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Highlights 

 Baselines for lifetime of organic solar cells tested under different ageing conditions are 
presented 

 A list of devices with exceptional intrinsic stability is provided 

 Lifetime progress diagram with best lifetime is shown 

 

Abstract 

To this date there are no reliable methods for qualifying and guaranteeing the durability of a 

product made from organic photovoltaics (OPVs) or other similar emerging technologies, such 

as dye sensitized and perovskites solar cells. The issue however has to be urgently resolved in 

order to ease the commercialization of such products. The presented work is a part of a larger 

effort of developing a worldwide database of lifetimes that can help establishing reference 

baselines of stability performance for OPVs and other emerging PV technologies that can then be 

utilized for determining and predicting the lifetime of the future products. The study constitutes 

scanning of literature articles related to stability data of OPVs, reported until mid-2015 and 

collecting the reported data into a common database. A generic lifetime marker is utilized for 
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rating the stability of various reported devices. The collected data is combined with the earlier 

developed and reported database, which was based on articles reported until mid-2013. The 

extended database is then utilized for establishing the baselines of lifetime for OPVs tested under 

different conditions. The work also provides the recent progress in intrinsic stability of OPVs 

with different architectures, as well as presents the updated diagram of the reported record 

lifetimes of OPVs. The presented work is another step forward towards the development of a 

lifetime prediction tool for emerging PV technologies.     

  

1. Introduction 

There exists a set of international standards (typically published by IEC and ASTM 

standards organizations) in the photovoltaic (PV) world that target specific testing and 

qualification methods for PV based products and enable the possibility for guaranteeing the 

performance of these products in the end use environment. These standards are typically suitable 

for silicon based and other inorganic PV technologies. Meanwhile, rapidly developing emerging 

PV technologies, such as organic photovoltaics (OPV), dye sensitized solar cells (DSSC), 

perovskite solar cells (PVSK) and others alike still lack standard testing methodologies that 

would allow reliably predicting their performance in the end use environment. The reason partly 

comes from the fact that the emerging PVs considerably differ in architecture from their 

inorganic counterparts [1] and due to their increased sensitivity towards the testing environments 

[2–5] the common testing standards are not suitable for these technologies [6]. In addition, 

standards are requirements and recommendations that are created by bringing together the best 

practices and many experiences of various expert groups in the field, and due to the relatively 

young age of the emerging technologies and lack of controllable testing procedures there has not 

been generated sufficient amount of reliable data so far that could lay the basis for development 

of standards. 

These challenges however have received significant attention in the recent years especially 

in the field of OPVs. In particular, at the sequence of International Summits on Organic solar cell 

Stability (ISOS) reliable testing of OPVs was thoroughly addressed and in 2011 

recommendations were published based on the consensus of a large number of renowned 

research groups in the field, that outlined recommendations for reliable stability testing of 

organic solar cell [7]. The guidelines set certain criteria on the test conditions and therefore 



 

3 
 

allowed reproducibly recording the ageing of the samples under specific controllable conditions 

in both indoor and outdoor testing environments. While this very much helped in reducing the 

spread in the testing procedures among the different groups and improving the reproducibility of 

the reported device lifetimes [8], the question still remained, how to develop a methodology that 

would allow predicting and thus guaranteeing the lifetime of a product in end use environment 

based on accelerated testing. Significant efforts are put today towards resolving this and in 

particular, recently DTU group has demonstrated an approach based on statistical analyses, 

where a large set of variety of OPV samples were tested under different ISOS tests and the 

average lifetime of the samples under each test condition was determined [9,10]. The values 

were then used to calculate the ratio between the accelerated and real outdoor tests, which could 

potentially be utilized for predicting device performance. However, despite the relatively large 

data sets the studies were limited to only a few architectural variations and while they well 

demonstrated the concept, the established values could not be regarded as sufficiently generic for 

application beyond the reported studies. 

The works however continued and recently a manuscript was published by the same group, 

where the same statistical approach was utilized for analysing the entire literature related to 

stability of OPVs [11]. In the study, the authors collected analysed all the articles reported until 

March 2013 discussing stability studies of OPVs (total of 2500 article). A generic lifetime 

marker was developed that allowed gauging and intercomparing the stability of the different 

OPV devices reported in these articles. The lifetime of the samples was categorised depending 

on device type and architecture and depending on the test conditions, which helped better 

understanding and elucidating the typical bottlenecks for the device stability. The study 

additionally helped establishing averages for the lifetimes of OPVs tested under different test 

conditions. However, due to the limited amount of data for certain test conditions (especially for 

outdoor data) some averages lacked statistical significance and thus, could not be regarded as 

reliable baselines for device lifetime. The initiative therefore continued with the purpose of 

further enriching the lifetime database with both literature reported and experimental data and 

converting the database into a generic hub of baselines for the lifetime of OPVs and other 

emerging PV technologies alike and utilizing the data for establishing the prediction tool. 

This work, as a complementary to the aforementioned earlier reported study, presents the 

results of the follow up literature analyses for additional period starting from March-2013 until 
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March-2015. The data analysis provides more solidified distributions of the lifetimes and allows 

drawing conclusions on the baselines for the OPV lifetimes tested under specific conditions. An 

updated version of the lifetime progress diagram is presented as well.  

  

 

 

2. Methodology 

2.1 Literature data 

The data collection procedure is explained in detail elsewhere [11]. Briefly the articles were 

identified using the search engine ScienceDirect and exploring expressions based on different 

combination of words such as polymer, plastic, organic, solar cells, photovoltaics, stability, 

ageing and lifetime. The articles that were analysed in an earlier work, also referred to as “older 

dataset”, were removed from the total pile and the remaining articles, referred to as “new 

dataset”, were inserted in an online database for further analyses. The total number of article in 

the new dataset was 2286, out of which 303 contained actual lifetime data, while the rest only 

discussed the theory behind the stability issue. The 303 articles presented ageing curve for total 

of 983 devices, which are called data points. For the comparison, in the earlier article scanning 

study total of 2500 articles were scanned, which also revealed precisely 303 articles with actual 

experimental lifetime data. It is worth mentioning that the new dataset contains also articles from 

conference proceedings dating before 2013 that were not recorded in the older dataset.    

 

2.2 Lifetime determination 

The online database with the new articles (hosted at http://plasticphotovoltaics.org/ ) was 

shared among and analysed by different groups from consortia of the COST Actions project 

(http://www.cost.eu/COST_Actions). The analysis involved scanning each article individually, 

identifying whether the article contains experimental lifetime data, registering the reported data 

by filling the database with the reported sample structures, encapsulation, testing conditions and 

determining the lifetime from the reported ageing curves. The latter was realized by following 

the steps outlined in the Table 1 and Figure 1 below. A more detailed explanation is provided 

elsewhere [11].  
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Figure 1. (a) Examples of various typical shapes of ageing curves taken from real data. (b) 
Example of identifying the best pair describing the stability of the sample. Reprinted with the 
permission from XXX. 

 

Table 1. The list of steps for determining the lifetime marker. Reprinted with the permission 
from XXX. 
 

Parameters Method 

*Determination of starting point E0 &T0 

E0 – initial performance 
T0 – initial time 

T0 & E0 pair is either chosen at the first measurement point or 
if the curve has an initial increase followed by a reduction 
(such as the curve 3 in Figure 1 (a)) then T0 & E0 is set at the 
maximum point. 

Determination of stabilized section ES & TS 

ES – performance at the start of stabilized section 
TS – starting time of stabilized section  

If after a certain point the ageing curve enters into a more 
stable phase (commonly observed during solar cell ageing), 
then a second pair of starting values TS & ES is identified, 
typically chosen at a point from where the ageing rate almost 
doesn’t change anymore, as shown on curve 1 in Figure 1 (a). 

Determination of T80 and TS80 

T80 – time when performance reaches 80% of E0 
TS80 – time when performance reaches 80% of ES 

T80 (or if applicable TS80) is determined by subtracting T0 (or 
TS) from the time when 80% of E0 (or ES) is reached. Figure 1 
(b) highlights the areas determined by T80 and TS80  

Lifetime marker [E0;T80] or [ES;TS80] 

 

The largest area among I and II in Figure 1 (b) (part of the 
curve where the sample produces the largest amount of 
energy) will then determine the pair that will describe the 
lifetime. The simple geometrical calculations reveal that the 
ratio of the areas of the trapezoids I and II are proportional to 
the ratio of the areas of the rectangles defined by the products 
of E0×T80 and ES×TS80. Thus the lifetime marker can be 
mathematically identified according to these rules:  

if  
[ ∗ ]

[ ∗ ]
≥ 1  then the marker is [E0;T80] 

if  
[ ∗ ]

[ ∗ ]
< 1  then the marker is [ES;TS80] 
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Exceptions Exceptions are made in the following cases: 

 If ES is less than half of E0, in which case the sample is 
considered to have degraded before stabilization (see 
curve 2 in Figure 1 (a)), then [E0;T80] is chosen by default 
to represent the lifetime. 

 If the measurements has been stopped prior to reaching 
the 80% threshold then “Tfinal – T0” or “Tfinal – TS”, where 
Tfinal is the point of last measurement (see curve 4 in 
Figure 1 (a)) is chosen instead to represent the minimum 
possible lifetime.  

 

The data is made publicly available at http://plasticphotovoltaics.org/lifetime-predictor.html, 

where an online interface can be found that allows analysing and reproducing the collected data 

with application of specific filters. An instruction video is additionally uploaded for navigating 

though the tool and the database. 

 

3 Results and discussion 

The data analysed collected from the new dataset was compared with the older dataset. The 

comparison revealed no significant difference in the data distribution between the two, but rather 

one complemented the other. The two datasets were therefore combined, which enabled better 

intercomparison and baselining of the lifetime distributions under different test conditions.  

Figure 2 shows the increase in the device stability and quantity of the reported lifetime data 

in the recent years based on the combination of the two datasets. There is an obvious increase in 

the values in the recent years with the total number of data points reaching beyond 300, which 

corresponds to more than 100 articles per year (given that one article contains about 3 data 

points). This is a clear indication of how important the issue of lifetime has become in the recent 

years. 
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Figure 2. The scatter plot shows the T80 values versus the reporting year for the samples tested 

under light (green triangles) and in dark (blue circles). The black line shows the number of 

reported data-points per year until 2014. 

 

3.1 Baseline for lifetime 

The combination of the two datasets significantly increased the total amount of data points 

and therefore improved the statistical significance of the lifetime distributions for the samples 

tested under different test conditions. This enabled the possibility for establishing baselines 

based on such distributions. In order to do so, the data were categorized according to four groups 

similar to the earlier work: group 1 and group 2 represented the unencapsulated samples tested 

under light and in dark respectively and group 3 and group 4 hosted the encapsulated samples 

tested correspondingly under light and in dark. The tests under light were further distinguished 

by: 

 indoor soaking under light source with spectrum close to AM1.5 and intensity close to 1 sun 

 indoor exposure to low UV or low intensity light 

 outdoor testing under real sun 

Figure 3 shows the lifetime data distribution for each test condition for the stability of the 

devices with and without encapsulation. Figure 3 (e), (f) and (a) represent the data from group 2, 

1 and 4 respectively and Figure (b) – (d) group 3. The data is presented versus the logarithmic 

scale with base four similar to o-diagram reported earlier [9]. The scale is associated with the 

common time units shown on the top of the plots, which enables the more intuitive interpretation 

of the data. Each test category is also associated with the ISOS testing procedures shown in the 
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legends. For each data distribution the average and the maximum lifetime region are defined, 

highlighted respectively with red and green markers. The average represents the most common 

lifetime values reported for OPVs, while the maximum values show the most outstanding 

lifetime reports. The corresponding time ranges for average and maximum are listed in the table 

on the right lower corner of the figure. The group 2 of unencapsulated samples tested in dark 

contains two average values representing normal and inverted device structures, which are 

discussed in the next section.  

The established baselines can serve as reference points for the performance of any newly 

produced sample tested under given test conditions:  

 If the sample outperforms the average then the sample has an improved stability 

 If the performance is in the maximum region or beyond then the sample has an outstanding 

or record lifetime respectively  

As a word of precaution, an attempt to predict the lifetime of the sample in outdoor test 

conditions based on the ratios of the indoor light soaking and outdoor tests may lead to erroneous 

results, since one is not the acceleration of the other. For simulation of the outdoor tests a more 

complicated set of accelerated tests will be required, such as combination of a number of ISOS 

test procedures. Unfortunately, the database presented in this work does not contain sufficient 

data for each individual ISOS test procedure at this stage, but with the gradual increase of the 

database the intercomparison of the data for ISOS will become possible enabling the 

development of the prediction tool.    

 Thus, the presented baselines should mainly be regarded as generic reference points for 

lifetime of organic photovoltaics for given test conditions according to the aforementioned 

grouping. 
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Figure 3. Baselines of the lifetime of OPVs tested under different ageing conditions for 

encapsulated (left plots) and unencapsulated (right plots) samples. The plots represent the 

number of data points against the time in days represented in logarithmic scale with base 4. The 

scale is associated with the common time units shown above the plots. The average and 

maximum lifetime values are highlighted in red and green and are listed in the table on the right 

lower corner. For unencapsulated samples tested in the dark there are two distinct peaks and thus 

to average values of days and months representing normal and inverted structures (see section 

3.2). The test conditions are associated with but not limited to the ISOS test conditions. 

 

3.2 Normal vs inverted structures 

In Figure 3 (e) the unencapsulated samples tested in the dark show two distinct peaks. These 

correspond to device with normal (also known as conventional) and inverted architectures. The 

former typically employs aluminium back electrode, while the latter has Ag or Au based 

electrode. Figure 4 shows the comparison of the conventional and inverted devices for samples 

with and without encapsulation. From the figure it is apparent that there is a significant 
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difference in the intrinsic stability of the normal and inverted structures, which is less 

pronounced in the case of the encapsulated samples. It has been established earlier that the 

normal structures are significantly less resistant towards the moisture due to the high sensitivity 

of the aluminium [12–14] and therefore show inferior stability when tested in the dark. In the 

case of encapsulation the sample becomes protected from the humid environment and therefore 

the reaction of the electrode with moisture is significantly reduced. In the indoor light tests, there 

is no obvious difference in the stability of the two structures, since the heat produced by the light 

source creates rather dry environment around the sample diminishing the effect of humidity. As a 

result the encapsulation of the normal structure devices has a major impact on the stability, while 

in the case of inverted structures the role of encapsulation does not seem to be significant when 

the samples are stored in dark as can be seen in Figure 4.  

 

Figure 4. The lifetime distribution of the sample with normal (top) and inverted (bottom) 
structures tested in the dark. The dark and light curves correspond to encapsulated and 
unencapsulated samples respectively.   

 

3.3 Winning Structures 
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In the older dataset collected from the earlier article scanning project there was a number of 

device architectures outlined with reported best intrinsic stabilities (unencapsulated samples). 

Similarly, in the new dataset a number of reports with samples of outstanding intrinsic stability 

were registered, which are outlined in the Table 2 below. The table highlights the structures of 

the reported samples tested under light or in dark and their corresponding lifetime and efficiency 

values. The most impressive report is the sample tested under light that has showed a lifetime of 

96 days [15]. Unfortunately, the details of the top electrode configuration were not reported, but 

it was stated that it contained a combination of different metals. It is worth mentioning also that 

one of the samples tested in the dark that showed an outstanding stability of 120 days, was 

produced in a roll-to-roll compatible process utilizing coating and printing techniques [9]. 

Nevertheless, despite a number of reports of impressive intrinsic stability, producing samples in 

a roll-to-roll compatible process with sufficient stability under light test presents a serious 

challenge that still needs to be addressed [16]. 

 

Table 2. The structure and performance parameters of unencapsulated devices tested in dark and 
under light. The active layer of all the materials is identical and consists of P3HT:PCBM[60]. 

 Dark Light 

Back Electrode Ag / Ag+Al / Ag Ag grid Al 
Multilayer 

metal electrode 
Ag 

Transport Layer 
2 

*MoOx / 
PEDOT:PSS / None 

PEDOT:PSS Cs2CO3 PEDOT:PSS MoOx 

Active Layer P3HT:PCBM P3HT:PCBM P3HT:PCBM P3HT:PCBM P3HT:PCBM 

Transport Layer 
1 

TiOx / ZnOx / ZnOx 
PEDOT:PSS 

+ ZnOx 
**Other ZnOx ZnOx 

Front Electrode ITO Ag grid ITO ITO ITO 

Substrate Glass PET Glass Glass Glass 

Structure Inverted Inverted Normal Inverted Inverted 

PCE (%) 3.7 / 3.5 / 2.5 0.93 3.6 1.9 2.85 

Lifetime (days) 198 / 187 / 146 120 100 96 17.5 

Reference [17],[18],[19] [9] [20] [15] [21] 

*  MoOx modified with Nafion 
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**  Phenothiazine, 4-phenothiazin-10-yl-anisole (APS) 
 

 

 

 

3.4 Plot of the record lifetimes 

From the previous report a so called lifetime progress diagram was presented, which 

highlighted the best reported lifetimes of organic solar cells tested under different test conditions.  

The diagram has been updated by additions from the new dataset and is presented in Figure 5. 

The references of the reports are provided in the table below the image. 

 

Indoor AM1.5G Shelf Life Outdoor Low UV Damp Heat 

PCE 
(%) 

Lifetime 
(days) 

Ref. PCE 
(%) 

Lifetime 
(days) 

Ref. PCE 
(%) 

Lifetime 
(days) 

Ref. PCE 
(%) 

Lifetime 
(days) 

Ref. PCE 
(%) 

Lifetime 
(days) 

Ref. 

1.08 0.083 [22] 0.8 0.042 [23] 0.0024 2 [24] 2.5 42 [25] NA 52 [26] 

NA 50 [27] 0.035 67 [28] 4.2 31 [29] 4.1 69 [30] 4.4 175* [31] 

NA 63 [26] 0.16 142 [32] NA 386 [27] 2.32 188 [33] 3 333 [34] 

1.09 50 [35] 2.8 417 [36] 1.43 417 [37] 5.9 271 [38]    

3.54 31 [39] 1.27 417 [40] 1.43 333 [37] 2.7 229 [41]    

NA 50 [42] 6.05 587.5 [43] NA 379 [40] 6.07 221 [44]    

2.1 75 [45] 1.06 732 [46] 1.42 400 [47] 2.7 513 [48]    

3.42 125 [49]    1.11 746 [46]       

2.59 238 [50]             

*Not compatible with ISOS-D-3 conditions: Tested at 25 oC air temperature  
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Figure 5. The best reported lifetime for each year 

 

4 Conclusions and future perspective 

 This article presented the results of the article analysis published in literature related to the 

stability of organic solar cells reported in the recent years. The progress in the number of reports 

per year dealing with the lifetime of OPVs was shown, which asserted the ever increasing 

interest towards resolving the stability issue of this technology. From the large dataset baselines 

were determined for the lifetime of OPVs, tested under different conditions, which can serve as a 

reference point for determining whether a newly reported data has an improved or record lifetime 

compared to commonly reported values. In addition, a list of devices with outstanding intrinsic 

stability was highlighted together with the detailed analysis of their structures. The updated 

version of the diagram of the record stabilities was presented as well. The work constitutes a step 

forward towards ongoing process of the development of a prediction tool for reliably 

determining the sample durability. The major challenge is the significant lack of experimental 

data for each individual ISOS testing condition and in particular for the outdoor tests, which 

hampers the development of the tool and therefore the work will continue towards generating 

and collecting more outdoor data.      
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