2,053 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Blockchain-based Digital Twins:Research Trends, Issues, and Future Challenges

    Get PDF
    Industrial processes rely on sensory data for decision-making processes, risk assessment, and performance evaluation. Extracting actionable insights from the collected data calls for an infrastructure that can ensure the dissemination of trustworthy data. For the physical data to be trustworthy, it needs to be cross validated through multiple sensor sources with overlapping fields of view. Cross-validated data can then be stored on the blockchain, to maintain its integrity and trustworthiness. Once trustworthy data is recorded on the blockchain, product lifecycle events can be fed into data-driven systems for process monitoring, diagnostics, and optimized control. In this regard, digital twins (DTs) can be leveraged to draw intelligent conclusions from data by identifying the faults and recommending precautionary measures ahead of critical events. Empowering DTs with blockchain in industrial use cases targets key challenges of disparate data repositories, untrustworthy data dissemination, and the need for predictive maintenance. In this survey, while highlighting the key benefits of using blockchain-based DTs, we present a comprehensive review of the state-of-the-art research results for blockchain-based DTs. Based on the current research trends, we discuss a trustworthy blockchain-based DTs framework. We also highlight the role of artificial intelligence in blockchain-based DTs. Furthermore, we discuss the current and future research and deployment challenges of blockchain-supported DTs that require further investigation.</p

    Advanced technologies and international business : A multidisciplinary analysis of the literature

    Get PDF
    Publisher Copyright: © 2021 The AuthorsAdvanced digital technologies, such as the Internet of Things, blockchain, big data analytics and augmented reality, are gradually transforming the way multinational firms do business. Due to the extent of this transformation many scholars argue that the integration of these technologies marks the commencement of the fourth industrial revolution (Industry 4.0). However, the question how these advanced technologies impact international business activities needs further attention. To this end, we adopt a multidisciplinary approach to review the related literature in international business (IB), general management, information systems, and operations research. We include the two latter fields, because advanced technologies have received more attention in these bodies of literature. Based on our analysis, we discuss the implications of these technologies for international business. Further, we highlight the drivers of technology utilisation by multinational firms and likely outcomes. We also provide future research avenues.Peer reviewe

    D8.6 OPTIMAI commercialization and exploitation strategy

    Get PDF
    Deliverable D8.6 OPTIMAI commercialization and exploitation strategy 1 st version is the first version of the OPTIMAI Exploitation Plan. Exploitation aims at ensuring that OPTIMAI becomes sustainable well after the conclusion of the research project period so as to create impact. OPTIMAI intends to develop an industry environment that will optimize production, reducing production line scrap and production time, as well as improving the quality of the products through the use of a variety of technological solutions, such as Smart Instrumentation of sensors network at the shop floor, Metrology, Artificial Intelligence (AI), Digital Twins, Blockchain, and Decision Support via Augmented Reality (AR) interfaces. The innovative aspects: Decision Support Framework for Timely Notifications, Secure and adaptive multi-sensorial network and fog computing framework, Blockchain-enabled ecosystem for securing data exchange, Intelligent Marketplace for AI sharing and scrap re-use, Digital Twin for Simulation and Forecasting, Embedded Cybersecurity for IoT services, On-the-fly reconfiguration of production equipment allows businesses to reconsider quality management to eliminate faults, increase productivity, and reduce scrap. The OPTIMAI exploitation strategy has been drafted and it consists of three phases: Initial Phase, Mid Phase and Final Phase where different activities are carried out. The aim of the Initial phase (M1 to M12), reported in this deliverable, is to have an initial results' definition for OPTIMAI and the setup of the structures to be used during the project lifecycle. In this phase, also each partner's Individual Exploitation commitments and intentions are drafted, and a first analysis of the joint exploitation strategies is being presented. The next steps, leveraging on the outcomes of the preliminary market analysis, will be to update the Key Exploitable Results with a focus on their market value and business potential and to consolidate the IPR Assessment and set up a concrete Exploitation Plan. The result of the next period of activities will be reported in D8.7 OPTIMAI commercialization and exploitation strategy - 2nd version due at month 18 (June 2022

    Smart Manufacturing

    Get PDF
    This book is a collection of 11 articles that are published in the corresponding Machines Special Issue “Smart Manufacturing”. It represents the quality, breadth and depth of the most updated study in smart manufacturing (SM); in particular, digital technologies are deployed to enhance system smartness by (1) empowering physical resources in production, (2) utilizing virtual and dynamic assets over the Internet to expand system capabilities, (3) supporting data-driven decision-making activities at various domains and levels of businesses, or (4) reconfiguring systems to adapt to changes and uncertainties. System smartness can be evaluated by one or a combination of performance metrics such as degree of automation, cost-effectiveness, leanness, robustness, flexibility, adaptability, sustainability, and resilience. This book features, firstly, the concepts digital triad (DT-II) and Internet of digital triad things (IoDTT), proposed to deal with the complexity, dynamics, and scalability of complex systems simultaneously. This book also features a comprehensive survey of the applications of digital technologies in space instruments; a systematic literature search method is used to investigate the impact of product design and innovation on the development of space instruments. In addition, the survey provides important information and critical considerations for using cutting edge digital technologies in designing and manufacturing space instruments

    ENHANCING THE OPERATIONAL RESILIENCE OF CYBER- MANUFACTURING SYSTEMS (CMS) AGAINST CYBER-ATTACKS

    Get PDF
    Cyber-manufacturing systems (CMS) are interconnected production environments comprised of complex and networked cyber-physical systems (CPS) that can be instantiated across one or many locations. However, this vision of manufacturing environments ushers in the challenge of addressing new security threats to production systems that still contain traditional closed legacy elements. The widespread adoption of CMS has come with a dramatic increase in successful cyber-attacks. With a myriad of new targets and vulnerabilities, hackers have been able to cause significant economic losses by disrupting manufacturing operations, reducing outgoing product quality, and altering product designs. This research aims to contribute to the design of more resilient cyber-manufacturing systems. Traditional cybersecurity mechanisms focus on preventing the occurrence of cyber-attacks, improving the accuracy of detection, and increasing the speed of recovery. More often neglected is addressing how to respond to a successful attack during the time from the attack onset until the system recovery. We propose a novel approach that correlates the state of production and the timing of the attack to predict the effect on the manufacturing key performance indicators. Then a real-time decision strategy is deployed to select the appropriate response to maintain availability, utilization efficiency, and a quality ratio above degradation thresholds until recovery. Our goal is to demonstrate that the operational resilience of CMS can be enhanced such that the system will be able to withstand the advent of cyber-attacks while remaining operationally resilient. This research presents a novel framework to enhance the operational resilience of cyber-manufacturing systems against cyber-attacks. In contrast to other CPS where the general goal of operational resilience is to maintain a certain target level of availability, we propose a manufacturing-centric approach in which we utilize production key performance indicators as targets. This way we adopt a decision-making process for security in a way that is aligned with the operational strategy and bound to the socio-economic constraints inherent to manufacturing. Our proposed framework consists of four steps: 1) Identify: map CMS production goals, vulnerabilities, and resilience-enhancing mechanisms; 2) Establish: set targets of performance in production output, scrap rate, and downtime at different states; 3) Select: determine which mechanisms are needed and their triggering strategy, and 4) Deploy: integrate into the operation of the CMS the selected mechanisms, threat severity evaluation, and activation strategy. Lastly, we demonstrate via experimentation on a CMS testbed that this framework can effectively enhance the operational resilience of a CMS against a known cyber-attack

    Blockchain Technology for Enhancing Supply Chain Performance and Reducing the Threats Arising from the COVID-19 Pandemic

    Get PDF
    A rigorous examination of the most recent advancements in blockchain technology (BCT) and artificial intelligence (AI)-enabled supply chain networks is provided in this book. The edited book brings together the perspectives of a number of authors who have presented their most recent views on blockchain technology and its applications in a variety of disciplines. The submitted papers contribute to a better understanding of how blockchain technology can improve the efficacy of human activities during a pandemic, improve traceability and visibility in the automotive supply chain, support food safety and reliability through digitalisation of the food supply chain, and increase the performance of next-generation digital supply chains, among other things. The book attempts to address and prepare a way to address the complicated issues that supply chains are encountering as a result of the global pandemic
    • …
    corecore