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ABSTRACT

DETECTION OF OFDM SIGNALS USING PILOT TONES AND 
APPLICATIONS TO SPECTRUM SENSING FOR COGNITIVE

RADIO SYSTEMS

Ahmed Temtam 
Old Dominion University, 2014 

Director: Dr. Dimitrie C. Popescu

Nowadays there are an increasing number of wireless devices which support wire­

less networking and the need for higher data rate communication is increasing rabidly. 

As more and more systems go wireless, approaching technologies will face spectral 

crowding and existence of wireless devices will be an important issue. Because of 

the limited bandwidth availability, accepting the request for higher capacity and data 

rates is a challenging task, demanding advanced technologies that can offers new 

methods of using the available radio spectrum. Cognitive radio introduces a key solu­

tion to the spectral increasing issue by presenting the opportunistic usage of spectrum 

that is not heavily occupied by licensed users. It is a latest idea in wireless commu­

nications systems which objective to have more adaptive and aware communication 

devices which can make better use of available natural resources.

Cognitive radio appears to be an attractive solution to the spectral congestion 

problem by introducing the notion of opportunistic spectrum use. Cognitive radios 

can operate as a secondary systems on top of existence system which are called 

primary (or licensed) systems. In this case, secondary (cognitive) users need to detect 

the unused spectrum in order to be able to access it. Because of its many advantages, 

orthogonal frequency division multiplexing (OFDM) has been successfully used in



numerous wireless standards and technologies.

I t’s shown that OFDM will play an important role in realizing the cognitive radio 

concept as well by providing a proven, scalable, and adaptive technology for air 

interface. Researches show that OFDM technique is considered as a candidate for 

cognitive radio systems.

The objective of this dissertation is to explore detecting of OFDM modulated 

signals using pilot tones information. Specifically we applying Time-Domain Sym­

bol Cross-Correlation (TDSC) method in the confect of actual 4G wireless standards 

such as WIMAX and LTE. This detection is only based upon the knowledge of pilot 

structures without knowledge of received signal so that, it can be performed on ev­

ery portion of the received signal. The approach induces Cross-Correlation between 

pilots subcarriers and exploits the deterministic and periodic characteristics of pilot 

mapping in the time frequency domain.
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CHAPTER 1 

INTRODUCTION

Wireless communications technology has grown into a major component of the 

modern society. Nowadays the overall statistics of operators contributing to wireless 

communications services have exceeded the number of operators contributing to the 

wired communications services. Over the last two decades there has been substantial 

research and progress in wireless communications technology. Which it has developed 

as a successful section of development in the field of telecommunications. The various 

wireless communications systems existing in the present vary in conditions of data 

rate of transmission, geographical coverage area, transmission power, and mobility 

support for users. With developing technologies and with the ever growing number of 

wireless communications devices, some radio frequency (RF) bands are becoming oc­

casional currently. The RF spectrum is a limited natural resource to permit wireless 

communication technology between transmitters and receivers. The radio spectrum 

is divided into bandwidths that are allocated to different services, such as mobile, 

fixed, broadcast, fixed satellite and mobile satellite services [4], A fundamental prob­

lem facing future wireless communication systems is where to find suitable carrier 

frequencies and bandwidths to meet the predicted demand of future services. The 

bar graphs in Figure 1 provide the measured occupancy for each band for New York.

The radio spectrum is globally administered by the International Telecommuni­

cation Union (ITU) whereas the use of radio spectrum in each country is nationally
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Fig. 1: Average Spectrum Occupancy by band in New York [1]

regulated by the corresponding government agencies that have the freedom to make 

the spectrum available for particular use in their operational area such as The Federal 

Communications Commission (FCC) in the USA. The Radio Regulations developed 

by the ITU Radio-communication sector (ITU-R) are a binding treaty governing the 

use of radio spectrum. The radio spectrum between 9 kHz and 400 GHz is allocated 

in the Radio Regulations to different services and there is no unallocated spectrum 

available. Licenses are usually required for operation on certain frequency bands to 

avoid harmful interference between different networks to affect the user performance.



More information on the utilization of radio frequencies and in particular the spec­

trum requirements of International Mobile Telecommunications (IMT) systems are 

given in [5]. Even though the spectrum bands are allocated to certain services, spec­

trum occupancy measurements, such as [1] and [6], claim that large portions of the 

allocated frequency bands are only partially occupied leading to inefficient overall 

spectrum utilization. Only portions of the spectrum band are fully used. Moreover, 

there are large temporal and spatial variations in the spectrum occupancy. To meet 

the demand of future services, new novel and more flexible spectrum management 

schemes need to be developed for the future wireless networks. In addition, the reg­

ulatory framework of spectrum management is at a turning point going from strict 

regulation and licensing into the direction of liberalization.

In contrast, researches show that extensive ranges of the bands are hardly uti­

lized most of the time while other spectrums are deeply used. Nevertheless, those 

unutilized bands of the spectrum are licensed and therefore cannot be used by han­

dlers other than the license holders. It can be defined as smart wireless technology 

that is watchful of its nearby situation via detecting and sorts, a scheme that cus­

toms its grown knowledge to strategy future activities and adjust to expand the total 

communication feature and meet handler requirements. One key feature of cognitive 

radio is its capability to achievement unutilized bands to deliver different methods of 

communication [2].

Cognitive radio is a new model of scheming wireless communications systems those 

objectives to improve the use of the RF bands. The attraction behind cognitive radio 

is the shortage of the available frequency band; improve application, produced by



the developing wireless applications for mobile users. Furthermost of the existing RF 

spectrum has already been owed to extant wireless systems, nevertheless, plus only 

slight shares of it can be licensed to new wireless applications. However, researches 

have presented that some RF spectrums are significantly used by licensed users in 

specific settings and at specific periods, however that there are also several RF spec­

trums that are only some used or generally unused [7]. The main key that hints to 

wasteful usage of the frequency bands is the spectrum licensing structure itself. In 

old-style RF bands distribution built on the command and control model, wherever 

the RF bands distribution to licensed operators is not utilized, it cannot be used by 

unlicensed terminals and uses [8]. Because of this standing and inflexible distribution, 

settlement wireless systems have to function only on a devoted RF bands, and cannot 

adjust the communication band adaptation to the moving atmosphere.

1.1 COGNITIVE RADIO SYSTEM

The more populist description of CR as described in [9],cognitive radio is a tech­

nology of wireless communications in which a network or a user flexibly changes its 

transmitting or receiving parameters to achieve more efficient communication perfor­

mance without interfering with licensed or unlicensed users. A more technical and 

analytically-oriented definition of CR is offered by [10] that defines a cognitive radio as 

an intelligent wireless communication system that is aware of its surrounding environ­

ment (i.e., outside world), and uses the methodology of understanding-by-building to 

learn from the environment and adapt its internal states to statistical variations in the
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incoming RF stimuli by making corresponding changes in certain operating parame­

ters (e.g., transmit-power, carrier frequency, and modulation strategy) in real-time, 

with two primary objectives in mind,highly reliable communications whenever and 

wherever needed,efficient utilization of the radio spectrum.

Cognitive radio (CR) schemes are built on the licensed spectrum are not com­

pletely used in the some frequencies bands, where the task of spectrum is constant. 

A CR network dynamically senses spectrum and utilize a spectrum if it does not harm 

a Primary User (PU) is a licensed user defined as the user which has an exclusive right 

to a certain spectrum band. In other words, the license holders, means no need to 

be aware of cognitive users and no additional functionalities or modifications needed. 

Whereas Secondary User (SU) or (Unlicensed User) Cognitive-radio enabled users 

Lower priority than PUs [11] [12]. Assumed that the CR scheme will not interrupt 

the primary network holds license to the spectrum, the CR scheme have to check and 

frequently detects the bands. If the primary network is sensed in particular spectrum 

while the CR scheme is using it [10], then the CR scheme have to directly discontinue 

utilizing the spectrum and sense different spectrum to utilize. Else, the connection 

of SU and the PU would be significantly disconnected. There are two categories of 

band detecting in a CR networks:

1. In-band spectrum sensing.

2. Out-of-band spectrum sensing [9].

In the first category of in-band spectrum sensing, in this case CR network detects 

a band which is already utilize by the CR network, while in out-of-band spectrum
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sensing, the CR network detects a spectrum which is has not been utilized by the 

users. [13] The in-band spectrum sensing type, the CR network has to send no signal 

over a spectrum during spectrum detecting is in on, since the sent signals could badly 

disturb the band detacting. The time while the CR network has to send no indication 

is known as quiet time. This time has to be long sufficient to let maximum detecting 

exactitude [9], [14]. Nevertheless, the longer the spectrum sensing goes on, the larger:

1. The delay that is experienced by the users (which is critical to real-time traffic 

users, such as voice over Internet Protocol users)

2. The throughput loss will increase.

To explain the issue that band detecting positions for quality of service (QoS) in 

CR network, two-stage detecting was studied. Two-stage detecting serially holders 

two procedures of detecting [15]. First technique is fast sensing, that is typically 

built on simple energy detection. Second technique is fine sensing, that is built on 

complicated feature sensing [9]. Usually, fast sensing is completed extremely fast. In 

two-stage sensing, a CR scheme achieves fast detecting first. Before, on the source of 

the outcomes of the fast detecting, it picks even to achieve the acceptable detecting 

[16]. Through using the two stages sensing, the user QoS may be enhanced although 

keeping great band detecting precision [9]. Nevertheless, specified that the probability 

that fast sensing will produce a false detection is high, it could regularly be essential to 

achieve the acceptable detecting.A cognitive network is collected of a great amount 

of cognitive terminals (CTs) which were spread in a system [17]. In investigate a 

cognitive network in which the number of band detecting processes that each CT
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achieves could be distinguished for each CT centered on the sensing execution of the 

CT and resolve the issue of enhancing the amount of band detecting processes [18]. 

To accomplish the wanted detecting performance with respect to the probabilities 

that band detecting would produce a false detection and a missed detection in the 

situation of the occurrence of a primary network [19]. This detecting enhancement 

challenge which distinguishes the amount of band detecting has not yet been studied. 

In this study for detecting system, if band detecting is achieved, selected CTs will be 

involved in detecting whereas others are not. When individuals CTs which do not 

share in band detecting could accept data from a cognitive base station (BS) [20], 

therefore the achievement of the cognitive network may be maximized with respect 

to output and delay,to achieve band detecting and communicate together. Thus, 

through this system, it is likely to:- [21], [22] [23]

• Accomplish the wanted detecting achievement depends on the probabilities of 

a false detection and a missed detection.

• Maximize the achievement of cognitive network with respect to output and 

delay.

1.2 SPECTRUM  SENSING

Cognitive radio systems normally contain primary users (PU) of the spectrum, 

who are mandatory licensees, and secondary users (SU) who search for resourcefully 

use the band when the PU are idle. The introduction of cognitive radios essentially 

builds better interfering and therefore could damage the quality of service (QoS) of the
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Spectrum in Use

Dynamic
Spectrum
Access

Time

Fig. 2: Spectrum Hole

PU [24], [18]. A key challenge CR systems is the detection of unoccupied frequency 

intervals, so called spectrum holes, which defined as a band of frequencies assigned to 

a primary user, but, at a particular time and specific geographic location, the band 

is not being utilized by that user.

The effect on the PU, for instance in positions of increased interference, necessity 

to reserve at lowest level. Thus, cognitive radios need to detect the bands to sense 

if it is used or not and have to can sense very weak PU signals [25], [26]. Therefore, 

spectrum sensing is one of the most important mechanisms of cognitive radio. The 

issue of spectrum sensing is to decide if a certain band of the spectrum is used or not. 

That is, the easiest process required to distinguish among the two hypotheses [27].

Hq : y(n) = w(n). (1)
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H \:y (n )  = x(n) + w(n). (2)

where Hq noise only, H\ is signal and noise existing, x(n) represents a PU’s signal, 

w(n)is noise and n represents time.

CR have to be capable to test the spectrum and measure unrelated channel struc­

tures for instance power availability, interference, and noise temperature [28]. Fur­

thermore, the scheme have to be capable to detect different operators signals in the 

spectrum and similarly detect if they are either licensed or unlicensed users. These 

capabilities allow CR system to detect unutilized holes in the spectrum and spectral 

opportunities [13]. However, since for a shared system it is essential not to interfere 

with other licensed systems consuming the spectrum, other processes should be taken 

to agreement an interference-free communication between shared terminals. One 

method is to share the spectrum sensing information between multiple CR devices to 

reduce or even remove the probability of interference with licensed users [29]. How­

ever additional complicated algorithms could be used for spectrum sensing. Whereas 

the effectiveness of the spectrum sensing and investigating method is significant for 

a effective application of CR, the release time is very significant. The periodicity of 

detecting should be little sufficient to agree for spectrum sensing of new spectrum 

chances then, together, to sense licensed users opening the previously-identified-as 

unutilized shares of the spectrum [30]. Instead, when spectrum sensing was com­

pleted so often, the above of distribution such data will rise dropping the spectrum 

effectiveness of the entire system not to remark the rise in system difficulty.
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In OFDM systems, transformation from time domain to frequency domain is accom­

plished essentially by using DFT. Therefore, all the points in the time frequency 

network can be perused deprived of every additional hardware and calculation since 

of the hardware reprocess of Fast Fourier Transform (FFT) centers. Consuming the 

time frequency network, the range of holders that are accessible for utilization of 

spectrum holes can be accepted out consuming easy hypothesis analysis [31]. The 

DFT outputs can be filtered through time and frequency dimensions to decrease the 

reservation in detection also [32].

Spectrum Sensing and Awareness

Cognitive radio should be able to scan the spectrum and extent different channel 

characteristics such as power accessibility, interference, and noise temperature [28]. 

Furthermore, the system should be capable to recognize different users signals in the 

spectrum and also recognize if they are either licensed or unlicensed users. These 

capabilities let cognitive radio system to recognize unused parts of the spectrum and 

spectral chances. Nevertheless, subsequently for a unlicensed users it is important not 

to interfere with other licensed systems using the spectrum, other measures should be 

taken to guarantee an interference-free communication between unlicensed users. [29]. 

Then, more sophisticated algorithms can be used for sensing the spectrum. Though 

the efficiency of the spectrum sensing and investigating procedure is important for 

a effective application of cognitive radio, the processing time can be even more sig­

nificant. The periodicity of spectrum sensing should be short enough to allow for 

detection of new spectrum opportunities and, at the same time, to detect licensed
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users accessing the previously identified as unused parts of the spectrum. In OFDM 

systems, conversion from time domain to frequency domain is achieved fundamentally 

by using DFT. OFDM is a good fit for Cognitive Radio, some of the requirements 

for cognitive radios and explain how OFDM can achieve these requirements. These

requirements presented in table (1).

Cognitive radio 
requirements O FD M  strength

Spectrum sensing Inherent FFT operation of OFDM eases spectrum sensing 
in frequency domain.

Efficient spectrum 
utilization

Waveform can be easily shaped by simply turning off 
some subcarriers, where primary users exist.

Adaptation/Scalability

OFDM systems can be adapted to different transmission 
environments and available resources. Some parameters 
include: FFT size, subcarrier spacing, CP size, 
modulation, coding, subcarrier powers.

Advanced antenna 
techniques

Multiple-Input Multiple-Output (MIMO) techniques are 
commonly used with OFDM mainly because of the reduced 
equalizer complexity. OFDM also supports smart antennas.

Interoperability

With WLAN (IEEE 802.11), WMAN (IEEE 802.16). 
WRAN (IEEE 802.22), WPAN (IEEE 802.15.3a) all 
using OFDM as their PHY techniques, interoperability 
becomes easier compared to other technologies.

Multiple accessing and 
spectral allocation

Support for multiuser access is already inherited in the 
system design by assigning groups of subcarriers to 
different users (OFDMA).

Table 1: Cognitive radio requirements

O FD M  C oncept

For CR to achieve its objective, the Physical Layer (PHY) needs to be highly 

adjustable and flexible. A special instance of multicarrier transmission identified 

as Orthogonal Frequency-Division Multiplexing (OFDM) is one of the superlatives 

commonly used technologies in nowadays wireless communications systems and it
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has the potential of satisfying the above-mentioned demands of CR essentially or 

with insignificant modifications [29]. By separating the spectrum into sub-bands that 

are modulated with orthogonal subcarriers, OFDM eliminates the requirement for 

equalizers and therefore diminishes the complication of the receiver. Due of its smart 

structures, OFDM has been effectively used in several wireless technologies [33]. It is 

supposed that OFDM will similarly performance in recognizing CR idea by providing 

a proven, scalable, and adaptive technology for air interface. A basic block diagram 

of a simple OFDM system is shown in Figure .1.

Transmitter

Encoded
data

noiseReceiver

T0«*-
decoder

RF front 
endDemod.

RF front 
end

ADC

Mod.

Remove
CP

DACAdd CPP/S1FFTS/P

P/S FFT

Fig. 3: Block diagram of a generic OFDM transceiver [2]

In a multipath fading channel, because to the frequency choosiness, every subcar­

rier can has different reduction. The power on some subcarriers may be significantly 

fewer than the average power due of deep fades. Therefore, the total bit error rate 

(BER) may possibly be dominated by limited subcarriers with less power levels. To
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diminish the dilapidation of scheme performance because to this issue, channel cod­

ing could be used prior to the modulation of bits [34]. Channel coding can minimize 

the BER gradually subject to the code rate, decoder complication, and SNR level 

between other issues. Inserting is also functional to randomize the rate of bit errors 

and lead system protection to burst errors. Coded and interleaved data is then drawn 

to the constellation points to achieve data symbols [32]. This stage is denoted by the 

modulation block of Figure 3 The serial data symbols are then transformed to paral­

lel data symbols that are fed to the Inverse Discrete Fourier Transform (IDFT) block 

to achieve the time domain OFDM symbols. Time domain samples can be written as

x(n) =  ID F T X ( k )

N - l

= 53 X(k)ej2nnk/N 0 < n < N  - 1 ,  (3)
fc=0

Cognitive terminals should be capable to openly character the communicated 

waveform spectrum. It is chosen to switch over signal factors for instance the 

waveform bandwidth, center frequency, power level, center frequency, and spectrum 

cover [35]. OFDM systems can offer such flexibility since the unique nature of OFDM 

signaling. Through stopping a establishing of subcarriers, the spectrum of OFDM 

waveform can be modified formed to acceptable into the essential spectrum cover. 

Supposing the bands cover is currently identified to the CR system, selecting the 

stopped subcarriers is a reasonably easy procedure [7]. The key factors of an OFDM 

system that can be utilized to figure the waveform spectrum are quantity of subcar­

riers. Maximizing the number of subcarriers for a steady bandwidth lets the OFDM 

system to have an enhanced purpose in the frequency domain. Nevertheless, these
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Fig. 4: OFDM-based Cognitive radio system block diagram. All of the layers can 
interact with the Cognitive engine. OFDM parameters and radio are configured by 
the Cognitive engine [2]

effects in maximizing the difficulty of the FFT process and therefore aggregate the 

general scheme complication. Subcarrier power can be utilized to figure the waveform 

into the chosen mask. Unique aim to give subcarriers unlike powers is to improved 

suitable into the channel response [36].

Dissertation Contributions

In this dissertation, detection of OFDM signals using pilot tones information is 

studied and applications to Dissertation Contributionsspectrum sensing in cognitive 

radio systems are presented. Specifically, the dissertation presents spectrum sensing
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based on the Time-Domain Symbol Cross-Correlation (TDSC) of two OFDM sym­

bols. The TDSC uses the parameters that have a nonzero constant term inserted in 

the TDSC when the two OFDM symbols have similar frequency domain pilot sym­

bols. Therefore, the proposed spectrum sensing method can be applied to WiMAX 

and LTE systems that assign frequency domain pilot symbols to support in accom­

plishing synchronization and channel estimate. The dissertation focus is on sensing 

of WiMAX and LTE signals using pilot tones. This detection is only based upon the 

knowledge of pilot signals, without knowledge of received signal.

This dissertation deals with a Matlab application currently being developed to sim­

ulate WiMAX and LTE transmission in different real channels in order to test pilot 

sensing, compare them and determine in which channels use is more appropriated. 

Therefore WiMAX and LTE signals have been generated and detected after crossing 

a channel. The cyclic prefix (CP) is described and simulated for WiMAX and LTE. 

The theoretical analytical of the probability of misdetection and probability of false 

alarm for the spectrum sensors considered in both cases. Different CP ratios are 

simulated for different real channels (AWGN, Rayleigh, and Ricean).

D issertation Organization

In Chapter I, we present an over view of cognitive radio systems as we will as 

works related to study which include spectrum sensing, also a brief outline of OFDM 

system. The contributions and tentative road map of the dissertation are also pre­

sented in this chapter. In Chapter II, we show using pilot tones for spectrum sensing 

that can be adaptive for spectrum utilization of cognitive radio. In this chapter we



16

studied the concept of OFDM investigates the guard interval and cyclic extension 

also explored and studied the OFDM frame. In this chapter we show energy detec­

tion techniques, present TDSC, furthermore detection performance in fading channel 

such as AWGN Rayleigh channel and Rician fading. The theoretical derivations of 

probability of misdetection and probability of false alarm were presented. In Chapter 

III, we evaluate OFDM pilot tones for spectrum sensing with applications to mo­

bile WiMAX started the chapter with short introduction about WiMAX. Present the 

TDSC-Based technique that used for spectrum sensing. Analyzes WiMAX spectrum 

sensing and present results for WiMAX systems. In Chapter IV, we investigate the 

spectrum sensing for LTE signal. In Chapter V,we do spectrum sensing comparisons 

between WiMAX and LTE regarding a spectrum sensing and technical parallels be­

tween the LTE and WiMAX. In Chapter VI,in this Chapter, the contributions of 

this dissertation were concluded and some useful directions for future research are 

discussed. The Dissertation Organization as described in Table.2.

C H A P T E R  I
Introduction 

C H A P T E R  II 
Background 

C H A P T E R  III
Using Pilot Tones And TDSC for Mobile WiMAX 

C H A P T E R  IV  
Using Pilot Tones And TDSC for Mobile LTE Spectrum Sensing

C H A P T E R  V  
WiMAX and LTE Parallel Comparison 

C H A P T E R  V I 
Conclusion and Future Research

Table 2: Dissertation Organization
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CHAPTER 2 

BACKGROUND

In this dissertation, just mapping, frame adaptation, pilot and Transmission Pa­

rameter Signaling (TPS) signal and OFDM modulation processes are required and are 

applied in the matlab application. This is because the significant data for detecting 

the signal is contained in the pilot in other words it’s introduced through the frame 

adaption, so information used in the simulation is random. In order to make it easy 

the receiver of the signal being transmitted pilot signals are injected. Pilot signals 

are used at the time of the synchronization and equalization phase, while TPS signals 

transmits the parameters of the transmitted signal [37]. The reception has to be ca­

pable to synchronize, equalize, and decode the signal to gain access to the data seized 

by the TPS pilots. The signal mapping allows different levels of modulation and dif­

ferent inner code rates to be used to trade bit rate versus ruggedness [38], [39]. OFDM 

transmission is used. The signal mapping depends on two parameters; the modula­

tion and minimum distance separating two constellation points (a). All data carriers 

in one OFDM frame are modulated using QPSK, 16-QAM, 64-QAM, non-uniform 

16-QAM or non-uniform 64-QAM constellations. The more the QAM number can 

transmit the more coded data bits it can provide higher quality. The proportions of 

the constellations depend on a parameter a.
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2.1 OFDM  SYSTEM

The fundamental feather of OFDM is to split the bandwidth into a number of 

sub-channels such that those narrow sub-channels able to have flat fading. The basic 

idea of orthogonal sub-channels makes OFDM have a high spectral efficiency. Cyclic 

extension is a duplicate of the previous or the forward part of each OFDM symbol [40]. 

It avoids inter symbol interference (ISI) and inter carrier interference (ICI), and makes 

the transmitted signal periodic. Mathematical Descriptions of OFDM A frequent time 

model of OFDM symbol can be supposed that data X k(t) are modulated by a series 

of orthogonal sub-carriers [41]. Considering it have Nsc sub-carriers:

Sn(t) = J 2 X k( t ) e ^ k^  (4)
k=0

Then, it is sampled by a sampling frequency 1 jr .  The duration of one symbol is Tu 

that has a connection as

Tu =  Nscr (5)

Where iV,csamples are generated.When the signal X k{t) is a stable value over a symbol 

period it can be rephrased as X(k) .  The result can be characterized by:

N s c

s n (t) =  £  X { k ) e ^ k^ nT) (6)
fc=0

Matching the general form of inverse Fourier transform shown in equation (7) with

equation (6), if equation (8) then equation (5) and equation (7) are equivalent. Then,

IDFT can be used to develop the modulation of an OFDM system:

1 ^ SC
y ( n T ) =  X ( k ) e ^ k^ N^  (7)

iVsc fc=0

A ! = i b  (8)
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—►
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Fig. 5: Cyclic prefix and Guard interval

2.2 G UARD INTERVAL A N D  CYCLIC EXTENSION

Inter Symbol Interference( ISI) and Inter Channel Interference (ICI) introduced 

by transmission distortion channel do damage on the orthogonally of sub-carriers in 

OFDM. A key is to add an empty guard interval (GI) among two following symbols. 

If the size of GI is longer than the delay spread of channel reply, the next symbol does 

not interfere with the former one [42], [43]. Nonetheless if symbol edge estimation 

does not precisely locate the symbol, the unoccupied GI destroys the orthogonally 

and introduces ICI. In order to avoid this site, an implement is planned to duplicate 

the last part of an OFDM symbol into the empty GI, which is so titled Cyclic Prefix 

(CP) as shown in Figure 4. CP creates the sub-carrier signal has essential times, so it 

can continue the orthogonality [44]. In addition, adding CP to each OFDM symbol 

creates line convolution be equal to a circular convolution. The Ith received OFDM

Cyclic Prefix Insertion

i i
<  ►
Guard I FFT duration 
Interval
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symbol r/ n and its DFT R i k is defined as:

Rl,k =  D F T  | r /)n|

=  D F T { l D F T { D l>k} ® h ltn} 

D F T { l D F T { D ltk} } D F T { h , , n} 

=  • Hl,k

(9)

Since the attitude of circular convolution, the transmitted data D \k can be recovered 

by the estimation of response of channel.

Where k is the sub-carrier index, n is the sample index in time domain, /q)Tl is the 

channel impulse response and H[ k is the channel frequency response.

2.3 OFDM  FRAM E STRUCTURE

The OFDM system is specified for bandwidth channel spacing. A flexible guard 

interval is stated to allow optimum tradeoff between network topology and frequency 

efficiency [45]. This will enable the system to support different network configurations, 

such as large area Single Frequency Network (SFN) and single transmitter [46]. Two 

modes of operation are defined, a 2K mode and an 8K mode.

• The 2k mode has wider sub-carriers spacing, so it can be used against the dis­

tortion caused by Doppler spread. It is suitable for single transmitter operation 

and for small SFN networks with limited transmitter distances.

(10)
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• The 8k mode has longer symbol duration, so it is adapted for long distance 

transmission. It can be used both for single transmitter operation and for small 

and large SFN networks.

The OFDM transmitted signal is organized in frames. One super-frame is constituted 

by four frames. Each frame consists of 68 OFDM symbols and has duration of Tp- 

Each symbol is constituted by a set of K  carriers and transmitted with duration 

Tg. Depending on the mode, K  — 6.817 carriers (8k mode) or K  = 1.705 carriers (2k 

mode). The symbol is composed of two parts, a suitable part with duration Tu and 

a guard interval with duration A. The guard interval contains in a cyclic extension 

of the suitable part, Tu, and is injected before it. Four values of guard intervals are 

used 1/4, 1/8, 1/16 and 1/32. The symbols in an OFDM frame are numbered from 0 

to 67. All symbols contain data and reference information [47], [48]. In accumulation 

to the transmitted data an OFDM frame contains:

• Continual pilot carriers.

• Scattered pilot cells.

• TPS carriers.

The pilots are used for frame synchronization, frequency synchronization, time 

synchronization, channel estimation, transmission mode identification and can also 

be used to follow the phase noise. The carriers are indexed by A  € [Amjn; K max] and 

determined by K min =  0 and K max = 1.704 in 2K mode and K max =  6.816 in 8K mode 

respectively. The spacing between adjacent carriers is 1 jT u while the spacing between
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carriers K min and K max is determined by . The values for the several time-related 

parameters are given in multiples of the elementary period T. The emitted signal S(t) 

is described by the following expression:

{ 00 67  fcmox 1

e2’/c‘E E  E  (11)
m 1=0 h=kml„ I

( 12)
e2i<Jfc(t-A-l.Ts-(>8.m.Ts) ^  +  68.m).Ts < t < (I+ QS.m+l).Ts

0 else

Where K  is the carrier number, I is the OFDM symbol number, m  is the transmission 

frame number, k is the number of transmitted carriers, Ts is the symbol duration, Tu 

is the inverse of the carrier spacing, A is the duration of the guard interval, f c is the 

central frequency of the RF signal, K  is the carrier index accomplished to the center 

frequency, K' — K  -  krnax+kmm; o is the complex symbol for carrier k of the Data 

symbol number 1 in frame number Cm>otk is the complex symbol for carrier k of the 

Data symbol number 2 in frame number m and Cmi67,fc is the complex symbol for 

carrier k of the Data symbol number 68 in frame number m [49].

2.4 OFDM  IN MULTIPATH FADING CHANNELS

In wireless communications, fading is deviation of the attenuation affecting a signal 

over certain propagation media. The fading may vary with time, geographical position 

or radio frequency, and is often modeled as a random process [50]. A fading channel 

is a communication channel comprising fading. In wireless systems, fading may either 

be due to multipath propagation, referred to as multipath induced fading, or due to
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shadowing from obstacles affecting the wave propagation, sometimes referred to as 

shadow fading [51]. Fading Parameters: Model the behavior of the channel. This 

channel can be Rayleigh, Rician or AWGN.

• AWGN and Fading Channel

The AWGN channel is the simplest channel model used in most communication 

systems. The thermal noise in the receivers can be characterized as an additive white 

Gaussian process. Although there are other factors inducing channel noise, such as 

antenna temperature, receiver filter, and multipath fading [52], only multipath fading 

will be studied in this chapter. Channel fading is generally categorized into large- 

scale and small-scale fadings, which often occur simultaneously. Large-scale fading 

results from shadowing terrain contours such as hills, forests, or buildings, relative 

to the distance between transmitter and receiver. Small-scale fading, also known as 

Rayleigh fading, is not determined by the distance in communication. The small-scale 

fading is manifest in two ways: the signal spreading and the time variation [53].

• Rayleigh and Fading Channel

A Rayleigh model is widely used to model wireless multipath fading channels in prac­

tice. Rayleigh model is frequently used to describe a wireless channel with AWGN but 

without Light of Sign (LOS), where the power gain is subject to a random Rayleigh 

distribution [54].

• Rician and Fading Channel

The model behind Rician fading is similar to that for Rayleigh fading, except that 

in Rician fading a strong dominant component is present. This dominant component
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can for instance be the line-of-sight wave [55]. Refined Rician models also consider 

that,the dominant wave can be a phasor sum of two or more dominant signals, e.g. 

the line-of-sight, plus a ground reflection. This combined signal is then mostly treated 

as a deterministic (fully predictable) process, and that,the dominant wave can also 

be subject to shadow attenuation. This is a popular assumption in the modeling of 

satellite channels. Besides the dominant component, the mobile antenna receives a 

large number of reflected and scattered waves [56].

• OFDM In Multipath Slowly Fading Channel

The insertion of CP reduces the spectral efficiency [57]. Without necessary CP, two 

difficulties increase when the OFDM signal is transmitted over multipath slowly fading 

channel. One issue is that the time dispersion of the channel terminates the orthog­

onality between subcarriers and causes intercarrier interference (ICI). Additionally, 

a system may send the OFDM signal in sequence so that the time dispersion of the 

channel causes interblock interference (IBI) between successive OFDM blocks [58].

2.5 SENSING OFDM  SIGNALS  

Energy D etection

As an instance of a very basic sensing technique, we clarify the well-known energy 

detector, which known as the radiometer [59]. Simply the energy detector measures 

the energy received throughout a finite time interval and compares it to a programmed 

threshold. It should be explained that the energy detector works well for many cases, 

however it may not be the best. To develop this detector, suppose that the signal to
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be sensed does not have any known configuration that could be used, and model it 

through a zero-mean circularly symmetric complex Gaussian [60]

The functioning implication of (6) is to compare the energy of the received signal 

in contradiction of a threshold; because of the (6) is called the energy detector. Its 

performance is well known,can be expressed as

Clearly, Pp  is a function of P p^ ,N L  and the S N R  =  72/<72Note that for a fixed 

Pf a -, Pd 95 N L  — v oo at any SNR. At any SNR. That is,ideally any duo (Pd , Pf a )can 

be accomplished if detecting can be done for an randomly long time. But this is 

normally not the case in practice. It has been claimed that for some models, and 

if the probability density functions under both hypotheses are well known, energy 

detection accomplishes adjacent to the optimum detector [26], [61]. For instance, 

it was shown in [26] that the achievement of the energy detector is asymptotically 

same, at low SNR, to that of the optimum detector when the signal is modulated with 

a zero-mean finite signal constellation, supposing that the symbols are independent 

of each other and that all probability distributions are well known. A equivalent 

result was shown mathematically in [61] for the sensing of an OFDM signal. These 

productions clutch if all probability density functions, counting that of the noise, are 

well known. Compare, if for example the noise variance is unidentified, the energy

PD =  Pr(A(y) > r]Hi) =  1 -  FX 2
2 M L y < J1 - \ - y

P y 2 (1 — Pp f )* 2  M L K ’
2 M L

(14)
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detector cannot be used due knowledge of o2 is required to set the threshold. If an 

incorrect estimated value of cr2 is used in (6) then the resulting detector may perform 

rather wrong.

Tim e Domain Symbol Cross Correlation (TDSC) M ethod

Under the assumption that a packet-based OFDM transmission system. The nth 

sample of the mth  OFDM symbol can be represented as the inverse Discrete Fourier 

Transform (IDFT)of the complex data vectordmfi..dm,N — 1

xm[ n ] = E 4 , ^ Mn/iV (15)
k = 0

whereO < n < N  — 1 and N symbolizes the number of sub-carriers or equivalently the 

length of the DFT. A cyclic prefix of length Ng is added to give the mth  transmitted 

OFDM symbol xm = [xm^ - ^ g, ...,xm yv-i,^m,o, A preamble sequence is

introduced at each frame of data before transmission. Here we describe the wireless 

communication system under consideration that , the length of the Cyclic Prefix 

(CP), is longer than the length of the time invariant channel, the sample of the 

OFDM symbol can be written as

i iv-i
xi[n] =  ejV*f*n/N+°i) ■ ±  H[k}Xi[k\ej27rkn/N + wi[n] (16)

N  k= Q

0/ =  f&IM /  N  + do)

The phase 0 ; is the initial phase of the Ith OFDM symbol, A / is the carrier frequency 

offset normalized to the subcarrier spacing, M — N + L is the length of an OFDM 

symbol, Xi[k] is the data symbols at the k th  subcarrier of the Ith OFDM symbol,
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H[k] is the complex channel gain of the kth subcarrier,wi[n] is a sample of a complex 

additive white Gaussian noise (AWGN) process,assumed to be a circularly symmetric 

complex Gaussian random variable, variance of cr^/N. Furthermost of the current 

standards that accept OFDM modulation [6] [62] [10] assign pilot symbols in the 

frequency domain and these pilot symbols are called pilot tones. Suppose P a,a =  

0,1, ...A — 1,represent the sets of all possible pilot tone positions for the transmitted 

OFDM symbols. Let that P a is the set of pilot tone positions of thehth OFDM symbol 

and Xi[k] =  P a[&] for k £ P a. Now, it should recognized that the pilot symbols P a[fc] 

are predefined and have the same amplitude. For most situations,is a static constant 

and in some settings they change sign. Assume that the Ith and m th OFDM symbols 

have the same pilot tone positions and expressed as

R ( l ,m )  =  Y ,  ( 17)
JV n=0

That is the Time-Domain Symbol Cross-Correlation (TDSC) function of two OFDM 

symbols. After straight forward calculations and approximations the Eq(10) can be 

written as

R(l,rn) =  e(l — m) ■ £  W ]|2 +  t ;  £  ™l[nWm[n\- (18)
^  k£ Pa 1 k=0

R(ltm ) consists of a constant term and a noise term. Probability of Misdetection 

P m d  is the probability that the secondary user decides that a primary user is not 

present in a certain channel whereas essentially the primary wireless system does 

present that network. The probability distribution assigns for Hq and H\ of TDSC 

spectrum sensing algorithms is circularly symmetric complex Gaussian, where o2Hq 

and (Tfjl are the variances of the distributions of Hq and Hi respectively and
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is the mean of the distribution of the H \ .  Rayleigh distribution has been used for 

hypothesis H q, |T/vp|. Probability of false alarm P f a  that the secondary user decides 

that a primary user is accrue in a certain channel whereas the primary wireless system 

does not consuming that channel,According to [63],the matching threshold 7  is given 

by

7 =  \] -G2HQlnPFA• (19)

For sake of simplicity it’s been used a single-path channel, the probability of misde­

tection P m d  is expressed as

PUd = 1 - Q # w ( £ ) .  (20)

Where the function Q  /2m (x) is the right-tail probability of the non-central Chi-
x2 W

Squared distribution with two degrees of freedom.

2.6 C H A PTER  SUM M ARY

Cognitive radio is a promising effort for resolving the spectrum limited issue. On

the other hand, OFDM system is used in many wireless systems and verified as a

consistent and operative transmission technique. OFDM can be used for recognizing 

CR concept because of its abilities that are discussed in this chapter. By employing 

OFDM transmission in cognitive radio systems; adaptive, aware and flexible systems 

that can function with current technologies can be realized.
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CHAPTER 3 

USING PILOT TONES AND TDSC FOR MOBILE 

WIMAX SPECTRUM SENSING

3.1 INTRO DUCTIO N

Wireless communication systems have become ubiquitous and affordable, and their 

evolution is prompting new wireless services and applications. Current fourth genera­

tion (4G) networks and emerging wireless systems aim toward providing a multitude 

of applications and services beyond those delivered by established third generation 

(3G) cellular and wireless local area networks (WLANs).

At the physical layer of 4G systems the modulation schemes are based on Orthog­

onal Frequency Division Multiplexing (OFDM) which has many attractive features 

such as the ability to transmit over non-contiguous frequency bands, simplicity of 

implementation, and scalability. OFDM-based schemes are currently being used in 

the WiMAX/IEEE 802.16 and 3GPP/LTE standards, as well as in the established 

IEEE 802.11 standard for wireless local area networks (WLAN) [64]. We note that, 

while the spectrum assigned to WiMAX systems is not the same throughout the 

world, the WiMAX standard specifies three licensed bands for use (2.3 GHz, 2.5 GHz 

and 3.5 GHz) in a determined effort for calibration and cost efficiency [65]. We also 

note that, channel estimation in OFDM systems is accomplished either by inserting 

pilot symbols in all subcarriers, or by using pilot tones for all OFDM symbols.
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To optimize spectrum utilization in future generations of wireless systems, cog­

nitive radios (CR) are expected to allow secondary access to licensed spectrum by 

unlicensed devices subject to strict constraints. Specifically, if a CR operator senses 

the presence of licensed user in a specific spectrum band, it may not use that band 

and has to seek alternative unused bands. To detect the use of the spectrum by 

licensed systems a spectrum sensing procedure must be applied, and in this chapter 

we study spectrum sensing for OFDM systems by using an algorithm based on the 

Time-Domain Symbol Cross-correlation (TDSC) of two OFDM symbols [66]. The 

TDSC algorithm is based on the observation that the cross-correlation of two OFDM 

symbols in time domain has a non-zero component if the two symbols correspond to 

pilot tones, and the studied spectrum sensing technique is applicable to any OFDM 

scheme that shares frequency-domain pilot symbols for synchronization and frequency 

estimation [67,68].

3.2 PILOT INFORM ATION IN  W IM AX SIGNALS

The WiMAX network model is aimed to provide an IP outgoing framework with 

scalable data capacity, open access to new applications and services, improving QoS 

and mobility. The IEEE 802.16 standards explain the configuration of the Physical 

and Link Layer setups that ensue among mobile stations (MSs) and base stations 

(BSs).
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Fig. 6 : OFDM signal structure used in WiMAX

3.3 TIM E-DOM AIN SYMBOL CROSS-CORRELATION OF OFDM  

SIGNALS

Let the n-th sample of the l-th OFDM symbol be expressed as [63]

x,[n] =  g^/An/iV+tf,). J_ H [k]Xl [k]e?2*kn/N
N  k=0

+wi[n] (21)

where: A /  is the carrier frequency offset normalized to the subcarrier spacing, 8 is 

the initial phase of the l-th OFDM symbol, M  = N  + L is the length of an OFDM 

symbol, and N  is the number of subcarriers, Xi[k] are the data symbols at the Jc-th 

subcarrier of the Z-th OFDM symbol. The complex channel gain of the k-th subcarrier 

is denoted by H[k], wi[n] is a sample of a complex additive white Gaussian noise 

(AWGN) process assumed to be a circularly symmetric complex Gaussian random 

variable with variance of o^ /N .  Under the assumption that pilot tones Pa were set 

of pilot tone locations of the l-th OFDM symbol, the TDSC as defined in equation 

(10). Where it is assumed that the Z-th and m-th OFDM symbols have the same pilot
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tone positions. After calculations that are omitted due to space constraints but can 

be found in [63] we get that the TDSC.

3.4 THE TDSC-BASED TECHNIQUE FOR W IM AX SIGNAL SENS­

ING

According to [63], v =  I — m  represents the index difference of two OFDM symbols. 

Since the symbol index difference equal to v that have the same pilot tone situations. 

Additional denotation C(v) is the accrued TDSC function

C(») =  i  E  * ( ' . “ ) =  c( t > ) 4 E  £  W 2
v v = m - l  JV ^ a ^ f c g P o

+ 4  Y  Y  wi[n}w*m[n], (22)
v = m —l k = 0

where Sv is the number of R(l,m ) that are accrued and supplemented. Note that 

Sv is designated to be an integer compound of A. It is clear from (15) the mean of 

C(v) is unaffected. Nevertheless, the variance of the second term which is noise term 

in C(v) is contrariwise related to Sv. Thus, even though the accumulated number of 

R(l,m),  Sv is increased, the noise term in C(v) will decreased. As a result, it could be 

achieved spectrum sensing in scenarios with significantly low SNR. According to [63] 

C(v)

C{v) = e(v) A + ((v), (23)

where

^ ^ j E E \ m \ 2 (20)
iV a = 0  fcePa

is the average received signal power in the pilot tone positions divided by N 2 and 

C(v ) is a circularly symmetric complex Gaussian random variable.
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The possible decisions for binary hypotheses testing are:

H0 :C( v) = C(v)

H1 :C(v)=e{v)A  + ({v), (25)

where Ho corresponds to noise only while H\ to signal and noise existing. The 

likelihood ratio function is

(26)

Following some calculations, the decision statistic for the Neyman-Pearson (NP) test 

[69] is equivalent to

Tn p  = \C(v)\, (27)

and determines the probabilities of misdetection and false alarm for TDSC-based 

spectrum sensing.

The probability of misdetection Pm d  corresponds to the situation when the un­

licensed (secondary) user decides that a licensed (primary) user is not present in a 

certain channel when in fact the primary wireless system is present, while the prob­

ability of false alarm Pfa  corresponds to the case when the secondary user decides

that a primary user is present in a given channel when actually the primary wireless 

system is not active.

The probability distribution corresponding to the Hq and H\ hypotheses for the 

TDSC spectrum sensing technique is circularly symmetric complex Gaussian, where 

0^  and o"ff are the variances of the distributions of Hq and H\  respectively and 

is the mean of the distribution of the H\. We note that a Rayleigh distribution has 

been used for |7Vp| in hypothesis Hq.
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According to [63] the decision threshold 7  as given in equation (19). For sake of 

simplicity it’s been used a single-path channel, the probability of misdetection P m d  

as expressed in (20).

3.5 SIM ULATIONS A N D  NUM ERICAL RESULTS FOR W IM AX SYS­

TEM S

In this section we present simulation results corresponding to application of the 

TDSC technique for sensing of WiMAX OFDM signals. The physical layer parameters 

of the WiMAX system considered in the simulations are: the FFT size M  = 1024, 

the signals are simulated with 5 MHz double-sided bandwidth, for a mobile WiMAX 

signal with =1/8  andl/4. The system employs 16-QAM digital modulation and 

unit variance of the signal constellation is used to modulate the data subcarriers. The 

pilot subcarriers in mobile WiMAX are modulated according to the IEEE 802.16e 

standard [70]. The number of symbols in the uplink subframes is 35 and downlink 

subframes is 12, and the RTG duration is 60 ns while the TTG duration equals 107.225 

fis [71]. The roll-off factor for the transmitter window of the OFDM signal was set to 

a maximum value of 0.1 in order for the post-fix not to exceed the predefined cyclic 

prefix. The sampling frequency is chosen to be 8.4 MHz, the signal is affected by a 

phase offset <p uniformly distributed in [—7r,7r], and by a carrier frequency offset 0.5. 

The pilot symbol on subcarrier is generated as 8(0.5 — u?fc)/3 where is a value taken 

from a pseudorandom binary sequence that is different for each OFDM symbol [72]. 

At the receiver, a filter is used to eliminate the out-of-band noise an the SNR is 

determined at the output of this filter. The SNR was set from —23 dB to —14 dB, the



35

10
-2 2

TDSC-NP-AWGN-WiMax
TDSC-NP-Rayleig-WiMax
TDSC-NP-Rician-WiMax
TDSC-NPtheory-AWGN-WiMax
TDSC-NRheory-Rayleig-WiMax
TDSC-NRheory-Rician-W iMax

-20 -1 8  -16 -14 -12
SNR(dB)

-10 -8 -4

Fig. 7: Misdetection performance for the TDSC method with Pfa  — 0.01, CP length 
=  1/4 and sensing time =  50 ms

probability of false alarm Pfa  is set to be 0 .01 , and the decision threshold is found 

based on equation (3.7). The TDSC spectrum sensing method was tested for the 

parameters of WiMAX defined in [71]. The simulation environments considered are 

AWGN, multipath Rayleigh and Ricean fading channels, ITU-R normal and vehicular 

A fading channels. The maximum delay spreads for the ITU-R normal is 410 ns and 

for vehicular fading channels is 2.51 /js [73]. The maximum Doppler frequency for 

the ITU-R pedestrian channel model is set to 7.28 Hz and for the vehicular A fading 

channel model is 145.69 Hz.
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Fig. 8 : Misdetection performance for the TDSC method with Ppa  =  0.01, CP length 
=  1/8 and sensing time =  50 ms

The misdetection performance for sensing time of 50 ms and CP ratios equal to 

[1/4,1/8] is shown in Figures 5 and 6 for from where one can observe that it does not 

reduce much whereas the sensing performance under the multipath channel Rayleigh 

has a slight change.

Fig 8 there is a significant variation are observed in the curves after crossing an 

AWGN channel, a Rayleigh channel or a Rician channel. The three curves show a 

different behavior in terms of probability of misdetection. Figure 8 plots a family 

of ROC curves for TDSC method for different levels of SNR, a CP ratio of 1/4 and
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Fig. 9: ROC curves for TDSC method for different SNR, CP length = 1 / 4

multipath AWGN. As it can be seen at a glance, the behavior of the TDSC detector 

has a good performance, at a 0.9 of probability of detection is reached for a SNR 

of —20 dB. This SNR value can be considered as a good result. For over, a 0.7 of 

probability of detection is reached for a SNR of —22 dB. If you look in terms of 

probability of detection there exist a clear difference between P f a =  0.01 and P f a =  

0 .1.



38

3.6 CH APTER SUM M ARY

In this chapter we study the performance of spectrum sensing algorithm based 

on Time-Domain Symbol Cross-Correlation (TDSC) method applied to WiMAX sys­

tems. The method provides a good performance at low SNRs. The performance of 

the TDSC method for detecting WiMAX signals is illustrated with numerical results 

obtained from computer simulations using Matlab software , which show good per­

formance at low SNR in AWGN, Rayleigh, and Ricean channel scenarios. From this 

results, conclusions can be drawn regarding the probability of misdetection perfor­

mance evaluation of WiMAX Communication system over AWGN channel and fading 

(Rayleigh and Rician) channels as following. The performance of AWGN channel is 

the best of all channels as it has the lowest probability of misdetection for CP ratio of 

1/4 and 1/8. The theoretical performance of Rayleigh fading channel is the worst of 

all channels for CP ratio 1/8  as probability of detection of this channel has been much 

affected by noise however for simulation performance they were almost identical. The 

theoretical performance of Rician fading channel when CP ratio is 1/8 is worse than 

that of AWGN channel and better than that of Rayleigh fading channel.
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CHAPTER 4 

USING PILOT TONES AND TDSC FOR MOBILE LTE 

SPECTRUM SENSING

4.1 INTRO DUCTIO N

LTE is the main standard for the fourth generation (4G) of wireless communication 

systems that are capable of supporting broadband applications at data rates of up 

to 100 Mbps in the downlink and 50 Mbps in the uplink with a bandwidth of up to 

20 MHz [74], [75].

At the physical layer LTE uses OFDM which has emerged as a preferred radio 

access scheme due to its many attractive features among which we note simplicity of 

implementation and scalability [64], OFDM is also used in other wireless standards 

such as IEEE 802.11 for wireless local area networks (WLAN) and IEEE 802.15 for 

short distance and personal area networks (WPAN) [76] as well as in the current 

digital television standards [77]. In addition, OFDM has been proposed for use in 

future generations of wireless systems that will be using cognitive radio technology, 

which is expected to allow secondary access to licensed spectrum by unlicensed devices 

subject to strict constraints [2].

In anticipation of significant increases in mobile data traffic in upcoming years and 

to enable more efficient use of the frequency spectrum, recent studies have looked at 

the use of LTE systems in heterogeneous networks that include the licensed LTE
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frequencies as well as unlicensed frequencies such as the WLAN bands or the TV 

white spaces [78,79].

To detect the presence of active transmissions for general OFDM-based systems 

the use of a spectrum sensing method based on the TDSC of OFDM symbols has 

been proposed recently [63]. The TDSC method is applicable to OFDM systems 

where pilot information is included on specific frequencies and takes advantage of the 

properties that the cumulative correlation of distinct symbols displayes due to the 

periodic nature of the pilot information. In this chapter we present application of 

the TDSC method to detection of LTE signals and we illustrate its performance with 

numerical results obtained from simulations.

4.2 PILOT INFORM ATION IN  LTE SIGNALS

Currently, most of the LTE systems operating on the global market use Frequency 

Division Duplex (FDD) to implement the downlink (DL) and uplink (UL) channels 

between a provider base station and a mobile subscriber. Thus, two distinct frequency 

bands are used for communication between the mobile subscriber terminal and the 

base station.

To understand the periodic nature of the pilot information present in LTE signals 

we start by outlining the frame structure for the LTE standard. This is divided 

into 20 individual slots, each with duration of 0.5 ms as shown in Figure 10 for the 

FDD DL channel, and each slot contains OFDM symbols. The actual number

of symbols depends on the length of the cyclic prefix (CP) and the useful symbol 

duration parameters of the OFDM signal [74,75].
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Each slot within an LTE frame is represented as a two dimensional grid as shown in

Figure 11, and consists of OFDM symbols in time domain and N  =

subcarriers in frequency domain1, with as the number of resource blocks and

JV£B as the number of subcarriers in a resource block. We note that a resource block

is defined by a set of consecutive OFDM symbols in time domain and

consecutive subcarriers in frequency domain. = 12 and 24 for the LTE signals

having subcarrier spacing A/  =  15 kHz and 7.5 kHz, respectively. The resource grid

1N  represents the number of subcarriers in an OFDM symbol.



42

— --------2x7 OFDM symbols  ►

Fig. 12: Resource element mapping of pilot information in LTE signals [3]

is further partitioned as shown in Figure 11 into resource elements, which are the 

smallest entities of the grid. A resource block consists of x resource

elements, and the pilot information -  referred to as reference signals (RS) in the 

LTE standard -  is embedded in the resource blocks of the transmission frame for 

channel estimation, synchronization, and cell search/acquisition purposes [74,75] as 

illustrated in Figure 12. An RS is assigned to each cell of the network and acts as a cell 

identifier. Therefore, the RS repeats each downlink frame. The RSs are interspersed 

over the resource elements, usually transmitted on some of the subcarriers of one or 

two non-consecutive symbols in each slot. Figure 12 illustrates the distribution of 

the cell-specific RS for long CP over one resource block and two consecutive slots 

(^symb =  ^ OFDM symbols per slot and = 12 subcarriers per resource block): 

the cell-specific RS is transmitted on the first and seventh subcarriers of the first
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OFDM symbol and on the fourth and tenth subcarriers of the fourth OFDM symbol 

in each slot.

We note that the UL slot structure is similar to the DL slot structure, with 

differences mainly due to simplifications of reference symbols, robustness, and physical 

UL channel multiplexing. A detailed description of the UL slot structure is omitted 

due to space constraints.

4.3 THE TDSC-BASED TECHNIQUE FOR LTE SIGNAL SENSING

As its name suggests, the TDSC method for spectrum sensing is based on taking 

the cross-correlation in time domain for two distinct OFDM symbols with similar 

patterns for their corresponding pilot tones, that is in [63].the TDSC as defined in 

equation (10). where it is assumed that the £-th and m-th OFDM symbols have 

the same pilot tone positions. The expression of the n-th sample of the Ath OFDM 

symbol as was written in (9) where:

• / a is the carrier frequency offset normalized to the subcarrier spacing;

• 9 is the initial phase of the Ath OFDM symbol;

• M  =  N  +  L is the length of an OFDM symbol, with and N  is the number of 

OFDM subcarriers;

• Xf[k] are the data symbols at the k-th subcarrier of the Ath OFDM symbol;

• H[k\ is the complex channel gain of the k-th subcarrier;



• W(\n] is a sample of a complex additive white Gaussian noise (AWGN) process 

assumed to be a circularly symmetric complex Gaussian random variable with 

variance of cr2 /./V.

With these notations, the TDSC expression (9) can be rewritten as in (11) where 

the first summation is taken only over the set of indices P& corresponding to the pilot 

tone locations for the considered OFDM symbols £ and m. We note that the TDSC 

expression (11) does not depend on the actual positions £ and m  of the two OFDM 

symbols considered, but rather depends only on their corresponding index difference 

v = £ — m, which implies that no timing information is needed to use it to define a 

test statistic for spectrum sensing.

The test statistic used for spectrum sensing consists of the accumulated TDSC 

function over multiple pairs of OFDM symbols with the same pilot tone positions 

corresponding to equal index difference v as defined in (15). where Sv is the number 

of R(£,m) terms being accumulated taken to be some integer A  [63]. Plugging in the 

TDSC expression (15) the test statistic expression can be written as in (16). The 

term in equation (17) represents the deterministic component of the test statistic and 

is the average received signal power in the pilot tone positions divided by TV2. This 

term determines the average value of the test statistic C(v) and is is independent 

on the number of accumulated TDSC terms. The term in equation (17) represents 

the random component of the test statistic and is a circularly symmetric complex 

Gaussian random variable with zero mean and variance [63]
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Since this term is inversely related to the number Sv of accumulated TDSC terms, 

its variance will decrease as Sv increases, enabling spectrum sensing at very low 

SNRs [63].

The binary hypothises testing problem for detecting active LTE transmissions is 

formally stated as:

H0 :C(v) = « v )

Hi:C{y)  = e{v)A + C(v), (29)

where Ho corresponds to no active LTE transmission since only the noise term is 

present, while Hi corresponds to the presence of an LTE transmission for which 

the test statistic contains both noise and active signal power coming from the pilot 

information. The test statistic C(v) has a circularly symmetric complex Gaussian 

probability distribution with variance and mean =  0 in the case of hypothe­

sis Ho, respectively = e(v)A in the case of hypothesis H\.  The probabilities of 

misdetection and false alarm are defined as:

• The probability of misdetection P m d  corresponds to no LTE transmission de­

tected when hypothesis Hi is true.

• The probability of false alarm Ppa  corresponds to identifying an LTE trans­

mission when hypothesis H q  is true.

Following the Neyman-Pearson approach [69] the solution to the binary hypothesis 

testing problem (29) is obtained by threshold comparison as

|C(u)| |  7 - (30)
H0



The decision threshold 7  is obtained by setting a desired value for the probability of 

false alarm as [63]:

With the threshold given by equation (31) the probability of misdetection P m d  for 

a single-path channel is given by

where the function Q  '2, VS X ) corresponds to the right-tail of the non-central Chi-
x 2 V ' v

the expression for the probability of false alarm in (32) is only a lower bound in the 

case of multipath channels since then the TDSC expression (15) will contain addi­

tional samples due to inter-symbol interference occurring because of lack of channel 

information and timing. Theoretical expression for probability of misdetection in (12) 

for Chi-Squared distribution can be expressed as:

7 =  yJ-a \\nP F  A (31)

(32)

Squared distribution with two degrees of freedom and A = [e(u)A]2/cr2. We note that

i f x e f l x  (33)

fx {x) =  0 Otherwise, where c is a constant

1
C 2n/2r(n/2)

and F() is the Gamma funcation.
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4.4 SIM ULATIONS A N D  NUM ERICAL RESULTS FOR LTE SYS­

TEM S

In this section we present numerical results obtained from simulation, matlab is 

used to simulate to illustrate the performance of the proposed TDSC-based technique 

for detecting LTE signals.

The OFDM parameters corresponding to the physical layer of the LTE system 

considered in the simulations are:

• FFT size is N  = 2048 corresponding to a mobile LTE signal with 20 MHz 

bandwidth.

•  Cyclic prefix (CP) ratios considered are 1/4 and 1/8.

• The digital modulation scheme employed is QPSK with unit variance of the 

signal constellation.

• The pilot information is added according to the LTE standard specifications as 

outlined in Section 4.2.

• Using Matlab built-in functions,have generated AWGN, Rayleigh and Rician 

channels respectively.

Figure 13 plots a family of Receiver Operating Characteristic (ROC) curves cor­

responding to the TDSC method for SNR values ranging from —20 dB to —25 dB, 

for a CP ratio of 1/4 and AWGN channel. As it can be observed, the TDSC detector 

has a good performance with a probability of detection of 0.9 reached for SNR equal 

to -2 0  dB and 0.7 for —22 dB.
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Fig. 13: ROC curves for TDSC method for cyclic prefix equal to 1/4

The ROC in Figure 13 also shows that there is a clear difference in the probability 

of detection for P f a  =  0.01 and P f a  = 0 .1.

The performance of the TDSC method in terms of the probability of misdetection 

was also evaluated for a probability of false alarm set to Pfa  =  0.01, SNR between 

-22  dB and —4 dB, and for CP ratios equal to [1/4,1/8], in AWGN, Rayleigh, and 

Rician channel scenarios for sensing time of 50 ms corresponding to a set of 5 LTE 

frames. The corresponding plots are shown in Figures 14 and 15, from where one 

can notice that changing the CP does not affect the AWGN performance, but it 

affects the performance in Rayleigh and Rician scenarios.From figures 14 and 15 we
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Fig. 14: Probability of misdetection for the TDSC method with P f a  — 0-01 and CP 
length — 1/4

can see that, AWGN channel has lower probability of misdetection than Raleigh and 

Rician fading channel.The simulation model built for this work, demonstrates that 

AWGN channel has better probability of misdetection performance than Rayleigh 

and Rician fading channels. Results reveal that the simulated part achieves excellent 

performance, matching that of theoretical part.
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4.5 CH APTER SUM M ARY

In this chapter we presented the use of OFDM pilot tone information for detecting 

active LTE signals using the TDSC method for spectrum sensing. According to the 

LTE standard specifications, such information is embedded in in LTE signals period­

ically on specific OFDM subcarriers for synchronization and channel estimation, and 

is also useful for detecting active LTE signals by using a cross-correlation approach. 

Specifically, the TDSC technique considered in the chapter takes advantage of the 

fact that the mean of the cumulative correlation of distinct symbols with the same



pilot tone positions is constant while its variance changes, which enables detection of 

LTE transmissions in low SNR environments. The performance of the TDSC method 

for detecting LTE signals is illustrated with numerical results obtained from com­

puter simulations using Matlab software , which show good performance at low SNR 

in AWGN, Rayleigh, and Ricean channel scenarios. From this results, conclusions 

can be drawn regarding the probability of misdetection performance evaluation of 

LTE Communication system over AWGN channel and fading (Rayleigh and Rician) 

channels as following . The performance of AWGN channel is the best of all channels 

as it has the lowest probability of misdetection for CP ratio of 1/4 and 1/8. The 

theoretical performance of Rayleigh fading channel is the worst of all channels for CP 

ratio 1/8  as probability of detection of this channel has been much affected by noise 

however for simulation performance they were almost identical . The theoretical per­

formance of Rician fading channel when CP ratio is 1 /8  is worse than that of AWGN 

channel and better than that of Rayleigh fading channel.
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CHAPTER 5 

WIMAX AND LTE COMPARISON

5.1 INTRO DUCTIO N

In this chapter, since both (WiMAX and LTE)use OFDMA in the DL with higher 

order modulation and coding Peak performance is similar for same modulation and 

code rate. Both support FDD and TDD with channel BWs up to 20 MHz. Both 

support higher order MIMO antenna solutions. Both offer reduced latency [80]. Then 

in this dissertation both systems can be tested regards their spectrum sensing to see 

if there is differences and to verify their sensing behavior.

5.2 FEATURES OF LTE/W IM AX

Equally WiMAX and LTE are all-IP, all packet technology with a packet network 

central. This sorts them greatest for burst data traffic with decent VoIP support. 

Equally use OFDMA technology that is a formula of FDM where the sub-carriers are 

made orthogonal to each other [81]. This allows compressing more sub-carriers in the 

spectrum provided giving increase to higher spectral efficiency. The small sub-carrier 

split-up results in big symbol size [82]. This supports modifying ISI (Inter-Symbol 

Interference) and diminishes the necessity for complex adaptive equalization required 

in single carriers wide-band systems. OFDM is robust against frequency selective 

burst errors and narrow band interference. In OFDMA, the connection is arranged in 

both time and frequency by taking many connections sharing multiple carriers while
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this sharing can be revised periodically to maximize performance [83]. Some of the 

other features associated with LTE and WiMAX are the following features [84]:

Sub-channelization and permutation: In the assigned spectrum, some subcarri­

ers are utilized for data whereas some others are utilized as guard bands and pilots. 

Data carriers and pilots are arbitrarily selected to dissimilar sub-channels periodically. 

Meaning, the channels are hopping. This is comparable to hopping in Wifi [?]. Nev­

ertheless, just one channel is hopping in WiFi, however in these, all the sub-channels 

in the spectrum. These results in interfering and giving increase to less error correc­

tions and give back system capacity [82]. Subcarriers are subdivided into clusters and 

only some of these clusters can be utilized in any cell. This is so-called partial use 

of sub- carriers (PUSC). PUSC reduces neighboring cells interfering thus expanding 

performance. Another is the usage of fractional frequency reuse (FFR) [85]. In FFR 

terminals in the cell nearby to cell center usage all the frequencies whereas those 

near the cell boundary use frequencies dissimilar to those used near boundaries of 

bordering cells in order to decrease inter-cell interference.

Equally LTE and WiMAX use a version of OFDMA called scalable OFDMA 

(SOFDMA). In this system, at any time the bandwidth allotted to facility provider 

modifications, the number of subcarriers also. Therefore, the Doppler Effect on per­

formance is kept the same for mobile users [86]. Both LTE and WiMAX use AMC 

(adaptive modulation and coding) for link adaptation. In this system, the connection 

that is currently using modulation can be reorganized, to a more robust modulation 

on every occasion the users signal is fading, on other words. The user is moving away 

from base station thus struggling with less SNR
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5.3 TECHNICAL DIFFERENCES

There are many of technical parallels between the LTE and WiMAX in architec­

ture and objectives. LTE and WiMAX were using OFDMA with flat-IP architecture 

and both are expected to meet or even exceed IMT-Advanced requirements with par­

allel supporting technologies [87]. However, an amount of technical differences exist. 

Some of these differences with mobile WiMAX (WiMAX 1.0) compared to LTE and 

WiMAX 2.0 compared to LTE-Advanced are the following:

Duplex mode

Both LTE and WiMAX provide for both TDD and FDD. However, FDD was 

the focus of all telecom corporations and continuous throughout the different gener­

ations. TD-LTE is gaining reputation as movement path of the synchronous CDMA. 

WiMAX, otherwise, TDD focus on throughout. Upcoming WiMAX implementation 

LTE will most likely head to TD-LTE [88].

Spectrum

LTE use Licensed IMT-2000 Bands at bands like 700, 900, 1800, 2100, and 2600 

MHz while WiMAX is Licensed unlicensed, at 2.3, 2.5, 3.5 and 5.8 GHz. Therefore 

LTE is generally available at desired low frequency band that provides it coverage 

advantage. This improved its chances to function as public wide area network [89]. 

With WiMAX legend to LTE some operators started trying LTE in some of the 

WiMAX bands they already identifiable.
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Intercarrier spacing

LTE uses a typical 15 KHz intercarrier spacing while WiMAX uses 10.94 KHz. 

The larger intercarrier spacing the upper the protection against Doppler spread. LTE 

can rule mobility speeds up to 350 Km/hr whereas WiMAX can support speeds of 

the order of 120 Km/hr [90].

Access technology

LTE access technology for its downlink (OFDMA) is different to its uplink. In 

the uplink Single Carrier FDMA (SC-FDMA) is used. SC-FDMA reduces Peak-to- 

Average-Power-Ratio (PAPR) by 3 - 5 dB giving rise to uplink enhancements that 

can be used to expand coverage or throughputs of cell borders users [82]. WiMAX 

uses SOFDMA for uplink and downlink. In reality, the main problem in spreading 

GSM TDMA and wideband CDMA to broadband schemes is enlarged receiver com­

plication with multipath received signal. The key benefit of OFDM, as is for SC- 

FDMA, is its robustness against multipath signal propagation that sorts it appropri­

ate for broadband systems [91]. Paralleling 4G WiMAX and LTE from other features 

are covered in the literature as well [92]. compares LTE and WiMAX when utilized 

in companies setting from two features security and integration into corporations IT 

network. Both WiMAX and LTE can be presented and installed by the corporations 

as the next generation of mobile establishments network and WiMAX can meet con­

cerns security naturally because of the WiMAX verification protocols. In general, it 

can be determined that LTE design seems to be more specially regarding mobility,
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data throughputs and capacity [86]. Nevertheless, these features, though significant 

may not be the only issues that influence the approval of one technology compared 

to the other.

Other Differences and Factors

Alongside the technological constrains other regional, operator and controlling 

factors and constraints, principal to the preference of LTE over WiMAX or vice 

versa. WiMAX preceded LTE in appearance and organization. WiMAX is a TDD 

technology which does not need balancing spectrum with flexibility in sharing the 

time frame between the uplink and the downlink [92]. This made it appear more 

appropriate for data as the viable wireless alternative to wired DSL. This makes 

these systems more costly in terms of spectrum and equipment. But, the summary 

of TD-LTE, a TDD version of LTE with single band for its operation wipes out one 

core advantage of WiMAX over LTE

The set of IEEE standards, on which WiMAX issues are based, are modular 

separate standards offering high performance. The 4G form of WiMAX have no sus­

tenance for legacy 3GPP devices that means no handovers. On the other hand, 3GPP 

delivered a clear progression path towards LTE standards. Hence, operators world­

wide who have already arranged their networks based on 3GPP standards discover it 

a good commercial case with easy improvement and with option that they reuse their 

already possessed matching spectrum of abandoned technologies of 2G or so for the 

more efficient LTE. [93] Table (3) provides a comparison of 3GPP track that led to 

LTE and IEEE 802.16 track that led to current WiMAX.
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Characteristic 3G G P Track IEEE 802.16 Track

All IP vs 
Circuit Switched

Started Circuit switched, 
moved to half IP (2.5/3 G) 
and finally All IP (LTE)

All IP from the beginning

Architecture
Centric architecture, 
gradually moving to flat 
architecture

Flat architecture from 
the beginning

Mobility
Started voice centric 
gradually moved to data 
centric

Started as data centric 
gradually serving voice

Mode of 
operation

FDD is the main mode 
with increased interest in 
TDD recently

TDD mode mainly

Access
Technology

Different access 
technologies like 
TDM/FDM and Spread 
Spectrum before heading 
to OFDMA in LTE

OFDMA was considered 
at early stages by IEEE 
802.16 standards

Spectrum Lower licensed bands Higher licensed and 
unlicensed bands

Target
Targeted wide coverage 
and ubiquitous service

Targeted spotty dedicated 
coverage. Failed to 
provide ubiquitous 
coverage later on

Table 3: Comparison of 3GPP(LTE) and IEEE 802.16 (WiMAX).

5.4 SIMULATION A N D  DISCUSSION

This chapter presents our simulation results along with underlying assumptions. 

In order to illustrate the accuracy of the method for evolution the performance of 

spectrum sensing, extensive simulations were performed with the following set up: 

The SNR was set from -23 dB to -14 dB, the probability of false alarm Pfa  set 

to be 0.01. Then the threshold is found based on the equation (10). The pilot 

pattern assemblies of WiMAX OFDM were tested using TDSC spectrum sensing the 

parameters of WiMAX defined in [94]. OFDM WiMAX physical layer parameters



are chosen for simulations: FFT-size and M equal to 1024, the signals are simulated 

with 5 MHz double-sided bandwidth, the mobile WiMAX signal Tcp equals 1/4 and 

1/8. This supports a transmission of QAM with 16 points and unit variance of the 

signal constellation is used to modulate the data subcarriers. The pilot subcarriers 

in mobile WiMAX are modulated giving to the IEEE 802.16e standard [95]. The 

number of symbols in the uplink subframes is 35 and downlink subframes is 12, 

and the RTG duration is 60s while the TTG duration equals 107.225s [73]. Rolloff 

factor of the transmitter window of the OFDM was set of maximum value of 0.1 

in order for the post-fix not to exceed the predefined cyclic prefix. The sampling 

frequency is modulated to 8.4 MHz, as well as the signal is magnified by a phase offset ’ 

uniformly distributed in the carrier frequency offset 0.5. The simulation environments 

considered are the AWGN, multipath Rayleigh fading, and multipath Ricean fading 

channels, and ITU-R normal and vehicular A fading channels are considered. The 

maximum delay spreads for the ITU-R normal is 410 ns and vehicular A fading 

channels is 2.51s [19]. The maximum Doppler frequency for the ITU-R pedestrian 

is set 7.28 Hz, 145.69 Hz whereas the vehicular A fading channels is set 145.69 Hz. 

At the receive-station, a flter is used to eliminate the out-of-band noise; also the 

SNR is modulated at the output of this filter. The performing with respect IoPm d  

and the thresholds used with the TDSC spectrum sensing tests equivalent to a Pfa  

equal to 0.01 and with a sensing time of 50 ms. The CP ratios are set [1/4; 1/8]. 

Figure 15, 16 shows the sensing performance under the multipath channel (AWGN 

and Ricean) condition does not reduce much whereas the sensing performance under 

the multipath channel Rayleigh the sensing presentations of TDSC-NP method and
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Fig. 16: Performance Comparison of the TDSC-NP-WiMAX and LTE methods and 
the reference value for Pfa  =  0.01, CP length =  1/4

channel environments, we choose a CP ratio of 1/4 and multipath AWGN.

Figure (15) presents the performance of WiMAX and LTE using subcarrier TDSC- 

NP schemes for various channels. It is clear from the simulation outperforms the 

Rayleigh and Rician channels conditions gives better performance then AWGN in 

both WiMAX and LTE, also in this case WiMAX gets a slight better response then 

LTE . Figure (16) presents the Pm D performance of TDSC system in AWGN Rayleigh
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Fig. 17: Performance Comparison of the TDSC-NP-WiMAX and LTE methods and 
the reference value for Pfa =  0.01, CP length =  1/8

and Rician channels using CP length 1/8 for WiMAX and LTE. In case of AWGN 

channel for both techniques, we see that simulation and theory have almost similar 

performance whereas for Rayleigh channel the two performances have different PMD 

performance. We can also observe that the behavior of AWGN Rayleigh and Rician 

channels are quite similar in case of WiMAX and LTE.

In addition, it is clearly shown that the performance of SNR gives approximately
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Fig. 18: WiMax and LTE ROC curves for TDSC method for cyclic prefix equal to 
1/4

similar SNR curves for simulation and theoretical. This is due to the inherent char­

acteristic of AWGN channel.

Figure (17) shows simulation of ROC curves for TDSC method for cyclic prefix 

equal to 1/4 OFDM system using WiMAX and LTE techniques. The graph shows 

that the LTE technique of OFDMA system is identical with WiMAX technique.
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5.5 CH APTER SUM M ARY

In this chapter we consider the performance of spectrum sensing algorithm 

based on Time-Domain Symbol Cross-Correlation TDSC-NP method and applied 

to WiMAX systems.Also exploring futuer investigation to a performance of spectrum 

sensing algorithm based on TDSC method applied to WiMAX and LET systems 

and the spectrum sensing comparisons between WiMAX and LTE. The TDSC-NP 

method provides a good performance at low SNRs for both systems. TDSC-NP based 

method is simulated for CP ratios of 1/4,1/8. The sensing performance was under the 

multipath channel of AWGN,Rayleigh and Ricean. Since Both (WiMAX and LTE) 

use OFDMA in the DL with higher order modulation and coding Peak performance is 

similar for same modulation and code rate. Both support FDD and TDD with channel 

BWs up to 20 MHz. Both support higher order MIMO antenna solutions. Both offer 

reduced latency [80]. Then the simulations results as exposed in results shows the 

both systems have similar sensing behavior.
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CONCLUSIONS AND FUTURE RESEARCH

In this chapter, the contributions of this dissertation are briefly summarized and 

some useful directions for future research are outlined.

6.1 CONCLUSIONS

Cognitive radio is an exciting and promising effort for solving the spectrum crowd­

ing problem. On the other hand, OFDM technique is used in many wireless systems 

and proven as a reliable and effective transmission method. OFDM can be used for 

realizing cognitive radio concept because of its inherent capabilities that are discussed 

in this dissertation. By employing OFDM transmission in cognitive radio systems; 

adaptive, aware and flexible systems that can interoperate with current technologies 

can be realized. The adoption of OFDM in cognitive radios arises in two ways:

• Current wireless technologies change to have more and more cognitive features.

• Improved systems developed that has full cognitive features.

In either case, OFDM will be the dominant physical layer technology for cognitive 

radio. WiMAX and LTE use OFDM as mechanism multiple media access. As a result 

of this they achieve high transfer rates and decrease of the influence of multipath. 

OFDM is a scheme of that let to multiplex different data flows for different users, 

using for that the OFDM subchannels. That is why, one of the technologies that are
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getting a fair amount of interest lately in both academia and industry are WiMAX 

and LTE.

In this contribution, It has been analyzed a performance of spectrum sensing al­

gorithm based on Time-Domain Symbol Cross-Correlation (TDSC) method applied 

to WiMAX and LTE systems. In both cases, the method provides a promising re­

sults at low SNRs [96], [97]. This detection is only based upon the knowledge of 

pilot structures without knowledge received signal so that, it can be performed on 

every portion of the received signal. The approach induces cross-correlation between 

pilots subcarriers and exploits the deterministic and periodic characteristics of pilot 

mapping in the time frequency domain.

6.2 FU TU R E RESEARCH

Both WiMAX and LTE are standards used for current 4G wireless system. Both 

WiMAX and LTE appear to have similar goals for enabling worldwide wireless data 

network connectivity for cell phones, laptops and other computing devices. Never­

theless WiMAX had the priority advantage over LTE in passing to light much of the 

themes currently implemented such as the flat architecture, all IP network and TDD 

structure. LTE on the other hand, motivated from all circuit switched of 2G, complete 

half packetized of 2.5G and 3G and lastly to all IP in LTE and LTE-Advanced. The 

aim of telecoms corporations from the start was big client base, public networks and 

wide coverage whereas WiMAX ruled to serve vertical segments demanding broad­

band. This, collected with the formerly discussed factors, made WiMAX people 

understand that the network of WiMAX as a separate technology cannot last to
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compete with LTE stream and its attractive. WiMAX setting had to set strategies 

to continue. One of which is to match and participate with LTE rather than remain 

matching it.

This dissertation presents a promising results of TDSC method which can be 

implemented successfully in the design future LTE and WiMAX standards using 

Single-input Single-output. Since Multiple-Input Multiple-Output OFDM (MIMO- 

OFDM) techniques have been already adopted in LTE and WiMAX standards to 

achieve very high data rates. In these standards, high mobility users, moving at very 

high speed need to be supported. Accurate channel state information is required for 

reliable signal detection at the receiver. Pilot symbols are inserted among sub-carriers 

before transmission to accurately detection the wireless channel. In a high mobility 

environment, the wireless channel is time-variant and frequency-selective causing the 

symbol transmission to be impaired by the Doppler spread. In addition, the channel 

changes significantly within one OFDM symbol. As a consequence, the Standard 

channel detection methods cannot be used in LTE and WiMAX to support high 

mobility users. The contributions of this dissertation may be extended by proposing 

a novel pilot-aided iterative receiver, based on pilot symbols and iterative estimate 

of data symbols. The channel is estimated by TDSC method for MIMO-OFDM 

techniques.
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