19,245 research outputs found

    Review of Health Prognostics and Condition Monitoring of Electronic Components

    Get PDF
    To meet the specifications of low cost, highly reliable electronic devices, fault diagnosis techniques play an essential role. It is vital to find flaws at an early stage in design, components, material, or manufacturing during the initial phase. This review paper attempts to summarize past development and recent advances in the areas about green manufacturing, maintenance, remaining useful life (RUL) prediction, and like. The current state of the art in reliability research for electronic components, mainly includes failure mechanisms, condition monitoring, and residual lifetime evaluation is explored. A critical analysis of reliability studies to identify their relative merits and usefulness of the outcome of these studies' vis-a-vis green manufacturing is presented. The wide array of statistical, empirical, and intelligent tools and techniques used in the literature are then identified and mapped. Finally, the findings are summarized, and the central research gap is highlighted

    Enabling electronic prognostics using thermal data

    Get PDF
    Prognostics is a process of assessing the extent of deviation or degradation of a product from its expected normal operating condition, and then, based on continuous monitoring, predicting the future reliability of the product. By being able to determine when a product will fail, procedures can be developed to provide advanced warning of failures, optimize maintenance, reduce life cycle costs, and improve the design, qualification and logistical support of fielded and future systems. In the case of electronics, the reliability is often influenced by thermal loads, in the form of steady-state temperatures, power cycles, temperature gradients, ramp rates, and dwell times. If one can continuously monitor the thermal loads, in-situ, this data can be used in conjunction with precursor reasoning algorithms and stress-and-damage models to enable prognostics. This paper discusses approaches to enable electronic prognostics and provides a case study of prognostics using thermal data.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Baselines for lifetime of organic solar cells

    Get PDF
    The process of accurately gauging lifetime improvements in organic photovoltaics (OPVs) or other similar emerging technologies, such as perovskites solar cells is still a major challenge. The presented work is part of a larger effort of developing a worldwide database of lifetimes that can help establishing reference baselines of stability performance for OPVs and other emerging PV technologies, which can then be utilized for pass-fail testing standards and predicting tools. The study constitutes scanning of literature articles related to stability data of OPVs, reported until mid-2015 and collecting the reported data into a database. A generic lifetime marker is utilized for rating the stability of various reported devices. The collected data is combined with an earlier developed and reported database, which was based on articles reported until mid-2013. The extended database is utilized for establishing the baselines of lifetime for OPVs tested under different conditions. The work also provides the recent progress in stability of unencapsulated OPVs with different architectures, as well as presents the updated diagram of the reported record lifetimes of OPVs. The presented work is another step forward towards the development of pass-fail testing standards and lifetime prediction tools for emerging PV technologies.This work has been supported by European Commission StableNextSol COST Action MP1307. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 609788 (CHEETAH)

    Prognostics and health management for maintenance practitioners - Review, implementation and tools evaluation.

    Get PDF
    In literature, prognostics and health management (PHM) systems have been studied by many researchers from many different engineering fields to increase system reliability, availability, safety and to reduce the maintenance cost of engineering assets. Many works conducted in PHM research concentrate on designing robust and accurate models to assess the health state of components for particular applications to support decision making. Models which involve mathematical interpretations, assumptions and approximations make PHM hard to understand and implement in real world applications, especially by maintenance practitioners in industry. Prior knowledge to implement PHM in complex systems is crucial to building highly reliable systems. To fill this gap and motivate industry practitioners, this paper attempts to provide a comprehensive review on PHM domain and discusses important issues on uncertainty quantification, implementation aspects next to prognostics feature and tool evaluation. In this paper, PHM implementation steps consists of; (1) critical component analysis, (2) appropriate sensor selection for condition monitoring (CM), (3) prognostics feature evaluation under data analysis and (4) prognostics methodology and tool evaluation matrices derived from PHM literature. Besides PHM implementation aspects, this paper also reviews previous and on-going research in high-speed train bogies to highlight problems faced in train industry and emphasize the significance of PHM for further investigations

    Piikarbidi-MOSFET:n kiihdytetty ikÀÀnnyttÀminen ja prognostiikka

    Get PDF
    The reliability investigations in power semiconductor components have traditionally concentrated on statistical analysis of the failure data in order to set regular maintenance intervals to prevent failures in the field. A more recent discipline, prognostics, in turn attempts to evaluate the current state-of-health of the device online and to predict the remaining useful life by interpreting signals of degradation. The utilization of prognostics is valuable to businesses as it enables addressing the maintenance only to the products close to failure. In this thesis we studied prognostics from the physics-based perspective in two types of silicon carbide power MOSFETs, in 11 samples in total. The components were aged in a power cycling test system to produce data of the selected failure precursor, drain-source on-state resistance. For the prognostic analysis we developed a kernel\hyp{}smoothing\hyp{}based particle filter and applied it to joint state\hyp{}parameter estimation of a selected sample. The analysis results indicated satisfactory performance regarding the estimation of the states and the parameters but revealed significant deficiencies in the prediction performance of the remaining useful life. Although the work mainly focuses on studying the power MOSFET as single component it is important to observe it also as a part of a larger entity. Therefore, at the end of the work we propose design principles for a new test system where the power MOSFET operates in a DC-DC converter. The derived precepts are based on the insight of reliability data analysis and prognostics gained during the study.Tehopuolijohdekomponenttien luotettavuustutkimukset ovat perinteisesti keskittyneet vikadatan tilastolliseen analyysiin sÀÀnnöllisten huoltovÀlien asettamiseksi, joilla ehkÀistÀÀn kentÀllÀ tapahtuvia vikaantumisia. Prognostiikka on uudempi tiedonala, joka puolestaan pyrkii mÀÀrittÀmÀÀn laitteen kÀytönaikaisen terveydentilan ja ennustamaan jÀljellÀ olevan elinajan tulkitsemalla signaaleja huononemista. Prognostiikan hyödyntÀminen on arvokasta liiketoiminnalle, sillÀ se mahdollistaa huollon kohdistamisen ainostaan niille laitteille, jotka ovat lÀhellÀ vikaantumista. TÀssÀ diplomityössÀ tutkimme prognostiikkaa fysiikkaan pohjautuvasta nÀkökulmasta kahdessa erityyppisessÀ piikarbiditeho-MOSFET:ssa, kokonaisuudessaan 11 nÀytteessÀ. Komponentit ikÀÀnnytettiin tehosyklaustestissÀ nielulÀhdepÀÀllÀoloresistanssidatan kerÀÀmiseksi, joka valittiin vikaantumisindikaattoriksi. Prognostista analyysia varten kehitimme ydinsilotukseen perustuvan partikkelisuodattimen, jota sovelsimme yhdistetyyn tilaparametriestimointiin valitussa nÀytteessÀ. Analyysin tulokset osoittivat tyydyttÀvÀÀ suorituskykyÀ tilan ja parametrien estimointissa mutta paljastivat merkittÀviÀ puutteita jÀljellÀ olevan eliniÀn ennustamisessa. Vaikka työ pÀÀosin keskittyy teho-MOSFET:n tutkimiseen yksittÀisenÀ komponenttina, on tÀrkeÀ huomioda se myös osana suurempaa kokonaisuutta. TÀmÀn vuoksi työn lopussa esitetÀÀn suunnitteluperiaatteita uutta testausjÀrjestelmÀÀ varten, jossa teho-MOSFET toimii DC-DC -muuntimessa. Johdetut ohjenuorat pohjaavat työn aikana kertyneelle ymmÀrrykselle luotettavuusdatan analysoinnista ja prognostiikasta

    Reflective Optics CPV Panels Enabling Large Scale, Reliable Generation of Solar Energy Cost Competitive With Fossil Fuels

    Full text link
    The objective of this 18 month subcontract was the improvement of reflective optics CPV panels to enable the large-scale, reliable production of solar electricity to meet SAI-established LCOE targets, and ultimately provide a path to solar power at parity with or better than the cost of energy generated utilizing fossil fuels. To this end, SolFocus has completed this subcontract with great success as evidenced by the end results of a CPV panel with conversion efficiencies greater than the targeted 22% and manufacturing capabilities with a run rate capacity far exceeding the milestone benchmark \u3e3MW

    Effect of flow pattern at pipe bends on corrosion behaviour of low carbon steek and its challenges

    Get PDF
    Recent design work regarding seawater flow lines has emphasized the need to identify, develop, and verify critical relationships between corrosion prediction and flow regime mechanisms at pipe bend. In practice this often reduces to an pragmatic interpretation of the effects of corrosion mechanisms at pipe bends. Most importantly the identification of positions or sites, within the internal surface contact areas where the maximum corrosion stimulus may be expected to occur, thereby allowing better understanding, mitigation, monitoring and corrosion control over the life cycle. Some case histories have been reviewed in this context, and the interaction between corrosion mechanisms and flow patterns closely determined, and in some cases correlated. Since the actual relationships are complex, it was determined that a risk based decision making process using selected ‘what’ if corrosion analyses linked to ‘what if’ flow assurance analyses was the best way forward. Using this in methodology, and pertinent field data exchange, it is postulated that significant improvements in corrosion prediction can be made. This paper outlines the approach used and shows how related corrosion modelling software data such as that available from corrosion models Norsok M5006, and Cassandra to parallel computational flow modelling in a targeted manner can generate very noteworthy results, and considerably more viable trends for corrosion control guidance. It is postulated that the normally associated lack of agreement between corrosion modelling and field experience, is more likely due to inadequate consideration of corrosion stimulating flow regime data, rather than limitations of the corrosion modelling. Applications of flow visualization studies as well as computations with the k-Δ model of turbulence have identified flow features and regions where metal loss is a maximu

    NEGATIVE BIAS TEMPERATURE INSTABILITY STUDIES FOR ANALOG SOC CIRCUITS

    Get PDF
    Negative Bias Temperature Instability (NBTI) is one of the recent reliability issues in sub threshold CMOS circuits. NBTI effect on analog circuits, which require matched device pairs and mismatches, will cause circuit failure. This work is to assess the NBTI effect considering the voltage and the temperature variations. It also provides a working knowledge of NBTI awareness to the circuit design community for reliable design of the SOC analog circuit. There have been numerous studies to date on the NBTI effect to analog circuits. However, other researchers did not study the implication of NBTI stress on analog circuits utilizing bandgap reference circuit. The reliability performance of all matched pair circuits, particularly the bandgap reference, is at the mercy of aging differential. Reliability simulation is mandatory to obtain realistic risk evaluation for circuit design reliability qualification. It is applicable to all circuit aging problems covering both analog and digital. Failure rate varies as a function of voltage and temperature. It is shown that PMOS is the reliabilitysusceptible device and NBTI is the most vital failure mechanism for analog circuit in sub-micrometer CMOS technology. This study provides a complete reliability simulation analysis of the on-die Thermal Sensor and the Digital Analog Converter (DAC) circuits and analyzes the effect of NBTI using reliability simulation tool. In order to check out the robustness of the NBTI-induced SOC circuit design, a bum-in experiment was conducted on the DAC circuits. The NBTI degradation observed in the reliability simulation analysis has given a clue that under a severe stress condition, a massive voltage threshold mismatch of beyond the 2mV limit was recorded. Bum-in experimental result on DAC proves the reliability sensitivity of NBTI to the DAC circuitry
    • 

    corecore