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Abstract 

The work investigated why anaerobic digesters treating food waste and operating at high 

ammonia concentrations suffer from propionic acid accumulation which may result in 

process failure. The results showed deficiency of selenium, essential for both propionate 

oxidation and syntrophic hydrogenotrophic methanogenesis, leads to this while 

supplementation allows operation at substantially higher organic loading rates (OLR). At 

high loadings cobalt also becomes limiting, due to its role either in acetate oxidation in a 

reverse Wood-Ljungdahl pathway or in hydrogenotrophic methanogenesis. Population 

structure analysis using fluorescent in-situ hybridisation showed only hydrogenotrophic 

methanogens. Critical Se and Co concentrations were established as 0.16 and 0.22 mg kg
-1

 

fresh matter feed at moderate loading. At this dosage the OLR could be raised to 5 g VS l
-1

 

day
-1

 giving specific and volumetric biogas productions of 0.75 m
3 

kg
-1 

VSadded and 3.75 STP 

m
3
 m

-3
 day

-1
, representing a significant increase in process performance and operational 

stability.  
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1 Introduction 

 

In the anaerobic digestion of domestic food waste a characteristic pattern of volatile fatty acid 

(VFA) production and accumulation has been observed on a number of occasions and at 

different scales of operation (Banks and Zhang, 2010; Banks et al., 2008; Climenhaga and 

Banks 2008; Neiva Correia et al., 2008). When starting from an inoculum of municipal 

wastewater biosolids digestate, performance is initially good and VFA accumulation only 

starts after a period of months. This takes the form of an initial increase in acetic acid 

concentration which reaches a peak then declines, and is then followed by a longer term 

accumulation of propionic acid. The time span over which these changes occur depends on 

the process loading, but typically it may be more than a year before the accumulation of acid 

products overcomes the digester buffering capacity leading to process failure. A theory was 
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put forward to explain this observation (Banks and Zhang, 2010) and the aim of this research 

was to provide supporting evidence. It was proposed that the peak in acetic acid is a 

consequence of inhibition of the acetoclastic methanogens as the ammonia concentration 

reaches a threshold value (Karakashev et al., 2006; Schnurer and Nordberg, 2008). The 

subsequent decline in acetic acid concentration, despite increasing ammonia concentrations, 

and its stabilisation at a low value was thought to indicate a shift in the dominant 

methanogenic activity from acetoclastic to hydrogenotrophic. There is a growing amount of 

evidence which indicates that this latter group of methanogens have higher tolerance to 

ammonia (Angelidaki and Ahring, 1993; Hansen et al., 1998; Schnürer and Nordberg, 2008).  

The non-reversible accumulation of propionic acid was postulated to occur because of a 

deficiency of the trace elements required for synthesis of the enzymes needed in syntrophic 

hydrogenotrophic methane production. In particularly selenium (Se), molybdenum (Mo) and 

tungsten (W) have been reported as important in formate oxidation because of the 

requirement for them in the enzyme formate dehydrogenase (Böck, 2006). An accumulation 

of formate, a breakdown product of propionic acid, had been reported as possibly triggering a 

feedback inhibition in propionic acid oxidation (Dong, 1994). 

 

Both Selenium and Cobalt have been found to be present only at very low concentrations in 

source segregated domestic food waste collected in the UK and although typically present in 

inoculum taken from a municipal wastewater biosolids digestion these trace elements would 

be diluted out of an operational food waste digester over a period of time. The paper presents 

the results of batch and long-term semi-continuous fed digestion trials carried out with 

differential supplementation of trace elements, together with results from fluorescent in-situ 

hybridisation (FISH) analysis to identify the methanogenic groups present at high ammonia 

concentrations, in support of the above theory.    

 

2 Materials and Methods 

 

Digesters.  Batch tests were carried out in 250 ml conical flasks each provided with a gas 

sampling bag (Tedlar, SKC Ltd, UK) connected to the flask by a stainless steel tube inserted 

through a butyl rubber bung. The flasks were maintained at 36±1 ºC in an orbital shaking 

incubator operating at 60 rpm.  

 

The semi-continuous digesters had a 5-litre capacity with a 4-litre working volume and were 

constructed of PVC tube with gas-tight top and bottom plates. The top plate was fitted with a 

gas outlet, a feed port sealed with a rubber bung, and a draught tube liquid seal through which 

an asymmetric bar stirrer was inserted with a 40 rpm motor mounted directly on the top plate. 

Temperature was controlled at 36 
o
C by circulating water from a thermostatically-controlled 

bath through a heating coil around the digesters. Semi-continuous operation was achieved by 

the daily removal of digestate through an outlet port in the base of each digester followed by 

substrate addition via the feed port. Biogas production was measured using tipping-bucket gas 

counters with continuous data logging (Walker et al., 2009) and all gas volumes reported are 

corrected to standard temperature and pressure of 0
o
C, 101.325 kPa.  

 

Food waste. Source segregated food waste from domestic properties delivered to the South 

Shropshire digestion facility at Ludlow, UK was used in the study. The material was first taken 

out of biodegradable collection bags and any non-biodegradable contaminants were removed. It 

was then homogenised using a macerating grinder (S52/010 Waste Disposer, IMC Limited, 

UK), packed into 4-litre plastic storage containers, and frozen at -18
o
C. Before use the frozen 

feedstock was thawed, and stored at 4
o
C for no more than one week. 
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Inoculum. The inoculum used was taken from a laboratory 75-litre (working volume) food 

waste digester, the previous feedstock and loading history of which are given in detail in 

Banks and Zhang (2010). In the flask trials the digestate was first sieved through a 1mm 

mesh to remove any large particles, but when used as inoculum for the semi-continuous fed 

digesters there was no pre-treatment.  

 

2.1 Batch screening tests 

The batch screening tests were set up as shown in Table 1. A mix of propionic (8 g l
-1

), acetic 

acid (4.5 g l
-1

), glucose (4 g l
-1

) starch (4 g l
-1

) and ammonia (2 g l
-1

) was added to the sieved 

digestate to provide both fermentation and test substrates.  

 

Trace element (TE) supplementation concentrations were chosen based on the results from 

previous trials, and on baseline concentrations in the test digestate. The dose was chosen to 

avoid reaching toxic concentrations of the trace element concerned. The tests were carried out 

in duplicate, with 200 ml of supplemented digestate in each flask together with the trace 

element mix. The headspace of each flask was purged with a gas mixture of N2 and CO2 

(80:20) and then connected to the gas sampling bag. Each flask was sampled and analysed at 

fixed intervals. A set of duplicate flasks containing a more comprehensive trace element mix 

of Al (0.1 mg l
-1

), B (1 mg l
-1

), Co (1.0 mg l
-1

), Cu (0.1 mg l
-1

), Fe (5.0 mg l
-1

), Mn (1.0 mg l
-

1
), Mo (0.2 mg l

-1
), Ni (1.0 mg l

-1
), Se (0.2 mg l

-1
), W (0.2 mg l

-1
), and Zn (0.2 mg l

-1
) was 

also set up. 

 

2.2 Semi-continuous digestion trials 

Six pairs of digesters were used and were supplemented as shown in Figure 1 with 1) Se and 

Mo; 2) Se, Mo, Co and W; 3) Se, Mo, So, W, Fe and Ni; 4) Se, Mo, Co, W, Fe, Ni, Zn, Cu, 

Mn, Al, B; 5) No trace element addition (control); and 6) No trace element addition (control). 

The two pairs of controls were run to test independently the impact of increasing the food 

waste load on the digesters, irrespective of trace element additions. At the start of the 

experiment the digesters were each inoculated with 3.5 litres of digestate and were then 

operated at an organic loading rate (OLR) of 1.6 kg VS m
-3

 day
-1

 without any digestate 

removal, until they reached a working volume of 4 litres. At this point (day 1) the digesters 

receiving supplementation were given an initial trace element dose as shown in Table 2; the 

trace element concentrations in the digestate before supplementation are also shown in Table 

2. 

 

The OLR in all digesters was raised to 2.0 kg VS m
-3

 day
-1

 on day 1; subsequent changes in 

loading and in the pattern of trace element supplementation are presented in Figure 1. Food 

waste was added each day to give the desired OLR and digestate was removed once per week 

to maintain a working volume of 4.0 litres, without recirculation of liquor or fibre. The 

retention time was therefore determined by the volatile solids content of the food waste, and 

was around 95, 63, 48, and 38 days at an OLR of 2, 3, 4, and 5 kg VS m
-3

 day
-1

 respectively. 

Trace element additions were made weekly. The amount added was equal to that required for 

the wet weight of food waste added to the digester each week; this calculation did not take 

into account any additional trace element input arising from the food waste itself.  

 

2.3 Analytical methods 

Total solids (TS) and volatile solids (VS) were measured using Standard Method 2540 G 

(APHA, 2005). pH was determined using a Jenway 3010 meter (Bibby Scientific Ltd, UK) 

with a combination glass electrode calibrated in buffers at pH 4, 7 and 9.2 (Fisher Scientific, 
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UK). Alkalinity was measured by titration with 0.25N H2SO4 to endpoints of pH 5.75 and 

4.3, allowing calculation of total (TA), partial (PA) and intermediate alkalinity (IA) (Ripley 

et al., 1986). Total Kjeldahl Nitrogen (TKN) was determined using a Kjeltech block digester 

and ammonia by steam distillation unit according to the manufacturer's instructions (Foss 

Ltd, Warrington, UK). Volatile fatty acids (VFA) were quantified in a Shimazdu GC-2010 

gas chromatograph (Shimadzu, Milton Keynes, UK), using a flame ionization detector and a 

capillary column type SGE BP-21. Biogas composition (CH4 and CO2) was determined using 

a Varian star 3400 CX Gas Chromatograph, calibrated with 65% (v/v) CH4 and 35% (v/v) 

CO2. Trace element concentrations were determined using ICP-MS or ICP-OES at a 

commercial laboratory Severn Trent Services (Coventry, UK) after in-house hydrochloric – 

nitric acid digestion (SCA, 1986). 

 

Fluorescent in situ hybridisation. All the digesters were sampled on day 316 for microbial 

community structure analysis using the Fluorescent In-Situ Hybridisation (FISH) technique. 

Density gradient centrifugation with Nycodenz (Sigma-Aldrich, UK) was used before 

performing the analysis to separate the microbial biomass in the digestate from other 

components including both partially digested input material and the non-digestable 

components of the food waste. The procedure for density gradient centrifugation was adapted 

from previous studies (Caracciolo et al., 2005). 10 ml of digestate was mixed with 90 ml of 

1× phosphate buffer saline (PBS) solution in a Waring blender for 1 minute. N2/CO2 (80/20) 

gas was purged into the blender during the mixing. 1 ml of this diluted digestate was 

transferred into a 2-ml centrifuge tube, and then 1 ml of Nycodenz solution with a density of 

1.2 g ml
-1

 was gently injected to the bottom of the centrifuge tubes using needle and syringe. 

After centrifugation at 20000 g for 30 minutes, the microbial biomass suspended in the liquid 

layers was collected using a needle and syringe, and then washed twice using 1×PBS solution. 

 

The separated microbial biomass was then fixed with 4% of paraformaldehyde (Sigma-

Aldrich, UK) solution and used for FISH analysis (Daims, 2005). The oligonucleotide probes 

(Thermo Electron Biopolymers, Ulm, Germany), as detailed in Table 3, and the hybridisation 

stringency were chosen based on a previous study (Karakashev et al., 2006). Hybridised 

samples were viewed using a Leica TCS SP2 confocal laser scanning microscopy, and 20 

different microscrope fields were randomly selected for each hybridisation treatment. The 

laser wavelength to excite the fluorochrome dyes 6-Fam, Cy3, and Cy5 was 488nm, 561nm, 

and 633nm, respectively. 

 

3 Results and discussion  

 

3.1 Batch screening tests 

Figure 2 shows a selection of VFA degradation profiles from the flask trials illustrating the 

differences observed between different supplementations. It is clear from the results that Se 

and Mo were able to reduce the time required for degradation of both acetic and propionic 

acid compared with that in the controls or in the flasks supplemented with Ni and Fe only. 

The flasks containing Co and W showed some reduction in degradation time, but the effect 

was not as great as that either in the Se and Mo flasks or in the flasks dosed with a full 

complement of trace elements including Se and Mo. 

 

Using the average from duplicate flasks for the maximum acetic or propionic acid 

degradation rate a statistical analysis was carried out using the SAS software package.  The 

results showed that only selenium (Se) significantly improved the acetic acid degradation, 

with a p-value of 0.0012; and Se, Mo, and the mix of Co and W had a significant effect on 
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propionic acid degradation, with p-values of 0.0077, 0.026, and 0.033 respectively. Although 

Figure 2 indicated a moderate positive influence of Co and W on propionic acid degradation, 

the experimental design did not allow this to be statistically analysed because the  2-factor 

interaction of ‘Co and W’ is confounded with ‘Ni and Fe’ and ‘Mo and Se’ in this quarter-

fraction of 2IV
6-2

 design. The results were in agreement with the proposed theory that the 

inoculum microbial consortium which had been exposed to high ammonia concentrations had 

a requirement for these elements.   

 

3.2 Semi-continuous digestion  

The semi-continuous digesters were fed over a period of 520 days on source segregated food 

waste. Feedstock and inoculum characteristics are shown in Table 4.  

 

Specific and volumetric biogas production rates for all the digesters are shown in Figure 3. 

The control digesters which were initially fed at an OLR of 2 g VS l
-1

day
-1

 showed relatively 

consistent specific biogas production (SBP) over the trial period. This fluctuated around 0.7 

STP m
3 

kg
-1 

VSadded, although in order to maintain both this yield and the stability of the 

digestion as indicated by other monitoring parameters the OLR had to be gradually reduced 

(Figure 1). The control digesters in which the OLR was increased to 3 g VS l
-1

day
-1

 showed a 

decline in biogas production following the loading increase, and feeding was stopped on day 

120. The SBP in the digesters receiving trace element supplementation fluctuated around 0.75 

STP m
3 

kg
-1 

VSadded, with no apparent deterioration in this yield as the OLR increased. The 

volumetric biogas production (VBP) reflected changes in the OLR applied to the digesters, 

with a small reduction in the lower-loaded controls as the loading was gradually decreased. In 

the trace element (TE) supplemented digesters VBP increased from around 1.5 m
3
 m

-3
 day

-1
 

to around 3.75 m
3
 m

-3
 day

-1
 at the highest loading of 5 g VS l

-1 
day

-1
.  

 

From day 112 TE supplementation was stopped in one digester of the pair originally 

supplemented with Se, Mo, Co, W, Fe and Ni; feeding of both digesters continued at an OLR 

of 3 g VS l
-1

day
-1

. The digester from which TE supplementation was withdrawn began to 

show deterioration in both SBP and VBP between days 350 and 400, corresponding to the 

time necessary for washout of the trace elements that had been previously supplemented. 

 

Other digestion performance parameters are shown in Figure 4. The pH of the control 

digesters in which the loading was increased had declined to less than 7 by the time that 

feeding ceased. This decline is reflected in the change in the ratio of intermediate 

alkalinity:partial alkalinity (IA:PA), which climbed to around 2.75, indicating both the 

accumulation of volatile fatty acids and the development of digestion instability (Ripley et 

al., 1986). The pH in the lower loaded controls showed a gradual decline over the trial period 

and a corresponding increase in the IA:PA ratio, despite the reduction in loading. The pH in 

the digesters receiving TE supplements remained around 8 over the trial period, and the 

IA:PA ratio in these digesters remained below 0.5. The exception was the digester from 

which trace element supplementation was removed. In this digester the IA:PA ratio was seen 

to increase slightly from day 300, and then reduced slightly when a single dose of Se was 

accidently added on day 315. The ratio rose after this event, peaking at about day 390; and 

then fell again when trace element supplementation to this digester was deliberately resumed 

on day 427.  

 

The total ammonia nitrogen (TAN) concentration in the digesters at the start of the trial was 

around 5 g l
-1

 and in the control digester this gradually increased to a maximum of 6.1 g l
-1

; a 

similar increase was seen in the digester from which TE supplementation was removed. TAN 
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in the TE supplemented digesters showed an initial increase until the loading rate increased 

from 4 to 5 g VS l
-1

 day
-1

, at which point there was a small drop in concentration which then 

stabilised at around 5.4 g l
-1

. Interestingly the TAN concentration in the digester from which 

supplements were removed also dropped when supplementation was resumed. The reasons 

for the reduced TAN concentration in the TE supplemented digester are unknown, although 

Lindorfer et al. (2011) have recently shown a relationship between trace element 

supplementation and biological fixed nitrogen which may represent increased microbial 

biomass in the digestate. There was also a 3% difference in the biogas methane percentage 

between the control digesters at 55% compared to 58% for those supplemented with TE.  

 

Figure 5 shows the total VFA profile in the digesters and provides some explanations for 

changes seen in the other digestion performance indicators. The inoculum was already 

acclimated to food waste, having previously been fed on the same source segregated material 

in a 75-litre working capacity digester for a period of over a year, albeit at a low OLR. The 

digesters to which TE supplements were added showed a rapid reduction in the VFA that was 

already present in the inoculum digestate. The non-supplemented controls showed an initial 

increase in VFA corresponding to the load increase. This was much more severe in the 

control in which the load was gradually increased to 3 g VS l
-1

day
-1

, and when feeding 

stopped on day 120 the total VFA concentration in this digester had risen to more than 30000 

mg l
-1

. The lower loaded control which maintained good SBP showed a gradual increase in 

total VFA concentration over a 400-day period, which reached 24000 mg l
-1

 before falling 

slightly and stabilising at around 20000 mg l
-1

. In both cases the increase in VFA 

corresponded to changes in the IA:PA ratio, providing further support for the monitoring of 

this ratio as a rapid and reliable indicator of the onset of digester instability due to VFA 

accumulation.  

 

In the digesters supplemented with TE it appeared that a combination of Se and Mo was 

sufficient to prevent VFA accumulation, as VFA concentrations remained low even when the 

loading was increased. It was not until shortly after an increase in OLR to 5 g VS l
-1 

day
-1 

that 

VFA started to accumulate in the Se and Mo supplemented digester. It was initially 

hypothesised that this might be due to increasing demand placed on the Se-containing 

enzyme systems as the OLR was increased, resulting in increased growth rate and metabolic 

activity. To test this, the Se dose was increased on day 329; but no reduction in VFA was 

observed, suggesting that at the higher load some other component had become limiting. 

Total VFA concentrations in this digester were therefore allowed to accumulate to around 

12000 mg l
-1

 before the Se dose was reduced and a supplement of Co was added. This 

resulted in a rapid fall in VFA concentrations to values of < 500 mg l
-1

.  

 

In the digester maintained at an OLR of 3 g VS l
-1 

day
-1

 and to which TE supplementation 

ceased on day 112, VFA were seen to start accumulating around day 280, and had reached a 

concentration of about 4000 mg l
-1

 when a one-off dose of 0.12 mg Se was accidently added, 

equivalent to increasing the concentration of Se in the digesters by 0.03 mg l
-1

. The very rapid 

reduction in accumulated VFA observed after this event was confirmed by improvement in 

the IA:PA ratio. The improvement was short-lived, but this response suggests that at a 

loading of 3 g VS l
-1

 day
-1

 trace elements other than Se were present in adequate 

concentrations to maintain stable methanogenesis. When the VFA concentration had reached 

10,000 mg l
-1

 the digester was supplemented with Se, Co and Ni, which rapidly reduced the 

VFA to < 500 mg l
-1

.  
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The digesters receiving multiple TE supplements including Se and Co as part of the mix 

showed stable digestion throughout the trial period, with VFA concentrations never 

exceeding 500 mg l
-1

. A trace element supplementation experiment by Feng et al. (2010) 

using a central composite design on digesters receiving industrial food wastes found that 

addition of Se and W increased methane yield as well as maintaining low VFA 

concentrations. No additional requirement for Co was found at the OLR used, and it may be 

that this is necessary only at higher loadings, as in the present study. Their research also 

indicated that supplementation with Ni, B or Mo was not essential, in agreement with the 

current work where food waste was considered to have sufficient concentration of these 

elements.  

 

Figure 6a shows the dilute-out curve for the digester in which TE supplementation ceased on 

day 112. This was modelled assuming the digester to be a continuously stirred tank reactor 

(CSTR) with a hydraulic retention time calculated from the working volume and the wet 

weight of food waste added each day (assuming a density of 1 kg l
-1

). Digestate samples were 

taken for TE analysis over this time and the results for Se and Co are plotted in Figure 6a, 

showing good agreement with calculated values. The total VFA concentration is shown on 

the same graph, and the limiting concentrations of the two elements are taken to be at the 

intersection of the TE washout and VFA concentration curves. Based on this the required 

concentrations of Se and Co were estimated to be 0.16 and 0.22 mg kg
-1

 fresh matter feed 

material at moderate loading; these concentrations may need to be increased at higher 

loadings.  

 

The concentrations of both Se and Co in the food waste used as substrate in the trials was 

below these critical thresholds. These values would also account for the high VFA 

concentrations that have been observed in a full-scale digester treating food waste from the 

same source (Banks and Zhang, 2010) and in earlier pilot-scale and laboratory trials (Banks 

et al, 2008; Climenhaga and Banks 2008). There was no evidence that either W or Mo were 

required in concentrations greater that those found in the food waste.  

 

Methanogenic diversity in digester samples. The FISH analysis showed that the 

methanogenic groups in both control digesters and in all the digesters with trace element 

supplementation were members of the order Methanoimicrobiales , indicating that the 

dominant metabolic pathway of food waste digestion was via syntrophic acetate oxidation 

and hydrogenotropic methanogenesis. This supported the hypothesis that syntrophic acetate 

oxidation is the main mechanism for acetate degradation at ammonia concentrations above a 

threshold value. Very few studies have considered the population structure in food waste 

digesters, and only the work of Feng et al. (2010) has looked at how trace element additions 

may affect this. The digester ammonia concentrations in their study, however, were between 

2.3 - 3 g N l
-1

 which is lower than those found in the present work. This, coupled with the 

lower pH in the digesters, makes it likely that free ammonia concentrations were below the 

toxicity threshold for acetoclastic methanogens (Schnurer and Nordberg, 2008). Analysis of 

the microbial population using a combination of genetic techniques showed acetoclastic 

methanogens to be present, indicating that this route may still have been operating and thus 

potentially offering support to the current work.  

 

The above results show that Se is an essential trace element in food waste digestion. This 

requirement provides circumstantial evidence to support the original hypothesis that under 

high ammonia concentrations hydrogenotrophic methanogenesis may be the principle route to 

methane formation. This was confirmed by the results from the FISH analysis that showed 
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that by day 316 no acetoclastic methanogens could be identified in samples from any of the 

digesters; by this time the ammonia concentration was above 5000 mg l
-1

 in all digesters. The 

results also confirmed previous observations that in food waste digesters without trace 

element supplementation an accumulation of VFA occurs, and the main component in this 

accumulation is propionic acid, as can be seen in the VFA profile of the lower loaded control 

digester (Figure 6b). The VFA profile showed that initially acetic acid was predominant, with 

propionic acid and longer chain length VFA are at low concentrations as expected. The build-

up of propionate can be seen from around day 100 and from that time becomes the 

predominant VFA. 

 

The non-reversible accumulation of propionic acid was postulated to occur because of a 

deficiency of the trace elements required for synthesis of the enzymes needed in syntrophic 

hydrogenotrophic methane production, particularly the formate dehydrogenase required for 

formate oxidation. The experimental results do not, however, conclusively prove this original 

hypothesis as the oxidation of propionic acid, with its uneven carbon chain length, produces a 

mixed product of acetate, CO2, H2 and formate (Mueller et al., 2010), with side-reactions to 

produce butyrate and higher-chain fatty acids (de Bok et al., 2001; Stams et al., 1998). The 

enzymes required for propionic acid oxidation may themselves require the trace elements Se, 

Mo, and W (de Bok et al., 2003; Mueller et al., 2010; Worm et al., 2011). It has long been 

recognised, however, that the syntrophic degradation of propionate can be inhibited by a 

product-induced feedback inhibition (Dong, 1994; Fukuzaki et al., 1990; Kus and Wiesmann, 

1995). The experimental results presented suggest that in this particular case it is unlikely to 

be triggered by H2.  The maximum partial pressures of H2 under which syntrophic propionate 

and acetate oxidisation can take place are in the same range (Schink, 1997) and as there is no 

accumulation of acetate its oxidation does not appear to be inhibited. It is possible that 

formate is the trigger for inhibition, but the concentration range at which this occurs has 

rarely been studied (Schink, 1997), whereas the partial pressure at which H2 has an effect is 

well known (Cord-Ruwisch et al., 1997). Although most microorganisms involved in 

interspecies electron transfer can exchange hydrogen with formate and vice versa, and the 

standard redox potential of both electron carrier systems (H
+
/H2 and CO2/formate) is nearly 

identical (Thauer et al., 2008), the conversion between them requires formate dehydrogenase 

(FDH) which has been reported to require  Se, Mo and W (Andreesen and Ljungdahl, 1973; 

de Bok et al., 2003; Worm et al., 2011). The results presented cannot confirm that the 

Selenium was exclusively required for this enzyme system, but it is clearly vital to the proper 

functioning of this pathway. Oxyanions are also required for formyl-methanofuran 

dehydrogenase, and Se for hydrogenase and heterodisulfide reductase (Müller, 2003; Thauer 

et al., 2008; Stock and Rother, 2009; Zhu and Tan, 2009).  

 

The trace elements requirement for syntrophic hydrogenotrophic methanogenesis is quite 

different to that required when the acetoclastic methanogenic pathway is predominant. When 

this is the case Co, Ni, Fe are essential in the formation of CO dehydrogenase, acetyl-CoA 

decarbonylase, Methyl-H4SPT:HS-CoM methyltransferase, Methyl-CoM reductase and other 

enzymes (Ferry, 1992; Kida et al., 2001). These three cations, however, remain essential in 

the syntrophic acetate oxidisation by the reverse Wood-Ljungdahl pathway and the 

hydrogenotrophic route (Thauer et al., 2008; Zhu and Tan, 2009. At the lower loadings there 

appear to be sufficient trace elements to supply the needs of the enzymes in this pathway; but 

it is clear that at the higher loading used in these experiments cobalt also becomes limiting, 

although this was not apparent until around day 280.  
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It can be seen that once coupled syntrophic acetate oxidisation and hydrogenotrophic 

methangenesis are established in a non-competitive environment with the necessary trace 

element supplementation then concentrations of all species of VFA can remain low. 

Supplementation with Se and Co allowed the OLR on the system to be increased to 5 g VS l
-1

 

day
-1

 resulting in a higher specific methane yield and almost three times the volumetric 

biogas production. In terms of a commercial digester treating food waste, this represents a 

significant enhancement in performance as well as a reduced risk of process failure due to 

accumulation of VFA. 

 

4 Conclusions  

 

The work did not fully elucidate the metabolic pathways for methane formation in food waste 

digesters, but showed that acetate oxidation was the main route. Identification of 

methanogenic groups showed loss of acetoclastic methanogens. In non-supplemented 

digesters VFA accumulation indicated inhibition of either propionate oxidising bacteria or 

formate reducing hydrogenotrophic methanogens, resulting in loss of syntrophic interspecies 

electron transfer. In either case propionic acid will accumulate. The work clearly 

demonstrated that both selenium and cobalt could prevent this, and are required for 

interspecies electron transfer at high ammonia concentrations.  Supplementation allowed 

stable operation at higher OLR with enhanced performance efficiency.  
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Table 1. Design of the flask trial and concentrations of TE added and that present in the 
inoculum used  

 Co Se W Mo Ni Fe 

Trace element 

compound used 

CoCl2·

6H2O Na2SeO3 

Na2WO4·

2H2O 

(NH4)6Mo7O24

·4H2O 

NiCl2·6H2

O 

FeCl2·4H2O 

Concentration added 

(as trace element)  

mg l
-1 

1.0 0.2 0.2 0.2 

 

 

1.0 

 

 

5.0 

Initial concentration 

in inoculum mg l
-1 

0.083 0.050 0.035 0.29 

 

2.9 

 

173.7 

1 - - - - - - 

2 - Se W - - Fe 

3 - - W Mo - Fe 

4 - Se - Mo - - 

5 - - - - Ni Fe 

6 - Se W - Ni - 

7 - - W Mo Ni - 

8 - Se - Mo Ni Fe 

9 Co - W - - - 

10 Co Se - - - Fe 

11 Co - - Mo - Fe 

12 Co Se W Mo - - 

13 Co - W - Ni Fe 
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14 Co Se - - Ni - 

15 Co - - Mo Ni - 

16 Co Se W Mo Ni Fe 
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Table 2. Existing and additional concentration of trace elements in digesters at the start of 
the semi-continuous trials  

Element Compound used 

Element concentration (mg l
-1

) 

Trace element 

concentration in the 

inoculum digestate 

Initial trace element 

addition made on day 

1 

Aluminium (Al) AlCl3·6H2O 63.3 0.1 

Boron (B) H3BO3 2.5 0.1 

Cobalt (Co) CoCl2·6H2O 0.083 1 

Copper (Cu) CuCl2·2H2O 5.75 0.1 

Iron (Fe) FeCl2·4H2O 173.7 5 

Manganese (Mn) MnCl2·4H2O 18.5 1 

Molybdenum (Mo) (NH4)6Mo7O24·4H2O 0.29 0.2 

Nickel (Ni)  NiCl2·6H2O 2.9 1 

Selenium (Se) Na2SeO3 0.05 0.2 

Tungsten (W) Na2WO4·2H2O <0.035 0.2 

Zinc (Zn) ZnCl2 8.11 0.2 

 

 
Table 3 Oligonucleotide probes used with target groups 

Probe name Target group Probe sequence (5’-3’) 
Fluoro-

chrome 

EUB338 Bacteria (most) GCTGCCTCCCGTAGGAGT Cy5 

EUB338+ Bacteria (remaining) GCWGCCACCCGTAGGTGT
 

Cy5 

ARC915 Archaea GTGCTCCCCCGCCAATTCCT 6-Fam 

MX825 Methanosaetaceae TCGCACCGTGGCCGACACCTAGC Cy3 

MS1414 Methanosarcinaceae CTCACCCATACCTCACTCGGG Cy3 

hMS1395 MS1414-helper GGTTTGACGGGCGGTGTG - 

hMS1480 MS1414-helper CGACTTAACCCCCCTTGC - 

MSMX860 Methanosarcinales GGCTCGCTTCACGGCTTCCCT Cy5 

MG1200 Methanomicrobiales CGGATAATTCGGGGCATGCTG Cy3 

MB1174 Methanobacteriales TACCGTCGTCCACTCCTTCCTC Cy3 

MC1109 Methanococcales GCAACATAGGGCACGGGTCT Cy3 
Note: W, A+T mixed base. 
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Table 4. Characteristics of the inoculum digestate at the start of the semi-continuous fed trial 
and the average composition of the food waste used over the trial period.  

 Digestate Food waste 

pH  8.0 4.71 ± 0.01 (1:5) 

TS (% of fresh matter) 6.34 23.74 ± 0.08 

VS (% of fresh matter) 4.59 21.71 ± 0.09 

VS (% of TS) 72.4 91.44 ± 0.39 

Trace elements (mg kg
-1

 fresh matter) 

Aluminium (Al) 63.3  

Boron (B) 2.5  

Cobalt (Co) 0.083 <0.060 

Copper (Cu) 5.75 1.7 ± 0.2 

Iron (Fe) 173.7 54 

Manganese (Mn) 18.5 20 ± 3 

Molybdenum (Mo) 0.29 0.11 ± 0.01 

Nickel (Ni)  2.9 1.7 ± 0.7 

Selenium (Se) 0.050 < 0.070 

Tungsten (W) <0.035 < 0.25 

Zinc (Zn) 8.11 7.8 ± 2.6 

Potentially toxic element (mg kg
-1

 fresh matter) 

Cadmium (Cd) 0.038 <0.25 

Chromium (Cr) 5.25 6.9 ± 0.3 

Lead (Pb) 0.63 < 2.5 

Mercury (Hg) <0.010 < 0.003 

Miacro nutrients (g kg
-1

 fresh matter) 

Calcium (Ca) 2.16  

Magnesium (Mg) 0.168  

Potassium (K) 2.63 3.39 ± 0.19 

Sodium (Na) 1.13  

Phosphorus (P) 0.700 1.28 ± 0.08 

Total Kjeldahl nitrogen (N) 8.47 8.12 ± 0.01 

Other digestate parameters (g kg
-1

 fresh matter) 

Total ammoniacal nitrogen (NH3-N) 4.7  

Total volatile fatty acid 4.4  

Acetic acid 4.1  

Propionic acid 0.1  

 

  



Page 15 of 17 
 

 
 

Fig. 1. Digester feeding regime, interventions and changes over the trial period  

 

 
Fig. 2. Selected VFA degradation profiles in control and TE supplemented flasks 
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Fig. 3. Specific and volumetric biogas production in control and TE supplemented digesters 

(values are weekly averages of duplicate digesters, and showed < 5% difference between 

them). 

 

Fig. 4. pH, alkalinity, ammonia and biogas methane percentage in control and TE 

supplemented digesters 
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Fig. 5. Total VFA concentrations (g) in control and TE supplemented digesters 

 

Fig. 6. VFA profiles and measured and calculated TE concentrations: a) Measured and 

calculated Se and Co concentrations and total VFA in digester after cessation of TE 

supplementation; b) VFA profiles in control digesters loaded at 2 g VS l
-1

 day
-1

 during semi-

continuous trial. 

 


