16 research outputs found

    Subcarrier Pairing as Channel Gain Tailoring: Joint Resource Allocation for Relay-Assisted Secure OFDMA with Untrusted Users

    Full text link
    Joint resource allocation involving optimization of subcarrier allocation, subcarrier pairing (SCP), and power allocation in a cooperative secure orthogonal frequency division multiple access (OFDMA) communication system with untrusted users is considered. Both amplify and forward (AF), and decode and forward (DF) modes of operations are considered with individual power budget constraints for source and relay. After finding optimal subcarrier allocation for an AF relayed system, we prove the joint power allocation as a generalized convex problem, and solve it optimally. Compared to the conventional channel gain matching view, the optimal SCP is emphasized as a novel concept of channel gain tailoring. We prove that the optimal SCP pairs subcarriers such that the variance among the effective channel gains is minimized. For a DF relayed system, we show that depending on the power budgets of source and relay, SCP can either be in a subordinate role where it improves the energy efficiency, or in a main role where it improves the spectral efficiency of the system. In an AF relayed system we confirm that SCP plays a crucial role, and improves the spectral efficiency of the system. The channel gain tailoring property of SCP, various roles of SCP in improving the spectral and the energy efficiency of a cooperative communication system are validated with the help of simulation results

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    Resource Allocation for Wireless-Powered Full-Duplex Relaying Systems with Nonlinear Energy Harvesting Efficiency

    Get PDF
    In wireless power transfer (WPT)-assisted relaying systems, spectral efficiency (SE) of source-relay link plays a dominant role in system SE performance due to the limited transmission power at the WPT-aided relay. In this paper, we propose a novel protocol for a downlink orthogonal frequency division multiple access (OFDMA) system with a WPT-aided relay operating in full-duplex (FD) decode-and-forward (DF) mode, where the time slot durations of the source-relay and relay-users hops are designed to be dynamic, to enhance the utilization of degrees of freedom and hence the system SE. In particular, a multiple-input and signal-output (MISO) source-relay channel is considered to satisfy the stringent sensitivity of the energy harvesting (EH) circuit at the relay, while a single-input and single-output (SISO) relay-user channel is considered to alleviate the power consumption at the relay node. Taking into account the non-linearity of EH efficiency, a near-optimal iteration-based dynamic WPT-aided FD relaying (A-FR) algorithm is developed by jointly optimizing the time slot durations, subcarriers, and transmission power at the source and the relay. Furthermore, self-interference generated at the relay is utilized as a vital energy source rather than being canceled, which increases substantially the total energy harvested at the FD relay. We also reveal some implicit characteristics of the considered WPT-aided FD relaying system through intensive discussions. Simulation results confirm that the proposed A-FR achieves a significant enhancement in terms of SE with different relay's locations and the number of users, compared to the conventional symmetric WPT-aided FD relaying (S-FR) and the time-switching-based WPT-aided FD relaying (TS-FR) benchmarks

    Energy efficiency and interference management in long term evolution-advanced networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Cellular networks are continuously undergoing fast extraordinary evolution to overcome technological challenges. The fourth generation (4G) or Long Term Evolution-Advanced (LTE-Advanced) networks offer improvements in performance through increase in network density, while allowing self-organisation and self-healing. The LTE-Advanced architecture is heterogeneous, consisting of different radio access technologies (RATs), such as macrocell, smallcells, cooperative relay nodes (RNs), having various capabilities, and coexisting in the same geographical coverage area. These network improvements come with different challenges that affect usersā€™ quality of service (QoS) and network performance. These challenges include; interference management, high energy consumption and poor coverage of marginal users. Hence, developing mitigation schemes for these identified challenges is the focus of this thesis. The exponential growth of mobile broadband data usage and poor networksā€™ performance along the cell edges, result in a large increase of the energy consumption for both base stations (BSs) and users. This due to improper RN placement or deployment that creates severe inter-cell and intracell interferences in the networks. It is therefore, necessary to investigate appropriate RN placement techniques which offer efficient coverage extension while reducing energy consumption and mitigating interference in LTE-Advanced femtocell networks. This work proposes energy efficient and optimal RN placement (EEORNP) algorithm based on greedy algorithm to assure improved and effective coverage extension. The performance of the proposed algorithm is investigated in terms of coverage percentage and number of RN needed to cover marginalised users and found to outperform other RN placement schemes. Transceiver design has gained importance as one of the effective tools of interference management. Centralised transceiver design techniques have been used to improve network performance for LTE-Advanced networks in terms of mean square error (MSE), bit error rate (BER) and sum-rate. The centralised transceiver design techniques are not effective and computationally feasible for distributed cooperative heterogeneous networks, the systems considered in this thesis. This work proposes decentralised transceivers design based on the least-square (LS) and minimum MSE (MMSE) pilot-aided channel estimations for interference management in uplink LTE-Advanced femtocell networks. The decentralised transceiver algorithms are designed for the femtocells, the macrocell user equipments (MUEs), RNs and the cell edge macrocell UEs (CUEs) in the half-duplex cooperative relaying systems. The BER performances of the proposed algorithms with the effect of channel estimation are investigated. Finally, the EE optimisation is investigated in half-duplex multi-user multiple-input multiple-output (MU-MIMO) relay systems. The EE optimisation is divided into sub-optimal EE problems due to the distributed architecture of the MU-MIMO relay systems. The decentralised approach is employed to design the transceivers such as MUEs, CUEs, RN and femtocells for the different sub-optimal EE problems. The EE objective functions are formulated as convex optimisation problems subject to the QoS and transmit powers constraints in case of perfect channel state information (CSI). The non-convexity of the formulated EE optimisation problems is surmounted by introducing the EE parameter substractive function into each proposed algorithms. These EE parameters are updated using the Dinkelbachā€™s algorithm. The EE optimisation of the proposed algorithms is achieved after finding the optimal transceivers where the unknown interference terms in the transmit signals are designed with the zero-forcing (ZF) assumption and estimation errors are added to improve the EE performances. With the aid of simulation results, the performance of the proposed decentralised schemes are derived in terms of average EE evaluation and found to be better than existing algorithms

    Determination of optically stimulated luminescence dosimetric characteristics and suitability for entrance surface dose assessement in diagnostic x-ray examinations

    Get PDF
    The availability of Optically Stimulated Luminescence (OSL) dosimeter system developed by Landauer Inc. (Glenwood IL) has greatly improved radiation dosimetry application in the medical field. Recent studies with OSL dosimeters (nanoDots) gave much emphases to patient radiation exposure in radiotherapy but ignoring the potential risks from radiographic examinations. This study focused on the measurement of entrance surface dose (ESD) resulting from radiographic examination. Monitoring procedures have been developed by the International Atomic Energy Agency (IAEA) to estimate ESD, while considering exposure parameters and patientā€™s characteristics. However, dosimetric properties of the OSL system must be characterized to ascertain its suitability for ESD measurements in medical radiography due to energy dependence and over-response factors of the Al2O3 material. This thesis consists of three phases: 1) evaluating stability of the new OSL dosimetry system, 2) characterizing the nanoDots in radiographic energy range from 40 kV to 150 kV with typical doses ranging from 0 to 20 mGy, and 3) assessing suitability of the nanoDots for ESD measurement in routine X-ray examinations. The dosimetric characteristics of the nanoDots in the above energy range are presented in this study, including repeatability, reproducibility, signal depletion, element correction factor, linearity, angular and energy dependence, and dose measurement accuracy. Experimental results showed repeatability of below 5% and reproducibility of less than 2%. OSL signals after sequential readouts were reduced by approximately 0.5% per readout and having good linearity for doses between 5 ā€“ 20 mGy. The nanoDots OSL dosimeter showed significant angular and energy dependence in this energy range, and corresponding energy correction factors were determined in the range of 0.76 ā€“ 1.12. ESDs were determined in common diagnostic X-ray examinations using three different methods including direct (measured on phantom/patient) and indirect (without phantom) measurements with nanoDots OSL dosimeters, and CALDose_X 5.0 software calculations. Results from direct and indirect ESD measurements showed good agreement within relative uncertainties of 5.9% and 12%, respectively, in accordance with the International Electrotechnical Commission (IEC) 61674 specifications. However, the measured results were below ESDs calculated with CALDose_X 5.0 software. Measured eye and gonad doses were found to be significant compared to ESDs during anterior-posterior (AP) abdomen and AP skull examinations, respectively. The results obtained in this research work indicate the suitability of utilizing nanoDots OSL dosimeter for entrance surface dose assessment during diagnostic X-ray examinations

    Beamforming and non-orthogonal multiple access for rate and secrecy enhancement of fifth generation communication system

    Get PDF
    The fifth-generation (5G) communication systems have many anticipated functionalities and requirements such as high data rate, massive connectivity, wide coverage area, low latency and enhanced secrecy performance. In order to meet these criteria, communication schemes that combine 5G key enabling technologies need to be investigated. In this thesis, a novel communication system that merges non-orthogonal multiple access (NOMA), energy harvesting, beamforming, and full-duplex (FD) techniques in order to enhance both capacity and secrecy of 5G system is introduced. In the capacity improving scheme, NOMA is first combined with beamforming to serve more than one user in each beamforming vector. Next, simultaneous wireless information and power transfer (SWIPT) technique is exploited to encourage the strong user (user with better channel condition) to relay the information messages of the weak user (user with poor channel condition) in FD manner. The total sum rate maximisation problem is formulated and solved by means of convex-concave procedure. The system performance is also analysed by deriving the outage probability of both users. Additionally, the model is extended to a more general case wherein the users are moving, and the outage probability of this dynamic topology is provided by means of the stochastic geometry framework. Novel secure schemes are also introduced to safeguard legitimate usersā€™ information from internal and external eavesdroppers. In the internal eavesdropperā€™s case, artificial signal concept is adopted to protect NOMAā€™s weak userā€™s information from being intercepted by the strong user. The secrecy outage probability of theweak user is derived and validated. In addition, game theory discipline is exploited to provide an efficient eavesdropping avoidance algorithm. Null-steering beamforming is adopted in the external eavesdropperā€™s case in two different schemes namely self and nonself-cooperative jamming. In self-cooperative strategy, the base station applies the null-steering jamming to impair the eavesdropper channel, while sending the information-bearing signals to the intended legitimate users. Whereas in the nonself-cooperative jamming scheme, the base station provides the helpers with the required information and power by means of SWIPT technique in the first phase. The helpers deploy null-steering beamforming to jam the eavesdropper during the information exchange between the base station and the intended users in the second phase. The secrecy outage probability of the legitimate users is derived in both jamming schemes. Game theory is also introduced to the nonself-cooperative jamming scheme for further improvements on the secrecy outage behaviour and the economic revenue of the system. The proposed capacity enhancing scheme demonstrates about 200% higher sum rate when compared with the non-cooperative and half-duplex cooperative NOMA systems. In addition, the novel secure scheme in the internal eavesdropper case is proven to enhance the information security of the weak user without compromising the functionalities of the strong user or NOMA superiority over orthogonal multiple access systems. Null-steering based jamming system also illustrates improved secrecy performance in the external eavesdropper case when compared to the conventional jamming schemes. Numerical simulations are carried out in order to validate the derived closed-form expressions and to illustrate the performance enhancement achieved by the proposed schemes where the rate is increased by 200% and the secrecy outage probability is decreased by 33% when compared to the baseline systems

    Mobile Edge Computing

    Get PDF
    This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achieving intelligence in the next-generation wireless communications and computing networks. The book starts with the basic concepts, key techniques and network architectures of MEC. Then, we present the wide applications of MEC, including edge caching, 6G networks, Internet of Vehicles, and UAVs. In the last part, we present new opportunities when MEC meets blockchain, Artificial Intelligence, and distributed machine learning (e.g., federated learning). We also identify the emerging applications of MEC in pandemic, industrial Internet of Things and disaster management. The book allows an easy cross-reference owing to the broad coverage on both the principle and applications of MEC. The book is written for people interested in communications and computer networks at all levels. The primary audience includes senior undergraduates, postgraduates, educators, scientists, researchers, developers, engineers, innovators and research strategists
    corecore