
123

S I M U L A S P R I N G E R B R I E F S O N CO M P U T I N G 9

Yan Zhang

Mobile
Edge
Computing

Simula SpringerBriefs on Computing

Volume 9

Editor-in-Chief

Aslak Tveito, Simula Research Laboratory, Fornebu, Norway

Series Editors

Are Magnus Bruaset, Simula Research Laboratory, Fornebu, Norway

Kimberly Claffy, San Diego Supercomputer Center, CAIDA, University of
California, San Diego San Diego Supercomputer Center, CAIDA, San Diego, CA,
USA

Magne Jørgensen, Software Engineering, Simula Research Laboratory, Fornebu,
Norway

Olav Lysne, Simula Research Laboratory, Fornebu, Norway

Andrew McCulloch, Bioengineering 0412, University of California, San Diego, La
Jolla, CA, USA

Fabian Theis, Institute of Computational Biology, Helmholtz Zentrum München,
Neuherberg, Germany

Karen Willcox, Department of Aeronautics & Astronautics, Massachusetts Institute
of Technology, Cambridge, MA, USA

Andreas Zeller, Saarbrücken, Germany

Springer and Simula have launched a new book series, Simula SpringerBriefs on
Computing, which aims to provide introductions to select research in computing.
The series presents both a state-of-the-art disciplinary overview and raises essential
critical questions in the field. Published by SpringerOpen, all Simula SpringerBriefs
on Computing are open access, allowing for faster sharing and wider dissemination
of knowledge.

Simula Research Laboratory is a leading Norwegian research organization which
specializes in computing. The book series will provide introductory volumes on
the main topics within Simula’s expertise, including communications technology,
software engineering and scientific computing.

By publishing the Simula SpringerBriefs on Computing, Simula Research Labo-
ratory acts on its mandate of emphasizing research education. Books in this series
are published only by invitation from a member of the editorial board.

More information about this series at http://www.springer.com/series/13548

http://www.springer.com/series/13548

Yan Zhang

Mobile Edge Computing

Yan Zhang
Department of Informatics
University of Oslo
Oslo, Norway

ISSN 2512-1677 ISSN 2512-1685 (electronic)
Simula SpringerBriefs on Computing
ISBN 978-3-030-83943-7 ISBN 978-3-030-83944-4 (eBook)
https://doi.org/10.1007/978-3-030-83944-4

© The Author(s) 2022. This book is an open access publication.
OpenAccess This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribu-
tion and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and indicate if changes were
made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-83944-4
http://creativecommons.org/licenses/by/4.0/

Preface

This book offers comprehensive, self-contained knowledge on Mobile Edge
Computing (MEC), a very promising technology for achieving intelligence in
next-generation wireless communications and computing networks. With the rapid
development of beyond 5G/6G and the Internet of Things, increasing number of
smart devices are being deployed at the edge of networks. Due to the enormous
amount of data and long transmission distances, centralized computing mechanisms
incur high latency and network congestion. By placing the computing and storage
resources closer to the users, MEC can significantly increase performance in terms
of low latency, reduced communications overhead, and high-quality user experi-
ence. Further, processing data on edge devices will enhance system security and data
privacy.

This book allows for easy cross-referencing owing to the broad coverage on both
the principle and applications ofMEC. It covers the basics, essential topics, and future
directions ofMEC. It also details the design and implementation of communications,
computing, and caching in MEC. The book starts with the basic concepts, key tech-
niques, and network architectures ofMEC. Then, we present the wide applications of
MEC, including edge caching, 6G networks, the Internet of Vehicles, and unmanned
aerial vehicles. In the last part, we present new opportunities when MEC meets
blockchain, artificial intelligence, and distributed machine learning (e.g., federated
learning). We also identify the emerging applications of MEC in a pandemic, the
Industrial Internet of Things, and disaster management.

The objectives of this book are to provide the basic concepts of MEC, to explore
the promising application scenarios of MEC integrated with emerging technolo-
gies, and to give insights into the possible future directions of MEC. For better
understanding, this book also presents a few use cases of MEC models and applica-
tions in different scenarios. The primary audience includes senior undergraduate and
postgraduate students, educators, scientists, researchers, engineers, innovators, and
research strategists. This book ismainly designed for academics and researchers from
both academia and industry who are working in the field of wireless networks and

v

vi Preface

edge intelligence. Students majoring in computer science, electronics, and commu-
nications will also benefit from this book. The content of this book will also be useful
for senior undergraduate students, graduate students, and faculty working in MEC.

Oslo, Norway Yan Zhang

Acknowledgements

This book was mainly written during the COVID-19 period, and the writing took
much longer than expected. My gratitude goes out to all of my excellent students
and research collaborators. I appreciate all their contributions of time, discussions,
and ideas that made this book possible. Our joint publications in IEEE journals and
conferences provided solid, high-quality material for the book.

Special thanks go to Prof. Aslak Tveito at Simula Research Laboratory, Prof.
Olav Lysne at the Simula Metropolitan Center for Digital Engineering, and Rachel
Thomas at Simula Research Laboratory for their patience and support since the
beginning until the final stage. I am very thankful for Simula Research Laboratory,
where I worked from 2006 to 2016. This was the most important period of my career
development. With the strong support of Simula Research Laboratory and the trust
of Prof. Olav Lysne, I was very lucky to receive awards and honors in recent years,
including IEEE Fellow and Highly Cited Researcher. The most important scientific
contributions that elevated me to IEEE Fellow were carried out at Simula Research
Laboratory.

I am very grateful to the staff at Springer for their great efforts during the typeset-
ting period. Last but not least, I want to express my deep thanks to my families and
friends for their constant encouragement, patience, and understanding throughout
this project during the COVID-19 period.

February 2021 Yan Zhang

vii

Contents

1 Introduction . 1
1.1 Mobile Cloud Computing (MCC) . 1
1.2 Overview of MEC . 4
1.3 Book Organization . 7

2 Mobile Edge Computing . 9
2.1 A Hierarchical Architecture of Mobile Edge Computing

(MEC) . 9
2.2 Computation Model . 11

2.2.1 Computation Model of Local Execution 12
2.2.2 Computation Model of Full Offloading 13
2.2.3 A Computation Model for Partial Offloading 14

2.3 Offloading Policy . 15
2.3.1 Binary Offloading . 15
2.3.2 Partial Offloading . 18

2.4 Challenges and Future Directions . 20

3 Mobile Edge Caching . 23
3.1 Introduction . 23
3.2 The Architecture of Mobile Edge Caching . 23
3.3 Caching Performance Metrics . 25

3.3.1 Hit Rate Ratio . 25
3.3.2 Content Acquisition Latency . 26
3.3.3 Quality of Experience (QoE) . 26
3.3.4 Caching System Utility . 27

3.4 Caching Service Design and Data Scheduling Mechanisms 28
3.4.1 Edge Caching Based on Network Infrastructure

Services . 28
3.4.2 Edge Caching Based on D2D Services 29
3.4.3 Hybrid Service–Enabled Edge Caching 30

3.5 Case Study: Deep Reinforcement Learning–Empowered
Social–Aware Edge Caching . 32
3.5.1 System Model . 32

ix

x Contents

3.5.2 Problem Formulation and a DDPG-Based Optimal
Content Dispatch Scheme . 33

3.5.3 Numerical Results . 35

4 Mobile Edge Computing for Beyond 5G/6G . 37
4.1 Fundamental Characteristics of 6G . 37
4.2 Integrating Mobile Edge Computing (MEC) into 6G:

Motivations, Applications, and Challenges . 38
4.2.1 Use Cases of Integrating MEC into 6G 38
4.2.2 Applications of Integrating MEC into 6G 39
4.2.3 Challenges of Integrating MEC into 6G 41

4.3 Case Study: MEC-Empowered Edge Model Sharing for 6G 42
4.3.1 Sharing at the Edge: From Data to Model 42
4.3.2 Architecture of Edge Model Sharing . 43
4.3.3 Processes of Edge Model Sharing . 43

5 Mobile Edge Computing for the Internet of Vehicles 47
5.1 Introduction . 47
5.2 Challenges in VEC . 48
5.3 Architecture of VEC . 49
5.4 Key Techniques of VEC . 51

5.4.1 Task Offloading . 51
5.4.2 Heterogeneous Edge Server Cooperation 53
5.4.3 AI-Empowered VEC . 54

5.5 A Case Study . 56
5.5.1 Predictive Task Offloading for Fast-Moving Vehicles 56
5.5.2 Deep Q-Learning for Vehicular Computation

Offloading . 60

6 Mobile Edge Computing for UAVs . 65
6.1 Unmanned Aerial Vehicle–Assisted Mobile Edge Computing

(MEC) Networks . 65
6.2 Joint Trajectory and Resource Optimization in UAV-Assisted

MEC Networks . 67
6.2.1 Resource Allocation and Optimization in the Scenario

of a UAV Exploiting MEC Computing Capabilities 67
6.2.2 Resource Allocation and Optimization in the Scenario

of a UAV Serving as a Computing Server 68
6.2.3 Resource Allocation and Optimization in the Scenario

of a UAV Serving as a Relay for Computation
Offloading . 70

6.3 Case Study: UAV Deployment and Resource Optimization
for MEC at a Wind Farm . 71
6.3.1 UAV Deployment for MEC at a Wind Farm 72
6.3.2 Joint Trajectory and Resource Optimization

of UAV-Aided MEC at a Wind Farm . 76

Contents xi

6.4 Conclusions . 79

7 The Future of Mobile Edge Computing . 81
7.1 The Integration of Blockchain and Mobile Edge Computing

(MEC) . 81
7.1.1 The Blockchain Structure . 82
7.1.2 Blockchain Classification . 87
7.1.3 Integration of Blockchain and MEC . 88

7.2 Edge Intelligence: The Convergence of AI and MEC 91
7.2.1 Federated Learning in MEC . 91
7.2.2 Transfer Learning in MEC . 97

7.3 MEC in Other Applications . 100
7.3.1 MEC in Pandemics . 100
7.3.2 MEC in the Industrial IoT (IIoT) . 102
7.3.3 MEC in Disaster Management . 104

References . 107

Acronyms

5G Fifth-generation mobile networks
6G Sixth-generation mobile networks
AI Artificial intelligence
API Application programming interface
BS Base station
D2D Device to device
DDPG Deep deterministic policy gradient
DPoS Delegated proof of stake
DRL Deep reinforcement learning
IIoT Industrial Internet of Things
IoT Internet of Things
IoV Internet of Vehicles
LTE Long-Term Evolution
MBS Macro base station
MCC Mobile cloud computing
MEC Mobile edge computing
ML Machine learning
NOMA Non-orthogonal multiple access
OMA Orthogonal multiple access
P2P Peer to peer
PBFT Practical Byzantine fault tolerance
PoS Proof of stake
PoW Proof of work
QoE Quality of experience
QoS Quality of service
RAN Radio access network
RSU Roadside unit
SINR Signal-to-noise-plus-interference ratio
TDMA Time division multiple access
UAV Unmanned aerial vehicle
V2I Vehicle-to-infrastructure
V2R Vehicle-to-RSU

xiii

xiv Acronyms

V2V Vehicle-to-vehicle
VEC Vehicle edge computing
VR Virtual reality

Chapter 1
Introduction

Abstract This chapter first introduces the fundamental concepts of mobile cloud
computing. The differences between mobile edge computing and mobile cloud com-
puting are then discussed in detail. The European Telecommunications Standards
Institute’s concept of mobile edge computing is introduced with respect to mobile
edge computing’s definition, architecture, advantages, and potential applications.

1.1 Mobile Cloud Computing (MCC)

MCC integrates cloud computing with mobile devices to enhance mobile device
capabilities such as computing and storage. The user experience is improved by the
execution of computation- and storage-sensitive applications through cloud comput-
ing and the delivery of related services. The architecture of MCC and mobile edge
computing (MEC) is illustrated in Fig. 1.1. Mobile devices connect to the web ser-
vices through nearby base stations. Web services act as the application programming
interface (API) between mobile devices and the cloud and deliver cloud applications
to the mobile devices. In current architecture, mobile devices can access cloud ser-
vices through base stations in mobile network or Wi-Fi access points. MCC enables
resource-limited mobile devices to run applications that are latency insensitive but
computation intensive.

However, the inherent limitation of MCC is the long transmission distance
between mobile devices and the cloud, which incurs long execution latencies and
cannot satisfy the time constraints of latency-critical applications. There exist signif-
icant differences between MEC systems and MCC systems. MEC integrates cloud
computing into mobile networks to provide computing and storage capabilities to
end users at the edge. The main differences betweenMCC andMEC are summarized
in Table1.1.

• Physical server: In MCC systems, the physical servers are located in large-scale
data centers. The data centers are large specific buildings. The buildings are
equipped with adequate power supply and cooling equipment. The MCC servers
are equipped with high computing and storage capabilities. In MEC systems,
however, the servers are colocated with small-scale data centers, such as wireless

© The Author(s) 2022
Y. Zhang, Mobile Edge Computing, Simula SpringerBriefs on Computing 9,
https://doi.org/10.1007/978-3-030-83944-4_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83944-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-83944-4_1

2 1 Introduction

Fig. 1.1 The architecture of MCC and MEC

Table 1.1 Comparison of MCC and MEC

MCC MEC

Physical server High computing and storage
capabilities, located in
large-scale data centers

Limited capabilities, colocated
with base stations and gateways

Transmission distance Usually far from users, from
kilometers to thousands of
kilometers

Quite close to users, from tens to
hundreds of meters

System architecture Sophisticated configuration,
highly centralized

Simple configuration, densely
distributed

Application characteristics Delay tolerant, computation
intensive, e.g., Facebook, Twitter

Latency sensitive, computation
intensive, e.g., autonomous
driving, online gaming

routers, base stations, and gateways. TheMEC servers are equipped with a limited
amount of computing and storage resources.

• Transmission distances: The distances between MCC servers and users can vary
greatly, from kilometers to thousands of kilometers, even encompassing different
countries, whereas the distances between MEC servers and end users are usually
short, from tens to hundreds of meters.

• System architectures: TheMCC systems are usually deployed by giant information
technology (IT) companies such asGoogle andAmazon.The architectures ofMCC
systems are usually very sophisticated and highly centralized. The servers are
controlled and maintained by specialized technical individuals. In MEC systems,
the servers are usually deployed by telecommunications operators, enterprises,
and communities. Theses servers are densely distributed in the network, with a
simple configuration. MEC systems are hierarchically controlled in a centralized
or distributed manner.

• Application characteristics: The applications inMCC systems can usually tolerate
a certain degree of latency but require large amounts of computational resources.
The computationdata can thus be transmitted fromendusers to theMCCservers for
computation. Typical examples ofMCC applications are online social networking,

1.1 Mobile Cloud Computing (MCC) 3

such as Facebook and Twitter. MEC applications are usually latency sensitive
and computation intensive, such as image recognition in autonomous driving and
online gaming. The computation of MEC applications requires execution at the
network edge to mitigate long transmission delays between end users and the
cloud.

Due to the different deployment architectures, the performance ofMECoutweighs
that of MCC in terms of latency, energy consumption, context-aware computing, and
security and privacy. The benefits of MEC over MCC can be summarized as follows.

• Latency performance: The latency of mobile applications is composed of two
parts: communication latency and computation latency. Compared with MCC, the
propagation distances of MEC systems are much shorter. Generally, the distances
of MEC systems are no longer than a kilometer. However, the distances between
the cloud center and end users in MCC can be hundreds of kilometers and even
span countries or continents. For example, the transmission distances for end users
who want to use Google MCC applications in different parts of the world can vary
from several kilometers to thousands of kilometers. Moreover, the transmission of
MCC data usually requires passage through several networks, including a radio
access network and the Internet, which can lead to additional delays in communi-
cation for MCC applications. In MEC systems, however, the computation data are
transmitted through edge mobile networks or device to device, which are much
simpler transmissions than in MCC systems. In terms of computation latency,
although the cloud has large amounts of computational resources, they are shared
with massive numbers of MCC users. In MEC systems, on the other hand, the
computational capabilities of the servers are allocated to limited numbers of end
users within their coverage. The gap in available computation capabilities for end
users is thus mitigated. With short transmission distances and simple transmission
schemes, MEC systems achieve better latency performance than MCC systems.
In MEC systems, the latency is usually less than tens of milliseconds, whereas in
MCC systems, the latency can be longer than hundreds of milliseconds.

• Energy consumption: Energy-consuming computation tasks can be offloaded from
end devices toMEC servers, thus reducing the energy consumption of end devices.
Specifically, in the Internet of Things (IoT), such offloading prolongs the battery
life of IoTdevices. InMCCsystems, however, the long communication distances of
computation data require end devices to maintain high transmission power, which
will increase their energy consumption. By offloading computation-intensive tasks
to nearby MEC servers, energy consumption is significantly reduced in MEC
systems.

• Context-aware computing: Since MEC servers are much closer to the end devices,
they can interact with end devices in real time by tracking their running states
and making instantaneous decisions for them. The real-time interactions between
MEC servers and end devices enable users to access context-aware services [1],
such as real-time traffic updates and live video feeds, based on users’ locations.
For example, in autonomous driving, the MEC server leverages the information

4 1 Introduction

from vehicles, such as locations and traffic conditions, to determine the vehicle’s
driving actions.

• Security and privacy:With increasing concerns about data security and privacy, the
protection of user data has become a critical issue in mobile applications. With the
development of end devices, the data collected can containmuch of users’ sensitive
information. In MCC applications, the user data are transmitted to a remote cloud
center over long distances. The data are then managed and processed by the cloud
providers, such as Amazon andMicrosoft. The risks of data leakage are extremely
high during long-distance transmissions and remote management in the cloud.
Cloud centers are more prone to become the targets of economically motivated
attacks. On the other hand, MEC servers are deployed in distributed architectures
of small scale. Many MEC servers can be privately operated and owned by the
users in environments such as home cloudlets. Thus the risks of data leakage
are considerably mitigated. MEC systems enhance user security and privacy for
applications that might need to collect and process private user information.

AlthoughMECandMCChave different architectures and characteristics, they can
sometimes also cooperate together, to enhance the computing capability and latency
performance of the system. A series of works have explored combining MCC with
MEC to improve application performance. For example, in the application scenario
of online gaming, MEC provides users with cached data and local computation,
while MCC provides users with new data and intensive computation. Thus the user’s
experience of image quality and delay performance can be considerably improved.

1.2 Overview of MEC

MEC provides a distributed computing environment by placing compute and storage
resources closer to the consumer or enterprise end user. The termMEC was first intro-
duced in 2013, when Nokia Siemens Networks and IBM developed a platform called
Application Service Platform for Networks to allow mobile operators to deploy, run,
and integrate applications at the edge of the network [2]. In 2014, the MEC technical
white paper was developed by the European Telecommunications Standards Insti-
tute (ETSI) [3], and a new Industry Specification Group was established in ETSI
to produce specifications. The Industry Specification Group has delivered several
specifications on service scenarios, requirements, architecture, and APIs that will
allow for the efficient and seamless integration of applications from vendors, ser-
vice providers, and third parties across multi-vendor MEC platforms. In 2016, ETSI
dropped the word mobile from MEC, renaming the technology multi-access edge
computing (with the same acronym, MEC), to extend its scope to heterogeneous
access technologies (e.g., LTE, 5G, Wi-Fi, and fixed access technologies).

MEC is a new paradigm that provides an IT service environment and cloud-
computing capabilities at the edge of the network, within the radio access network,
and in close proximity to mobile subscribers. The main purpose of MEC is to

1.2 Overview of MEC 5

Fig. 1.2 The MEC framework

reduce backhaul network congestion, support low-latency applications, and offer
an improved user experience. The general framework of MEC is shown in Fig. 1.2.
Different types of big data applications, IoT devices, and social and Internet services
are connected to distributed mobile edge networks. The mobile edge networks are
connected to the private cloud network via a demilitarized zone for security. The pri-
vate cloud network is equipped with sufficient databases and applications to provide
centralized processing, storage, and computing service. Since cloud services and
applications are far from mobile users, MEC deploys the distributed edge services
and applications at wireless network infrastructures (i.e., base stations, Wi-Fi access
points, or femto access points) to form distributed mobile edge networks. Users can
easily access nearby the wireless network infrastructure to enjoy real-time and high-
quality service applications. Additionally, MEC not only benefits end users, but also
improves resource utility and network efficiency with network optimization, such as
computation and caching resource allocation.

According to the ETSI white paper, MEC can be characterized by features such
as on premises, proximity, low latency, location awareness, and network context
information. These features can be briefly explained as follows.

• On premises: MEC platforms can run isolated from the rest of the network while
maintaining access to local resources. This is very important for machine-to-
machine scenarios, such as security or safety systems that need high levels of
resilience.

• Proximity: MEC servers are usually deployed close to mobile users. MEC is thus
particularly useful in capturing key information for analytics and big data. It is
also beneficial for compute-hungry devices, such as augmented reality (AR) and
video analytics.

• Lower latency: Since MEC services run close to end devices, latency can be con-
siderably reduced, which can be utilized to react faster, improve user experience,
or minimize congestion in other parts of the network.

• Location awareness: Due to proximity, MEC can leverage signaling information
received from edge devices to determine the location of each connected device.

6 1 Introduction

This feature leads to an entire family of business-oriented use cases, including
location-based services and analytics.

• Network context information: Applications providing network information and
real-time network data services can benefit businesses and events by implementing
MEC for their business model. Based on real-time radio network conditions and
local contextual information, these applications can estimate the radio cell and
network bandwidth congestion. This can help in the future tomake smart decisions
to improve customer service delivery.

MECnot only enhances the performanceof existing applications, but also provides
tremendous potential for developing awide range of new and innovative applications.
In the following, we introduce several typical use cases in MEC.

• Internet of Vehicles (IoV): The IoV aims to enhance safety, reduce traffic con-
gestion, sense vehicles’ behaviors, as well as provide opportunities for numerous
vehicular services, such as smart navigation, trafficwarnings, and real-time driving
route planning. The communication model in IoV can either be vehicle to vehi-
cle (V2V), vehicle to roadside infrastructure (V2R), or vehicle to Internet (V2I).
However, resource-constrained vehicles can be strained by computation-intensive
applications, resulting in bottlenecks and making it challenging for the vehicles to
ensure the required quality of service level. MEC can alleviate the heavy compu-
tation requirement of vehicles by providing computation capabilities at the edge
of the radio access network [7]. Due to the proximity of MEC servers to vehicles,
the offloaded tasks can be accomplished with low latency and high efficiency.

• Smart grids: A smart grid offers transparent energy distribution where both
consumers and utilities can monitor and control their pricing, production, and
consumption in almost real time. A smart grid infrastructure is an electrical
grid that consists of several components, such as smart appliances, renewable
energy resources, and energy efficiency resources [8]. Smart meters are distributed
throughout the network to receive and transmit measurements of energy consump-
tion.All the data collected by the smartmeter are supervised by supervisory control
and data acquisition systems to maintain and stabilize the power grid. The analysis
of the data from various smart meters in the smart grid environment is challeng-
ing, since it varies with respect to parameters such as size, volume, velocity, and
variety. The usage of MEC can improve performance in throughput, response
time, and transmission delay. Distributed smart meters and microgrids, integrated
with MEC, have the ability to conduct nearby data management and analysis. For
example, a three-tier fog-based smart grid architecture [9] is proposed to extend
the capabilities of cloud-based smart grids in terms of latency, privacy, and locality.

• Unmanned aerial vehicles (UAVs): With recent advancements in technology and
reductions in manufacturing cost, UAVs have received growing interest in various
applications, such as disaster rescue, cargo delivery, filming, as well asmonitoring.
To maintain UAVs’ safe operation with real-time commands and enable the above
computation-intensive applications, it is important to enhance the communication
and computational capabilities of UAVs. With the help of MEC, edge computing
resources can be deployed on UAVs to support computation-intensive and latency-

1.2 Overview of MEC 7

critical applications. On the other hand, the rapid growth of network traffic has
made it difficult for static base stations to support the data demands of billions
of devices. UAVs can act as flying base stations to support ubiquitous wireless
communications and unprecedented IoT services, due to their high flexibility,
easy deployability and operability. In UAV-aided MEC networks, UAVs can act
as mobile computation servers or computation offloading routers to provide users
better wireless connections and greater flexibility in the implementation of MEC.

• AR/virtual reality (VR) services: AR and VR allow users to interact more naturally
with virtual worlds based on the data generated from sensory inputs, such as sound,
video, graphics, or a global positional system. AR/VR applications need real-time
information on users’ status, such as their location and direction, and also require
low latency as well as intensive data processing for a better user experience. MEC
is an ideal solution for AR and VR applications, since MEC servers can exploit
local context information and provide nearby data processing. Deploying a VR
controller on a MEC server and utilizing wireless links to transmit VR images and
audio can increase tracking accuracy, obtaining round-trip latencies of one mil-
lisecond and high reliability [4]. Caching parts of VR videos on MEC servers in
advance and then performing computations on VR devices can save large amounts
of communication bandwidth and fulfill low latency requirements [5]. Offload-
ing computation-intensive tasks to edge servers can increase the computational
capacity of AR devices and save their battery life [6].s

• Video stream analytics: Video streaming has a wide range of applications, such
as vehicular license plate recognition, face recognition, and security surveillance.
Video streaming has been observed to comprisemore than half of the entire mobile
data traffic in current networks, and the percentage is still increasing. The main
video streaming operations are object detection and classification. These tasks
usually have high computation complexity. If these tasks are processed in the
central cloud, the video streamwill be transmitted to the cloud network, which will
consume a great amount of network bandwidth. MEC can offer ultra-low latency,
which is required for live video streaming, by performing the video analysis in
a place close to edge devices. A caching-based millimeter-wave framework is
proposed to pre-cache content at the base station for hand-off users [11]. The
proposed solution can provide consistent high-quality video streaming for high-
mobility users with low latency.

1.3 Book Organization

This book aims to provide a comprehensive view of MEC. As a key enabling tech-
nology for achieving intelligence in wireless communications,MEC has been widely
studied in a series of areas, including edge computing, edge caching, and the IoV.
However, with the development of new technologies, such as blockchain, artificial
intelligence, and beyond 5G/6G communications, new opportunities have opened up
for the fulfillment of MEC and its applications. Motivated by these new changes, this

8 1 Introduction

work provides comprehensive discussions on MEC in the new era. We first present
the fundamental principles of MCC and MEC technologies. Next, we present appli-
cations of MEC in typical edge computing and edge caching scenarios. Furthermore,
we discuss research opportunities in MEC in emerging scenarios such as the IoV,
6G, and UAVs. Finally, we provide potential directions of MEC for the future.

This book is organized as follows. Chapter2 presents the models and policies of
edge computing. Chapter3 describes the architecture and performance metrics of
mobile edge caching. A case study of deep reinforcement learning–empowered edge
caching is further conducted in Chap.4. Applications of MEC in the IoV for task and
computation offloading are presented in Chap.5. Chapter6 describes details on the
application of MEC to UAVs. Finally, Chap.7 provides a comprehensive discussion
of the future of MEC.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 2
Mobile Edge Computing

Abstract Mobile edge computing is a promising paradigm that brings computing
resources to mobile users at the network edge, allowing computing-intensive and
delay-sensitive applications to be quickly processed by edge servers to satisfy the
requirements of mobile users. In this chapter, we first introduce a hierarchical archi-
tecture of mobile edge computing that consists of a cloud plane, an edge plane,
and a user plane. We then introduce three typical computation offloading decisions.
Finally, we review state-of-the-art works on computation offloading and present the
use case of joint computation offloading.

2.1 A Hierarchical Architecture of Mobile Edge
Computing (MEC)

To better understand the internal logic of MEC, we first present a hierarchical archi-
tecture that vertically divides the edge computing system into three layers: the user
layer, the edge layer, and the cloud layer, as shown in Fig. 2.1. The user layer is distin-
guished by the wireless communication mode between mobile devices and wireless
infrastructures. The edge and cloud layers mainly refer to the computing resources
of the edge and cloud servers, respectively.

Devices in the user layer include sensors, smartphones, vehicles, smartmeters, and
radio-frequency identification devices. These devices access edge servers via wire-
less communication and then offload computation-intensive tasks to the lightweight,
distributed edge servers to process. According to wireless network topology and
communication modes, the communication between mobile devices and a wireless
infrastructure can be split into the following three modes.

• Heterogeneous network: Next generation wireless networks will run applications
that require large demand for high data rates. One solution to help reduce the
data rate requirement is the densification of the network by deploying small cells.
Such densification results in higher spectral efficiency and can reduce the power
consumption of a mobile device due to its communication with small nearby
cell base stations. This solution significantly improves network coverage. The
concurrent operation of macro base stations (MBSs) and micro, pico, femto, and

© The Author(s) 2022
Y. Zhang, Mobile Edge Computing, Simula SpringerBriefs on Computing 9,
https://doi.org/10.1007/978-3-030-83944-4_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83944-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-83944-4_2

10 2 Mobile Edge Computing

Fig. 2.1 Hierarchical MEC architecture

unmanned aerial vehicle–aided base stations is termed a heterogeneous network.
In heterogeneous networks, all base stations are equipped with computational
resources and artificial intelligence functions. Resource-limited mobile devices
can offload their tasks to these heterogeneous base stations, which can then utilize
a fine-grained computational resource allocation policy to process the offloaded
tasks.

• Vehicular network: Vehicular networks are inseparable from a smart city environ-
ment, owing to several applications that improve the quality of life, safety, and
security. A vehicular network is formed among moving vehicles, roadside units,
and pedestrians, which can be deployed in rural, urban, and highway environments.
Vehicle-to-everything communication allows vehicles to communicate with other
vehicles and their surroundings via wireless links. Vehicle-to-everything commu-
nication has three main scenarios: vehicle to vehicle, vehicle to infrastructure,
and vehicle to pedestrian [12]. Commonly used technologies are dedicated short-
range communications, IEEE 802.11p, the IEEE 1609 family of standards, and
Long Term Evolution (LTE). With advancements in communication technologies,
a number of promising applications are emerging for vehicular networks. These
vary from safety applications, such as blind spotwarning and traffic light violations
to entertainment, such as streaming media, or convenience, such as parking space
identification. In vehicular networks, ubiquitous edge resources can be deployed
on nearby infrastructures to offer vehicles a high quality of service. Compared to
common mobile nodes, vehicles can move at quite high speeds, which causes the
topology of a vehicular network to frequently change. Detailed policy design must
carefully consider such dynamic network topologies.

• Mobile-to-mobile (M2M)/device-to-device (D2D) networks: M2M is an enabling
technology for the Internet of Things,which involves autonomous connectivity and

2.1 A Hierarchical Architecture of Mobile Edge Computing (MEC) 11

communication among devices from embedded sensors and actuators to powerful
computationally rich devices without human intervention. D2D allows devices to
communicate with each other through a direct wireless link without traversing
the base station or core network. With the technological advancement of smart
devices, more computing and caching resources are distributed among the end
users. Computational tasks can thus be offloaded not only to edge servers, but also
to devices in D2D and M2M networks.

The edge layer is located in themiddle of the hierarchical architecture and consists
ofmultiple distributed edge servers to provide distributed intelligentwireless comput-
ing for users. Edge servers can be deployed in the network infrastructure, such as base
stations, roadside units, wireless access points, and gateways, or they can be mobile
phones, vehicles, tablets, and other devices with computing and storage capabilities.
Generally, edge servers are widely distributed in hotspots such as cafes, shopping
centers, bus terminals, streets, and parks. Given the proximity of edge servers to end
users, computing-intensive and delay-sensitive tasks can be offloaded and accom-
plished with low latency and high efficiency. There are three types of resources in the
edge layer: communication resources, caching resources, and computing resources.
Communication resources refer to bandwidth, spectrum, and transmission power.
Computing resources mainly refer to CPU cycles. Caching resources are related to
thememory capacity on edge servers. Since edge servers are ubiquitously distributed,
their computing and caching resources capacities are usually limited. The full use
of edge resources requires the joint optimization of communication, caching, and
computing resources.

The central cloud layer consists of multiple servers with strong processing,
caching, and computing capabilities. With a global view, this layer can leverage
advanced techniques such as data mining and big data, for a network-level orches-
tration shift from reactive to proactive network operation, by predicting events or
pre-allocating resources.With their high computing capability and sufficient caching
resources, cloud servers can process delay-tolerant applications and store larger or
less popular content. Further, the central cloud layer can effectively manage and
control multiple edge servers and provide them with secure connections.

2.2 Computation Model

Computation offloading is an approach to offload computation-intensive and delay-
sensitive tasks to resource-rich edge servers and/or cloud servers to process. This
approach can help prolong the battery life of mobile devices and reduce task pro-
cessing latency. The key problems in computation offloading are in deciding whether
to offload, the amount of the computation task that needs offloading, andwhich server
to offload to. Basically, computation offloading can result in the following three types
of decisions [13], as shown in Fig. 2.2:

12 2 Mobile Edge Computing

Fig. 2.2 Computation offloading decision

• Local execution: The entire computation task is completed locally. If the compu-
tational resources of the edge servers are unavailable or the wireless channel is of
poor quality, which can result in high transmission latency, local execution can be
preferred.

• Full offloading: The entire computation task is offloaded and processed by an edge
server.

• Partial offloading: Part of the computation task is processed locally while the rest
is offloaded to an edge server.

The computation offloading decision is very difficult, since it requires considering
multiple factors, such as application requirements, the quality of the communication
link, and the computing resource capacities of edge servers.

2.2.1 Computation Model of Local Execution

As the noted above, the CPU is the primary engine for computation. The CPU’s
performance is controlled by CPU cycles fm . The state-of-the-art mobile CPU archi-
tecture adopts an advanced dynamic frequency and voltage scaling technique, which
allows for stepping up or down CPU cycles, increasing and reducing energy con-
sumption, respectively. In practice, the value of fm is bounded by a maximum value,
fmax , which reflects the limitation of the mobile’s computation capability. A compu-
tation task can be described as D � (d, c, T), where d denotes the data size of the
computation task, c is the required number of CPU cycles for computing one bit of
the computation task, and T denotes the maximum latency allowed to accomplish
the task. The local execution time for a computing task D can now be expressed as

T L = dc

fm
(2.1)

which indicates that more CPU cycles are required to reduce the execution latency.

2.2 Computation Model 13

Since devices are energy constrained, the energy consumption of local execution
is a critical performance metric for computing efficiency. According to [14], the
energy consumption of each CPU cycle is given by ς f 2m , where ς is the effective
switched capacitance, depending on the chip architecture. The energy consumption
for executing task D with fm CPU cycles can be derived as

EL = ςdc f 2m (2.2)

From (2.1) and (2.2), if T L is greater than the maximum latency or if the device’s
battery capacity is less than EL , the device should offload the task to edge servers to
process. Otherwise, local execution can support the computation task.

2.2.2 Computation Model of Full Offloading

In this section, we present two computation models of the full offloading for a single-
user MEC system and a multi-user MEC system, respectively.

The single-user MEC system is the simplest case and consists of a single device
and a single edge server. Denote Fe as the computational resource capacity of the
edge server. The device offloads the entire computation task to the edge server to
process. The task computation time is thus given by

t F,computing = dc

Fe
(2.3)

Since the process of offloading involveswireless transmission, the total task execution
time is the sum of the task computation time and the task transmission time, which
can be expressed as

T F,s = dc

Fe
+ d

rs
(2.4)

where r s is thewireless transmission data rate between the device and the edge server.
The energy consumption for completing the offloaded computation task also includes
two parts: the energy consumption for computation and the energy consumption for
wireless transmission. The total energy consumption can be expressed as

EF,s = ςdcF2
e + p

d

rs
(2.5)

where p is the transmission power of the device.
In the multi-user MEC system, several devices can be associated with the same

edge server and offload their tasks to the edge server simultaneously. In this case,
each device is assigned only to a part of the edge server’s computational resources.
Denote the computation task of device i as Di � (di , ci , Ti), where di denotes the

14 2 Mobile Edge Computing

data size of the computation task on device i , ci is the required number of CPU
cycles for computing one bit of the computation task, and Ti denotes the maximum
latency allowed to accomplish the task. Let f ie be the computational resources that
the edge server allocates to device i . Since the process of offloading involves wireless
transmission, the total task execution time of device i can be expressed as

T F,m
i = dici

f ie
+ di

rmi
(2.6)

where rmi is the wireless transmission data rate between device i and the edge server.
The corresponding energy consumption of completing the offloaded computation

task of device i can be expressed as

EF,m
i = ςdici (f

i
e)

2 + pi
di
rmi

(2.7)

where pi is the transmission power of device i .
Different from the single-userMECsystem, devices in themulti-userMECsystem

share the same computational resources and wireless channel. Therefore, computa-
tional resource allocation, channel assignment, bandwidth allocation, and power con-
trol should be jointly optimized. Since the total computational resources of the edge
server are limited, there is a computational resource constraint (i.e.,

∑
i f

i
e ≤ Fe). A

more complex model considering a multi-user multi-MEC server was proposed in
[14, 15]. With the dense deployment of MEC servers, a joint user association and
computation offloading scheme was designed in [14], and a joint communication
resource allocation and computation offloading scheme was designed in [15].

2.2.3 A Computation Model for Partial Offloading

Partial offloading is a very complex process that can be affected by different factors,
such as the offloadability of an application [16], the dependency of the offloadable
parts [17], and user preferences and channel connection quality [32]. To simplify
the description, we assume each computation task can be offloaded and arbitrarily
divided into two parts. One part is executed on the device and the other is offloaded
to an edge server for edge execution.

Let λ (0 ≤ λ ≤ 1) be the offloading ratio, which represents the ratio of the
offloaded task to the total task. That is, an amount λd is offloaded to the edge server
to be computed and the rest, (1 − λ) d, is computed locally. The task computation
time upon partial offloading can be expressed as

t P,computing = (1 − λ)dc

fm
+ λdc

Fe
(2.8)

2.2 Computation Model 15

Since one part of the computation task (i.e., λd) involves wireless transmission, the
total time for completing this task can be expressed as

T P = (1 − λ)dc

fm
+ λdc

Fe
+ λd

r
(2.9)

The energy consumption required for completing this task consists of three parts:

EP = ς(1 − λ)dc f 2m + ςλdcF2
e + p

λd

r
(2.10)

where the first term indicates the local energy consumption for processing the amount
(1 − λ) d, the second term indicates the energy consumption for processing the
amount λd on the edge server, and the third term is the energy consumption of the
wireless transmission. In partial offloading, the key problem is to decide the offload-
ing ratio, considering system constraints. For example, if the energy or computational
resources of the device are almost used up, offloading the task to the edge server is
desirable (i.e., the offloading ratio should be close to one). If the quality of the wire-
less channel is poor or the available computational resources of the edge server are
limited, local execution could be a better choice. Note that the above models can be
easily extended to the multi-user MEC system.

2.3 Offloading Policy

The key problem in edge computing is making the offloading decision. According
to the previous description, the results of the offloading decision are either local
execution, full offloading, or partial offloading. Combining local execution and full
offloading, the problem can be modeled as a zero–one binary offloading problem.
Partial offloading can be modeled as a continuous offloading decision making prob-
lem. First, we introduce the research on binary offloading in the next section.

2.3.1 Binary Offloading

Binary offloadingmainly involves small-scale computation tasks that have high com-
putational resource requirements. Such tasks will be offloaded in entirety to the edge
server. Computing offloading can effectively reduce the task completion delay and
save the energy consumption of devices. When the device does not choose offload-
ing (i.e., local execution), the task completion delay involves only the local task
computation time. When the device chooses offloading, the task completion delay
involves three parts: (1) the wireless transmission time of the computation task from
the device to the edge server, (2) the task computation time spent on the edge server,

16 2 Mobile Edge Computing

and (3) the wireless transmission time of the computation result from the edge server
to the device. Similarly, when the device does not offload the task, the total energy
consumption required to complete the task includes only local task computation
energy consumption. If the device offloads any of the computation task, the total
energy consumption consists of two parts: the energy consumption of the wireless
transmission from the device to the edge server and the energy consumption of the
computation on the edge server.

2.3.1.1 Minimization of Task Execution Delay

The authors in [18] proposed a one-dimensional search algorithm to minimize exe-
cution delay. The proposed algorithm can find an optimal offloading decision policy
based on the buffer state, available processing power, and channel information. The
offloading decision determines whether to process the application locally or at the
MEC server. Another idea aimed at minimizing the execution delay was introduced
in [20]. Compared to [18], these authors considered users applying dynamic voltage
and frequency scaling and proposed a low-complexity Lyapunov optimization-based
dynamic computation offloading algorithm. This algorithm allows users to make an
offloading decision in each time slot and simultaneously allocates CPU cycles and
transmission power. The proposed method can reduce execution times by up to 64%
by offloading the computation task to the edge server. Different from the two works
focusing on the design of computation offloading algorithms, the authors in [19] pro-
posed an MEC-assisted offloading architecture that allows for deploying intelligent
scheduling logic, namely, a mobile edge scheduler, at the MEC without requiring
large computational resources at the eNodeB hardware. The introduced mobile edge
scheduler runs on the eNodeB. A two-stage scheduling process was proposed to
minimize the delay of general traffic flows in the LTE downlink via the MEC server
deployed at the eNodeB.

2.3.1.2 Minimization of Energy Consumption

The computation offloading decision to minimize the energy consumption of devices
was proposed in [21]. These authors formulated the optimization problem as a con-
strained Markov decision process. To solve the optimization problem, two types of
resource allocation strategies accounting for both computational and radio resources
were introduced. The first strategy is based on online learning, where the network
adapts dynamicallywith respect to the application running on the device. The second,
precalculated offline strategy is based on prior knowledge of the application proper-
ties and statistical behavior of the radio environment. Numerical experiments showed
that the precalculated offline strategy can outperform the online strategy by up to
50% for low and medium arrival rates (loads). Since the offline strategy proposed in
[21] showed its merits, the authors in [22] proposed two additional offline dynamic
programming approaches to minimize the average energy consumption of devices.

2.3 Offloading Policy 17

One of the dynamic programming approaches to find the optimal radio scheduling
offloading policy is deterministic, while the other is randomized. Numerical exper-
iments showed both offline policies can reduce energy consumption compared to
offloading-only and static processing strategies. The authors in [22] further extended
the work in [23] from single user to multi-user by jointly optimizing resource allo-
cation and computation offloading to guarantee fairness between users, low energy
consumption, and average queuing/delay constraints. Another multi-user offloading
decision strategywas proposed in [24] tominimize system energy consumption. This
paper determined three multi-user types based on the time and energy cost of the task
computing process. The first type of user can compute tasks on the MEC server. The
second type of user computes the task on local equipment. The third type of user can
decide to either implement tasks locally or offload tasks to theMEC server. Based on
the user classification, a joint computation offloading and radio resource allocation
algorithm was proposed. The proposed algorithm can decrease energy consumption
by up to 15% compared to computation without offloading.

2.3.1.3 Trade-Off Between Energy Consumption and Execution Delay

A computation offloading decision for a multi-user multi-task scenario was pro-
posed in [25] to make the trade-off between energy consumption and execution
delay. These authors considered jointly the offloading decisions for all the tasks of
each user and the sharing of computational and communication resources among all
the users as they compete to offload tasks through a wireless link with limited capac-
ity. The computation offloading problem is formulated as a non-convex quadratically
constrained quadratic program. To solve this problem, an efficient three-step algo-
rithm was designed that involves semidefinite relaxation, alternating optimization,
and sequential tuning. The numerical results showed the proposed algorithm out-
performed purely local processing, purely cloud processing, and hybrid local–cloud
processing without an edge server. Another algorithm for the computation offloading
decision to trade off energy consumption and execution delay was proposed in [26].
The main difference between the works [25, 26] is that the task in [25] can be also
offloaded to a remote centralized cloud if the computational resources of the MEC
are insufficient. In [26], the authors proposed a computation offloading decision to
minimize both the total task execution latency and the total energy consumption of
mobile devices. Two cases of mobile devices were considered: devices with a fixed
CPU frequency and those with an elastic CPU frequency. In the fixed CPU sce-
nario, a linear programming relaxation–based algorithm was proposed to determine
the optimal task allocation decision. In the elastic CPU scenario, the authors first
considered an exhaustive search–based algorithm and then utilized a semidefinite
relaxation algorithm to find the near-optimal solution.

18 2 Mobile Edge Computing

2.3.2 Partial Offloading

The literature cited above focused on binary offloading strategies. In a binary offload-
ing problem, the computing task is considered as a whole. However, in practical
applications, computing tasks are often divided into multiple parts [27]. According
to the divisible nature of computing tasks, devices can offload part of a task, rather
than its entirety, to the edge server. There are thus two types of tasks: (1) tasks that
can be divided into multiple discrete segments that can all be offloaded to the MEC
server for execution and (2) tasks that can be split into two consecutive parts, non-
offloadable and offloadable, and only the offloadable part can be offloaded. Next, we
introduce works focused on partial offloading.

2.3.2.1 Minimization of Task Execution Delay

The authors in [28] investigated a latency minimization resource allocation problem
for a multi-user offloading system with partial offloading. A partial compression
offloadingwas proposed that has three steps. First, each device compresses part of the
raw data locally and then transmits the compressed data to the edge server. Second,
the device transmits the remaining part of the raw data to the edge server, which
compresses the data. Finally, the edge server combines the two parts of compressed
data in the cloud center. A weighted sum latency minimization partial compression
offloading problem was formulated and an optimal resource allocation algorithm
based on the subgradient was designed. More general work on partial offloading
was covered in [29]. The authors jointly considered a partial offloading and resource
allocation scheme to minimize the total latency for a multi-user offloading system
based on orthogonal frequency division multiple access. The proposed scheme first
determines the optimal offloading fraction to ensure that the edge computing delay
is less than the local execution delay. Then, the proposed scheme determines how
to allocate the communication and computational resources. Additionally, users can
make full use of multi-channel transmissions to further reduce the transmission delay
for tasks with a large data size. The simulation results show that the proposed scheme
achieves 17% and 25% better performance than random and complete offloading
schemes, respectively.

2.3.2.2 Minimization of Energy Consumption

In [27], the authors investigated partial computation offloading to minimize the
energy consumption of devices by jointly optimizing the CPU cycle frequency,
the transmission power, and the offloading ratio. They designed an energy-optimal
partial computation offloading algorithm that transformed the non-convex energy
consumption minimization problem into a convex one based on the variable substi-
tution technique and obtained a globally optimal solution. The authors also analyzed

2.3 Offloading Policy 19

the conditions under which local execution is optimal. Analyzing the optimality of
total offloading, the authors concluded that total offloading cannot be optimal under
dynamic voltage scaling of the device. The authors in [30] proposed a joint schedul-
ing and computation offloading algorithm for multi-component applications using
an integer programming approach. The optimal offloading decision involves which
components need to be offloaded, as well as their scheduling order. The proposed
algorithm provides a greater degree of freedom in the solution by moving away
from a compiler predetermined scheduling order for the components toward a more
wireless-aware scheduling order. For some component dependency graph structures,
the proposed algorithm can shorten execution times by the parallel processing of
appropriate components on the devices and in the cloud. To minimize the expected
energy consumption of the mobile device, an energy-efficient scheduling policy for
collaborative task execution between the mobile device and a cloud clone was pro-
posed in [31]. The authors formulated the energy-efficient task scheduling problem
as a constrained stochastic shortest path problem on a directed acyclic graph. They
also considered three alternative stochastic wireless channel models: the block fad-
ing channel, the independent and identically distributed stochastic channel, and the
Markovian stochastic channel. To solve the formulated problem, the authors lever-
aged a one-climb policy and designed a heuristic algorithm to determine the task
execution decision.

2.3.2.3 Trade-Off Between Energy Consumption and Execution Delay

Partial offloading decision considering a trade-off between energy consumption and
execution delay was described in [32]. The offloading decision considered four
parameters: (1) the total number of bits to be processed, (2) the CPU cycles of
the device and of the MEC server, (3) the channel state between the device and the
serving femtocell access points, and (4) the device’s energy consumption. The joint
communication and computational resource allocation problem was formulated as a
convex optimization problem. The simulation results indicated that partial offload-
ing could reduce the energy consumption of devices, compared to the case of full
offloading, when all the computation tasks are forced to be carried out on either the
device or at the femtocell access point. The study in [33] provided a more in-depth
theoretical analysis on the trade-off between energy consumption and the latency of
the offloaded applications preliminarily handled in [32]. To carry out partial offload-
ing, the authors considered data partition-oriented applications and focused on three
parameters of an application: (1) the size of the data, (2) the completion deadline,
and (3) the output data size. Then, a joint optimization of the radio and computational
resource problem was formulated, and a simple one-dimensional convex numerical
optimization technique was utilized to solve it. The authors further demonstrated
that the probability of computation offloading is higher when given good channel
quality. The authors in [34] considered the trade-off between power consumption
and execution delay for a multi-user scenario. The authors formulated a power con-
sumption minimization problem with an application buffer stability constraint. An

20 2 Mobile Edge Computing

online algorithm based on Lyapunov optimization was proposed that decides the
optimal CPU frequency of the device for local execution and allocates the trans-
mission power and bandwidth when offloading the application to an edge server.
The numerical results demonstrated that computation offloading can reduce power
consumption up to roughly 90% and reduce execution delays by approximately by
98%.

2.4 Challenges and Future Directions

A wide variety of research challenges and opportunities exists for future research
on computation offloading. However, the MEC research is still in its infancy, and
many critical factors have been overlooked for simplicity. In this section, we point
out several open challenges and shed light on possible future research directions.

• Multi-server scheduling: The collaboration of multiple MEC servers allows for
their resources to be jointly managed in serving a large number of mobile devices
simultaneously. Server cooperation not only can improve resource utilization but
also can provide mobile users with more resources to enhance user experience.
However, the increase in network size hinders practical MEC server scheduling.
Toomanyoffloading userswill cause severe inter-user communication interference
and the system will need to make large numbers of offloading decisions. More
comprehensive research is required for multi-server scheduling.

• Multi-resource optimization: The architecture of mobile edge networks involves
various resources: computing, caching, and communication resources. The effi-
cient integration of these resources to achieve optimal performance for all users
and applications is quite challenging. Efficient resource management requires the
design of distributed low-complexity resource optimization algorithms, consider-
ing radio and computational resource constraints and computation overhead.

• User mobility: User mobility is a key challenge in mobile edge networks. Since
the movement and trajectory of users provide location and personal preference
information for edge servers, the contact times between users and MEC servers is
dynamic, which will impact the offloading strategy. Moreover, the frequent mobil-
ity of users causes frequent handovers among edge servers, which will increase
computation latency and thus deteriorate user experience. Therefore, mobility
management techniques from both horizontal and vertical perspectives should be
implemented to allow users seamless access to edge servers.

• Security: Security is one of the main concerns of technology advisers in securing
MECdeployments. Thedeployment of edge cloud servers is creatingnovel security
challenges due to the exploitation of mobile device information. The growing
rate of the evolution of security solutions cannot keep up with the pace of new
security challenges. Many existing security protocols assume full connectivity,
which is not realistic in mobile edge networks, since many links are intermittent
by default. On the other hand, in MEC, user data are offloaded to an MEC server

2.4 Challenges and Future Directions 21

that gives access control to other mobile users. This introduces challenges, such
as data integrity and authorization. For example, offloaded data can be modified
or accessed by malicious users. Moreover, data owners and data servers possess
dissimilar identities and business interests that make the scenario more vulnerable.
Therefore, a comprehensive scientistic research study is required to avoid any
security issues that can damage MEC systems.

This chapter first introduced the hierarchical mobile edge computing architecture
with a cloud plane, an edge plane, and a user plane. Then, three types of computation
models were discussed in detail for the typical computation offloading problem in
MEC. In terms of the offloading decision, current research on computation offloading
was surveyed, as were the binary offloading and partial offloading problems. Finally,
several open challenges and future directions were discussed.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 3
Mobile Edge Caching

Abstract Edge caching is a key part of mobile edge computing. It not only can sup-
port the necessary task data for edge computing, but also enables powerful Internet
of Things applications with massive amounts of data and various types of infor-
mation in access networks. In this chapter, we present the architecture of the edge
caching mechanism and introduce metrics for evaluating caching performance. We
then discuss key issues in caching topology design, caching data scheduling, as well
as caching server cooperation and present a case study of artificial intelligence–
empowered edge caching.

3.1 Introduction

In recent years, wireless communication has witnessed an explosive growth of smart
Internet of Things (IoT) devices and powerful mobile applications that greatly facil-
itate our daily life and improve manufacturing efficiency. The implementation of
these applications requires massive content input and relies heavily on high-speed,
low latency data transmission. However, the backhaul links between content servers
and wireless access points are always constrained by bandwidth, making the strin-
gent transmission requirements hard to meet. This data hungry characteristic poses
significant challenges for mobile networks, especially in application scenarios with
a large scale of smart devices. Mobile edge caching is a promising approach to alle-
viate backhaul load and address these challenges. It utilizes caching resources at the
edge nodes and provides popular content access close to the end users.

3.2 The Architecture of Mobile Edge Caching

To clearly illustrate the components and operationmechanism of edge cache systems,
we present a hierarchical mobile edge caching architecture, which is illustrated in
Fig. 3.1. This architecture consists of four layers, namely, an application layer, a user
node layer, an edge server layer, and a cloud service layer.

© The Author(s) 2022
Y. Zhang, Mobile Edge Computing, Simula SpringerBriefs on Computing 9,
https://doi.org/10.1007/978-3-030-83944-4_3

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83944-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-83944-4_3

24 3 Mobile Edge Caching

Fig. 3.1 Hierarchical mobile edge caching architecture

The application layer contains a variety of wireless mobile applications with
intensive data input requirements. For instance, the driving control of autonomous
vehicles depends on high-resolution map data. Furthermore, the map data provided
to the vehicles should be updated in real time as traveling vehicles reach different
areas. Another example is the daily news broadcast. Although the data delivery does
not have strict delay constraints, since the proportion of multimedia news continues
to increase, a large amount of the media data will pose a heavy transmission burden
onwireless networks. To distinguish different applications according to their caching
service demands, we model the data caching task as (f, tmax), where f is the amount
of data required and tmax denotes the maximum latency tolerance before the data are
received.

Above the application layer is the user node layer, which is composed of multiple
forms and types of devices and physical entities, including mobile phones, wearable
devices, tablets, and smart vehicles. It is worth noting that the user nodes can be data
requesters while also acting as data providers. A typical example is a smartphone.
When a video that has not been downloaded onto the phone is played, the phone
can ask for data from a remote video server. During the video playback, the phone
can provide the cached data to other phones in device-to-device (D2D) mode. Con-
sequently, parts of user nodes can be regarded as special data servers and classified
at the edge server level. The characteristics of the user nodes can affect the data
caching performance, including the node’s speed of motion, wireless transmission
power, and communication topology.

The edge server layer focuses on providing data to user nodes in proximate areas at
low cost. To do so, edge caching servers are usually installed in cellular network base
stations, roadside units (RSUs), Wi-Fi access points, unmanned aerial vehicles, and
other access network infrastructures. On the one hand, cached data can be delivered
by directly using the wireless transmission capabilities of these infrastructures; on
the other hand, the power supply facilities of these infrastructures can be utilized to
provide adequate electricity to the edge servers. These servers are associated with
two key performance evaluation indicators. One is the data storage capacity, and the
other is the service coverage radius, which is determined by the transmission power
of the attached wireless infrastructures and their operating environments.

3.2 The Architecture of Mobile Edge Caching 25

When edge servers cannot meet data demands due to limitations in cache capacity,
the caching nodes in the cloud service layer will provide users with a supplementary
backup. These cloud servers are powerful and usually have vast amounts of storage
space and can thus cache large amounts of data. Although the cloud server can be
located as far away from the user nodes as an application server, there are essential
differences between the two. As data generators, application servers are scattered
throughout various networks. Access to their data can be severely restricted by their
communication capabilities. In contrast, cloud servers are mostly located in the core
network, equipped with high-speed input–output equipment and high-capacity trans-
mission facilities, with, for example, optical fiber, facilitating high-speed data access
for users.

The operation of edge caching requires efficientmanagement, so a caching control
module is introduced into the system that is responsible for tracking data popularity
and scheduling storage resources. Considering that the caching scheduling relies
on the collaboration of various types of entities, including both the data servers
and the requesters, this module is implemented across multiple layers. With the
advancement of artificial intelligence, powerful machine learning approaches have
been implemented within the control module. They help extract data features in
complex mobile application environments, predict data demand trends, and fully tap
the data caching potential of large-scale heterogeneous service devices.

3.3 Caching Performance Metrics

Many studies are devoted to edge cache optimization, adopting various technical
approaches to address different problems in server layout, resource scheduling, data
management, and so forth. To quantitatively evaluate the pros and cons of these
approaches, the following caching performance metrics are introduced.

3.3.1 Hit Rate Ratio

The hit rate ratio is one of the most important performance metrics in edge caching.
To understand this metric, we first need to define the concept of a hit. In the edge
caching process, if a user can directly obtain the requested content from an edge
cache server, without the help of cloud service facilities or remote data sources, this
data access is called a hit. Thus, the hit rate ratio can be calculated by dividing the
number of cache hits by the total number of cache hits and misses, as follows:

r = h

h + m
(3.1)

26 3 Mobile Edge Caching

where h is the number of cache hits and m is the number of cache misses. It is worth
noting that m contains not only content obtained from the cloud or remote servers,
but also content that was not successfully obtained due to transmission failure.

The hit rate ratio reflects how effective a cache is at fulfilling requests for content;
in other words, it measures the utilization efficiency of edge service resources in
satisfying end users. To improve the performance metric, content popularity–based
caching strategies are usually adopted to determine the type of cached data and data
update frequency.

3.3.2 Content Acquisition Latency

Content acquisition latency is another chief measurement in caching services that
indicates the total time cost, from the user generating a data request to obtaining the
complete data. Content acquisition latency can be formally represented as

Ta = treq +
∑

k∈K
tres,k (3.2)

where treq is the time for a request to be transmitted from a user to the chosen server.
Since the request message is small, treq can usually be ignored. If the cache server
directly requested by the user does not have the required data, it needs to obtain the
resource from a remote server that isK hops away. The variable tres,k is the one-hop
transmission delay of the data response.

Manymobile applications are now delay sensitive. For instance, inmobile naviga-
tion, digital map data need to be delivered to the user’s smartphone for route planning
when the user first enters an area. To improve the timeliness of news, breaking news
needs to be pushed to the user end as soon as possible.

The latency metric can be used in two ways in caching service management: one
way is to minimize it as an optimization objective, and the other is to make it a
constraint of an optimization problem. The content acquisition delay is affected by
the location of the data source server and the transmission rate. Approaches to reduce
latency can therefore be considered in three aspects: the effective placement of edge
caching servers, the timely update of stored data, and the optimized scheduling of
communication resources.

3.3.3 Quality of Experience (QoE)

The QoE is a metric that evaluates the performance of edge caching services from the
perspective of data users. Since multiple users can have diverse data requirements,
QoE can be reflected in different aspects. When a user downloads a large video
through cellular networks, the user might mainly concern about the data transmission

3.3 Caching Performance Metrics 27

cost. For content that is urgently needed, users will focus on the timeliness of the
data acquisition. A user receiving an advertisement push will care about whether the
content meets his or her shopping demands. Considering that users can have multiple
preferences at the same time, QoE can also be formed as a combination of multiple
factors, as follows:

QoE =
∑N

n=1
αn·qn (3.3)

where qn is the nth type of metric value in the QoE evaluation, and αn is a coefficient
that reflects the user’s subjective measurement of the importance of different metrics.
Since a positive data acquisition experience will encourage users to spend more on
edge caching services, which will increase the revenue potential of the edge server
operator, QoE has become an important criterion for cache design and management.

3.3.4 Caching System Utility

Unlike QoE, which only considers user-side gains, a system utility metric introduces
service-side revenue factors into the caching performance evaluation. Edge cache
servers are usually deployed and managed by operators, and the servers’ operation
process produces energy, maintenance, and other costs. On the other hand, operators
can obtain rewards by providing data services to end users. Rational operators aim
to reduce costs while maximizing profits. From the perspective of the service side,
caching utility can be defined as the difference between the profits and costs. Fur-
thermore, since an edge caching system includes both users and services, we define
the system utility as the sum of the user- and service-side utilities, which can be
presented as

Usys = Rserver − Cserver + Guser − Cuser (3.4)

where Rserver and Cserver are the reward and operation costs of the caching servers,
respectively; Guser denotes the user utility gained from the edge caching service,
such as improved QoE or savings in remote transmission consumption; and Cuser

is the cost paid by the users to access the service, for example, the price paid to
the server operator. Generally, the value of Cuser is equal to Rserver in a given edge
caching system. To improve the caching systemutility, we can adopt a game-theoretic
approach and form a cooperative game between the users and servers that helps find
caching scheduling strategies that benefit both sides.

28 3 Mobile Edge Caching

3.4 Caching Service Design and Data Scheduling
Mechanisms

Edge caching is expected to provide data storage services for users to access low
latency content, while releasing the burden on backhaul networks between the data
generator and end users. Thanks to the evolution of wireless communication and the
development of IoT technology, pervasive smart nodes can interact with each other
and become integrated so that edge cache services can be implemented on diverse
types of nodes and in various network segments. In this section, we investigate an
edge cache design from the perspective of how the edge caching service is deployed at
heterogeneous nodes, andwe then discuss the corresponding caching data scheduling
mechanisms. Without loss of generality, we divide the nodes by infrastructures and
user devices and correspondingly classify the cache service modes into three types,
namely, infrastructure supported, user device sharing enabled, and a hybrid type, as
illustrated in Fig. 3.2.

3.4.1 Edge Caching Based on Network Infrastructure
Services

The network infrastructure is a vital part of a communication system, and it com-
prises hardware and software that enables communication connectivity between user
devices and service facilities. In this section, infrastructure refers specifically to the
base stations of cellular networks, the RSUs in vehicular networks, and the wireless
access points in Wi-Fi networks, which are always managed by network operators.

The above-mentioned infrastructures have common characteristics. First, they
have a large data cache space that usually reaches several megabytes or even giga-
bytes. Second, the infrastructures serve a wide coverage area, delivering cached data
to multiple user nodes. Through the coordination of multiple infrastructure nodes to
form amesh network, their service range can be further improved. Finally, the infras-
tructures have fixed locations, and it is hard to spatially adjust the caching service
pattern of an individual infrastructure node.

Fig. 3.2 Edge caching service modes

3.4 Caching Service Design and Data Scheduling Mechanisms 29

In view of the above characteristics, infrastructure-based edge caching mecha-
nisms mainly focus on data popularity determination, target server selection, and
cache data updates. It is worth noting that, although infrastructures cannot change
their locations, they can coordinate with multiple servers distributed in different
areas and adjusting their caching strategies to meet the dynamic spatial distribution
of data demands. The caching strategy of infrastructure-based servers can generally
be described as atm,n = {0, 1}, wherem and n are the server node index and the type of
data, respectively, and t denotes the time slot for the caching strategy. Here atm,n = 1
indicates the data are cached, and vice versa.

A few previous works have examined infrastructure-based edge caching. Xu, Tao,
and Shen [35] used small base stations as edge caching servers and investigated cache
placement optimization tominimize the system’s long-term transmission delay with-
out knowledge of user data preferences. The optimization scheme was formulated as
a sequential multi-agent decision problem. Moreover, the authors proposed a direct
online learning cache strategy in both stationary and non-stationary environments
that achieves a good balance between gains in base station coordination and compu-
tational complexity. Wang et al. [36] presented an edge caching scenario for mobile
video streaming in which base stations distributed citywide provide video storage
capacity. Based on the analysis of viewers’ request patterns behind both spatial
and temporal dimensions, the authors proposed a multi-agent deep reinforcement
learning–empowered caching scheme that minimizes both content access latency
and traffic costs.

3.4.2 Edge Caching Based on D2D Services

Although infrastructure-based edge caching has produced a promising paradigm to
push data closer to the network edge with low transmission latency, there are still
problems to be addressed. For instance, the data delivery of infrastructures usu-
ally has a large wireless coverage range and works in broadcast mode. Excessive
transmission distances can weaken the space-division multiplexing of the spectrum,
thereby reducing the efficiency of data caching services. Furthermore, multiple user
nodes can have different types of data demands. However, it is hard for the broadcast
delivery mode to provide edge services with demand recognition and differentiation.

To address these problems, we resort to D2D caching services. Driven by the
advancement of IoT technology, smart devices are becoming increasingly popular.
These devices are equippedwith a certain data caching capacity andmultiple types of
wireless communication interfaces, such as cellular, Wi-Fi, and Bluetooth, making
the devices potential data carriers and deliverers.

Technical challenges, however, arise in using smart devices to provide efficient
caching services. One of the challenges is the dynamic network topology caused by
device movement, which makes the stable maintenance of data services for given
areas very difficult. In addition, multiple device pairs could concurrently communi-
cate and deliver cached data. It is not easy to efficiently schedule communications in

30 3 Mobile Edge Caching

a distributed scenario. Last but not least, constrained by its limited cache resources,
an individual user’s device cannot provide cache services for large files.

In response to the above challenges, academics have carried out in-depth research.
Some works have focused on the analysis of device mobility patterns and leveraged
the mobility to expand caching service coverage. For instance, Qiao, Leng, et al. [37]
introduced a paradigm to jointly manage content placement and delivery in vehicular
edge networks. The caching optimization problem was formulated as a double time
scale Markov decision process, based on the consideration that content popularity
changes are less frequent compared to those associated with vehicle mobility. The
authors proposed a deep deterministic policy gradient (DDPG) approach to achieve
minimum system costs and content delivery latency. Regarding complex wireless
edge networks, research efforts have been devoted to coordinating multiple user
devices and improving the efficiency of data services.

Karasik, Simeone and Shamai [38] leveraged the benefits of out-of-band broad-
cast D2D communication for caching data delivery in a complex fog radio access
network. To minimize the normalized delivery time, a compress-and-forward–based
edge caching and D2D communication scheme was proposed, which proved to be an
information-theoretically optimal approach. Moreover, researchers have studied the
integration of multiple user devices into an edge service node with strong caching
capabilities to overcome the weakness of an individual device’s constrained storage
space. For example, Zhang, Cao, et al. [39] exploited the relations between caching-
empowered vehicles in content dispatch services and proposed a social–awaremobile
edge caching scheme that leverages deep reinforcement learning to organize social
characteristic–aware vehicles in content processing and caching and maximizes dis-
patch utility.

3.4.3 Hybrid Service–Enabled Edge Caching

Although both infrastructure service-based and D2D service-based edge caching
approaches can distribute popular data in proximity to mobile users via local storage
capabilities, inherent shortcomings still remain due to the location, caching, and
communication characteristics of the edge servers. As mentioned above, the location
of the edge cache–enabled infrastructure is fixed, so its data service coverage is
difficult to adjust. In D2D edge caching, though user device locations can be flexibly
changed, the devices’ storage space is usually small. Moreover, due to the large-scale
distribution and independent control of different devices, the collaborative caching
of multiple devices is sometimes inefficient.

Combining the infrastructure-based approach with the D2D caching approach to
build a hybrid edge caching mechanism has emerged as a promising paradigm to
address the above-mentioned problems. On the one hand, user devices can spread
data to far places as they move, making up for the fixed coverage of infrastructures.
On the other hand, an infrastructure uses its large storage capacity to remedy the
inability of user devices to store large files. In some cases, cloud data servers are also

3.4 Caching Service Design and Data Scheduling Mechanisms 31

Table 3.1 Comparison of edge caching modes

Infrastructure
supported

User device sharing
enabled

Hybrid service
enabled

Capacity High Low High

Latency Low High Medium

Cost High Low Medium

integrated into data caching systems to provide powerful data source support for the
various types of edge servers.

Being a key enabling technique in enhancing data delivery efficiency, the hybrid
edge cachingmechanism has attracted a great deal of research interest.Wu, Zhang, et
al. [40] introduced a D2D-assisted cooperative edge caching scheme in millimeter-
dense networks where the cache resources of users and small base stations are jointly
utilized for data storage and delivery according to content popularity. Zhao, Liu, et al.
[41] designed a caching scheme that combines caching placement and the establish-
ment of D2D with the aid of small base stations. Popular files are prefetched in the
local cache during off-peak periods and served to users at peak times, thereby reduc-
ing communication pressure on the backhaul link. Zhang, Yu, et al. [42] considered
motivations and security in caching service and proposed a blockchain-based cache
and delivery market that guarantees the expected reward of both user devices and
edge nodes in data sharing. Saputra, Hoang, et al. [43] introduced a proactive coop-
erative caching approach that uses a content server to predict the content demand for
the entire network and that optimizes the distributed caching service of edge nodes.
Kwak, Kim, Le and Chong [44] extended the hybrid caching mechanism to the cloud
end and proposed a content caching algorithm for joint content caching control in
central cloud units and base stations in a hierarchical cellular network.

Table3.1 compares the key performance of the service modes cited above. Since
the infrastructure is deployed and maintained by operators, it has a high capacity
and low transmission delay. However, content subscribers need to pay the operators
for the caching and transmission services, so infrastructure-supported edge caching
usually has a high cost. In contrast, user device sharing–enabled caching utilizes the
caching capacity of IoT devices. Although the performance of D2D cache services
can be poor, the direct delivery of data without operator participation saves greatly
on costs. The hybrid service mode incorporates the previous two approaches and
achieves high caching capacity and medium delivery latency, while reducing the
cost compared to the infrastructure-supported mode.

32 3 Mobile Edge Caching

3.5 Case Study: Deep Reinforcement
Learning–Empowered Social–Aware Edge Caching

To further elaborate the edge caching mechanism and performance evaluation met-
rics, in this section we present a case study that focuses on deep reinforcement
learning–empowered social–aware edge caching management.

3.5.1 System Model

We consider an edge service–empowered vehicular social network with Mi RSUs
located in an area i , i ∈ I. The RSUs’ caching space is limited, and their maximum
caching capacities are denoted as {sr1, sr2, . . . , srMi

}, respectively. In addition, each
RSU is equippedwith amobile edge computing server that helps process computation
tasks offloaded to it. The computing capacities of these servers are {cr1, cr2, . . . , crMi

},
respectively.

The vehicular network consists of smart vehicles. These vehicles generate con-
tent, including road congestion status, driving control indications, and vehicle sensing
information. This content needs to be processed and delivered among vehicles and
roadside infrastructures. The processing and delivery of content are always under-
taken jointly and consequently.We use the term content dispatch process to represent
the combination of content processing and the delivery process. The content involves
different data sizes and diverse computing demands. We consider K types of content
and denote type k content as { fk, ck, tmax

k }, where fk and ck are the content size and
required amount of computation, respectively. Variable tmax

k is the maximum latency
tolerance of type k content to be dispatched to receiving vehicles. The vehicular
network operates within a discrete time model with time slots of fixed length.

To satisfy the computing demand for particular content, the content can either
be processed on a vehicle with its on-board computing resources or offloaded to
and executed on a mobile edge computing server. Let xv,k be the probability that a
given vehicle processes type k content and 1 − xv,k the probability that the newly
generated content is offloaded to an RSU. Moreover, in the vehicular network, both
vehicle-to-vehicle (V2V) and vehicle-to-RSU (V2R) modes can be exploited for
content transmission. We use yv,k and yr,m,k to denote the probabilities of a vehicle
choosing to deliver type k content through the V2V or V2R mode, respectively, after
the content is processed.

In the content dispatch process, social relations and mobility aspects of smart
vehicles are jointly exploited. The contact rate is taken as a key indicator to char-
acterize the social relationships between vehicles. Vehicular pairwise inter-contact
times follow an exponential distribution. The contact rate between two vehicles in
area i is λv,i . In addition, RSUs equipped with caching resources can also act as
content distribution relays. The various transmission ranges and different locations

3.5 Case Study: Deep Reinforcement Learning–Empowered … 33

of these RSUs lead to different contact rates between the RSUs and the vehicles,
which are denoted as {λ1, . . . , λMi }, respectively.

3.5.2 Problem Formulation and a DDPG-Based Optimal
Content Dispatch Scheme

The content can have different levels of dispatch performance due to various compu-
tation offloading targets, caching strategies, and transmission modes. The number of
vehicles in an area to which type k content, k ∈ K , has been dispatched under delay
constraint tmax

k can be expressed as

ntotalk = xv,k yv,kn1,k + xv,k

M∑
m

yr,m,kn2,k,m + (
1 − xv,k

) M∑
m

ρm,kn3,k,m (3.5)

where n1,k , n2,k,m , and n3,k,m are the numbers of vehicles that obtain content within
their delay constraints throughon-board computing and caching, on-board computing
with RSU caching, and RSU computing and caching approaches, respectively.

Optimal content dispatching should maximize the total number of vehicles that
receive various types of content under specified delay constraints and can be formu-
lated as

max{xv,k ,yr,m,k ,yv,k ,ρm,k }
K∑

k=1
ntotalk

suchthat C1 :
K∑

k=1
xv,k yr,m,k fk +

K∑
k=1

fk
(
1 − xv,k

) · ρm,k ≤ srm, m ∈ M
C2 : 0 ≤ xv,k, yv,k, yr,m,k, ρm,k ≤ 1, k ∈ K,m ∈ M
C3 :

M∑
m=1

yr,m,k + yv,k = 1, k ∈ K

C4 :
M∑

m=1
ρm,k = 1, k ∈ K

(3.6)

where constraint C1 indicates that the amount of data cached on RSU m should not
exceed its cache capacity; C2 gives the ranges of the decision variables xv,k , yv,k ,
yr,m,k , and ρm,k ; C3 implies that either content should be transmitted V2V or an RSU
should be selected for V2R data delivery; and constraint C4 indicates that one of the
M RSUs should be selected when edge computing services are utilized to process
content.

To address this problem, we design a DDPG-based dispatch scheme by leverag-
ing a deep reinforcement learning approach. The DDPG is a policy gradient deep
reinforcement learning algorithm that concurrently learns policy and value functions
in the learning process. The DDPG agent learns directly from unprocessed obser-
vation spaces through a policy gradient method that estimates the policy weights,

34 3 Mobile Edge Caching

Fig. 3.3 Architecture of the
DDPG-based scheme

and employs an actor–critic model to learn the value function and update the actor
model. Since the DDPG utilizes a stochastic behavior policy for strategy exploration
but estimates a deterministic target policy, it greatly reduces learning complexity.

In our designed DDPG learning approach, the action set taken in slot t is At =
{xtv,k, y

t
r,m,k, y

t
v,k, ρ

t
m,k, α

t,i
k , pti, j,k}, where k ∈ K , m ∈ Mi , and i ∈ I. The state at

time slot t is St = {St1,k,i , St2,k,m,i , S
t
3,k,m,i , S

t
4,k,i , S

t, j,i
5,k,m,i , S

t, j,i
6,k,m,i }, which represents

the number of vehicles that have obtained content through various ways. Moreover,
we introduce two neural network parameters, namely, θμ and θQ , in the DDPG
learning process. The parameter θμ is updated by the primary actor neural network
using the sampled policy gradient, which can be shown to be

∇θμ J = E[∇aQ(St , At |θQ)∇θμμ(St |θμ)] (3.7)

where Q(St , At |θQ) = E[ut + ηQ(St+1, μ(St+1)|θQ)] is an action value function,
and μ(St |θμ) is the explored policy. The term θQ is updated by a primary critic
neural network by minimizing a loss function, which is defined as

Loss(θQ) = E[(Tar t − Q(St , At |θQ))2] (3.8)

where the target valueTar t = u(St , At) + ηQ′(St+1, μ′(St+1|θμ′
) |θQ). TheDDPG-

based content dispatch scheme concurrently learns an action value function and dis-
patch policies. It uses off-policy data and the Bellman equation to learn the action
value function, and it utilizes the action value function to learn the policy.

Figure3.3 shows the architecture of the DDPG-based dispatch scheme. The com-
positions of the primary and target networks are similar, and both have an actor and a
critic. The actor and critic are two deep neural networks. In the primary network, the
actor explores the content dispatch policy μ(St |θμ), while the critic helps the actor
learn a better policy through a gradient approach. The target network is an old version
of the primary network. It generates a target value to train the critic in the primary
network, where the policy θQ is updated through the calculated function Loss(θQ).
The replay memory stores the learning experience used to update the actor and critic
parameters.

3.5 Case Study: Deep Reinforcement Learning–Empowered … 35

3.5.3 Numerical Results

We evaluate the performance of the proposed content dispatch schemes based on a
real traffic dataset that contains mobility traces of approximately 500 taxi cabs in the
San Francisco Bay Area.

Figure3.4 shows the convergence of the proposed DDPG-based dispatch scheme
with different values of λv , the average vehicular contact rates of the different com-
binations of areas. In different scenes with different λv values, the DDPG-based
scheme converges within 8,000 iterations. In addition, the figure indicates that λv

significantly affects the number of vehicles that can receive content within the spec-
ified constraint. A larger λv means a higher probability of vehicles meeting and
interacting with each other. Content dispatch efficiency improves as λv increases. It
is worth noting that, in practice, the proposed DDPG-based dispatch scheme is exe-
cuted offline. For a given steady vehicular traffic flow, we could obtain the optimal
content dispatch strategies for vehicles with various states in advance. The strategy
set is stored in the control center and can be accessed and applied to vehicles directly,
without very many learning iterations.

Figure3.5 compares the content dispatch performance of the proposed DDPG-
based scheme under two social–aware data forwarding approaches, that is, Epidemic
and ProPhet. In the Epidemic scheme, a vehicular data carrier forwards data to its
contacted vehicle in V2V mode if the target vehicle does not have the data. In the

Fig. 3.4 Convergence of the
proposed DDPG-based
dispatch scheme

0 1000 2000 3000 4000 5000 6000 7000 8000
240

260

280

300

320

340

360

380

Numer of iterations

N
um

er
 o

f v
eh

ic
le

s
re

ce
iv

ed
 c

on
te

nt
s

v=0.017632

v=0.009525

v=0.001604

Fig. 3.5 Comparison of the
content dispatch
performance under different
approaches

36 3 Mobile Edge Caching

ProPhet scheme, the vehicular carrier only forwards the data if its contacted vehicles
have higher contact rates compared to its own. We use the number of vehicles that
can receive content under their delay constraints as the metric to evaluate the caching
performance. It is worth nothing that this metric can be considered a special form of
the hit rate ratio metric. The figure shows that the DDPG scheme is the most efficient,
since it jointly exploits the data dispatch capabilities of both vehicles andRSUs,while
adaptively optimizing dispatch strategies according to the various vehicular contact
rates of different areas. In contrast, under the Epidemic approach, vehicles forward
cached content to contacted vehicles only if their caching space is unoccupied. This
approach uses only V2V delivery and ignores the data distribution capabilities of
RSUs. In ProPhet, a vehicle only forwards cached content if the contacted node has
a contact rate higher than its own. Consequently, ProPhet relies only on RSUs for
content distribution when λv is small, but relies on V2V content delivery when λv

exceeds the contact rate metrics of the RSUs. The single data delivery mode of each
of these two approaches seriously decreases their dispatch efficiency.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 4
Mobile Edge Computing for Beyond
5G/6G

Abstract This chapter first introduces the mobile edge computing (MEC) paradigm
in beyond 5Gand 6Gnetworks. Themotivations, applications, and challenges of inte-
gratingMEC into 6G are discussed in detail. We then present a new paradigm,MEC-
empowered edge model sharing, as a use case for 6G. Furthermore, the architecture
and processes of the MEC-empowered edge model sharing system are provided to
show the integration angles of MEC and 6G networks.

4.1 Fundamental Characteristics of 6G

Although still in the early stage, a number of studies have provided visions for 6G
[45–47]. Besides considerably improved data rates and communication latency, 6G
networks are also considered to be human-centric and connected intelligence. The
key features of 6G networks should be as follows.

• Extremely high data rates and low latency: Applications in 6G requiremuch higher
data rates and much lower latency than in 5G. The data transmission rates are
expected to be in the hundreds of gigabytes or even terabytes. The latency should
be extremely reduced, and services and applications are thus provided in real time.
The extremely high data rates also generate new requirements for more spectrum
resources. Hybrid terahertz–visible light communication systems are expected to
offer more unexplored bandwidth resources for 6G networks.

• Low energy consumption: The increasing number of connected smart devices,
such as Internet of Things devices and smartphones, in 6G requires the energy
consumption to be low to extend their running time and provide reliable services.

• High edge intelligence: Artificial intelligence (AI) is assumed to play a crucial
role in 6G networks. The concept of connected devices has evolved into connected
intelligence in 6G. Edge intelligence is a key enabler of 6G networks [48]. Network
performancewill be improved by optimizing the allocation of resources such as the
spectrum, computation, and power in the network [49]. Moreover, the integration
of AI techniques into edge networks is expected to be greatly improve the quality
of service (QoS).

© The Author(s) 2022
Y. Zhang, Mobile Edge Computing, Simula SpringerBriefs on Computing 9,
https://doi.org/10.1007/978-3-030-83944-4_4

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83944-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-83944-4_4

38 4 Mobile Edge Computing for Beyond 5G/6G

• High security and privacy: As the number of involved users increases dramatically
in 6G, their devices generate a large amount of data. Since the generated data
contain users’ private information, the risk of data leakage during data transmission
and storage is a major threat for 6G networks. Emerging technologies such as
blockchain and federated learning are needed to enhance network security and
data privacy.

4.2 Integrating Mobile Edge Computing (MEC) into 6G:
Motivations, Applications, and Challenges

In cloud-based scenarios, the long-distance transmission of data from end devices
or edge servers to the cloud incurs great latency and security risks and consumes a
great amount of bandwidth. In 6G systems, a series of emerging applications, such
as virtual reality (VR) and real-time video, require ultra low latency performance.
Meanwhile, the explosive growth of smart devices in 6G also brings a large amount
of distributed computational resources to the edge. In this regard, conventional cloud-
based computation can hardly satisfy the expected performance requirements of 6G
systems.

4.2.1 Use Cases of Integrating MEC into 6G

MEC enables the computation of applications and services to be executed at the
edge of networks, reducing transmission latency and mitigating the threat of data
leakage. Moreover, by deploying AI algorithms on edge servers, MEC leverages
the distributed computational capabilities of devices and enables edge intelligence
to be extensively realized in 6G. Thus, MEC is a key enabling technology for 6G
systems. In areas that benefit fromMEC, the use cases of MEC can be classified into
three categories: consumer-oriented services, operator and third-party services, and
network performance and quality of experience improvement services [50, 51].

In the category of consumer-oriented services, end users benefit from MEC by
offloading computation to an edge server to run various 6G applications that require
high computational capability and low latency performance. For example, in the sce-
narios illustrated in Fig. 4.1, such as face recognition or smart camera applications,
the end devices need to analyze collected images in near real time. In such a case,
neither cloud servers nor end devices can satisfy the requirements, due to long trans-
mission distances or constrained computation resources.MEC enables end devices to
run such low latency applications by offloading heavy computation to edge servers.

In the use cases of operators and third-party services, operators and third par-
ties benefit from MEC systems. In 6G networks, the increasing numbers of smart
devices generate huge amounts of distributed data. Directly transmitting these data

4.2 Integrating Mobile Edge Computing (MEC) … 39

Fig. 4.1 Example application of MEC: Face recognition

Fig. 4.2 Example application of MEC: video content caching

to the cloud will occupy a great deal of communication resources and lead to the
additional consumption of storage and computation resources on cloud servers. In
such scenarios, the MEC server operates as the gateway to collect and process gen-
erated data in advance. The processed data are then transmitted to cloud servers by
the MEC server, which significantly reduces the transmission load from the edge to
the cloud and mitigates the computational burden of centralized cloud servers.

In terms of network performance and quality of experience improvement ser-
vices, MEC alleviates the congested backhaul network by means of content caching
and traffic optimization. In content caching, MEC servers store popular content in
advance by analyzing the historical records of users in their area, as shown in Fig. 4.2.
Once the users request related content, theMECserverswill return the cached content
directly to them. Through the content caching ofMEC applications, the transmission
latency is reduced and the user experience is improved. Moreover, MEC can help to
optimally schedule traffic by gathering and analyzing network information and user
requirements at the edge.

4.2.2 Applications of Integrating MEC into 6G

Considering the above benefits, MEC can be applied in a series of 6G applications.
As shown in Fig. 4.3, the applications can be categorized as follows.

• Dynamic resource sharing: In 6G networks, the increasing numbers of connected
devices and delay-sensitive applications require tremendous resources to ensure

40 4 Mobile Edge Computing for Beyond 5G/6G

Fig. 4.3 Applications of
MEC for 6G

QoS. The types of resources include spectrum resources, computational resources,
and even storage resources. The limitation of such resources hinders the wide
deployment of delay-sensitive applications in 6G networks. Resource sharing is
an effective way to mitigate resource constraints. However, what to share and how
to share are two basic issues that must be carefully addressed in resource sharing.
MEC provides solutions to these issues by modeling and analyzing the network
and optimizing sharing policies.

• Distributed device-to-device caching: In 6G networks, massive amounts of high-
quality low latency applications, such as online games and real-time multimedia,
generate huge amounts of content on edge devices. Instead of storing these contents
on the cloud server (e.g., a macro base station), caching these contents at the edge
considerably reduces the transmission costs and centralized storage burden. In
6G, since the computational and storage capabilities of smart devices will be
significantly improved, caching content with end users can better leverage the
distributed resources to reduce transmission latency and improve the QoS. End
users with constrained resources are caching requesters, while end users with
sufficient resources are caching providers. The device-to-device caching system
is illustrated in Fig. 4.3b. The MEC server collects the information of end users
under its coverage and optimally determines the caching strategy by analyzing
and predicting content popularity among distributed users. The analysis can be
conducted through optimization algorithms andAI algorithms that jointly consider
the latency requirements and current information on the demands and offers from
end users.

• Joint edge computation offloading: Since blockchain maintenance and the aggre-
gation of updates require intensive computation, it is a challenging task for edge
servers to execute computations within the applicable constraints, especially with
large numbers of participating nodes. To alleviate the computational pressure,
MEC completely utilizes the distributed computing resources by splitting the com-
putation task into shards and offloading these onto other computing servers with
sufficient computing resources. Moreover, the offloaded computation tasks can

4.2 Integrating Mobile Edge Computing (MEC) … 41

also leverage the target user’s data to complete the computation, which can fur-
ther reduce the transmission overhead. An overview of the computation offloading
scheme is shown in Fig. 4.3c.

• Secure and private data analysis: In 6G networks, a large amount of network data
must be processed and analyzed to improve the QoS. With increasing concerns
of data security and privacy, conventional cloud-based mechanisms raise serious
threats of the leakage of user data. MEC allows the data to be analyzed at the edge
of networks or even at the side of end users. Empowered by emerging paradigms
such as federated learning [52], MEC will considerably enhance data privacy in
the data analysis of 6G applications.

4.2.3 Challenges of Integrating MEC into 6G

Although integrating MEC into 6G has a series of benefits, new challenges also
arise. Considering the characteristics of 6G networks and connected devices, the
main challenges can be summed in three points: the heterogeneity of distributed
resources, the high mobility of end users such as vehicles and mobile devices, and
increasing security and privacy concerns.

• Distributed heterogeneous resource management: In 6G networks, a huge amount
ofmultidimensional heterogeneous resources have emerged as the number of smart
devices has increased. In addition, as the capabilities of mobile devices improve,
many resources are distributed among these devices. To improve theQoSandutility
of distributed resources, heterogeneous resources need to be optimally allocated
in real time. MEC plays a crucial role in edge resource management. However, the
heterogeneity of the distributed resources, the dynamic system states, and critical
latency constraints raise new challenges to integrating MEC into 6G for real-time
resource management. Ways to improve the intelligence of an MEC system to
address resource heterogeneity and to improve latency performance for real-time
resource allocation require further investigation.

• Reliability and mobility: There are many fast-moving scenarios in 6G network,
such as vehicular networks and mobile networks. In these scenarios, end users
are continuously moving in the network. The network topology therefore varies,
since the times and communication channels between users and base stations are
unstable. However, the demand for low latency and high-reliability services also
exists among end users. In a conventional MEC system, the MEC server executes
computation tasks or caches content to reduce the transmission delay and improve
computational capability. NewMEC schemes must therefore be developed for 6G
to guarantee the continuity of services for moving users in dynamic networks.

• Security and privacy: The increase in the number of end devices also generates
huge amounts of user data. Leveraging these data for analysis can improve the
QoS. For example, the accuracy of advertising recommendations can be further
improved by learning the behaviors of users. Moreover, using AI algorithms to

42 4 Mobile Edge Computing for Beyond 5G/6G

learn the network running data can help to improve the network performance to
satisfy the requirements of 6G networks. However, these data can contain sensitive
user information. The risks of data leakage increase in this process. To integrate
MEC into 6G, concerns of user privacy and security need to be addressed. More
privacy-preserving machine learning algorithms and security collaboration mech-
anisms are required to enhance the security and privacy of MEC systems.

4.3 Case Study: MEC-Empowered Edge Model Sharing for
6G

4.3.1 Sharing at the Edge: From Data to Model

In conventional data sharing scenarios, the data providers share original data directly
with the data requesters, which incurs a large amount of data transmission and
increases the risk of data leakage. For example, a conventional traffic prediction
application scenario is depicted in Fig. 4.4a. Distributed cameras share their video
datawith others and the cloud server to obtain overall traffic flow conditions. The traf-
fic analysis and prediction are executed on the cloud server and then sent back to the
end users. In the model sharing scenario, shown in Fig. 4.4b, end users equipped with
MEC servers train locally based machine learning models with their collected video
data. The trained machine learning models are shared with other users requesting the
sharing of traffic data. Requesters then run the received machine learning model on
their local data and build a new model for predicting real-time traffic conditions. By
leveraging MEC to share the computing model instead of original data at the edge,
response latency is reduced and data privacy is considerably enhanced.

(a) Data sharing

(b) Model sharing

Fig. 4.4 From data sharing to model sharing

4.3 Case Study: MEC-Empowered Edge Model Sharing for 6G 43

Fig. 4.5 The architecture of MEC-empowered model sharing

4.3.2 Architecture of Edge Model Sharing

The architecture of edge model sharing is illustrated in Fig. 4.5. We introduce
blockchain into the proposed architecture to construct a secure sharing mechanism
among end userswho lackmutual trust. In the proposed sharing scheme, the providers
register to a permissioned blockchain with their data profiles and run local training
on their data to build the machine learning models. The permissioned blockchain
runs on the base stations or roadside units as the parameter server. The registration
information of users, the model parameters, and the sharing events are recorded in
the blockchain. The requesters retrieve the blockchain for potential providers and
request multiple users to provide the models. Through blockchain, the providers can
be rewarded for sharing their models with requesters.

4.3.3 Processes of Edge Model Sharing

Based on the proposed architecture, edge sharing applications can be performed in
MEC systems. The overall edge sharing procedures are shown in Fig. 4.6, which
shows all the processes of MEC-empowered model sharing. The detailed processes
are as follows.

1. Initialization: When data providers join the system, local similarity clustering
is performed to classify these datasets, as well as the providers, into various
categories. The similarity between different datasets is quantified by their logical
distances, such as cosine similarity and Jaccard similarity. For a specific data

44 4 Mobile Edge Computing for Beyond 5G/6G

Fig. 4.6 The processes of MEC-empowered model sharing

provider Pi , nearby blockchain nodes will search the blockchain network to find
similar data records. Then the ID of the dataset from Pi is generated based on
the hash vectors of similar records, to ensure that similar datasets hold close
IDs. The participants are divided into different communities according to their
ID distances, that is, data similarity.

2. Registering retrieval records: Data provider Pi is required to register in the
blockchain by sending a public key PKr and its data profiles to a nearby
blockchain node (e.g., MEC server). The blockchain node then generates a data
retrieval record for provider Pi and broadcasts it to other nodes in the network
for verification. The nodes in the blockchain verify their received records and
pack them into candidate blocks. The candidate blocks are then verified through
a consensus protocol and written to the permissioned blockchain if they are
verified.

3. Launching data sharing requests: Data requester Pr submits a sharing request
Req = { f1, f2, ..., fx } that contains the requester ID, the requested data cate-
gory, and the time stamp to a nearby blockchain node SNreq . The sharing request
Req is signed by Pr through the requester’s private key SKr .

4. Data retrieval: When the blockchain node near Pr receives the sharing request,
it first validates that the identity of Pr is legal. If Pr is an authorized user, the
blockchain node searches for the sharing records in the permissioned blockchain
to checkwhether the request has beenprocessedbefore. If there is a hit, the cached
model will be returned to requester Pr directly. Otherwise, the blockchain node
will carry out a data retrieval process among registered providers according to
their ID distances, to find related data providers.

5. Data model learning: Data providers related to the request Req work together to
train a collaborative datamodelM. The local training samples consist of a request
query fx and its corresponding query results f x(D), DT =< fx , fx (D) >. The
local models are trained on dataset DT and aggregated into a global model M.

4.3 Case Study: MEC-Empowered Edge Model Sharing for 6G 45

The learned global model is then returned to the requester Pr as the result, which
is also cached by the system for future requests. The requester can obtain the
exact results it required based on the received model and its local data.

6. Generating sharing records: Data sharing events are recorded in the blockchain
as transactions and broadcast to other blockchain nodes for verification. These
records are collected by blockchain nodes and packed into candidate blocks.

7. Carrying out consensus: Candidate blocks consisting of data sharing records
are verified by blockchain nodes participating as data providers. The blockchain
nodes compete for the opportunity to generate blocks of the blockchain though
consensus protocols such as proof of work or delegated proof of stakes. Nodes
that obtain the right to generate blocks add their candidate blocks to the
blockchain. The sharing records in the blockchain are traceable and tamper
proof.

The combination of blockchain and federated learning enables secure intelligent
data sharing in 6G networks. Based on federated learning, the data sharing among
mobile devices is transferred to model sharing, which avoids the transmission of
original data and reduces the risks of data leakage. Moreover, integrating the train-
ing process in federated learning with the blockchain consensus process improves
the utilization of computing resources and the efficiency of data sharing. This edge
model sharing case shows the great potential of integratingMEC into 6G networks to
improve QoS and applications. MEC brings edge intelligence to wireless edge net-
works and enhances the connected intelligence among end devices in 6G networks.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 5
Mobile Edge Computing for the Internet
of Vehicles

Abstract The advancement of cyber physical information has led to the pervasive
use of smart vehicles while enabling various types of powerful mobile applications,
which usually require high-intensity processing under strict delay constraints. Given
their limited on-board computing capabilities, smart vehicles can offload these pro-
cessing tasks to edge servers for execution. However, a highly dynamic topology, a
complex vehicular communication environment, and edge node heterogeneity pose
significant challenges in vehicular edge computing management. To address these
challenges, in this chapter we investigate the characteristics of edge computing from
both the application and service perspectives and introduce a hierarchical edge com-
puting framework. Moreover, we leverage artificial intelligence technology to pro-
pose efficient task offloading and resource scheduling schemes.

5.1 Introduction

Due to the promising advancements of Internet of Things technology and wireless
communications, smart vehicles empowered with environmental perception, infor-
mation processing, and automatic control capabilities have emerged. Smart vehicles
bring us powerful vehicular applications, such as autonomous driving, voice recog-
nition, and car entertainment, and help to build a smarter, safer, and more sustainable
transportation system. These applications usually require intensive computational
processing. However, constrained by on-board computing resources, an individual
smart vehicle might not provide sufficient computing power, which makes it difficult
to ensure that application tasks are completed on time.

Mobile edge computing (MEC) provides a feasible approach to the above prob-
lem. By deploying computing servers in vehicular access networks, application tasks
can be offloaded to the network edge for efficient execution. The offloading process
leverages the wireless links between smart vehicles and roadside units (RSUs) for
task data delivery and the acquisition of processing results. Moreover, smart vehi-
cles that have spare computing resources can be exploited as edge computing servers
to serve adjacent vehicle task generators in vehicle-to-vehicle (V2V) communica-
tion [53]. To specifically describe this edge computing approach that uses vehicular
communication in task offloading, we call it vehicular edge computing (VEC).

© The Author(s) 2022
Y. Zhang, Mobile Edge Computing, Simula SpringerBriefs on Computing 9,
https://doi.org/10.1007/978-3-030-83944-4_5

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83944-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-83944-4_5

48 5 Mobile Edge Computing for Internet of Vehicles

In a VEC system, the high-speed movements of vehicles and rapid changes in
network topology lead to unique characteristics that, unlike traditional edge com-
puting systems, are designed for handheld mobile smart terminals. Moreover, these
characteristics lead to new challenges and require the implementation of key tech-
niques in the MEC architecture design, computing service scheduling, and resource
management, which are investigated and described as follows.

5.2 Challenges in VEC

Identifying the technical challenges of VEC design andmanagement is a prerequisite
for optimal edge computing services. According to the characteristics of road traffic
environments and vehicular edge networks, we summarize the challenges into four
items.

• A highly dynamic network topology and unstable service relationships: The
dynamic changes of the network topology due to high-speed vehicle movement is
the most important feature of VEC. This topology change can greatly affect trans-
mission rates, interference, energy consumption, and so on. Since communication
plays a key role in VEC task offloading, a dynamic topology implies complicated
wireless access point switching, power adjustments, and interference suppres-
sion for edge service management. Moreover, considering the limited coverage
of densely deployed base stations (BSs) in 5G/beyond 5G networks, high-speed
moving vehicles can leave the communication range of a BS within a short time.
When a high-speed vehicle generates a task with an intensive computing demand,
it is difficult for a single VEC server equipped on a BS to complete the calculation
process within the time the vehicle remains within the BS’s coverage. Unstable
service relations are thus induced between VEC servers and users, which further
complicates the VEC management mechanism.

• Strict low latency constraints and large amounts of task data: Most of Internet of
Vehicles applications are related to autonomous driving control and traffic safety
improvement, which always have strict low latency constraints. For example, a
vehicle’s reaction time to a suddenly appearing obstacle needs to be limited to
milliseconds. Thus, the fast and efficient processing of obstacle identification and
of control instruction generation becomes a necessary prerequisite. This requires
edge servers to provide sufficient computing resources. However, on congested
roads with a large number of vehicles, adequate serving capacities are often diffi-
cult to achieve. Furthermore, as mentioned before, edge computing services rely
on task data transmission between user nodes and servers. In autonomous driv-
ing applications, vehicular sensors, such as cameras, millimeter wave radar, and
lidar, continue to generate large amounts of data, which seriously challenges the
communication capabilities of vehicular networks.

• Heterogeneous and complex communications: Vehicular networks consist of smart
vehicles, RSUs, and BSs. These devices and infrastructures form a variety of com-
munication relationships, including V2V, vehicle-to-RSU (V2R), and vehicle-to-

5.2 Challenges in VEC 49

infrastructure (V2I), which are collectively referred to as vehicle-to-everything,
or V2X. Diverse V2X communications can work in different frequency bands
or share the same spectrum resources. In addition, consistent sets of standards
have been created for the deployment and operation of vehicular communication,
such as Dedicated Short Range Communication in the United States, Coopera-
tive Intelligent Transport Systems in Europe, and IEEE 802.11bd and 5G New
Radio V2X in the 5G era. Large-scale heterogeneous devices following multiple
types of standards communicate in parallel in constrained frequency bands, which
makes vehicular communication extremely complicated and leads the efficient
task offloading a challenge.

• Decentralized and independently controlled edge service nodes: Empowered with
a processor, cache, and communication interface, a smart vehicle can be considered
a mobile edge server when it has surplus computing resources and helps other
vehicles through V2V task offloading. For application tasks with highly intensive
computing requirements, the capability of a single vehicular server might not meet
demands. In such a case, aggregating multiple vehicular servers to form a group
entity with powerful service capabilities is a promising approach to the problem.
However, since the vehicles in the network aremobile and distributed, a centralized
controlmechanism is spectrum inefficient and time-consuming. Furthermore, each
vehicle’s service willingness and driving behavior are independently controlled
by its owner. It is impractical to request that all vehicle owners follow scheduling
instructions unconditionally.

5.3 Architecture of VEC

To address the challenges mentioned, we propose an architecture of VEC to guide
VEC service management that illustrates the system components and their logical
relations.

Figure5.1 shows the proposed architecture, which is divided into four layers. The
bottom layer is the application layer. It consists of the smart vehicles and powerful
vehicular applications. These vehicles have varied computing and communication
capabilities while driving throughout large areas with different speeds and route
plans. The applications they run, such as autonomous driving and navigation, can
differ in terms of computing resource requirements and delay constraints. Vehicle
characteristics and application requirements can be used as the input of the upper
layers, which drive the edge service strategy adjustment.

In the edge server layer, there are three types of vehicular serving infrastructures.
The first one consists of BSs equippedwithMEC servers. The BSs can bemacro BSs,
micro BSs, or even pico BSs. They use V2I transmission to gather the computation
tasks of the vehicles traveling in the coverage area, send the tasks to the MEC
server for processing, and finally return the results to the vehicles. Similar to the BS
operation, RSUs equipped with MEC servers are deployed along roads, serving the
vehicles traveling past them.

50 5 Mobile Edge Computing for Internet of Vehicles

Fig. 5.1 Architecture of a VEC system

It is worth discussing the edge service group formed by multiple smart vehicles
with idle computing resources. The group members can be either stationary vehicles
in a parking lot ormoving vehicles on roads. The offloaded computing task needs to be
shared bymultiple vehicles, and the execution of each part of the task usually requires
the close cooperation of the other parts. The communication capabilities among team
members should be efficient and reliable. A service group is thus usually formed by
vehicles geographically adjacent to each other.

At the resource layer, the edge serving resources provided by BSs, RSUs, MEC
servers, and smart vehicles are logically divided into three categories: computing
resources, communication resources, and cache resources. All the types of resources
work cooperatively in task offloading and processing. The communication resource
is responsible for task transmission and the delivery of calculation results, while
the cache resource helps store task data in the servers. It is worth noting that, in
some cases, cross-type collaboration can be implemented between heterogeneous
resources. Tasks generated in an area with poor computing service but sufficient
bandwidth can be transmitted to a remote area with powerful computing capabilities.
This case can be viewed as using the cost of communication resources in exchange
for computing resources.

The control layer is at the top of the architecture, monitoring the service states
of the edge system and deriving optimal scheduling strategies. More specifically,
the control units gather data on network topology, task attributes, vehicle charac-
teristics, and resource states. The gathered information is then input into an AI
module to analyze service supply and demand trends. Based on the analysis results,
the units are used to form an effective management plan that determines offloading
target servers, decides the multi-vehicle grouping mode, coordinates the interaction
between heterogeneous servers, and optimizes various types of edge resources. From
the implementation perspective, the controlmodule can be a centralized control entity

5.3 Architecture of VEC 51

in charge of an entire network or distributed controllers equipped on BSs or RSUs
that are responsible for scheduling service resources within a local area, or even a
head vehicle in vehicular groups.

5.4 Key Techniques of VEC

Under the guidance of the architecture,manyworks have focused on several key tech-
nical issues inVEC construction, management, and operation, which are investigated
in the following.

5.4.1 Task Offloading

Task offloading is the essential motivation for the proposed edge service, and it
is also the core function of the VEC system. Since offloading processes can have
diversifiedoptimizationgoals under different application scenarios, there are a variety
of corresponding offloading mechanisms.

To reduce energy bills and create green edge systems, energy efficiency has been
considered an optimization goal in many studies. The energy consumption of task
offloading is mainly split into two parts: consumption in data communication and
task processing. Lower radio power and shorter communication times can reduce
transmission energy costs. Based on a signal fading model and Shannon’s theorem,
offloading target servers with smaller transmission distances and less wireless inter-
ference must be chosen. Regarding the processing energy part, different devices
have diverse energy efficiency features. For example, given the use of many different
types of silicon chips, the energy cost of a unit calculation performed by an on-board
processor is usually higher than that of the dedicated processor in an MEC server.
Thus, without significantly increasing the communication energy overhead, offload-
ing tasks from a vehicle to an edge server usually improves the system’s overall
energy efficiency.

Many works have been devoted to optimizing offloading energy efficiency. Pu,
Chen, et al. [54] introduced a hybrid computing framework that integrates an edge
cloud radio access network to augment vehicle resources for large-scale vehicular
applications. Based on this framework, a Lyapunov-theoretic task scheduling algo-
rithm was proposed to minimize system energy consumption. Zhou, Feng, Chang
and Shen [55] leveraged vehicular offloading to alleviate the energy constraints of in-
vehicle user equipment with energy-hungry workloads. They designed a consensus-
based alternating direction driven approach to determine the optimal portion of tasks
to be offloaded to edge servers. Li, Dand, et al. [56] modeled task offloading process
at the minimum assignable wireless resource block level and presented a measure of
the cost-effectiveness of allocated resources to help reduce the required offloading
energy.

52 5 Mobile Edge Computing for Internet of Vehicles

Another optimization goal is the quality of experience (QoE), which has drawn
great interest recent years. The QoE reflects users’ satisfaction with the task offload-
ing performance, and it can be quantified in several ways. One way is through the
offloading delay. In most cases, users want tasks to be completed as quickly as possi-
ble. Tomeet this demand, both the task data transmissiondelay and computation delay
should beminimized. However, because of vulnerable communications between user
vehicles and RSUs, as well as task congestion at edge servers, guaranteeing timely
offloading is a challenge. The division and distributed execution of computing tasks,
which reduce the transmission channel requirements and server loads, has become a
promising paradigm for addressing this challenge. Ren, Yu, He and Li [57] leveraged
the collaboration of cloud and edge computing to partially process vehicular appli-
cation tasks. They further proposed a joint communication–computation resource
allocation scheme that minimizes the weighted-sum task offloading latency. Lin,
Han, et al. [58] took a software-defined networking approach to edge service organi-
zation and introduced a distributed delay-sensitive task offloading mechanism over
multiple edge server–empowered BSs.

Edge service reliability is also a key concern of QoE. However, the dynamic
and uncertain vehicular environments create critical challenges in preserving user
satisfaction. Many works have addressed this challenge. Ku, Chiang and Dey [59]
focused on providing sustainable computing services for edge infrastructures pow-
ered by solar energy. Through offline solar energy scheduling and online user asso-
ciation management, the risk of power deficiency and intermittent edge service have
been reduced. To ensure the high reliability of completion of vehicular application
tasks, Hou, Ren, et al. [60] utilized both partial computation offloading and reliable
task allocation in a VEC system, and proposed a fault-tolerant particle swarm opti-
mization algorithm for maximizing computing reliability under delay constraints.
To minimize long-term computing quality loss in unpredictable network states, Sun,
Zhao, Ma and Li [61] formulated a nonlinear stochastic optimization problem to
jointly optimize radio allocation and computing resource scheduling.

In addition to service reliability, cost is an important factor in user QoE. From
the different perspectives of VEC operators and users, cost has distinct measurement
approaches. Operators mainly consider the cost of the deployment of service facili-
ties. To fully cover an area, a large number ofMEC servers could be required, signifi-
cantly increasing edge construction costs. To address this problem, Zhao, Yang, et al.
[62] used unmanned aerial vehicles to act as relay nodes in forwarding computation
tasks between smart vehicles and MEC servers. In this way, the service coverage
of a single MEC server is improved, and both the number and construction cost of
servers are reduced. Users, on the other hand, are concerned about minimizing the
costs of using edge services. For instance, Du, Yu, et al. [63] made full use of TV
white space bands to supplement the bandwidth for task offloading and introduced a
cognitive vehicular edge networking mechanism that minimizes the communication
costs of vehicular terminals. Deng, Cai and Liang [64] leveragedmulti-hop vehicular
ad hoc networks in task offloading and found the multi-hop routing path with the
lowest costs through a binary search approach.

5.4 Key Techniques of VEC 53

With the severe increase in malicious attacks and eavesdropping, security is an
increasingly important issue. In VEC systems, due to the various ownership and
management strategies of different vehicles and edge servers, it is difficult to ensure
that all participating edge service entities are trustworthy. Consequently, security
protection mechanisms and privacy preservation measures need to be implemented.
Hui, Su, Luan and Li [65] focused on securing vehicle cooperation in relaying service
requests and designed a trusted relay selection scheme that identifies relay vehicles
by their reputations. Blockchain technology, a tamper-resistant distributed ledger of
blocks that keeps data in a secure manner, is attracting growing attention and has
been adopted in VEC. For instance, Liu, Zhang, et al. [66] presented a blockchain-
empowered group authentication scheme that identifies vehicles distributively based
on secret sharing and a dynamic proxy. To protect data privacy in task offloading,
Zhang, Zhong, et al. [67] proposed a fuzzy logicmathematical authentication scheme
to select edge vehicles, maintaining sensitive communications and verifications only
between vehicles.

5.4.2 Heterogeneous Edge Server Cooperation

Although VEC is a promising paradigm for alleviating the heavy computation bur-
den of smart vehicles, an individual edge server is still resource constrained, raising
several challenges in the pervasive and efficient deployment of edge services. On
the one hand, limited computing power and energy supply make it hard for servers
to complete complex tasks under delay constraints. On the other hand, the wireless
communication range of theBS orRSUonwhich the server depends is limited,which
further constrains edge service capabilities from the communication perspective. An
effective way to resolve these problems is the use of multi-server collaboration. Con-
sidering the different types of edge servers in VEC, combining these heterogeneous
servers into a joint service leads to a variety of collaboration modes and approaches,
which are illustrated as follows.

Cooperation amongmultiple edge servers equipped on communication infrastruc-
tures is the most widely used mode [68]. This mode benefits greatly from the wire
connections between infrastructures, such as optical fiber and large capacity twisted
pair cable, through which the task data can be transferred and exchanged between
multiple servers at high speed and low cost [69]. However, the different computing
capabilities of these servers pose challenges in selecting the offloading server and
computing resource allocation. Whether to split a large task into multiple subtasks
and distribute them in several parallel servers or to merge multiple small tasks into
a few large tasks to run on selected servers needs to be carefully designed [70]. In
the parallel execution mode, the inefficiency of the entire task processing due to the
lag of a server of poor capability is also a key issue to be addressed. In addition, we
need to optimize how tasks are offloaded from vehicles to servers. For example, task
data can be collected through a BS and then spread to other BSs and servers using

54 5 Mobile Edge Computing for Internet of Vehicles

the wired connection between BSs. One could also use concurrent wireless delivery
between multiple vehicles and the RSUs they can access.

Groups ofmultiple smart vehicles providing sufficient service capabilities to other
user vehicles are another mode of edge service collaboration [71]. This mode makes
full use of unoccupied on-board computing resources and is characterized by flexible
organization and pervasive availability. However, challenges still exist in the efficient
implementation of inter-vehicle service collaboration. The most serious challenge
comes from the independence of the different vehicles. The vehicles are owned and
controlled by different persons, with various driving route plans and degrees of ser-
vice willingness. In addition, these vehicles can differ in terms of their idle resource
capacity, maximum communication distance, and server energy supply [72]. This
independence brings complexity and uncertainty to the vehicular server collabora-
tion.Moreover, the number andgeographic distribution of cooperative vehicle servers
are also key factors that should be taken into account, since the vehicle distribution
densitywill affect the trade-off between the computing service capacity and spectrum
multiplexing efficiency. Thus, vehicular service collaboration schemes with efficient
server grouping, resource scheduling, and vehicle owner incentives are required.

Integrating the servers equipped on infrastructures with on-board servers pro-
duces a heterogeneous edge service collaboration mode [73]. This mode takes full
advantage of the large coverage and strong capabilities of infrastructure servers and
leverages on-board servers to make up for the lack of flexibility of the infrastructures.
In this mode, taking into account the advantages of V2V communication in terms of
small path loss and low transmission delay, tasks with light loads and strict delay con-
straints are offloaded to on-board servers, while tasks of high computational intensity
and loose delay constraints are usually offloaded to infrastructure servers. In case
the edge servers cannot meet the vehicular task demands, the number and scope of
collaborative servers can be expanded; that is, three-level coordination consisting of
cloud servers, infrastructure servers, and on-board servers can be jointly scheduled
in matching various types of application tasks.

5.4.3 AI-Empowered VEC

In recent years, we have witnessed unprecedented advancements and interest in
artificial intelligence (AI). Machine learning, a key AI technology, provides entities
working in complex systems the ability to automatically learn and improve from
experience without being previously and explicitly programmed.

A vehicular network is such a complex system that is characterized by unpre-
dictable vehicle movements, a dynamic topology, unstable communication con-
nections, and frequent handover events. Computation task offloading and resource
scheduling in vehicular network are a challenge, since an optimal solution should be
aware of the network environment, understand the service requirements, and con-
sider numerous other factors. Leveraging a machine learning approach in vehicular

5.4 Key Techniques of VEC 55

edge management is a promising paradigm for addressing the challenges mentioned
above.

Various types of machine learning techniques have been applied in VEC, among
which reinforcement learning is the most important. Reinforcement learning makes
agents gain experience from their interactions with the environment and adjust action
strategies along the learning process. This learningmode is suitable for dynamic road
traffic states and complex vehicular networks. However, in large-scale networks han-
dling massive amounts of state information, especially states represented by contin-
uous values, the reinforcement learning approach cannot be directly implemented to
solve the edge management problem. To address this issue, we can resort to deep
Q reinforcement learning, which uses a Q-function as an approximator to capture
complex interactions among various states and actions. Moreover, in the context
of vehicular networks, some offloading actions could be chosen from a continuous
space, such as wireless spectrum allocations and transmission power adjustments.
To address the demands of this action space, edge service scheduling utilizes deep
deterministic policy gradient learning, a branch of deep reinforcement learning that
concurrently learns policy and value functions in a policy gradient learning process.

Many studies have appliedmachine learning to vehicular edgemanagement. Some
research focused on the relations of offloading decisions in the time dimension. Since
data transmission and task execution are hard to complete instantaneously, previous
actions will affect subsequent decisions through an extension of edge service states.
The action dependence raises challenges in the optimization of current offloading
strategies. To address them, Qi, Wang, et al. [74] designed a vehicular knowledge-
driven offloading decision framework that scruples the future data dependence of
the following generated tasks and helps obtain the optimal action strategies directly
from the environment.

Another intersecting research issue of AI-empowered VEC is the adaptability of
learning models in the context of complex vehicular networks. Considering poten-
tiallymultiple optimization goals for offloading servicemanagement and that a single
learning model can meet only part of the requirements, the incorporation of multiple
models in the learning process is a promising approach. Sonmez, Tunca, Ozgovde
and Ersoy [75] proposed a two-stage machine learning mechanism that consists of
classification models in the first stage to improve the task completion success rate
and regression models in the second stage to minimize edge service time costs. In
[76], multi-model cooperation is adapted to become more flexible. To address the
diversity and dynamics of the factors impacting edge service in vehicular networks,
Chen, Liu, et al. introduced a meta-learning approach that adaptively selects the
appropriate machine learning models and achieves the lowest offloading costs under
different scenarios.

Running a learning process always consumes a great deal of computing resources,
which will further aggravate the tension of edge service capabilities. To address this
issue, a flexible, efficient, and lightweight learning mechanism is strongly needed.
Research that has focused on this issue includes [77], where the authors aimed
to reduce the learning complexity and processing costs. In the deep reinforcement
learning–based offloading schemes proposed, Zhan, Luo, et al. avoided a large num-

56 5 Mobile Edge Computing for Internet of Vehicles

ber of inefficient exploration attempts in the training process by deliberately adjusting
the state and reward representations. Wang, Ning, et al. [78] presented an imitation
learning–enabled online task scheduling scheme. In this scheme, the learning agents
find optimal offloading strategies by solving an optimization problem with a few
offline samples; near-optimal edge service performance is then achieved at a low
learning cost.

5.5 A Case Study

In this section, we present two case studies to illustrate the vehicular task offloading
mechanisms. The first one incorporates vehicle mobility into edge service manage-
ment and proposes a predictive task offloading strategy [79]. The second one focuses
on computation offloading in complex vehicular networks with multiple optional
target servers and diverse data transmission modes, and it leverages AI technique to
design optimal offloading schemes [80].

5.5.1 Predictive Task Offloading for Fast-Moving Vehicles

5.5.1.1 A System Model

We consider an MEC-empowered vehicular network, as illustrated in Fig. 5.2. Unin-
terrupted traffic in a free flow state is running on a unidirectional road. Along the
road are RSUs. The distance between two adjacent RSUs is L . The transmission
range of each RSU is L/2. The road can be divided into several segments of length

Fig. 5.2 An MEC-empowered vehicular network

5.5 A Case Study 57

L . Through the V2I communication mode, vehicles traveling on a given segment can
only access the RSU located in the corresponding segment.

In the scenarios we studied, such as a temporarily deployed vehicular network,
the RSUs communicate with each other through wireless backhauls. Each RSU is
equipped with an MEC server with limited computational resources. To improve
the transmission efficiency of the wireless backhauls, the task input file cannot be
transmitted between the RSUs. Moreover, since the task output data size is small, the
computation output can be transmitted between RSUs through wireless backhauls.
All the vehicles move at a constant speed. The distribution of the vehicles on the
road follows a Poisson distribution with density λ.

Each vehicle has a computation task. The task can be either carried out locally by
the vehicular terminal or computed remotely on the MEC servers. The computation
task is denoted as T = {c, d, tmax}, where c is the amount of the required compu-
tational resources, d is the size of the computation input file, and tmax is the delay
tolerance of the task.We further classify the tasks into S types and present the tasks as
Ti = {ci , di , ti,max}, i ∈ S. The vehicles can be correspondingly classified according
to their computation task types into S types. The proportion of vehicles with a task of
type i in the total number of vehicles on the road is ρi , where i ∈ S and

∑S
i=1 ρi = 1.

5.5.1.2 Offloading with Optimal Predictive Transmission

There are two transmission modes for task offloading. One is through a direct V2I
mode. In this mode, a vehicle can only offload its task to theMEC server equipped on
the RSU that the vehicle can currently access. Considering that a vehicle travels down
an expressway at high speed, if its computation task costs a relatively long time, the
vehicle can pass by several RSUs during the task execution period. In this case, the
output of the computation to be sent back to the vehicle needs to be transmitted from
the MEC server that has accomplished the task to the remote RSU that the vehicle
is newly accessing. The time overhead and transmission cost of the multi-hop relay
seriously degrade the task transmission’s effectiveness.

Another offloading mode is predictive V2V transmission, whose main framework
is illustrated in Fig. 5.3. In this mode, the vehicles send their task input files to the
MEC servers ahead of them, in their direction of travel, through multi-hop V2V
relays. Based on the accurate prediction of the file transmission time and the task
execution time, as well as the time spents for the vehicle traveling down the road,
vehicle k can arrive within the communication area of RSUn at the exact time its
task has been completed. The computation output can be transmitted directly from
RSUn to the vehicle through V2I transmission without a multi-hop backhaul relay.
Transmission costs for task offloading can thus be reduced.

Let ti,v2v denote the average time delay for the transmission of the input file of a
task of type i through a one-hopV2V relay. The total time consumption of completing
the task in this predictive mode is

ti, j = y j · ti,v2v + ti,upload + ti,remote + ti,download (5.1)

58 5 Mobile Edge Computing for Internet of Vehicles

Fig. 5.3 Vehicle mobility-aware predictive task data transmission

where j is the number of hops the uploaddestinationRSU is from thevehicle’s current
position, where j > 1 means the vehicles adopt predictive mode transmission. We
define y j as the number of V2V relay hops that are required to transmit the input file
to an RSU j hops away. Furthermore, the total cost of this type of task offloading is

fi, j = y j · fi,v2v + fi,upload + fi,remote + fi,download (5.2)

where 1 < j ≤ Ji,max.
Tominimize the offloading cost of both data transmission and task executionwhile

satisfying the latency constraints, the objective function of the optimal offloading
schemes is

min{Pi, j }
S∑

i=1

Ji,max∑

j=0
ρi Pi, j fi, j

suchthat ti, j ≤ ti,max, i ∈ {1, S}, j ∈ {0, Ji,max}
(5.3)

The objective function in (5.3) gives the average offloading costs of all types of
vehicles when they choose offloading strategies {Pi, j }, where {Pi, j } is the probability
of a vehicle of type i choosing to offload its task to the MEC server j road segments
away from its current position. To solve (5.3), we resort to a game approach to
find the optimal offloading strategies of each type of vehicles. This game involves
S players, where each player is a set of vehicles with the same type of tasks. We
denote the vehicle set with tasks of type i as set i . The strategies of vehicle set i
(i = {1, 2, . . . , S}) are {Pi, j }. Vehicles in set i can choose to either execute tasks
locally or offload them to MEC servers j hops away. The payoff for set i is the sum
of the vehicles’ offloading costs. Using a heuristic method in which each vehicle set
adopt its best response action given the strategies of other vehicle sets, we can obtain
a Nash equilibrium, which is the solution of (5.3).

5.5 A Case Study 59

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

100

200

300

400

500

600

700

O
ffl

oa
di

ng
 c

os
t

Offloading through direct V2I transmission
Offloading through combination-mode transmission

Fig. 5.4 Task offloading costs in terms of vehicles density

5.5.1.3 Performance Evaluation

In the simulation scenario, we consider 10 RSUs located along a four-lane one-way
road. The vehicles are traveling at 120km an hour. Their computation tasks are clas-
sified into five types, with the probabilities {0.05, 0.15, 0.3, 0.4, 0.1}, respectively.
In addition, we set the computation resource requirement of each type of task at
{7, 13, 27, 33, 48} units, respectively.

Figure5.4 shows the computation offloading costs with different densities of vehi-
cles on the road. We compare the performance of our proposed predictive offloading
scheme with the V2I direct transmission scheme. It can be seen that the predictive
scheme greatly reduces the cost when the road has high vehicle density. In the case
of high traffic density, long task execution times on the MEC servers lead to more
RSUs that the vehicles have traveled past. Due to the transmission cost of the wire-
less backhaul between RSUs, the total costs of the direct V2I scheme rise quickly
with an increase in the density λ. However, in the predictive scheme, part of the
transmission is offloaded to the V2V relay, which has a lower cost compared with
wireless backhaul transmission. Thus, computation offloading costs can be saved.

It is worth noting that the performance improvement brought about by predictive
offloading is based on the accurate prediction of vehicle mobility. With the devel-
opment of AI technology, the prediction of vehicle mobility patterns has become
much more accurate, especially on highways that have stable traffic flows. Thus, this
proposed predictive scheme is promising and effective in practical applications.

60 5 Mobile Edge Computing for Internet of Vehicles

Fig. 5.5 Task offloading in an MEC-enabled vehicular network

5.5.2 Deep Q-Learning for Vehicular Computation
Offloading

5.5.2.1 A System Model

In this case study, we consider an MEC-enabled vehicular network in an urban
area, as illustrated in Fig. 5.5. Various types of computation tasks are generated in
the traveling vehicles. We classify these tasks into G types. A task is described
in four terms, as κi = { fi , gi , tmax

i , ςi }, i ∈ G, where fi and gi are the size of the
task input data and the amount of required computation, respectively, and tmax

i is the
maximumdelay tolerance of task κi . The offloading system receives utilityςi�t upon
completion of task κi , where �t is the time saved in accomplishing κi compared to
tmax
i . The probability of a task belonging to type i is denoted as βi , with

∑
i∈G βi = 1.

The urban area is covered by a heterogeneous wireless network that consists of
a cellular network BS, M RSUs, and mobile vehicles. Compared to a BS that has
seamless coverage and a high data transmission cost, RSUs provide spotty coverage
but inexpensive access service. The costs for using a unit of the spectrum of the
cellular network and the spectrum belonging to the vehicular network per unit of
time are cc and cv , respectively.

The BS is equipped with anMEC server, denoted as Serv0, through wired connec-
tions. In addition, each RSU hosts an MEC server. These servers are denoted Serv1,
Serv2, . . . , ServM , respectively. The MEC servers receive data from their attached
BS or RSUs directly. Let {W0,W1,W2, . . . ,WM} denote the computing capacities
of these servers. Each MEC server is modeled as a queuing network where the input
is the offloading task. The tasks that arrive are first cached on an MEC server and
then served according to a first-come, first-served policy. A server utilizes all of its
computing resources to execute the currently served task. The cost for a task to use
a computing resource per unit of time is cx .

5.5 A Case Study 61

In the heterogeneous network formed by the overlapping coverage of the BS and
theRSUs, vehicles can offload their tasks to theMECservers throughmultiplemodes.
The task file transmission between a vehicle and the BS is called V2I.When a vehicle
turns to the LTE-Vehicle network for task offloading, the file can be transmitted to
an MEC server in a mode with joint V2V–V2R transmission.

The task offloading scheduling and resource management are considered to oper-
ate in a discrete time model with fixed length time frames. The length of a frame is
denoted as τ . In each time frame, a vehicle generates a computing task with proba-
bility Pg . For each generated task, its offloading can only adopt a single transmission
mode. Since the topology can change in different time frames due to the mobility
of the vehicles, to facilitate the modeling of the dynamic offloading service rela-
tions, we split the road into E segments. The position of a vehicle on the road is
denoted by the index of the segment e, where 1 ≤ e ≤ E . All the vehicles have fixed
transmission power for a given transmission mode, that is, Ptx,b in V2I mode and
Ptx,v in the V2R and V2V modes. To receive a task file from a V2I mode vehicle,
the signal-to-noise-plus-interference ratio (SINR) at the BS is presented as γv,b. In
addition, when vehicles choose V2R or V2V communication, the SINR at receiver
r is γv,r .

5.5.2.2 Optimal Offloading Scheme in a Deep Q-Learning Approach

We next formulate an optimal offloading problem and propose deep Q-learning–
based joint MEC server selection and offloading mode determination schemes. In a
given time frame, for a vehicle located on road segment e and generating task κi ,
we use xi,e = 1 to indicate the task offloading to Serv0 through V2I. Similarly, we
use yi,e,m = 1 and zi,e,m = 1 to indicate the task offloading to Servm in the V2R
and joint V2V–V2R modes, respectively. Otherwise, these indicators are set to zero.
The proposed optimal task offloading problem, which maximizes the utility of the
offloading system under task delay constraints, is formulated as follows:

max{x,y,z}U =
∞∑

l=1

n∑

j=1

G∑

i=1
βi (ςi (tmax

i − t totali,e j ,l
) − xli,e j (qccc fi

/Rv,b,e j + gicx/W0) − yli,e j ,m(qvcv fi/Rv,r,e j

+gicx/Wm) − zli,e j ,m(

He j∑

h=1
qvcv fi/Rv, j,e j + gicx/Wm))

suchthat C1 :xli,e j = {0, 1}, yli,e j ,m = {0, 1}, zli,e j ,m = {0, 1}
C2 :xli,e j yli,e j ,m = xli,e j z

l
i,e j ,m

= yli,e j ,mz
l
i,e j ,m ′ = 0

C3 :xli,e j + yli,e j ,m + zli,e j ,m = 1
C4 :t totali,e j

� tmax
i , i ∈ κ, m,m ′ ∈ M

(5.4)

where n is the number of tasks generated in a time frame; e j is the road segment
index of vehicle j’s location; Hej is the number of transmission hops; qc and qv

62 5 Mobile Edge Computing for Internet of Vehicles

are the amount of spectrum resources allocated for each task file offloading through
the cellular and vehicular networks, respectively; Rv,b,e j is the transmission rate of
offloading the task file from the vehicle in road segment e j to the BS, which can be
written Rv,b,e j = qc log(1 + γv,b); and Rv,r,e j and Rv, j,e j can be calculated similarly,
based on the allocated spectrum qv and the SINR γv,r . Constraint C1 indicates that,
for any offloading mode, either a choice is made or not, and C2 and C3 ensure that
each task should select only a single offloading mode.

Since the current serving state of a server can affect the time costs of the following
tasks,we can formulate (5.4) as aMarkov decision process. The state of the offloading
system in time frame l is defined as Sl = (sl0, s

l
1, . . . , s

l
M), where sl0 is the total

computation required by the tasks queuing in Serv0 in frame l. Similarly, sl1, . . . , s
l
M

denote the required computation of the tasks queuing in Serv1, Serv2, . . . , ServM in
time frame l, respectively. The actions taken by the control center in frame l can be
shown to be al = (Xl ,Y l , Zl), where Xl = {xli,e}, Y l = {yli,e,m} and Zl = {zli,e,m} are
the sets of task offloading strategies with various transmission modes and offloading
targets for the generated tasks in frame l, respectively.

To derive the optimal offloading strategy π∗, we turn to reinforcement learning
technology. The previous Markov decision process is turned into a reinforcement
learning problem. The optimal value of the Q-function is

Q∗(Sl , al) = ESl+1 [Ul + ηmax
al+1

Q∗(Sl+1, al+1)|Sl , al] (5.5)

where the maximum-utility as well as optimal offloading strategies can be derived
by value and strategy iteration. A classical algorithm of reinforcement learning tech-
nologies, Q-learning can be used in modifying the iterations. In each iteration, the
value of the Q-function in the learning process is updated as

Q(Sl , al) ← Q(Sl , al) + α[Ul + ηmax
al+1

Q∗(Sl+1, al+1) − Q(Sl, al)] (5.6)

where α is the learning rate.
Moreover, the states of the offloading system consist of the amount of computation

queuing required in the MEC servers, a continuous value. We thus transform the Q-
function into a function approximator and choose a multilayered neural network
as a nonlinear approximator that can capture complex interactions among various
states and actions. Based on the Q-function estimation, we utilize deep Q-learning
technology to obtain the optimal offloading strategies π∗. With the help of the Q-
network, the Q-function can be estimated as Q(Sl , al) ≈ Q′(Sl , al; θ), where θ is
the set of network parameters. The Q values are trained to converge to real Q values
over iterations. Based on the Q values, the optimal offloading strategies in each
state are derived from the actions that lead to maximum utility. The action chosen
in frame l can now be written as al∗ = argmaxal Q

′(Sl , al; θ). During Q-learning
updates, a batch of stored experiences drawn randomly from the replay memory are
used as samples in training the Q-network’s parameters. The goal of the training is
to minimize the difference between Q(Sl , al) and Q′(Sl , al; θ). The loss function is
given as

5.5 A Case Study 63

9 11 13 15 17 19
15

20

25

30

35

40

45

50

Time (hour)

O
ffl

oa
di

ng
 u

til
ity

Best transmission path
Best MEC server
Greedy algorithm
Deep Q-learning approach
Game theoretic approach

Fig. 5.6 Average utilities under different offloading schemes

Loss(θ l) = E[1
2
(Ql

tar − Q′(Sl , al; θ l))2] (5.7)

We deploy a gradient descent approach to modify θ . The gradient derived through
differentiating Loss(θ l) is calculated as

∇θ l Loss(θ
l) = E[∇θ l Q

′(Sl , al; θ l)(Q′(Sl , al; θ l) − Ql
tar)] (5.8)

Then, θ l is updated according to θ l ← θ l − �∇θ l Loss(θ l) in time frame l, where
� is a scalar step size.

5.5.2.3 Performance Evaluation

We evaluate the performance of the proposed task offloading schemes based on real
traffic data,which consist of 1.4 billionGPS traces ofmore than 14,000 taxis recorded
during 21 day in a city. We consider a scenario with one BS and five RSUs on each
selected road. We set a computing capacity W0 = 1,000 units, and the capacities of
the MEC servers equipped on the RSUs are randomly selected from the range of
[100, 200] units.

Figure5.6 shows the impact of road traffic on the average utility of a task under
different offloading schemes. Our proposed deep Q-learning scheme clearly yields
higher offloading utility compared to other schemes, especially in the non-rush period
from 12:00 to 16:00. This is because our scheme jointly considers transmission
efficiency and the load states of the MEC servers. However, the offloading scheme
that chooses the target server according to the vehicle’s best transmission path and the
scheme that selects the MEC server according to the server state only take one factor
into account. The ignored factor could seriously affect the offloading efficiency.

64 5 Mobile Edge Computing for Internet of Vehicles

In the game-theoretic approach, the vehicles traveling on a road segment act as
players that compete for task offloading services to gain higher utility. Since each
vehicle independently determines its offloading strategy from the perspective of
its own interests and ignores cooperation with other vehicles, system performance
worsens. In the greedy algorithm, each vehicle chooses its offloading strategy in a
distributed manner. Although the greedy algorithm jointly optimizes the file trans-
mission path and MEC server selection in the current frame, it ignores the follow-up
effects between consecutive time frames. In contrast, our proposed learning scheme
considers both of these effects in the design of offloading strategies, leading to better
performance.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 6
Mobile Edge Computing for UAVs

Abstract This chapter studies mobile edge computing (MEC) networks assisted by
unmanned aerial vehicles (UAVs). According to the application scenarios, we con-
sider three roles forUAVs inMECnetworks: exploitingMECcomputing capabilities,
serving as a computing server, and serving as a relay for computation offloading. Fur-
thermore, the details for resource allocation and optimization are presented in the
three scenarios of UAV-assisted MEC networks. In addition, we focus on the situ-
ation in which a UAV not only functions as an MEC server to inspect turbines on
a wind farm, but also performs task computation. To facilitate wide applications
of UAV-assisted MEC in practice, this chapter highlights the main implementation
issues of UAV-assistedMEC, including optimal UAV deployment, wind models, and
joint trajectory–computation performance optimization.

6.1 Unmanned Aerial Vehicle–Assisted Mobile Edge
Computing (MEC) Networks

MEC has emerged as a promising solution to enable resource-limited mobile devices
to execute real-timeapplications (e.g., face recognition, augmented reality, unmanned
driving) [81]. With the deployment of MEC servers—such as base stations (BSs)
and access points—at the network edges, mobile users can offload computation-
intensive and latency-critical tasks to the network edges for computing, instead of
to the central cloud, to improve the computation performance of mobile users in
a cost-effective and energy-saving manner. However, terrestrial MEC networks are
not reliably established in some scenarios, such as in disasters, on battle fields, and
in emergency areas. Recently, MEC assisted by unmanned aerial vehicles (UAVs)
has drawn significant research interest because of the advantages it offers, such as
fully controllable mobility, flexible deployment, and strong line-of-sight channels
with ground devices [82]. Therefore, UAV-assisted MEC can be flexibly deployed
in scenarios where terrestrial MEC networks might not be convenient.

As shown inFig. 6.1, under an emergency scenario, terrestrialMEC infrastructures
could be destroyed in a disaster, leaving many rescue tasks unable to be computed
or executed. UAVs mounted with edge servers could be dispatched to compute the

© The Author(s) 2022
Y. Zhang, Mobile Edge Computing, Simula SpringerBriefs on Computing 9,
https://doi.org/10.1007/978-3-030-83944-4_6

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83944-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-83944-4_6

66 6 Mobile Edge Computing for UAVs

Fig. 6.1 A UAV-assisted MEC network framework

Fig. 6.2 Three UAV-assisted MEC network scenarios

rescue tasks in time. It is sometimes difficult to establish terrestrial MEC networks
to compute inspection tasks, such as for turbines at offshore wind farms or power
lines in a smart grid, due to a harsh environment. In this case, a UAV-assisted MEC
network can play a very important role. In hotspots, the high volumes of computation
tasks offloaded frommillions of mobile users can exhaust the computation resources
of edge servers, which leads to increased processing latency that decreases the user’s
quality of experience. The assistance of UAVs can improve the user’s quality of
experience.

Recent research has focused on the advances of employing UAV-assisted MEC to
help ground mobile users [83–85, 88, 90, 95, 96]. As shown in Fig. 6.2, according
to the application scenarios, UAVs can play different roles in MEC networks [83],
as follows.

• Exploiting MEC computing capabilities:When the UAV has limited computation
capability and needs to execute computation-intensive tasks, it can function as a
user to offload tasks to the terrestrial MEC server for computing.

6.1 Unmanned Aerial Vehicle–Assisted Mobile Edge Computing (MEC) Networks 67

• Serving as a computing server: When terrestrial MEC networks are not reliably
established, the UAV functions as an MEC server to help ground mobile users
perform tasks computation.

• Serving as a relay for computation offloading:When the UAV is not equipped with
an MEC server and the offloading link between the mobile user and the terrestrial
BS with the MEC server is poor, the UAV works as a relay to assist the mobile
user offload tasks to the terrestrial BS.

6.2 Joint Trajectory and Resource Optimization in
UAV-Assisted MEC Networks

Resource allocation and optimization are important for improving computation per-
formance while realizing the economical operation of UAV-assisted MEC networks.
Unlike resource allocation in conventional terrestrial MEC networks, resource allo-
cation in UAV-assisted MEC networks must consider the resources to be optimized
in computation task offloading, local computation, and UAV flight [83]. The details
for the resource allocation and optimization are presented in the following for the
three UAV-assisted MEC network scenarios.

6.2.1 Resource Allocation and Optimization in the Scenario
of a UAV Exploiting MEC Computing Capabilities

In the scenario of exploitingMEC computing capabilities, UAVs can exploit a partial
offloading mode or a binary offloading mode to offload computation-intensive tasks
to the terrestrial MEC server for computation. For computation task offloading, the
multiple access techniques used for terrestrial MEC networks can also be applied to
the UAVs’ computation task offloading procedure.Multiple access techniques can be
classified into two categories: orthogonalmultiple access (OMA) and non-orthogonal
multiple access (NOMA). The typical OMA techniques used in UAV-assisted MEC
are time division multiple access (TDMA) and orthogonal frequency division mul-
tiple access (OFDMA). NOMA can improve user connectivity and spectral effi-
ciency compared with OMA. In the UAVs’ computation task offloading procedure,
the terrestrial MEC server allocates the communication resources (communication
bandwidth, offloading time, offloading power, etc.) for task offloading. In local com-
putation, the terrestrial MEC server allocates and optimizes the CPU frequency for
the computation of the UAVs’ tasks. For the UAVs’ flight, their trajectories are opti-
mized under speed and acceleration constraints.

Moreover, different objectives can be achieved through resource allocation and
optimization in the scenario of a UAV exploiting MEC computing capabilities, such

68 6 Mobile Edge Computing for UAVs

as energy consumption minimization, completion time minimization, and utility
maximization.

6.2.1.1 Energy Consumption Minimization

The energy consumption in the case of aUAVexploitingMECcomputing capabilities
results from the UAV’s task offloading process, the local computing process, and the
UAV’s flight. In [84], N.Motlagh et al. studied the offloading of video data processing
to anMEC node compared to the local processing of video data on UAVs. Moreover,
a testbed was developed to demonstrate the efficiency of the MEC-based offloading
approach in saving the scarce energy of UAVs. In [85], M. Hua et al. studied energy
consumption minimization for computation task offloading from multiple UAVs to
a terrestrial BS, comparing the performance impacts of different the access schemes
of multiple UAVs.

6.2.1.2 Completion Time Minimization

In [86],X.Cao et al. considered anMECsystemwith a singleUAVand a set of ground
BSs withMEC functionality. The UAV offloads computation tasks to ground BSs for
remote execution. The computation tasks can be arbitrarily partitioned into smaller
subtasks that can be offloaded to different ground BSs. The mission completion time
of these subtasks is discretized into N time slots, whose number is minimized by
jointly optimizing the UAV trajectory and computation offloading, subject to the
UAV’s maximum speed constraint and the computation capacity constraint of the
ground BSs.

6.2.1.3 Utility Maximization

In [87], the authors defined the utility of UAV task offloading by considering energy
consumption, time delay, and computation cost. The best possible trade-off between
energy consumption, time delay, and computation cost can be achieved by maximiz-
ing a global utility function.

6.2.2 Resource Allocation and Optimization in the Scenario
of a UAV Serving as a Computing Server

In the scenario of a UAV serving as a computing server, terrestrial users exploit
a partial offloading mode or a binary offloading mode to offload computation-
intensive tasks to the UAV for computation. The multiple access techniques of

6.2 Joint Trajectory and Resource Optimization in UAV-Assisted MEC Networks 69

TDMA, OFDMA, and NOMA can be used to offload terrestrial user tasks. In the
offloading procedure, the UAV allocates the communication resources (communica-
tion bandwidth, offloading time, offloading power, etc.) to terrestrial users for task
offloading. For the UAV flight and computing process, the resources to be optimized
are the CPU frequency, the trajectory, the flight speed, and the acceleration velocity
of the UAV. There are two computing techniques based on the UAV CPU frequency.
When the UAV computation circuit has a fixed CPU frequency, the local compu-
tation is performed at a constant rate. When the UAV adopts a dynamic voltage
and frequency scaling technique, the CPU frequency can be adjusted based on the
scale of the computation task. Different optimization objectives can be achieved
through resource allocation when the UAV serves as a computing server, such as
energy consumption minimization, computation bit maximization, completion time
minimization, and computation efficiency maximization.

6.2.2.1 Energy Consumption Minimization

The energy consumption in the case of a UAV serving as a computing server results
from the local computing process, the task offloading process, and the UAV’s flight.
In particular, the energy consumed in the local computing process is determined by
the CPU frequency. In the offloading process, the energy consumed depends on the
transmission power and the offloading time. In theUAV’s flight, the energy consumed
should consider the UAV’s speed, acceleration velocity, and flight time. Joint trajec-
tory and resource allocation was studied in [88] to minimize total mobile energy con-
sumption while satisfying the quality of service requirements of the offloadedmobile
application. A UAV-assisted MEC network with stochastic computation tasks was
investigated in [89], where the average weighted energy consumption of the smart
devices and the UAV is minimized subject to constraints on the UAV’s computation
offloading, resource allocation, and flight trajectory scheduling.

6.2.2.2 Computation Bit Maximization

The total number of computation bits is the sum of the number executed in the
local computation and the number executed in the offloading. The maximization
of the number of computation bits was studied in a UAV-assisted MEC wireless
powered system under both partial and binary computation offloading modes in
[90], subject to a causal energy harvesting constraint and a UAV speed constraint.
The weighted-sum completed task input bits of users was maximized in [91] under
task and time allocation, information causality, energy causality, and the UAV’s
trajectory constraints. The optimization problem was solved by jointly optimizing
the task and time allocation, as well as the UAV’s transmission power and trajectory.

70 6 Mobile Edge Computing for UAVs

6.2.2.3 Completion Time Minimization

The completion time, in the case of a UAV serving as a computing server, is another
fundamental optimization objective, especially for time-sensitive applications. In the
binary computation mode, the completion time can be determined by the local com-
putation time or the offloading time. In the partial computation mode, the completion
time depends on both the local computation time and the offloading time. The mini-
mization of the task completion time is studied in [92] while assuming the condition
of a minimum number of computation bits.

6.2.2.4 Computation Efficiency Maximization

Different from the individual optimization of computation latency, energy consump-
tion, and thenumber of computationbits, computation efficiency is defined as the ratio
of the total number of computation bits to the total energy consumption, to achieve
a good trade-off between the number of computation bits and energy consumption.
A computation efficiency maximization problem was formulated in a multi-UAV-
assisted MEC system in [93], where, based on the partial computation offloading
mode, user association, the allocation of CPU cycle frequencies, power and spec-
trum resources, as well as UAV trajectory scheduling are jointly optimized.

6.2.3 Resource Allocation and Optimization in the Scenario
of a UAV Serving as a Relay for Computation
Offloading

In the scenario of aUAVserving as a relay for computation offloading, users deployed
at the cell edge offload computation-intensive tasks to a terrestrial MEC server via
UAV relay for computing. In the offloading procedure, the terrestrial MEC server
allocates the communication resources (e.g., communication bandwidth, offloading
time, relaying power) to the users and theUAV for task offloading and relaying. In the
local computation, the terrestrial MEC server allocates and optimizes the CPU fre-
quency for users’ task computations. In the UAV flight process, the UAC’s trajectory
is optimized under speed and acceleration constraints. The different optimization
objectives can be achieved through resource allocation where the UAV serves as a
relay, such as in user latency minimization, energy consumption minimization, and
minimum throughput maximization.

6.2 Joint Trajectory and Resource Optimization in UAV-Assisted MEC Networks 71

6.2.3.1 User Latency Minimization

In [94], J. Lyu et al. proposed utilizing UAVs as computing nodes as well as relay
nodes to improve the average user latency. They formulated the optimization problem
with the objective of minimizing the average latency of all users.

6.2.3.2 Energy Consumption Minimization

In [95], J. Lyu studied aUAV-assistedMECarchitecturewhere aUAV roamed around
the area, serving as a server to compute the tasks of mobile users or acting as a relay
to offload computation tasks to an access point. The problem of minimizing the
weighted-sum energy consumption of the UAV and the mobile users was formulated
subject to task constraints, information causality constraints, bandwidth allocation
constraints, and UAV trajectory constraints.

6.2.3.3 Minimum Throughput Maximization

In [96], a UAV was leveraged as a relay for offloading the computation tasks of
mobile users to a terrestrial BS. Furthermore, a resource optimization problem for
maximizing the minimum throughput of mobile devices was formulated. The results
demonstrate that computation performance can be significantly improved by opti-
mizing UAV trajectories.

6.3 Case Study: UAV Deployment and Resource
Optimization for MEC at a Wind Farm

Most recent research has focused on advances employing UAV-assisted MEC to
help ground mobile users in task computation or relaying in a hotspot scenario.
Nevertheless, UAV-assisted MEC has seldom been studied in a harsh environment
(at a wind farm, in rough seas, etc.). In this section, we consider the situation in which
aUAV functions as anMEC server to inspect the turbines at awind farm and performs
task computation.Wind power is a clean andwidely deployed alternative for reducing
dependence on fossil fuel power. Under this trend, a large number of turbines are
being installed at wind farms. The deployment of UAVs for the automated inspection
of the turbines and related task computation is a promising method to reduce costs
and improve inspection and computation efficiency. Different from UAV-assisted
MEC in a hotspot scenario, the random realization of extreme weather conditions at
a wind farm impacts the flight speed and range of UAVs [99]. For example, UAVs can
crash if the wind speed at a wind farm is over their maximum wind speed resistance.
Therefore, the influence of wind speed and wind direction is important to consider

72 6 Mobile Edge Computing for UAVs

in UAV placement and routing at a wind farm. In this section, we study the optimal
deployment of UAVs to inspect all turbines at a wind farm. The joint trajectory–
resource optimization for inspection and task computation will be discussed in the
following sections.

6.3.1 UAV Deployment for MEC at a Wind Farm

6.3.1.1 A Wind Model

Figure6.3 shows the deployment of multiple UAVs to monitor the condition of tur-
bines. The total number of turbines at the wind farm is T . The coordinates of the
kth turbine are qk = [xk, yk]. When UAVs fly to inspect a wind turbine, they face
two wind conditions: tail wind and head wind. The wind velocity is w = [wx , wy],
and the wind speed is ws = ‖w‖2. In the polar coordinate system, the wind direction
is θ

pol
w , which can be calculated by θ

pol
w = arc tan wy

wx . In meteorological measure-
ments, the wind direction is θmet

w . Since the phase goes clockwise in meteorological
measurements, however, the phase in the polar coordinate system is represented in
the counterclockwise direction. Therefore, the relation between wind direction in the
polar coordinate system and in meteorological measurement is denoted as

θ pol
w = 3π

2
− θmet

w (6.1)

Fig. 6.3 The deployment of multiple UAVs for automated inspection at a wind farm

6.3 Case Study: UAV Deployment and Resource … 73

6.3.1.2 A UAV Model

At the wind farm, each UAV inspects the turbines that are assigned to it. Assume that
the UAVs all fly at the same altitude, so the z-axis can be ignored. The i th UAV will
be placed at qi = [xi , yi], and the set of turbines assigned to the i th UAV is denoted
by N i . When a UAV flies to inspect a wind turbine, the condition of the wind is
to be considered in the decision making of the UAV. The velocity of the i th UAV
flying from turbine k to turbine l is vi,k,l = [

vx
i,k,l , v

y
i,k,l

]
, which is the UAV’s initial

velocity. The resultant velocity of the i th UAV is si,k,l = [
sxi,k,l , s

y
i,k,l

]
, which is the

velocity influenced by the wind. The relation between the UAV velocity, the wind,
and the resultant velocity can therefore be expressed as

si,k,l = vi,k,l + w (6.2)

where
∥∥vi,k,l

∥∥
2 and

∥∥si,k,l
∥∥
2 are the airspeed and ground speed of the UAV, respec-

tively, both limited by the maximum speed limit of umax
i . In particular, when the UAV

faces a tail wind, the ground speed is limited to umax
i . Then, for the headwind case,

the airspeed is limited to umax
i .

The time for the UAV to fly from turbine k to turbine l can be calculated as

ti,k,l = ‖ql − qk‖2∥∥si,k,l
∥∥
2

(6.3)

The maximum flight time for the UAV is tmax
i , which represents an upper limit

of the total flight time. The UAV’s flight range under the wind condition can be
expressed as

Bw
i (ρi) = {x, y ∈: ‖r‖2 ≤ ρi } (6.4)

where r = [x − xr , y − yr], ρi is the UAV’s actual flight distance, which can be
calculated by ρi = umax

i tmax
i

2 . The UAVs’ flight range is regarded as a circle with xr
and yr as the center of the circle, which can be calculated as xr = xi + wx tmax

i
and yr = yi + wytmax

i , respectively. Since the UAV’s flight range is influenced by
different wind conditions, it is the intersection of the flight range under different
wind conditions: Zi = ∩

w
Bw
i (ρi).

6.3.1.3 Deployment of Multiple UAVs at a Wind Farm

Since a single UAV has a limited operation time and battery, it is challenging to
serve a large number of mobiles users in a geographical coverage area. Compared
with a single UAV, a collaboration of multiple UAVs can expand the coverage area
and support more computation tasks within a shorter time, which can remarkably
boost the applications of UAV-assisted MEC in emergency and complicated scenar-
ios. Therefore, it is important to design a multiple-UAV deployment scheme before

74 6 Mobile Edge Computing for UAVs

task computation, to reduce the computation cost and improve computation perfor-
mance. Several recent works have focused on utilizing multiple UAVs and placing
them for an optimal topology [97, 98]. An efficient deployment of multiple UAVs
that provides coverage for ground mobile devices was analyzed in [97], where the
three-dimensional locations of theUAVswere optimized tomaximize the total cover-
age area. Furthermore, the minimum number of UAVs to guarantee a target coverage
probability for a given geographical area was determined. A polynomial-time algo-
rithm with the placement of successive UAVs was designed in [98] to minimize the
number of UAVs needed to provide wireless coverage for a group of distributed
ground terminals. However, recent works seldom study the deployment of UAVs for
task computation in harsh environments, such as in rough seas or at a wind farm. We
address the deployment problem of UAVs at a wind farm by considering wind, since
it can have a considerable influence on the flight range and speed of UAVs.

Initially, N candidates UAVs are placed at the wind farm. The matrixes A =
[ai]1×N , B = [

bi,k
]
N×T and C = [

ci, j
]
N×N denote the states of candidate UAVs, the

association between UAVs and turbines, and the communication link between UAVs,
respectively,whereai = 1 indicates that the i th candidateUAVneeds to be positioned
at thewind farm, andai = 0 indicates it needs to be removed.Additionally, ifbi,k = 1,
turbine k is assigned to the i th UAV; otherwise, bi,k = 0. When determining the
topology of the UAVs, we need to ensure that they can maintain communication
links with each other so that collisions can be prevented. Thus, ci, j = 1 indicates
that the i th and j th UAVs have a communication link; otherwise, ci, j = 0. The
objective function is to minimize the number of UAVs that need to be placed at the
wind farm. Thus, the deployment problem, considering the influence of wind, can
be formulated as

min
A,B,C,xi ,yi

N∑

i=1
ai

such that
C1 : ai , bi,k, ci, j ∈ {0, 1}
C2 :

N∑

i=1
bi,k ≤ 1,∀k,

T∑

k=1
bi,k ≤ p,∀i

C3 : [xk, yk] ∈ Zi , [xi , yi] ∈ {[xk, yk]} ,∀bi,k = 1

C4 :
N∑

j=1,i �= j
ci, j ≥ 1,

√(
xi − x j

)2 + (
yi − y j

)2 ≤ d,∀i, j

(6.5)

where constraint C1 indicates that ai , bi,k , and ci, j are binary variables; C2 indicates
that each turbine can only be assigned to one UAV, and each UAV can be associated
with up to p turbines, respectively; C3 ensures that the location [xk, yk] of turbine k
assigned to the i th UAV must be in the flight range of the i th UAV, and each UAV
should be placed inside the turbines assigned to it; and constraint C4 guarantees
that the minimum number of communication links each UAV must have and the
distance between any two UAVs should be lower than d. The formulation in (6.5) is
a mixed integer linear programming problem that cannot be solved directly, because
it contains binary parameters. In this case, if the dimension of the problem increases,

6.3 Case Study: UAV Deployment and Resource … 75

the problem will become NP-hard. Thus, a heuristic algorithm is designed to solve
problem (6.5).

For the deployment of multiple UAVs, the flight range is an important parameter
that can be influenced by the wind conditions at the wind farm. However, wind
conditions in the future are unknown to UAVs, and different UAVs have different
maximum wind speed resistance levels. Since the deployment is used to determine
the required number of UAVs and their placement, it can be considered the planning
stage and can use historic wind data. We choose the Walney Wind Farms, a group
of offshore wind farms in the United Kingdom. The wind data are obtained from
the Centre for Environmental Data Analysis [103], which provides hourly average
wind velocities and directions. Given the wind velocity and directions, a UAV’s flight
range can be obtained from (6.4).

Then, with a known flight range, the topology of the UAVs at the wind farm can
be designed. Initially, T UAVs are placed at the wind farm so that each turbine has
one UAV assigned to it. The turbines inside a UAV’s flight range are assigned to it.
After initialization, some UAVs might have to associate with more than p turbines.
To eliminate redundant connections between the UAV and the turbines, the distances
between the UAV and its assigned turbines are sorted in decreasing order and the
turbines associated with the UAV are then reassigned accordingly.

After this procedure is completed, some turbines might be assigned to more than
oneUAV. In addition, the current number of UAVs placed has not beenminimized. To
address these issues, theUAVs are sorted based on the number of turbines intersecting
with other UAVs in decreasing order. Then, if any turbine associated with the i th
UAV can also be served by another UAV, the i th UAV can be removed; otherwise,
the connection between the UAV and the turbine is deleted based on the distance.

6.3.1.4 Performance Analysis

The performance of the deployment strategy is evaluated based on a real-world
dataset for the Walney Wind Farms in the United Kingdom. The data are from the
Centre for Environmental Data Analysis [103] and Kingfisher Information Service
– Offshore Renewable & Cable Awareness [104]. The UAV is an AscTec Falcon
8 [105], which has a maximum wind speed resistance of 15m per second. The
maximum distance of the communication between UAVs is set to 5km. Each UAV
can be assigned to inspect up to five turbines. To clearly present the deployment,
we pick 47 of the 189 turbines in the dataset. Figure6.4 shows the final deployment
results, where 17 UAVs are required to cover all the wind turbines at the wind farm.
Additionally, all the turbines are assigned to the UAVs, and each UAV serves no
more than five turbines.

76 6 Mobile Edge Computing for UAVs

Fig. 6.4 UAV deployment

6.3.2 Joint Trajectory and Resource Optimization of
UAV-Aided MEC at a Wind Farm

Different from the joint trajectory–resource optimization in UAV-assisted MEC for
ground mobile users, in this section we study how to route UAVs to inspect wind
turbines and execute computation tasks at a wind farm. For a given topology in
Fig. 6.3, a UAV and its assigned turbines can be represented in a graph, denoted as
Gi = {Ni , εi }, where Ni represents the nodes in the graph, which denote the set of
turbines assigned to the i th UAV, and εi is the set of edges that connect each turbine.
After the detection of turbine k, the UAV computes the detection tasks while flying to
turbine l. The detection tasks must be completely processed before the UAV arrives
at turbine l. With the graph structure, we can create adjacency matrixes denoted by
Di andEm

i . The value of the kth column and lth row inDi is ti,k,l , which represents the
flight time from turbine k to turbine l. The value of the kth column and lth row in Em

i
is ei,k,l , which represents the energy consumption of the UAVflying from turbine k to
turbine l. The detection task of turbine k is denoted by Ik = {dk, ck}, where dk denotes
the task size and ck is the required number of CPU cycles to compute one bit of task.
Let fi,k denote the computation resource that the UAV allocates to turbine k. The
computation time of the detection task for turbine k can be expressed as ti,k = ckdk

fi,k
,

where ti,k ≤ ti,k,l . The energy consumption of the detection task computation for
turbine k can be expressed as ei,k = γcckdk

(
fi,k

)2
.

Denote the number of required routes to inspect the turbines as M . We introduce
the routing matrix Um

i = [Um
i,k,l]|Ni |×|Ni | to denote the mth route for UAV i . Specif-

ically, Um
i,k,l = 1 indicates that the UAV chooses to fly from turbine k to turbine l;

otherwise,Um
i,k,l = 0. Our objective is to minimize the energy consumption of the i th

6.3 Case Study: UAV Deployment and Resource … 77

UAV for turbine detection and task computation. The joint trajectory–computation
resource optimization problem can be formulated as

min
M,Um

i ,Em
i , fi,k ,

vi,k,l ,si,k,l ,θ
s,v
i,k,l

M∑

m=1

∑

k∈Ni

∑

l∈Ni\{k}
Um

i,k,l

(
ei,k,l + ei,k

)

such that
C1 : Um

i,k,l ∈ {0, 1},∀k, l ∈ Ni

C2 : ∑

k∈Ni

Um
i,s,k=

∑

k∈Ni

Um
i,k,s = 1,∀m

C3 : ∑

k,l∈Ni

ti,k,lUm
i,k,l ≤ tmax

i

C4 : ti,k ≤ ti,k,l,
∑

k∈Ni

fi,k ≤ f max
i

C5 : ∥∥vi,k,l
∥∥
2 ≤ umax

i ,
∥∥si,k,l

∥∥
2 ≤ umax

i

(6.6)

where constraint C1 indicates that Um
i,k,l is a binary parameter; C2 indicates that the

starting point of every route should be s, which is the position of the UAV; C3 ensures
that the sum of the flight times of all the routes does not exceed tmax

i ; constraint C4
guarantees that the total computation time of the detection tasks for each turbine does
not exceed the flight time, and the computation resources allocated for computing
the detection tasks do not exceed the maximum computation resources f max

i of the
i th UAV; and C5 ensures that the airspeed and ground speed are each bounded by
the maximum speed.

In problem (6.6), the optimal values of several parameters should be found. In
addition, the variables at the upper bounds of the summation and the binary param-
eters make the problem difficult to be solved. To address the challenge, the solution
of (6.6) is separated into two stages. In the first stage, the optimal UAV trajectory is
found that minimizes the flight energy consumption by fixing the energy consump-
tion ei,k of the UAV for task computation. We must calculate si,k,l , vi,k,l , ti,k,l , and
ei,k,l for all k, l ∈ Ni . The calculation of si,k,l and vi,k,l differs, depending on whether
the UAV is facing headwind or tailwind. The variable θ

s,w
i,k,l is utilized to determine

wind conditions, and it can be calculated as the inner product of si,k,l and w. The
power consumption p

(
vi,k,l

)
of a UAV flying with airspeed vi,k,l can be modeled

according to [102]. With si,k,l , vi,k,l , and ti,k,l , the flight energy consumption ei,k,l of
a UAV flying from turbine k to turbine l can be obtained by multiplying ti,k,l with
p

(
vi,k,l

)
.

A heuristic algorithm is then designed to find the UAV’s optimal trajectory. In
particular, a brute force algorithm is developed to search for the optimal trajectory
without considering time limits. The optimal trajectory obtained is then modified
according to the maximum flight time. Based on the optimal trajectory found, a test
is run to see if the UAV can fly back to its starting point when it decides to detect
turbine l from turbine k. We now compare the cumulative flight time of a UAV
from its starting point to turbine l via turbine k and the time it takes the UAV to
fly from turbine l back to its starting point. If both of the times are less than the
maximum time, Um

i,k,l = 1; otherwise, Um
i,k,l = 0, the UAV needs to fly back to the

78 6 Mobile Edge Computing for UAVs

starting point from turbine k, and another detection round is added, starting from
turbine l. In the second stage, based on the trajectory obtained, we solve the problem
of the optimal computation resource allocation of the UAV detecting each turbine to
minimize the energy consumption for computation. Since both the objective function
and constraint C4 are convex, the Lagrange duality method can be utilized to solve
this problem.

6.3.2.1 Performance Analysis

The results of the deployment are applied to show how to route the UAVs to inspect
the wind turbines and execute the computation tasks. We use UAV 15 as an example.
The UAV is placed at the turbine whose code is B110. Figure6.5 shows the result
of the trajectory. To minimize flight energy consumption, the UAV should avoid
headwind. The UAV goes to C214 first and then chooses E105. After E105, the UAV
uses the tailwind to go to A106 and A411. The total flight time for detection and
computation is 15.3min, and the energy consumption for the flight is 137.7 KJ. For
comparison with the proposed method, a branch and bound method is used to find
the optimal trajectory of the UAV according to (6.6). The total flight time calculated
with the branch and bound method is 15.7min, and the energy consumption for the
flight is 141.5 KJ. Thus, the optimality of the proposed method can be proven.

Furthermore, Fig. 6.6 compares the computation energy consumption of the pro-
posed method with that of the branch and bound method. Since constraint C4 in
optimization problem (6.6) illustrates that the computation time of the detection
tasks for each turbine must not exceed the flight time, and the flight time obtained by

Fig. 6.5 Trajectory of UAV 15

6.3 Case Study: UAV Deployment and Resource … 79

Fig. 6.6 Computation of the energy consumption of UAV 15 versus different sizes of detection
tasks

the branch and bound method is longer than that obtained by the proposed method,
we can conclude that the computation energy consumption of the proposed method
is less than that of the branch and boundmethod. In addition, the computation energy
consumption of the two methods increases with increasing detection task size.

6.4 Conclusions

In this chapter, we illustrated the application of UAV-assisted MEC in scenarios in
which terrestrial MEC networks cannot be reliably established. According to the
application scenarios, we analyzed the different roles of UAVs in MEC networks
and presented the details for resource allocation and optimization in three UAV-
assisted MEC network scenarios. In addition, we focused on UAV-assisted MEC
at a wind farm and studied the wind’s effect on UAVs’ flight characteristics. The
optimal number of UAVs to be deployed to inspect all the turbines at the wind farm
was investigated. Then, the joint trajectory–computation resource optimization of
the UAVs for inspection and task computation at the wind farm was studied. A two-
stage method was developed to solve the problem of UAV trajectory optimization
and computation resource allocation to detect each turbine, in order to minimize the
total energy consumption.

80 6 Mobile Edge Computing for UAVs

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 7
The Future of Mobile Edge Computing

Abstract This chapter first introduces the fundamental principles of blockchain and
the integration of blockchain and mobile edge computing (MEC). Blockchain is a
distributed ledger technology with a few desirable security characteristics. The inte-
gration of blockchain and MEC can improve the security of current MEC systems
and provide greater performance benefits in terms of better decentralization, security,
privacy, and service efficiency. Then, the convergence of artificial intelligence (AI)
and MEC is presented. A federated learning–empowered MEC architecture is intro-
duced. To improve the performance of the proposed scheme, asynchronous federated
learning is proposed. The integration of blockchain and federated learning is also
presented to enhance the security and privacy of the federated learning–empowered
MEC scheme. Finally, more MEC enabled applications are discussed.

7.1 The Integration of Blockchain and Mobile Edge
Computing (MEC)

MEC can offer a series of edge services with task processing, data storage, hetero-
geneity support, and QoS improvement capabilities. In close proximity to devices,
MEC can provide instant computing applications with low latency and fast service
response. The distributed structure of edge computing also potentially facilitates
ubiquitous computing services, scalability, and network efficiency improvement.
However, the MEC infrastructure still has unresolved challenges in terms of security
and privacy. First, the large amount of heterogeneous data being collected, trans-
ferred, stored, and used in dynamic MEC networks can easily suffer serious data
leakage. Further, due to the high dynamism and openness of MEC systems, it is very
challenging to save the setting and configuration information of the edge servers in
a reliable and secure way. Blockchain can enhance the security and privacy of MEC
by offering many promising technical properties, such as decentralization, privacy,
immutability, traceability, and transparency. The integration of blockchain andMEC
can enable secure network orchestration, flexible resource management, and sys-
tem performance improvements. In this section, we first introduce the structure of

© The Author(s) 2022
Y. Zhang, Mobile Edge Computing, Simula SpringerBriefs on Computing 9,
https://doi.org/10.1007/978-3-030-83944-4_7

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83944-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-83944-4_7

82 7 The Future of Mobile Edge Computing

blockchain and then present three potential cases of the integration of blockchain
and MEC as future research directions.

7.1.1 The Blockchain Structure

Blockchain is an open database that maintains an immutably distributed ledger typ-
ically deployed in a peer-to-peer network. The structure of blockchain is shown in
Fig. 7.1 and consists of three essential components: transactions, blocks of transac-
tion records, and a consensus algorithm. The transaction information includes node
pseudonyms, data types, metadata tags, a complete index history of metadata, an
encrypted link to transaction records, and a timestamp of a specific transaction. Each
transaction is encrypted and signed with digital signatures to guarantee authentic-
ity. The digitally signed transactions are arbitrarily packed into a cryptographically
tamper-evident data block. The blocks are linked in linear chronological order by
hash pointers to form the blockchain. To maintain the consistency and order of the
blockchain, a consensus algorithm is designed to generate agreement on the order of
the blocks and to validate the correctness of the set of transactions constituting the
block.

Fig. 7.1 The blockchain structure

7.1 The Integration of Blockchain and Mobile Edge Computing (MEC) 83

7.1.1.1 Transactions

Atransaction is the unit data structure of a blockchain, and it is created by a set of users
to indicate the transfer of tokens from a specific sender to a receiver. Transactions
generally consist of a recipient address, a sender address, and a token value. The input
of a transaction is a reference that contains a cryptographic signature. The output
of a transaction specifies an amount and an address. Transactions are bundled and
broadcast to each node in the form of a block. As new transactions are distributed
throughout the network, they are independently verified by each node. To protect
the authenticity of a transaction, the functionalities of cryptographic hashing and
asymmetric encryption are utilized, as follows.

• Hash function: A cryptographic hash function maps an arbitrary-size binary input
into a fixed-size binary output. For example, SHA-256 maps an arbitrary-size
input to a binary output 256 bits. The binary output is called a hash value. More-
over, the same input will always provide the same hash output. The probability
of generating the same output for any two different inputs is negligible; it is thus
impossible to reconstruct the input based on a hash output. The hash of a transaction
makes it easy to keep track of transactions on the blockchain. In Bitcoin, SHA-
256 and RIPEMD160 are utilized as hash function to produce a bitcoin address.
In Ethereum, Keccak-256 is utilized as a hash function to produce a public key. In
addition, signatures and private keys in blockchain frequently use hash functions
to ensure security.

• Asymmetric encryption: Asymmetric encryption provides a secure method for
authentication and confidentiality. Each node in a blockchain has a pair of keys: a
public key and a private key. The public key can be shared with anyone to encrypt
a message, whereas the private key should only be known to the key’s initiator. In
blockchain, the public key is used as the source address of transactions to verify
their genuineness. The cryptographic private key is used to sign a transaction,
which outputs a fixed-size digital signature for any arbitrary-size input message.
The verification result will be true if the digital signature has the correct private
key and input message. An elliptic curve digital signature algorithm is a typical
algorithm for digital signing transactions. In the elliptic curve digital signature
algorithm, when a user (A) wants to sign a transaction, that user first hashes the
transaction and then uses his or her private key to encrypt the hashed transaction.
The user then broadcasts the encrypted transaction.When another user receives the
transaction and wants to verify its correctness, that user can decrypt the signature
with user A’s public key and hash the received transaction to verify whether the
transaction information has been changed.

In blockchain, each transaction is broadcast over the entire network and cross-
verified by multiple nodes. The verified transactions are ordered consecutively with
linearly ordered timestamps to guarantee correctness.

84 7 The Future of Mobile Edge Computing

Fig. 7.2 Block structure

7.1.1.2 The Block Structure

Ablockchain is a sequence of blocks that holds a complete list of transaction records.
Ablock in a blockchain contains the hash of the current block, the hash of the previous
block, aMerkle tree root, a timestamp, a nonce, and transactions, as shown in Fig. 7.2.

• Block hash: A block hash is the principal block identifier. It is a cryptographic
digest made by hashing the block header twice with the SHA-256 algorithm. It
identifies a block uniquely and unambiguously, and it can be independently derived
by any node by simply hashing the block header.

• Previous hash: The hash of the previous block, which is a 256-bit hash that points
to the previous block, is a necessary data field for the block header. Based on the
previous block hash, all blocks are linked together to form a chain. If any block
is tampered with, this will cause a change in all subsequent block hash pointers.
When a block and all previous blocks are downloaded from an untrusted node,
block hashing can be used to verify whether any block has been modified.

• Merkle tree: A Merkle tree represents a transaction set in the form of a binary tree
for quick validation and synchronization. In the tree, the leaf nodes are the lowest
tier of nodes, and each leaf node is a hash of a transaction. Each non-leaf node is
a hash of the concatenation of two child nodes. The root node of the Merkle tree
is known as the Merkle digest or root. Adjacent leaves are concatenated pairwise,
and the hash of the concatenation constitutes the node’s parent. Parent nodes are
concatenated and hashed similarly to generate another level of parent nodes. This
process is repeated until a single hash remains, which is the Merkle root. The
Merkle tree is useful because it allows users to verify whether a transaction has
occurred, based only on the direct branch from the transaction node to the Merkle
root path. Moreover, the Merkle root allows tampering of any transaction data to
be detected, to ensure their integrity.

• Timestamp: The time the block was generated. In blockchain, every block has a
timestamp and the timestamp can be referred to as proof of existence. According
to Satoshi Nakamoto’s white paper [107], a decentralized timestamp service can
resolve the double-spending problem. It can also help improve the traceability and
transparency of the data stored in the blockchain.

• Nonce: A nonce is random number, and it can be used only once. Each node
competes to find the nonce first to obtain the correct packing transactions for the

7.1 The Integration of Blockchain and Mobile Edge Computing (MEC) 85

newly generated block. The nonce is difficult to find and is considered a way to
weed out less talented miners. Once the nonce is found, it is added to the hashed
block. With this number, the hash value of that block will be rehashed, creating a
difficult algorithm.

The first block in any blockchain is termed the genesis block. This block is some-
times referred to as block 0. Every block in a blockchain stores a reference to the
previous block. However, the genesis block has no previous block for reference.

7.1.1.3 Consensus Algorithms

Blockchain is a distributed decentralized network that provides immutability, pri-
vacy, security, and transparency. There is no central authority to validate and verify
the transactions, but the transactions are considered secured and verified. This is
possible because of consensus. Consensus is a process that allows all nodes to reach
a common agreement on the state of a distributed ledger. The consensus problem
can be formulated as a Byzantine fault–tolerant problem, that is, how generals can
come to a common conclusion in the presence of a small number of traitors and mis-
communications. The consensus currently used in most blockchain networks can be
split into two categories: probabilistic-finality consensus and absolute-finality con-
sensus. In probabilistic-finality consensus, any block in a blockchain can be reverted
with a certain probability; attackers could thus accumulate a large amount of com-
putational power, or stake, to create a long private chain to replace a valid chain. In
absolute-finality consensus, a transaction is immediately finalized once it is included
in a block. In other words, a new block generated by a leader node is committed
by sufficient nodes before submission to the blockchain. We next present several
common consensus strategies in blockchain.

• Proof of work (PoW): PoW is a consensus strategy used in Bitcoin, where one
node is selected to create a new block in each round of consensus through a com-
putational power competition. In the competition, all participants must solve a
cryptographic puzzle by using different nonces until the target is reached. The
node that first solves the puzzle has the right to create a new block. Solving a PoW
puzzle is costly and time-consuming, but it is easy for other nodes to verify. PoW
guarantees security, based on the principle that it is impossible for a malicious
attacker or group to collect more than 50% of the network’s computational power
to control the consensus process. PoW is a probabilistic-finality consensus proto-
col to guarantee eventual consistency. In PoW, nodes must consume a great deal
of energy to solve the cryptographic puzzle. However, this work is useless and the
energy consumed is wasteful. To tackle the resource waste problem of PoW, the
idea of proof of useful resources was designed. Primecoin proposed a consensus
algorithm to turn useless PoW into a meaningful search for special prime num-
bers when seeking a nonce [108]. Permacoin utilized bitcoin mining resources to
distributively store an extremely large data provided by an authoritative file dealer
based on proof of retrievability [109]. Instead of wasting energy for PoW, proof

86 7 The Future of Mobile Edge Computing

of burn allows miners to burn virtual currency tokens and then grants miners the
right to write blocks in proportion to the number of burned coins [110].

• Proof of stake (PoS): PoS is an energy-saving consensus to replace PoW. Instead
of consuming large amounts of computational power to solve a PoW puzzle, PoS
selects one node to create the next block based on the amount of stake. PoS is
a probabilistic-finality consensus protocol, where the chances of being a block
creator depends on “wealth”. Since the richest node is bound to dominate the
network, creator selection based on the amount of stake is quite unfair. Therefore,
many researchers have proposed new schemes to decide on the node to forge
the next block. Peercoin proposed a metric of coin age to measure the amount
of held coins and their holding time [111]. In Peercoin, the node with older and
larger sets of coins has a higher probability of creating the next block. Compared
with PoW, Peercoin can reduce energy consumption and become more efficient.
Ouroboros proposed PoS-based consensus, considering that stakes will shift over
time [112]. A secure multiparty coin-flipping protocol was proposed in Ouroboros
to guarantee the randomness of the leader election in the block generation process.
To combine the benefits of PoW and PoS, proof of activity was proposed [113].
In proof of activity, the leader in each round of consensus is selected based on a
standard PoW-based puzzle competition to generate an empty block header, where
the stakeholders participating in the block verification receive a reward.

• Delegated PoS (DPoS): The main difference between PoS and DPoS is that
PoS involves direct democracy, whereas DPoS involves representative democ-
racy [114]. In DPoS, stakeholders vote to elect delegates. The elected delegates
are responsible for block creation and verification. Voting in DPoS is important,
since it enables stakeholders to give delegates the right to create blocks, instead of
creating blocks themselves; DPoS can thus reduce the computational power con-
sumption of stakeholders to zero. On the other hand, PoW with plenty of nodes
participating in the block verification process. In DPoS, only fewer delegates par-
ticipate in the block verification process, thus the block can be confirmed quickly
and the transactions can be confirmed quickly. Compared to PoW and PoS, DPoS
is a low-cost, high-efficiency consensus protocol. Additionally, stakeholders do
not need to worry about dishonest delegates, because these delegates can be easily
voted out. There are also cryptocurrencies that implement DPoS, such as BitShares
[115] and EoS. The new version of EoS has extended DPoS to DPoS–Byzantine
fault tolerance. [116].

• Practical Byzantine fault tolerance (PBFT): PBFT is a Byzantine fault tolerance
protocol with low algorithm complexity and high practicality [117]. Even if some
nodes are faulty ormalicious, network liveness and safety are guaranteed by PBFT,
as long as a minimum percentage of nodes are connected, working properly, and
behaving honestly. Hyperledger Fabric [118] utilizes PBFT as its consensus algo-
rithm. In PBFT, a new block is determined in a round. In each round, a primary
node is selected as the leader to broadcast the message sent by the client to other
nodes. PBFT can be divided into three phases: pre-prepare, prepare, and commit.
In each phase, a node enters the next phase if it has received votes from over two-
thirds of all nodes. PBFT guarantees the nodes maintain a common state and take

7.1 The Integration of Blockchain and Mobile Edge Computing (MEC) 87

Table 7.1 Main consensus comparison

Type Fault tolerance Power
consumption

Scalability

PoW Probabilistic
finality

50% Large Good

PoS Probabilistic
finality

50% Less Good

DPoS Probabilistic
finality

50% Less Good

PBFT Absolute finality 33% Negligible Bad

consistent action in each round of consensus. PBFT achieves strong consistency
and is thus an absolute-finality consensus protocol.

In distributed systems, there is no perfect consensus protocol. The consensus
protocol should be adopted based on detailed application requirements. We present
a simplified comparison of different consensus algorithms in Table7.1.

7.1.2 Blockchain Classification

Current blockchain systems can be roughly classified into three types: public
blockchains, consortium blockchains, and private blockchains. We compare these
three types of blockchains from different perspectives.

• Consensus determination: In a public blockchain, each node can take part in the
consensus process. In a consortium blockchain, only a selected set of nodes is
responsible for validating a block. In a private blockchain, one organization fully
controls and determines the final consensus.

• Permission: All transactions in a public blockchain are visible to the public. In
a private or consortium blockchain, permissions depends on the organization or
consortium decides whether the stored information is public or restricted.

• Immutability: Since transactions are stored in different nodes in the distributed
network, it is nearly impossible to tamper with the public blockchain. However, if
the majority of the consortium or the dominant organization wants to tamper with
the blockchain, the consortium blockchain or private blockchain can be reversed
or altered.

• Efficiency: It takes time to propagate transactions and blocks, since there are a
large number of nodes in a public blockchain network. Taking network safety
into consideration, restrictions on a public blockchain are much stricter. There-
fore, transaction throughput is limited and latency is high. With fewer validators,
consortium and private blockchains can be more efficient.

88 7 The Future of Mobile Edge Computing

Table 7.2 Comparison of the different types of blockchains

Public blockchain Private blockchain Consortium
blockchain

Energy cost High Low Low

Delay Long Short Short

Security High Low High

• Centralization: The main difference between the three types of blockchains is
that a public blockchain is decentralized, a consortium blockchain is partially
centralized, and a private blockchain is fully centralized, because it is controlled
by a single group.

• The consensus process: Anyone can join the consensus process of a public
blockchain. Different from public blockchains, both consortium and private
blockchains are permissioned. A node needs to be certified to join the consen-
sus process in consortium and private blockchains.

We compare the three types of blockchains in terms of energy costs, delay, and
security, as shown in Table7.2. Since a public blockchain often uses PoW to achieve
consensus, it incurs high energy costs and long delays. A private blockchain is asso-
ciated with low energy consumption and short delays to achieve consensus because
of centralization. A consortium blockchain utilizes permissioned nodes to create new
blocks without a mining process; it also therefore has low energy consumption and
can achieve consensus quickly.

7.1.3 Integration of Blockchain and MEC

Many devices in MEC share their resources or content openly, without consideration
of personal privacy. The integration of blockchain and MEC can establish a secure
and private MEC system.

7.1.3.1 Blockchain for Edge Caching

With the rapid development of the Internet of Things (IoT) and wireless technolo-
gies, the huge amounts of data and content are undergoing exponential growth. To
support massive content caching while also satisfying the low-latency requirements
of content requesters, MEC provides distributed computing and caching resources
in close proximity to users. Thus, content can be processed and then cached at the
network edge, to alleviate data traffic on backhaul links and reduce content delivery
latency. Since state-of-the-art devices are equipped with a certain amount of caching
resources, a device with sufficient caching resources can be regarded as a caching

7.1 The Integration of Blockchain and Mobile Edge Computing (MEC) 89

Fig. 7.3 Blockchain-empowered secure content caching

provider, to expand the caching capacity of the network edge. However, content usu-
ally involves the generator’s sensitive personal information, such that devices might
be not willing to store their content with an untrusted caching provider. A secure
caching scheme among untrusted devices therefore needs to be built.

Blockchain enables untrusted nodes to interact with each other in a secure man-
ner and provides a promising method for edge caching. We propose a blockchain-
empowered distributed and secure content caching framework, as shown in Fig. 7.3
In this content caching system, devices can have two roles: a resource-constrained
devicewith large-scale content is defined as a caching requester, and adevicewith suf-
ficient caching resources is defined as a caching provider. Base stations are distributed
in a specific area to work as edge servers. Specifically, if a content is successfully
cached at one caching provider, the caching requester should create a transaction
record and send it to the nearest base station. Base stations collect and manage local
transaction records. The transaction records are structured into blocks after the con-
sensus process among the base stations is completed and then stored permanently in
each base station. The detailed processes are as follows.

• System initialization: For privacy protection, each device needs to register a legit-
imate identity in the system initialization stage. In an edge caching blockchain, an
elliptic curve digital signature algorithm and asymmetric cryptography are used
for system initialization. A device can obtain a legitimate identity after its identity
has been authenticated. The identity includes a public key, a private key, and the
corresponding certificate.

• Roles in edge caching: Devices choose their roles (i.e., caching requester and
caching provider) according to their current caching resource availability state and
future plans. Mobile devices with surplus caching resources can become caching
providers to provide caching services for caching requesters.

90 7 The Future of Mobile Edge Computing

• Caching transactions: Caching requesters send the amount of caching resources
and expected serving time to the nearest base station. The base station broadcasts
all received caching requests to local caching providers. Caching providers provide
feedback on the availability of caching resources to the base station and their future
plans. Each base station then utilizes a deep reinforcement learning algorithm to
match the caching supply and demand pairs among the devices, determines the
caching resources that each caching provider can provide, and allocate bandwidth
between the base station and the devices.

• Building blocks in a caching blockchain: Base stations collect all the transaction
records in a certain period and then encrypt and digitally sign them to guarantee
their authenticity and accuracy. The transaction records are structured into blocks,
and each block contains a cryptographic hash of the prior block in the consortium
blockchain. To verify the correctness of a new block, the consensus algorithm
(e.g., PBFT) is used. In the consensus process, one of the base station is selected
as the leader for creating the new block. Because of broadcasts, each base station
has access to the entire transaction record and has the opportunity to be the leader.
In a consortium blockchain, the leader is chosen before the block building and
does not change before the consensus process is completed.

• The consensus process: The leader broadcasts the created block to other base
stations for verification and audit. All the base stations audit the correctness of
the created block and broadcast their audit results. The leader then analyzes the
audit results and, if necessary, sends the block back to the base stations for another
audit. Following the audit results and corresponding signatures, compromised base
stations will be discovered and held accountable.

The integration of blockchain and MEC can improve the security of edge networks
and extend edge caching and resource sharing among untrusted entities.

7.1.3.2 Blockchain for Energy Trading

Due to harvesting and information communication technologies, distributed renew-
able energy sources are increasingly being integrated into smart grids, and vehicles
not only can charge electricity from a home grid with renewable energy sources,
but also can obtain electricity from other vehicles, to shift peak load through energy
trading. However, because of privacy concerns, smart vehicles with surplus electric-
ity might not be willing to work as energy suppliers in an energy trading market.
To encourage vehicles with surplus electricity to participate in energy trading, the
privacy of smart vehicles during the trade must be protected.

Blockchains, with its desirable characteristics of decentralization, immutability,
accountability, and trustlessness, can significantly improve network security and save
operational costs. Peer-to-peer topology enables electricity trading to be carried out
in a decentralized, transparent, and secure market environment. The authors in [121]
proposed a secure energy trading system with three types of components: vehicles,
edge servers, and smart meters. The vehicles play three roles in electricity trad-

7.1 The Integration of Blockchain and Mobile Edge Computing (MEC) 91

ing, with charging vehicles, discharging vehicles, and idle vehicles. Each vehicle
chooses its own role based on its current energy state. Edge servers provide elec-
tricity and wireless communication services for the vehicles. Each charging vehicle
sends a request about electricity demand to the nearest edge server. The edge server
announces the energy demand to other vehicles (plug-in hybrid electric vehicles).
Vehicles with surplus electricity submit selling prices to the edge server. After a
double auction, two vehicles carry out an electricity trade. Smart meters are utilized
to calculate and record the amount of electricity traded. Charging vehicles pay the
discharging vehicles, based on the records in the smartmeters. The detailed processes
of the energy blockchain are similar to those in the caching blockchain, but there
is still a very big difference. A caching blockchain utilizes a PBFT consensus algo-
rithm, which requires relatively little energy and time to achieve consensus, because
no mining process is involved. The work to achieve consensus is based on PoW.
Although more energy and time must be spent for consensus, all the vehicles in a
blockchain can participate in the process of verifying transactions, creating blocks,
and achieving consensus.

7.2 Edge Intelligence: The Convergence of AI and MEC

The rapid development of AI techniques and applications has provided new possibil-
ities forMEC. The integration of AI algorithms withMEC can considerably improve
the intelligence and performance of edge computing. Conventional AI approaches
rely on centralizedmechanisms that invite serious security and privacy threats and are
not suitable for resource-constrained edge networks. Federated learning and transfer
learning are two emerging paradigms that shine new light on the convergence of AI
and MEC.

7.2.1 Federated Learning in MEC

Increasing concerns of data privacy and security are hindering the wide implemen-
tation of AI algorithms to edge networks. Federated learning [122, 123] is proposed
as a new learning scheme that enhances data privacy. Users participating in fed-
erated learning collaboratively train a global model and preserve their own data
locally. Thus, by executing distributed training across users locally, federated learn-
ing enhances data privacy and reduces the cost of data transmission. By applying
federated learning in MEC systems, the decision making process can be executed
on edge devices, which reduces system latency and improves decision efficiency.
Federated learning is believed to be one of the strongest enabling paradigms for
large-scale MEC systems.

With the benefits of privacy enhancement, decentralization, and collaboration,
federated learning has attracted significant attention in wireless networks. For exam-

92 7 The Future of Mobile Edge Computing

Fig. 7.4 Federated learning–empowered MEC

ple, Google exploited federated learning to train machine learning (ML) models for
keyboard prediction [124]. Z. Yu et al. [125] proposed a federated learning–based
proactive content caching scheme where the content caching policies are calcu-
lated by federated learning algorithms. However, in federated learning, the iterative
communication between end users and the server and the local training of machine
learning models by end users also consumes a large amount of resources.

To apply federated learning to MEC applications, a good volume of work has
explored how to improve the performance of federated learning by optimizing the
constrained resources in edge networks. J. H. Mills et al. [126] proposed adapting
federated averaging [127] by adopting distributed Adam optimization to reduce the
number of communication rounds for convergence. S. Wang et al. [128] proposed a
control scheme to determine the optimal execution trade-off between local training
and global aggregation within a given resource budget. In [129], C. Dinh et al.
optimally allocated computation and communication resources in the network to
improve the performance of federated learning deployed in wireless networks.

7.2.1.1 A Federated Learning–Empowered MEC Model

The architecture of federated learning–empowered MEC systems is depicted in
Fig. 7.4. The end users in the system are the clients of federated learning, and the
edge servers are the aggregation server of federated learning. For end user ui with
dataset Di , the loss function for local training is defined as

Fi (w) = 1

|Di |
∑

j∈Di

f j (w, x j , y j) (7.1)

where f j (w, x j , y j) is the loss function on data sample (x j , y j)with parameter vector
w, and |Di | is the size of the data samples in Di . The loss function f j (w, x j , y j) is
determined according to the specific learning algorithms, such as the mean squared
error and the mean absolute error. The global loss function in federated learning is
defined as

7.2 Edge Intelligence: The Convergence of AI and MEC 93

Fig. 7.5 Processes of federated learning–empowered MEC

F(w) = 1

|D|
∑

j∈D
f j (h(w, x), y) = 1

|D|
∑

i

|Di | · Fi (w) (7.2)

where |D| is the size of the total training data |D| = ∑
i |Di |. The objective of

federated learning is to find the parameter vector w that minimizes the global loss
function F(w), that is,

Q(w, t) = argmin
i∈N ,t≤T

F(w) (7.3)

such that ∀ui ∈ U, i ∈ {1, 2, . . . , N } (7.4)

whereui ∈ U denotes the user participating in the federated learning training process.
The general architecture of the federated learning–empowered MEC system con-

sists of two planes: the end user plane and the edge server plane. As shown in Fig. 7.5,
local training is executed in the user plane, while global aggregation is executed in the
edge server plane. The federated learning–empowered MEC system involves three
main steps: local training, parameter updating, and global aggregation. The MEC
server plays the role of global server, and the end users, with mobile phones, smart
vehicles, and IoT devices, and so on, are clients of federated learning. The three steps
are repeated in the system to train the global machine learning model. Computation
tasks are executed by running the federated learning algorithms in the MEC system.

• Local training in the user plane: The aggregation server distributes the MLmodel
M to end users in the initialization phase. Each of the end users then trains the
shared model M based on their local datasets. Gradient descent approaches are

94 7 The Future of Mobile Edge Computing

widely used in the training process. The model parameters wi (t) of iteration t are
updated as

wi (t) = wi (t − 1) − η · ∇Fi (wi (t − 1)), (7.5)

where η is the learning rate, and∇Fi (wi (t − 1)) is the gradient of the loss function
with parameters wi (t − 1). The users then transmit the trained parameters w(t) to
the server for aggregation.

• Global aggregation in the edge plane: As denoted in Fig. 7.5, the MEC server
collects all the parameters

∑
i wi (t) and calculates the aggregated model. The

average aggregation is widely adopted to obtain the global model, as

w(t) = 1
∑N

i=1 |Di |
N∑

i=1

|Di | · wi (t) (7.6)

TheMEC server then transmits the aggregated globalmodel to the end users to start
a new training iteration. The learning process continues until the trained model
reaches a predefined accuracy threshold or the execution time runs out.

7.2.1.2 Performance-Improved Asynchronous Federated Learning in
MEC

Federated learning–empowered MEC systems can enlarge the scale of the training
data and protect the data privacy of end users. However, new challenges have also
arisen in the deployment of federated learning in MEC systems. First, the iterative
update process of federated learning increases the transmission burden in commu-
nication resource–constrained edge networks. Second, the heterogeneous commu-
nication and computing capabilities of end users hinder the fast convergence of the
learning process. Third, the risk of fake parameters from malicious participants also
exists. To address these issues, a primary approach is to reduce the execution delay
of federated learning. Thus, asynchronous federated learning is proposed.

In conventional federated learning, a synchronousmechanism ismaintained by the
clients and the global server to update the trained parameters and aggregate the global
model. All the users participate in the global aggregation in each round. The training
times of different end users varies greatly, because of their heterogeneous computing
capabilities and dynamic communication states. In such a case, the execution time
of each iteration is determined by the slowest clients, which incurs a high waiting
cost for others, due to the heterogeneous runtimes. Asynchronous federated learning
optimally selects a portion of the users to participate in global aggregation, while
others continue with local training. Different optimizing approaches can be used
as the node selection algorithm to decide on the participating nodes based on their
capabilities. An overview of the asynchronous federated learning–empowered MEC
scheme is shown in Fig. 7.6.

The asynchronous federated learning scheme comprises the following phases.

7.2 Edge Intelligence: The Convergence of AI and MEC 95

Fig. 7.6 Asynchronous federated learning–empowered MEC

• Node selection: Participating nodes are selected from all the end users through
a node selection algorithm, according to their communication states and avail-
able computing resources. End users with sufficient resources are prone to being
selected as participating nodes.

• Local training and aggregation: The participating nodes train their local models
mi (t) according to their local data and obtain the parameters wi (t) for the trained
modelmi (t). User i also executes local aggregation by retrieving parameterswj (t)
from nearby end users through device-to-device communication.

• Global aggregation:TheMEC server carries out global aggregation based on local
model parameters it has collected fromparticipating end users, following Eq. (7.6).
The global model M(t) is then broadcast to the end users to start a new learning
iteration.

Deep reinforcement learning can be widely exploited as the node selection algo-
rithm, deployed at theMEC server. The deep reinforcement learning algorithm learns
the optimal node selection policy by using deep neural networks to approximate the
policy gradient. Other techniques, such as convex optimization and game theory, can
also be used in the node selection process.

96 7 The Future of Mobile Edge Computing

7.2.1.3 Security-Enhanced AI in MEC: Integrating Blockchain with
Federated Learning

In federated learning–empoweredMEC systems, the parameters transmitted between
end users and the MEC server are subject to serious security and privacy issues. The
risk of data leakage increases, since an attacker can infer information on the original
training data from these parameters. Moreover, malicious participants can upload
fake parameters or use poisoned data to train their local models, which can cause the
failure of the entire federated learning process. In addition, as the global aggregator,
MEC servers also raise the risk of a single point of failure or malicious attacks.
Building a trust mechanism among untrusted end users andMEC servers is therefore
essential.

Blockchain has achieved great success in providing secure collaboration mech-
anisms among untrusted users. We propose integrating blockchain with federated
learning to provide trust, security, and intelligence in MEC systems.

• Blockchain for federated learning: Blockchain provides a trusted collaboration
mechanism for all participants (users) of federated learning. Through the autho-
rization mechanism and identity management of the blockchain, especially a per-
missioned blockchain, users lackingmutual trust can be united to establish a secure
and trusted cooperation mechanism. In addition, the model parameters of federal
learning can be stored in the blockchain to ensure their safety and reliability.

• Federated learning for blockchain: The contradiction between the limited storage
capacity of blockchain nodes and the larger storage demands of blockchains has
always been a bottleneck in blockchain development. By processing the origi-
nal data through federated learning, blockchains can store only the computation
results, reducing storage cost and communication overhead. In addition, based
on federated learning, the authentication calculation and transmission schedul-
ing of blockchain transactions are optimized, which can considerably improve
blockchain performance.

Based on the above analysis, we propose integrating blockchain with federated
learning to build a trusted, secure, and intelligent MEC system. The integrated archi-
tecture is illustrated in Fig. 7.7. The architecture can be divided into the end user
layer and the edge service layer. Users mainly consist of smart devices, such as IoT
devices and mobile phones. The servers are represented by base stations equipped
with MEC servers with certain storage and computing capabilities.

The integrated scheme consists of twomainmodules: federated learning and a per-
missioned blockchain. The federated learning learns the model parameters through
local training on the user side, while the blockchain runs on theMEC server to collect
and store the parameters of the federated learning. The parameters are verified by
the consensus protocol. The detailed processes are as follows.

• Local training:Based on their local data, participating users train themodel param-
eters through a gradient descent algorithm to minimize the loss function.

7.2 Edge Intelligence: The Convergence of AI and MEC 97

Fig. 7.7 The integration of blockchain and federated learning

• Parameter transmission: The trained local parameters are transmitted to the base
station in the edge service layer through wireless links. The parameters of each
user are collected and stored in blockchain nodes in the form of transactions.

• Block generation: Each blockchain node collects the transactions (model param-
eters) from the user layer and packages them into blocks using encryption and
signatures. The block generator is determined by the consensus mechanism. The
blockchain node that obtains the right to generate blocks broadcasts the block to the
entire blockchain network and adds the block to the blockchain after verification.

• Global aggregation: The aggregator, that is, the MEC server, in the edge service
layer aggregates model parameters according to the records in the blockchain and
updates them into the global model. Furthermore, the global model is distributed
to all participating users to start a new round of training.

The integration of blockchain and federated learning combines the security and
trust of blockchains with the distributed intelligence of federated learning, which
improves the security and data privacy of the MEC system.

7.2.2 Transfer Learning in MEC

7.2.2.1 Applying Transfer Learning in MEC

Transfer learning, as one of the machine learning methods, aims to transfer knowl-
edge from existing domains to a new domain by learning across domains with
non-independent and identically distributed data. Specifically, in transfer learning, a
model developed for a task can be used as the original model for a related task. The
basic idea of transfer learning is learning to learn, that is, to retain and reuse previ-
ously learned knowledge in the machine learning process. Different from traditional

98 7 The Future of Mobile Edge Computing

machine learning techniques, the source task and the target task are not the same,
but related. The definition of transfer learning is as follows [130].

Definition 7.1 Given a source domain DS , a learning task TS , a target domain DT ,
and a target learning task TT , transfer learning aims to help improve the learning of
the target predictive function fT (·) in DT using knowledge learned in DS and TS ,
where DS �= DT or TS �= TT .

To apply transfer learning to an MEC system, the following three main transfer
learning research issues need to be addressed.

• What to transfer: Some knowledge can be specific to individual domains or tasks,
while some knowledge can be common to both the source and target domains. It
is therefore essential to determine which part of the knowledge can be transferred
from the source domain to the target domain. The transferred knowledge helps to
improve the performance of target tasks in the target domain.

• How to transfer: After determining what knowledge to transfer, learning algo-
rithms or models need to be developed to transfer the knowledge from the source
domain or source tasks to the target domain or target tasks.

• When to transfer: There are various applications and services in an MEC system.
In some cases, the transfer of knowledge can improve system performance, while,
in other cases, the transfer can decrease the quality of services or applications.
Therefore, whether to transfer from the source domain to the target domain or not
needs to be carefully analyzed.

In MEC systems, stochastic task models, heterogeneous MEC servers, and
dynamic source data and user capabilities hinder the cooperation between the MEC
servers, as well as the deployment of jointMEC tasks across different servers. Tomit-
igate these challenges, transfer learning is believed to be a promising technique for
deploying an MEC system across heterogeneous servers. Transfer learning–enabled
MEC can be applied in the following scenarios.

• Multiple computation tasks: There can be multiple computation tasks and hetero-
geneous servers in MEC systems. Using transfer learning in the MEC systems
can preserve the knowledge learned by some tasks and reuse it in related tasks.
Servers inMEC systems can cooperate with each other by sharing and transferring
the knowledge they learned from the local network within their coverage. Thus
the utility of resources is improved and computation latency is reduced.

• Computation offloading: In computation offloading applications, optimal offload-
ing strategies can be determined by learning a policy model with AI algorithms.
By using transfer learning, the learned policy model can be used by other MEC
servers as the starting point model. The model can be retrained for new MEC sys-
tems for a small computation cost. Thus the efficiency of computation offloading
can be considerably improved, and energy consumptions can be further reduced.

• Content caching: In the content caching scenario, heterogeneous data types and
dynamic caching capabilities among different MEC servers are the main issues
in caching content across different MEC servers. The popularity of content in

7.2 Edge Intelligence: The Convergence of AI and MEC 99

differentMEC systems can vary greatly due to the different types of users. Transfer
learning canbe exploited in heterogeneousMECsystems tomitigate the inaccuracy
of cachingmodels. The performance of the caching policymodels and computation
efficiency is thus improved in transfer learning–enabled MEC systems.

7.2.2.2 Federated Transfer Learning in MEC

Federated learning can connect isolated data and perform joint analyses on the data
in way that preserves privacy. However, the issue of model personalization remains
unresolved, since all users in federated learning share the same general model. In
some cases, the general model might be not applicable to particular users. Moreover,
the heterogeneous data distribution of users exacerbates the effective deployment
of federated learning. To mitigate these issues, the concept of federated transfer
learning emerges as a possible solution. The integration of federated learning and
transfer learning broadens the application scope of federal learning. Applications
with a small amounts of data or low-quality data can also obtain good machine
learning models with the assistance of federated transfer learning.

Federated transfer learning differs from conventional transfer learning in the fol-
lowing aspects.

• The training architectures are different.Federated transfer learning is performedon
distributed datasets from various users, and the original data are never transmitted
to other users. Conventional transfer learning, however, can transmit the original
data to a centralized server for training.

• The machine learning models are trained in different places. In federated transfer
learning, the machine learning models are trained by all distributed users with
their local computing resources and datasets. In conventional transfer learning,
however, the training of ML models is usually completed by centralized servers.

• The requirements for data security and privacy are different. Federated transfer
learning aims to protect the security and privacy of user data. In conventional
transfer learning, the data face severe risks of leakage.

Research on federated transfer learning is still in its early stage. Y. Liu et al. [131]
introduced a new framework, known as federated transfer learning, to improve the
performance of machine learning models under a data federation. In [132], H. Yang
et al. applied federated transfer learning to image steganalysis and proposed a frame-
work named FedSteg to train a secure personalized distributed model on distributed
user data. These limited works explored the integration of federated learning with
transfer learning invarious areas andprovided rough frameworks of federated transfer
learning. Federated transfer learning has huge potential in MEC in future networks.
MEC can be enabled by federated transfer learning in the following areas.

• Personalized services: For future MEC systems, the provision of personalized
services for different users is a crucial challenge. Enabled by federated transfer
learning, knowledge of, for example, user behaviors and user preferences can be

100 7 The Future of Mobile Edge Computing

transferred among different users, based on the trained machine learning models.
The quality of service in MEC systems can be considerably improved by the use
of federated transfer learning techniques.

• Super IoT: The limited data storage capabilities and resources of IoT devices are
major obstacles in deploying MEC systems in IoT networks. Federated transfer
learning can mitigate the requirement for large amounts of data to train machine
learning models. IoT devices can also train ML models with small amounts of
data. Moreover, latency in training can be further reduced. The performance of
IoT networks and applications can thus be improved.

• Green communications: With the increase in numbers of connected devices and
applications, the energy costs of MEC systems are becoming a major concern
that need to be addressed in future networks. Since machine learning models can
be trained with small amounts of data, federated transfer learning decreases the
computations for training and the communication overhead for data transmission.
The energy cost is reduced and the efficiency is improved, leading to greener
communications in future networks.

7.3 MEC in Other Applications

Along with the advancement of beyond 5G technology and the pervasive IoT, MEC
techniques have been applied in diverse scenarios to meet intensive computing, pro-
cessing, and analysis demands for disease prevention, industrial production, and
emergency response.

7.3.1 MEC in Pandemics

A pandemic is the spread of an infectious disease across large regions, and it
poses serious health risks to huge numbers of people. For instance, the recent
COVID-19 pandemic has infected more than 20 million people worldwide and has
severely affected the global economy. Early estimates demonstrated that most major
economies lost at least 2.4% of their gross domestic product during 2020.

Since pandemic outbreaks are always a surprise and people are largely unprepared
to address them, in the early stage, a virus has an extraordinary capacity to spread.
It is therefore imperative to establish a pandemic prediction system that can provide
valuable and comprehensive information for pre-judging the time, location, scale,
and other key characteristics of virus outbreaks.

The efficient operation and precise judgment of the pandemic prediction system
are based on comprehensive data collection and complex data analysis. The data are
captured by sensing devices that are widely placed in crowded areas, such as bus
stations, shopping malls, and schools, and are characterized by large sizes, diverse
types, and heterogeneous elements. Processing the captured data with feature extrac-

7.3 MEC in Other Applications 101

Fig. 7.8 MEC in pandemics

tion and correlation analysis always requires large amounts of computing resources.
A traditional approach to meet this demand is to upload the data to remote cloud
servers for processing. However, a great deal of communication costs involve yields
in this transmission, especially in wireless remote access scenarios. Moreover, the
cloud-based processing approach can incur long time delays, which fails to cater
to the fast response requirements of applications such as personnel monitoring at a
station entrance.

MEC is an appealing paradigm to address this problem. It helps pandemic predic-
tion systems process sensing data in proximity to virusmonitoring areas and provides
important epidemiological reports about virus spread trends in a short time. MEC
servers are equipped on cellular network base stations, Wi-Fi access points, and
other nodes that facilitate data transmission and have a stable energy supply. With
the continuous enhancement of AI technology, which is capable of revealing hidden
issues and correlations from big data, the incorporation of AI and MEC has emerged
as a promising approach. Thus, machine learning modules should be deployed to
MEC servers to track diseases, predict their growth, and propose coping strategies.
For instance, an MEC-empowered deep learning model is suitable for disease clas-
sification, while MEC-aided multi-agent learning can be used to predict infection
trends in large areas. Moreover, since pandemic prediction and prevention require
joint analyses and actions between different departments in multiple regions, a multi-
level collaborativeMEC service systemmust be created that shares virus information
amongMEC servers to better understand and address the pandemic crisis. Figure7.8
shows a typical framework of MEC techniques applied to pandemic prediction.

In applying MEC in pandemics, open questions still exist. The first involves the
privacy protection of theMEC service. In pandemic prediction, the monitoring target
is human activities and their physical characteristics, through which malicious users
could obtain individuals’ private information, such as personal daily activity trajecto-

102 7 The Future of Mobile Edge Computing

ries and health status. Recent research has indicated that nontraditional data sources,
including social media, Internet search histories, and smartphone data, which are
closely related to privacy, are helpful in forecasting pandemic. Consequently, MEC-
empowered pandemic management with strict privacy protection is imperative. Fur-
thermore, for the flexible and dynamic detection of pandemics in multiple locations,
the pandemic monitoring devices should be lightweight and portable. If the MEC
service is integrated into a battery-powered mobile pandemic detection device, the
energy efficiency of the data processing will become a key issue for consideration.

7.3.2 MEC in the Industrial IoT (IIoT)

Enabled by IoT technology, industry has witnessed substantial changes in opera-
tional efficiency, product quality, and management mechanisms in recent years, and
it is continuously evolving toward the IIoT. From the perspective of manufactur-
ers, the proliferation of the IIoT will provide interconnections between large-scale
distributed industrial equipment, enable a comprehensive awareness of production
environments, and help realize full industrial automation.

Along with the evolution of the IIoT, large amounts of data regarding factory
environment status detection, robot device control, and product quality monitoring
are being generated andprocessed. Sincemodern industrial production is an assembly
line operation, any instruction error or behavior lag in the production process will
seriously affect the overall manufacturing efficiency. Consequently, the demand for
data processing services of high reliability and low latency has increased.

MEC technology,which can facilitate data processing closer to industrial facilities,
thereby enabling production managers and equipment controllers to speed up their
decision making, has been widely recognized as a promising approach to cater to
the demands mentioned. Figure7.9 shows typical scenarios of MEC application in
industrial automation control, logistics transportation management, product quality
assurance, and energy scheduling.

To boost production efficiency, remain profitable, and replace expensive human
labor with ever-cheaper machines, various manufacturing robots are being widely
used in industrial factories. During the operation of the robots, MEC servers work as
information processors and control systems that analyze the robot monitoring data
from sensors and actuators, while generating control instructions for robotic arm
behavior and coping with problems in automated production lines.

Smart logistics have become a key attribute of modern industry. They incorporate
autonomous transport vehicles, sensor-driven cargo tracking tools, and online auto-
mated sales platforms throughout the whole supply and sale chain. With the aid of
MEC technology, unmanned vehicles can achieve more precise and real-time driving
control, the transportation status of cargo can be tracked throughout the process, and
sales strategies can be optimized in time.

Product quality is the core element of industrial production, and there are
many quality inspection methods. With the development of AI, machine learning

7.3 MEC in Other Applications 103

Fig. 7.9 MEC in the IIoT

approaches have been introduced to identify the characteristics of products’ dimen-
sions, performance, and stability. The learning process always requires intense data
processing and complex model construction. MEC servers that provide sufficient
computing capabilities at the site of quality inspection facilities are crucial elements
to cater to this requirement.

Industrial manufacturing relies heavily on energy consumption. Among the diver-
sified energy types, electrical energy has been proven to have the most important
effects on factory production capacities and costs. With the rise of smart grids, the
matching of electricity supply and demand has become flexible, but has also cre-
ated calculation demands, such as for grid state analysis and user demand trend
prediction. MEC is an appealing approach to address this additional demand. Fur-
thermore, besides traditional energy types that harm the environment, renewable
energy sources, such as solar, wind, and tidal energy, are beginning to be widely
used in industrial production. The time-varying and unstable supply characteristics
of renewable energy also requireMEC’s analytical monitoring and adaptive schedul-
ing. Although MEC technology provides many benefits to the IIoT, some challenges
of industrial MEC remain unresolved. For instance, the MEC-empowered IIoT is
vulnerable to malicious attacks. Since wireless has been pervasively used in IIoT
device-to-device communication, task offloading data can be easily eavesdropped
and forged, resulting in the leakage of commercial secrets or production interrup-
tions. In addition, industrial logistic vehicles move throughout large geographical
areas and can therefore access heterogeneous MEC servers. The coordination and
integration of MEC services is also an unexplored issue.

104 7 The Future of Mobile Edge Computing

Fig. 7.10 MEC in disaster management

7.3.3 MEC in Disaster Management

Sudden disasters cause serious and widespread human, economic, or environmental
losses. To address this issue, disaster management has been proposed for taking
some countermeasures and scheduling relief supplies to protect human lives and
infrastructures.

To ensure the effective operation of a disaster management system, a large amount
of information needs to be processed, which is mainly reflected in two aspects. The
first involves the comprehensive analysis of collected environmental data, including
meteorological, geological, and hydrological data, to accurately predict possible dis-
asters. On the other hand, after the occurrence of a disaster, progress monitoring and
estimations of the status of the disaster relief and supply of materials are required to
facilitate the scheduling of rescuers and resources. To meet these information pro-
cessing demands, servers with powerful computing capabilities should be equipped
in the disaster areas. Due to possible damage to communication network facilities
and lines caused by the disaster, core cloud servers and remote task offloading are
not suitable for providing computing services. MEC’s proximity computing service
can effectively make up for these shortcomings. However, a single MEC server can
also be damaged in a severe disaster; therefore, a group of distributed MEC servers
empowered with robustness and survivability is a feasible solution.

Figure7.10 illustrates the framework of an MEC-empowered disaster manage-
ment system, where each MEC server pair is connected through several redun-
dant backup communication lines. These links can be wired connections or wire-
less connections through cellular networks, Wi-Fi, or even satellite networks. The
dual backup capability of the servers and communication links greatly improves the
robustness and survivability of the entire MEC system. To cope with a potentially
unstable power supply in the disaster area, MEC servers can leverage renewable
energy and use energy batteries as storage devices to adapt to the time-varying char-

7.3 MEC in Other Applications 105

acteristics of wind and solar power. In addition, MEC servers are evolving toward
miniaturization and lightweight configurations to meet the portability requirements
of a disaster relief operation carried out at multiple locations.

Despite the advantages that edge computing has provided disaster management,
key issues remain unexplored in MEC service deployment. A typical problem
involves the energy efficiency of MEC servers. Due to the lack of energy supply
in disaster areas and the constrained battery power of portable servers, providing
powerful computing capabilities at a low energy cost is a critical challenge. More-
over, the effective integration of diversified disaster environment detection networks
and heterogeneous rescue systemswithMECservices urgently requires further inves-
tigation.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

References

1. C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, Context aware computing for the
internet of things: a survey. IEEE Commun. Surv. Tutor. 16(1), 414–454 (2014)

2. IBM News Releases, IBM and Nokia Siemens Networks announce world first mobile edge
computing platform. (2013). http://www-03.ibm.com/press/us/en/pressrelease/40490.wss

3. Mobile-edge computing—Introductory technical white paper, White Paper, ETSI, Sophia
Antipolis, France, September (2014). https://portal.etsi.org/portals/0/tbpages/mec/docs/
mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf

4. M. Chen, W. Saad, C. Yin, Virtual reality over wireless networks: quality-of-service model
and learning-based resource management. IEEE Trans. Commun. 66(11), 5621–5635 (2018).
https://doi.org/10.1109/TCOMM.2018.2850303

5. Y. Sun, Z. Chen, M. Tao, H. Liu, Communications, caching, and computing for mobile virtual
reality: modeling and tradeoff. IEEE Trans. Commun. 67(11), 7573–7586 (2019)

6. A. Al-Shuwaili, O. Simeone, Energy-efficient resource allocation for mobile edge computing-
based augmented reality applications. IEEE Wirel. Commun. Lett. 6(3), 398–401 (2017)

7. Y. Dai, D. Xu, S. Maharjan, Y. Zhang, Joint load balancing and offloading in vehicular edge
computing and networks. IEEE Int. Things J. 6(3), 4377–4387 (2019). https://doi.org/10.
1109/JIOT.2018.2876298

8. N. Abbas, Y. Zhang, A. Taherkordi, T. Skeie, Mobile edge computing: a survey. IEEE Int.
Things J. 5(1), 450–465 (2018). https://doi.org/10.1109/JIOT.2017.2750180

9. F.Y. Okay, S. Ozdemir, A fog computing based smart grid model, in International Symposium
onNetworks. Computers andCommunications, Yasmine,Hammamet, (2016), pp. 1–6. https://
doi.org/10.1109/ISNCC.2016.7746062

10. Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge computing: the
communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017). https://
doi.org/10.1109/COMST.2017.2745201

11. J. Qiao, Y. He, X.S. Shen, Proactive caching for mobile video streaming in millimeter wave
5G networks. IEEE Trans. Wirel. Commun. 15(10), 7187–7198 (2016)

12. S. Zhou, Y. Sun, Z. Jiang, Z. Niu, Exploiting moving intelligence: delay-optimized computa-
tion offloading in vehicular fog networks. IEEE Commun. Mag. 57(5), 49–55 (2019). https://
doi.org/10.1109/MCOM.2019.1800230

13. P.Mach, Z. Becvar,Mobile edge computing:a survey on architecture and computation offload-
ing, in IEEE Communications Surveys & Tutorials, vol. 19, no. 3, (2017), pp. 1628–1656

14. Y. Dai, D. Xu, S. Maharjan, Y. Zhang, Joint computation offloading and user association in
multi-task mobile edge computing. IEEE Trans. Veh. Technol. 67(12), 12313–12325 (2018)

© The Author(s) 2022
Y. Zhang, Mobile Edge Computing, Simula SpringerBriefs on Computing 9,
https://doi.org/10.1007/978-3-030-83944-4

107

http://www-03.ibm.com/press/us/en/pressrelease/40490.wss
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
https://doi.org/10.1109/TCOMM.2018.2850303
https://doi.org/10.1109/JIOT.2018.2876298
https://doi.org/10.1109/JIOT.2018.2876298
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/ISNCC.2016.7746062
https://doi.org/10.1109/ISNCC.2016.7746062
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/MCOM.2019.1800230
https://doi.org/10.1109/MCOM.2019.1800230
https://doi.org/10.1007/978-3-030-83944-4

108 References

15. J. Zhang, X. Hu, Z. Ning et al., Energy-latency tradeoff for energy-aware offloading in mobile
edge computing networks. IEEE Int. Things J. 5(4), 2633–2645 (2018). https://doi.org/10.
1109/JIOT.2017.2786343

16. M. Deng, H. Tian, B. Fan, Fine-granularity based application offloading policy in cloud-
enhanced small cell networks, in IEEE International Conference on Communications, Kuala
Lumpur, Malaysia, 23–27 May 2016 (IEEE, 2016), pp. 638–643

17. W. Zhang, Y. Wen, D.O. Wu, Collaborative task execution in mobile cloud computing under
a stochastic wireless channel. IEEE Trans. Wirel. Commun. 14(1), 81–93 (2015)

18. J. Liu, Y.Mao, J. Zhang, K.B. Letaief, Delay-optimal computation task scheduling formobile-
edge computing systems, inIEEE International Symposiumon InformationTheory, Barcelona,
(2016), pp. 1451–1455

19. J. O. Fajardo, I. Taboada, F. Liberal, Radio-aware service-level scheduling to minimize down-
link traffic delay through mobile edge computing, in International Conference on Mobile
Networks and Management, Santander, 16–18 Sep 2015 (Springer, 2015), pp. 121–134

20. Y. Mao, J. Zhang, K.B. Letaief, Dynamic computation offloading for mobile-edge computing
with energy harvesting devices. IEEE J. Sel. Areas Commun. 34(12), 3590–3605 (2016)

21. M.Kamoun,W. Labidi,M. Sarkiss, Joint resource allocation and offloading strategies in cloud
enabled cellular networks, in IEEE International Conference on Communications, London,
8–12 June 2015 (IEEE, 2015), pp. 5529–5534

22. W. Labidi, M. Sarkiss, M. Kamoun, Energy-optimal resource scheduling and computation
offloading in small cell networks, in IEEE 22nd International Conference on Telecommuni-
cations, Sydney, 27–29 Apr 2015 (IEEE, 2015), pp. 313–318

23. W. Labidi, M. Sarkiss, M. Kamoun, Joint multi-user resource scheduling and computation
offloading in small cell networks, in IEEE International Conference on Wireless and Mobile
Computing, Network, and Communications, Abu Dhabi, 19–21 Oct 2015 (IEEE, 2015), pp.
794–801

24. K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan, Y. Zhang, Energy-
efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access
4, 5896–5907 (2016)

25. M. Chen, B. Liang, M. Dong. Joint offloading and resource allocation for computation and
communication in mobile cloud with computing access point, in 2017 IEEE International
Conference on Computer Communications, Atlanta, Georgia, 1–4 May 2017 (IEEE, 2017),
pp. 1–6

26. T.Q. Dinh, J. Tang, Q.D. La, T.Q.S. Quek, Offloading in mobile edge computing: task alloca-
tion and computational frequency scaling. IEEE Trans. Commun. 65(8), 3571–3584 (2017)

27. Y. Wang, M. Sheng, X. Wang, L. Wang, J. Li, Mobile-edge computing: partial computation
offloading using dynamic voltage scaling. IEEE Trans. Commun. 64(10), 4268–4282 (2016)

28. J. Ren, G. Yu, Y. Cai, Y. He, F. Qu, Partial offloading for latency minimization in mobile-edge
computing, in 2017 IEEE Global Communications Conference, Singapore, 4–8 Dec 2017
(IEEE, 2017), pp. 1–6

29. U. Saleem,Y. Liu, S. Jangsher, andY.Li, Performance guaranteed partial offloading formobile
edge computing, in 2018 IEEE Global Communications Conference, Abu Dhabi, 9–13 Dec
2018 (IEEE, 2018), pp. 1–6

30. S.E.Mahmoodi, R.N.Uma,K.P. Subbalakshmi,Optimal joint scheduling and cloud offloading
for mobile applications. IEEE Trans. Cloud Comput. 7(2), 301–313 (2019). https://doi.org/
10.1109/TCC.2016.2560808

31. W. Zhang, Y. Wen, D.O. Wu, Collaborative task execution in mobile cloud computing under
a stochastic wireless channel. IEEE Trans. Wirel. Commun. 14(1), 81–93 (2015)

32. O.Muñoz, A. Pascual-Iserte, J. Vidal, Joint Allocation of Radio andComputational Resources
in Wireless Application Offloading (Future Network & Mobile Summit, Lisbon, 2013), pp.
1–10

33. O. Muñoz, A. Pascual-Iserte, J. Vidal, Optimization of radio and computational resources for
energy efficiency in latency-constrained application offloading. IEEE Trans. Veh. Technol.
64(10), 4738–4755 (2015)

https://doi.org/10.1109/JIOT.2017.2786343
https://doi.org/10.1109/JIOT.2017.2786343
https://doi.org/10.1109/TCC.2016.2560808
https://doi.org/10.1109/TCC.2016.2560808

References 109

34. Y. Mao, J. Zhang, S.H. Song, K.B. Letaief, Power-delay trade-off in multi-user mobile-edge
computing systems, in IEEE Global Communications Conference, Washington, DC, 4–8 Dec
2016 (IEEE, 2016), pp. 1–6

35. X. Xu, M. Tao, C. Shen, Collaborative multi-agent multi-armed bandit learning for small-cell
caching. IEEE Trans. Wirel. Commun. 19(4), 2570–2585 (2020)

36. F. Wang, F. Wang, J. Liu, R. Shea, L. Sun, Intelligent video caching at network edge: a multi-
agent deep reinforcement learning approach, in IEEE International Conference on Computer
Communications (2020). [AB25]

37. G. Qiao, S. Leng, S. Maharjan, Y. Zhang, N. Ansari, Deep reinforcement learning for coop-
erative content caching in vehicular edge computing and networks. IEEE Int. Things J. 7(1),
247–257 (2020)

38. R. Karasik, O. Simeone, S. Shamai, How much can D2D communication reduce content
delivery latency in fog networks with edge caching? IEEE Trans. Commun. 68(4), 2308–
2323 (2020)

39. K. Zhang, J. Cao,H. Liu, S.Maharjan,Y. Zhang,Deep reinforcement learning for social-aware
edge computing and caching in urban informatics. IEEE Trans. Ind. Inf. 16(8), 5467–5477
(2020)

40. W. Wu, N. Zhang, N. Cheng, Y. Tang, K. Aldubaikhy, X. Shen, Beef up MM Wave dense
cellular networks with D2D-assisted cooperative edge caching. IEEE Trans. Veh. Technol.
68(4), 3890–3904 (2019)

41. N. Zhao, X. Liu, Y. Chen, S. Zhang, Z. Li, B. Chen, M. Alouini, Caching D2D connections
in small-cell networks. IEEE Trans. Veh. Technol. 67(12), 12326–12338 (2018)

42. R. Zhang, F.R. Yu, J. Liu, T. Huang, Y. Liu, Deep reinforcement learning (DRL)-based device-
to-device (D2D) caching with blockchain and mobile edge computing. IEEE Trans. Wirel.
Commun. 19(10), 6469–6485 (2021)

43. Y. Saputra,D.Hoang,D.Nguyen, E.Dutkiewicz,D.Niyato,D.Kim,Distributed deep learning
at the edge: a novel proactive and cooperative caching framework for mobile edge networks.
IEEE Wirel. Commun. Lett. 8(4), 1220–1223 (2019)

44. J. Kwak, Y. Kim, L. Le, S. Chong, Hybrid content caching in 5G wireless networks: cloud
versus edge caching. IEEE Trans. Wirel. Commun. 17(5), 3030–3045 (2018)

45. S. Dang, O. Amin, B. Shihada, M. Alouini, What should 6G be? Nat. Electron. 3(1), 20–29
(2020.) https://doi.org/10.1038/s41928-019-0355-6

46. W. Saad, M. Bennis, M. Chen, A vision of 6G wireless systems: applications, trends, tech-
nologies, and open research problems. IEEE Netw. 34(3), 134–142 (2020). https://doi.org/
10.1109/MNET.001.1900287

47. K.B. Letaief,W. Chen, Y. Shi, J. Zhang, Y.A. Zhang, The roadmap to 6G:AI empoweredwire-
less networks. IEEE Commun. Mag. 57(8), 84–90 (2019). https://doi.org/10.1109/MCOM.
2019.1900271

48. K. Zhang, Y. Zhu, S. Maharjan, Y. Zhang, Edge intelligence and blockchain empowered 5G
beyond for the Industrial Internet of Things. IEEE Netw. 33(5), 12–19 (2019). https://doi.org/
10.1109/MNET.001.1800526

49. Y. Lu, X. Huang, K. Zhang, S. Maharjan, Y. Zhang, Blockchain and federated learning for 5G
beyond. IEEE Netw. 35(1), 219–225 (2021). https://doi.org/10.1109/MNET.011.1900598

50. P.Mach, Z.Becvar,Mobile edge computing: a survey on architecture and computation offload-
ing. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017). https://doi.org/10.1109/COMST.
2017.2682318

51. Multi-access edge computing (MEC); Phase 2: use cases and requirements, Standard ETSI
GS MEC 002 V2.1.1 (ETSI MEC Group, 2018)

52. Y. Lu, X. Huang, K. Zhang, S. Maharjan, Y. Zhang, Blockchain empowered asynchronous
federated learning for secure data sharing in Internet of Vehicles. IEEE Trans. Veh. Technol.
69(4), 4298–4311 (2020). https://doi.org/10.1109/TVT.2020.2973651

53. S. Zhou, Y. Sun, Z. Jiang, Z. Niu, Exploiting moving intelligence: delay-optimized computa-
tion offloading in vehicular fog networks. IEEE Commun. Mag. 57(5), 49–55 (2019)

https://doi.org/10.1038/s41928-019-0355-6
https://doi.org/10.1109/MNET.001.1900287
https://doi.org/10.1109/MNET.001.1900287
https://doi.org/10.1109/MCOM.2019.1900271
https://doi.org/10.1109/MCOM.2019.1900271
https://doi.org/10.1109/MNET.001.1800526
https://doi.org/10.1109/MNET.001.1800526
https://doi.org/10.1109/MNET.011.1900598
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/TVT.2020.2973651

110 References

54. L. Pu, X. Chen, G. Mao, Q. Xie, J. Xu, Chimera, an energy-efficient and deadline-aware
hybrid edge computing framework for vehicular crowdsensing applications. IEEE Int. Things
J. 6(1), 84–99 (2019)

55. Z. Zhou, J. Feng, Z. Chang, X. Shen, Energy-efficient edge computing service provisioning
for vehicular networks: a consensus ADMM approach. IEEE Trans. Veh. Technol. 68(5),
5087–5099 (2019)

56. X.Li,Y.Dand,M.Aazam,X. Peng,T.Chen,C.Chen,Energy-efficient computation offloading
in vehicular edge cloud computing. IEEE Access 8, 37632–37644 (2020)

57. J. Ren, G. Yu, Y. He, G.Y. Li, Collaborative cloud and edge computing for latency minimiza-
tion. IEEE Trans. Veh. Technol. 68(5), 5031–5044 (2019)

58. C. Lin, G. Han, X. Qi, M. Guizani, L. Shu, A distributed mobile fog computing scheme for
mobile delay-sensitive applications in SDN-enabled vehicular networks. IEEE Trans. Veh.
Technol. 69(5), 5481–5493 (2020)

59. Y. Ku, P. Chiang, S. Dey, Real-time QoS optimization for vehicular edge computing with
off-grid roadside units. IEEE Trans. Veh. Technol. 69(19), 11975–11991 (2021)

60. X. Hou, Z. Ren, J. Wang, W. Cheng, Y. Ren, K. Chen, H. Zhang, Reliable computation
offloading for edge-computing-enabled software-defined IoV. IEEE Int. Things J. 7(8), 7097–
7111 (2020)

61. X. Sun, J. Zhao, X. Ma, Q. Li, Enhancing the user experience in vehicular edge computing
networks: an adaptive resource allocation approach. IEEE Access 7, 161074–161087 (2019)

62. L. Zhao, K. Yang, Z. Tan, X. Li, S. Sharma, Z. Liu, A novel cost optimization strategy
for SDN-enabled UAV-assisted vehicular computation offloading, in IEEE Transactions on
Intelligent Transportation Systems, forthcoming (2021)

63. J. Du, F.R. Yu, X. Chu, J. Feng, G. Lu, Computation offloading and resource allocation in
vehicular networks based on dual-side cost minimization. IEEE Trans. Veh. Technol. 68(2),
1079–1092 (2019)

64. Z. Deng, Z. Cai, M. Liang, A multi-hop VANETs-assisted offloading strategy in vehicular
mobile edge computing. IEEE Access 8, 53062–53071 (2020)

65. Y.Hui, Z. Su, T.H. Luan, C. Li, Reservation service: trusted relay selection for edge computing
services in vehicular networks. IEEE J. Sel. Areas Commun. 38(12), 2734–2746 (2021)

66. H. Liu, P. Zhang, G. Pu, T. Yang, S. Maharjan, Y. Zhang, Blockchain empowered cooperative
authentication with data traceability in vehicular edge computing. IEEE Trans. Veh. Technol.
69(4), 4221–4232 (2020)

67. J. Zhang, H. Zhong, J. Cui, M. Tian, Y. Xu, L. Liu, Edge computing-based privacy-preserving
authentication framework and protocol for 5G-enabled vehicular networks. IEEE Trans. Veh.
Technol. 69(7), 7940–7954 (2020)

68. Y. Liu, S.Wang, Q. Zhao, S. Du, A. Zhou, X.Ma, F. Yang, Dependency-aware task scheduling
in vehicular edge computing. IEEE Int. Things J. 7(6), 4961–4971 (2020)

69. J. Zhang, H. Guo, Y. Zhang, Task offloading in vehicular edge computing networks: a load-
balancing solution. IEEE Trans. Veh. Technol. 69(2), 2092–2104 (2020)

70. C. Yang, Y. Liu, X. Chen, W. Zhong, S. Xie, Efficient mobility-aware task offloading for
vehicular edge computing networks. IEEE Access 7, 26652–26664 (2019)

71. S. Buda, S. Culeng, C.Wu, J. Zhang, K.A. Yau, Y. Ji, Collaborative vehicular edge computing
towards greener ITS. IEEE Access 8, 63935–63944 (2020)

72. S.S. Shan, M. Ali, A.W. Malik, M.A. Khan, S.D. Ravana, vFog: a vehicle-assisted computing
framework for delay-sensitive applications in smart cities. IEEE Access 7, 34900–34909
(2019)

73. Y. Hui, Z. Su, T.H. Luan, J. Cai, Content in motion: an edge computing based relay scheme for
content dissemination in urban vehicular networks. IEEE Trans. Intell. Transp. Syst. 20(8),
3115–3128 (2019)

74. Q. Qi, J. Wang, Z. Ma, Y. Cao, L. Zhang, J. Liao, Knowledge-driven service offloading
decision for vehicular edge computing: a deep reinforcement learning approach. IEEE Trans.
Veh. Technol. 68(5), 4192–4203 (2019)

References 111

75. C. Sonmez, C. Tunca, A. Ozgovde, C. Ersoy, Machine learning-based workload orchestrator
for vehicular edge computing, in IEEE Transactions on Intelligent Transportation Systems,
forthcoming (2020)

76. D. Chen, Y. Liu, B. Kim, J. Xie, C. Hong, Z. Han, Edge computing resources reservation in
vehicular networks: a meta-learning approach. IEEE Trans. Veh. Technol. 69(5), 5634–5646
(2020)

77. W. Zhan, C. Luo, J. Wang, C. Wang, G. Min, H. Duan, Q. Zhu, Deep-reinforcement-learning-
based offloading scheduling for vehicular edge computing. IEEE Int. Things J. 7(6), 5449–
5465 (2020)

78. X. Wang, Z. Ning, S. Guo, L. Wang, Imitation learning enabled task scheduling for online
vehicular edge computing, in IEEE Transactions on Mobile Computing, forthcoming (2021)

79. K. Zhang, Y. Mao, S. Leng, Y. He, Y. Zhang, Mobile-edge computing for vehicular networks:
a promising network paradigm with predictive off-loading. IEEE Veh. Technol. Mag. 12(2),
36–44 (2017)

80. K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, Y. Zhang, Deep learning empowered task
offloading for mobile edge computing in urban informatics. IEEE Int. Things J. 6(5), 7635–
7647 (2019)

81. Y. Mao, C. You, J. Zhang, K. Huang, K. Letaief, A survey on mobile edge computing: the
communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017)

82. N. Cheng, W. Xu, W. Shi, Y. Zhou, N. Lu, H. Zhou, X. Shen, Air-ground integrated mobile
edge computing networks: architecture, challenges, and opportunities. IEEE Commun. Mag.
56(8), 26–32 (2018)

83. F. Zhou, R. Hu, Z. Li, Y.Wang, Mobile edge computing in unmanned aerial vehicle networks.
IEEE Wirel. Commun. 27(1), 140–146 (2020)

84. N.H. Motlagh, M. Bagaa, T. Taleb, UAV-based IoT platform: a crowd surveillance use case.
IEEE Commun. Mag. 55(2), 128–134 (2017)

85. M.Hua,Y.Wang,Q.Wu,C. Li,Y.Huang, L.Yang, Energy optimization for cellular-connected
multi-UAV mobile edge computing systems with multi-access schemes. J. Commun. Netw.
3(4), 33–44 (2018)

86. X. Cao, J. Xu, R. Zhang, Mobile edge computing for cellular-connected UAV: computation
offloading and trajectory optimization, in Proceedings of the IEEE International Workshop
on Signal Processing Advances in Wireless Communications, Kalamata, Greece, June, 2018

87. M. Messous, S. Senouci, H. Sedjelmaci, S. Cherkaoui, A game theory based efficient com-
putation offloading in an UAV network. IEEE Transactions on Vehicular Technology 68(5),
4964–4974 (2019)

88. S. Jeong, O. Simeone, J. Kang, Mobile edge computing via a UAV-mounted cloudlet: opti-
mization of bit allocation and path planning. IEEE Trans. Veh. Technol. 67(3), 2049–2063
(2018)

89. J. Zhang, L. Zhou,Q. Tang, E.Ngai, X.Hu,H. Zhao, J.Wei, Stochastic computation offloading
and trajectory scheduling for UAV-assisted mobile edge computing. IEEE Int. Things J. 6(2),
3688–3699 (2019)

90. F. Zhou, Y. Wu, R. Hu, Y. Qian, Computation rate maximization in UAV-enabled wireless
powered mobile-edge computing systems. IEEE J. Sel. Areas Commun. 36(9), 1927–1941
(2018)

91. X. Hu, K. Wong, Y. Zhang, Wireless-powered edge computing with cooperative UAV: task,
time scheduling and trajectory design. IEEE Trans. Wirel. Commun. 19(12), 8083–8098
(2020)

92. C. Zhan, H. Hu, X. Sui, Z. Liu, D. Niyato, Completion time and energy optimization in
UAV-enabled mobile edge computing system. IEEE Int. Things J. 7(8), 7808–7822 (2020)

93. J. Zhang, L. Zhou, F. Zhou, B. Seet, H. Zhang, Z. Cai, J.Wei, Computation-efficient offloading
and trajectory scheduling for multi-UAV assisted mobile edge computing. IEEE Trans. Veh.
Technol. 69(2), 2114–2125 (2019)

94. J. Lyu, Y. Zeng, R. Zhang, Latency-aware IoT service provisioning in UAV-aidedmobile-edge
computing networks. IEEE Int. Things J. 7(10), 10573–10580 (2020)

112 References

95. J. Lyu, Y. Zeng, R. Zhang, UAV-aided offloading for cellular hotspot. IEEE Trans. Wirel.
Commun. 17(6), 3988–4001 (2018)

96. X. Hu, K. Wong, K. Yang, Z. Zheng, UAV-assisted relaying and edge computing: scheduling
and trajectory optimization. IEEE Trans. Wirel. Commun. 18(10), 4738–4752 (2019)

97. M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Efficient deployment of multiple unmanned
aerial vehicles for optimal wireless coverage. IEEE Commun. Lett. 20(8), 1647–1650 (2016)

98. J. Lyu, Y. Zeng, R. Zhang, T.J. Lim, Placement optimization of UAV-mounted mobile base
stations. IEEE Commun. Lett. 21(3), 604–607 (2017)

99. H. Chung, S. Maharjan, Y. Zhang, F. Eliassen, K. Strunz, Placement and routing optimization
for automated inspection with UAVs: a study in offshore wind farm. IEEE Trans. Ind. Inf.
17(5), 3032–3043 (2021)

100. H. Sun, F. Zhou, R. Hu, Joint offloading and computation energy efficiency maximization in
a mobile edge computing system. IEEE Trans. Veh. Technol. 68(3), 3052–3056 (2019)

101. X. Cao, J. Xu, R. Zhang, Mobile edge computing for cellular connected UAV: computa-
tion offloading and trajectory, in Proceedings of the IEEE International Workshop on Signal
Processing Advances in Wireless Communications (IEEE, Kalamata, Greece, June 2018)

102. A. Filippone, Flight Performance of Fixed and Rotary Wing Aircraft (American Institute of
Aeronautics and Astronautics, 2006)

103. National Centre for Earth Observation and National Centre for Atmospheric Science, The
CEDA Archive: The Natural Environment Research Council’s Data Repository for Atmo-
spheric Science and Earth Observation. http://archive.ceda.ac.uk/

104. Kingfisher Information Services—Offshore Renewable Cable Awareness, Awareness chart
of Walney 1–4. http://www.kis-orca.eu/downloads

105. AscTec Falcon 8. http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-falcon-8/pane-
0-1

106. F. Zhou, Y. Wu, R. Hu, Y. Qian, Computation rate maximization in UAV-enabled wireless
powered mobile-edge computing systems. IEEE J. Sel. Areas Commun. 36(9), 1927–1941
(2018)

107. S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System (2008). https://bitcoin.org/
bitcoin.pdf

108. S. King, Primecoin: Cryptocurrency with Prime Number Proof-of-Work (2013). http://
primecoin.io/bin/primecoin-paper.pdf

109. A. Miller, A. Juels, E. Shi, B. Parno, J. Katz, Permacoin: Repurposing Bitcoin Work for
Data Preservation (IEEE Symposium on Security and Privacy, San Jose, CA, May 2014), pp.
475–490

110. Slimcoin: A peer-to-peer crypto-currency with proof-of-burn. https://eprint.iacr.org/2019/
1096.pdf

111. S. King, S. Nadal, PPcoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake (2012). https://
peercoin.net/assets/paper/peercoin-paper.pdf

112. A. Kiayias, A. Russell, B. David, R. Oliynykov, Ouroboros: A provably secure proof-of-stake
blockchain protocol, in 37th Annual International Cryptology Conference, Santa Barbara,
CA, 20–24 Aug 2017 (IEEE, 2017), pp. 357–388

113. I. Bentov, C. Lee, A. Mizrahi, M. Rosenfeld, Proof of activity: extending Bitcoin’s proof of
work via proof of stake (extended abstract). ACM SIGMETRICS Perform. Eval. Rev. 42(3),
34–37 (2014)

114. Z. Zheng, S. Xie, H.N. Dai, X. Chen, H. Wang, Blockchain challenges and opportunities: a
survey. Int. J. Web Grid Serv. 14(4), 1–25 (2018)

115. D. Larimer, Delegated Proof-of-Stake (DOPS) (Bitshare whitepaper, 2014)
116. EOS.IO, Technical White Paper v2 (2018). https://github.com/EOSIO/Documentation/blob/

master/TechnicalWhitePaper.md
117. M. Castro, B. Liskov, Practical Byzantine fault tolerance, USENIX Symposium on Operating

Systems Design and Implementation(OSDI), vol. 99 (1999), pp. 173–186
118. Hyperledger project (2015). https://www.hyperledger.org/

http://archive.ceda.ac.uk/
http://www.kis-orca.eu/downloads
http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-falcon-8/pane-0-1
http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-falcon-8/pane-0-1
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://primecoin.io/bin/primecoin-paper.pdf
http://primecoin.io/bin/primecoin-paper.pdf
https://eprint.iacr.org/2019/1096.pdf
https://eprint.iacr.org/2019/1096.pdf
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://www.hyperledger.org/

References 113

119. X. Zhang, J. Liu, Y. Li, Q. Cui, X. Tao, R.P. Liu, Blockchain based secure package delivery via
ridesharing, in IEEE 11th International Conference on Wireless Communications and Signal
Processing, Xi’an, 23–25 Oct 2019 (IEEE, 2019), pp. 1–6. https://doi.org/10.1109/WCSP.
2019.8927952

120. Y. Dai, D. Xu, K. Zhang, S. Maharjan, Y. Zhang, Deep reinforcement learning and permis-
sioned blockchain for content caching in vehicular edge computing and networks. IEEETrans.
Veh. Technol. 69(4), 4312–4324 (2020). https://doi.org/10.1109/TVT.2020.2973705

121. J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang, E. Hossain, Enabling localized peer-to-peer
electricity trading among plug-in hybrid electric vehicles using consortium blockchains. IEEE
Trans. Ind. Inf. 13(6), 3154–3164 (2017)

122. H.B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A.Y. Arcas, Communication-efficient
learning of deep networks from decentralized data, in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, Fort Lauderdale, Florida, Apr 2017, vol.
54 (PMLR, 2017)

123. Y. Lu, X. Huang, K. Zhang, S. Maharjan, Y. Zhang, Low-latency federated learning and
blockchain for edge association in digital twin empowered 6Gnetworks, in IEEETransactions
on Industrial Informatics (In Press). https://doi.org/10.1109/TII.2020.3017668

124. A. Hard, K. Rao, R.Mathews, F. Beaufays, S. Augenstein, H. Eichner, C. Kiddon, D. Ramage,
Federated Learning for Mobile Keyboard Prediction (2018). arXiv:1811.03604

125. Z. Yu, J. Hu, G.Min, H. Lu, Z. Zhao, H.Wang, N. Georgalas, Federated learning based proac-
tive content caching in edge computing, in 2018 IEEE Global Communications Conference,
Abu Dhabi, United Arab Emirates (IEEE, Piscataway, 9–13 Dec 2018), pp. 1–6

126. J.H. Mills, G. Min, Communication-efficient federated learning for wireless edge intelligence
in IoT. IEEE Int. Things J. 7(7), 5986–5994 (2019)

127. H.B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A.Y. Arcas, Communication-efficient
learning of deep networks from decentralized data, in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, Fort Lauderdale, Florida, vol. 54 (PMLR,
2017), pp. 1273–1282

128. S. Wang, T. Tuor, T. Salonidis, K.K. Leung, C. Makaya, T. He, K. Chan, Adaptive federated
learning in resource constrained edge computing systems. IEEE J. Sel. Areas Commun. 37(6),
1205–1221 (2019)

129. C.Dinh,N.H. Tran,M.N.H.Nguyen, C.S.Hong,W.Bao,A.Y. Zomaya,V.Gramoli, Federated
learning over wireless networks: convergence analysis and resource allocation. IEEE/ACM
Trans. Net. 29(1), 398–409 (2021). https://doi.org/10.1109/TNET.2020.3035770

130. S.J. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10),
1345–1359 (2010). https://doi.org/10.1109/TKDE.2009.191

131. Y. Liu, Y. Kang, C. Xing, T. Chen, Q. Yang, A secure federated transfer learning framework.
IEEE Intell. Syst. 35(4), 70–82 (2020). https://doi.org/10.1109/MIS.2020.2988525

132. H. Yang, H. He, W. Zhang, X. Cao, FedSteg: a federated transfer learning framework for
secure image steganalysis, in IEEE Transactions on Network Science and Engineering (In
Press). https://doi.org/10.1109/TNSE.2020.2996612

https://doi.org/10.1109/WCSP.2019.8927952
https://doi.org/10.1109/WCSP.2019.8927952
https://doi.org/10.1109/TVT.2020.2973705
https://doi.org/10.1109/TII.2020.3017668
http://arxiv.org/abs/1811.03604
https://doi.org/10.1109/TNET.2020.3035770
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/MIS.2020.2988525
https://doi.org/10.1109/TNSE.2020.2996612

	Preface
	Acknowledgements
	Contents
	Acronyms
	1 Introduction
	1.1 Mobile Cloud Computing (MCC)
	1.2 Overview of MEC
	1.3 Book Organization

	2 Mobile Edge Computing
	2.1 A Hierarchical Architecture of Mobile Edge Computing (MEC)
	2.2 Computation Model
	2.2.1 Computation Model of Local Execution
	2.2.2 Computation Model of Full Offloading
	2.2.3 A Computation Model for Partial Offloading

	2.3 Offloading Policy
	2.3.1 Binary Offloading
	2.3.2 Partial Offloading

	2.4 Challenges and Future Directions

	3 Mobile Edge Caching
	3.1 Introduction
	3.2 The Architecture of Mobile Edge Caching
	3.3 Caching Performance Metrics
	3.3.1 Hit Rate Ratio
	3.3.2 Content Acquisition Latency
	3.3.3 Quality of Experience (QoE)
	3.3.4 Caching System Utility

	3.4 Caching Service Design and Data Scheduling Mechanisms
	3.4.1 Edge Caching Based on Network Infrastructure Services
	3.4.2 Edge Caching Based on D2D Services
	3.4.3 Hybrid Service–Enabled Edge Caching

	3.5 Case Study: Deep Reinforcement Learning–Empowered …
	3.5.1 System Model
	3.5.2 Problem Formulation and a DDPG-Based Optimal Content Dispatch Scheme
	3.5.3 Numerical Results

	4 Mobile Edge Computing for Beyond 5G/6G
	4.1 Fundamental Characteristics of 6G
	4.2 Integrating Mobile Edge Computing (MEC) …
	4.2.1 Use Cases of Integrating MEC into 6G
	4.2.2 Applications of Integrating MEC into 6G
	4.2.3 Challenges of Integrating MEC into 6G

	4.3 Case Study: MEC-Empowered Edge Model Sharing for 6G
	4.3.1 Sharing at the Edge: From Data to Model
	4.3.2 Architecture of Edge Model Sharing
	4.3.3 Processes of Edge Model Sharing

	5 Mobile Edge Computing for the Internet of Vehicles
	5.1 Introduction
	5.2 Challenges in VEC
	5.3 Architecture of VEC
	5.4 Key Techniques of VEC
	5.4.1 Task Offloading
	5.4.2 Heterogeneous Edge Server Cooperation
	5.4.3 AI-Empowered VEC

	5.5 A Case Study
	5.5.1 Predictive Task Offloading for Fast-Moving Vehicles
	5.5.2 Deep Q-Learning for Vehicular Computation Offloading

	6 Mobile Edge Computing for UAVs
	6.1 Unmanned Aerial Vehicle–Assisted Mobile Edge Computing (MEC) Networks
	6.2 Joint Trajectory and Resource Optimization in UAV-Assisted MEC Networks
	6.2.1 Resource Allocation and Optimization in the Scenario of a UAV Exploiting MEC Computing Capabilities
	6.2.2 Resource Allocation and Optimization in the Scenario of a UAV Serving as a Computing Server
	6.2.3 Resource Allocation and Optimization in the Scenario of a UAV Serving as a Relay for Computation Offloading

	6.3 Case Study: UAV Deployment and Resource Optimization for MEC at a Wind Farm
	6.3.1 UAV Deployment for MEC at a Wind Farm
	6.3.2 Joint Trajectory and Resource Optimization of UAV-Aided MEC at a Wind Farm

	6.4 Conclusions

	7 The Future of Mobile Edge Computing
	7.1 The Integration of Blockchain and Mobile Edge Computing (MEC)
	7.1.1 The Blockchain Structure
	7.1.2 Blockchain Classification
	7.1.3 Integration of Blockchain and MEC

	7.2 Edge Intelligence: The Convergence of AI and MEC
	7.2.1 Federated Learning in MEC
	7.2.2 Transfer Learning in MEC

	7.3 MEC in Other Applications
	7.3.1 MEC in Pandemics
	7.3.2 MEC in the Industrial IoT (IIoT)
	7.3.3 MEC in Disaster Management

	Appendix References
	

