28,120 research outputs found

    Volatile fatty acids production from fermentation of secondary sewage sludge : a thesis presented in partial fulfillment of the requirements for the degree of Master of Engineering in Environmental Engineering

    Get PDF
    Sludge fermentation is used worldwide as an economical means to produce volatile fatty acids (VFA), which can be used as readily available carbon in biological nutrient removal (BNR) systems. In this research, secondary sludge was tested for its potential to generate VFA. Fermentation of secondary sludge was carried out in a lab-scale sequencing batch reactor (SBR). The SBR was fed with secondary sludge of 1% total solids and run with hydraulic retention time (HRT) of 48 hours and 28 hours in phase 1 (40 days) and phase 2 (12 days) respectively. The SBR produced net VFA (expressed as acetic acid) of 365 ±62.5 mg VFA HAC /I which was equivalent to a VFA yield of 0.28 ±0.05 mg VFA HAC /mg VSS feed during phase 1. A change in operating HRT from 48 hours to 28 hours led to a reduction in solids retention time (SRT) from 2.65 days to 2 days in phase 2. The reduction in SRT during phase 2 led to poor hydrolysis and hence could not support the fermentation. Net VFA generation decreased during phase 2 and reached 0 mg/I. Acetic acid was the main acid produced comprising 45% of total VFA content during the run with 48 hours HRT. The effect of total solids (TS) concentration on secondary sludge fermentation was tested using batch experiments. The batch with 2.8% TS secondary sludge showed a maximum net VFA production of 60 mg VFA HAC /I, which appeared to be superior to the 1% TS secondary sludge batch fermentation where no net VFA production observed throughout the test period. Primary sludge (3% TS) exhibited 1200 mg VFA HAC /I in a batch fermentation, which was superior to the net VFA produced during secondary sludge (2.8% TS) batch fermentation. The effects of sonication on fermentability of primary and secondary sludges were tested. A sonic power application of 0.0017 Watt/ml/min density increased soluble content of primary and secondary sludges. In batch fermentations, sonicated secondary sludge improved fermentation over unsonicated secondary sludge. A maximum net VFA production of 130 mg VFA HAC /I was observed in the secondary sludge batch fermentation. In this research work, an investigation into inhibiting VFA degradation in secondary sludge batch fermentations was also carried out. The effects of a methanogenic bacteria inhibitor (bromoethane sulfonic acid) and low pH (range of 4.02-6.07) were considered. The addition of 1 mM bromoethane sulfonic acid (BES) in secondary sludge (1% TS) batch fermentation successfully inhibited VFA degradation. pH values as low as 4.02 showed an inhibitory effect on secondary sludge (1% TS) batch fermentation which led to poor hydrolysis and hence no net VFA generated during the test period. However, low pH values reduced the VFA degradation rate in the batch fermentations. Secondary sludge used in the present research showed the potential to generate VFA. The amount of VFA produced in the present work showed the potential to improve the performance of a BNR system. Moreover, in batch fermentations, VFA generation was improved using various pre-treatments like sonication and BES addition

    Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows

    Get PDF
    Volatile fatty acids (VFA), produced in the rumen by microbial fermentation, are the main energy source for ruminants. The VFA profile, particularly the nonglucogenic (acetate, Ac; butyrate, Bu) to glucogenic (propionate, Pr) VFA ratio (NGR), is associated with effects on methane production, milk composition, and energy balance. The aim of this study was to evaluate extant rumen VFA stoichiometry models for their ability to predict in vivo VFA molar proportions. The models were evaluated using an independent data set consisting of 101 treatments from 24 peer-reviewed publications with lactating Holstein cows. All publications contained a full diet description, rumen pH, and rumen VFA molar proportions. Stoichiometric models were evaluated based on root mean squared prediction error (RMSPE) and concordance correlation coefficient (CCC) analysis. Of all models evaluated, the 1998 Friggens model had the lowest RMSPE for Ac and Bu (7.2 and 20.2% of observed mean, respectively). The 2006 Bannink model had the lowest RMSPE and highest CCC for Pr (14.4% and 0.70, respectively). The 2008 Bannink model had comparable predictive performance for Pr to that of the 2006 Bannink model but a larger error due to overall bias (26.2% of MSPE). The 1982 Murphy model provided the poorest prediction of Bu, with the highest RMSPE and lowest CCC (24.6% and 0.15, respectively). The 1988 Argyle and Baldwin model had the highest CCC for Ac with an intermediate RMSPE (0.47 and 8.0%, respectively). The 2006 Sveinbjörnsson model had the highest RMSPE (13.9 and 34.0%, respectively) and lowest CCC (0.31 and 0.40, respectively) for Ac and Pr. The NGR predictions had the lowest RMSPE and highest CCC in the 2 models of Bannink, whereas the lowest predictive performance was in the 2006 Sveinbjörnsson model. It appears that the type of VFA produced is not a simple linear relationship between substrate inputs and pH as currently represented. The analysis demonstrates that most rumen VFA stoichiometric approaches explain a large part of the variation in VFA molar proportions among diets, in particular for Ac, whereas predictive power for Pr and Bu differ largely among approaches. The move toward feed evaluation systems based on animal response might necessitate an improved representation of rumen fermentation, focused on improving our understanding of VFA proportions in diets that vary from the mean

    The Effects of Biochar and Fat Supplementation on Microbial Fermentation in Batch Cultures

    Get PDF
    Biochar is a byproduct formed by burning green waste for carbon sequestering in a process called pyrolysis. This product can be used as a soil amendment to benefit plant yield. It has also been used as a supplement for cattle, though benefits in ruminants are still being explored. Hansen et al. (2012) noted a numerical decrease in methane production in vitro. Ruminants erupt methane as a hydrogen sink in the reduced rumen environment. Without a way to remove hydrogen, the microbial ecosystem cannot function normally. Polyunsaturated fatty acids have been used to decrease methane production; however, they often depress NDF digestibility. Therefore, more research is necessary to confirm that decreasing methane production with biochar does not also result from depressing neutral detergent fiber (NDF) digestibility, a major component of dairy cattle diets. The objectives of this study were to observe NDF disappearance (NDFD), volatile fatty acid (VFA) production, and methane gas output with supplementation of a biochar product in rumen fluid batch cultures. The treatments (Trt) were biochar (BC) or biochar bolus (BCB, biochar with electrolytes). The diet provided was a high forage (HF) diet with concentrate pellets (33.3%), orchard grass (44.4%), alfalfa (22.2%), and either no supplemented fat or 3% dry matter (DM) as corn oil (CO). The BC and BCB were dosed (Inc) at either 0, 1, 2 or 4% of total DM. Separately, four round bottom flasks were used for gas production measurements because smaller culture tubes would not produce enough gas volume. The flasks were fed either HF or HF with BC at 2%. Data were analyzed utilizing PROC MIXED (v. 9.4, SAS Institute 2015) with the fixed effects of Trt, CO, Inc, and their interactions. The random effects were run and order of inoculation. BC did not decrease NDFD and with 2% - CO and 1% + CO NDFD increased. BCB also did not decrease NDFD and with 1% - CO, 4% - CO, and 1% + CO NDFD increased (P = 0.07, Trt*CO*Inc). For total VFA production, BC increased the concentration with 2% - CO, 4% - CO, and 4% + CO. BCB also increased total VFA with 4% - CO and 4% + CO (P = 0.02, Trt*CO*Inc). Although methane gas production was not significant, there was numerical reduction of 23.08 mg produced in 24 hours (P = 0.16). Methane (g/kg NDFD) decreased (P = 0.022) by 17.21 g/kg NDFD. A numerical decrease (P = 0.23) of 0.10 mg/d was also seen in hydrogen gas production. Therefore, BC could reduce methane output without depressing NDFD and VFA when implemented as a feed additive. With the current stress on agricultural practices to decrease environmental impacts, feeding biochar as a methane mitigation strategy could be crucial to the dairy industry while simultaneously utilizing a waste product.No embargoAcademic Major: Animal Science

    Mesophilic anaerobic co-digestion of sewage sludge with glycerine: Effect of solids retention time

    Get PDF
    The main objective of this paper is to examine the effect of the increase in organic loading rates (OLRs), by reducing the solids retention time (SRT) from 20 d to 5 d, in single-phase mesophilic anaerobic co-digestion of sewage sludge with glycerine (1% v/v). It was experimentally confirmed that anaerobic co-digestion of these biowastes under steady-state conditions can achieve an 85 ± 5% reduction in volatile fatty acids (VFA) at SRTs of between 20 and 9 d, with a methane production yield of around 0.8 l CH4/l/d. Decreases in the SRT not only allow the sludge stability and biogas production to be maintained, but also lead to an increase in the waste that could be treated and lower operating costs. Therefore, mesophilic anaerobic co-digestion of sewage sludge and glycerin at a SRT lower than 20 d is possible and preferable due to being more economical and environmentally friendl

    Co-digestion of source segregated domestic food waste to improve process stability

    Get PDF
    Cattle slurry and card packaging were used to improve the operational stability of food waste digestion, with the aim of reducing digestate total ammoniacal nitrogen concentrations compared to food waste only. Use of cattle slurry could have major environmental benefits through reducing greenhouse gas emissions associated with current management practices; whilst card packaging is closely linked to food waste and could be co-collected as a source segregated material. Both options increase the renewable energy potential whilst retaining organic matter and nutrients for soil replenishment. Co-digestion allowed higher organic loadings and gave a more stable process. A high ammonia inoculum acclimated more readily to cattle slurry than card packaging, probably through supplementation by trace elements and micro-organisms. Long-term operation at a 75-litre scale showed a characteristic pattern of volatile fatty acid accumulation in mono-digestion of food waste, and allowed performance parameters to be determined for the co-digestion substrates.<br/

    The effect of water-soluble carbohydrate concentration and type on in vitro rumen methane output of perennial ryegrass determined using a 24-hour batch-culture gas production technique

    Get PDF
    peer-reviewedThe objective of this study was to examine the effects of water-soluble carbohydrate (WSC) concentration and type on the in vitro rumen methane (CH4) output of perennial ryegrass (PR) using a 24-hour batch-culture gas production technique. Dried and milled PR was incubated either alone (PR-O) or with added sucrose (PR-S), inulin (PR-I), or sucrose plus inulin (PR-S+I; sucrose:inulin ratio of 1:4) in sealed glass bottles [0.5 g total substrate dry matter (DM) per bottle] at 39 °C for 24 hours with buffered rumen fluid. The WSC types were added (except for PR-O) so that the WSC concentration in each fermentation bottle at the start of the incubation was either 180 (i.e., PR-O), 225, 270, 315, or 360 g/kg of total substrate DM incubated. There were linear decreases in CH4 output per gram of DM disappeared (CH4/ivDMD) and per mmol of total volatile fatty acid output (CH4/tVFA) with increasing WSC concentration in the incubated substrate. The WSC type had no effect on in vitro rumen CH4 output. It is concluded that since CH4/ivDMD and CH4/tVFA were reduced by increasing the concentration of WSC incubated with PR, it would be worthwhile to undertake in vivo experiments to examine these effects on in vivo CH4 emissions per unit of animal product.Funding for this study was provided under the National Development Plan through the Research Stimulus Fund administered by the Department of Agriculture, Food & the Marine (RSF no. 07 517)

    Trace element requirements for stable food waste digestion at elevated ammonia concentrations

    Get PDF
    The work investigated why anaerobic digesters treating food waste and operating at high ammonia concentrations suffer from propionic acid accumulation which may result in process failure. The results showed deficiency of selenium, essential for both propionate oxidation and syntrophic hydrogenotrophic methanogenesis, leads to this while supplementation allows operation at substantially higher organic loading rates (OLR). At high loadings cobalt also becomes limiting, due to its role either in acetate oxidation in a reverse Wood-Ljungdahl or in hydrogenotrophic methanogenesis. Population structure analysis using fluorescent in situ hybridization showed only hydrogenotrophic methanogens. Critical Se and Co concentrations were established as 0.16 and 0.22 mg kg?1 fresh matter feed at moderate loading. At this dosage the OLR could be raised to 5 g VS l?1 day?1 giving specific and volumetric biogas productions of 0.75 m3 kg?1 VSadded and 3.75 STP m3 m?3 day?1, representing a significant increase in process performance and operational stability

    Seeking to enhance the bioenergy of municipal sludge: Effect of alkali pre-treatment and soluble organic matter supplementation

    Get PDF
    The aim of this research is to enhance the mesophilic anaerobic digestion of municipal sludge from Cadiz-San Fernando (Spain) wastewater treatment plant at 20 days hydraulic retention time (HRT). Two different strategies were tested to improve the process: co-digestion with the addition of soluble organic matter (1% v/v); and alkali sludge pre-treatment (NaOH) prior to co-digestion with glycerine (1% v/v). Methane production (MP) was substantially enhanced (from 0.36 ± 0.09 L CH4 l/d to 0.85 ± 0.16 L CH4 l/d), as was specific methane production (SMP) (from 0.20 ± 0.05 L CH4/g VS to 0.49 ± 0.09 L CH4/g VS) when glycerine was added. The addition of glycerine does not seem to affect sludge stability, the quality of the effluent in terms of pH and organic matter content, i.e. volatile fatty acids (VFA), soluble organic matter and total volatile solid, or process stability (VFA/Alkalinity ratio < 0.4). Alkali pre-treatment prior to co-digestion resulted in a high increase in soluble organic loading rates (more than 20%) and acidification yield (more than 50%). At 20 days HRT, however, it led to overload of the system and total destabilization of the mesophilic anaerobic co-digestion of sewage sludge and glycerine
    • …
    corecore