35 research outputs found

    Detection of OFDM Signals Using Pilot Tones and Applications to Spectrum Sensing for Cognitive Radio Systems

    Get PDF
    Nowadays there are an increasing number of wireless devices which support wireless networking and the need for higher data rate communication is increasing rabidly. As more and more systems go wireless, approaching technologies will face spectral crowding and existence of wireless devices will be an important issue. Because of the limited bandwidth availability, accepting the request for higher capacity and data rates is a challenging task, demanding advanced technologies that can offers new methods of using the available radio spectrum. Cognitive radio introduces a key solution to the spectral increasing issue by presenting the opportunistic usage of spectrum that is not heavily occupied by licensed users. It is a latest idea in wireless communications systems which objective to have more adaptive and aware communication devices which can make better use of available natural resources. Cognitive radio appears to be an attractive solution to the spectral congestion problem by introducing the notion of opportunistic spectrum use. Cognitive radios can operate as a secondary systems on top of existence system which are called primary (or licensed) systems. In this case, secondary (cognitive) users need to detect the unused spectrum in order to be able to access it. Because of its many advantages, orthogonal frequency division multiplexing (OFDM) has been successfully used in numerous wireless standards and technologies. It\u27s shown that OFDM will play an important role in realizing the cognitive radio concept as well by providing a proven, scalable, and adaptive technology for air interface. Researches show that OFDM technique is considered as a candidate for cognitive radio systems. The objective of this dissertation is to explore detecting of OFDM modulated signals using pilot tones information. Specifically we applying Time-Domain Symbol Cross-Correlation (TDSC) method in the confect of actual 4G wireless standards such as WIMAX and LTE. This detection is only based upon the knowledge of pilot structures without knowledge of received signal so that, it can be performed on every portion of the received signal. The approach induces Cross-Correlation between pilots subcarriers and exploits the deterministic and periodic characteristics of pilot mapping in the time frequency domain

    Optical Wireless Data Center Networks

    Get PDF
    Bandwidth and computation-intensive Big Data applications in disciplines like social media, bio- and nano-informatics, Internet-of-Things (IoT), and real-time analytics, are pushing existing access and core (backbone) networks as well as Data Center Networks (DCNs) to their limits. Next generation DCNs must support continuously increasing network traffic while satisfying minimum performance requirements of latency, reliability, flexibility and scalability. Therefore, a larger number of cables (i.e., copper-cables and fiber optics) may be required in conventional wired DCNs. In addition to limiting the possible topologies, large number of cables may result into design and development problems related to wire ducting and maintenance, heat dissipation, and power consumption. To address the cabling complexity in wired DCNs, we propose OWCells, a class of optical wireless cellular data center network architectures in which fixed line of sight (LOS) optical wireless communication (OWC) links are used to connect the racks arranged in regular polygonal topologies. We present the OWCell DCN architecture, develop its theoretical underpinnings, and investigate routing protocols and OWC transceiver design. To realize a fully wireless DCN, servers in racks must also be connected using OWC links. There is, however, a difficulty of connecting multiple adjacent network components, such as servers in a rack, using point-to-point LOS links. To overcome this problem, we propose and validate the feasibility of an FSO-Bus to connect multiple adjacent network components using NLOS point-to-point OWC links. Finally, to complete the design of the OWC transceiver, we develop a new class of strictly and rearrangeably non-blocking multicast optical switches in which multicast is performed efficiently at the physical optical (lower) layer rather than upper layers (e.g., application layer). Advisors: Jitender S. Deogun and Dennis R. Alexande

    D2.2 Draft Overall 5G RAN Design

    Full text link
    This deliverable provides the consolidated preliminary view of the METIS-II partners on the 5 th generation (5G) radio access network (RAN) design at a mid-point of the project. The overall 5G RAN is envisaged to operate over a wide range of spectrum bands comprising of heterogeneous spectrum usage scenarios. More precisely, the 5G air interface (AI) is expected to be composed of multiple so-called AI variants (AIVs), which include evolved legacy technology such as Long Term Evolution Advanced (LTE-A) as well as novel AIVs, which may be tailored to particular services or frequency bands.Arnold, P.; Bayer, N.; Belschner, J.; Rosowski, T.; Zimmermann, G.; Ericson, M.; Da Silva, IL.... (2016). D2.2 Draft Overall 5G RAN Design. https://doi.org/10.13140/RG.2.2.17831.1424

    Efficient Spectrum Management for Mobile Ad Hoc Networks

    Get PDF
    The successful deployment of advanced wireless network applications for defense, homeland security, and public safety depends on the availability of relatively interference-free spectrum. Setup and maintenance of mobile networks for military and civilian first-response units often requires temporary allocation of spectrum resources for operations of finite, but uncertain, duration. As currently practiced, this is a very labor-intensive process with direct parallels to project management. Given the wide range of real-time local variation in propagation conditions, spatial distribution of nodes, and evolving technical and mission priorities current human-in-the loop conflict resolution approaches seem untenable. If the conventional radio regulatory structure is strictly adhered to, demand for spectrum will soon exceed supply. Software defined radio is one technology with potential to exploit local inefficiencies in spectrum usage, but questions regarding the management of such network have persisted for years. This dissertation examines a real-time spectrum distribution approach that is based on principles of economic utility and equilibrium among multiple competitors for limited goods in a free market. The spectrum distribution problem may be viewed as a special case of multi-objective optimization of a constrained resource. A computer simulation was developed to create hundreds of cases of local spectrum crowding, to which simultaneous perturbation simulated annealing (SPSA) was applied as a nominal optimization algorithm. Two control architectures were modeled for comparison, one requiring a local monitoring infrastructure and coordination ("top down") the other more market based ("bottom up"). The analysis described herein indicates that in both cases "hands-off" local spectrum management by trusted algorithms is not only feasible, but that conditions of entry for new networks may be determined a priori, with a degree of confidence described by relatively simple algebraic formulas

    Modular wireless networks for infrastructure-challenged environments

    Get PDF
    While access to Internet and cellular connectivity is easily achieved in densely-populated areas, provisioning of communication services is much more challenging in remote rural areas. At the same time Internet access is of critical importance to residents of such rural communities. People's curiosity and realization of the opportunities provided by Internet and cellular access is the key ingredient to adoption. However, poor network performance can easily impede the process of adoption by discouraging people to access and use connectivity. With this in mind, we evaluate performance and adoption of various connectivity technologies in rural developing regions and identify avenues that need immediate attention to guarantee smoother technology adoption. In light of this analysis we propose novel system designs that meet these needs. In this thesis we focus on cellular and broadband Internet connectivity. Commercial cellular networks are highly centralized, which requires costly backhaul. This, coupled with high price for equipment, maintenance and licensing renders cellular network access commercially-infeasible in rural areas. At the same time rural cellular communications are highly local: 70% of the rural-residential calls have an originator-destination pair within the same antenna. In line with this observation we design a low-cost cellular network architecture dubbed Kwiizya, to provide local voice and text messaging services in a rural community. Where outbound connectivity is available, Kwiizya can provide global services. While commercial networks are becoming more available in rural areas they are often out of financial reach of rural residents. Furthermore, these networks typically provide only basic voice and SMS services and no mobile data. To address these challenges, our proposed work allows Kwiizya to operate in coexistence with commercial cellular networks in order to extend local coverage and provide more advanced services that are not delivered by the commercial networks. Internet connectivity in rural areas is typically provided through slow satellite links. The challenges in performance and adoption of such networks have been previously studied. We add a unique dataset and consequent analysis to this spectrum of work, which captures the upgrade of the gateway connectivity in the rural community of Macha, Zambia from a 256kbps satellite link to a more capable 2Mbps terrestrial link. We show that the improvement in performance and user experience is not necessarily proportional to the bandwidth increase. While this increase improved the network usability, it also opened opportunities for adoption of more demanding services that were previously out of reach. As a result the network performance was severely degraded over the long term. To address these challenges we employ white space communication both for connectivity to more capable remote gateways, as well as for end user connectivity. We develop VillageLink, a distributed method that optimizes channel allocation to maximize throughput and enables both remote gateway access as well as end user coverage. While VillageLink features lightweight channel probing, we also consider external sources of channel availability. We design a novel approach for estimation of channel occupancy called TxMiner, which is capable of extracting transmitter characteristics from raw spectrum measurements. We study the adoption and implications of network connectivity in rural communities. In line with the results of our analyses we design and build system architectures that are geared to meet critical needs in these communities. While the focus of analysis in this thesis is on rural sub-Saharan Africa, the proposed designs and system implementations are more general and can serve in infrastructure-challenged communities across the world

    Electroplating process plant automation and management using emerging automation and communications technologies

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.The Electroplating (EP) process industry is currently facing some challenging process control problems in their production plant due to an insufficient level of automation being applied in the industry; the control is largely manual, and the monitoring of both plant and processes is ad hoc. The requirement for higher production volumes, tighter product tolerances, and the eagerness for better quality with lower cost are forcing the electroplating Companies to automate their processes and develop more responsive process and plant monitoring and control systems. Emerging Automation and communications technologies have now made it possible to effectively implement distributed control system (DCS) based control architecture with hybrid (wired/wireless) communication networks in the industry for achieving both process automation and plant management, offering various advantages such as for real-time process plant monitoring and control, plant visualization and provision of management information for control of production throughout the plant. Electroplating process industries comprising plants with numerous process stages and production operations will particularly benefit from implementing DCS where individual process stages and functions are distributed into computing nodes (i.e., control computers and smart devices) that are physically separated; and all the computing nodes are interconnected by advanced hybrid (wired/wireless) communications networks. The introduction of less expensive and more functional microprocessors has advanced the state of the art in distributed control system technology. This research aims to develop an integrated advanced process monitoring and plant management system for an electroplating industry using emerging automation and communications technologies.University of Wolverhampton and Leonardt Ltd

    Provision Quality-of-Service Controlled Content Distribution in Vehicular Ad Hoc Networks

    Get PDF
    By equipping vehicles with the on-board wireless facility, the newly emerged vehicular networking targets to provision the broadband serves to vehicles. As such, a variety of novel and exciting applications can be provided to vehicular users to enhance their road safety and travel comfort, and finally raise a complete change to their on-road life. As the content distribution and media/video streaming, such as Youtube, Netflix, nowadays have become the most popular Internet applications, to enable the efficient content distribution and audio/video streaming services is thus of the paramount importance to the success of the vehicular networking. This, however, is fraught with fundamental challenges due to the distinguished natures of vehicular networking. On one hand, the vehicular communication is challenged by the spotty and volatile wireless connections caused by the high mobility of vehicles. This makes the download performance of connections very unstable and dramatically change over time, which directly threats to the on-top media applications. On the other hand, a vehicular network typically involves an extremely large-scale node population (e.g., hundreds or thousandths of vehicles in a region) with intense spatial and temporal variations across the network geometry at different times. This dictates any designs to be scalable and fully distributed which should not only be resilient to the network dynamics, but also provide the guaranteed quality-of-service (QoS) to users. The purpose of this dissertation is to address the challenges of the vehicular networking imposed by its intrinsic dynamic and large-scale natures, and build the efficient, scalable and, more importantly, practical systems to enable the cost-effective and QoS guaranteed content distribution and media streaming services to vehicular users. Note that to effective- ly deliver the content from the remote Internet to in-motion vehicles, it typically involves three parts as: 1.) an infrastructure grid of gateways which behave as the data depots or injection points of Internet contents and services to vehicles, 2.) protocol at gateways which schedules the bandwidth resource at gateways and coordinates the parallel transmissions to different vehicles, and 3.) the end-system control mechanism at receivers which adapts the receiver’s content download/playback strategy based on the available network throughput to provide users with the desired service experience. With above three parts in mind, the entire research work in this dissertation casts a systematic view to address each part in one topic with: 1.) design of large-scale cost-effective content distribution infrastructure, 2.) MAC (media access control) performance evaluation and channel time scheduling, and 3.) receiver adaptation and adaptive playout in dynamic download environment. In specific, in the first topic, we propose a practical solution to form a large-scale and cost-effective content distribution infrastructure in the city. We argue that a large-scale infrastructure with the dedicated resources, including storage, computing and communication capacity, is necessary for the vehicular network to become an alternative of 3G/4G cellular network as the dominating approach of ubiquitous content distribution and data services to vehicles. On addressing this issue, we propose a fully distributed scheme to form a large-scale infrastructure by the contributions of individual entities in the city, such as grocery stores, movie theaters, etc. That is to say, the installation and maintenance costs are shared by many individuals. In this topic, we explain the design rationale on how to motivate individuals to contribute, and specify the detailed design of the system, which is embodied with distributed protocols and performance evaluation. The second topic investigates on the MAC throughput performance of the vehicle-to- infrastructure (V2I) communications when vehicles drive through RSUs, namely drive-thru Internet. Note that with a large-scale population of fast-motion nodes contending the chan- nel for transmissions, the MAC performance determines the achievable nodal throughput and is crucial to the on-top applications. In this topic, using a simple yet accurate Marko- vian model, we first show the impacts of mobility (characterized by node velocity and moving directions) on the nodal and system throughput performance, respectively. Based on this analysis, we then propose three enhancement schemes to timely adjust the MAC parameters in tune with the vehicle mobility to achieve the maximal the system throughput. The last topic investigates on the end-system design to deliver the user desired media streaming services in the vehicular environment. In specific, the vehicular communications are notoriously known for the intermittent connectivity and dramatically varying throughput. Video streaming on top of vehicular networks therefore inevitably suffers from the severe network dynamics, resulting in the frequent jerkiness or even freezing video playback. To address this issue, an analytical model is first developed to unveil the impacts of network dynamics on the resultant video performance to users in terms of video start-up delay and smoothness of playback. Based on the analysis, the adaptive playout buffer mechanism is developed to adapt the video playback strategy at receivers towards the user-defined video quality. The proposals developed in the three topics are validated with the extensive and high fidelity simulations. We believe that our analysis developed in the dissertation can provide insightful lights on understanding the fundamental performance of the vehicular content distribution networks from the aspects of session-level download performance in urban vehicular networks (topic 1), MAC throughput performance (topic 2), and user perceived media quality (topic 3). The protocols developed in the three topics, respectively, offer practical and efficient solutions to build and optimize the vehicular content distribution networks

    Balancing Interactive Performance and Budgeted Resources in Mobile Computing.

    Full text link
    In this dissertation, we explore the various limited resources involved in mobile applications --- battery energy, cellular data usage, and, critically, user attention --- and we devise principled methods for managing the tradeoffs involved in creating a good user experience. Building quality mobile applications requires developers to understand complex interactions between network usage, performance, and resource consumption. Because of this difficulty, developers commonly choose simple but suboptimal approaches that strictly prioritize performance or resource conservation. These extremes are symptoms of a lack of system-provided abstractions for managing the complexity inherent in managing performance/resource tradeoffs. By providing abstractions that help applications manage these tradeoffs, mobile systems can significantly improve user-visible performance without exhausting resource budgets. This dissertation explores three such abstractions in detail. We first present Intentional Networking, a system that provides synchronization primitives and intelligent scheduling for multi-network traffic. Next, we present Informed Mobile Prefetching, a system that helps applications decide when to prefetch data and how aggressively to spend limited battery energy and cellular data resources toward that end. Finally, we present Meatballs, a library that helps applications consider the cloudy nature of predictions when making decisions, selectively employing redundancy to mitigate uncertainty and provide more reliable performance. Overall, experiments show that these abstractions can significantly reduce interactive delay without overspending the available energy and data resources.PHDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/108956/1/brettdh_1.pd
    corecore