier E(P ) is the function computed when the last variable is eliminated

(i.e. F 1() = E(P )).

Figure 7.3 shows MO-BE, the generalization of BE to MO-WCSP. Its

structure is similar to standard BE. In the following, we discuss the main

differences. MO-BE receives a MO-WCSP instance P = (X ,D,F). The first

phase of the algorithm (lines 1-5) computes E(P ) by implementing the recur-

sion 7.5. It works as BE, the only difference being that frontier functions are

used instead of standard cost functions. After the first phase, g1() contains

a set of points in the space of solutions, which is exactly the efficient frontier

E(P ) of the problem.

Let g1() contain r vector points {~v1, ~v2, . . . , ~vr}. The second phase (lines

7-20) computes one efficient solution tj for every element ~vj ∈ g1(). The

idea is to retrieve the efficient solution keeping track of the cost contribution

of each gi to the solution. In this case, the array C[i] will store a non-

dominated cost vector attainable from gi. Initially, tj = λ and C[1] = ~vj
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function MO-BE(X ,D,F)

1. for each i = n . . . 1 do

2. Bi := {f ∈ F | xi ∈ var(f)};
3. gi := minmo

xi

{∑f∈Bi
f};

4. F := (F ∪ {gi}) − Bi;

5. endfor

6. let g1() = {~v1, ~v2, . . . , ~vr};
7. for each j = 1 . . . r do

8. tj := λ;

9. C[1] := ~vj ;

10. for each i = 1 . . . n do

11. let Bi = {fi1, . . . , fimi
};

12. for each a ∈ Di do

13 Sa = {(~v1, . . . , ~vmi
) | ∑mi

k=1 ~vk = C[i], ∀ k, ~vk ∈ fik(t · (xi = a))};
14. endfor

15. b := pop({a ∈ Di | Sa 6= ∅});
16. tj := tj · (xi = b);

17. (~v1, . . . , ~vmi
) := pop(Sb);

18. for each k = 1 . . .mi do if db(fik) 6= i then C[db(fik)] := ~vk;

19. endfor

20. endfor

21. return (g1 = {~v1, ~v2, . . . , ~vr}, {t1, t2, . . . , tr});
endfunction

Figure 7.3: Description of MO-BE. The input is a MO-WCSP instance P =

(X ,D,F). The output is g1, a zero-arity frontier function which contains the

efficient frontier of P and, for each element ~vk ∈ g1, an efficient solution tk.
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is the cost vector for which the efficient solution is searched. For each j,

variables are considered in increasing order x1, . . . , xn (line 10). The optimal

domain value a ∈ D1 for x1 is any one such that C[1] ∈ ∑m1

k=1 f1k
(t · (x1 = a)).

Since each f1k
(t·(x1 = a)) contains a set of non-dominated cost vectors, there

must exist at least one combination of cost vectors (~v1, . . . , ~vm1
) where each

~vk ∈ f1k
(t · (x1 = a)), such that C[1] =

∑m1

k=1 ~vk. Let Sa be the set of

such combinations for domain value a (lines 12–14). Tuple tj is extended to

variable x1 with a domain value b for which exists at least one combination

(lines 15-16). One arbitrary combination (~v1, . . . , ~vm1
) ∈ Sb is selected in line

17. The contribution to the solution of each f1k
∈ B1 is ~vk. Therefore, it is

possible to update the array C of each departure bucket (line 18). The same

procedure is repeated for each variable. At the end of the process, tj is an

efficient solution with cost vector ~vj.

Property 7.3.1 In a problem with one objective function (i.e., p = 1), the

algorithm MO-BE is equivalent to BE.

Example 7.3.1 Consider a MO-WCSP problem P = (X ,D,F) where:

• X = {x1, x2, x3, x4}

• D = {{Di}4
i=1} where Di = {0, 1}

• F = {h1, h2, h3, {pi}4
i=1, p23, {wi}4

i=1, {vi}4
i=1} where
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h1(x1, x3) =

{

{(0, 0, 0)} (x1 ∨ x3) ∧ (x1 ∨ x3)

⊤ otherwise

h2(x3, x4) =

{

{(0, 0, 0)} x3 ∨ x4

⊤ otherwise

h3(x2, x4) =

{

{(0, 0, 0)} x2 ∧ x4

⊤ otherwise

pi(xi) =

{

{(0, 0, 0)} xi = 1

{(i, 0, 0)} xi = 0

p23(x2, x3) =

{

{(0, 0, 0)} x2 ∧ x3

{(3, 0, 0)} otherwise

wi(xi) =

{

{(0, 5 − i, 0)} xi = 1

{(0, 0, 0)} xi = 0

vi(xi) =

{

{(0, 0, i)} xi = 1

{(0, 0, 0)} xi = 0

and the top value is ⊤ = {(∞,∞,∞)}.
The trace of the algorithm under lexicographical ordering is:

• Input: the MO-WCSP problem P .

• Elimination of x4: B4 = {h2, h3, p4, w4, v4}. Their sum is b4(x2, x3, x4),

b4(001) = {(0, 1, 4)} b4(010) = {(4, 0, 0)}

b4(011) = {(0, 1, 4)} b4(110) = {(4, 0, 0)}

Note that b4(000) = b4(100) = b4(101) = b4(111) = ⊤. As a con-

sequence, those assignments cannot lead to any problem solution. In
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the sequel, we only indicate assignments which may lead to a problem

solution.

Projecting x4 out of b4 produces g4(x2, x3),

g4(00) = {(0, 1, 4)} g4(01) = {(4, 0, 0), (0, 1, 4)} g4(11) = {(4, 0, 0)}

• Elimination of x3: B3 = {g4, h1, p3, p23, w3, v3}. Their sum is b3(x1, x2, x3),

b3(001) = {(7, 2, 3), (3, 3, 7)} b3(011) = {(4, 2, 3)} b3(100) = {(6, 1, 4)}

Projecting x3 out of b3 produces g3(x1, x2),

g3(00) = {(7, 2, 3), (3, 3, 7)} g3(01) = {(4, 2, 3)} g3(10) = {(6, 1, 4)}

• Elimination of x2: B2 = {g3, p2, w2, v2}. Their sum is b2(x1, x2),

b2(00) = {(9, 2, 3), (5, 3, 7)} b2(01) = {(4, 5, 5)} b2(10) = {(8, 1, 4)}

Projecting x2 out of b2 produces g2(x1),

g2(0) = {(9, 2, 3), (5, 3, 7), (4, 5, 5)} g2(1) = {(8, 1, 4)}

• Elimination of x1: B1 = {g2, p1, w1, v1}. Their sum is b1(x1),

b1(0) = {(10, 2, 3), (6, 3, 7), (5, 5, 5)} b1(1) = {(8, 5, 5)}

Projecting x1 out of b1 produces g1 = {(10, 2, 3), (6, 3, 7), (5, 5, 5)}
Note that (8, 5, 5) is not an efficient cost vector as it is dominated by

(5, 5, 5).

Therefore, the problem has three Pareto optimal solutions. We show how

to retrieve the one with costs (10, 2, 3):

• Initially, t = λ, and C[1] = (10, 2, 3).
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• Variable x1 assignment: there are two values for x1,

t = (x1 = 0), S0 = {((9, 2, 3), (1, 0, 0), (0, 0, 0), (0, 0, 0))}
t = (x1 = 1), S1 = {}

Only value 0 satisfies the sum of frontier functions in B1 because S0 is

not empty. Therefore, t is updated to (x1 = 0) and the cost contribution

of the departure bucket of every non original frontier function in B1 is

updated with its corresponding ~vj ∈ (~v1, . . . , ~v4). In this case, there

is only one non original function, g2. Therefore, C[db(g2)] = C[2] =

(9, 2, 3).

• Variable x2 assignment: there are two values for x2,

t = (x1 = 0, x2 = 0), S0 = {((7, 2, 3), (2, 0, 0), (0, 0, 0), (0, 0, 0))}
t = (x1 = 0, x2 = 1), S1 = {}

Only value 0 satisfies the sum of frontier functions in B2 because S0 is

not empty. Therefore, t is updated to (x1 = 0, x2 = 0) and C[db(g3)] =

C[3] = (7, 2, 3).

• Variable x3 assignment: there are two values for x3,

t = (x1 = 0, x2 = 0, x3 = 0), S0 = {}
t = (x1 = 0, x2 = 0, x3 = 1), S1 = {((4, 0, 0), (0, 0, 0), (0, 0, 0),

(3, 0, 0), (0, 2, 0), (0, 0, 3))}

Only value 1 satisfies the sum of frontier functions in B3 as S1 is

not empty. Therefore, t is updated to (x1 = 0, x2 = 0, x3 = 1) and

C[db(g4)] = C[4] = (4, 0, 0).

• Variable x4 assignment: there are two values for x4,

t = (x1 = 0, x2 = 0, x3 = 1, x4 = 0), S0 = {((0, 0, 0), (0, 0, 0), (4, 0, 0),

(0, 0, 0), (0, 0, 0))}
t = (x1 = 0, x2 = 0, x3 = 1, x4 = 1), S1 = {}
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Only value 0 satisfies the sum of frontier functions in B4 because S0 is

not empty. Therefore, t is updated to (x1 = 0, x2 = 0, x3 = 1, x4 = 0).

As there is no original function, the cost contribution vector C is not

updated.

As a result, the Pareto optimal solution with cost vector (10, 2, 3) is

(x1 = 0, x2 = 0, x3 = 1, x4 = 0).

The result of combining and eliminating frontier functions is assumed

to be extensionally stored in tables. Given a frontier function f , it has

O(d|var(f)|) entries. Each entry of f stores a frontier. Thus, the space com-

plexity of storing function f is

O(d|var(f)| × max
{t|var(t)⊆X}

{|f(t)|})

In general, the maximum number of non-dominated cost vectors in a

frontier is bounded, as shown in the following observation.

Observation 7.3.1 Let P be a MO-WCSP problem with p objective func-

tions. The maximum possible number of non-dominated cost vectors among

all frontiers in P is given by the range of possible costs of each objective

function. Without loss of generality, we can assume that for the jth objective

function this range is bounded by a maximum cost Kj. In the worst case, Kj

is

O(
∑

f∈F
max

{t|var(t)⊆X}
f(t)={(v1 ,...,vj ,...,vp)}

{vj})

Then, the maximum possible size of any frontier is

O(

p−1∏

j=1

Kj)

Observe that Kp does not appear in the maximum possible size of any frontier.

Since the order of the different objective functions is arbitrary, a straightfor-

ward optimization consists on leaving the largest Kj for the last position.
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Moreover, it is worth noting that this maximum possible number of non-

dominated cost vectors is a very pessimistic worst-case estimate for frontiers

size. In practice, this number is usually much smaller.

Theorem 7.3.1 MO-BE is space O(n × ∏p−1
j=1 Kj × dw∗

) and time O(e ×
∏p−1

j=1 K2
j × dw∗+1), where n is the number of variables, e is the number of

cost functions, w∗ is the graph induced width, Kj is the maximum possible

cost of the jth objective function, p is the number of objective functions, and

d is the largest domain size.

Proof Let f be an arbitrary frontier function of arity r. Let Kj be the

maximum possible cost of objective function j. In the worst case Kj is

O(
∑

f∈Fj
maxt,var(t)⊆X {f(t)}) (see Observation 7.3.1). Observe that the space

complexity of f is O(
∏p−1

j=1 Kj ×dr) because: there are O(dr) different instan-

tiations of the problem variables and, for each instantiation, there may be up

to O(
∏p−1

j=1 Kj) undominated instantiations. Since the largest arity among

the functions that MO-BE needs to store is bounded by O(w∗) and there are

e such functions, the space and time complexities clearly hold.

7.4 Experimental Results

The purpose of these experiments is to analyze the suitability of MO-BE. In

Section 7.3, we showed that the applicability of MO-BE depends on the prob-

lem’s induced width. Therefore, we selected instances with induced width

that we could handle with our computer (i.e., below 24). Variable orderings

with small induced width were found with the min-degree heuristic [35].

We compare the performance of MO-BE versus the best approach from

the previous chapters. Namely, the best among the following:

• MO-BBicf.

• ǫ-constraint.

• MO-BBfdac.
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• MO-RDS and MO-SRDS.

We test MO-BE in the Max-SAT-ONE, biobjective minimum vertex cover

and the scheduling of an EOS benchmarks (for a detailed description of the

benchmarks see Appendices B.3, B.4, and B.2, respectively). We disregard

the risk-conscious combinatorial auctions benchmark because as shown in

Section B.1, the induced width of all instances surpass our limit.

The time limit for all the experiments is 1800 seconds.

7.4.1 Max-SAT-ONE

We found 36 Max-SAT-ONE instances with induced width below 24 which

was our limit. Figure 7.4 reports the obtained results. The first, second and

third columns contain the name, the efficient frontier size and the induced

width of each instance, respectively. The last four columns indicate the

cpu time in seconds required by MO-BE, MO-BBicf, ǫ-constraint and MO-

BBfdac, respectively. A ”-” indicates that the algorithm does not terminate

in 1800 seconds.

It can be observed that MO-BE is the best approach for all instances. In

accordance with the complexity analysis, the performance of MO-BE grows

exponentially with the induced width. All the instances with small induced

width (dubois and pret) are solved instantly. The aim and ssa instances,

which have larger induced width, are still solved in less than half an hour. In

particular, MO-BE is the only algorithm able to solve ssa instances within

the time limit. The only exceptions are instances ssa2670-130 and ssa2670-

141.

This experiment confirms once more that with current computers, it is

the space and not the time what limits the applicability of decomposition

methods.
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Instance |E| w∗ MO-BE mo–bbicf ǫ–constraint mo–bbfdac

dubois20 1 3 0 125.98 0.002 34.87

dubois21 1 3 0 260.11 0.003 72.01

dubois22 1 3 0 543.91 0.003 149.16

dubois23 1 3 0 1131.71 0.001 308.26

dubois24 1 3 0 - 0.002 637.2

dubois25 1 3 0 - 0.003 1313.52

dubois26 1 3 0 - - -

dubois27 1 3 0 - - -

dubois28 1 3 0 - - -

dubois29 1 3 0 - - -

dubois30 1 3 0 - - -

dubois50 1 3 0 - - -

dubois100 1 3 0 - - -

pret60 25 20 4 0 - - -

pret60 40 14 4 0 - - -

pret60 60 6 4 0 630.34 - 1646.27

pret60 75 1 4 0 165.03 0.002 99.03

pret150 25 50 4 0 - - -

pret150 40 35 4 0 - - -

pret150 60 15 4 0 - - -

pret150 75 1 4 0 - - -

aim-50-1 6-no-1 8 15 1.97 48.91 1663.47 39.83

aim-50-1 6-no-2 10 20 26.97 30.62 1202.1 197.69

aim-50-1 6-no-3 10 19 7.31 46.95 - 60.71

aim-50-1 6-no-4 10 20 51.24 18.44 - 112.93

aim-50-1 6-yes1-1 10 18 13.04 20.89 - 51.55

aim-50-1 6-yes1-2 8 16 3.47 24.93 - 12.28

aim-50-1 6-yes1-3 10 19 26.04 24.6 - 25.62

aim-50-1 6-yes1-4 8 19 23.68 5.74 780.23 9

aim-50-2 0-no-4 10 23 444.54 25.2 - 70.05

aim-50-2 0-yes1-3 14 23 487.88 72.11 - 443.72

aim-50-2 0-yes1-4 14 21 20.59 150.78 - 1000.52

ssa0432-003 140 18 895.45 - - -

ssa2670-130 > 0 24 - - - -

ssa2670-141 > 0 21 - - - -

ssa7552-158 323 11 17 - - -

ssa7552-159 323 11 6.99 - - -

ssa7552-160 328 14 98.11 - - -

Figure 7.4: Experimental results on Max-SAT-ONE problems with small

induced width. Time limit 1800 seconds.

7.4.2 Biobjective Weighted Minimum Vertex Cover

We test on instances from the following four classes of biobjective weighted

minimum vertex cover problems: (60, 100, 5), (70, 100, 5), (80, 100, 5) and
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N E w∗ MO-BE MO–BBfdac

(nb. vars) (nb. edges) Time (sec.) Solved (%) Time (sec.) Solved (%)

60 9.5 0,1944 100% 0,45 100%

70 100 8.5 0,0792 100% 2,42 100%

80 7.3 0,0284 100% 9,69 100%

90 6.1 0,0096 100% 32,70 100%

Figure 7.5: Experimental results on biobjective weighted minimum vertex

cover problems. Parameter C is set to 5. Mean values on 25 instances for

each parameter configuration. Time limit 1800 seconds.

(90, 100, 5). The other classes of problems described in Appendix B.4 have

an induced width that surpasses our limit.

Figure 7.5 reports the obtained results. The first, second and third

columns indicate the number of variables, the number of edges and the mean

induced width of each parameter configuration, respectively. The fourth and

fifth columns report the mean time in seconds required by MO-BB to solve

each parameter configuration and the percentage of solved instances. The

sixth and seventh columns report the same information for MO-BBfdac, which

was the best approach in this benchmark so far.

Again, these results confirm that MO-BE is very efficient in instances

with small induced width. Observe that, although all instances are solved

almost instantly, the performance of MO-BE increases as the induced width

decreases.

7.4.3 Scheduling of an EOS

Figure 7.6 reports the results on the scheduling of an EOS benchmark. The

first, second and third columns indicates the name of the instance, the num-

ber of variables and the number of constraints, respectively. The fourth

column reports the induced width of each instance. The last columns re-

port the cpu time in seconds required by MO–BE and SMO–RDS (i.e., the

best approach on these instances so far), respectively. A ”-” indicates that

the algorithm does not terminate in 1800 seconds. An ”out” indicates that
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Instance # vars # constrs w∗ Time (sec.)

MO–BE SMO-RDS

1504(0,183)∗ 184 1329 18 out 1114

1504(184,206)∗ 23 112 7 0.3 0

1504(356,461)∗ 106 840 18 out -

1504(462,508)∗ 47 301 10 9 0

1506(151,228) 78 1107 24 out 7.8

1407(379,409)∗ 31 220 11 19 0

1407(413,429)∗ 17 87 8 0 0

1407(447,469)∗ 23 129 9 0 0

1407(701,761) 61 445 13 201 3

Figure 7.6: Experimental results on subproblems of the Spot5 instances with

capacity constraint and induced width below 24. Time limit 1800 seconds.

MO-BE runs out of memory.

Observe that MO-BE solves instantly instances with small induced width

(i.e., below 10). For instances with larger induced width, MO-BE is able

to solve them in a reasonable time. However, it is unable to solve three

instances (i.e., 1504(0,183)∗, 1504(356,461)∗ and 1506(151,228)) because of

the memory limitations. Note that the induced width of these instances is

relatively large.

7.5 Related Work

There have been several attempts to describe an abstract inference algorithm

able to cope with different reasoning tasks. These descriptions are based on

particular algebraic structures that axiomatically describe the combination

and marginalization operators. The main examples are the fusion algorithm

[135] (also studied in [82]), which relies on valuation algebras; the dynamic

programming approach proposed in [17], based on c-semirings; and the gen-

eralized distributive law [2] that uses a commutative semiring to describe

the properties of both operators. Although non of them are explicitly de-

scribed to compute the efficient frontier of a multi-objective problem, the

instantiation of combination as +mo and marginalization as minmo leads to
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multi-objective inference algorithms very related to our MO-BE.

It is worth noting the clear relation between MO-BE and the adaptation of

the well-known dynamic programming procedure [16] to the multi-objective

case. Mainly, those multi-objective dynamic programming algorithms are

restricted to problems with a particular structure such as the shortest path

problem, the knapsack problem, the traveling salesperson problem and the

transportation problem (we refer the reader to [41] for a complete biblio-

graphical survey on these problems). Our MO-BE is a general algorithm

able to compute the efficient frontier of any multi-objective optimization

problem described as a graphical model.

7.6 Conclusions

MO-BE is the first general complete variable elimination algorithm for multi-

objective optimization tasks. Therefore, it is an alternative approach to solve

multi-objective problems.

The theoretical complexity of the algorithm clearly indicates that, as its

mono-objective counterpart, multi-objective bucket elimination is suitable

for problems with small induced width. We empirically demonstrate that

MO-BE can be used to efficiently solve true multi-objective problems with

bounded induced width.

We point out that the generalization of MO-BE to solve other multi-

objective problems formalized as instances of the semiring CSP framework

is straightforward. The structure of the generalized algorithm is the same

as for MO-BE. The only difference being the use of the combination and

marginalization operators of the given problem.

Finally, it is important to recall that, as described in Section 7.5, AND/OR

search with full catching has been proved to be very close related to Bucket

Elimination [101, 98, 100, 30]. Its main difference is the order in which new

functions are constructed. Concerning the extension of AND/OR search to

multi-objective optimization pointed out in Chapter 5, we want to investi-
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gate the effect of full catching in the real space needed to store the whole set

of current functions. Moreover, we want to extend partial catching schemes

[101] to multi-objective optimization in order to have a family of parameter-

ized algorithms that can accommodate trade-offs between time and space.



Chapter 8

Lower Bounding

The importance of algorithms that compute lower bounds is two-fold. On

the one hand, they can be used as stand-alone algorithms to approximate the

optimum of optimization problems that are too difficult to be solved. On the

other, they can be used as bounding evaluation functions inside branch-and-

bound algorithms. Many lower bounding algorithms have been proposed in

the mono-objective context (see Section 3.1.3). However, very little is known

about lower bounding techniques for multi-objective optimization problems.

The purpose of this chapter is to address this lack by extending mini-

bucket elimination to multi-objective optimization problems. Mini-bucket

elimination is specially convenient for our purposes mainly for two reasons.

First, it has a control parameter z that trades time and space for accuracy.

Therefore, it is convenient either as a stand-alone approximation algorithm

(with large values of z) and as a bounding heuristic inside branch-and-bound

(with small values of z). Second, it has been proved to be efficient in many

mono-objective reasoning tasks.

The structure of the chapter is as follows. Section 8.1 describes mini-

bucket elimination. Then, Section 8.2 presents multi-objective mini-bucket

elimination, the extension of mini-bucket elimination to multi-objective opti-

mization. Section 8.3 reports some experimental results using the new algo-

rithm as an approximation of the efficient frontier and as a bounding heuristic

161
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inside multi-objective branch-and-bound. Section 8.4 discusses some related

work. Finally, Section 8.5 points out some conclusions.

8.1 Mini-bucket elimination

Mini-Bucket Elimination (MBE) [38] is an approximation algorithm designed

to avoid the time and space problem of full bucket elimination (BE). It has

a control parameter z that allows us to trade time and space for accuracy.

Given a WCSP problem P = (X ,D,F) and the value of the control parame-

ter z, MBE computes a lower bound of the optimum of P . In general, higher

values of z results in more accuracy lower bounds. In the limit (e.g., when z

is the number of variables of the problem) MBE behaves as BE and computes

the optimum of P .

As we have seen in Section 7.1, BE solves the original WCSP problem

P by eliminating one variable at a time. The result of eliminating variable

xi is a new problem where xi does not appear in the scope of its set of

functions. Given a static variable ordering, the set of functions computed in

each problem transformation can be viewed as the following recursion,

F i = {min
xi

{
∑

f∈F i+1

f∈Bi

f}} ∪ {f ∈ F i+1 | f 6∈ Bi}

from i = n down to 1, where by definition Fn+1 = F and Bi = {f ∈ F i+1 |
xi ∈ var(f)}. The optimum of P is F 1(). Note that, in each step i, BE

explicitly computes the function gi = minxi
{∑f∈Bi

f}. The new function

gi represents the same information as the sum of the set of functions in the

bucket Bi but without mentioning xi. It is easy to see that the computation

of gi is time O(exp(|var(gi)|+1)) and space O(exp(|var(gi)|)), where its arity

|var(gi)| is the joint arity of functions in Bi. Formally,

|var(gi)| = |
⋃

f∈Bi

var(f)|
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Abusing notation, we denote by var(Bi) the union of the scopes of the set of

functions Bi and by |var(Bi)| its joint arity.

MBE also transforms the original WCSP problem P by eliminating one

variable at a time. However, the idea is to restrict the effort spent to elim-

inate the variables of the problem according to the control parameter z. If

eliminating variable xi from Bi (i.e., computing function gi) is very expen-

sive in time and/or space such bucket is partitioned into smaller subsets

{Bi1 , . . . ,Bir}, called mini-buckets. The joint arity of the functions in each

mini-bucket Bim is bounded by z + 1. Then, variable xi is eliminated from

each mini-bucket independently.

The execution of MBE can be described as a recursion,

F i =

r⋃

m=1

{min
xi

{
∑

f∈Bim

f}} ∪ {f ∈ F i+1 | f 6∈ Bi}

from i = n down to 1 where, by definition, Fn+1 = F and ∀ 1 ≤ m ≤
r, |var(Bim)| ≤ z + 1. Now, in each step of the recursion, MBE explicitly

computes a set of functions gim = minxi
{∑f∈Bim

f} such that |var(gim)| ≤
z + 1. If there is some function f ∈ F i such that var(f) > z + 1, then f is

discarded.

The partition of each bucket Bi into a set of mini-buckets {Bi1 , . . .Bir}
has two main consequences. The first one is that, since the arity of each

gim is bounded by z + 1, the space and time complexity for computing each

function gim is also bounded by z. More precisely, they are O(exp(z)) and

O(exp(z + 1)), respectively. Therefore, the space and time complexity of the

recursion is also exponential in the control parameter z.

The second consequence is that MBE computes a lower bound of the

optimum of the original problem P . Observe that the objective function

represented by F i in BE is

F i
BE = gi +

∑

f∈F i+1

f 6∈Bi

f
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while in MBE is

F i
MBE =

r∑

m=1

gim +
∑

f∈F i+1

f 6∈Bi

f

It can be shown that

∀ t,

gi(t)
︷ ︸︸ ︷

min
xi

{
∑

f∈Bi

f(t)} ≥
r∑

m=1

gim(t)
︷ ︸︸ ︷

min
xi

{
∑

f∈Bim

f(t)}

Then, ∀ t, F i
BE(t) ≥ F i

MBE(t). Namely, since the optimal cost of extending t

to the eliminated variables xi, . . . , xn is F i
BE(t) and F i

BE(t) ≥ F i
MBE(t), MBE

computes a lower bound of this extension for each tuple t. As a consequence,

the bound computed for each tuple in each step of the recursion results in a

lower bound of the optimum of P because F 1
BE() ≥ F 1

MBE().

Example 8.1.1 Let f and g be two functions defined over the same variable

xi with two domain values a and b. Let f(a) = 4, f(b) = 3, g(a) = 1,

and g(b) = 2. Consider the elimination of xi. BE would compute the

function gi() = min{f(a) + g(a), f(b) + g(b)}. If MBE splits these two

functions in two different mini-buckets, it will compute two zero-arity func-

tions gi1 = min{f(a), f(b)} and gi2 = min{g(a), g(b)}. Then, it is easy

to see that gi() ≥ gi1() + gi2() because min{f(a) + g(a), f(b) + g(b)} ≥
min{f(a), f(b)} + min{g(a), g(b)}.

Figure 8.1 shows an algorithmic description of MBE. Its structure is very

similar to BE (Figure 7.1). The only difference being that lines 3 and 4 in

the BE algorithm are replaced by lines 3 − 5 in MBE. The input of MBE

is a WCSP problem P = (X ,D,F) and the value of the control parameter

z. Variables are eliminated one by one, from last to first according to an

order. For each variable xi (line 1), MBE computes its associated bucket

Bi (line 2). Then, it creates a partition {Bi1 , . . . ,Bir} of the functions in Bi

(line 3), where |var(Bim)| ≤ z + 1. Each Bim is processed separately, thus

computing a set of functions {gim}r
m=1 (line 4). Then, the set of functions
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function MBE((X ,D,F), z)

1. for each i = n..1 do

2. Bi := {f ∈ F | xi ∈ var(f)}
3. {Bi1 , . . . ,Bir} := Partition(z,Bi);

4. for each m = 1 . . . r do gim := min
xi

{∑f∈Bim
f};

5. F := (F ∪ {gi1, . . . , gir}) − Bi;

6. endfor

7. return
∑

f∈F
f();

endfunction

Figure 8.1: Mini-Bucket Elimination algorithm. Given a WCSP P =

(X ,D,F) and the value of the control parameter z, the algorithm returns a

lower bound of the optimal cost of P .

F is updated removing the functions in Bi and adding the set of functions

gim (line 5). As we have seen, the bound computed in each bucket Bi, yields

MBE to compute a lower bound of the optimum of P . This lower bound is

the result of summing the empty-scope functions stored in F produced when

the last variable is eliminated (line 7).

Theorem 8.1.1 [38] The complexity of MBE(z) is time O(e × dz+1) and

space O(e × dz), where e is the number of functions and d is the largest

domain size.

Parameter z allows us to trade time and space for accuracy. In general,

greater values of z increment the number of functions included in each mini-

bucket. Therefore, the bound will be presumably closer to the cost of the

optimal solution. However, the space demands also increase.
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Example 8.1.2 Consider the WCSP instance of example 7.1.1, with seven

variables and the following set of cost functions,

F = {f1(x6, x5, x4), f2(x6, x5, x3), f3(x5, x3, x2), f4(x6, x4, x2),

f5(x7, x2, x1), f6(x7, x6, x1)}
One possible execution of MBE(3) along the lexicographical variable or-

dering leads to the following trace,

Buckets Mini-buckets

B7 f6(x7, x6, x1)

f5(x7, x2, x1)

B6 f2(x6, x5, x3) g71
(x6, x2, x1) = minx7

{f6 + f5}
f1(x6, x5, x4) f4(x6, x4, x2)

B5 g61
(x5, x4, x3) = minx6

{f1 + f2}
f3(x5, x3, x2)

B4 g62
(x4, x2, x1) = minx6

{f4 + g71
}

g51
(x4, x3, x2) = minx5

{f3 + g61
}

B3 g41
(x3, x2, x1) = minx4

{g62
+ g51

}
B2 g31

(x2, x1) = minx3
{g41

}
B1 g21

(x1) = minx2
{g31

}
Result g11

() = minx1
{g21

}

The first column indicates the bucket Bi being treated. Each subsequent col-

umn shows the functions included in each mini-bucket Bim, in case the orig-

inal bucket needs to be splitted. When the second column is empty, it means

that all functions in that bucket can be processed together.

The only bucket splitted into different mini-buckets is B6. The reason is

that the joint arity of B6 is 6,

|var(B6)| = |{x6, x5, x4, x3, x2, x1}| = 6

and the control parameter z = 3 restricts the buckets to have a joint arity

less than or equal to 3 + 1. Then, the partition process splits the functions
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in B6 into two mini-buckets, as shown in the previous table. The result are

two functions: g61
and g62

. The consequence of not processing the functions

in B6 together is that MBE(3) ends up with a lower bound of the optimum of

the original problem.

MBE is a powerful mechanism for lower bound computation. It can

be used as an stand-alone algorithm to approximate the optimal cost of a

difficult problem that cannot be solved exactly. In that case, MBE is executed

with the highest possible value of z taking into account the available resources

[38]. Moreover, MBE can be used as a bounding evaluation function inside

depth-first branch and bound search. In that case, experiments show that

low values of z usually provide reasonably good lower bounds with a very

low cost [74].

8.2 Multi-objective Mini-Bucket Elimination

Multi-objective mini-bucket elimination (MO-MBE) is the extension of MBE

to multi-objective optimization. The idea of the algorithm is the same as

for the mono-objective case. Given a MO-WCSP problem P = (X ,D,F),

the algorithm sequentially transforms P by eliminating one new variable at

a time. Large arity buckets are splitted into smaller mini-buckets in order to

bound the effort required to process them according to its control parameter

z. As a result, MO-MBE computes a lower bound frontier of the efficient

frontier E(P ).

The execution of MO-MBE can be described with the following recursion,

F i =

r⋃

m=1

{minmo

xi

{
∑mo

f∈Bim

f}} ∪ {f ∈ F i+1 | f 6∈ Bi} (8.1)

from i = n down to 1 where, by definition, Fn+1 = F and ∀ 1 ≤ m ≤
r, |var(Bim)| ≤ z + 1.

This recursion derives two important consequences. The first one is that

the space and time complexity of MO-MBE is bounded by z. Let gim be the
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frontier function computed during the elimination of variable xi from mini-

bucket Bim . Since the arity of gim is bounded by z + 1, the space and time

complexity for computing it is bounded by exp(z) and exp(z+1), respectively

(see Theorem 8.2.2 for a detailed description).

The second consequence is that the partition process leads MO-MBE to

compute a lower bound frontier of the efficient frontier E(P ). The reason

is that, given a tuple t, its valuation in the sum of the set of functions gim

computed by MBE is a lower bound frontier of its valuation in the function

gi computed by BE. Formally,

∀ t,

gi(t)
︷ ︸︸ ︷

minmo

a∈Di

{
∑

f∈Bi

f(t · xi = a)} ≥mo

r∑

m=1

gim(t)
︷ ︸︸ ︷

minmo

a∈Di

{
∑

f∈Bim

f(t · xi = a)}

The intuition behind this inequality is as follows. Given a tuple t, gi(t) is a

frontier representing the non-dominated cost vectors resulting from extending

t to the eliminated variable xi. Then, each cost vector ~v ∈ gi(t) must come

from a tuple t · (xi = a). Formally,

~v =
∑

f∈Bi

f(t · xi = a)

Therefore, ~v ∈ ∑r
m=1

∑

f∈Bim
f(t · xi = a). Since in each mini-bucket the

value assigned to xi should be different, either ~v or ~v′ that dominates ~v is an

element of
∑r

m=1 gim(t). As a result, each cost vector in gi(t) is dominated by

at least one cost vector in
∑r

m=1 gim(t), which is exactly the non-domination

partial order among frontiers ≥mo. We say that a frontier function f is a

lower bound of function h when, ∀ t, f(t) ≤mo h(t). Then,
∑r

m=1 gim is a

lower bound of gi. It is easy to see that ≤mo satisfies transitivity. Since MO-

MBE processes buckets where all functions are either original or recursively

processed by MO-MBE (which are lower bounds themselves), all functions

computed by MO-MBE in a bucket are lower bounds of the function that

MO-BE would compute at that bucket.

Figure 8.2 shows an algorithmic description of MO-MBE. It receives a

MO-WCSP problem P = (X ,D,F) and the value of the control parameter
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function MO-MBE((X ,D,F), z)

1. for each i = n . . . 1 do

2. Bi := {f ∈ F | xi ∈ var(f)};
3. {Bi1 , . . . ,Bir} :=Partition(z,Bi);

4. for each m = 1 . . . r do gim := minmo

xi

{∑f∈Bim
f};

5. F := (F ∪ {gi1, . . . , gir}) − Bi;

6. endfor

7. return
∑mo

f∈F
f();

endfunction

Figure 8.2: Description of MO-MBE. The input is a MO-WCSP instance

P = (X ,D,F) and the value of the control parameter z. The output is a

lower bound frontier of the efficient frontier E(P ).

z. Since the algorithm deals with frontier functions, the combination and

marginalization operators are the ones defined over this type of functions.

In each iteration, the algorithm eliminates one new variable according to a

given order (that we assume lexicographic without loss of generality). When

eliminating variable xi (line 1), MO-MBE computes its bucket Bi (line 2) and

a partition {Bi1 , . . . ,Bir} such that |var(Bim)| ≤ z + 1. Then, the algorithm

computes a set of functions gim resulting from the sum of functions in Bim and

the subsequent elimination of xi. The set of functions F is updated removing

the set of functions in Bi and adding the new functions gim . The elimination

of the last variable results in a set of zero-arity frontier functions stored in

F . The combination of such functions results in a set of non-dominated cost

vectors, which is a lower bound frontier of P .

Theorem 8.2.1 MO-MBE computes a lower bound frontier of the original

MO-WCSP problem.
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Example 8.2.1 Consider the MO-WCSP problem P of Example 7.3.1. The

frontier functions are:

h1(x1, x3) =

{

{(0, 0, 0)} (x1 ∨ x3) ∧ (x1 ∨ x3)

⊤ otherwise

h2(x3, x4) =

{

{(0, 0, 0)} x3 ∨ x4

⊤ otherwise

h3(x2, x4) =

{

{(0, 0, 0)} x2 ∧ x4

⊤ otherwise

pi(xi) =

{

{(0, 0, 0)} xi = 1

{(i, 0, 0)} xi = 0

p23(x2, x3) =

{

{(0, 0, 0)} x2 ∧ x3

{(3, 0, 0)} otherwise

wi(xi) =

{

{(0, 5 − i, 0)} xi = 1

{(0, 0, 0)} xi = 0

vi(xi) =

{

{(0, 0, i)} xi = 1

{(0, 0, 0)} xi = 0

where the top valuation indicating forbidden assignments is ⊤ = {(∞,∞,∞)}.
The trace of MBE(1) under lexicographical ordering is:

• Input: the MO-WCSP problem P and the value of the control parameter

z = 1.

• Elimination of x4: B4 = {h2, h3, p4, w4, v4}. Their arity is 3. Therefore,

B4 cannot be jointly processed, but must be splitted into smaller subsets.
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Let B41
= {h2, p4, w4} and B41

= {h3, v4} be the two resulting mini-

buckets. Their sum is b41
(x3, x4) and b42

(x2, x4), respectively,

b41
(00) = ⊤ b42

(00) = {(0, 0, 0)}
b41

(01) = {(0, 1, 0)} b42
(01) = {(0, 0, 4)}

b41
(10) = {(4, 0, 0)} b42

(10) = {(0, 0, 0)}
b41

(11) = {(0, 1, 0)} b42
(11) = ⊤

Note that, the ⊤ valuation is dominated by any other. As a result, only

forbidden assignments will take that valuation.

Projecting x4 out of b41
and b42

produces g41
(x3) and g42

(x2) respec-

tively,

g41
(0) = {(0, 1, 0)} g41

(1) = {(4, 0, 0), (0, 1, 0)}
g42

(0) = {(0, 0, 4)} g42
(1) = {(0, 0, 0)}

• Elimination of x3: B3 = {g4, h1, p3, p23, w3, v3}. The arity of B3 is

3. Therefore, it is split into two mini-buckets B31
= {g41

, h1, p3} and

B31
= {p23

, w3, v3}. Their sum is b31
(x1, x3) and b32

(x2, x3) respectively,

b31
(00) = ⊤ b32

(00) = {(3, 0, 0)}
b31

(01) = {(4, 0, 0), (0, 1, 0)} b32
(01) = {(3, 2, 3)}

b31
(10) = {(3, 4, 0)} b32

(10) = {(3, 0, 0)}
b31

(11) = ⊤ b32
(11) = {(0, 2, 3)}

Projecting x3 out of b31
and b32

produces g31
(x1) and g32

(x2) respec-

tively,

g31
(0) = {(4, 0, 0), (0, 1, 0)} g32

(0) = {(3, 0, 0)}
g31

(1) = {(3, 4, 0)} g32
(1) = {(3, 0, 0), (0, 2, 3)}

• Elimination of x2: B2 = {g42
, g32

, p2, w2, v2}. Their arity is 1. There-

fore, they can be jointly processed. Their sum is b2(x2),

b2(0) = {(5, 0, 4)} b2(1) = {(3, 3, 2), (0, 5, 5)}
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Projecting x2 out of b2 produces g2(),

g2() = {(5, 0, 4), (3, 3, 2), (0, 5, 5)}

Note that g2() is a zero-arity function. Its frontier will be summed to

the one obtained when eliminating x1 from the problem.

• Elimination of x1: B1 = {g31
, p1, w1, v1}. Their arity is 1. Therefore,

they can be jointly processed. Their sum is b1(x1),

b1(0) = {(5, 0, 0), (1, 1, 0)} b1(1) = {(3, 8, 1)}

Projecting x1 out of b1 produces g1 = {(5, 0, 0), (1, 1, 0)}
Note that (3, 8, 1) is not a valid cost vector as it is dominated by (1, 1, 0).

• Output: the final lower bound frontier is computed summing all the

zero-arity functions obtained during the process. Hence, the lower bound

frontier returned is,

lbf = {(1, 6, 5), (4, 4, 2), (6, 1, 4), (8, 3, 2), (10, 0, 4)}

Recall that the efficient frontier of the problem is

E(P ) = {(10, 2, 3), (6, 3, 7), (5, 5, 5)}

Note that lbf is a lower bound frontier of E(P ) because lbf ≤mo E(P ).

Theorem 8.2.2 MO-MBE with control parameter z is space O(e×∏p−1
j=1 Kj×

dz) and time O(e×∏p−1
j=1 K2

j × dz+1), where e is the number of frontier func-

tions, Kj is the maximum possible cost of objective j (as described in Ob-

servation 7.3.1), p is the number of objectives, and d is the largest domain

size.

Proof The structure of the proof is the same as for the complexity of com-

plete bucket elimination (see Theorem 7.3.1). In this case, as the arity of

new functions is bounded by the control parameter z, the time and space

complexity directly holds.
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8.3 Experimental Results

We analyze the suitability of MO-MBE either as a bounding evaluation func-

tion inside MO-BB (described in Section 5.2) and as a stand-alone approx-

imation algorithm. To that end, we structure this section in two parts, one

for each potential use of MO-MBE.

We test the algorithms in four different domains: Max-SAT-ONE, biob-

jective minimum vertex cover, risk-conscious combinatorial auctions and

scheduling of an EOS (for a detailed description see Appendices B.4, B.4,

B.1 and B.2, respectively).

It is worth noting that we consider the induced width of all instances

under the variable order given by the min-fill heuristic. Recall that the min-

fill heuristic ensures variable orderings with small induced width. MO-MBE

follows this elimination order in all the experiments .

The time limit for all the experiments is 1800 seconds.

8.3.1 MO-MBE as a bounding heuristic function

The purpose of these experiments is to evaluate the performance of MO-

MBE as a bounding heuristic function inside MO-BB (i.e. MO-BBmombe).

This evaluation has two aspects:

• The effect of the control parameter z in the performance of MO-BBmombe.

As noted in Section 8.2, as the value of the control parameter z in-

creases, the accuracy of the lower bound frontier computed by MO-

MBE will probably increase. At the same time, the cpu time required

to compute the lower bound also increases. Therefore, there is a trade-

off between the time to compute the lower bound frontier and its accu-

racy. Experiments in the mono-objective case show that low values of

the control parameter z usually provide reasonable good lower bounds

with a very low cost [74]. To give evidence of this hypothesis also in

the multi-objective case, we experiment with three values of z (i.e., 2,

4 and 8) in the different domains.
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• The overall performance of MO-BBmombe with respect to other heuristic

functions used within MO-BB. To that end, we compare MO-BBmombe

versus the best approach between MO-BBicf, MO-BBfdac and (S)MO-

RDS.

As we have seen in the previous Chapter, MO-BE is very efficient in in-

stances with induced width below 24. Therefore, we experiment on instances

that either could not be solved for space limitations or could not be efficiently

solved by MO-BE. Moreover, we disregard the time spent by ǫ-constraint

since, as seen in the previous Chapters, it is always outperformed.

Max-SAT-ONE

Figure 8.3 shows the results for Max-SAT-ONE instances not very convenient

for MO-BE. The first column contains the instance name. The second column

shows the size of the efficient frontier. The third column contains the induced

width obtained by the min-fill heuristic of each instance. The three following

columns contain the cpu time in seconds required by MO-BBmombe setting

the control parameter z to 2, 4 and 8, respectively. The last two columns

indicate the cpu time in seconds required by MO-BBicf and MO-BBfdac. We

disregard the time required by (S)MO-RDS because we have showed that it

was outperformed by the previous two approaches. A ”-” indicates that the

algorithm does not terminate in 1800 seconds.

Regarding the relative performance of MO-BBmombe with respect to the

value of the control parameter z, the best results are obtained with z = 4.

These results are consistent with the hypothesis that relative low values of z

compute good lower bounds in reasonable time.

In general, MO-BBmombe is not able to solve instances with very high

induced width (see aim-50-6 0 instances). In this case, MO-MBE partitions

each bucket in a large number of mini-buckets. The main consequence is

that the lower bound frontier computed by MO-MBE is not very accurate

and the pruning capability of MO-BB is very low.
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Instance |E| w∗ MO-BBmombe MO-BBicf MO-BBfdac

z = 2 z = 4 z = 8

aim-50-2 0-no-1 12 26 395.14 321.53 560.19 67.35 319.44

aim-50-2 0-no-2 10 26 155.86 58.26 172.37 45.61 87.88

aim-50-2 0-no-3 10 26 93.1 71.94 285.23 17.06 32.08

aim-50-2 0-no-4 10 23 133.66 118.68 412.5 25.2 70.05

aim-50-2 0-yes1-1 14 25 441.3 195.65 309.45 97.99 725.26

aim-50-2 0-yes1-2 12 23 244.42 143.02 261.88 69.68 345.93

aim-50-2 0-yes1-3 14 23 339.48 165.37 205.6 72.11 443.72

aim-50-3 4-yes1-1 15 32 426.28 323.76 1061.42 71.06 211.56

aim-50-3 4-yes1-2 17 31 1147.26 719.41 - 199.91 520.62

aim-50-3 4-yes1-3 19 31 - 1214.97 - 309.71 1535.47

aim-50-3 4-yes1-4 19 31 1154.57 719.3 1769.85 184.12 900.66

aim-50-6 0-yes1-1 27 37 - - - 1475.08 -

aim-50-6 0-yes1-2 26 37 - - - 1525.85 -

aim-50-6 0-yes1-3 23 37 - - - 791.3 -

aim-50-6 0-yes1-4 23 36 - - - 690.42 -

Figure 8.3: Experimental results on Max-SAT-ONE problems. Time limit

1800 seconds.

MO-BBicf seems to be the most efficient approach in this benchmark.

Note that both lbficf and the lower bound computed by MO-MBE are multi-

objective. However, the first one is simpler and computed more efficiently.

Biobjective Minimum Vertex Cover

Figure 8.4 reports the results obtained for biobjective weighted minimum

vertex cover instances that could not be solved with MO-BE. The first and

second columns show the number of variables and edges, respectively. The

third and fourth columns report the mean size of the efficient frontier and

the mean induced width of each parameter configuration. The three next

columns indicate the mean cpu time in seconds required by MO-BBmombe

setting the control parameter z to 2, 4 and 8, respectively. The eighth and

ninth columns show the mean cpu time in seconds required by MO-BBicf

and MO-BBfdac, respectively. Moreover, we parenthesize the percentage of

solved instances within the time limit when it is different from 100%. We do

not report the results obtained by (S)MO-RDS because, as shown in Chapter

6, it is not very suitable in this benchmark.
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N E |E| w∗ MO-BBmombe MO-BBicf MO-BBfdac

(#vars) (#edges) z = 2 z = 4 z = 8

60 5,04 27 1,91 2,57 17,72 1,70 0,3276

70 250 6,68 26,9 4,44 5,24 35,77 16,07 1,69

80 8,6 27,3 9,53 9,59 57,91 110,58 10,67

90 8,76 29,2 15,46 13,38 71,39 698,59 (96%) 53,95

60 4,72 39,9 2,24 3,81 32,32 0,36 0,11

70 500 5,4 41,3 6,49 10,21 86,65 3,03 0,55

80 6,6 45,6 18,70 24,90 208,93 16,97 2,93

90 7,76 47 50,24 56,80 437,17 117,463 15,78

60 3,76 48,3 1,80 3,04 20,93 0,082 0,03

70 950 4,04 53,7 4,40 7,72 71,90 0,49 0,13

80 5,92 57,7 11,79 21,51 193,77 2,00 0,53

90 5,56 63,2 35,53 57,43 548,08 11,50 2,63

Figure 8.4: Experimental results on biobjective weighted minimum vertex

cover problems. Parameter C is set to 5. Mean values on 25 instances for

each parameter configuration. Time limit 1800 seconds.

Regarding the relative performance of MO-BBmombe with respect to the

value of the control parameter z, the best results are obtained with z = 2.

The only exception is in instances with 90 variables and 250 edges, where

MO-BBmombe setting z to 4 is slightly better. It is worth noting the clear

difference between the cpu time required by this algorithm using z = 2 and

z = 8. These results confirm also in this benchmark the hypothesis that

relative low values of z computes good lower bounds in reasonable time.

If we compare the relative performance of MO-BB with respect to the

different lower bounds used, it seems that MO-BBmombe is the most efficient

approach for loose parameter configurations (i.e., with small ratio between

variables and constraints). On the other hand, it seems that MO-BBfdac is

the most efficient approach for tight parameter configurations (i.e., with high

ratio between variables and constraints).

Combinatorial Auctions

Figure 8.5 reports the results obtained for risk-conscious auctions instances

with 20 (left) and 50 goods (right). We report mean cpu time (top) and mean
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Figure 8.5: Experimental results on risk-conscious combinatorial auctions for

20 and 50 goods, respectively. Path distribution. Time limit 1800 seconds.

solved percentage within the time limit (bottom). We consider the time limit

as the cpu time for unsolved instances. MO-BBmombe is only compared with

MO-BBicf and MO-BBfdac because, as shown in the previous chapters, the

other approaches are clearly worst. For that reason, we only indicate the

lower bound used in the key of the previous figure.

The relative performance of MO-BBmombe with respect to the value of the

control parameter z depends on the number of goods. For instances with 20

goods, the best results are obtained with z = 4. For instances with 50 goods,

the best results are obtained with z = 2. It is again empirically demonstrated

that lower values of z compute relative good lower bounds.

MO-BBmombe is the best approach in both configurations. It is the only
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Instance var constr MO-BBmombe (S)MO-RDS MO-BBicf

z = 2 z = 4 z = 8

1504(0,183)∗ 184 1329 - - - 1114 -

1506(0,150) 151 1440 - - - - -

1506(151,228) 78 1107 - - - 7.8 -

1506(229,317) 89 1349 - - - 62 -

1506(679,761)∗ 83 1243 - - - 1 -

1405(762,854)∗ 93 2193 - - - 1.58 -

1407(0,147) 148 1442 - - - 1625 -

1407(148,247) 100 1678 - - - 17.12 -

1407(248,378) 131 3063 - - - 366 -

1407(413,429)∗ 17 87 0.16 0.2 1.31 0 0.02

1407(447,469)∗ 23 129 0.03 0.13 0.13 0 0

1407(494,553)∗ 60 1333 - - - 267 -

1407(580,700) 121 2299 - - - 1769 -

1407(762,878)∗ 117 2708 - - - 4.8 -

Figure 8.6: Experimental results on subproblems of the Spot5 instances with

capacity constraint. Time limit 1800 seconds.

approach able to solve all instances up to 125 and 120 bids with 20 and 50

goods, respectively. The greatest gap in the cpu time between MO-BBmombe

and MO-BBfdac (i.e., the second best approach) occurs in instances with 50

goods. Note that the performance of MO-BBmombe is almost the same in

both configurations. However, the performance of MO-BBfdac decreases in

instances with 50 goods.

Scheduling of an Earth Observation Satellite

Figure 8.6 reports the results on the scheduling of an EOS benchmark. The

first column of the figure indicates the name of the instance. The second and

third columns indicate the number of variables and constraints, respectively.

The three following columns show the cpu time in seconds required by MO-

BBmombe setting the control parameter z to 2, 4 and 8, respectively. The

remaining columns indicate the same information for (S)MO-RDS and MO-

BBicf. A ”-” indicates that the algorithm cannot solve the subproblem within

the time limit.

The main observation is that MO-BBmombe is only able to solve two in-
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stances within the time limit. Note that it solves the same instances as MO-

BBicf. These results confirm the hypothesis stated in Chapter 5 that MO-BB

is not suitable for this kind of instances. As we have seen in the previous

chapter, (S)MO-RDS seems to be the proper approach in this benchmark.

8.3.2 MO-MBE as a pre-process

The purpose of these experiments is to evaluate the trade-off between ac-

curacy and efficiency of MO-MBE as an approximation algorithm. To that

end, we compare MO-MBE with a modification of the ǫ-constraint approach

to compute a lower bound frontier of a given problem. This algorithm, called

ǫ-constraint-lb, is depicted in Figure 8.7. As usual, we use IlogSolver 6.1 as

solver engine. Moreover, we run the algorithm with l1 and l2 being the opti-

mal cost of each objective function when considered independently, and the

time spent to compute them are not taken into account.

The efficient frontier of bi-objective problems define a region in the 2-

dimensional space. One usual way to compare the quality of one bound with

respect to the other is to compute the ratio of their areas.

In this section we disregard the risk conscious combinatorial auctions

benchmark. As seen in Section 5.3, these instances are very difficult for ǫ-

constraint. In particular, this algorithm is only able to solve some instances

with 20 goods and less than 100 bids. We empirically corroborated that the

behaviour of ǫ-constraint-lb is quite similar. As a consequence, ǫ-constraint-

lb is not an appropriate alternative in this case.

Max-SAT-ONE

Figure 8.8 and Figure 8.9 reports the results obtained for those Max-SAT-

ONE instances that have not been solved by any exact multi-objective al-

gorithm in the previous Chapters. The sixth and eighth columns show the

size of the lower bound frontier found by MO-MBE (for each configuration

of parameter z) and ǫ-constraint-lb, respectively. The tenth column reports
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function ǫ-constraint-lb ((X ,D,F), (l1, l2), (u1, u2)))

return frontier

1. E := ∅; lbf := {(l1, l2)};
2. i := l2 + 1;

3. while i ≤ u2 + u1 − l1 do

4. ǫ1 := l1 + max(0, i − u2);

5. ǫ2 := min(i, u2);

6. while ǫ2 ≥ l2 and ǫ1 ≤ u2 do

7. if E � {(ǫ1, ǫ2)} then

8. if solve (X ,D,F) subject to F1 ≤ ǫ1 and F2 ≤ ǫ2 then

9. E := E ∪ {(ǫ1, ǫ2)};
10. else lbf := minmo{lbf, {(ǫ1, ǫ2)}};
11. endif

12. ǫ1 := ǫ1 + 1;

13. ǫ2 := ǫ2 − 1;

14. endwhile

15. i := i + 1;

16. endwhile

17. return E ∪ lbf;

endfunction

Figure 8.7: ǫ-constraint-lb algorithm. Given a biobjective MO-WCSP P =

(X ,D,F), the algorithm returns a lower bound frontier of P . Note that if

lbf = ∅, E is the efficient frontier of P . Moreover, if lbf 6= ∅, E contains

part of the efficient frontier and lbf is a lower bound frontier of the efficient

frontier not contained in E .
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Instance nb. nb. w∗ MO-MBE(z) ǫ-constraint-lb

vars clauses z |lbf| time (sec.) |lbf| time (sec.) Ratio

aim-100-1-6-no-1 100 160 38 15 10 4.3 7 1800 1.5

20 12 254.31 2.19

aim-100-1-6-no-2 100 160 39 15 9 3.82 7 1800 1.15

20 13 232.89 2.68

aim-100-1-6-no-3 100 157 40 15 11 4.11 7 1800 1.75

20 13 180.17 2.72

aim-100-1-6-no-4 100 160 40 15 15 3.88 7 1800 3.28

20 11 203.34 1.75

aim-100-1-6-yes1-1 100 160 37 15 15 5.6 7 1800 3.31

20 15 276.34 3.47

aim-100-1-6-yes1-2 100 160 37 15 12 5.3 6 1800 2.57

20 14 199.24 3.34

aim-100-1-6-yes1-3 100 160 35 15 13 5.41 7 1800 2.59

20 13 229.05 2.47

aim-100-1-6-yes1-4 100 160 35 15 14 4.3 6 1800 3.62

20 17 181.87 5.27

aim-100-2-0-no-1 100 200 48 15 9 4.11 7 1800 1.34

20 9 200.26 4.41

aim-100-2-0-no-2 100 199 53 15 10 3.67 6 1800 1.77

20 8 193.93 1.19

aim-100-2-0-no-3 100 198 50 15 5 3.72 7 1800 0.41

20 8 235.93 0.97

aim-100-2-0-no-4 100 200 48 15 7 4.06 7 1800 0.75

20 6 197.7 0.5

aim-100-2-0-yes1-1 100 198 45 15 16 3.91 7 1800 4.06

20 17 295.23 5.19

aim-100-2-0-yes1-1 100 198 45 15 16 3.9 7 1800 4.06

20 17 215.47 5.19

aim-100-2-0-yes1-3 100 200 47 15 14 4.32 6 1800 3.27

20 16 284.33 4.93

aim-100-2-0-yes1-4 100 199 47 15 12 4.89 7 1800 2.25

20 16 308.9 4.5

aim-200-1-6-no-1 200 320 89 15 7 6.58 5 1800 1.26

20 12 322.36 3.84

aim-200-1-6-no-2 200 317 85 15 13 6.69 6 1800 3

20 10 361.58 1.77

aim-200-1-6-no-3 200 320 81 15 12 5.96 5 1800 3.47

20 14 238.95 5.11

aim-200-1-6-no-4 200 320 85 15 8 5.67 6 1800 1.19

20 12 290.13 2.77

aim-200-1-6-yes1-1 200 320 72 15 17 10.89 6 1800 5.71

20 23 332.5 10.75

aim-200-1-6-yes1-2 200 320 66 15 18 7.46 6 1800 5.54

20 20 435.72 6.76

aim-200-1-6-yes1-3 200 319 68 15 25 10.07 6 1800 11.69

20 28 420.72 14.69

aim-200-1-6-yes1-4 200 320 73 15 19 7.5 6 1800 6.81

20 21 472.75 8.57

aim-200-2-0-yes1-3 200 399 91 15 17 10.07 6 1800 6.09

20 21 364.33 8.92

Figure 8.8: Experimental results on Max-SAT-ONE problems. Time limit

1800 seconds.
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Instance nb. nb. w∗ MO-MBE(z) ǫ-constraint-lb

vars clauses z |lbf| time (sec.) |lbf| time (sec.) Ratio

ssa2670-130 1359 3321 27 10 342 54.33 4 1800 7776.67

15 349 1510.31 8343.78

ssa7552-038 1501 3575 29 5 254 15.65 4 1800 4185.67

10 357 128.32 8246.56

Figure 8.9: Experimental results on Max-SAT-ONE problems. Time limit

1800 seconds.

the ratio between the area covered by MO-MBE(z) for different values of z

with respect to the area covered by ǫ-constraint-lb (i.e., area MO-MBE(z) /

area ǫ-constraint-lb ).

For aim instances, the first thing to be observed is that the lowest value of

z (i.e., z = 15) outperforms the approximations given by ǫ-constraint-lb for

almost all instances. Note that the time spent by MO-MBE(15) is less than

8 seconds for all those instances while ǫ-constraint-lb reaches the time limit

of 1800 seconds. Increasing the value of z allows MO-MBE to compute much

more accurate lower bound frontiers and therefore, the ratio also increases.

For ssa instances, the advantage of MO-MBE over ǫ-constraint-lb is even

greater. MO-MBE is up to 7776.67 times better than ǫ-constraint-lb with

the lowest value of z. As before, the ratio increases with highest values of z.

Biobjective Weighted Vertex Cover

For the second domain, we test on samples for the following parameter con-

figurations

({60, 70, 80, 90}, {500, 950}, 5)

Note that the induced width of these instances is the highest and, as a

consequence, these instances are difficult for MO-MBE.

Figure 8.10 reports the results obtained for MO-MBE for different values

of the accuracy parameter z. The sixth column shows the ratio between

the area covered by the lower bound frontier found by MO-MBE(z) and

ǫ-constraint-lb.
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N E MO-MBE

(nb. vars) (nb. edges) w∗ z time (sec.) Ratio

15 0.6 1.36

60 500 39.9 20 31.95 1.74

25 891.48 2.23

15 0.58 1.66

70 500 41.3 20 38.22 2.20

25 1040.63 2.36

15 0.8 2.60

80 500 45.6 20 35.59 3.28

25 965.49 3.54

15 1.17 3.22

90 500 47 20 42.8 3.90

25 1227.2 4.26

15 0.33 1.59

60 950 48.35 20 12.37 2.14

25 477.5 2.65

15 0.35 1.75

70 950 53.75 20 15.53 2.47

25 772.8 3.08

15 0.39 1.81

80 950 57.75 20 25.9 2.78

25 801.46 3.43

15 0.51 2.07

90 950 63.25 20 23.44 2.96

25 1043.77 3.82

Figure 8.10: Experimental results on biobjective weighted minimum vertex

cover problems. Parameter C is set to 5. Mean values on 25 instances for

each parameter configuration. Time limit 1800 seconds.

As can be observed, MO-MBE with the lowest value of z (i.e. z = 15)

outperforms ǫ-constraint-lb for all parameter configurations. Note that ǫ-

constraint-lb reaches the time limit for all instances, whereas the time spent

by MO-MBE(15) is less than 2 seconds.

Scheduling of an Earth Observation Satellite

Figure 8.11 shows the results obtained in the scheduling of an EOS bench-

mark. We experiment on Spot5 instances with high induced width, namely,

those instances that were not solved by MO-BE (see Section 7.4). The sev-
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Instance #var #constr w∗ MO-BBmombe Ratio

z time (sec.)

10 1.08 33.3

1504(0,183)∗ 184 1329 18 15 18.26 35.20

20 544.72 35.49

10 0.14 27.35

1504(356,461)∗ 106 840 18 15 5.95 30.358

20 144.81 34.66

10 0.49 33.06

1506(0,150) 151 1440 31 15 12.84 36.14

20 280.42 39.55

10 0.51 12.77

1506(229,317) 89 1349 34 15 25.7 13.79

20 753.64 14.91

10 0.42 12.13

1506(679,761)∗ 83 1243 28 15 6.85 12.46

20 424.42 14.73

10 0.43 14.90

1405(762,854)∗ 93 2193 34 15 6.19 15.61

20 591.77 16.70

10 0.54 34.04

1407(0,147) 148 1442 29 15 15.91 35.64

20 547.22 38.45

10 0.47 19.17

1407(148,247) 100 1678 31 15 21.7 20.51

20 760.3 24.22

10 1.04 23.96

1407(248,378) 131 3063 52 15 26.49 24.90

20 1471.78 26.54

10 0.09 0.28

1407(494,553)∗ 60 1333 32 15 2.34 0.53

20 67.06 0.64

10 0.17 0.57

1407(580,700) 121 445 44 15 4.42 0.64

20 144.41 0.73

10 0.62 19.96

1407(762,878)∗ 117 2708 34 15 11.77 20.68

20 717.88 22.91

Figure 8.11: Experimental results on subproblems of the Spot5 instances

with capacity constraint. Time limit 1800 seconds.
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enth column shows the ratio between the area covered by the lower bound

frontier found by MO-MBE(z) and ǫ-constraint-lb. The time spent by ǫ-

constraint-lb is 1800 seconds for all instances.

In general, MO-MBE obtains much more accurate lower bound frontiers

than ǫ-constraint-lb. In particular, MO-MBE is from 12 to 34 times better

than ǫ-constraint-lb with the lowest value of z (i.e., z = 10). The only

exceptions are 1407(494,553)∗ and 1407(580,700) instances. The efficient

frontier of these instances has size 1. In this case recall that, as seen in

Section 5.3, the vector (l1, l2) received by ǫ-constraint-lb is the efficient cost

vector. Under these circumstances, ǫ-constraint-lb computes a lower bound

frontier that contains the efficient frontier. The main consequence is that

this lower bound frontier is more accurate than the one computed by MO-

MBE. Finally, observe that the accuracy of MO-MBE, as well as its cpu time,

increases as the value of z increases.

As we have seen in B.2, although the original formulation of Spot5 in-

stances is mono-objective, it can be approximated by a multi-objective ap-

proximation algorithm. The lower bound of the original mono-objective prob-

lem is the efficient solution of the lower bound frontier of the bi-objective

version such that the value of the second objective function does not surpass

the available memory and the cost of the first objective is minimum. Hence,

we assess the applicability of MO-MBE under these circumstances.

One possible way to compute lower bounds in the original formulation

of Spot5 consists on removing the capacity constraint from the instances

(the optimum of this relaxation will obviously be less than or equal to the

optimum in the original problem) and then execute classical MBE.

We compare these two approaches. Figure 8.12 reports the lower bounds

obtained for different values of parameter z as well as the CPU time required

for each execution. The second column shows the best lower bound known

for each instance [13]. The fourth, fifth and sixth columns report the lower

bound obtained by MO-MBE(z), the time in seconds required to compute it,

and the percentage (lbmombe(z) − lbmbe(z))/lbmbe(z). The last three columns
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Instance Best lb z MO-MBE(z) MBE(z)

known lb time % lb time %

5 244433 0.31 68.92 123174 0.16 34.73

1506 354661 10 249479 5.04 70.34 138216 1.36 38.97

15 254513 124.92 71.76 167267 25.74 47.16

5 327152 0.25 71,26 125059 0.12 27.24

1401 459111 10 333151 5.19 72,56 137060 0.97 29.85

15 343145 154.66 74,74 165064 21.57 35.95

5 326249 0.3 71,04 121123 0.15 26.37

1403 459268 10 339265 5.58 73,87 137131 1.22 29.86

15 340267 156.51 74,09 169144 26.3 36.83

5 322426 0.38 70,18 117170 0.22 25.5

1405 459458 10 334436 7.25 72,79 150171 1.69 32.68

15 341452 153.2 74,32 171195 35.58 37.26

5 321475 0.43 69,94 118172 0.28 25.71

1407 459622 10 342519 6.67 74,52 147205 2.06 32.03

15 345543 281.7 75,18 175250 41.23 38.13

Figure 8.12: Experimental results on Spot5 instances. Time values in sec-

onds.

reports the same information for MBE(z).

It can be observed that for all instances MO-MBE produces much higher

lower bounds than MBE. While this is clearly true if we compare executions

with the same value of z, such comparison is not totally fair because MO-

MBE has a higher complexity due to the computation of frontier functions.

However, if we look at executions with a similar CPU time we still observe

a clear dominance of MO-MBE.

8.4 Related Work

The idea of mini-bucket elimination has been made much more general in

[82, 84]. In particular, they describe this algorithm applied to valuation

algebras. As we have seen in 4.1, our frontier algebra can be considered as a

subclass of valuation algebras (recall that the frontier algebra is a c-semiring).

Therefore, our MO-MBE can be viewed as an instantiation of those abstract

approaches.

A somewhat different approach to approximation is given in [58], which
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keeps a careful control of the computation time. The approximation of each

bucket is based on a time limited version of the combination operator. The

idea is to restrict the available time for the exact combination of functions

in each bucket to a given number of seconds. Tuples that have not been

computed before the time limit are assigned the top valuation.

It is worth noting that all these approaches are described in an abstract

sense. Therefore, non of them are explicitly used to compute the efficient

frontier of a multi-objective optimization problem.

8.5 Conclusions

In this chapter we generalize the well-known approximation algorithm MBE

to deal with MO-WCSP problems. To the best of our knowledge, MO-

MBE is the first approximation algorithm able to compute multi-objective

lower bounds. The accuracy parameter z of the mini-bucket technique allows

two potential uses of MO-MBE. With high values of z, it can be used to

obtain good quality lower bound frontiers of problems that cannot be solved

exactly. With low values of z, it can be used as a bounding evaluation

function inside any multi-objective branch-and-bound solver to increase its

pruning capabilities. We demonstrate the practical potential of MO-MBE in

both contexts.

It is important to note that multi-objective branch-and-bound schemes

have not been widely used because of the lack of multi-objective approxima-

tion algorithms [41, 136]. MO-MBE overcome this issue and allows multi-

objective branch-and-bound to be a feasible solving algorithm. Therefore,

MO-MBE is the first step toward a deep study of multi-objective branch-

and-bound schemes and its associated lower bounding techniques.
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Chapter 9

Constraint Propagation

In the previous chapters we have described a number of multi-objective al-

gorithms and have used them to solve multi-objective and mono-objective

optimization problems. Now, we propose the use of multi-objective tech-

niques in the solving process of constraint satisfaction problems.

The task in a constraint satisfaction problem (CSP) is to find an assign-

ment satisfying all the constraints. In constaint programming, CSPs are

usually solved by search procedures. Essentially, the search process con-

sists of enumerating all possible variable-value combinations, until it finds

a solution or proves that none exists. To reduce the exponential number of

combinations, search is interleaved with constraint propagation. Its goal is to

detect and remove domain values that cannot be part of any solution. Con-

straint propagation is applied at each node of the search tree and, in general,

to each constraint independently.

The purpose of this chapter is to describe a novel propagation schema for

a set of p constraints of the form
∑

f∈Fj
f < Kj. The new schema jointly

propagates these constraints by means of a multi-objective approximation

algorithm. More precisely, we consider the set of additive functions Fj(X ) =
∑

f∈Fj
f and compute a lower bound frontier of the corresponding multi-

objective problem using MO-MBE (see Chapter 8). If there is no cost vector

in the frontier with all its components smaller than the Kj values, it implies

189
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that the current subproblem is inconsistent and the search algorithm can

backtrack.

The structure of the Chapter is as follows. Section 9.1 introduces the

backtracking algorithm for CSPs and outlines how constraint propagation

works. Section 9.2 describes the type of constraints we are going to prop-

agate: additive bounding constraints. Then, we describe two approaches

to propagate sets of bounding constraints. Subsection 9.2.1 describes the

independent propagation using MBE. Subsection 9.2.2 describes our novel

approach: the simultaneos propagation using MO-MBE and highlights the

fundamental difference among both approaches. Section 9.3 shows some

experimental results. Section 9.4 discusses related work and point out its

differences with respect to our approach. Finally, Section 9.5 gives some

conclusions.

9.1 Preliminaries

9.1.1 Backtracking

As we have seen in Section 2.3.1, the problem of finding a satisfying assign-

ment with respect to a set of constraints is a constraint satisfaction problem

(CSP). Usually, CSPs are solved by a search procedure that systematically

enumerates the set of all possible assignments. If the process finds an assign-

ment that satisfies all the constraints then the CSP is consistent. Otherwise,

the problem is inconsistent.

The most common search algorithm for CSP problems is backtracking

[106]. It can be seen as a simplified version of the depth-first branch-and-

bound (BB) search for optimization tasks described in Section 3.1.1. Briefly,

given a CSP P , the set of all possible assignments, called search space, can be

represented as a tree. Each child of a node represents the assignment of one

domain value to one additional variable. The path from the root to a given

node represents a tuple where only the variables in the path are assigned.
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Consider an arbitrary node and let t be its associated assignment. The

original CSP problem P conditioned to tuple t (i.e., P (t)) is the subproblem

rooted at that node. When P (t) does not have any solution, that is, P (t)

is inconsistent, the algorithm is in a dead-end. In general, a dead-end is

detected at nodes where all domain values are rejected as candidates for

the assignment of an unassigned variable. When a dead-end is detected, the

algorithm backtracks to a previous node. Otherwise, the algorithm continues

until reaching a leaf. The assignment associated to the leaf satisfies all the

constraints in P . Therefore, P is consistent iff there exists a path from the

root to a leaf. Otherwise, P is inconsistent.

9.1.2 Constraint Propagation

It is clear that the efficiency of backtracking depends on the ability to detect

dead-ends as soon as possible in the search tree. To that end, constraint

programming proposes to solve CSPs by interleaving constraint propagation

and search. Constraint propagation is applied at each node of the search

tree. Its goal is to prove the inconsistency of the current subproblem P (t)

by proving the inconsistency of some of its constraints.

Definition 9.1.1 A constraint c is consistent iff there exists a tuple t′ with

var(c) ⊆ var(t′) such that t′ satisfies c (i.e., c(t′) = true). Otherwise, c is

inconsistent.

We will refer to constraint propagation as a call to propagate(C) where C
is a set of constraints. If propagate(C) returns false, it means that it has

been able to prove that some constraint c ∈ C is inconsistent. Formally,

¬propagate(C) ⇒ P (t) is inconsistent

Since constraint propagation is applied in each search node, the consis-

tency of each constraint should be checked efficiently. Let consistent(c)

refer to the process of checking the consistency of constraint c. When c is
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a binary constraint (i.e., c is defined on two variables) consistent(c) is in-

nexpensive. For higher arity constraints this is not necessarily the case. In

general, consistent(c) requires time that is exponential in the arity of c.

There are two approaches to circumvent this issue:

1. For some specific constraints, it is possible to devise an exact dedicated

algorithm that exploits the underlying structure of the constraint. One

of the best known specific constraints is the alldiff [114] for which

a number of dedicated algorithms have been proposed [118, 115, 94].

Such algorithms run in polynomial time and satisfy,

¬consistent(c) ⇔ c is inconsistent

2. For some other constraints, it is not possible to check consistency in

polynomial time. However, sometimes it is possible to devise an ap-

proximated algorithm that may prove inconsistency. A well known

example is the propagation of the knapsack constraint [75]. Such algo-

rithms satisfy,

¬consistent(c) ⇒ c is inconsistent

With this approach, the propagation of a set of constraints C can be

expressed as the lazy computation of the following expression,
∧

c∈C
consistent(c) (9.1)

where lazy computation means that the propagation process can stop as soon

as a constraint is found inconsistent.

The previous approach can be refined in order to, not only prove incon-

sistency, but also prune inconsistent domain values. This is a well-known

idea that in constraint programming is called filtering. A filtering algorithm

removes inconsistent domain values with respect to a constraint.

Definition 9.1.2 Given a constraint c and a domain value a ∈ Di where

xi ∈ var(c), a is inconsistent with respect to c iff c(xi = a) is inconsistent.
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Clearly, inconsistent values can be removed without changing the con-

sistency of the current problem. Let filtering(c) refer to the process of

pruning inconsistent domain values with respect to the constraint c. If it

removes all domain values of a variable in var(c), then c is inconsistent.

Filtering algorithms have a very important sinergy: pruning one domain

value due to one constraint, may produce the pruning of another domain

value due to another constraint, yielding a cascade effect. With this ap-

proach, the propagation of a set of constraint C can be described as the mech-

anism of calling the consistency algorithm associated with the constraints

involving a variable xi each time the domain of this variable is modified. If

the domains of the variables are finite, then it terminates because a domain

can be modified only a finite number of times. A naive implementation of

this process can be,

function propagate(C)

repeat

for each c ∈ C do filtering(c);

until domain wiped-out ∨ no-change;

return not domain wiped-out;

endfunction

Although very simple, the previous code allows us to point out three

observations. The first observation is that the previous code reduces to Ex-

pression 9.1 when filtering(c) is replaced by consistent(c). The second

observation is that when propagate is not able to prove the inconsistency of

P (t), the changes made in the domains remain in subsequent subproblems

of P (t). The third observation is that the only communication between con-

straints is through value filtering. As a consequence, this approach may not

be strong enough for problems with conflicting constraints, as shown in the

following example.
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Example 9.1.1 Consider the following two constrains over 0-1 variables:

x1x2 + x2x3 + x3x4 ≥ 1;
4∑

i=1

xi ≤ 1

Let us consider that both constraints are associated with a filtering algorithm,

which is the strongest form of propagation that we have seen so far. Let

us suppose that the propagation process starts with the first constraint. Its

associated filtering algorithm iterates over each domain value of each variable

in order to detect inconsistent domain values, as follows. First, it considers

each domain value of variable x1. Domain values 0 is consistent with respect

to this constraint because there is an assignment with x1 = 0 that satisfies

it (e.g. (x1 = 0, x2 = 1, x3 = 1, x4 = 0)). Similarly, domain value 1 is

consistent because the assignment (x1 = 1, x2 = 1, x3 = 0, x4 = 0) satisfies

the constraint. It is easy to see that every domain value is consistent with

respect to the first constraint. As a result, the filtering algorithm does not

remove any domain value and returns true.

Then, the propagation process will call the filtering algorithm of the sec-

ond constraint. It is easy to see that when considering any domain value of

variable xi, the constraint is trivially satisfied when the remaining variables

xj with j 6= i are assigned to 0 (no matter the domain value assigned to xi).

As a result, the filtering algorithm does not remove any value and returns

true.

The propagation process returns true, which means that it may be a so-

lution to this problem. The issue is that the independent propagation of each

constraint only indicates that there exists an assignment that satisfies each

constraint individually. However, this process does not have into account the

consistency of each domain value with respect to the two constraints simulta-

neously. It is easy to see that for satisfying the first constraint we must assign

at least two variables to domain value 1, while for satisfying the second con-

straint we can assign at most one variable to domain value 1. Therefore, no

domain value is consistent with both constraints simultaneosly.
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This is a simple example that many solvers would probably deal efficiently

with. However, we will show in Section 9.3 that, if constraints are more

intricate, standard solvers may perform poorly.

9.2 Propagating Additive Bounding Constraints

In this Chapter we focus on proving inconsistency for an specific constraint,

that we call additive bounding constraint.

Definition 9.2.1 An additive bounding constraint is a pair (F , K), where

f ∈ F are cost functions and K ∈ N is a cost value. The scope of the

constraint is Y = ∪f∈Fvar(f). A tuple t such that var(t) = Y satisfies the

constraint iff,
∑

f∈F
f(t) < K

It is important to note that we do not make any assumption over cost func-

tions f ∈ F , which makes the concept of additive bounding constraint ex-

tremely general.

In recent years, many consistency algorithms for additive bounding con-

straints have been proposed. For instance, all WCSP local consistency algo-

rithms [88, 32] can be used for filtering.

Another alternative is to use mini-bucket elimination MBE (see Section

8.1). Its main disadvantage over local consistencies is that MBE cannot be

easily used for filtering domain values [36]. The main advantage is its control

parameter z that allows to trade resources for accuracy. For our purposes,

MBE has the additional advantage of being extendible to multi-objective

optimization (see Chapter 8).

Let P be a CSP with p additive bounding constraints. Consider an ar-

bitrary search node where t is its associated partial assignment. Let P (t) =

(X ,D, C) be the problem P conditioned to the current assignment t and let

P ′ be a short-hand for P (t). The set of constraints C can be divided into two

sets: {(Fj, Kj)}p
j=1 are p additive bounding constraints and H is the set of
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remaining constraints. At this point, standard solvers would start a propa-

gation process using dedicated or approximated algorithms for each type of

constraint.

In the following, we consider the propagation process of P ′ using two

schemas:

i. Checking the consistency of each bounding constraint independently

with MBE.

ii. Checking the consistency of all bounding constraints simultaneously

using MO-MBE (see Section 8.2).

9.2.1 Propagation using MBE

Checking the consistency of a given bounding constraint can be expressed

as,

lbj ≥ Kj

where lbj is a lower bound of
∑

f∈Fj
f . It is easy to see that if the previous

expression is satisfied, the jth bounding constraint is inconsistent. Otherwise,

the consistency of the constraint remains unknown.

Since the previous consistency checking condition does not filter domain

values, it makes sense to propagate P ′ in two steps. First, we propagate the

set H. Then, we sequentially check the consistency of each bounding con-

straint. Formally, we can see the propagation process as the lazy computation

of,

propagate(H) ∧
p

∧

j=1

lbj < Kj (9.2)

If the previous expression returns false the search procedure should backtrack

because P ′ is inconsistent. Otherwise, the search procedure should continue,

because P ′ can be either consistent or inconsistent.

We can compute each lbj using MBE. Then, the propagation process is a

sequence of MBE executions, one for each bounding constraint. Note that it
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is important to first propagate H because its result is the possible reduction

of the domains of X of which MBE takes advantage of.

Example 9.2.1 Consider a CSP P = (X ,D, C) with three 0/1 variables and

two bounding constraints: (F1, 12) where

F1 = {f1(x1) = 10x1, f2(x2) = 10x2, f3(x3) = 2x3}

and (F2, 10) where

F2 = {h1(x1) = 3(1 − x1), h2(x2) = 4(1 − x2), h3(x3) = 8(1 − x3)}

There are two additional constraints,

c1(x1, x2) = x1 6= x2 c2(x2, x3) = x2 ∨ x3

If we propagate each bounding constraint with MBE setting the control

parameter z = 2 we obtain lower bound 0 for both constraints. The reason is

that the set of functions F1 and F2 only contain unary cost functions, each

one mentioning one different variable. Then, the bucket of each variable xi

only contains one function that, when xi is projected, it results in a zero-

arity function (i.e., a constant). For all buckets, the projected function is 0.

Then, the lower bound, that is computed as the sum of the set of zero-arity

functions, is 0.

The propagation indicates that the problem may have solution. It is clear

that this propagation can be very weak, because it only takes into account the

information given by the bounding constraint being propagated.

The practical effectiveness of MBE can be greatly improved if we add the

set of constraints H to each set Fj. To that end, constraints in H must be

expressed as 0/∞–functions.

Example 9.2.2 Consider the CSP of Example 9.2.1. Now, we are going to

propagate each bounding constraint augmented with constraints c1 and c2. In

that case, for each bounding constraint, MBE will compute a lower bound
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of
∑

f∈Fj∪H f . If we set the control parameter z = 2, MBE computes lower

bounds 10 and 3, respectively. Find below the trace of each execution (note

that in this example, there is no need to break buckets into mini-buckets),

1st bounding constr.







domain value g3 g2 g1()

1 0 2 10

0 2 10

2nd bounding constr.







domain value g3 g2 g1()

1 0 4 3

0 0 0

Note that the lower bounds have increased with respect to the previous

propagation. Actually, each lower bound is the optimum assignment of each

bounding constraint also considering H, so MBE is doing a perfect estimation

with the information that it receives. However, it is still unable to prove

inconsistency. The problem is that it only knows part of the information.

The key of the possible poor performance of MBE is that in each ex-

ecution, MBE searches for one different consistent assignment. Each one

satisfies one bounding constraint separately, but may not satisfy all of them

simultaneously.

9.2.2 Propagation using MO-MBE

As we have seen, the standard propagation of conflicting bounding con-

straints may fail. The reason is that it is easy to satisfy them independently,

but difficult to satisfy them simultaneously. Then, the difficulty relies in the

conjunction. We propose a more convenient approach where those constraints

are simultaneously considered.

The idea is to consider the set of additive bounding constraints {(Fj, Kj)}p
j=1

as a multi-objective problem with p objective functions F1, . . . , Fp. The jth

objective function is Fj =
∑

f∈Fj

f . Let E be the efficient frontier of the multi-

objective problem. Then, we compute a lower bound frontier lbf of E .
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F 1

F 2

12

10

Figure 9.1: Cost vectors from tolerance bounds of bounding constraints

(F1, 12) and (F2, 10).

Let ~u ∈ E be an arbitrary vector and let t′ be the complete assignment

such that ~u = (F1(t
′), . . . , Fp(t

′)). Recall that, by definition, lbf ≤mo E .

Namely, there exists a vector ~v ∈ lbf such that ~v ≤ ~u. If vj ≥ Kj for some

j, then uj ≥ Kj . As a consequence, t′ does not satisfy (Fj, Kj). Abusing

notation, when vj ≥ Kj we say that ~v does not satisfy (Fj , Kj). If there does

not exist any cost vector in lbf that satisfies all bounding constraints, neither

it exists in E . Namely, there does not exist any complete assignment t′ that

simultaneosly satisfies all bounding constraints. Therefore, P ′ is inconsistent.

We illustrate this idea by an example. Consider the CSP problem of

Example 9.2.2. It can be transformed into a problem with objective functions

F1 =
∑

f∈F1
f and F2 =

∑

f∈F2
f . The space of solutions can be represented

as a 2D space (see Figure 9.1). Any cost vector at the rigth side of the

vertical dotted line does not satify the first bounding constraint because its

first component will be greater than or equal to K1 = 12. According with the

partial order among vectors, all vectors dominated by (12, 0) do not satisfy

(F1, 12). Similarly, any cost vector above the horizontal dotted line does not

satisfy the second bounding constraint because its second component will

be greater than or equal to K2 = 10. Namely, all vectors dominated by

(0, 10) do not satisfy (F2, 10). Only cost vectors situated in the white area

simultaneosly satisfies both bounding constraints. In other words, vectors
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which are not dominated by either (12, 0) nor (0, 10). It is easy to see that

if all vectors in lbf are in the dominated area (i.e., grey area in the figure),

the CSP problem is inconsistent. However, if only one vector in lbf is in

the non-dominated are (i.e., white area in the figure), then the CSP may be

consistent.

We can easily generalize the previous example to a set of bounding con-

straints. Since Kj bounds the maximum acceptable cost for the jth objective

function Fj , the set of bounds {Kj}p
j=1 can be considered as an upper bound

frontier ubf of E ,

ubf = {(K1, 0, . . . , 0), . . . , (0, . . . , 0, Kj, 0, . . . , 0), . . . , (0, . . . , 0, Kp)}

According with the partial order among frontiers (see Definition 4.4.2) the

expression,

ubf ≤mo lbf

implies that P ′ is inconsistent.

Formally, we can see the multi-objective propagation process as the lazy

computation of,

propagate(H) ∧ ubf 6≤mo lbf (9.3)

If the previous expression is false the search procedure should backtrack

because P ′ is inconsistent. Otherwise, the search procedure should continue,

because P ′ can be either consistent or not.

We can compute lbf using MO-MBE. As in the mono-objective case, the

efficiency of MO-MBE can be increased by adding the set of constraints H
to the multi-objective problem. To that end, the set of constraints in H are

expressed as frontier functions. Again, it is important to first propagate H
because it may reduce the domains of X .

Expression 9.3 replaces the sequence of calls to lb using MBE in Expres-

sion 9.2 by a single call to lbf using MO-MBE. This change may seem a

minor modification. However, the subjacent algorithm is completely differ-

ent and the kind of inference performed is much more powerful, as can be

seen in the following example.
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Example 9.2.3 Consider the CSP in Example 9.2.1. If we propagate the

two bounding constraints simultaneously (augmented with the other constraints)

with MO-MBE setting z = 2 we obtain a lower bound frontier

lbf = {(12, 4), (10, 11)}

Find below the trace of the execution,

domain value g3 g2 g1()

1 {(2, 0), (0, 8)} {(2, 4), (0, 12)} {(12, 4), (10, 11)}
0 {(2, 0)} {(10, 8)}

The bounds of the two bounding constraints lead to the upper bound fron-

tier ubf = {(12, 0), (0, 10)}. Since ubf ≤mo lbf, the propagation process

indicates that the problem does not have an assignment satisfying both bound-

ing constraints simultaneously. Therefore, the original CSP problem has no

solution.

The key of the possible good performance of multi-objective propagation

with respect to MBE is that MO-MBE searches for a unique assignment that

satisfies all bounding constraints simultaneously, while the execution of MBE

for each bounding constraint searches for one different assignment to satisfy

each constraint.

9.3 Experimental Results

We tested our propagation mechanism in the decision (or constraint satisfac-

tion) version of two different domains: risk-conscious combinatorial auctions

and scheduling of an EOS (for more details see Appendix B.1 and B.2, re-

spectively). We compare the performance of four algorithms based on back-

tracking and using different propagation schemas:

• Each bounding constraint is associated with a dedicated filtering algo-

rithm, called IloPack, offered by the constraint solver Ilog Solver 6.1.
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• Each bounding constraints (augmented with the other different con-

straints) is associated with an approximated filtering algorithm that

enforces FDAC [88].

• The set of constraints different from the bounding constraints are jointly

propagated with an approximated algorithm that enforces arc-consistency

on them. The consistency of each bounding contraint is proved with

MBE setting z = 2 (namely, the first approach described in Section

9.2.1).

• Similar to the previous one, but the two calls to MBE are replaced

to one call to MO-MBE setting z = 2 (namely, the second approach

described in Section 9.2.2).

We use Ilog Solver 6.1 as solver engine for the first approach, and Toolbar in

the other three approaches. For comparison, we always report cpu time.

9.3.1 Combinatorial Auctions

Figure 9.2 reports the results obtained for the risk conscious auction instances

with 20 and 50 goods, respectively. The time limit is 300 seconds.

It can be observed that problems become harder as the number of bids

increases. Regarding the algorithms, it is clear that MO-MBE propagation

always outperforms the other three approaches. For instances with 20 goods,

it is about 6 times faster than its competitors. With 50 goods the gain is

still larger (up to 10 times faster).

9.3.2 Scheduling of an EOS

The time limit for this experiment is 600 seconds. Since we could not solve

complete instances, we considered subinstances as follows: X≥k denotes in-

stance X where photographs whose penalty is less than k have been elim-

inated. Figure 9.3 reports the results for instance 1506≥1000. Since we ob-

served that the behavior of other subinstances (i.e., 1401≥1000, 1403≥1000,
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Figure 9.2: Experimental results on risk conscious combinatorial auctions for

20 and 50 goods, respectively. Path distribution. Risk probabilities ranging

from 0.0 to 0.3. Average time on 25 instances for each parameter configura-

tion. Time limit 300 seconds.

1405≥1000, and 1407≥1000) was very similar, we do not report their results.

Each plot reports results for a fixed value of P and varying the value of S.

Note the logarithmic scale.

IlogSolver always performs very poorly and only solves instances with

S ≤ 4. Thus, we omit it from the plot.

Considering MBE and MO-MBE, we observe the following pattern that is

best exemplified in the P = 450000 plot (Figure 9.3 top left). For high values

of S, MBE is more efficient than MO-MBE. The reason is that the memory

constraint is very easy to satisfy, which makes it practically irrelevant. MBE

already captures the difficulty of the problem, which is mono-objective in

nature. Thus, the higher overhead of MO-MBE is wasted. As the value of S

decreases, the situation changes. Both bounding constraints become difficult

to satisfy simultaneously. Propagating with mono-objective MBE fails in de-

tecting inconsistency because it is easy to satisfy each constraint if the other

one is disregarded, but it is difficult to satisfy the two of them simultane-

ously. Only the bi-objective nature of MO-MBE can capture such difficulty.

As a result, MBE cannot solve the problems, while MO-MBE solves them in
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a few seconds. If S decreases even further, the memory constraint becomes

clearly unsatisfiable in conjunction with the penalty constraint. MO-MBE

propagation detects it easily but MBE propagation does not. Only for the

lowest values of S, when the constraint is unsatisfiable independently of other

constraints, MBE detects it efficiently. The algorithm that enforces FDAC

behaves similarly to MBE because it also considers the two bounding con-

straints separately. However, it provides a much better average performance.

Observing the plots in decreasing order of P , we observe that problems be-

come harder as the penalty bounding constraint becomes tighter and harder

to satisfy. As before, there is a range of S for which the instances are most

difficult. This difficulty peak shifts towards the right as P decreases. For

MO-MBE propagation, the range is narrower than for MBE and FDAC, but

it also fails to solve some instances within the time limit of 600 seconds.

The P = 250000 case requires further discussion: the plot only shows the

left-hand side of the difficulty peak, where the tight memory constraint helps

MO-MBE to prove unsatisfiability almost instantly whilst MBE and FDAC

cannot. For large values of S the constraint becomes trivial and irrelevant.

Then the problem difficulty is given only by the penalty constraint and the

three algorithms fail in solving it.

9.4 Related work

The idea of using the conjunction of two or more constraints during propa-

gation, rather than using them one-by-one, is not new. For instance, path-

consistency, path-inverse consistency and neighborhood inverse consistency

[33] use this idea at different levels of sophistication. However, all these

works assume binary problems and cannot be efficiently extended to higher

arity constraints such as bounding constraints. The work of [141] is also

related to ours. However, it is restricted to problems with so-called knap-

sack constraints, which are a special case of pairs of additive bounding con-

straints that share unary cost functions (namely, linear constraints of the
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Figure 9.3: Experimental results on 1506≥1000 spot5 instance. Time limit 600

seconds. Note the logarithmic scale.

form L ≤ AX ≤ U). A little bit more general is the work of [131], which

applies to pairs of constraints of the form,

n∑

i=1

wixi ≤ U ∧
n∑

i=1

pixi > U

Our notion of additive bounding constraint includes these and many other

cases and allow us to take into account any number of bounding constraints.

Besides, it can be easily extended to more sophisticated bounding constraints

expressable in terms of semirings [17]. Overmore, our algorithmic approach

using multi-objective optimization techniques is radically different.
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9.5 Conclusions

Additive bounding constraints,
∑

f∈F
f(X) < K, are used to bound the toler-

ance under certain undesirable feature in problem solutions. The propagation

in problems involving conflicting bounding constraints is a difficult task for

standard solvers. Typically, they propagate constraints one by one. When

it is easy to satisfy bounding constraints independently, but difficult to sat-

isfy them simultaneously, this approach clearly fails. In this Chaper we have

proposed a novel approach inspired in multi-objective optimization. We prop-

agate the additive bounding constraints simultaneously with multi-objective

mini-bucket elimination (MO-MBE). The output is a multi-objective lower

bound frontier that can be used to detect the inconsistency of the prob-

lem. Our experiments on two domains inspired in real-world problems show

that propagation of additive bounding constraints using MO-MBE is clearly

superior than previous approaches.

The high overhead of multi-objective propagation may render it useless

in problems with many bounding constraints. In that case, it may be useful

to detect automatically pairs of conflicting constraints and apply MO-MBE

to these pairs independently. Moreover, the experiments indicated that lose

bounding constraints cause overhead but are of no use to our approach,

so they should be detected and discarded in the propagation process. The

development of this idea is part of our future work. A major drawback of

MO-MBE propagation is that it cannot detect and prune unfeasible values.

We want to overcome this problem using the ideas of [36].
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Conclusions and Future Work

Many important real world optimization problems involve multiple objective

functions that should be simultaneously optimized. Multi-objective opti-

mization is characterized by a set of uncomparable solutions, instead of a

unique, perfect solution. It is obvious that solving this type of problems is

not trivial. Therefore, the development of techniques to efficiently solve them

is of clear practical importance.

Graphical models is a common representation framework to model a wide

spectrum of combinatorial problems, such as mono-objective optimization or

counting problems. Research during the last three decades has produced a

collection of general algorithms to efficiently solve them. The unifying view

provides a bridge to transfer specialized techniques from one type of graphical

model to another.

In this Thesis we have studied multi-objective optimization problems un-

der the graphical model framework. We have extended many techniques

developed in the graphical model context to multi-objective optimization.

All our research has been motivated under a general-purpose perspective,

without assuming any domain knowledge. For this reason, we believe that

our constributions can be effective in a broad spectrum of domains.

Our work has some recognized limitations. For instance, our empirical

evaluation only considers bi-objective optimization problems. Although real-

207
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world problems will generally consider a small number of objectives (i.e., no

more than three), the increase in the number of objectives will presumably

decrease the performance of our algorithms. Moreover, all our benchmarks

have some source of randomness. It should be clear that results obtained on

random problems need not extrapolate to every particular domain. Finally,

we have disregarded local search methods, an important line of research which

has been very fruitful and widely studied in multi-objective optimization.

10.1 Conclusions

The main conclusions of our work are:

1. Many multi-objective optimization problems can be described in graph-

ical models terms. For the first time, we develop a valid formalization

and prove that it satisfies all the axioms required by the semiring CSP

(SCSP) framework for graphical models.

2. The formalization of multi-objective optimization problems as SCSP

problems gives us the main elements to naturally extend some algo-

rithms described in the mono-objective optimization context. We have

presented new search and inference general purpose algorithms able to

compute either the efficient frontier or a multi-objective approximation

of a given multi-objective optimization problem. The clear parallelism

between multi-objective and mono-objective algorithms allows us to

better understand their algorithmic structure. As we have seen, previ-

ous existing work describes such elements in a not so intuitive way.

3. The new proposed algorithms behave well in multi-objective optimiza-

tion problems with different structural characteristics, as we have em-

pirically demonstrated. The following table indicates the most effi-

cient algorithm (in general) for each benchmark taking into account

the structural characteristics of the instances.
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Max-SAT-ONE BMWVC1 CA2 EOS3

w∗ < 24 w∗ ≥ 24 w∗ < 24 w∗ ≥ 24

n = 50 n ≥ 100

MO-BBicf

√

MO-BBfdac
√

(S)MO-RDS
√

MO-BE
√ √

MO-BBmombe
√

MO-MBE
√

It is well-known that there does not exist the best algorithm in terms

of efficiency. On the contrary, there exist algorithms that are suitable

for problems with relatively small induced width, others are convenient

for problems with relatively small bandwidth, etc. Our small sample

of benchmark is a clear example. In general, the structure of each

problem determines whether one algorithm should be in principle more

suitable than another. Therefore, it is important to have a collection

of algorithms that performs well in different situations.

4. Our work supports the importance of developing generic algorithms

which, in general, are easier to develop and maintain, and can be a

starting point for the development of specialized techniques. That is

why all our work has been developed under a general purpose motiva-

tion. Moreover, we believe that the new algorithms can be specialized

to particular domains without jeopardizing their performance. On the

contrary, the specialization should lead to more efficient algorithms.

1Biobjective minimum weighted vertex cover
2Risk-conscious combinatorial auctions
3Scheduling of an Earth Observation Satellite
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5. Finally, multi-objective optimization techniques can be useful to solve

pure satisfaction and mono-objective optimization problems. This ap-

proach may be counterintuitive at first sight because multi-objective

optimization is in general more difficult than mono-objective optimiza-

tion. However, we have shown that the multi-objective perspective

may bring to light desirable structural properties that renders multi-

objective optimization algorihtms more efficient than any decision or

mono-objective technique.

10.2 Future work

This work raises a number of issues that deserve further research. We have

identifyed the following related to AND/OR search, hybrid approaches, search

heuristics, and local consistency techniques.

1. As we have seen in Section 3.1.1, there are two main search approaches

in mono-objective optimization: OR search and AND/OR search. The

main advantage of the latter is that it takes into account the inde-

pendences among variables. As a result, the search space traversed

by AND/OR search is smaller than the one traversed by OR search.

The main consequence is the exponential reduction of the search time

with respect to the traditional OR search. In our future work, we want

to extend AND/OR search to multi-objective optimization. Thanks

to the algebraic formalization of multi-objective optimization prob-

lems described in Chapter 4, the extension should be straightforward.

Moreover, we also want to extend the catching schemas proposed for

AND/OR search to the multi-objective context. The result will be a

parameterized algorithm able to trade time and space. Given the space

limitations in real life problems, exact solving schemes that can trade

space for time are of clear importance.

2. Hybrid approaches combine in a single method different solving tech-



10.2. FUTURE WORK 211

niques. The goal of the combination is to retain the qualities of each

approach while minimizing some of their drawbacks. In mono-objective

optimization, the combination of search and bucket elimination [87] has

been shown to be very effective in several domains. We want to inves-

tigate the efficiency of this hybrid approach in the multi-objective opti-

mization context. It is our belief that it may be a suitable combination,

but an empirical evaluation is needed.

3. The search for solutions is generally guided by two heuristics defining

the search strategy (i.e., variable [53, 147, 62] and domain value [53, 147,

146] selection heuristics). The goal of a search strategy is to quickly

guide search towards either good solutions or dead-ends. It is known

that in mono-objective optimization a good search strategy has a great

impact on the solving time. In our future work, we want to study the

impact of introducing different search strategies into the multi-objective

branch-and-bound algorithm.

4. Approximation algorithms are of clear interest either when an opti-

mization problem is too difficult to be solved exactly, or when combined

with search. We have investigated the efficiency of multi-objective mini-

bucket elimination in both contexts. In our future work, we want to

explore the extension of local consistency techniques to multi-objective

optimization. The main issue is the definition of an inverse of the com-

bination operator over frontiers able to extract as much information

as possible from the network. In a preliminary study, we define this

inverse operator as the pointwise difference among an arbitrary fron-

tier and a singleton frontier. However, we want to further investigate

whether it is possible to define a stronger inverse operator.
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editors, ESA, volume 2461 of Lecture Notes in Computer Science, pages

485–498. Springer, 2002.

[45] F. Joel Ferguson and Tracy Larrabee. Test pattern generation for real-

istic bridge faults in cmos ics. In ITC, pages 492–499. IEEE Computer

Society, 1991.



218 BIBLIOGRAPHY

[46] M. Fishelson and D. Geiger. Exact genetic linkage computations for

general pedigrees. Bioinformatics, 2002.

[47] Carlos M. Fonseca and Peter J. Fleming. Genetic algorithms for mul-

tiobjective optimization: Formulationdiscussion and generalization. In

Stephanie Forrest, editor, ICGA, pages 416–423. Morgan Kaufmann,

1993.

[48] Carlos M. Fonseca and Peter J. Fleming. An overview of evolutionary

algorithms in multiobjective optimization. Evolutionary Computation,

3(1):1–16, 1995.

[49] William T. Freeman, Egon C. Pasztor, and Owen T. Carmichael.

Learning low-level vision. International Journal of Computer Vision,

40(1):25–47, 2000.

[50] E. Freuder. A sufficient condition for backtrack-free search. Journal of

the ACM, 29:24–32, March 1982.

[51] E. C. Freuder. Synthesizing constraint expressions. Communications

ACM, 21(11):958–966, 1978.

[52] E.C. Freuder and M.J. Quinn. Taking advantage of stable sets of vari-

ables in constraint satisfaction problems. In IJCAI-85, pages 1076–

1078, 1985.

[53] E.C. Freuder and R.J. Wallace. Partial constraint satisfaction. Artifi-

cial Intelligence, 58:21–70, December 1992.

[54] Marco Gavanelli. An algorithm for multi-criteria optimization in csps.

In Frank van Harmelen, editor, ECAI, pages 136–140. IOS Press, 2002.

[55] Michel Gendreau, Patrick Soriano, and L. Salvail. Solving the maxi-

mum clique problem using a tabu search approach. Annal of Operations

Research, 41(4):385–403, 1993.



BIBLIOGRAPHY 219

[56] A. M. Geoffrion. Proper efficiency and the theory of vector maximiza-

tion. Journal of Mathematical Analysis and Applications, 22:618–630,

1968.

[57] G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural csp

decomposition methods. Artificial Intelligence, 124(2):243–282, 2000.

[58] Rolf Haenni. Ordered valuation algebras: a generic framework for

approximating inference. Int. J. Approx. Reasoning, 37(1):1–41, 2004.

[59] S. Harikumar and S. Kumar. Iterative deepening multiobjective A*.

Information Processing Letters, 58:11–15, 1996.

[60] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuris-

tic determination of minimum cost paths. In IEEE Trans. Syst. Sci.

Cybern. SSC-4, pages 100–107, 1968.

[61] P.E. Hart, N.J. Nilsson, and B. Raphael. Correction to ’a formal basis

for the heuristic determination of minimum cost paths’. In SIGART

Newsletter, volume 37, pages 28–29, 1972.

[62] Federico Heras and Javier Larrosa. Intelligent variable orderings and

re-orderings in dac-based solvers for wcsp. J. Heuristics, 12(4-5):287–

306, 2006.

[63] A. Holland. Risk Management for Combinatorial Auctions. PhD thesis,

Dept. of Computer Science, UCC, Ireland., 2005.

[64] Jeffrey Horn, Nicholas Nafpliotis, and David E. Goldberg. A niched

pareto genetic algorithm for multiobjective optimization. In Interna-

tional Conference on Evolutionary Computation, pages 82–87, 1994.

[65] R. Howard and J. Matheson. Influence diagrams. In Readings on

the Principles and Applications of Decision Analysis, pages 719–762,

Menlo Park, CA, USA, 1984. Strategic Decisions Group.



220 BIBLIOGRAPHY
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Appendix A

Engineering Mini-Bucket

Elimination

As we have seen in Chapter 8, Mini-bucket Elimination (MBE) is one of the

most popular bounding techniques. It is arguably one of the best-known

general approximation algorithms for mono-objective optimization problems

and it has shown to be effective in a variety of graphical models. The time

and space complexity of MBE is exponential in its control parameter z and

it is important to note that, with current computers, it is the space, rather

than the time, that prohibits the execution of the algorithm beyond certain

values of z.

The purpose of this Chapter is to improve the practical applicability of

MBE. To that end, we propose two complimentary methods. Given a value

of the control parameter z, the first method decreases the space demands and

obtains the same lower bound as the original MBE. The second one increases

the lower bound and maintains the same space demans as the original MBE.

The Chapter is divided into two sections, each one devoted to one new

method.

229
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A.1 Improving MBE memory usage

In this Section we show how to decrease the space demands of MBE. The new

method is based on the concept of computation tree (CT). A CT provides a

graphical view of the MBE execution and can be computed as a pre-process.

It is somewhat similar to the tree-decomposition in decomposition methods

[38], where the first step is to build the tree-decomposition and the second

step is to solve the problem. Our first contribution is a set of local transfor-

mations to the CT with which a more rational use of memory is achieved.

They include: i) branch re-arrangement (nodes are moved upwards along a

branch which means that the elimination of a variable is anticipated) and,

ii) vertical tree compaction (adjacent nodes are joined which means that a

sequence of operations is performed in a single step).

The second contribution is the exploitation of memory deallocation of in-

termediate functions when they become redundant. By construction of CT,

MBE can be seen as a top-down traversal of the CT. The order of the traver-

sal is imposed by the order in which variables are eliminated. We make the

observation that any top-down traversal of the CT would produce the same

outcome. Then, we propose to traverse the CT in a depth-first manner in

order to decrease the number of intermediate functions that must be simul-

taneously stored. We show that with a depth-first traversal of the CT, the

order of children has an impact in the space complexity which provides an

additional source of improvement. We also discuss the benefits of horizontal

node compaction. It is important to note that none of these transformations

risk the accuracy of the algorithm.

The new algorithm that incorporates all these techniques is called depth-

first mini-bucket elimination dfMBE. Our experiments show in a number

of domains that dfMBE may provide important space savings. The main

consequence is that in a given computer (namely, for a fixed amount of

memory), dfMBE(z) can be executed with a higher value of z than MBE(z)

which, in turn, may yield better lower bounds.
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A.1.1 Preliminaries

The first phase of MBE (as well as BE) can be seen as an algebraic expression

that combines sums and variable eliminations. For instance, consider the

following set of cost functions,

F = {f1(x6, x5, x4), f2(x6, x5, x3), f3(x5, x3, x2), f4(x6, x4, x2), f5(x7, x2, x1), f6(x7, x6, x1)}

The execution of MBE(3) along lexicographical order given in example 8.1.2

is equivalent to the computation of the following expression, where we use

the symbol ↓ as a short-hand for min

((f3 + (f1 + f2) ↓ x6) ↓ x5 + (f4 + (f6 + f5) ↓ x7) ↓ x6) ↓ x4 ↓ x3 ↓ x2 ↓ x1

Note that each function appears only once in the formulae.

A computation tree (CT first introduced in [86]) provides a graphical view

of the algebraic expression. The leaves are the original functions (arguments

of the formulae) and internal nodes represent the computation of intermediate

functions. If the node has only one child, the only operation performed is the

elimination of one variables. Otherwise, all the children are summed and one

variable is eliminated. Figure A.1.a depicts the CT of the previous example.

Dotted lines emphasize tree-leaves, which are associated to original functions.

Adjacent to each internal node we indicate the variable that is eliminated.

Although CTs are somehow related to decomposition-trees, they differ in the

way they represent original functions. Besides, since CTs originate from MBE

executions, they do not need to satisfy the running intersection property [57].

In the following we distinguish the computation of the CT from the eval-

uation of its associated expression. Given the scope of the original functions,

a variable ordering, a policy for mini-bucket partitioning and a value for z,

it is possible to compute the corresponding CT as a pre-process. Computing

the CT is no more than finding the set of computations that the algorithm

will perform in order to evaluate the formula.

One advantage of computing the CT in a pre-process is that it makes it

easy to obtain the exact memory demands of MBE by summing the space
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Figure A.1: Four different computation trees: A) original CT, B) after

branch re-arrangement, C) after vertical compaction, D) after horizontal

compaction

requirements of every internal node of the CT1. For instance, the CT in

Figure A.1.A, will need to store 5 functions of arity 3, 1 functions of arity 2,

1 function of arity 1 and 1 function of arity 0. Assuming domains of size 10,

MBE will need to store 5 × 103 + 1 × 102 + 1 × 101 + 1 × 100 = 5111 table

entries.

1Even when original function are given explicitely as tables, do not include their space

in the MBE cost.
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A.1.2 Local Transformations

CTs allow us to identify and remedy some space inefficiencies of MBE. In

the following we describe two local transformations of CTs that improve their

space requirements.

Branch Re-arrangement

Consider again the CT in Figure A.1.a. Observe that if we follow any branch

in top-down order, variables are eliminated in decreasing order, because this

is the order used by MBE. As a consequence, the elimination of x1 is left to

the end. However, this variable only appears in the two leftmost leaves. It

is inefficient to carry it over down to the CT root, since it could have been

eliminated higher up.

Consider a node v of a CT with a single child. Let xi be the variable that

is eliminated at v. Let u be the first descendent of v with k > 1 children.

If only one child w of u has xi in its scope, node v (namely, the elimination

of xi) can be moved in between w and u. We only perform the change if w

is not a leaf. Branch re-arrangement is the process of applying the previous

rule in a bottom-up order, moving nodes as close to the leaves as possible.

The benefit of branch re-arrangement is that xi disappears from the scope

of intermediate functions earlier in the tree. In the CT of Figure A.1.a, the

leftmost branch can be re-arranged: variable x1 can be eliminated right after

x7. Moreover, the rightmost branch can also be re-arranged: variable x3 can

be eliminated right after x5. Figure A.1.b shows the resulting CT. The space

requirements of the new CT are decreased from 5111 to 3311. Observe that

branch re-arrangement can never increase the space requirements of a CT.

Vertical Compaction

Consider the CT in Figure A.1.b. There are two single-child nodes. In single-

child nodes the only associated computation is a variable elimination. MBE

considers each variable elimination as an independent operation because they
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take place in different buckets. However, a sequence of variable eliminations

can be performed simultaneously in a single step without changing the out-

come or increasing the time complexity. The advantage is that intermediate

functions do not need to be stored.

Vertical compaction is the process of merging internal linear paths into

one node representing the sequence of computations. An internal linear

path is a path between an internal node v and one of its ancestors w,

(v, v1 . . . , vk, w), such that every node in the path except v has only one

child. After the compaction every internal node of the CT has k > 1 chil-

dren. There is one exception: there may be internal nodes with only child if

the child is a leaf. Figure A.1.c depicts the result of applying vertical com-

paction to the CT of Figure A.1.b. The space requirements of the new CT

are decreased from 3311 to 1301. It is clear that the compaction of a CT

may produce space saving and can never increase the space requirements of

a CT.

A.1.3 Depth-First MBE

A CT can be traversed in any top-down order. A node can be computed as

soon as all its children are available. Whatever traversal strategy is used it

has to keep all intermediate functions because they are used in the second

phase of the algorithm in order to compute the upper bound. However, the

space consumption of the traversal can be drastically reduced if we sacrifice

the upper bound and deallocate the memory used by intermediate functions

when they become redundant. A function becomes redundant as soon as its

parent has been computed. Note that an alternative solution that we do not

explore in this paper is to store redundant functions in the hard-disk. Thus,

the upper bound is not lost.

Without memory deallocation the traversal order has no effect on the

space complexity, but this is no longer true when memory is deallocated.

Traversing the CT depth-first has the advantage of only demanding the space

of the current branch: computing a node only requires to have available its
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children, so they have to be sequentially and recursively computed. We

denote by dfMBE the algorithm that traverses depth-first the CT and deal-

locates memory when intermediate functions become redundant. The space

complexity of dfMBE can be formalized by means of a recurrence. Let v be a

node, gv the associated function and (w1, . . . , wk) its ordered set of children.

R(v) is the space complexity of computing the sub-tree rooted by a CT node

v and is given by,

R(v) =
k+1
max
i=1

{
i−1∑

j=1

sp(gwj
) + R(wi)}

where R(wk+1) = sp(gv) by definition. Also, the space sp() of original

functions is 0 because we do not count it as used by the algorithm. The space

complexity of dfMBE is obtained by evaluating R(v) at the root of the CT.

In words, the recursion indicates that the space required to compute node v

is the maximum among the space required to compute its children. However,

when computing a given child, the space occupied by all its previous siblings

must be added because they need to be available for the final computation

of v.

Consider the CT of Figure A.1.c. We showed in the previous Section that,

with no memory deallocation, the space cost of internal nodes was 1301. If

the CT is traversed depth-first, the cost (disregarding original functions) is,

max{R(g62
), sp(g62

) + R(g31
), sp(g62

) + sp(g31
) + sp(g41

)} =

max{200, 100 + 1100, 100 + 100 + 1} = 1200

Observe that the order of children affects the space complexity of dfMBE.

For instance, if we reverse the two children of the root in Figure A.1.c, the

space complexity of dfMBE is decreased to,

max{R(g31
), sp(g31

) + R(g62
), sp(g31

) + sp(g62
) + sp(g41

)} =

max{1100, 100 + 200, 100 + 100 + 1} = 1100
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In our implementation of dfMBE we make an additional optimization of the

CT by processing nodes from leaves to the root. At each node, we swap the

order of two of its children if it brings a space improvement.

Consider now the two children of the root-node in the CT of Figure A.1.c.

The scope of the associated functions g61
and g62

is the same. Since they will

be summed up, one table can be shared to stored both of them as follows: the

table entries are initialized to 0, the two functions are computed sequentially,

and each function value is added to the table current value. Figure A.1.d

illustrates this idea. The cost of dfMBE with this new CT is,

max{R(g62
), sp(g62

) + sp(g41
)} =

max{max{100, 100 + 100, 100 + 1000, 100 + 1000}, 100 + 1} = 1100

which brings no gain over the CT in Figure A.1.C. However, in some cases

it may bring significant benefits. Note that R(g62
) = max{R(g11

), sp(g11
) +

sp(g62
), sp(g62

)+R(g61
), sp(g62

)+ sp(g61
)}. In our implementation, we check

siblings pair-wise. If sharing their storing table produces space savings we

take such an action.

A.1.4 Experimental Results

We have tested our approach in three different domains. We compare the

memory requirements for MBE, MBE’ (i.e, mini-buckets under the compu-

tation tree resulting from branch re-arrangement and vertical compaction),

and dfMBE in a given computer (in other words, with a fixed amount of

memory). For each domain we execute MBE(z1), MBE’(z2) and dfMBE(z3),

where z1, z2 and z3 are the highest feasible values of the control parameter

for each algorithm, given the available memory.

In all our experiments, the original CT was obtained assuming a MBE

execution in which the order of variable elimination was established with

the min-degree heuristic. For the elimination of each variable, mini-buckets

are constructed one by one with the following process: Select one original
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function (or a non-original function if there are no original functions left).

Choose among the remaining functions the one that adds the least number

of variables to the mini-bucket until no more functions can be included in

that mini-bucket.

In our benchmarks domain sizes range from 2 to 44, and some instances

have variables with different domain size. Consequently, the arity of a func-

tion is not a proper way to indicate its spacial cost, which means that the

control parameter z of MBE may be misleading (it forbids a function of arity

z + 1 with binary domains and allows a function of arity z with domains

of size 4 that is much more costly to store). We overcome this problem by

modifying the meaning of z: In the original formulation of MBE, the arity of

intermediate functions is bounded by z, but in our implementation the size

of intermediate functions is bounded by 2z.

Scheduling of an Earth Observation Satellite

For our first experiment, we consider instances from the Scheduling of an

Earth Observation Satellite benchmark (see Appendix B.2 for a detailed de-

scription). We consider the original mono-objective description of the in-

stances, disregarding the capacity constraint imposed by the on-board stor-

age limit on multi orbit instances. Figure A.2 reports the results that we

have obtained assuming a computer with a memory limit of 1.5 Gigabytes.

The first column identifies the instance. The second column indicates the

induced width with the min-degree ordering. The third, fourth and fifth

columns report the memory requirements in Megabytes with the three algo-

rithms for different values of z. If the number is given in italics it means

that it surpasses the space limit of the computer and the algorithm could

not be executed (the memory requirement was obtained from the analysis

of the CT). The sixth and seventh column indicate the value of z and the

lower bound that is obtained. For each instance, we report results for three

increasing values of z: the limit for MBE, MBE’ and dfMBE. It can be ob-

served that MBE’ requires from 2 to 10 times less memory than MBE, which
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Memory Requirement (Mb) Lower

Instance w∗ CTMBE CTMBE′ CTdfMBE z Bound

17161 10373 1052 27 158274

1504 43 1945 911 65 23 148259

1240 577 34 22 142257

227707 50435 1310 27 180356

1506 51 5503 1099 24 21 180316

1185 214 4 18 166305

137825 11250 524 26 210085

1401 156 11430 874 40 22 203083

1286 131 6 19 196080

237480 28144 1048 27 223189

1403 156 13416 1277 36 22 193185

1153 125 5 18 189180

325213 54378 1179 27 219302

1405 156 7226 1317 24 21 214283

1548 289 3 18 203268

113739 14764 1048 27 141105

28 139 8374 1424 65 23 141105

694 109 5 19 148105

22558 6032 1572 28 125050

42 51 2112 1123 147 24 135050

1090 590 65 23 133050

82823 38425 917 27 206

5 83 1861 843 16 21 192

536 253 4 18 186

17903 7966 1048 27 5197

408 60 2609 1355 163 24 6195

1408 752 5 23 5197

58396 24513 1179 27 14258

412 61 2771 882 40 22 17224

1420 434 16 21 14220

172071 24566 1048 27 19295

414 144 8605 1205 49 22 18301

1154 166 4 19 18292

15833 8644 1067 27 18231

505 39 2834 1534 139 24 19217

1488 800 65 23 19206

76346 16932 1310 27 15286

507 91 6222 1571 81 23 15280

1217 250 10 20 12255

130553 26671 1114 27 18286

509 151 6812 1008 40 22 17285

946 162 4 19 17267

Figure A.2: Spot5 results. Memory bound of 1.5 Gb.
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allows the execution with values of z up to 4 units higher. However, the most

impressive results are obtained with dfMBE, which may require 275 times

less space than MBE (e.g. instance 1405). As a consequence dfMBE can be

executed with values of z up to 9 units higher (e.g. instance 1506), which in

turn yields lower bounds up to 20% higher (e.g. instance 507). The mean

space gain from MBE to dfMBE is 113.34, the mean increment of z is 7 and

the mean increment of the lower bound is 8.74%.

Probabilistic Reasoning

We tested the performance of our scheme for solving the most probable expla-

nation (MPE) task on two types of belief networks: Random and Noisy-OR

Networks (for a detailed description of the benchmark see Appendix B.6).

Figure A.3 present results of random and noisy-OR networks assuming

a computer with a memory limit of 512 Megabytes. In each table we fix

parameters N , K and P and change the value of C in order to control the

network’s sparseness. We always assumed empty evidence and report mean

values.

It can be observed that dfMBE requires from 15 to 29 times less memory

than MBE, which allows the execution with values of z up to 3 units higher.

The mean space gain from MBE to dfMBE is 18.56, the mean increment of

z is 3.51 and the mean increment of the lower bound is 5.75%. For uniform

random networks we also report the mean number of instances executed with

CTMBE′ and CTdfMBE in which the lower bound increases with respect its

execution with CTMBE and CTMBE′, respectively (i.e., %better column).

With random networks we also executed the efficient WCSP branch-and-

bound solver Toolbar initializing its upper bound with the lower bound

given by dfMBE and observed that it did not terminate with a time limit of

one hour. Considering that dfMBE with the highest z value takes less than

300 seconds in this domain, we conclude that dfMBE is a better approach

than iterative deepening branch and bound.

We observed that noisy-OR networks could be easily solved to optimality
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Uniform Random Bayesian Networks

Memory Requirement (Mb) Lower

N, C, P w∗ CTMBE CTMBE′ CTdfMBE z Bound % better

3635 598 239 26.36 18.61 40

128, 85, 4 31.71 2579 315 171 25.75 18.35 90

370 84 45 22.95 17.56 -

4144 999 205 26.21 20.68 50

128, 95, 4 43.96 1941 317 146 24.9 20.34 90

335 94 43 22.5 19.51 -

4537 825 264 26.2 23.58 60

128, 105, 4 38.71 2192 391 185 25.3 23.27 95

358 89 48 22.7 22.16 -

4114 807 261 25.85 26.22 60

128, 115, 4 48.32 1823 345 172 24.7 25.61 100

355 99 43 22.5 24.69 -

Noisy-OR Pnoise = 0.40

Memory Requirement (Mb)

N, C, P w∗ CTMBE CTMBE′ CTdfMBE z % solved

4777 662 164 26.35 73

128, 85, 4 35.39 2805 256 153 25.6 68

331 68 29 22.65 47

4331 681 222 26.25 84

128, 95, 4 38.61 2545 308 169 25.35 84

340 74 34 22.55 58

3125 683 260 25.55 50

128, 105, 4 43.06 1646 285 136 24.6 50

364 91 45 22.45 15

4446 918 199 25.95 65

128, 115, 4 46.51 1530 352 149 24.75 50

340 102 46 22.55 25

Noisy-OR Pnoise = 0.50

4780 631 242 26.45 75

128, 85, 4 40.74 3154 330 177 25.7 75

384 71 33 22.8 60

3663 356 243 25.89 55

128, 95, 4 38.12 2170 309 158 25.15 55

368 76 49 22.63 25

5080 952 245 26.4 65

128, 105, 4 43.04 2006 329 109 24.8 65

371 79 33 22.6 45

3506 964 227 26.05 60

128, 115, 4 46.25 1552 342 176 24.7 45

384 94 43 22.5 35

Figure A.3: MPE on bayesian networks. 20 samples. Memory bound of 512

Mb.
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Memory Requirement (Mb)

Instance w∗ CTMBE CTMBE′ CTdfMBE z

15955 1992 49 28

graph05 135 12880 1102 86 27

1483 201 25 24

30364 2544 300 28

graph06 296 17291 1320 300 27

1354 117 10 23

14797 1866 527 28

graph07 146 8187 266 49 27

1511 180 45 24

30331 2044 113 28

graph11reduc 275 15630 1183 113 27

1267 154 22 23

55260 3079 22 28

graph11 495 5935 338 30 25

547 83 11 21

23532 3570 692 28

graph12 234 3399 493 134 26

1379 230 21 24

67123 6447 723 28

graph13reduc 619 9964 1070 121 25

1572 141 13 22

89091 6828 1067 28

graph13 706 7354 515 24 25

806 161 11 21

Figure A.4: RLFAP. Memory bound of 1.5 Gb.

with ToolBar. Therefore, we also report for each parameter setting and

each value of z, how many instances are solved to optimality with MBE,

MBE’ and dfMBE.

Resource allocation

For our third experiment, we consider the radio link frequency assignment

problem (see Appendix B.7 for more details). Figure A.4 reports graph in-

stances where we obtained the best results. It can be observed that dfMBE is

also very effective in this domain. It can require on average by 430.25 times

less memory than MBE, which allows the execution with values of z up to

5.25 units larger.
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A.2 Improving Lower Bound

In this Section we show how to increase the lower bound obtained by MBE

while maintaining its space demands. The new method introduces a new

propagation phase that MBE must execute at each bucket. It consists on

performing an arrangement of costs before processing each bucket as follows.

Mini-buckets are structured into a tree and costs are moved along branches

from the leaves to the root. As a result, the root mini-bucket accumulates

costs that will be processed together, while classical MBE would have pro-

cessed them independently. Note that the new propagation phase does not

increase the complexity with respect classical MBE.

Our experiments on scheduling, combinatorial auctions and maxclique

show that the addition of this propagation phase increases the quality of the

lower bound provided by MBE quite significatively. Although the increase

depends on the benchmark, the typical percentage is 50%. However, for some

instances, the propagation phase gives a dramatic percentage increment up

to 1566%.

A.2.1 Preliminaries

Notation

Let f be a function and let Y ⊆ X be a subset of variables. Along this

Section, we will use f [Y ] as a short-hand for min
var(f)−Y

{f}.

Fair c-semirings

Given a c-semiring K = (A,⊕,⊗), K is fair [28] if for any pair of valuations

a, b ∈ A, with a ≤ b, there exists a maximum difference of b and a. This

unique maximum difference of b and a is denoted by b ⊖ a. This property

ensures the equivalence of a SCSP problem when the two operations ⊗ and

⊖ are applied.

Abusing notation, we extend the ⊖ operator from the set of valuations
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⊖ : A × A → A to the set of functions ⊖ : F × F → F . The substraction

of two functions f and g, noted f ⊖ g, is a new function that substracts the

information of g from f .

Definition A.2.1 Let f and g be two functions such that var(g) ⊆ var(f)

and ∀ t ∈ var(f), f(t) ≥ g(t). Their subtraction, noted f ⊖ g, is a new

function with scope var(f) defined as,

(f ⊖ g)(t) = f(t) ⊖ g(t)

for all tuple t ∈ var(f).

In [28] it is shown that the most important reasoning tasks are fair. Al-

though our approach can be used in any fair reasoning task, for the sake of

simplicity, we will focus on WCSPs.

As has been shown, in weighted CSPs (WCSPs), A is the set N∞ and its

⊗ is the usual sum over naturals. It is easy to see that the ⊖ operator over

N∞ is the usual substraction.

Equivalence Preserving Transformations

We say that two WCSPs are equivalent if they have the same optimum. There

are several transformations that preserve the equivalence. For instance, if

we take any pair of cost functions f, g ∈ F from a WCSP (X ,D,F) and

replace them by their sum f + g, the result is an equivalent problem. The

replacement of B by g performed by BE (Figure 7.1) is another example of

equivalence-preserving transformation. Very recently, a new kind of WCSP

transformation has been used in the context of soft local consistency [89, 27].

The general idea is to move costs from one cost function to another. More

precisely, costs are subtracted from one cost function and added to another.

Formally, let f and h be two arbitrary functions. The movement of costs

from f to g is done sequentially in three steps:

h := f [var(f) ∩ var(g)]
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Figure A.5: Example of functions.

f := f − h

g := g + h

In words, function h contains costs in f that can be captured in terms of the

common variables with g. Hence, they can be kept either in h or in f . Then,

this costs are moved from f to g. The time complexity of this operation

is O(dmax{|var(f)|,|var(g)|}). The space complexity is the size of h stored as a

table, O(d|var(h)|}), which is negligible in comparison with the larger function

f .

Example A.2.1 Consider the functions on Figure A.5 (a). They are defined

over boolean domains and given as a table of costs. Let function h represents

the costs that can be moved from function f to function g. Observe that,

as f and g only share variable xi, then h = f [xi], where h(false) = 2 and

h(true) = 4. Figure A.5 (b), shows the result of moving the costs from f to

g. Observe that costs of tuples t such that var(t) = {xi, xj, xk} are preserved.
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A.2.2 Bucket Propagation

The new refinement of MBE consists on performing a movement of costs in

each bucket before processing it. We incorporate the concept of equivalence-

preserving transformation into MBE, but only at the bucket level. The idea

is to move costs between minibuckets aiming at a propagation effect. We

pursue the accumulation of as much information as possible in one of the

mini-buckets.

The following example illustrates and motivates the idea. Suppose that

MBE is processing a bucket containing two functions f and g, each one

forming a mini-bucket. Variable xi is the one to be eliminated. Standard

MBE would process independently each minibucket, eliminating variable xi

in each function. It is precisely this independent elimination of xi from each

mini-bucket where the lower bound of MBE may lose accuracy. Ideally (i.e,

in BE), f and g should be added and their information should travel together

along the different buckets. However, in MBE their information is split into

two pieces for complexity reasons. What we propose is to transfer costs from

f to g (or conversely) before processing the mini-buckets. The purpose is

to put as much information as possible in the same mini-bucket, so that

all this information is jointly processed as BE would do. Consequently, the

pernicious effect of splitting the bucket into mini-buckets will presumably be

minimized. Figure A.5 depicts a numerical illustration. Consider functions

f and g from Figure A.5 (a). If variable xi is eliminated independently, we

obtain the functions in Figure A.5 (c). If the problem contains no more

functions, the final lower bound will be 3. Consider now the functions in

Figure A.5 (b) where costs have been moved from f to g. If variable xi is

eliminated independently, we obtain the functions in Figure A.5 (d), with

which the lower bound is 5.

The previous example was limited to two mini-buckets containing one

function each. Nevertheless, the idea can be easily generalized to arbitrary

mini-bucket arrangements. At each bucket B, we construct a propagation tree

T = (V, E) where nodes are associated with mini-buckets and edges represent
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movement of costs along branches from the leaves to the root. Each node

waits until receiving costs from all its children. Then, it sends costs to its

parent. This flow of costs accumulates and propagates costs towards the

root.

A.2.3 Mini-Bucket Elimination with Bucket Propaga-

tion

The refinement of MBE that incorporates the idea of bucket propagation is

called MBEp. In Figure A.6 we describe a preliminary version. A more

efficient version regarding space will be discussed later on. MBEp and MBE

are very similar and, in the following, we discuss the main differences. After

partitioning the bucket into mini-buckets (line 3), MBEp computes the sum

of all the functions in each mini-bucket (line 4). Next, it constructs a propa-

gation tree T = (V, E) with one node j associated to each function gj. Then,

costs are propagated (lines 6, 11-16). Finally, variable xi is eliminated from

each mini-bucket (line 7) and resulting functions are added to the problem

in replacement of the bucket (line 8).

Procedure Propagation is also depicted in Figure A.6. Let j be an arbi-

trary node of the propagation tree such that has received costs from all its

children. It must send costs to its parent parent(j). First, it computes in

function hj the costs that can be sent from j to its parent (line 13). Then,

function hj is subtracted from gj and summed to gparent(j) (lines 14 and 15).

The propagation phase terminates when the root receives costs from all its

children.

Observe that the previous implementation of MBEp (Figure A.6) com-

putes in two steps (lines 4 and 7), what plain MBE computes in one step.

Consequently, MBEp stores functions with arity up to z+1 while MBE only

stores functions with arity up to z. Therefore, the previous description of

MBEp has a space complexity slightly higher than MBE, given the same

value of z. In the following, we show how the complexity of MBEp can
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function MBEp(P, z)

1. for each i = n..1 do

2. B := {f ∈ F | xi ∈ var(f)};
3. {P1, . . . ,Pk} := Partition(B, z);

4. for each j = 1 . . . k do gj :=
∑

f∈Pj
f ;

5. (V, E) := PropTree({g1, . . . , gk});
6. Propagation((V, E));

7. for each j = 1..k do gj := minxi
{gj};

8. F := (F ∪ {g1, . . . , gk}) − B;

9. endfor

10. return(g1);

endfunction

procedure Propagation((V, E))

11. repeat

12. select a node j s.t it has received the messages from all its children;

13. hj := gj [var(gj) ∩ var(gparent(j))];

14. gj := gj − hj ;

15. gparent(j) := gparent(j) + hj;

16. until root has received all messages from its children;

endprocedure

Figure A.6: Mini-Bucket Elimination with Propagation (preliminary ver-

sion). Given a WCSP P = (X ,D,F), the algorithm returns a zero-arity

function g1 with a lower bound of the optimum cost.
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be made similar to the complexity of MBE. First, we extend the concept

of movement of costs to deal with sets of functions. Let F and G be two

sets of costs functions. Let var(F ) = ∪f∈F var(f), var(G) = ∪g∈Gvar(g)

and Y = var(F ) ∩ var(G). The movement of costs from F to G is done

sequentially in three steps:

h := (
∑

f∈F f)[Y ]

F := F ∪ {−h}
G := G ∪ {h}

where −h means that costs contained in h are to be subtracted instead of

summed, when evaluating costs of tuples on F . Observe that the first step

can be efficiently implemented as,

∀
t∈Y

, h(t) := min
(t′∈var(F ) s.t. t′=t·t′′)

{
∑

f∈F

f(t′)}

This implementation avoids computing the sum of all the functions in F .

The time complexity of the operation is O(d|var(F )|). The space complexity

is O(d|Y |).

Figure A.7 depicts the new version of MBEp. The difference with the

previous version is that functions in mini-buckets do not need to be summed

before the propagation phase (line 4 is omitted). Procedure Propagation

moves costs between mini-buckets preserving the set of original functions.

Line 7, sums the functions in the mini-buckets and eliminates variable xi in

one step, as plain MBE would do.

Observe that the time complexity of line 13 is O(dz+1), because |var(Pj)| ≤
z + 1 (by definition of mini-bucket). The space complexity is O(dz) because

|var(h)| ≤ z (note that var(Pj) 6= var(Pparent(j)) because otherwise they

would have been merged into one mini-bucket). The previous observation

leads to the following result.

Theorem A.2.1 The time and space complexity of MBEp is O(dz+1) and
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function MBEp(P, z)

1. for each i = n..1 do

2. B := {f ∈ F | xi ∈ var(f)};
3. {P1, . . . ,Pk} := Partition(B, z);

5. (V, E) := PropTree({P1, . . . ,Pk});
6. Propagation((V, E));

7. for each j = 1..k do gj := minxi
{(∑f∈Pj

f) − hj};
8. F := (F ∪ {g1, . . . , gk}) − B;

9. endfor

10. return(g1);

endfunction

procedure Propagation((V, E))

11. repeat

12. select a node j s.t it has received the messages from all its children;

13. hj := (
∑

f∈Pj
f)[var(Pj) ∩ var(Pparent(j))];

14. Pj := Pj ∪ {−hj};
15. Pparent(j) := Pparent(j) ∪ {hj};
16. until root has received all messages from its children;

endprocedure

Figure A.7: Mini-Bucket Elimination with Propagation. Given a WCSP

P = (X ,D,F), the algorithm returns a zero-arity function g1 with a lower

bound of the optimum cost.
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O(dz), respectively, where d is the largest domain size and z is the value of

the control parameter.

A.2.4 Computation of the Propagation Tree

In our preliminary experiments we observed that the success of the propa-

gation phase of MBEp greatly depends on the flow of information, which is

captured in the propagation tree. In the following we discuss two ideas that

heuristically lead to good propagation trees. Then, we will propose a simple

method to construct good propagation trees.

For the first observation, consider MBE with z = 1 in a problem with

four binary functions f1(x1, x2), f2(x2, x3), f3(x2, x4), f4(x3, x4). Variable x4

is the first to be eliminated. Its bucket contains f3 and f4. Each function

forms a mini-bucket. MBEp must decide whether to move costs from f3 to

f4 or conversely. Observe that after the elimination of x4, f4 will go to the

bucket of x3 where it will be summed with f2. Then, they will go to the

bucket of x2. However, f3 will jump directly to the bucket of x2. For this

reason, it seems more appropriate to move costs from f3 to f4. In f4 the costs

go to a higher mini-bucket, so they have more chances to propagate useful

information. One way to formalize this observation is the following: We

associate to each mini-bucket Pj a binary number Nj = bnbn−1 . . . b1 where

bi = 1 iff xi ∈ Pj . We say that mini-bucket Pj is smaller than Pk (noted

Pj < Pk) if Nj < Nk. In our propagation trees parents will always be larger

than their children.

For the second observation, consider three functions

f(x7, x6, x5, x4), g(x7, x3, x2, x1), h(x7, x6, x5, x1)

Observe that f shares 1 variable with g and 3 with h. The number of common

variables determines the arity of the function that is used as a bridge in the

cost transfer. The narrower the bridge, the less information that can be

captured. Therefore, it seems better to move costs between f and h than

between f and g.
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In accordance with the two previous observations, we construct the prop-

agation tree as follows: the parent of mini-bucket Pu will be mini-bucket Pw

such that Pu < Pw and they share a maximum number of variables. This

strategy combines the two criteria discussed above.

A.2.5 Experimental Results

We have tested our approach in three different domains. The purpose of

the experiments is to evaluate the effectiveness of the propagation phase and

the impact of the propagation tree on that propagation. To that end, we

compare the lower bound obtained with three algorithms: standard MBE,

MBE with bucket propagation using as a propagation tree a chain of mini-

buckets randomly ordered (i.e., MBEp
r ), and MBE with bucket propagation

using a propagation tree heuristically built as explained in Section A.2.4 (i.e.,

MBEp
h). For each domain, we execute those three algorithms with different

values of the control parameter z in order to analyze its effect (the highest

value of z reported is the highest feasible value given the available memory).

In all our experiments, the order of variable elimination is established with

the min-fill heuristic. All the experiments are executed in a Pentium IV

running Linux with 2Gb of memory and 3 GHz.

Scheduling of an Earth Observation Satellite

For our first experiment, we consider the scheduling of an earth observation

satellite (see Appendix B.2 for a detailed description). We experiment with

instances modelled as mono-objective optimization problems. Moreover, we

discard the capacity constraint on multi orbit instances.

Figure A.8 shows the results. The first column identifies the instance. The

second column indicates the value of the control parameter z with which the

algorithms are executed. Columns third and fourth report the lower bound

obtained and the execution time for standard MBE, respectively. Columns

fifth and sixth indicates for MBEp
r the percentage increment of the lower
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Instance z MBE(z) MBEp
r (z) MBEp

h
(z)

Lb. Time(sec.) % Time(sec.) % Time(sec.)

20 184247 827.63 1.6 1628.93 29.8 1706.6

1506 15 163301 25.43 -5.5 51.48 30.6 51.39

10 153274 1.33 -13.7 2.65 21.5 2.64

20 184084 691.08 16.8 1469.36 58.6 1574.26

1401 15 170082 20.82 4.7 47.35 45.8 46.92

10 155075 1.02 -10.3 2.13 53.5 2.17

20 181184 814.55 7.1 1702.82 59.6 1919.48

1403 15 162170 27.82 7.3 55.94 57.3 56.9

10 146155 1.3 10.9 2.58 60.2 2.6

20 191258 1197.06 0.5 2537.64 42.3 2622.88

1405 15 169233 33.88 -2.3 93.88 54.9 81.17

10 142206 1.7 -25.3 3.51 64.7 3.5

20 191342 1415.91 -4.0 2935.78 53.8 3008.78

1407 15 166298 47.44 3.5 94.17 60.1 102.78

10 144264 2.03 13.8 4.19 68.6 4.23

20 134105 252.14 2.2 500.97 38.0 510.72

28 15 121105 7.77 -1.6 15 52.8 16.16

10 103105 0.36 16.4 0.71 49.4 0.71

20 8058 4.92 -0.01 5.3 0.01 5.32

29 15 8055 0.28 -0.1 0.34 0.02 0.34

10 8050 0.01 -0.01 0.02 0.07 0.02

20 5212 51.19 19.1 75.39 19.3 72.5

408 15 5200 2.11 18.7 3.29 19.3 3.41

10 2166 0.11 38.1 0.2 139.0 0.2

20 17314 167.91 5.4 278.29 40.5 278.7

412 15 15270 6.49 6.2 10.98 72.1 11.1

10 10233 0.27 87.8 0.5 88.4 0.78

20 23292 629.36 -12.9 1278.39 17.4 1306.98

414 15 18268 20.14 -16.3 42.87 49.4 42.99

10 16213 1.05 -31.0 2.35 49.8 2.09

20 127050 38.9 -4.7 71.47 7.8 68.35

42 15 111050 1.43 -1.8 2.52 14.4 2.55

10 93050 0.06 2.1 0.12 19.3 0.12

20 19240 51.36 -36.3 66.9 5.2 63.16

505 15 16208 2.2 -18.5 3.35 0.1 3.23

10 13194 0.15 -15.2 0.21 15.1 0.21

20 16292 276.74 -6.1 510.66 0.2 520.3

507 15 14270 9.84 6.7 19.01 42.2 18.88

10 11226 0.47 8.6 0.92 53.7 0.92

20 22281 507.64 4.6 1026.43 22.5 1046.89

509 15 20267 16.2 -24.6 34.68 34.7 34.72

10 14219 0.83 14.0 1.64 77.7 1.62

Figure A.8: Experimental results on Spot5 instances.
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bound measured as ((LbMBEp
r
− LbMBE)/LbMBE) ∗ 100 and the execution

time. Columns seventh and eighth reports the same information for MBEp
h.

The first thing to be observed is that the results obtained with MBEp
r

does not follow a clear tendency. MBEp
r increases and decreases the lower

bound obtained with standard MBE almost the same times. However,

MBEp
h increases the lower bound obtained with MBE for all the instances.

Moreover, when both MBEp
r and MBEp

h increase the lower bound, MBEp
h

is always clearly superior. Therefore, it is clear that an adequate propagation

tree impacts on the bounds obtained.

Regarding MBEp
h, it increases up to 139% the lower bound with respect

MBE (e.g. instance 408). The mean increment is 54%, 38%, and 28% when

the value of the control parameter z is 10, 15, and 20, respectively. Note

that the effect of the propagation is higher for lower values of z because, as

we increase the value of z, the number of functions in each mini-bucket in-

creases and the number of mini-buckets decreases. Therefore, the propagated

information also decreases and the effect of the propagation is diminished.

Moreover, the lower bounds obtained with MBEp
h and z set to 10 outper-

forms the ones obtained with MBE and z set to 20 in almost all the instances,

which means that the time and space required for obtaining a bound of a

given quality is decreased.

Regarding cpu time, MBEp
h is from 2 to 3 times slower than MBE. The

reason is that cost functions are evaluated twice: the first one during the

propagation phase for establishing the costs to be moved, and the second one

during the regular process of variable elimination. However, it is important

to note that it is the space and not the time what bounds the maximum value

of z that can be used in practice. As a consequence, that constant increase

in time is not that significant as the space complexity remains the same.

Combinatorial Auctions

We experiment on instances from the combinatorial auctions benchmark for

the path and regions model (for a detailed description see Appendix B.1).
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Figure A.9: Combinatorial Auctions. Path distribution.

We execute algorithms MBE, MBEp
r , and MBEp

h with z equal to 15 and

20. We do not report results with MBEp
r because it was always very inferior

than MBEp
h. Moreover, we only report results on the path model because

the results for the regions model follows the same pattern.

Figure A.9 reports the results for path instances with 20 and 50 goods,

respectively. As can be observed, the behaviour for both configurations is

almost the same. Regarding the algorithms, it is clear that MBEp
h always

outperformes MBE. Note that the lower bound obtained with MBEp
h(z =

15) is clearly superior than that obtained with MBE(z = 20). Moreover,

as pointed out in the previous domain, the effect of the propagation in each

sample point is higher for z = 15 than for z = 20. That is, the percentage of

increment in the lower bound obtained with MBEp
h(z = 15) is higher than

that of MBEp
h(z = 20). Finally, it is important to note that the impact

of the propagation is higher when the problems become harder (i.e., as the

number of bids increase).

Maxclique

We test our approach on the maxclique benchmark (see Appendix B.5 for

more details). Figures A.10 and A.11 report the results. The first column

identifies the instance. The second column indicates the value of the control

parameter z with which the algorithms are executed. The third column re-
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Instance z MBE MBEp
r MBEp

h

Lb. % %

brock200-1 18 66 30.3 48.4

10 51 52.9 78.4

brock200-2 18 55 67.2 103.6

10 29 200 268.9

brock200-3 18 64 48.4 68.7

10 38 139.4 173.6

brock200-4 18 63 36.5 65.0

10 41 121.9 131.7

brock400-1 18 79 100 141.7

10 46 256.5 273.9

brock400-2 18 75 114.6 157.3

10 44 261.3 277.2

brock400-3 18 87 88.5 114.9

10 44 250 286.3

brock400-4 18 76 106.5 160.5

10 47 248.9 289.3

brock800-1 18 71 336.6 454.9

10 41 675.6 773.1

brock800-2 18 63 395.2 520.6

10 37 748.6 875.6

brock800-3 18 68 352.9 483.8

10 44 604.5 706.8

brock800-4 18 71 343.6 460.5

10 36 758.3 902.7

c-fat200-1 18 71 32.3 78.8

10 62 27.4 112.9

c-fat200-2 18 63 38.0 82.5

10 48 77.0 156.2

c-fat200-5 18 55 23.6 12.7

10 37 32.4 70.2

c-fat500-10 18 77 115.5 123.3

10 52 173.0 253.8

c-fat500-1 18 132 84.0 137.1

10 107 126.1 196.2

c-fat500-2 18 108 108.3 164.8

10 85 160 254.1

c-fat500-5 18 83 145.7 202.4

10 74 163.5 264.8

hamming10-2 18 412 -66.9 -72.0

10 419 -72.0 -73.7

hamming10-4 18 119 264.7 413.4

10 77 451.9 720.7

hamming6-2 18 32 -28.1 -31.2

10 32 -50 -59.3

hamming6-4 18 45 -4.4 2.2

10 33 9.0 33.3

hamming8-2 18 114 -59.6 -64.9

10 113 -74.3 -78.7

hamming8-4 18 82 46.3 89.0

10 51 113.7 215.6

Instance z MBE MBEp
r MBEp

h

Lb. % %

johnson16-2-4 18 72 -4.1 11.1

10 56 10.7 48.2

johnson32-2-4 18 195 27.6 71.2

10 134 75.3 150

johnson8-2-4 18 23 -4.3 0

10 20 -20 -5

johnson8-4-4 18 45 -22.2 -11.1

10 40 -15 -10

keller4 18 70 27.1 54.2

10 41 97.5 168.2

keller5 18 90 246.6 394.4

10 61 414.7 634.4

MANN-a27 15 247 0.4 0.4

10 244 -1.2 0.8

MANN-a45 15 677 -0.7 0.4

10 671 -0.1 0.1

MANN-a81 15 2177 0.0 0.3

10 2171 -0.1 0.5

p-hat1000-1 15 85 380 654.1

10 63 577.7 873.0

p-hat1000-2 15 57 589.4 821.0

10 36 1013.8 1325

p-hat1000-3 15 82 364.6 415.8

10 50 668 764

p-hat1500-1 15 69 802.8 1292.7

10 82 686.5 1021.9

p-hat1500-2 15 64 812.5 1112.5

10 45 1226.6 1566.6

p-hat1500-3 15 79 624.0 706.3

10 54 924.0 1111.1

p-hat300-1 18 62 112.9 195.1

10 48 187.5 306.2

p-hat300-2 18 61 121.3 168.8

10 38 247.3 328.9

p-hat300-3 18 76 71.0 100

10 51 145.0 172.5

p-hat500-1 18 74 170.2 301.3

10 50 330 524

p-hat500-2 18 75 178.6 248

10 39 407.6 556.4

p-hat500-3 18 93 125.8 169.8

10 50 300 338

p-hat700-1 15 66 340.9 581.8

10 52 482.6 711.5

p-hat700-2 18 63 357.1 492.0

10 36 672.2 919.4

p-hat700-3 18 78 260.2 330.7

10 44 543.1 588.6

san1000 15 89 319.1 493.2

10 100 260 438

Figure A.10: Experimental results on maxclique instances.
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Instance z MBE MBEp
r MBEp

h

Lb. % %

san200-0.7-1 18 69 26.0 53.6

10 50 82 86

san200-0.7-2 18 84 40.4 51.1

10 53 75.4 115.0

san200-0.9-1 18 108 -1.8 0

10 82 18.2 14.6

san200-0.9-2 18 85 20 17.6

10 68 25 27.9

san200-0.9-3 18 83 21.6 18.0

10 67 34.3 26.8

san400-0.5-1 18 79 115.1 194.9

10 58 189.6 289.6

san400-0.7-1 18 84 95.2 144.0

10 55 138.1 209.0

Instance z MBE MBEp
r MBEp

h

Lb. % %

san400-0.7-2 18 78 105.1 158.9

10 42 247.6 309.5

san400-0.7-3 18 73 138.3 180.8

10 47 225.5 287.2

san400-0.9-1 18 97 63.9 75.2

10 75 93.3 98.6

sanr200-0.7 18 61 42.6 63.9

10 45 80 104.4

sanr200-0.9 18 77 12.9 23.3

10 61 31.1 37.7

sanr400-0.5 18 67 152.2 223.8

10 32 406.2 543.7

sanr400-0.7 18 76 103.9 152.6

10 47 231.9 270.2

Figure A.11: Experimental results on maxclique instances.

port the lower bound obtained with standard MBE. Columns fourth and fifth

indicates, for MBEp
r and MBEp

l , the percentage of increment in the lower

bound with respect MBE, respectively. As the behaviour of the cpu time is

the same as for the previous benchmark, we do not report this information.

MBEp
r increases the lower bound obtained with standard MBE for all

the instances except for those of hamming and johnson. The percentage of

increment is up to 1226% when the value of the control parameter z is 10,

and up to 812% when z is the highest value. The best results are obtained

with MBEp
h which obtains a percentage increment of 1566% (see instance

p-hat1500-2 ). In this case, the increase ranges from 14.6% to 1566% when z

is set to 10, and from 17.6% to 1292% for the highest value of z.

It is important to note that the bound obtained with MBEp
h is always

higher than that of MBEp
r . For some instances, the percentage of increment

of MBEp
h is more than 4 times higher the one obtained with MBEp

r (e.g.

instance c-fat200-1 ). Therefore, it is clear that an adequate propagation

tree impacts on the propagation phase and, as a consequence, on the bounds

obtained.
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Benchmarks

Briefly, the following table shows the benchmarks used throughout this Thesis

and the type of problems each one is concerned with.

Name Multi-objective Mono-objective Constraint

optimization optimization satisfaction

Combinatorial Auction
√ √ √

Scheduling of an EOS1
√ √ √

Max-SAT-ONE
√

Minimum Vertex Cover
√

Max-Clique
√

MPE in Belief Network
√

RLFA2
√

In the following we describe in more detail each benchmark. For each one,

we describe the problem(s) solved, the included instances along with their

important structural properties (i.e., induced width and bandwidth) and the

encoding of the corresponding reasoning task(s).

1Earth Observation Satellite
2Radio Link Frequency Assignment

257
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The induced width of each instance is obtained under the variable or-

dering given by the min-degree heuristic [35]. We note its value by w∗. The

bandwidth of each instance is obtained under three different variable ordering

heuristics: lexicographical (noted b∗(lex)), greedy min-fill [35] (noted b∗(min-

fill)), minimal width order [50] (noted b∗(MWO)), and minimal triangulation

[125] (noted b∗(LEX-M)).

B.1 Combinatorial Auctions

Description

Combinatorial auctions (CA) [127] allow bidders to bid for indivisible subsets

of goods. Given a set of n goods {1, 2, . . . , n} presented in an auction, the

bidders generate m bids. Bid i is defined by the subset of requested goods

Bi ⊆ {1, 2, . . . , n} and the money offer mi. The combinatorial auction prob-

lem consists in accepting a subset of bids such that the benefits of the bid

taker are maximized. Note that the same good can appear in different bids.

Hence, only a bid containing each good can be accepted. This problem is a

NP-Hard problem.

The combinatorial auction problem can be extended to consider more

than one objective. Risk-conscious auctions (RCA) [63] are combinatorial

auctions in which the bid-taker wants to control the risk of bid withdrawal

following winner determination, because it may cause large losses in revenue.

In this context, bid i is defined by a subset of goods Bi ⊆ {1, 2, . . . , n},
the money offer mi and the probability of succesful payment si. The risk-

conscious auction problem consists in determining the bids accepted such

that they maximize both the benefits and the succesful of payment.

Finally, in some experiments, we consider a constraint satisfaction (or

decision) version of the risk-conscious auction problem in which the bid-

taker provides two constants (P, R) indicating that she wants to obtain a

benefit larger than P and a probability of full payment higher than R.
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Figure B.1: Mean values of the the induced width and bandwidth for com-

binatorial auctions instances.

Instances

We generated (mono-objective) CA instances using the CATS generator [78].

This generator is able to generate problems with different distributions that

represent real life type of problems. In our experiments, we use the path

model. We generated instances with 20 and 50 goods, varying the number of

bids from 80 to 200. For each parameter configuration, we generate samples

of size 25. Figure B.1 shows the mean values of the induced width and

bandwidth using the lexicographical, min-fill, MWO and LEX-M variable

orderings.

Finally, we generated decision instances from the previous risk-conscious

auctions. For each instance, we established the values of (P, R) in such a

way that i) the instance admits a solution and ii) a small decrease of either

one renders the problem unsoluble. Consequently, the instances are difficult

with respect to the two constraints.

Encoding

Mono-objective CA instances can be encoded as a minimization WCSP prob-

lems, as follows. Bid i is represented by a variable xi. Then, the set of
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variables X is {x1, . . . , xm} taking domain values over a common domain

Di = {1, 0} (meaning accepted and discarded, respectively). Bid incompati-

bilities can be modeled as 0/∞-functions between variables. If bid i shares

a good with bid j (i.e., Bi ∩ Bj 6= ∅), then there exists a binary function,

cij(xi, xj) =

{

0 xi ∧ xj

∞ otherwise

Finally, we can rephrase the objective of maximizing the bid taker benefit as

to minimize the revenue of discarded bids. Then, the money from bid i can

be modelled as a unary function,

bi(xi) = mi(1 − xi)

The objective function is F1(X ) =
∑

cij +
∑

bi.

The second objective of RCA instances can be encoded as a minimization

WCSP problem, as follows. First, the probability of successful payment si

under an assumption of probabilistic independence can be modeled as a unary

function,

pi(xi) =

{

si xi = 1

1 otherwise

Note that the objective function to be maximized is
∏m

i=1 pi. After a loga-

rithmic transformation, the objective function is additive and it has to be

minimized. Formally, unary functions are,

p′i(xi) =

{

− log si xi = 1

0 otherwise

and the objective function is F2(X ) =
∑m

i=1 p′i. Finally, since both objective

functions of RCA instances can be expressed as WCSP problems, they can

be modeled as MO-WCSP problems as described in Chapter 4. Briefly, the

set of variables X is {x1, . . . , xm}, the set of domain values is Di = {1, 0},
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and the set of multi-objective cost functions is,

cij(xi, xj) =

{

{(0, 0)} xi ∧ xj

{(∞,∞)} otherwise

bi(xi) = {(mi(1 − xi), 0)}

p′i(xi) =

{

{(0,− log si)} xi = 1

{(0, 0)} otherwise

Finally, the decision version of RCA problems can be modeled as a CSP

problem, as follows. The set of variables X and the set of domain values

D are the same as defined before. The set of constraints is composed by

the 0/∞-functions expressed as boolean functions (i.e., valuations 0 and ∞
are rewriten by true and false, respectively), and the following constraints

bounding the maximum accepted values for revenue loss and probability of

payment failure,

F1(X ) < P ′

F2(X ) < − log R

where P ′ =
∑m

i=1 mi − P .

B.2 Scheduling of an Earth Observation Satel-

lite

Description

An earth observation satellite (EOS) orbits the earth while taking pho-

tographs requested by different customers. Each image i has two associated

values: the penalty pi for not taking it, resulting from the aggregation of

several criteria like the client importance, the demand urgency and the me-

teorological forecasts, and the memory si required to store it in the on-board

hard disk. The satellite has three on-board cameras. Each photograph can be
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mono, that is, it can be taken by any one of the three cameras, or stereo, that

is, it must be taken with the two most external cameras (i.e. front and rear

cameras). Moreover, there exists a large number of imperative constraints

such as non overlapping and sufficient transition time between successive

images on the same instrument, limitation of the instantaneous data flow

through the satellite telemetry resulting from simulataneous images on dif-

ferent instruments, etc. A very important constraint is the limitation of the

on-board memory capacity for the images that are not directly down-linked.

Typically, it is impossible to fulfil all the requests. Thus, the problem of

scheduling the satellite consists in selecting the subset of photographs that

the satellite will actually take minimizing the global aggregated penalty of

discarded photographs. Clearly, it is a mono-objective optimization problem.

In the bi-objective version of the previous problem we would like to spent

as less memory as possible. As a consequence, there are two objectives to

optimize. The first one is to minimize the overall penalty of discarded pho-

tographs. The second one is to minimize the overall memory usage.

It it important to note that the on-board memory constraint in the mono-

objective optimization problem is the second objective function in the bi-

objective problem. As a consequence, the original problem can be solved

as bi-objective. The solution of the mono-objective problem is the efficient

solution of the bi-objective version such that the value of the second objective

does not surpass the on-board available memory, and the cost of the first

objective is minimum. Solving the original mono-objective instances as bi-

objective may seem a bad option, since we are only concerned with one

point of the efficient frontier. However, there is a very important structural

property concerning the interaction graph of both formulations, as we will

see in the encoding subsection.

Finally, there is a decision version of the above problem in which two con-

stants (S, P ) are given: the available on-board memory S, and the maximum

acceptable aggregated penalty is P . Below those thresholds, we do not care

whether one subset of photographs has a lesser penalty valuation nor a lesser
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Inst. # # of photographs # of constraints w∗

54 67 204 11

29 82 380 14

42 190 1204 26

28 230 4996 79

5 309 5312 39

404 100 610 19

408 200 2032 36

412 300 4048 36

414 364 9744 82

503 143 492 9

505 240 2002 22

507 311 5421 55

509 348 8276 86

1401 488 10476 93

1403 665 12952 93

1405 855 17404 93

1407 1057 20730 93

1502 209 203 5

1504 605 3583 20

1506 940 14301 67

Table B.2: Instances from the SPOT5 benchmark.

memory usage than another. The problem consists in finding a subset of

photographs accomplishing these two constraints (as well as the imperative

ones previously described).

Instances

We experiment on instances from the SPOT5 benchmark [12], which involves

20 instances (see Table B.2). These instances have been selected from 498

instances which have been built by a CNES (Centre National d’Études Spa-
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tiales) simulator of the SPOT5 order book.

SPOT5 instances can be divided into single and multiple orbit. Single

orbit instances, whose identification number is less than 1000, do not have

any limitation to the on-board memory capacity. The others, whose identi-

fication number is greater than 1000, include the on-board memory capacity

constraint. In all instances, the available memory is 200.

Instances 404, 408, 412, 414, 503, 505, 507, and 509 have been created

from the same instance: the instance 414, which is the largest of all the

instances without capacity constraint. To create the instances 404, 408 and

412 some images have been randomly removed. To create the instances 503,

505, 507, and 509 some images have been removed in order to limit the

number of conflicts. Instances 54, 29, 42, 28, and 5 result from a selection

among the previous ones.

Similarly, instances 1401, 1403, 1405, 1407, 1502, 1504, and 1506 have

been created from the same instance: the instance 1407, which is the largest

of all the instances with a recording capacity constraint. To create the in-

stances 1401, 1403, and 1405 some images have been randomly removed. To

create the instances 1502, 1504, and 1506 some images have been removed

in order to limit the number of conflicts.

Single-orbit instances have been solved to optimality by a number of com-

plete methods [13]. However, multiple-orbit instances are very challenging

and remain unsolved (the only exception is instance 1502 where the capacity

constraint is irrelevant because it can be trivially satisfied).

Since multiple-orbit instances are so hard to solve, in some experiments,

we break those instances into subinstances (see Table B.3). Will refer to sub-

problems with the following notation: X(i, j) denotes instance X restricted

to the subset of consecutive variables i . . . j. When a subproblem coincides

with a connected component of the overall problem (in the multi-objective

sense as described in the next section), we will indicate it as X(i, j)∗. It is

important to recall that all the multiple orbit instances have been derived

from the largest instance 1407. As a result, it turns out that the same sub-
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Inst. # # of photos # of constr. w∗ b∗

lex min-fill MWO LEX-M

1504(0,183)∗ 184 1329 18 46 180 54 58

1504(184,206)∗ 23 112 7 8 19 8 7

1504(356,461)∗ 106 840 18 29 93 67 81

1504(462,508)∗ 47 301 10 21 30 20 13

1506(0,150) 151 1440 31 77 92 78 100

1506(151,228) 78 1107 24 71 43 69 34

1506(229,317) 89 1349 34 69 74 72 57

1506(679,761)∗ 83 1243 28 30 29 30 30

1405(762,854)∗ 93 2193 34 49 48 49 44

1407(0,147) 148 1442 29 79 85 80 97

1407(148,247) 100 1678 31 80 57 80 44

1407(248,378) 131 3063 52 103 116 112 83

1407(379,409)∗ 31 220 11 12 23 12 11

1407(413,429)∗ 17 87 8 9 15 9 8

1407(447,469)∗ 23 129 9 10 21 10 9

1407(494,553)∗ 60 1333 32 46 56 51 40

1407(580,700) 121 2299 44 86 116 86 93

1407(701,761) 61 445 13 28 60 30 42

1407(762,878)∗ 117 2708 34 49 48 49 47

Table B.3: Subinstances from the SPOT5 benchmark.

problem may have different names with our notation. When this is the case,

we will name it as the subproblem coming from instance 1407.

Encoding

In one possible formulation of the mono-objective problem there is one vari-

able for each photograph x1, . . . , xn, and the domains of the variables are the

values corresponding to the different alternatives for xi:

- For mono photographs the domain is {0, 1, 2, 3}.
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- For stereo photographs the domain is {0, 1}.

In both cases, domain value 0 indicates that the corresponding photograph is

not taken. The other domain values correspond to the different alternatives

to take the photograph.

Imperative constraints involve two and three photographs. They are en-

coded as binary and ternary 0/∞–functions cij(xi, xj) and cijk(xi, xj , xk),

respectively. Moreover, there is a unary function fi(xi) for each variable xi

capturing the penalty pi for not taking photograph i,

fi(xi) =

{

pi xi = 0

0 otherwise

Finally, the on-board memory capacity constraint is encoded as,

CC(X ) =

{

0
∑n

i=1 wi(xi) < 201

∞ otherwise

where

wi(xi) =

{

0 xi = 0

si otherwise

The objective function is F (X ) =
∑

fi+
∑

cij +
∑

cijk+CC. It is important

to note that the capacity constraint involves all variables in the problem

(i.e., it is an n–ary function). The interaction graph of this formulation is a

clique. Namely, its induced width is the number of variables n. The main

consequence is that the problem must be solved as a whole, and cannot be

broken into independent parts.

The first objective function of the bi-objective version is the same as

in the mono-objective case disregarding the capacity constraint. Namely,

F1(X ) =
∑

fi +
∑

cij +
∑

cijk. The second objective function is the capacity

constraint. It can be encoded as a minimization WCSP problem, where the

objective function is F2(X ) =
∑n

i=1 wi. As we have seen in Chapter 4, this

bi-objective optimization problem can be encoded as a MO-WCSP problem

(X ,D,F). The set of variables X and the set of domain values D is the same
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as in the mono-objective case. The set of multi-objective cost functions F is

composed by the previous unary, binary and ternary functions expressed as

bi-objective cost functions. The set of unary bi-objective cost functions is,

∀ 1 ≤ i ≤ n, f ′
i(xi) =

{

{(pi, 0)} xi = 0

{(0, 0)} otherwise

∀ 1 ≤ i ≤ n, w′
i(xi) =

{

{(0, 0)} xi = 0

{(0, si)} otherwise

Note that the first and second set refer to the penalty paid when photo-

graph i is not selected and to the storage memory spent when photograph i

is selected, respectively. It is important to note that, with this formulation,

multi-objective cost functions are at most ternary functions. The first con-

sequence is that its induced width w∗ can be smaller than n. The second

consequence is that its interaction graph can be made of several independent

parts. If that is the case, each part can be solved independently. The efficient

frontier of the overall problem is the combination of the efficient frontier of

each independent part.

Finally, the decision version of the problem can be modeled as a CSP

problem (X ,D, C), where X and D are the same as in the mono-objective

case. The set of constraints C is composed by the binary and ternary cost

functions expressed as boolean functions. The bound over the maximum

acceptable aggregated penalty P and on-board memory capacity S is encoded

as the following constraints,

F1(X ) < P

F2(X ) < S
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B.3 Max-SAT-ONE

Description

Consider a set of boolean variables {x1, . . . , xn} and the usual boolean oper-

ators ∧, ∨ and ¬. A literal is either a variable (e.g., xi) or its negation (e.g.,

¬xi). A clause C = l1 ∨ . . . ∨ lk is a disjunction of literals. A formula in

conjunctive normal form is a conjunction of a number of clauses. A sample

formula in conjunction normal form would be

(x1 ∨ x2 ∨ ¬x4) ∧ (x2) ∧ (x2 ∨ ¬x3)

Given a set of clauses C1, C2, . . . , Cm on the variables x1, x2, . . . , xn, the

satisfiability problem (SAT) is to determine if the formula

C1 ∧ C2 ∧ . . . ∧ Cm

is satisfiable. Namely, if there is an assignment of values to the variables so

that the above formula evaluates to true. This problem is NP-complete [26].

When the formula is satisfiable, we can consider an optimization problem

where the goal is to maximize the variables assigned to true. The Max-ONE

problem [95] is to find an assignment to the variables so as to have all clauses

Cj satisfied and the maximum number of variables is assigned to true.

Sometimes, when the formula cannot be satisfied, we are interested in the

assignment that satisfies the maximum number of clauses. The maximum

satisfiability problem (Max-SAT) [108] is to find an assignment of values to

the variables so as to have the maximum number of Cj evaluating to true.

In our experiments we consider the simultaneous optimization of the num-

ber of satisfied clauses and the number of variables assigned to true. We call

this problem Max-SAT-ONE problem.

Instances

We experiment with the well-known dimacs SAT instances [70] from the

Second DIMACS Challenge. With current SAT solvers, these instances are
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solved almost instantly for the SAT problem. However, they remain quite

challenging for the Max-SAT-ONE problem.

File Vars Clauses Sat? w∗ b∗

lex min-fill MWO LEX-M

aim-50-1 6-no-1 50 80 No 15 49 45 45 35

aim-50-1 6-no-2 50 80 No 20 45 36 45 33

aim-50-1 6-no-3 50 80 No 19 45 37 49 28

aim-50-1 6-no-4 50 80 No 20 48 47 49 37

aim-50-1 6-yes1-1 50 80 Yes 18 49 47 46 32

aim-50-1 6-yes1-2 50 80 Yes 16 49 48 41 35

aim-50-1 6-yes1-3 50 80 Yes 19 48 45 47 32

aim-50-1 6-yes1-4 50 80 Yes 19 49 46 47 34

aim-50-2 0-no-1 50 100 No 26 47 45 48 38

aim-50-2 0-no-2 50 100 No 26 47 45 45 32

aim-50-2 0-no-3 50 100 No 26 46 43 45 40

aim-50-2 0-no-4 50 100 No 23 48 44 45 36

aim-50-2 0-yes1-1 50 100 Yes 25 48 47 49 38

aim-50-2 0-yes1-2 50 100 Yes 23 43 46 46 44

aim-50-2 0-yes1-3 50 100 Yes 23 46 47 46 45

aim-50-2 0-yes1-4 50 100 Yes 21 45 44 45 29

aim-50-3 4-yes1-1 50 170 Yes 32 48 47 48 42

aim-50-3 4-yes1-2 50 170 Yes 31 49 47 48 42

aim-50-3 4-yes1-3 50 170 Yes 31 49 48 49 39

aim-50-3 4-yes1-4 50 170 Yes 31 48 47 47 42

aim-50-6 0-yes1-1 50 300 Yes 37 49 44 49 39

aim-50-6 0-yes1-2 50 300 Yes 37 47 47 49 44

aim-50-6 0-yes1-3 50 300 Yes 37 48 48 48 43

aim-50-6 0-yes1-4 50 300 Yes 36 47 49 47 42

aim-100-1 6-no-1 100 160 No 40 98 83 98 84

aim-100-1 6-no-2 100 160 No 39 94 91 96 96

aim-100-1 6-no-3 100 160 No 40 96 93 97 71

aim-100-1 6-no-4 100 160 No 40 96 94 93 85

Continued on Next Page. . .
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File Vars Clauses Sat? w∗ b∗

lex min-fill MWO LEX-M

aim-100-1 6-yes1-1 100 160 Yes 36 95 97 94 90

aim-100-1 6-yes1-2 100 160 Yes 37 99 92 91 65

aim-100-1 6-yes1-3 100 160 Yes 36 98 88 91 88

aim-100-1 6-yes1-4 100 160 Yes 36 95 92 90 73

aim-100-2 0-no-1 100 200 No 52 97 92 98 89

aim-100-2 0-no-2 100 200 No 52 98 92 99 82

aim-100-2 0-no-3 100 200 No 50 95 95 96 70

aim-100-2 0-no-4 100 200 No 51 98 97 95 85

aim-100-2 0-yes1-1 100 200 Yes 45 96 99 95 76

aim-100-2 0-yes1-2 100 200 Yes 42 95 94 93 83

aim-100-2 0-yes1-3 100 200 Yes 47 96 92 92 77

aim-100-2 0-yes1-4 100 200 Yes 44 98 98 97 60

aim-100-3 4-yes1-1 100 340 Yes 62 95 91 92 78

aim-100-3 4-yes1-2 100 340 Yes 61 99 97 98 75

aim-100-3 4-yes1-3 100 340 Yes 64 95 98 98 79

aim-100-3 4-yes1-4 100 340 Yes 64 98 96 95 82

aim-100-6 0-yes1-1 100 600 Yes 72 97 95 99 84

aim-100-6 0-yes1-2 100 600 Yes 73 98 98 97 93

aim-100-6 0-yes1-3 100 600 Yes 76 98 97 98 90

aim-100-6 0-yes1-4 100 600 Yes 72 99 98 98 89

aim-200-1 6-no-1 200 320 No 90 194 192 197 156

aim-200-1 6-no-2 200 320 No 84 186 186 195 174

aim-200-1 6-no-3 200 320 No 82 198 189 197 190

aim-200-1 6-no-4 200 320 No 85 194 190 193 171

aim-200-1 6-yes1-1 200 320 Yes 72 197 193 187 158

aim-200-1 6-yes1-2 200 320 Yes 68 198 185 195 146

aim-200-1 6-yes1-3 200 320 Yes 68 194 195 188 153

aim-200-1 6-yes1-4 200 320 Yes 74 197 195 196 151

aim-200-2 0-no-1 200 400 No 97 195 194 192 173

aim-200-2 0-no-2 200 400 No 103 193 187 192 184

aim-200-2 0-no-3 200 400 No 103 194 197 190 179

Continued on Next Page. . .
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File Vars Clauses Sat? w∗ b∗

lex min-fill MWO LEX-M

aim-200-2 0-no-4 200 400 No 104 197 197 198 164

aim-200-2 0-yes1-1 200 400 Yes 91 198 194 190 163

aim-200-2 0-yes1-2 200 400 Yes 93 197 191 197 134

aim-200-2 0-yes1-3 200 400 Yes 92 194 195 191 134

aim-200-2 0-yes1-4 200 400 Yes 92 198 195 194 173

aim-200-3 4-yes1-1 200 680 Yes 129 193 191 195 170

aim-200-3 4-yes1-2 200 680 Yes 125 194 196 189 161

aim-200-3 4-yes1-3 200 680 Yes 131 196 191 196 156

aim-200-3 4-yes1-4 200 680 Yes 127 199 193 199 159

aim-200-6 0-yes1-1 200 1200 Yes 155 197 194 195 189

aim-200-6 0-yes1-2 200 1200 Yes 155 197 194 196 172

aim-200-6 0-yes1-3 200 1200 Yes 155 198 194 196 178

aim-200-6 0-yes1-4 200 1200 Yes 153 198 198 192 178

dubois100 300 800 No 3 201 3 200 4

dubois20 60 160 No 3 41 3 40 4

dubois21 63 168 No 3 43 3 42 4

dubois22 66 176 No 3 45 3 44 4

dubois23 69 184 No 3 47 3 46 4

dubois24 72 192 No 3 49 3 48 4

dubois25 75 200 No 3 51 3 50 4

dubois26 78 208 No 3 53 3 52 4

dubois27 81 216 No 3 55 3 54 4

dubois28 84 224 No 3 57 3 56 4

dubois29 87 232 No 3 59 3 58 4

dubois30 90 240 No 3 61 3 60 4

dubois50 150 400 No 3 101 3 100 4

pret150 25 150 400 No 4 138 133 138 83

pret150 40 150 400 No 4 138 133 138 83

pret150 60 150 400 No 4 138 133 138 83

pret150 75 150 400 No 4 138 133 138 83

pret60 25 60 160 No 4 56 54 56 11

Continued on Next Page. . .
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File Vars Clauses Sat? w∗ b∗

lex min-fill MWO LEX-M

pret60 40 60 160 No 4 56 54 56 11

pret60 60 60 160 No 4 56 54 56 11

pret60 75 60 160 No 4 56 54 56 11

ssa0432-003 435 1027 No 18 405 411 405 359

ssa2670-130 1359 3321 24 1275 1244 1275 1241

ssa2670-141 986 2315 No 21 951 870 951 804

ssa7552-038 1501 3575 29 1442 1474 1442 1178

ssa7552-158 1363 3034 Yes 11 1311 1352 1311 1034

ssa7552-159 1363 3032 Yes 11 1311 1352 1311 1034

ssa7552-160 1391 3126 Yes 14 1336 1332 1336 1068

hole6 42 133 No 26 36 40 36 36

hole7 56 204 No 35 49 53 49 49

hole8 72 297 No 45 64 67 64 64

hole9 90 415 No 57 81 83 81 81

hole10 110 561 No 71 100 103 100 100

jnh1 100 850 Yes 94 99 97 99 98

jnh2 100 850 No 94 99 95 99 97

jnh3 100 850 No 94 99 96 99 97

jnh4 100 850 No 92 99 98 98 97

jnh5 100 850 No 93 99 94 99 95

jnh6 100 850 No 93 99 93 98 98

jnh7 100 850 Yes 94 99 96 99 96

jnh8 100 850 No 93 99 96 99 97

jnh9 100 850 No 93 99 98 98 97

jnh10 100 850 No 94 99 96 99 96

jnh11 100 850 No 93 99 95 99 96

jnh12 100 850 Yes 93 99 99 99 96

jnh13 100 850 No 93 99 96 98 95

jnh14 100 850 No 99 97 99 98

jnh15 100 850 No 93 99 96 99 95

jnh16 100 850 No 93 99 97 99 96

Continued on Next Page. . .
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File Vars Clauses Sat? w∗ b∗

lex min-fill MWO LEX-M

jnh17 100 850 Yes 94 99 97 98 96

jnh18 100 850 No 94 99 96 99 96

jnh19 100 850 No 93 99 98 99 96

jnh20 100 850 No 93 99 94 99 97

jnh201 100 800 Yes 94 99 95 99 96

jnh202 100 800 No 93 99 93 98 96

jnh203 100 800 No 92 99 98 99 96

jnh204 100 800 Yes 93 99 98 98 96

jnh205 100 800 Yes 92 99 97 97 95

jnh206 100 800 No 93 99 99 99 96

jnh207 100 800 Yes 93 99 97 99 95

jnh208 100 800 No 93 99 98 99 96

jnh209 100 800 Yes 93 99 98 99 96

jnh210 100 800 Yes 93 99 95 98 96

jnh211 100 800 No 92 99 97 98 96

jnh212 100 800 Yes 92 99 95 99 99

jnh213 100 800 Yes 94 98 96 97 97

jnh214 100 800 No 92 99 93 99 96

jnh215 100 800 No 93 99 99 99 97

jnh216 100 800 No 92 99 96 99 96

jnh217 100 800 Yes 92 99 98 98 96

jnh218 100 800 Yes 93 99 95 99 96

jnh219 100 800 No 93 99 97 99 95

jnh220 100 800 Yes 92 99 95 99 97

jnh301 100 900 Yes 94 99 96 99 97

jnh302 100 900 No 94 99 96 99 95

jnh303 100 900 No 93 99 96 99 97

jnh304 100 900 No 94 99 94 98 98

jnh305 100 900 No 94 99 99 99 96

jnh306 100 900 No 93 99 94 99 98

jnh307 100 900 No 94 99 98 98 97

Continued on Next Page. . .
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File Vars Clauses Sat? w∗ b∗

lex min-fill MWO LEX-M

jnh308 100 900 No 94 99 98 98 96

jnh309 100 900 No 93 99 96 98 97

jnh310 100 900 No 94 99 96 97 97

Table B.4: Dimacs sat benchmark.

Details on the instances are given in Table B.4. The first letters of the

name of the instances identify its source, that is, the type of problem encoded

and its generator. In the following, we outline these sources:

SSA (from Allen Van Gelder and Yumi Tsuji) Instances from circuit fault

analysis: checking for circuit “single–stuck–at” fault. The instances

are selected formulas from those generated by Nemesis, a test-pattern

generation program described in [45, 85].

Dub (from Olivier Dubois) Instances randomly generated. The generator of

the instances (gensathard.c) is available at the DIMACS ftp-site3. All

the instances are unsatisfiable.

Pret (from Daniele Pretolani) An encoding of two–coloring a graph, along

with a parity constraint to force unsatisfiablity. The generator (trisat.c)

is publicly available4.

JNH (from John Hooker) Random instances generated in the following way:

For an instance with n variables and k clauses, clauses are generated

by including a variable with a fixed probability p, and then negating

the variable with probability 0.5. Formulas generated in this way may

contain empty clauses or unit clauses. Hence, empty clauses and unit

clauses are rejected in the generation process. The resulting problem

distribution is called Random P-SAT in [132].

3ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC/instances
4ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/pretolani
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Hole (from John Hooker) Instance of the pigeon hole problem. The Pigeon

Hole problem asks whether it is possible to place n+1 pigeons in n holes

without two pigeons being in the same hole.

AIM (from Eiji Miyano) Artificially generated 3–sat instances. All the “yes”

instances have exactly one satisfying assignment. The generators are

descibed in [5] and are publicly available5.

Encoding

We used the following encoding of Max-SAT-ONE instances to MO-WCSP.

First, it is important to recall that we are considering the minimization of

both objective functions. Then, given a formula C1 ∧ . . . ∧ Cm in conjunc-

tive normal form with n variables x1, . . . , xn, the corresponding MO-WCSP

problem (X ,D,F) is as follows. There is a variable in X for each variable

in the formula and its domain values are true and false. For each clause

Cj, we have a multi-objective cost function that penalize the assignments of

variables in Cj that do not satisfy it. Formally,

∀ 1 ≤ j ≤ m, cj(var(Cj)) =

{

{(1, 0)} ¬Cj

{(0, 0)} otherwise

where var(Cj) is the set of variables (either negated or not) that appear in

the clause Cj. Moreover, there is a set of unary multi-objective cost functions

that penalize the false assignment to any variable. Formally,

∀ 1 ≤ i ≤ n, pi(xi) =

{

{(0, 1)} ¬xi

{(0, 0)} otherwise

Note that functions cj refer to the first objective function while functions pi

refer to the second objective function.

5ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/iwama/
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B.4 Biobjective Weighted Minimim Vertex

Cover

Description

Consider a graph G = (V, E) where V is the set of vertexs and E is the set

of edges. A vertex cover (or hitting set) is a subset S of vertices such that

each edge of G has at least one of its endpoints in S. Formally,

S ⊆ V such that ∀(u, v) ∈ E, either u ∈ S or v ∈ S

The minimum vertex cover problem is to find a vertex cover with the smallest

number of vertices. This problem is NP-complete [73].

Consider that each vertex u ∈ V has an associated weight w(u). Then,

the weighted minimum vertex cover problem is to find a vertex cover with

minimum aggregated weight.

The problem considered in our experiments is a bi-objective extension

of the previous weighted problem. Each vertex u ∈ V has two associated

weights w1(u) and w2(u). The bi-objective weighted minimum vertex cover

problem is to find the vertex cover minimizing at the same time the aggre-

gated weight w1 and w2.

Instances

We generated instances for the bi-objective weighted minimum vertex cover

as follows. First, we generated random graphs with N vertexs and E edges.

Then, for each vertex, two costs are randomly generated from the interval

[0 . . . C]. It is important to note that the values of N , E and C determine

different classes of instances. For each parameter configuration (N, E, C) we

generated samples of size 25.

We experiments on samples of the following classes of problems

({60, 70, 80, 90}, {100, 250, 500, 950}, 5)

See Figure B.5 for details on these instances.
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V E w∗ b∗

lex min-fill MWO LEX-M

60 9.5 55.2 51.9 53.8 45.6

70 100 8.5 64.4 60.2 61.8 54.3

80 7.3 72.5 72.0 69.4 57.5

90 6.1 79.6 80.8 78.5 68.8

60 27.0 56.9 54.8 56.4 47.3

70 250 26.9 66.3 63.1 65.3 58.2

80 27.3 75.8 72.7 73.9 66.2

90 29.2 84.6 80.0 83.5 73.3

60 39.9 57.6 56.0 57.3 49.8

70 500 41.3 67.6 65.9 66.3 58.9

80 45.6 76.7 75.0 76.0 66.6

90 47.0 87.1 84.8 85.2 73.9

60 48.3 58.3 57.0 58.3 53.4

70 950 53.7 68.0 67.1 68.0 61.8

80 57.7 77.5 76.2 77.3 69.1

90 63.2 87.3 86.5 86.7 78.0

Table B.5: Mean value of the induced width and bandwidth for different

variable orderings of the bi-objective weighted vertex cover on 25 instances.

Encoding

A biobjective minimum vertex cover can be expressed as a MO-WCSP (X ,D,F),

as follows. Given a graph G = (V, E), where V = {v1, . . . , vn}, there is a

variable xi for each vertex vi (i.e., X = {x1, . . . , xn}). The domains of the

variables are the values 1 and 0:

- domain value 1 represents that vertex xi is contained in the vertex

cover; and

- domain value 0 represents that vertex xi is not part of the vertex cover.
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The subset of variables assigned to domain value 1 must be a vertex cover.

This condition can be expressed as a set of binary constraints,

∀(vi, vj) ∈ E, cij(xi, xj) = xi ∨ xj

Since we are in a multi-objective context, these constraints are expressed as

multi-objective cost functions,

∀(vi, vj) ∈ E, cij(xi, xj) =

{

{(0, 0)} xi ∨ xj

{(∞,∞)} otherwise

Finally, the costs w1(vi) and w2(vi) associated to each vertex vi can be ex-

pressed as a set of unary multi-objective cost functions,

∀ vi ∈ V, fi(xi) =

{

{(w1(vi), w2(vi))} xi = 1

{(0, 0)} xi = 0

Note that fi specifies that it is preferred not to add vertex xi to the vertex

covering.

B.5 Maxclique

Description

Consider a graph G = (V, E) where V is the set of vertexs and E is the set

of edges. A clique is a subset C ⊆ V such that each pair of vertices in S is

connected by an edge in E. Formally,

C ⊆ V such that ∀u, v ∈ C (u, v) ∈ E

The maximum clique problem is to find a clique with the largest number of

vertices in a given graph. This problem is NP-complete [73].

As noted in [44], finding the maximum clique of a graph G = (V, E) is

equivalent to finding a minimum vertex cover of the complementary graph

G. Given a graph G = (V, E), its complementary graph is denoted by G =
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(V, E). It is constructed with the same set of vertices V and (vi, vj) ∈ E iff

(vi, vj) 6∈ E. Hence, we can solve a maxclique problem as a minimum vertex

cover problem over the complementary graph. Observe that the maximum

size of the maximum clique is equivalent to |V −S|, where S is the minimum

vertex cover.

Instances

We considered instances from the Second DIMACS Challenge [70]. This

benchmark is only used in Appendix A.2. Figures A.10 and A.11 report the

important features of these instances. Each instance comes from a source.

Each source is based in a particular problem. It is easy to identify from the

name of each instance its source. We outline these problems in the following:

CFat (from Panos Pardalos) Problems based on fault diagnosis problems.

Joh (from Panos Pardalos) Problems based on problems in coding theory. A

Johnson graph with parameters n, w, and d has a node for every binary

vector of length n with exactly w 1‘s. Two vertices are adjacent if and

only if their hamming distance is at least d. A clique then represents a

feasible set of vectors for a code.

Kel (from Peter Shor). Problems based on Keller‘s conjecture on tiling

using hypercubes.

Ham (from Panos Pardalos). Another coding theory problem. A Hamming

graph with parameters n and d has a node for each binary vector of

length n. Two nodes are adjacent if and only if the corresponding bit

vectors are hamming distance at least d apart.

San (from Lausa Sanchis) Instances based on her “Test Case Construction

for Vertex Cover Problem”, DIMACS workshop on Computational Sup-

port for Discrete Mathematics, March 1992. The generator generates

instances with known clique size.
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Bro (from Patrick Soriano and Michel Gendreau) Random problems gen-

erated with the p hat generator [55] wich is a generalization of the

classical uniform random graph generator. It uses 3 parameters: n,

the number of nodes, and a and b, two density parameters verifying

0 ≤ a ≤ b ≤ 1.

Stein (from Carlo Mannino) Clique formulation of the set covering formula-

tion of the Steiner Triple Problem [77]. Created using Mannino‘s code

to convert set covering problems to clique problems.

Encoding

As we have seen, a maxlique problem can be translated into a minimum ver-

tex cover problem over the complimentary graph. Following this equivalence,

we encode a maxclique problem as a WCSP (X ,D,F) as follows.

Given a graph G = (V, E) (with |V | = n) there is a variable for each

vertex {x1, . . . , xn}. The domains of the variables are the values 1 and 0:

- domain value 1 represents that vertex xi is not part of the clique (and

it is part of the vertex cover); and

- domain value 0 represents that vertex xi is contained in the clique (and

it is not contained in the vertex cover).

Then, the condition impossed for the variables taking domain value 1 to be

a vertex cover is,

∀(vi, vj) 6∈ E, cij(xi, xj) = xi ∨ xj

Note that when a variable xi takes domain value 0 the only variables allowed

to take domain value 0 are the ones representing a vertex connected with vi

(i.e., the ones that can be part of a clique in G). Finally, there is a set of

unary cost functions in order to specify that is preferred not to add vertexs to

the vertex cover (conversally, that is preferred to add vertexs to the clique),

∀ vi ∈ E, fi(xi) = xi
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B.6 Most Probable Explanation

Description

As we have seen in Section 2.3, belief networks are a well-known graphical

model that allows us to reason with probabilities. One important reason-

ing task posed on a belief network is the most probable explanation (MPE),

where the objective is to find the assignment with maximum probability

distribution.

Instances

In our experiments, we generated instances for the MPE on two types of

belief networks: uniform random and noisy-OR networks [74].

Both networks are generated using parameters (N, K, C, P ), where N is

the number of variables, K is their domain size, C is the number of con-

ditional probability tables (CPT), and P is the number of parents in each

CPT. Instances are generated by selecting C variables at random. For each

selected variable xi, P parents are randomly selected from the set of variables

with index less than i (if i ≤ P only i − 1 parents are selected). For each

parameter setting we generate a sample of 20 instances.

For random bayesian networks, each CPT is randomly generated using a

uniform distribution. For noisy-OR networks, each CPT represents a noisy

OR-function. For each CPT, we randomly assign to each parent variable yj

a value Pj ∈ [0 . . . Pnoise]. The CPT is then defined as, P (x = 0|y1, . . . , yP ) =
∏

yj=1 Pj and P (x = 1|y1, . . . , yP ) = 1 − P (x = 0|y1, . . . , yP ).

Figure B.2 shows the important details of the instances generated.

Encoding

It is easy to see that the MPE problem can be expressed as a WCSP problem

by replacing probability tables by their logarithm. Given a MPE problem

(X ,D,F) where the objective function is to maximize
∏

f∈F f , its equivalent
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N, C, P w∗

Uniform Random Bayesian Networks

128, 85, 4 31.71

128, 95, 4 43.96

128, 105, 4 38.71

128, 115, 4 48.32

Noisy-OR Pnoise = 0.40

128, 85, 4 35.39

128, 95, 4 38.61

128, 105, 4 43.06

128, 115, 4 46.51

Noisy-OR Pnoise = 0.50

128, 85, 4 40.74

128, 95, 4 38.12

128, 105, 4 43.04

128, 115, 4 46.25

Figure B.2: Most Probable Explanation benchmark. 20 samples.

WCSP problem is (X ,D,F ′) where F ′ is defined as,

∀ f ∈ F , ∀ t such that var(t) = var(f), f ′(t) = − log f(t)

The objective function is to minimize
∑

f ′∈F ′ f ′.

B.7 Frequency Assignment

Description

Consider a radio communication network, defined by a set of radio links.

When radio communication links are assigned the same or closely related

frequencies, there is a potential for interference. The radio link frequency

assingment problem (RLFAP) is to assign, from limited spectral resources, a
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frequency to each of these links in such a way that all the links may operate

together without noticeable interference. Moreover, the assignment has to

comply to certain regulations and physical constraints of the transmitters.

Once there exists an assignment accomplishing the regulations and phys-

ical constraints, we may want to make good use of the available spectrum,

trying to save the spectral resources for a later extension of the network.

Then, several optimization problems arise. For example, minimizing the

largest frequency used in the assignments (called minimum span), minimiz-

ing the number of different frequencies used (called minimum cardinality),

or minimizing the sum of all interference costs (called maximum feasibility).

We focus in the maximum feasibility RLFAP problem.

Initially, frequency assignment problems were proposed by the French

Center d‘Electronique de l‘Armament (CELAR) in the framework of the Eu-

ropean EUCLID project CALMA (Combinatorial Algorithms for Military

Applications). Within this project, several techniques, mainly from Oper-

ations Research, have been applied to frequency assignment problems (see

[140] for a detailed description). These techniques include branch and cut,

constraint satisfaction, local search, genetic algorithms, or potential reduc-

tion. Most of these techniques proved to be efficient for minimum span and

minimum cardinality problems, but not for maximum feasibility ones. In the

CSP/CLP community, these instances have been used for assessing the per-

formance of arc-consistency enforcing algorithms, for satisfaction algorithms

or for the computation of lower bounds in constraint optimization problems

(as it is also our case).

Instances

There are two types of RLFAP instances called CELAR and GRAPH in-

stances. The first ones were proposed as a simplified versions of a real-world

instance comming from the telecommunication industry. The latters were

generated with the GRAPH generator (Generating Radio link frequency As-

signment Technology Heuristically, [14]) during the CALMA project. We
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Inst. # # of var. # of. constr. w∗

05 200 1134 135

06 400 2170 296

07 400 2170 146

11 680 3757 495

12 680 4017 234

13 916 5273 706

Table B.6: Maximum feasibility GRAPH instances.

experiment on GRAPH instances. Table B.6 summarize its main properties

of the maximum feasibility instances. The first column indicates the instance

number. The second and third columns indicate the number of variables and

the number of constraints, respectively. The last column shows the induced

width given by the min-fill order.

These instances were also proposed in the CSP community as a bench-

mark [23]. The reason is that they can be described in terms of graphical

models as a CSP, probabilistic and WCSP problems. In particular, maximum

feasibility is a WCSP problem, where all the constraints are binary and the

domain values are discrete and finite, as we will see in the following.

Encoding

The maximum feasibility RLFAP problem can be modeled as a WCSP prob-

lem. Each radio link is represented by a variable. For each link i, a frequency

fi has to be chosen from a finite set Di of frequencies available for the trans-

mitter. There are binary constraints between two links i and j that imposses

a minimum distance between the frequencies fi and fj assigned to variables

xi and xj , respectively. If that distance is not maintained, then there exists

an interference cost ci. These requirements are modelled as,
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cij(xi, xj) =

{

0 |fi − fj| > dij

pi otherwise

where dij is the minimum distance which must separate two frequencies and

pi is the cost for violating the distance constraint. Similarly, there is a tech-

nologic binary constraint which imposses a distance of 238 for duplex fre-

quences.




