9 research outputs found

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Scalable parallel evolutionary optimisation based on high performance computing

    Get PDF
    Evolutionary algorithms (EAs) have been successfully applied to solve various challenging optimisation problems. Due to their stochastic nature, EAs typically require considerable time to find desirable solutions; especially for increasingly complex and large-scale problems. As a result, many works studied implementing EAs on parallel computing facilities to accelerate the time-consuming processes. Recently, the rapid development of modern parallel computing facilities such as the high performance computing (HPC) bring not only unprecedented computational capabilities but also challenges on designing parallel algorithms. This thesis mainly focuses on designing scalable parallel evolutionary optimisation (SPEO) frameworks which run efficiently on the HPC. Motivated by the interesting phenomenon that many EAs begin to employ increasingly large population sizes, this thesis firstly studies the effect of a large population size through comprehensive experiments. Numerical results indicate that a large population benefits to the solving of complex problems but requires a large number of maximal fitness evaluations (FEs). However, since sequential EAs usually requires a considerable computing time to achieve extensive FEs, we propose a scalable parallel evolutionary optimisation framework that can efficiently deploy parallel EAs over many CPU cores at CPU-only HPC. On the other hand, since EAs using a large number of FEs can produce massive useful information in the course of evolution, we design a surrogate-based approach to learn from this historical information and to better solve complex problems. Then this approach is implemented in parallel based on the proposed scalable parallel framework to achieve remarkable speedups. Since demanding a great computing power on CPU-only HPC is usually very expensive, we design a framework based on GPU-enabled HPC to improve the cost-effectiveness of parallel EAs. The proposed framework can efficiently accelerate parallel EAs using many GPUs and can achieve superior cost-effectiveness. However, since it is very challenging to correctly implement parallel EAs on the GPU, we propose a set of guidelines to verify the correctness of GPU-based EAs. In order to examine these guidelines, they are employed to verify a GPU-based brain storm optimisation that is also proposed in this thesis. In conclusion, the comprehensively experimental study is firstly conducted to investigate the impacts of a large population. After that, a SPEO framework based on CPU-only HPC is proposed and is employed to accelerate a time-consuming implementation of EA. Finally, the correctness verification of implementing EAs based on a single GPU is discussed and the SPEO framework is then extended to be deployed based on GPU-enabled HPC

    Ensamblaje y análisis comparativo del genoma mitocondrial del cuy doméstico (Cavia porcellus) y silvestre (Cavia tschudii) de Perú

    Get PDF
    Cavia porcellus es un roedor doméstico nativo de los Andes que es parte integral de la cultura y la alimentación tradicional andinas. Pese a su importancia y múltiples usos, los recursos genéticos disponibles para su estudio y mejoramiento son escasos y están sesgados al excluir individuos silvestres y nativos. En este estudio se ha identificado y secuenciado 10 individuos entre mejorados, “criollos” y silvestres del género Cavia provenientes de Perú. En total se ha reconstruido el genoma mitocondrial de los 10 individuos secuenciados y se incluyó 1 genoma de la base de datos SRA-NCBI, evaluándose sus relaciones filogenéticas. El individuo de C. tschudii más distanciado genéticamente (i.e. Pachachaca, Andahuaylas) se comporta como un grupo basal mientras que otros C. tschudii (i.e. Pantanos de Villa, Lima) son indiferenciables de C. porcellus. Este trabajo muestra que en C. porcellus ha experimentado probablemente una introgresión de C. tschudii o viceversa, que pudo generar poblaciones heterogéneas dentro de C. tschudii.Perú. Instituto Nacional de Innovación Agraria (INIA). Programa financiador: Programa Nacional de Innovación Agraria (PNIA). 171_PI Perú. Universidad Nacional Mayor de San Marcos. Vicerrectorado de Investigación y Posgrado. Programa de Promoción de Tesis de Pregrado. E18030044-PTPGRADO

    Proceedings of the ACM SIGPLAN Workshop on Approaches and Applications of Inductive Programming (AAIP 2009)

    Get PDF
    Inductive programming is concerned with the automated construction of declarative, often functional, recursive programs from incomplete specifications such as input/output examples. The inferred program must be correct with respect to the provided examples in a generalising sense: it should be neither equivalent to them, nor inconsistent. Inductive programming algorithms are guided explicitly or implicitly by a language bias (the class of programs that can be induced) and a search bias (determining which generalised program is constructed first). Induction strategies are either generate-and-test or example-driven. In generate-and-test approaches, hypotheses about candidate programs are generated independently from the given specifications. Program candidates are tested against the given specification and one or more of the best evaluated candidates are developed further. In analytical approaches, candidate programs are constructed in an example-driven way. While generate-and-test approaches can -- in principle -- construct any kind of program, analytical approaches have a more limited scope. On the other hand, efficiency of induction is much higher in analytical approaches. Inductive programming is still mainly a topic of basic research, exploring how the intellectual ability of humans to infer generalised recursive procedures from incomplete evidence can be captured in the form of synthesis methods. Intended applications are mainly in the domain of programming assistance -- either to relieve professional programmers from routine tasks or to enable non-programmers to some limited form of end-user programming. Furthermore, in the future, inductive programming techniques might be applied to further areas such as supporting the inference of lemmata in theorem proving or learning grammar rules. Inductive automated program construction has been originally addressed by researchers in artificial intelligence and machine learning. During the last years, some work on exploiting induction techniques has been started also in the functional programming community. Therefore, the third workshop on |Approaches and Applications of Inductive Programming| took place for the first time in conjunction with the ACM SIGPLAN International Conference on Functional Programming (ICFP 2009). The first and second workshop were associated with the International Conference on Machine Learning (ICML 2005) and the European Conference on Machine Learning (ECML 2007). AAIP´09 aimed to bring together researchers from the functional programming and the artificial intelligence communities, working in the field of inductive functional programming, and advance fruitful interactions between these communities with respect to programming techniques for inductive programming algorithms, the identification of challenge problems and potential applications. For everybody interested in inductive programming we recommend to visit the website: www.inductive-programming.org

    Understanding how Knowledge is exploited in Ant Algorithms

    Get PDF
    Centre for Intelligent Systems and their ApplicationsAnt algorithms were first written about in 1991 and since then they have been applied to many problems with great success. During these years the algorithms themselves have been modified for improved performance and also been influenced by research in other fields. Since the earliest Ant algorithms, heuristics and local search have been the primary knowledge sources. This thesis asks the question "how is knowledge used in Ant algorithms?" To answer this question three Ant algorithms are implemented. The first is the Graph based Ant System (GBAS), a theoretical model not yet implemented, and the others are two influential algorithms, the Ant System and Max-Min Ant System. A comparison is undertaken to show that the theoretical model empirically models what happens in the other two algorithms. Therefore, this chapter explores whether different pheromone matrices (representing the internal knowledge) have a significant effect on the behaviour of the algorithm. It is shown that only under extreme parameter settings does the behaviour of Ant System and Max-Min Ant System differ from that of GBAS. The thesis continues by investigating how inaccurate knowledge is used when it is the heuristic that is at fault. This study reveals that Ant algorithms are not good at dealing with this information, and if they do use a heuristic they must rely on it relating valid guidance. An additional benefit of this study is that it shows heuristics may offer more control over the exploration-exploitation trade-off than is afforded by other parameters. The second point where knowledge enters the algorithm is through the local search. The thesis looks at what happens to the performance of the Ant algorithms when a local search is used and how this affects the parameters of the algorithm. It is shown that the addition of a local search method does change the behaviour of the algorithm and that the strength of the method has a strong influence on how the parameters are chosen. The final study focuses on whether Ant algorithms are effective for driving a local search method. The thesis demonstrates that these algorithms are not as effective as some simpler fixed and variable neighbourhood search methods

    Computer Science & Technology Series : XVI Argentine Congress of Computer Science - Selected papers

    Get PDF
    CACIC’10 was the sixteenth Congress in the CACIC series. It was organized by the School of Computer Science of the University of Moron. The Congress included 10 Workshops with 104 accepted papers, 1 main Conference, 4 invited tutorials, different meetings related with Computer Science Education (Professors, PhD students, Curricula) and an International School with 5 courses. (http://www.cacic2010.edu.ar/). CACIC 2010 was organized following the traditional Congress format, with 10 Workshops covering a diversity of dimensions of Computer Science Research. Each topic was supervised by a committee of three chairs of different Universities. The call for papers attracted a total of 195 submissions. An average of 2.6 review reports were collected for each paper, for a grand total of 507 review reports that involved about 300 different reviewers. A total of 104 full papers were accepted and 20 of them were selected for this book.Red de Universidades con Carreras en Informática (RedUNCI
    corecore