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Preface

Inductive programming is concerned with the automated construction of declarative, often functio-
nal, recursive programs from incomplete specifications such as input/output examples. The inferred
program must be correct with respect to the provided examples in a generalising sense: it should be
neither equivalent to it, nor inconsistent. Inductive programming algorithms are guided explicitly or
implicitly by a language bias (the class of programs that can be induced) and a search bias (determi-
ning which generalised program is constructed first). Induction strategies are either generate-and-test
or example-driven. In generate-and-test approaches, hypotheses about candidate programs are gene-
rated independently from the given specifications. Program candidates are tested against the given
specification and one or more of the best evaluated candidates are developed further. In analytical
approaches, candidate programs are constructed in an example-driven way. While generate-and-test
approaches can — in principle — construct any kind of program, analytical approaches have a more
limited scope. On the other hand, efficiency of induction is much higher in analytical approaches.

Inductive programming is still mainly a topic of basic research, exploring how the intellectual ability
of humans to infer generalised recursive procedures from incomplete evidence can be captured in the
form of synthesis methods. Intended applications are mainly in the domain of programming assistance
— either to relieve professional programmers from routine tasks or to enable non-programmers to some
limited form of end-user programming. Furthermore, in future inductive programming techniques
might be applied to further areas such as support inference of lemmata in theorem proving or learning
grammar rules.

Inductive automated program construction has been originally addressed by researchers in artificial
intelligence and machine learning. During the last years, some work on exploiting induction techni-
ques has been started also in the functional programming community. Therefore, the third workshop
on Approaches and Applications of Inductive Programmingtook place for the first time in conjuncti-
on with the ACM SIGPLAN International Conference on Functional Programming (ICFP 2009). The
first and second workshop were associated with the International Conference on Machine Learning
(ICML 2005) and the European Conference on Machine Learning (ECML 2007).

AAITP’09 aimed to bring together researchers from the field of inductive functional programming from
the functional programming and the artificial intelligence communities and advance fruitful interacti-
ons between these communities with respect to programming techniques for inductive programming
algorithms, identification of challenge problems and potential applications.



The program committee consisted of members from both communities, namely:

Pierre Flener, Uppsala University, Sweden

Lutz Hamel, University of Rhode Island, Kingston, USA

Jose Herndndez-Orallo, Technical University of Valencia, Spain

Johan Jeuring, University of Utrecht, The Netherlands

Susumu Katayama, University of Miyazaki, Japan

Pieter Koopman, Radboud University Nijmegen, The Netherlands

Oleg G. Monakhov, Russian Academy of Sciences, Siberian Branch, Russia
Ricardo Aler Mur, Universidad Carlos III de Madrid, Spain

Roland Olsson, Ostfold College, Norway

Maria José Ramirez Quintana, Technical University of Valencia, Spain

The workshop was enriched by three invited talks from members from the functional programming
community and we want to thank Lennart Augustsson, Pieter Koopman and Neil Mitchell for their
support. We are very grateful to Martin Hofmann who invested much of his time to support the
workshop organisation. Furthermore, we want to thank all presenters for submitting their work to
our workshop and all attendants for stimulating discussions. For everybody interested in inductive
programming we recommend to visit the website: www. inductive-programming.org.
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Putting Curry-Howard to work

Lennart Augustsson

Standard Chartered Bank
lennart.augustsson@gmail.com

Abstract

It is a well known fact that there is a correspondence between propositions and type, and similarly a corre-
spondence between a proof of a proposition and a program of a type; this is the Curry-Howard correspondence.
In this talk I will describe a program, Djinn, which takes a Haskell type and produces a program of that type,
using the Curry-Howard correspondence. For the subset of Haskell types that Djinn can handle (no recursive
types) it does quite well. For instance, it can derive the code for all the standard monads in Haskell, including
continuations and call/cc.






Deriving a Relationship from a Single Example

Neil Mitchell
ndmitchell@gmail.com

Abstract

Given an appropriate domain specific language (DSL), it is possible
to describe the relationship between Haskell data types and many
generic functions, typically type-class instances. While describing
the relationship is possible, it is not always an easy task. There is an
alternative — simply give one example output for a carefully chosen
input, and have the relationship derived.

When deriving a relationship from only one example, it is im-
portant that the derived relationship is the intended one. We identify
general restrictions on the DSL, and on the provided example, to
ensure a level of predictability. We then apply these restrictions in
practice, to derive the relationship between Haskell data types and
generic functions. We have used our scheme in the DERIVE tool,
where over 60% of type classes are derived from a single example.

1. Introduction

In Haskell (Peyton Jones 2003), type classes (Wadler and Blott
1989) are used to provide similar operations for many data types.
For each data type of interest, a user must define an associated in-
stance. The instance definitions usually follow a highly regular pat-
tern. Many libraries define new type classes, for example Trinder
et al. (1998) define the NFData type class, which reduces a value to
normal form. As an example, we can define a data type to describe
some computer programming languages, and provide an NFData
instance:

data Language = Haskell [Extension] Compiler
| Whitespace
| Java Version

instance NFData Language where
rnf (Haskell x1 x2) = rnf x1 ‘seq’ rnf x2 seq’ ()
rnf (Whitespace ) = ()
rnf (Java x; ) = rnf x;1 ‘seq ()

We also need to define NFData instances for the data types
Extension, Compiler and Version. Any instance of NFData fol-
lows naturally from the structure of the data type: for each con-
structor, all fields have seq applied, before returning ().

Writing an NFData instance for a single simple data type is
easy — but for multiple complex data types the effort can be substan-
tial. The standard solution is to express the relationship between a
data type and it’s instance. In standard tools, such as DrIFT (Win-
stanley 1997), the person describing a relationship must be famil-
iar with both the representation of a data type, and various code-
generation functions. The result is that specifying a relationship is
not as straightforward as one might hope.

Using the techniques described in this paper, these relationships
can often be automatically inferred from a single example. To de-
fine the generation of a// NFData instances, we require an example
to be given for the Sample data type defined in Figure 1:

data Sample a = First
| Second o v
| Third «

Figure 1. The Sample data type.

instance NFData o = NFData (Sample «) where
rnf (First )=()
rnf (Second x1 x2) = rnf x; seq’ rnf x, “seq ()
rnf (Third xq ) = rnf x1 “seq” ()

The NFData instance for Sample follows the same pattern as
for Language. From this example, we can infer the general rela-
tionship. However, there are many possible relationships between
the Sample data type and this result — for example the function
might always generate the instance for Sample, regardless of the
input type. We overcome this problem by requiring the relationship
to be written in a domain specific language (DSL), and that the ex-
ample has certain properties (see §2). With our restrictions, we can
regain predictability.

1.1 Contributions

This paper makes the following contributions:

e We describe a scheme which allows us to infer predictable and
correct relationships (§2).

e We describe how this scheme is applicable to instance genera-
tion, both in a high-level manner (§3), and more detailed prac-
tical concerns (§5).

e We outline a method for deriving a relationship in our DSL,
without resorting to unguided search (§4).

e We give results (§6), including reasons why our inference fails
(§6.1). In our experience, over 60% of Haskell type classes can
be derived using our method.

2. Our Derivation Scheme

In this section we define a general scheme for deriving functions,
which we later use to derive type-class instance generators. In
general terms, a function takes an input to an output. In our case,
we restrict ourselves to functions that can be described by a DSL
(domain specific language). We need an apply function to serve as
an interpreter for our DSL, which takes a DSL and an input and
produces an output. Our scheme can be implemented in Haskell as
follows:

data Input
data Output
data DSL

apply :: DSL — Input — Output



Now we turn to the derivation scheme. Given a single result of
the Output type, for a particular sample Input, we wish to derive
a suitable DSL. It may not be possible to derive a suitable DSL,
so our derivation function must allow for the possibility of failure.
Instead of producing at most one DSL, we instead produce a list
of DSLs, following the lead of Wadler (1985). Once again, we can
implement this in Haskell as:

sample :: Input
derive :: Output — [DSL]

We require our scheme to have two properties — correctness
(it works) and predictability (it is what the user intended). We
now define both of these properties more formally, along with
restrictions necessary to achieve them.

2.1 Correctness

The derivation of a particular output is correct if all derived DSLs,
when applied to the sample input, produce the original output:

V o € Qutput @V d € derive o @ apply d sample = o

Given an existing derive’ function, which does not necessarily
ensure correctness, we can create a correct version by filtering out
the incorrect DSLs. By applying this modification we can remove
some constraints from the derive’ function — either simplifying the
implementation, or gaining a higher assurance of correctness.

derive o = [d | d < derive’ o, apply d sample = o]

2.2 Predictability

A derived relationship is predictable if the user can be confident
that it matches their expectations. In particular, we don’t want the
user to have to understand the complex derive function to gain
predictability. In this section we attempt to simplify the task of
defining predictable derivation schemes.

Before defining predictability, it is useful to define congruence
of DSLs. We define two DSLs to be congruent (22), if for every
input they produce identical results —i.e. apply di = apply do.

di2dy<=Vié€lnputeapplyd;i=applydsi

Our derive function returns a list of suitable DSLs. To ensure
consistency, it is important that the DSLs are all congruent — allow-
ing us to choose any DSL as the answer.

Vo € Output eV di,d; € derive o e d; = d>

This property is dependent on the implementation of the derive
function, so is insufficient for ensuring predictability. To ensure
predictability we require that all results satisfying the correctness
property are congruent:

Vdi,d, € DSL e
apply di sample = apply d> sample = d; = d»

The combination of this predictability property and the correct-
ness property implies the consistency property. It is important to
note that predictability does not impose conditions on the derive
function, only on the DSL and sample input. The sample input is
chosen by the author of the derivation scheme, so the user is not
required to understand the reasons for it’s form. To ensure pre-
dictability the user may have to know some details about the DSL,
but hopefully these will not be too onerous.

2.3 Summary

If the predictability property holds for the DSL and sample value,
and we use the modified derive in terms of derive’, then any result
produced by derive will be a valid relationship. These properties
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allow us to write the derive function focusing on other attributes
(which we discuss in §4).

To use this general scheme, we need to instantiate it to our
particular problem (§3), check the predictability property (§3.4),
and implement a derive function (§4).

3. Deriving Instances

In this section we apply the scheme from §2 to the problem of de-
riving type class instances. We let the output type be Haskell source
code and the input type be a representation of algebraic data types.
The DSL contains features such as list manipulation, constant val-
ues, folds and maps. We first describe each type in detail, then dis-
cuss the restrictions necessary to satisfy the predictability property.

3.1 Output

We wish to generate any sequence of Haskell declarations, where a
declaration is typically a function definition or type class instance.
There are several ways to represent a sequence of declarations:

String A sequence of Haskell declarations can be represented as
the string of the program text. However, the lack of structure
in a string poses several problems. When constructing strings
it is easy to generate invalid programs, particularly given the
indentation and layout requirements of Haskell. It is also hard
to recover structure from the program that is likely to be useful
for deriving relationships.

Pretty printing combinators Some tools such as DrIFT (Win-
stanley 1997) generate Haskell code using pretty printing com-
binators. These combinators supply more structure than strings,
but the structure is linked to the presentation, rather than the
meaning of constructs.

Typed abstract syntax tree (AST) The standard way of working
with Haskell source code is using a typed AST — an AST where
different types of fragment (i.e. declarations, expressions and
patterns) are restricted to different positions within the tree. The
first version of DERIVE used a typed AST, specifically Tem-
plate Haskell (Sheard and Peyton Jones 2002). This approach
preserves all the structure, and makes it reasonably easy to en-
sure the generated program is syntactically correct. By combin-
ing a typed AST with a parser and pretty printer we can convert
between strings as necessary.

Untyped abstract syntax tree (AST) An untyped AST is an AST
where all fragments have the same type, and types do not re-
strict where a fragment may be placed. The removal of types
increases the number of invalid programs that can be repre-
sented — for example a declaration could occur where an expres-
sion was expected. However, by removing types we increase the
similarity of the tree, in turn simplifying function that operate
on the tree in a uniform manner.

For our purposes, it is clear that both strings and pretty printing
combinators are unsuitable — they lack sufficient structure to imple-
ment the derive operation. The choice between a typed and untyped
AST is one of safety vs simplicity. The use of a typed AST in the
first version of DERIVE caused many complexities — notably the
DSL was hard to represent in a well-typed manner and some func-
tions had to be duplicated for each type. The loss of safety from us-
ing an untyped AST is not too serious, as both DSLs and ASTs are
automatically generated, rather than being written by hand. There-
fore, we chose to use untyped ASTs for the current version of DE-
RIVE. We discuss possible changes to regain type safety in §8.

While we work internally with an untyped AST, existing
Haskell libraries for working with ASTs use types. To allow the
use of existing libraries we start from a typed AST and collapse it
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to a single type, using the Scrap Your Boilerplate generic program-
ming library (Ldmmel and Peyton Jones 2003, 2004).

The use of Template Haskell in the first version of DERIVE
provided a number of advantages — it is built in to GHC and can
represent a large range of Haskell programs. Unfortunately, there
were also a number of problems:

e Being integrated in to GHC ensures Template Haskell is avail-
able everywhere GHC is, but also means that Template Haskell
cannot be upgraded separately. Users of older versions of GHC
cannot take advantage of improvements to Template Haskell,
and every GHC upgrade requires modifications to DERIVE.

e Template Haskell does not support new GHC extensions —
they are often implemented several years later. For example,
Template Haskell does not yet support view patterns.

e Template Haskell allows generated instances to be used easily
by GHC compiled programs, but it makes the construction of a
standalone preprocessor harder.

e If Template Haskell is also used to read the input data type
(as it was in the first version of DERIVE) then only data types
contained in compilable modules can be used. In particular, all
necessary libraries must be compiled before an instance could
be generated.

e The API of Template Haskell is relatively complex, and has
some inconsistencies. In particular the Q monad caused much
frustration.

We have implemented the current version of DERIVE using
the haskell-src-exts library (Broberg 2009). The haskell-src-exts
library is well maintained, supports most Haskell extensions ' and
operates purely as a library. We convert the typed AST of haskell-
src-exts to a universal data type:

data Output = OString String
| Olnt Int
| OList [Output]
| OApp String [Output]

OString and Olnt represent strings and integers. The OList con-
structor generates a list from a sequence of Output values. The
expression OApp c xs represents the constructor ¢ with fields xs.
For example Just [1,2] would be represented by the expression
OApp "Just" [OList [Olnt 1, Olnt 2]].

Our Output type can represent many impossible values, for
example the expression OApp "Just" [] (wrong number of fields)
or OApp "Maybe" [] (not a constructor). We consider any Output
value that does not represent a haskell-src-exts value to be an error.
The root Output value must represent a value of type [Decl]. We
can translate between our Output type and the haskell-src-exts type
[Decl]:

toOutput  :: [Decl] — Output
fromOutput :: Output — [Decl]

We have implemented these functions using the SYB generics
library (Ldmmel and Peyton Jones 2004), specifically we have
implemented the more general:

toOut :: Data @ = o — Output
fromOut :: Data @ = Output — «

These functions are partial — they only succeed if the Output
value represents a well-typed haskell-src-exts value. When operat-
ing on the Output type, we are working without type safety. How-
ever, provided all DSL values are constructed by derive, and that

! Haskell-src-exts supports even more extensions than GHC!

derive only constructs well-formed DSL values, our fromOutput
function will be safe.

3.2 Input

While the output type is largely dictated by the need to generate
Haskell, we have more freedom with the input type. The input type
represents Haskell data types, but we can choose which details
to include, and thus which relationships we can represent. For
example, we can include the module name in which the data type
is defined, or we can omit this detail. We choose not to include the
module name, which eliminates some derivations, for example the
Typeable type class (Ldmmel and Peyton Jones 2003).

Our Input type represents algebraic data types. We include
details such as the arity of each constructor (ctorArity), the O-
based index of each constructor (ctorlndex) and the number of type
variables (dataVars), but omit details such as types and record field
names. Our Input type is:

data Input = Input

{dataName :: String, dataVars :: Int, dataCtors :: [Ctor] }
data Ctor = Ctor

{ctorName :: String, ctorlndex :: Int, ctorArity :: Int }

Values of Input for the Sample data type (Figure 1) and the
Language data type (§1) are:

sampleType :: Input

sampleType = Input "Sample" 1
[Ctor "First" 00
, Ctor "Second" 1 2
, Ctor "Third" 21]

languageType :: Input
languageType = Input "Language" 0

[Ctor "Haskell" 02
, Ctor "Whitespace" 10
, Ctor "Java" 21]

The Input constructor contains the name of the data type, and
the number of type variables the data type takes. For each construc-
tor we record the name, O-based index, and arity. These choices
allow derivations to depend on the arity or index of a constructor,
but not the types of a constructors arguments. In §6 we consider
possible extensions to the Input type.

3.3 DSL

Our DSL type is given in Figure 2, and our apply function is given
in Figure 3. The operations in the DSL are split in to six groups
— we first give a high-level overview of the DSL, then return to
each group in detail. The apply function is written in terms of
applyEnv, where an environment is passed including the input
data type, and other optional fields. Some functions in the DSL
add to the environment (i.e. MapCtor), while others read from the
environment (i.e. CtorName). Any operation reading a value from
the environment must be nested within an operation placing that
value in the environment.

Some operations require particular types — for example Reverse
requires it’s argument to evaluate to OList. Where possible we have
annotated these restrictions in the DSL definition using comments.
We have used view patterns, as implemented in GHC 6.10 (The
GHC Team 2009), to perform matches on the evaluated argument
DSLs. Our use of view patterns can be understood with the simple
translation®:

2 View-patterns and pattern-guards in GHC have different scoping be-
haviour, but this difference does not effect our apply function.



data DSL
-- Constants
= String String
Int Int
List [DSL]
App String DSL {-[a] -}
-- Operations
Concat DSL {-[[«]] -}
Reverse DSL {-[a] -}
ShowlInt DSL {-Int -}
-- Fold
Fold DSL DSL
Head
Tail
-- Constructors
MapCtor DSL
Ctorlndex
CtorArity
CtorName
-- Fields
MapField DSL
FieldIndex
-- Custom
DataName
Application DSL {-[Exp] -}
Instance [String] String DSL {-[InstDecl] -}

Figure 2. DSL data type

f (Reverse (f — OList xs)) = ...

f (Reverse v;) | OList xs «— f vy = ...

f (Reverse v1) | case v, of OList { } — True; - — False = ...
where v, = f vq; OList xs = v»

Some operations have restrictions on what their arguments must
evaluate to, and what environment values must be available. It
would be possible to capture many of these invariants using either
phantom types (Fluet and Pucella 2002) or GADTs (Peyton Jones
et al. 2006). However, for simplicity, we choose not to.

3.3.1 Constants

We include constants in our DSL, so we can lift values of Output to
values of DSL. The String, Int, List operations are directly equiv-
alent to the corresponding Output values. The App constructor is
similar to OApp, but instead of taking a list of arguments, App
takes a single argument, which must to evaluate to an OList. Re-
quiring an OList rather than an explicit list allows the arguments to
App to be constructed by operations such as Reverse or Concat.

3.3.2 Operations

The operations group consists of useful functions for manipulat-
ing lists, strings and integers. The operations have been added as
required, based on functions in the Haskell Prelude. The Concat
operation corresponds to concat, and concatenates either a list of
lists, or a list of strings. The Reverse operation performs reverse
on a list. The Showlnt operation performs show, converting an in-
teger to a string. We have only included functions for which we
have found a specific need, for example Reverse cannot be applied
to a string, even though there is a sensible interpretation. We do not
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apply :: DSL — Input — Output
apply dsl input = applyEnv dsl Env {envinput = input }

data Env = Env {envinput :: Input
,envCtor :: Ctor
,envField :: Int
,envFold :: (Output, Output) }

applyEnv :: DSL — Env — Output

applyEnv dsl env@(Env input ctor field fold) = f dsl
where
vars = take (dataVars input) $ map (:[]) [’a’ ..]

f (Instance ctx hd body) =
OApp "InstDecl"

[toOut
[ClassA (UnQual $ Ident c) [TyVar $ Ident v]
| v« vars, c « ctx]

,toOut $ UnQual $ Ident hd

,toOut [foldl TyApp
(TyCon $ UnQual $ Ident $ dataName input)
[TyVar $ Ident v | v « vars]]

,f body]

f (Application (f — OList xs)) =
foldll (Aa b — OApp "App" [a, b]) xs

f (MapCtor dsl) = OList [applyEnv dsl env {envCtor = c}
| ¢ — dataCtors input]

f (MapField dsl) = OList [applyEnv dsl env {envField =i}
| i< [1..ctorArity ctor]]

f DataName = OString $ dataName input
f CtorName = OString $ ctorName ctor
f CtorArity = OInt  $ ctorArity ctor

f CtorIndex = Olnt  $ ctorlndex ctor

f Fieldindex = OInt  $ field

f Head = fst fold
f Tail = snd fold
f (Fold cons (f — OList xs)) =
foldrl (Aa b — applyEnv cons env {envFold = (a,b) }) xs

List xs) = OList $ map f xs
Reverse (f — OList xs)) = OList $ reverse xs
Concat (f — OList [])) = OList []
Concat (f — OList xs)) = foldrl g xs
where g (OList x) (OList y)=OList (x+vy)
g (OString x) (OString y) = OString (x +y)
(String x) = OString x
(Int x) = Olnt x
(Showlnt (f — Olnt x)) = OString $ show x
(App x (f — OList ys)) = OApp x ys

f(
f(
f(
f(

f
f
f
f

Figure 3. The apply function.
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provide an append or (-4) operation, but one can be created from
a combination of List and Concat. These operations are all simple,
and would be appropriate for many DSLs.

Some examples of these operations in use are:

Concat (List [String "hello ", String "world"])
= OString "hello world"

Reverse (List [Int 1, Int 2, Int 3])
= OList [Olnt 3,OlInt 2, OlInt 1]

Showlnt (Int 42) = OString "42"

3.3.3 Fold

The Fold operation corresponds to foldrl, but can be combined
with Reverse to simulate foldl1l. The first argument of Fold is a
function — a DSL containing Head and Tail operations. The second
argument must evaluate to a list containing at least one element. If
the list has exactly one element, that is the result. If there is more
than one element, then Head is replaced by the first element, and
Tail is replaced by a fold over the remaining elements. This can be
described by:

Fold fn [x] = x
Fold fn (x : xs) = fn [x / Head, Fold fn xs / Tail]

For example, to implement concat in terms of an Append
operation would be Fold (Append Head Tail) (ignoring the case
of the empty list). The fold operation is more complicated than the
previous operations, but may still be useful to other DSLs.

3.3.4 Constructors

To insert information from the constructors we provide MapCtor.
This operation generates a list, with the argument DSL evalu-
ated once with each different constructor in the environment. The
argument to MapCtor may contain CtorName, Ctorlndex and
CtorArity operations, which retrieve the information associated
with the constructor. CtorName produces a string, while the others
produce integers. An example of MapCtor on the Sample data type
is:

MapCtor CtorName = OList

[OString "First", OString "Second", OString "Third"]

3.3.5 Fields

The MapField operation is similar to MapCtor, but maps over each
field within a constructor. MapField is only valid within MapCtor.
Within MapField, the FieldIndex operation returns the 1-based
index of the current field. While most indexing in Haskell is O-
based, fields usually correspond to variable indices (i.e. x1), which
tend to be 1-based. As an example of MapField, using Second as
the constructor in the environment:

Concat (List [List [CtorName],
MapField (Concat (List [String "v", ShowInt FieldIndex]))])
= [Ilsecondll’ "V1", "V2"}

3.3.6 Custom

The final set of operations are all specific to our particular problem.
The simplest operation in this group is DataName, which returns
the string corresponding to the name of the data type.

The second operation is Application. The haskell-src-exts li-
brary uses binary application, where multiple applications are often
nested — we provide Application to represent vector application.
Vector application is often used to call constructors with arguments
resulting from MapField.

The final operation is Instance, and is used to represent a com-
mon pattern of instance declaration. For example, given the type
Either o (3, a typical instance declaration might be:

instance (Show «, Ord «, Show 3, Ord 3) =
ShowOrd (Either a 3) where . ..

This pattern requires each type variable to be a member of a set of
type classes. The resulting instance construction is:

Instance ["Show", "0Ord"] "ShowOrd" ...

The Instance fields describe which classes are required for each
type variable (i.e. Show and Ord in this example), what the main
class is (i.e. ShowOrd), and a DSL to generate the body. To specify
this pattern without a specific Instance operation would require
operations over type variables — something we do not support.

3.4 Restrictions for Predictability

To ensure predictability there must be no non-congruent DSL val-
ues which give equal results when applied to the sample input.
Currently this invariant is violated — consider the counterexam-
ple DataName vs String "Sample". When applied to the sam-
ple input, both will generate OString "Sample", but when applied
to other data types they generate different values. To regain pre-
dictability we impose three additional restrictions on the DSL:

1. The strings Sample, First, Second and Third cannot be con-
tained in any String construction. Therefore, in the above ex-
ample, String "Sample" is invalid.

2. All instances must be constructed with Instance.

3. Within MapCtor we require that the argument DSL must in-
clude CtorName.

We have already seen an example of the first restriction in
practice, and the second restriction has similar motivation — to
avoid making something constant when it should not be. Now let
us examine the third restriction, with a practical example:

instance Arities (Sample o) where
arities _ =[0,2,1]

Given this instance, we could either infer the arities function
always returns [0, 2, 1], or it returns the arity of each constructor.
While a human can spot the intention, there is a potential ambiguity.
Using the second restriction, we conclude that this must represent
the constant operation. To derive a version returning the arities we
can write:

instance Arities (Sample o) where
arities _ = [const O First{}
,const 2 Second{}
,const 1 Third{}]

While this code code is more verbose, any good optimiser
(i.e. GHC) will generate identical code. We return to the issue of
possible simplifications in §5.2.

While our DSL has forms of iteration (i.e. MapCtor), it does
not have any conditional constructs such as if or case. The lack
of conditionals is important for predictability — for every possible
choice it would be necessary for the Sample type to choose all
branches, thus increasing the size of Sample.

The restrictions in this section ensure that no fragment of output
can be represented by both a constant and be parameterised by the
data type. The Sample type ensures no fragment can be parame-
terised in multiple ways, by having different artiy/index values for
some constructors — explaining why the Second constructor has ar-
ity 2, while the Third has arity 1. The restrictions in this section,
along with the Sample data type, ensure predictability. We have



checked the predictability property using QuickCheck (Claessen
and Hughes 2000).

4. Implementing derive

This section covers the implementation of a derive function, as
described in §2. There are many ways to write a derive function,
our approach is merely one option — we hope that the scheme we
have described provides ample opportunity for experimentation.

Before implementing derive it is useful to think about which
properties are desirable. It is not necessary to guarantee correct-
ness (see §2.1), but our method chooses to only generate correct re-
sults. We have shown that our DSL and sample input guarantee pre-
dictability without regard to the derive function, provided we meet
the restrictions in §3.4, which we obey. We want our derive func-
tion to terminate, and ideally terminate within a reasonable time
bound. Finally, we would like the derive function to find an answer
if one exists, i.e.:

V o € Output,d € DSL e null (derive 0) = apply d sample Z o

We were unable to implement a derive function meeting this
property for our problem which performed acceptably. Our method
is a trade off between runtime and success rate, with a particular
desire to succeed for real-world examples.

Our derive implementation is based around a parameterised
guess. Each fragment of output is related to a guess — a DSL
parameterised by some aspect of the environment. For example,
OString "First" results in the guess CtorName parameterised by
the first constructor. Concretely, our central Guess type is:

data Guess = Guess DSL
| GuessCtr Int DSL  -- 0-based index
| GuessFld Int DSL  -- 1-based index

derive :: Output — [DSL]
derive 0 = [d | Guess d < guess 0]

guess :: Output — [Guess]

Applying guess (OString "First") produces a guess of
GuessCtr 0 CtorName. The GuessCtr and GuessFld guesses are
paramterised by either constructors or fields, and can only occur
within MapCtor or MapField respectively. The Guess guess is ei-
ther parameterised by the entire data type, or is a constant which
does not refer to the environment at all.

To generate a guess for the entire output, we start by generating
guesses for each leaf node of the Output value, then work upwards
combining them. If at any point we see an opportunity to apply
one of our custom rules (i.e. Instance), we do so. The important
considerations are how we create guesses for the leaves, how we
combine guesses together, and where we apply our custom rules.
We require that all generated guesses are correct, defined by:

Vo € Output eV g € guess o ® applyGuess g = o

applyGuess :: Guess — Output
applyGuess (Guess d) = applyEnv d
Env {envinput = sample}
applyGuess (GuessCtr i d) = applyEnv d
Env {envinput = sample, envCtor = dataCtors sample !l i}
applyGuess (GuessFld i d) = applyEnv d
Env {envinput = sample, envField =i}
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4.1 Guessing Constant Leafs
4.1.1 String

To guess an OString value is simple — if it has a banned substring
(i.e. Sample or one of the constructors) we generate an appropri-
ately parameterised guess, otherwise we use the constant string.
Some examples:

OString "hello" = Guess (String "hello")
OString "Sample" = Guess DataName
OString "First" = GuessCtr 0 CtorName
OString "isThird" = GuessCtr 2

(Concat (List [String "is", CtorName]))

4.1.2 Application

The guess for an OApp is composed of two parts — the name of
the constructor to apply and the list of arguments. The name of
the constructor in App always exactly matches that in OApp. The
arguments to App are created by applying guess to the list, and
wrapping the generated DSL in App op. The guess for OApp can
be written as:

guess (OApp op xs) = map (lift (App op)) (guess (OList xs))

lift :: (DSL — DSL) — Guess — Guess
lift f (Guess d) = Guess (fd)
lift f (GuessCtr i d) = GuessCtri (f d)
lift f (GuessFld i d) = GuessFId i (f d)

4.1.3 Integer

Given an integer there may be several suitable guesses. An integer
could be a constant, a constructor index or arity, or a field index.
We can guess an Olnt as follows:

guess (Olnt i) =
[GuessFld i Fieldlndex | i € [1,2]] +
[GuessCtr 1 Ctorlndex |i=1] 4
[GuessCtr 1 CtorArity |i= 2]+
[Guess (Int i)]

And some examples:

Olnt 0 = [Guess (Int 0)]

Olnt 1 = [GuessFld 1 FieldIndex, GuessCtr 1 Ctorlndex
, Guess (Int 1)]

Olnt 2 = [GuessFId 2 FieldIndex, GuessCtr 1 CtorArity
, Guess (Int 2)]

Olnt 3 = [Guess (Int 3)]

When guessing an Olnt, we never generate guesses for any
constructors other than Second (represented by GuessCtr 1) — the
reason is explained in §4.2.3.

4.2 Lists

Lists are the most complex values to guess. To guess a list requires
a list of suitable guesses for each element, which can be collapsed
into a single guess. Given a suitable collapse function we can write:
guess (OList xs) = mapMaybe

(liftM fromLists o collapse o toLists) (mapM guess xs)

fromLists = lift Concat
toLists = map (lift (Ax — List [x]))
collapse :: [Guess] — Maybe Guess

The mapM function uses the list monad to generate all possi-
ble sequences of lists. The toLists function lifts each guess to a
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singleton list, and the fromLists function concatenates the results
— allowing adjacent guesses to be collapsed without changing the
result type. The function collapse applies the following three rules,
returning a Just result if any possible sequence of rule applications
reduces the list to a singleton element.

4.2.1 Promotion

The promotion rule adds a parameter to a guess. We can promote
Guess to either GuessFld or GuessCtr, with any parameter value.
The value Guess d, can be promoted to either of GuessCtr i d or
GuessFId i d, for any index i. The promotion rule does not reduce
the number of elements in the list, but allows other rules to apply,
in particular the conjunction rule.

4.2.2 Conjunction

If two adjacent guesses have the same parameter value, they can be
combined in to one guess. For example, given GuessCtr 2 d; and
GuessCtr 2 d» we produce GuessCtr 2 (Concat (List [dy,d2])).
This rule shows the importance of each guess evaluating to a list.

4.2.3 Sequence

The sequence rule introduces either MapField or MapCtor from a
list of guesses. Given two adjacent guesses we can apply the rule:

(GuessFId 1 d1) (GuessFld 2 d»)
| applyGuess (GuessFld 2 d1) = applyGuess (GuessFld 2 d)
= GuessCtr 1 (MapField d1)

It is important that the fields are in the correct order, one of the
DSL values (in this case d1) is applicable to both problems, and the
resultant guess is paramterised by the Second constructor (which
has two fields). We also permit sequences in reverse order, which
we generate by reversing the list before, and inserting a Reverse
afterwards.

The sequence construction for fields can be extended to con-
structors by demanding three guesses parameterised by consecu-
tive constructors. For constructors we only check using the DSL
relating to the Second constructor, as this DSL is the only one that
could have a MapField construct within it. Because we only test
against the Second DSL, we can avoid generating CtorArity and
Ctorlndex guesses for the other constructors. We also require that
when creating a MapCtor the guess contains a CtorName, to en-
sure the restrictions from §3.4 are met.

4.3 Folds

The addition of fold to our DSL is practically motivated — a number
of real derivations require it. Currently we only attempt to find folds
in a few special cases. We require folds to start with one of the
following patterns:

OApp m [OApp m [x,0p,y], op, z]
OApp m [x,0p, OApp m [y, op, z]]
Given such a pattern, we continue down the tree finding all

matching patterns of op and m. After constructing a fold we then
apply guess to the residual list.

4.4 Application

As with fold, the introduction of Application is practically moti-
vated. We replace any sequence of left-nested OApp "App" ex-
pressions with Application.

4.5 Instance

As per the restrictions given in §3.4, the only way of creating an
Instance value as output is to use the Instance DSL operator — it
is forbidden to use App "Instance". Given this restriction, we

translate values to Instance where they follow the pattern set out in
§3.3.6.

5. Using Derived DSLs

This section discusses possible uses of a DSL after it has been
derived. We start by showing how to simplify a DSL, then how to
simplify the output produced by applying a DSL. Finally we give
some alternative uses for a DSL, other than applying it to an input.
We use the Arities type class from §3.4 as a recurring example.

5.1 DSL Simplification

We can replace a DSL with a simplified version provided the
simplified version is congruent to the original. Using the apply
function from Figure 3, we can determine a number of identities:

Concat (List (a # [List xs, List ys] + b)) =
Concat (List (a + [List (xs + ys)] + b))
Concat (List (a + [List []] + b)) = Concat (List (a + b))
Concat (List [x]) = x
Concat (List []) = List []

To simplify a DSL we apply these identities from left to right
wherever they occur, using the Uniplate generics library (Mitchell
and Runciman 2007).

Unfortunately, even after simplifying the DSL, small examples
still produce complex DSLs?. As an example, we give an abbrevi-
ated form of the Arities DSL — the full DSL is given in Appendix A.
To simplify the presentation we have omitted some haskell-src-
ext nodes (i.e. Ident, UnQual, SrcLoc), and added some syntac-
tic sugar. We have written all DSL constructors in lower-case, and
used upper-case for App constructors. After these translations, the
Arities DSL is:

[instance [] "Arities" [InsDecl (FunBind [Match
"arities"
[PWildCard]
Nothing
(List (mapCtor (application
[Var "const", Int ctorArity, RecConstr ctorName []]

)
(BDecls [])]

)]

5.2 Output Simplification

To obey the restrictions from §3.4 we require the addition of const
applications in the Arities instance. While these const applications
will be optimised away by a compiler, their removal simplifies the
output for human readers. After apply, we translate the Output
type to a haskell-src-exts type using the function fromOutput
(§3.1). We then perform a number of simplifications, mainly sim-
ple constant folding, often using inbuilt knowledge of particular
functions. Some of these simplifications can be applied by GHC
(i.e. const), while others can’t as they involve recursive functions
(i.e. length).

We present the output simplification directly as we have imple-
mented it, using the Uniplate generics library (Mitchell and Runci-
man 2007). All of the rules operate at the expression level, and each
rule is correct individually. To easily express matches we introduce
(=), which converts complex expressions to strings before check-
ing for equality.

simplify :: Biplate o Exp = a — «
simplify = transformBi f

3 Hence the advantage of having these relationships derived, rather than
writing them by hand.
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where
X~y = prettyPrint x =y

f (App op (List xs))
| op >~ "length" = Lit § Int § fromIntegral $ length xs
| op =~ "head" = head xs

f (InfixApp (Lit (Int i)) op (Lit (Intj)))
|[op~"-"=Lit$Int$i—]
| op~">" = Con $ UnQual $ Ident $ show $i > j

f (InfixAppxopy) | op~"‘const ‘" = x

f (App (App con x) y) | con ~ "const" = x

f (Paren (Var x)) = Var x

f (Paren (Lit x)) = Lit x

fx=x

Some of these simplifications could be applied directly to the
DSL, for example the removal of const. However, other simplifica-
tions can’t be performed until after apply has been called, such as
the reduction of (CtorArity — 1). Currently we do not perform any
of these simplifications directly to the DSL, only to the output.

5.3 DSL Usage

The obvious way to use a value of our DSL is to apply it to an input
to generate an output, a haskell-src-exts AST. From an AST we
can pretty-print it, and compile the resulting code. Alternatively we
can use the haskell-src-meta library (Morrow 2009) to translate the
output into Template Haskell, which can be integrated into GHC
compiled programs.

5.3.1 Specialised Instance Generators

From a DSL we can generate a specialised instance generator, that
takes an input and produces an output directly, without the inter-
pretative step of the apply function. This construction corresponds
to the first Futamura projection (Futamura 1999). For example with
Arities, we could produce:

generateArities :: Input — [Decl]

generateArities input = [InstDecl srcLoc []
(UnQual $ Ident "Arities")
[foldl TyApp

(TyCon $ UnQual $ Ident $ dataName input)
(map (TyVar o Ident) vars)]|

[InsDecl (FunBind [Match srcLoc
(Ident "arities") [PWildCard] Nothing

(BDecls [])])]]

where vars = take (dataVars input) $ map (:[]) [’a’..]

Since our apply and fromOutput functions are both terminat-
ing, the generateArities function can be constructed as:

generateArities = fromOutput o apply aritiesDSL

The fromQutput and apply functions can then be unfolded and
reduced until aritiesDSL has disappeared.

The first version of DERIVE generated a string corresponding
to the source code of a specialised instance generator — primarily
because it lacked a complete representation of the DSL. For the new
version of DERIVE we do not create specialised instance generators
— the only benefit would be the removal of interpretive overhead,
which we believe to be negligible.

5.3.2 Dynamic Instance Generators

In Haskell each instance is defined by some fragment of source
code, and new instances cannot be constructed at runtime. How-
ever, using Haskell’s reflection capabilities (Limmel and Peyton
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Jones 2004), one instance can define implementations for many
data types. For example, all algebraic data types can be given an
Avrities instance with:

instance Data d_type = Arities d_type where
arities _ =
[ const (d_ctorArity d_ctor) (d_ctorNull d_ctor :: d_type)
| d_ctor « d_dataCtors (undefined :: d_type)]

This instance declaration was generated automatically from the
Arities DSL. The instance requires that the type support the Data
class, allowing type information to be queried at runtime. The
expression makes use of a number of library functions defined by
DERIVE, namely d_dataCtors, d_ctorArity and d_ctorNull — all
defined in terms of operations within the Data class.

To use a dynamic instance generator it is necessary to enable
some Haskell extensions. The first is Scoped TypeVariables, which
allows the d_type variable to be bound in the instance declaration
head and used within instance member functions. The second ex-
tension is to allow unrestricted overlapping instances, so that cus-
tom Arities declarations can be provided for basic types. Finally, it
is necessary to have Data and Typeable instances for each type of
interest — these can be derived automatically using either the DE-
RIVE tool* or the extension DeriveDataTypeable.

Currently the creation of dynamic instances is limited to a small
number of examples, but we believe many more instances could
be dealt with. However, there are some instances which cannot be
produced dynamically. We have identified two cases so far:

1. DSLs which generate name bindings using information from
the data type, such as the name of the constructor (i.e. isFirst),
cannot be constructed.

2. If an instance makes use of a particular type class on fields, but
that class does not have an instance for all types implementing
Data, then the instance will not type check.

The use of dynamic instances removes the inconvenience of
a separate preprocessor, but only works on a restricted set of in-
stances. Dynamic instances increase runtime, due to the overhead
of reflection and the reduction of optimisation opportunities. Previ-
ously, only a handful of classes have provided dynamic instances —
the only one we are aware of is the Binary class. One reason for not
providing dynamic instances is that they are complex to write — use
of the SYB libraries requires an intricate combination of type-level
and value-level programming. Using DERIVE many type classes
could have dynamic instances created with ease, by first deriving
an instance from one example and then translating the DSL.

6. Results

This section discusses the results of using our automatic derivation
scheme on real examples. We first categorise the instances we are
unable to derive, then share some of the tricks we have developed
to succeed with more examples. For each limitation we discuss
possible modifications to our system to overcome it. Finally we
give timing measurements for our implementation.

6.1 Limitations of Automatic Derivation

The instance generation scheme given is not complete — there ex-
ist instances whose generator cannot be determined. The DERIVE
tool (Mitchell and O’Rear 2007) generates instances for user de-
fined data types. Of the 24 instances supported by DERIVE, 15 are
derived from one example, while 9 require hand-written instance

4While the Data instance can be derived from a single example, alas
the Typeable instance cannot (see §6.1.1), but it is still available within
DERIVE.
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generators. All the examples which can’t be derived are due to the
choices of abstraction in our Input type. We now discuss each of
the pieces of information lacking from Input that result in some
instances being inexpressible.

6.1.1 Module Names

Some type classes require information about the module containing
a type, for example Typeable instances (Lammel and Peyton Jones
2003) follow the pattern:

typename_Language = mkTyCon "ModuleName.Language"

instance Typeable Language where
typeOf _ = mkTyConApp typename_Language ]

The Typeable class performs runtime type comparison, so each
distinct type needs a distinct string to compare, and the module
name is used to disambiguate. Our Input type does not include
the module name, so cannot be used to derive Typeable. It would
be possible to define the string "Module.Name" as the module
name of the sample, and treat it in a similar manner to the string
"Sample". However, the only instance we are aware of that re-
quires the module name is Typeable, so we do not provide module
information.

6.1.2 Infix Constructors

Some instances treat infix constructors differently, for example the
Show instance on a prefix constructor is:

instance Show PrefixConstructor where
show (Prefix x y) = "Foo " +-show x + " " - show y

But using an infix constructor:

instance Show InfixConstructor where
show (x =+ y) =show x H " :+: " H showy

Our Input type does not express whether a constructor is infix
or prefix, so cannot choose the appropriate behaviour. The loss of
infix information mainly effects instances which display informa-
tion to the user, i.e. Show and pretty printing (Hughes 1995). For
most type classes, the infix information is not used, and infix con-
structors can be bracketed and treated as prefix (-+:). To deal with
infix constructors would require an infix constructor added to the
Sample data type, and modifications to the DSL to allow differ-
ent results to be generated depending on infix information. These
changes would pose difficulties to predictability and require all ex-
ample instances to have at least one additional case defined — we
do not consider this a worthwhile trade off for a small number of
additional instances.

6.1.3 Record-based definitions

Haskell provides records, which allow some fields to be labelled.
Some operations make use of the record fields within a data type,
for example using the data type:

data Computer = Desktop { memory :: Int}
| Laptop {memory :: Int, weight :: Int}

It is easy to write the definition:

hasWeight Desktop{} = False
hasWeight Laptop{} = True

Where hasWeight returns True if the weight selector is valid for
that constructor, and False if weight x = L. Unfortunately our
Input type does not contain information about records, so cannot
express this definition. There are only a few type classes which
exhibit label specific behaviour, such as Show which outputs the
field name if present.
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Record fields are not present in our Sample type, but could be
added. The difficulty is that Haskell allows for one field name to
be shared by multiple constructors, and allows some constructors
to have field names while others do not. This flexibility results
in a massive number of possible combinations, and so a Sample
type with sufficient generality would require many constructors.
Allowing records would be more feasible for a language such as
F#, where records contain only one constructor and all fields must
be named.

6.1.4 Type-based definitions

Our Sample data type has a simple type structure, and our DSL
does not allow decisions to be made on the basis of type — these
restrictions means some type classes can’t be defined. For ex-
ample, a Monoid instance processes items of the same type us-
ing mappend, but items of a different type using mempty. Sev-
eral other type classes require type specific behaviour, including
Functor, Traversable and Uniplate.

The lack type information has other consequences. For example,
we can write the definition:

fromFirst  (First ) = const First{} $ tuple
fromSecond (Second x; x2) = const Second{} $ tuple2 x; x2
fromThird (Third x1 ) = const Third{} $tuplel x

This function returns the elements contained within a constructor,
generalising operations such fromJust, and has seen extensive use
in the Yhc compiler (The Yhc Team 2007). When compiled with
GHC this code generates a warning that no top-level type signa-
tures have been given. These type signatures can be inferred, but the
Haddock documentation tool (Marlow 2002) won’t include func-
tions lacking type signatures. Without type information in Input,
we can’t generate appropriate type signatures.

We see no easy way to include type information in our deriva-
tion scheme — types have too much variety, and different type
classes make use of different type information. It may be possi-
ble to identify some restricted type information that could be used
for a subset of type-based instances, but we have not done so.

6.2 Practical Experiences

This section describes our experiences of specifying instances in a
form suitable for derivation. Ideally, we would write all instances
in a natural way, but sometimes we need to make concessions to
our derivation algorithm. Using the techniques given here, it seems
possible to write most instances which are based on information
included in the Input type.

6.2.1 Brackets Matter

The original DERIVE program used Template Haskell, which in-
clude brackets in the abstract syntax tree. For example, the ex-
pressions (First) and First are considered equal. However, using
haskell-src-exts, brackets are explicit and care must be taken to en-
sure every constructor has the same level of bracketing. Examples
of otherwise unnecessary brackets can be seen in §6.1.4, where the
constructor First is bracketed. Currently some redundant brackets
are removed by the transformations described in §5.2.

6.2.2 Variable Naming

When naming variables it is important that a sequence of variables
follow a pattern. For example, in §6.1.4 we use Second x; X2,
rather than Second x y. By naming variables with consecutive
numbers we are able to derive the fields correctly.

6.2.3 Explicit Fold Base-Case

When performing a fold, it is important to explicitly include the
base-case. In the introductory example of NFData the Second
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alternative is specified as rnf x; ‘seq rnf x» ‘seq (), however
we can show that:

vV x e rnf x ‘seq’ () = rnf x

Therefore we could write the Second alternative more com-
pactly as rnf x; “seq’ rnf xo. However, doing so would mean there
was not one consistent pattern suitable for all constructors, and the
derivation would fail. In general, when considering folds, the base-
case should always be written explicitly.

6.2.4 Empty Record Construction

One useful feature of Haskell records is the empty record construc-
tion. The expression Second{} creates the value Second L L.
This expression is useful for generating constructors to pass as the
second argument to const’, for some generic programming opera-
tions, and for values that are lazily evaluated. The pattern Second{}
matches all Second constructors, regardless of their fields.

6.2.5 Constructor Count

Some instances aren’t inductive — for example Binary instances
require a tag indicating which constructor has been stored, but only
if there is more than one constructor. This pattern can be written as:

instance Binary a = Binary (Sample «) where
put x = case x of

First — do putTag 0

Second x; x2 — do putTag 1; put x1; put x2

Third x; — do putTag 2; put x;

where
useTag = length [First{}, Second{}, Third{}] > 1
putTag = when useTag o putWord8

get = do
i < getTag
case i of
0 — do return (First)
1 — do x1 < get; xo < get; return (Second x1 x2)
2 — do x; < get; return (Third x1)
_ — error "Corrupted binary data for Sample"
where
useTag = length [First{}, Second{}, Third{}] > 1
getTag = if useTag then getWord8 else return 0

The value length [First{}, Second{}, Third{}] is used to com-
pute the number of constructors in the data type, which can be
tested to get the correct behaviour. This pattern is used in other
classes, for example Enum and Arbitrary. Using the simplifications
from §5.2 we can remove the test and produce code specialised to
the number of constructors.

The pattern for the number of constructors is useful, but seems a
little verbose. In the first version of DERIVE the constructor count
was guessed from the number 3. Unfortunately, the inclusion of
this guess breaks the restrictions we have imposed for predictabil-
ity. Another way of simplifying this pattern would be to introduce
a meta function ctorCount, which expanded to the number of con-
structors. This solution would mean inputs were not real example
instances, and would require users to learn part of the DSL — some-
thing we have tried to avoid. In the end, we simply accept that the
constructor count is slightly verbose.

6.3 Timing Properties

We have implemented the methods described in this paper, and
have used them to guess all 15 examples referred to in §6.1, along

5 nSecond" would also work, but the use of a string feels too unpleasant.
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with 2 additional test cases. For each example we perform the
following steps:

1. We derive the DSL from an example.

2. We apply the DSL (without output optimisation) to the Sample
data type and check it matches the input example.

3. We apply the DSL to three other data types, namely lists, the
eight element tuple and the expression type from the Yhc Core
library (Golubovsky et al. 2007).

To perform all steps for 17 examples takes 0.3 seconds when
compiled with GHC -O0 on a laptop with a 2GHz CPU and 1Gb
of RAM. We consider these times to be more than adequate, so
have not carried out further experiments or investigated additional
optimisations.

7. Related Work

An earlier version of the DERIVE tool was presented in a previ-
ous paper (Mitchell 2007). The previous work described only the
derivation algorithm. There was no intermediate DSL, and no pre-
dictability. Given a single example the tool could produce multiple
different answers, and would always use the first generated — not
always corresponding to the users intention. This paper presents a
much more general scheme, along with many improvements to the
previous work. Some of the areas of future work in the previous
paper have been tackled, such as dynamic instances (see §5.3.2).
Crucial improvements have been made to the derivation algorithm,
particularly when dealing with lists.

We are unaware of any work (other than our own) that attempts
to automatically derive Haskell type classes. Therefore we split the
remaining related work in to two sections — that which explicitly
defines instance relationships, and that which tries to derive rela-
tionships.

7.1 Specifying Type Classes

From an end-user perspective, the DrIFT tool (Winstanley 1997) is
similar to DERIVE — both take data types and produce associated
instances. To add a type-class to DrIFT the programmer manually
writes a translation from input types to Haskell source code, using
pretty-printing combinators. There is no automatic derivation of
instance generators, and no underlying DSL. As a result, it is
substantially easier to add generators which can be derived from
one example to DERIVE.

Another mechanism for specifying type classes is to use generic
type classes (Hinze and Peyton Jones 2000), a language extension
supported by GHC. A programmer can write default instances for
type classes in terms of the structure of a type, using unit, products
and sums. There are many restrictions on such classes, including
restrictions on the type of instance methods and the structure of
the input type. Using the abstraction of products and sums, it is
impossible to represent many instances such as those dealing with
records or containing type specific behaviour.

7.2 Deriving Relationships

The purpose of our work is to find a pattern, which is generalised
to other situations. Genetic algorithms (Goldberg 1989) are often
used to automatically find patterns in a data set. Genetic algorithms
work by evolving a hypothesis (a gene sequence) which is tested
against a sample problem. While genetic algorithms are good for
search, they usually use a heuristic to measure closeness — so lack
the exactness of our approach.

There is much research on learning relationships from a col-
lection of input/output pairs, often using only positive examples
(Kitzelmann 2007). Some work tackles this problem using exhaus-
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tive search (Katayama 2008), a technique that could possibly re-
place our derive function. Instead of using specific examples, some
work generalises a set of non-recursive equations into a recursive
form (Kitzelmann and Schmid 2006; Kitzelmann 2008). All these
pieces of work require a set of input/output examples, in contrast to
our method that requires only one output for a specific input.

The closest work we are aware of is that of the theorem proving
community. Induction is a very common tactic for writing proofs,
and well supported in systems such as HOL Light (Harrison 1996).
Typically the user must suggest the use of induction, which the
system checks for validity. Automatic inference of an induction ar-
gument has been tried (Mintchev 1994), but is rarely successful.
However, these systems all work from one positive example, at-
tempting to determine a reasonably restricted pattern.

8. Conclusions and Future Work

‘We have presented a scheme for deriving a DSL from one example,
which we have used to automatically derive instance generators for
Haskell type classes. Our technique has been implemented in the
DERIVE tool, where 60% of instance generators are specified by
example. The ease of creating new instances has enabled several
users to contribute instance generators. The DERIVE tool can be
downloaded from Hackage®, and we encourage interested users to
try it out.

One of the key strengths of our derivation scheme is that con-
cerns of correctness and predictability are separated from the main
derivation function. Correctness is easy to test for, so incorrect
derivations can simply be discarded. Predictability is a property
of the DSL and sample input, and can be determined in isolation
from the derivation function. The derivation function merely needs
to take a best guess at what derivation might work, allowing greater
freedom to experiment.

We see several lines of future work:

e By deriving an explicit DSL, we can reuse the DSL for other
purposes. We have already shown the creation of dynamic in-
stances in §5.3.2, but there are other possible uses. A DSL could
be used to prove properties, for example that all Eq instances
are reflexive, or that put/get in Binary are inverses. Another
use might be to generate human readable documentation of an
instance. We suspect there are many other uses.

The Sample data type (Figure 1) allows many instances to be
inferred — but more would be desirable. We have discussed
possible extensions in §6.1, but none seems to offer compelling
benefits. An alternative approach would be to introduce new
sample data types with features specifically for certain types of
definition. Care would have to be taken that these definitions
still preserved predictability, and did not substantially increase
the complexity of writing examples.

While our scheme is implemented in a typed language, most
of the actual DSL operations work upon a universal data type
with runtime type checking — essentially a dynamically typed
language. In order to preserve types throughout we could make
use of GADTs (Peyton Jones et al. 2006).

We have implemented our scheme specifically for instance gen-
erators in Haskell, but the same scheme could be applied to
other computer languages and other situations. One possible
target would be F#, where there are interfaces instead of type
classes. Another target could be an object-orientated language,
where design patterns (Gamma et al. 1995) are popular.

Shttp://hackage.haskell.org/package/derive
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Computers are ideally suited to applying a relationship using
new parameters, but specifying these relationships can be complex
and error prone. By specifying a single example, instead of the
relationship, a user can focus on what they care about, rather than
the mechanism by which it is implemented.
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A. Arities DSL

This section presents the full Arities DSL, a simplified version of
which is shown in §5.1.

List [Instance [] "Arities" (List [App "InsDecl" (
List [App "FunBind" (List [List |
App "Match" (List
[App "Ident" (List [String "arities"])
, List [App "PWildCard" (List [])]
,App "Nothing" (List [])
, App "UnGuardedRhs" (List [App "List" (List [
MapCtor (Application (List
[App "Var" (List [App "UnQual" (List [
App "Ident" (List [String "const"])])])
,App "Lit" (List [App "Int" (List [CtorArity])])
,App "RecConstr" (List [App "UnQual" (List [
App "Ident" (List [CtorName])]), List []])]

D)

,App "BDecls" (List [List []])]
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Abstract

Inductive programming aims to synthesize functions or programs from a small number of input-output pairs.
In general there will by many functions that have the desired behavior. From this family of solutions we are
interested in the smallest or simplest function. In some situations there are (often well- know) algorithms to
construct such functions, for instance for fitting a linear function through a set of points in the R2. In general it
is very hard to construct functions for arbitrary data types in this way.

Instead of constructing a function that has the desired behavior we use a generate-and-test based approach.
Our system generates a sequence of more and more complex candidate functions, the system verifies if these
candidates have the desired behavior and yields the first candidate that passes this test. Since there are enormous
many candidate functions one has to guide this search procedure in one way or another to synthesize the desired
function in reasonable time.

In this paper we show how we can control the synthesis of candidate functions effectively by defining a
tailor made data type for the grammar of the candidate functions. Instances of this data type are the abstract
syntax trees of the candidate functions. The instances of these data types representing the candidate functions
are generated by a generic algorithm. Instances of this synthesis algorithm for specific data types can be derived
automatically by the compiler of the host language (the functional programming language Clean). It appears
that the generic algorithm for generating instances of a data type that is used to generate test suites in the
model-based test tool Gast is very effective to synthesize candidate functions in inductive programming.

In order to verify if a synthesized abstract syntax tree represents the correct function, the system needs to
be able to execute it as a function. This is done by a user defined instance of a type class that transforms the
abstract syntax tree to the corresponding function. These instances are always very simple. For a new application
domain the user has to define the grammar of candidate functions as a data type and how instances of this data
type are transformed to functions. The system synthesizes the instances and tests the candidates until one (or
more) functions with the desired behavior are found. This approach has been proven to be effective in generating
small functional programs and lambda- expressions.
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Abstract

Inductive programming—the use of inductive reasoning
methods for programming, algorithm design, and software
development—is a currently emerging research field. A ma-
jor subfield is inductive program synthesis, the (semi-)au-
tomatic construction of programs from exemplary behavior.
Inductive program synthesis is not a unified research field
until today but scattered over several different established
research fields such as machine learning, inductive logic pro-
gramming, genetic programming, and functional program-
ming. This impedes an exchange of theory and techniques
and, as a consequence, a progress of inductive programming.
In this paper we survey theoretical results and methods of
inductive program synthesis that have been developed in
different research fields until today.

1.

Inductive programming (IP) is an emerging field, compris-
ing research on inductive reasoning theory and methods for
computer programming, algorithm design, and software de-
velopment. In this sense, albeit with different accentuation,
the term has been used by Partridge [30], by Flener and Par-
tridge [7], within the workshops on “Approaches and Appli-
cations of Inductive Programming”, and within the ICML’06
tutorial on “Automatic Inductive Programming”.

IP has intersections with machine learning, artificial intel-
ligence, programming, software engineering, and algorithms
research. Nevertheless, it goes beyond each of these fields in
one or the other aspect and therefore is a research field in its
own right, intrinsically.

It goes beyond classical machine learning in that the
focus lies on learning general programs including loops and
recursion, instead of merely (mostly non-recursive) models
or classifiers in restricted representational frameworks, such
as decision trees or neural networks.

In classical software engineering and algorithm design,
a deductive—reasoning from the general to the specific—
view of software development is predominant. One aspires
a general problem description as starting point from which
a program or algorithm is developed as a particular solu-
tion. Methods based on deductive reasoning exist to partly
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automatize the programming and verification process—such
as automatic code generation from UML diagrams, (deduc-
tive) program synthesis to generate algorithmic parts, pro-
gram transformation and refactoring to optimize programs,
and theorem proving, model checking, and static analysis
to verify programs. To emphasize this common deductive
foundation one might speak of deductive programming to
subsume established software development methods.
Inductive programming, on the other side, aims at devel-
oping methods based on inductive—from the specific to the
general—reasoning (not to be confused with mathematical
or structural induction) to assist in programming, algorithm
design, and the development of software. Starting point for
IP methods is specific data of a problem—use cases, test
cases, desirable (and undesirable) behavior of a software, in-
put/output examples (I/O-examples) of a function or a mod-
ule interface, computation traces of a program for particu-
lar inputs and so forth. Such descriptions of a problem are
known to be incomplete. Inductive methods produce a gen-
eralization of such an incomplete specification by identify-
ing general patterns in the data. The result might be again
a—more complete—specification or an actual implementa-
tion of a function, a module, or (other parts of) a program.
Inductive reasoning is per se unsound. Inductively ob-
tained conclusions are hypotheses and incapable of proof re-
garding their premises. This is, perhaps, the most severe ob-
jection against IP. What is the use of methods whose results
cannot be proven correct and possibly deviate from what was
intended? However, if the data at hand is representative then
it is likely that identified patterns actually hold in the gen-
eral case and that, indeed, the induced result meets the gen-
eral problem. On the other side, all software development
necessarily makes a transition from a first informal and of-
ten incomplete problem description by the user or customer
to a complete and ideally formal specification. This transi-
tion is (i) also incapable of formal proof and (ii) possibly
based on—non-systematic, inexplicit—generalization. Also,
IP should not be understood as a replacement for deductive
methods but as an addition. IP may be used in different ways:
to generate candidate solutions subject to further inspection,
in combination with deductive methods to tackle a problem
from the general description as well as from concrete (coun-
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ter-)instances, to systematize occurring generalizations, or
to check the representativeness of example cases provided
by the user. Some problems, especially many problems in
the field of artificial intelligence, elude a complete specifi-
cation at all, e.g., face recognition. This factum is known as
knowledge-acquisition bottleneck. Overall, there is no rea-
son why systematically incorporating existing or easily for-
mulated data by inductive methods should not improve effi-
ciency and even validity of software development.

One important aspect of IP is the inductive synthesis of
actual, executable programs including recursion or loops.
Except to professional software development, possible ap-
plication fields of the (semi-)automatic induction of pro-
grams from exemplary behavior are end-user programming
and learning of recursive policies [34] in intelligent agents.
Research on inductive program synthesis (IPS) started in the
seventies. However, it has, since then, always been only a
niche in several different research fields and communities
such as artificial intelligence, machine learning, inductive
logic programming (ILP), genetic programming, and func-
tional programming. Until today, there is no uniform body
of theory and methods. This fragmentation over different
communities impedes exchange of results and may lead to
redundancies. The problem is all the more profound as only
few people and groups at all are working on IPS worldwide.

This paper surveys theoretical results and IPS methods
that have been developed in different research fields until
today. We grouped the work into three blocks: First the clas-
sical, analytic data-driven induction of LISP programs as in-
vented by Summers [37] and its generalizations (Sec. 3), sec-
ond ILP (Sec. 4), and third several generate-and-test based
approaches to the induction of functional programs (Sec. 5).
In Sec. 6 we state some conclusions and ideas of further
research. As general preliminaries, we informally introduce
some common IPS concepts in the following section.

This survey is quite comprehensive, yet not complete and
covers functional generate-and-test methods less detailed
than the other two areas. This is due to limited space in
combination with the author’s areas of expertise and shall
not be interpreted as a measure of quality. We hope that it
will be a useful resource for all people interested in IP.

2. Basic Inductive Programming Concepts

IPS aims at constructing a computer program or algorithm
from a (known-to-be-)incomplete specification of a func-
tion to be implemented, called target function. Incomplete
means, that the target function is not specified on its whole
domain but only on (small) parts of it. Typically, an incom-
plete specification consists of a subset of the graph of the
function: input/output examples (I/O-examples). Variables
may be allowed in I/O-examples and also more expressive
formalisms have been used to specify the target function.
An induced program contains function primitives, prede-
fined functions known to the IPS system. Primitives may be
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fixed within the IPS system or dynamically be given as an
extra, problem-specific, input. Dynamically provided primi-
tives are called background knowledge.

Example 1. Suppose the following I/O-examples on lists
(whatever the list elements A, z,y,2,1,2,3,5 stand for;
constants, variables, or compound objects), are provided:
(A) — (), (z,y,2) — (x,y), (3,5,2,1) — (3,5,2).
Given the common list constructors/destructors nil, cons,
head, tail, the predicate empty to test for the empty list,
and the if-then-else-conditional as primitives, an IPS
system might return the following implementation of the
Init-function returning the input list without its last element:

F(x) = if empty(tail(x)) then nil
else cons(head(x),F(tail(x)))

Given a particular set of primitives, some target function
may not be representable by only one recursive function def-
inition such that a non-specified recursive subfunction needs
to be introduced; this is called (necessary) predicate inven-
tion in ILP. E.g., it is not possible to define the Reverse func-
tion by one recursive function definition of one parameter
only using the primitives from the example above.

IPS is commonly regarded as a search problem. In gen-
eral, the problem space consists of the representable pro-
grams as nodes and instances of the operators of the IPS
system to transform one program into another as arcs. Due
to underspecification in IP, typically infinitely many (seman-
tically) different programs meet the specification. Hence,
one needs criteria to choose between them. Such criteria are
called inductive bias [23]. Two kinds of inductive bias exist:
If an IPS system can only generate a certain proper subset of
all (computable) functions of some domain, either because
its language is restricted or because its operators are not able
to reach each program, this constitutes a restriction bias. The
order in which the problem space is explored and hence the
ordering of solutions is the preference bias; it can be mod-
elled as probability distribution over the program space.

3. The Analytical Functional Approach

A first systematic attempt to IPS was made by Summers [37].
He noticed that under particular restrictions regarding al-
lowed primitives, program schema, and choice of I/O-
examples, a recursive LISP program can be computed from
[/O-examples without search in program space. His insights
originated some further research.

3.1 Summers’ Pioneering Work

Summers’ approach to induce recursive LISP functions from
I/O-examples includes two steps: First, a so-called program
fragment, an expression of one variable and the allowed
primitives, is derived for each I/O-pair such that applied
to the input, evaluates to the specified output. Furthermore,
predicates are derived to distinguish between example in-
puts. Integrated into a McCarthy conditional, these predi-
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cate/fragment pairs build a non-recursive program comput-
ing the I/0O-examples and is considered as a first approxima-
tion to the target function. In a second step, recurrent rela-
tions between predicates and fragments each are identified
and a recursive program generalizing them is derived.

Example inputs and outputs are S-expressions, the funda-
mental data structure of the LISP language [22]. We define
the set of subexpressions of an S-expression to consist of the
S-expression itself and, if it is non-atomic, of all subexpres-
sions of both its components.

The programs constructed by Summers’ technique use
the LISP primitives cons, car, cdr, nil, atom, and T, the
last denoting the truth value ¢rue. Particularly, no other pred-
icates than atom and T (e.g., eq for testing equality of S-
expressions), and no atoms except for nil are used. This
choice of primitives is not arbitrary but crucial for Summers’
methodology of deriving programs from examples without
search. The McCarthy conditional and recursion are used as
control structure. Allowing atom and T as only predicates
and nil as only atom in outputs means that the atoms in the
I/0-examples, except for nil, are actually considered as vari-
ables. Renaming them does not change the meaning. This
implies that any semantic information must be expressed by
the structure of the S-expression.

3.1.1 1. Step: Initial Non-recursive Approximation

Given a set of k I/O-examples, {{(i1,01),..., (ix,0k)}, @
program fragment f;(x),j € {1,..., k}, composed of cons,
car, and cdr is derived for each I/O-pair, which evaluates to
the output when applied to the input: f;(i;) = o,.

S-expressions are uniquely constructed by cons and de-
structed by car and cdr. We call car-cdr compositions basic
functions (cp. [36]). Together with the following two condi-
tions, this allows for determining unique program fragments.
(i) Each atom may occur only once in each input. (ii) Each
atom, except for nil, occurring in an output must also occur
in the corresponding input. Due to the first condition, each
subexpression occurs exactly once in an S-expression such
that subexpressions are denoted by unique basic functions.

Deriving a program fragment works as follows: All
subexpressions of an input, together with their unique ba-
sic functions, are enumerated. Then the output is rewritten
by composing the basic functions from the input subexpres-
sions with cons and nil.

Example 2. Consider the I/O-pair ((a . b) . (¢ . d)) —
((d.c¢).(a.b)). The input contains the following subexpres-
sions, paired with the corresponding unique basic functions:

(((a.b).(c.d),I), {(a.b),cary, {(c.d),cdr),

(a, caary, (b,cdar)y, {c,cadr), (d,cddr).

Since the example output is neither a subexpression of the
input nor nil, the program fragment becomes a cons of the
fragments for the car- and the cdr-component, respectively,
of the output. The car-part, (d . c), again becomes a cons,
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namely of the basic functions for d: cddr, and c: cadr.
The cdr-part, (a . b), is a subexpression of the input, its
basic function is car. With variable z denoting the input,
the fragment for this I/O-example is thus:

cons(cons(cddr(zx), cadr(x)), car(x))

Next, predicates p;(x),j = 1,. .., k must be determined.
In order to get the correct program fragment f; be evaluated
for each input i;, all predicates p;/(i;),1 < j' < j (posi-
tioned before p; in the conditional) must evaluate to false
and p;(i;) to true. Predicates fulfilling this condition exist
if the example inputs form a chain.

We do not describe the algorithm here. Both algorithms,
for computing fragments and predicates, can be found
in [36]. Fig. 1 shows an example for the first step.

3.1.2 2. Step: Recurrence Relations

The basic idea in Summers’ generalization method is this:
The fragments are assumed to be the actual computations
carried out by a recursive program for the intended func-
tion. Hence fragments of greater inputs must comprise frag-
ments of lesser inputs as subterms, with a suitable substi-
tution of the variable x and in a recurrent form along the
set of fragments. The same holds analogously for the pred-
icates. Summers calls this relation between fragments and
predicates differences.

As a preliminary for the following, we need to define
the concept of a context. A (one-hole) context C[] is a
term including exactly one occurrence of the distinguished
symbol [J. C[s] denotes the result of replacing the O by the
(sub)term s in C[].

Definition 1. A difference exists between two terms (frag-
ments or predicates) ¢, ¢’ iff ' = C/[to] for some context C ]
and substitution o.

If we have k+1 I/O-examples, we only consider the first k
fragment/predicate pairs because the last predicate is always
1", such that no sensible difference can be derived for it.

Example 3. The following differences, written as recur-
rence relations (2 < ¢ < 3), can be identified in the first
k = 4 fragments/predicates of the program of Fig. 1.

fi(z) = nil
f2(x) = cons(car(zx), nil)
fit1(z) = cons(car(x), fi(cdr(z)))

In the general case, we have (for k fragments/predicates):

p1(z) = atom(cdr(z))
p2(xz) = atom(cddr(x))
pi+1(z) = pi(cdr(z))

j — 1 “constant” fragments (as derived from the examples):

fi,oo fi-1,
further n constant base cases:  fj, ..., fj4n—1,
finally, remaining k — (j + n — 1) cases recurring to @))
previous cases:  fitn = C[fio1] fori=j,....k—n;
analogously for predicates:

P1, -5 Pj—1, Pjs -+ -5 Pj+n—1, Pi+n :pi(UQ) .
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(a) — nil, F(z) = (atom(cdr(z)) — nil
(a,b) — (a), atom(cddr(z
(a,b,¢) — (a,b), atom(cdddr(z)) — cons
(a,b,¢,d) — (a,b,c), atom(cddddr(z)) — cons
(a,b,¢,d,e) — (a,b,c,d) .

)
)) — cons(car(x), nil)
)
)

T — cons(car(x
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(z)

(z) dr(z), nil))
(), cons(cadr(x), cons
(@),

x), cons(ca
(caddr(zx), nil)))

cons(cadr(z), cons(caddr(x), cons(cadddr(x), nil)))))

Figure 1. I/O-examples (left) and the corresponding first approximation (right).

Index j denotes the first predicate/fragment pair which re-
curs in some following predicate/fragment pair (the first base
case). The precedent j — 1 predicate/fragment pairs do not
recur. n is the interval of the recurrence. For Example 3 we
have j =2andn = 1.

Inductive Inference. 1f k — j > 2n then we inductively
infer that the recurrence relations hold for all 7 > j.

In Example 3 we have K — j = 2 > 2 = 2n and hence
induce that the relations hold for all 7 > 2.

The generalized recurrence relations may be used to com-
pute new approximations of the assumed target function.
The mth approximating function, m > j, is defined as

Fo(2) = (p1(2) = fi(2), ... fm(@), T — w)

where the p;, f; with j < i < m are defined in terms of
the generalized recurrence relations and where w means un-
defined. Consider the following complete partial order over
partial functions, which is well known from denotational se-
mantics:

s pm(T) —

F(z) <p G(z) iff F(z) = G(z) for all z € Dom/(F).
Regarding this order, the set of approximating functions
builds a chain. The assumed target function F is defined as
the supremum of this chain.

Now the hypothesized target function is defined, in terms
of recurrence relations. In his synthesis theorem and its
corollaries, Summers shows how a function defined this way
can be expressed by a recursive program.’

Theorem 1 ([37]). If F is defined in terms of recurrence
relations as in (1) for j <1 € N then the following recursive
program is identical to F':

F(z) = (p1(z) — fi(z),...
T — G())

G(z) = (pj(x) = fi(®);- s Pjrn—1(2) = fisn—1(2),
T — ClG(a(x))]) -

,Pj—l(x) - fj—l(x)7

I This works, in a sense, reverse to interpreting a recursively expressed
function by the partial function given as the fixpoint of the functional of
the recursive definition. In the latter case we have a recursive program and
want to have the particular partial function computed by it—here we have a
partial function and want to have a recursive program computing it.

Example 4. The recurrence relations from Example 3 with
¢ > 2 define the function F to be the Inst-function. Accord-
ing to the synthesis theorem, the resulting program is:

F(z) = (atom(cdr(z)) — nil, T — G(x))
G(z) = (atom(cddr(z)) — cons(car(x), nil),
T — cons(car(zx), G(cdr(z)))) .

Introducing Additional Variables. 1t may happen that no
recurrent differences can be found between a chain of frag-
ments and/or predicates. In this case, the fragments/predicates
may be generalized by replacing some common subterm by
an additional variable. In the generalized fragment/predicate
chain recurrent differences possibly exist.

3.2 Early Variants and Extensions

Two early extensions are described. A broader survey of
these and other early extensions can be found in [36].

3.2.1 BMWK—Extended Forms of Recurrences

In Summers’ approach, the condition for deriving a recur-
sive function from detected differences is that the differences
hold—starting from an initial index j and for a particular in-
terval n—recurrently along fragments and predicates with
a constant context C[] and a constant substitution o for x.
The BMWK? algorithm [14] generalizes these conditions by
allowing for contexts and substitutions that are different in
each difference. Then a found sequence of differences orig-
inates a sequence of contexts and substitutions each. Both
sequences are considered as fragments of new subfunctions.
The BMWK algorithm is then recursively applied to these
new fragment sequences, hence features the automatic intro-
duction of (necessary) subfunctions.

Furthermore, Summers’ ad-hoc method to introduce ad-
ditional variables is systematized by computing least gen-
eral generalization (Igg) [31] of successive fragments.

3.2.2 Biermann et al—Pruning Enumerative Search
Based on Recurrences within Single Traces

Summers objective was to avoid search and to justify the
synthesis by an explicit inductive inference step and a subse-
quent proven-to-be-correct program construction step. This

2 This abbreviates Boyer-Moore-Wegbreit-Kodratoff.
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could be achieved by a restricted program schema and the
requirement of a well chosen set of I/O-examples.

On the contrary, Biermann’s approach [3] is to employ
traces (fragments) to speed up an exhaustive enumeration of
a well-defined program class, the so-called regular L1SP pro-
grams. Biermann’s objectives regarding the synthesis were

1. convergence to the class of regular LISP programs,
2. convergence on the basis of minimal input information,
3. robust behavior on different inputs.

Particularly 2 and 3 are contradictory to the recurrence
detection method—by 2 Biermann means that no synthesis
method exists which is able to synthesize every regular LISP
program from fewer examples and by 2 he means that exam-
ples may be chosen randomly.

3.3 From LiSP to Term Rewriting Systems

At the beginning of Sec. 3.1 we stated the LISP primitives
as used in programs induced by Summers’ method (as well
as by BMWK and Biermann’s method). This selection is
crucial for the first step, the deterministic construction of
first approximations, yet not for the generalization step. In-
deed, the latter is independent from particular primitives,
it rather relies on matching (sub)terms over arbitrary first-
order signatures. Two recent systems inspired by Summers’
recurrence detection method use term rewriting systems over
first-order signatures to represent programs. Special types of
TRSs can be regarded as (idealized) functional programs.

A term rewriting system (TRS) is a set of directed equa-
tions or (rewrite) rules. A rule is a pair of first-order terms
(I,7), written | — r. The term [ is called left-hand side (lhs),
r is called right-hand side (rhs) of the rule.

We get an instance of a rule by applying a substitution
o to it: l[c — ro. The instantiated lhs lo is called redex
(reducible expression). Contracting a redex means replacing
it by its rhs. A rewrite step consists of contracting a redex
within an arbitrary context: Cllo] — C[ro]. The one-step
rewrite relation — of a rule is defined by the set of its
rewrite steps. The rewrite relation — of a rule is the reflexive
transitive closure of —. The rewrite relation of a TRS R,
— R, 1s the union of the rewrite relations of all its rules.

3.3.1 IGOR1—Inducing Recursive Program Schemes

The system IGOR1 [18] induces recursive program schemes
(RPSs). An RPS is a special form of TRS: The signature
is divided into two disjoint subsets F and G, called un-
known and basic functions, respectively; rules have the form
F(z1,...,z,) — t where F' € F and the x; are variables,
and there is exactly one rule for each F' € F.

IGOR1’s program schema is more general than Summers’
in that recursive subfunctions are found automatically with
the restriction that (recursive) calls of defined functions may
not be nested in the rhss of the equations. Furthermore,
additional parameters are introduced systematically.
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(Mutually) recursive RPSs do not terminate. Their stan-
dard interpretation is the infinite term defined as the limit
limn_}oo, Fa) 5 ,t where F' denotes the main rule of the
RPS. One gets finite approximations by replacing infinite
subterms by the special symbol 2, meaning undefined. Cer-
tainly, such an infinite tree and its approximations contain
recurrent patterns because they are generated by repeatedly
replacing instances of lhss of the rules by instances of rhss.
IGOR1 takes a finite approximation of some (hypothetical)
infinite tree as input, discovers the recurrent patterns in it,
and builds, based on these recurrences, an RPS R such that
the input is a finite approximation of the infinite tree of R.

Example 5. For a simple example without subfunctions (the
Init function again), consider the finite approximation of
some unknown infinite term:

if (atom(cdr( x )), nil,

cons(car( x ),

if (atom(cdr( cdr(zx) ), nil,
cons(car( cdr(z) ),

if (atom(cdr( cdr(cdr(x)) )), nil,
cons(car( cdr(cdr(z)) ),

m))))-

At the path from the root to (2, where the latter denotes
the unknown infinite subterm of the infinite target term and
hence, which has been generated by an unknown recursive
RPS, we find a recurring sequence of if-cons pairs. This
leads to the hypothesis that a replacement of the lhs of a re-
cursive rule by its rhs has taken place at the if-positions.
The term is divided at these positions leading to three seg-
ments (assume, the break-positions are replaced by €2). An
approximation of the assumed rhs is computed as the 1gg of
the segments: if (atom(cdr(x)), nil, cons(car(x),Q)).
The €2 denotes the still unknown recursive call. The non-
equal parts of the segments, which are replaced by the vari-
able z in the 1gg, are highlighted by extra horizontal space in
the term. These parts must have been generated by the sub-
stitution {z < cdr(z)} in the recursive call. Denoting the
induced function by F, it is now correctly defined as

F(z) — if (atom(cdr(x)), nil, cons(car(z), F(cdr(z)))) .

Different methods to construct a finite approximation as
first synthesis step have been proposed. In [18], an extension
of Summers’ first step is described. Examples need not be
linearly ordered and nested if-then-else-conditionals are
used instead of the McCarthy conditional. In [34], universal
planning is proposed as first step.

3.4 1IGOR2—Combining Search and Analytical
Techniques

All methods based on Summers’ seminal work described
so far suffer from strong restrictions regarding their general
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program schemas, the commitment to a small fixed set of
primitives, and, at least the early methods, to the requirement
of linearly ordered I/O-examples.

The system IGOR2 [17] aims to overcome these restric-
tions, but not at the price of falling back to generate-and-
test search (cp. Sec. 5). IGOR2 conducts a search in pro-
gram space, but the transformation operators are data-driven
and use techniques such as matching and least generaliza-
tions, similar to the methods described so far. In contrast to
generate-and-test search, only programs being correct with
respect to the I[/O-examples in a particular sense (but possi-
bly unfinished) are generated. This narrows the search tree
and makes testing of generated programs unnecessary.

Programs (as well as I/O-examples and background
knowledge) are represented as constructor (term rewriting)
systems (CSs). CSs can be regarded as an extension of RPSs:
The function sets F and G are called defined functions and
constructors, respectively. The arguments of a defined func-
tion symbol in a lhs need not be variables but may be terms
composed of constructors and variables and there may be
several rules for one defined function. This extension cor-
responds to the concept of pattern matching in functional
programming. One consequence of the CS representation
is that I/O-examples themselves already constitute “pro-
grams”’, CSs. Hence, rewriting outputs into fragments to get
a first approximation (Sec. 3.1.1) is not necessary anymore.

IGOR2 is able to construct complex recursive CSs con-
taining several base- and (mutually) recursive rules, auto-
matically identified and introduced recursive subfunctions,
and complex compositions of function calls. Several inter-
dependent functions can be induced in one run. In addition
to I/O-examples, background knowledge may be provided.

3.5 Discussion

Summers’ important insights were first, how the algebraic
properties of data-structures can be exploited to construct
program fragments and predicates without search and sec-
ond, that fragments (and predicates) for different I/O-pairs
belonging to one recursively defined function share recurrent
patterns that can be used to identify the recursive definition.
Obviously, it is necessary for recurrence detection that I/0-
examples are not randomly chosen but that they consist of
the first £ € N examples regarding the underlying order on
S-expressions, i.e., that they are complete up to some level.
If the general schema of inducible functions becomes
more complex, e.g., if subfunctions can be found automat-
ically, and/or if background knowledge is allowed, then
search is needed. IGOR2 shows that Summers’ ideas for
generalization can be integrated into search operators.
Search is also needed if the goal is to induce programs
based on minimal sets of randomly chosen examples. In this
case, the recurrence detection method cannot be applied.
Biermann’s method shows that it is possible for particular
program classes to use fragments as generated in Summers’
first step to constrain an exhaustive search in program space.
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4. Inductive Logic Programming

Inductive Logic Programming (ILP) [26, 28] is a branch of
machine learning [23]—intensional concept descriptions are
learned from (counter-)examples, called positive and nega-
tive examples. The specificity of ILP is its basis in compu-
tational logic: First-order clausal logic is used as uniform
language for hypotheses, examples, and background knowl-
edge, semantics of ILP is based on entailment, and inductive
learning techniques are derived by inverting deduction.
Horn clause logic together with resolution constitutes the
(Turing-complete) programming language PROLOG. Pro-
gram synthesis is therefore principally within the scope
of ILP and has been regarded as one application field of
ILP [26]. One of the first ILP systems, MIS [35], is an
automatic programming/debugging system. Today, ILP is
concerned with (relational) data-mining and knowledge dis-
covery and program synthesis does not play a role anymore.

4.1 Preliminaries

An atom is a predicate symbol applied to arguments, a literal
is an atom or negated atom. A clause is a (possible empty)
disjunction of literals, a Horn clause is a clause with at
most one positive literal, a definite clause is a clause with
exactly one positive literal. A definite program is a finite
set of definite clauses. A definite clause C' consisting of the
positive literal A and the negative literals =B, ..., B, is
equivalentto By A...AB,, — A, written A < By, ..., B,.

4.2 Overview

In the definite setting, hypotheses and background knowl-
edge are definite programs, examples are ground atoms. The
following two definitions state the ILP problem with respect
to the so-called normal semantics.>

Definition 2. Let IT be a definite program and E*, E~ be
positive and negative examples. II is

complete with respect to ET iff IT = BT,

consistent with respect to E— iff IT |~ e forevery e € E—,

correct with respect to £+ and E~ iff it is complete with
respect to £ and consistent with respect to E .

Definition 3. Given

e a set of possible hypotheses (definite programs) H,

* positive and negative examples £+, E~,

e consistent background knowledge B (i.e., B [~ e for
every e € E7) such that B (£ BT,

find a hypothesis H € H such that H U B is correct with
respect to £ and E~.

Entailment (=) is undecidable in general and for Horn
clauses, definite programs, and between definite programs

3 There is also a non-monotonic setting in ILP where hypotheses need not
entail positive examples but only state true properties. This is useful for data
mining or knowledge discovery but not for program synthesis, so we do not
consider it here.
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and single atoms in particular. Thus, in practice, different
decidable (and preferably also efficiently computable) re-
lations, which are sound but more or less incomplete, are
used. We say that a hypothesis covers an example if it can be
proven true from the background knowledge and the hypoth-
esis. That is, a hypothesis is regarded correct if it, together
with the background knowledge, covers all positive and no
negative examples. Two commonly used notions are:

Extensional coverage. Givenaclause C' = A «— By,...,B,,
a finite set of ground atoms B as background knowledge,
positive examples ET, and an example e, C extension-
ally covers e iff there exists a substitution 6 such that
Al =eand {By,...,B,}0 C BUE™.

Intensional coverage. Given a hypothesis H, background
knowledge B, and an example e, H U B intensionally
covers e iff e can be proven true from H U B by applying
some terminating theorem proving technique, e.g., depth-
bounded SLD-resolution.

Example 6. As an example for extensional coverage, sup-
pose B = 0 and ET = { Init([c],]]), Init([b, ], [b]),
Init([a, b, c], [a, b]) }. The recursive clause

Init([X|Xs], [X|Ys]) < Init[Xs, Ys] extensionally cov-
ers the positive example Init([b,c],[b]) with § = {X «
b, Xs — [c], Ys — []}.

Both extensional and intensional coverage are sound.
Extensional coverage is more efficient but less complete.
As an example for the latter, suppose the positive example
Init([c],[]) is missing in ET in Example 6. Then the stated
recursive clause together with the base clause Init([X],[])
still intensionally covers e = Init([b, c], [b]) yet the recur-
sive clause does not extensionally cover e anymore. Ob-
viously, extensional coverage requires that examples (and
background knowledge) are complete up to some complex-
ity (cp Sec. 3.5). Another problem with extensional coverage
is that if two clauses each do not cover a negative example,
both together possibly do.

Extensional and intensional coverage are closely related
to the general ILP algorithm (Algo. 1) and the covering al-
gorithm 2 as well as to the generality models §-subsumption
and entailment as described below (Sec. 4.3), respectively.

ILP is considered a search problem. Typically, the search
operators to compute new candidate programs are based
on the dual notions of generalization and specialization of
programs respectively clauses.

Definition 4. A program II is more general than a program
O iff IT = ®. P is said to be more specific than 1.

This structure of the program space provides a way for
pruning. If a program is not consistent then all generaliza-
tions are also not consistent and therefore need not be con-
sidered. This dually holds for non-completeness and special-
izations. Algorithm 1 shows a generic ILP algorithm. Most
ILP systems are instances of it.
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Algorithm 1: A generic ILP algorithm.

Input: B, £+, E~

Output: A definite program H such that H U B is
correct with respect to £ and £~

Start with some initial (possibly empty) hypothesis H

repeat

if H U B is not consistent then specialize H

if H U B is not complete then generalize H
until H U B is correct with respect to E+ and E~
return

A common instance is the covering algorithm (Algo. 2).
The individual clauses of a program are generated indepen-
dently one after the other. Hence, the problem space is not
the program space (sets of clauses) but the clause space (sin-
gle clauses). This leads to a more efficient search.

Algorithm 2: The covering (typically interpreted exten-
sionally) algorithm.

Input and Output as in Algorithm 1
Start with the empty hypothesis H = ()
repeat
Add a clause C not covering any e € £~ to H
Remove all e € E* covered by C from ET
until ET =0
return H

Entailment (=) as well as #-subsumption (Sec. 4.3.1) are
quasi-orders on sets of definite programs and clauses, resp.
We associate “more general” with “greater”. The operators
carrying out specialization and generalization are called re-
finement operators. They map clauses to sets of (refined)
clauses or programs to sets of (refined) programs. Most ILP
systems explore the problem space mainly in one direction,
either from general to specific (fop-down) or the other way
round (bottom-up). The three well-known systems FOIL [32]
(top-down), GOLEM [27] (bottom-up), and PROGOL [25]
(mixed) are instantiations of the covering algorithm.

Example 7. For an example of the covering algorithm, let B
and E be as in Example 6 and E~ all remaining instantia-
tions for the “inputs” [c], [b, ¢], [a, b, c], e.g., Init([b, ], [c]).
Let us assume that a (base-)clause Indt([X],[]) is al-
ready inferred and added and hence, the covered example
Init([c], [ ]) is deleted from ET. Assume, our instantiation
of the covering algorithm is a top-down algorithm. This
means, each clause is found by starting with a (too) gen-
eral clause and successively specializing it until no nega-
tive examples are covered anymore. Let us start with the
clause Init([X|Xs], Ys) «. It covers all remaining posi-
tive but also all corresponding negative examples; it is too
general. Applying the substitution {Ys « [X]|Ys]} spe-
cializes it to Init([X|Xs], [X|Ys]) <. This excludes some
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negative examples (e.g., Init([b, ], [c])). Adding the literal
Init(Xs, Ys) to the body again specializes the clause to
Init([X|Xs], [X]|Ys]) « Init(Xs, Ys). All remaining pos-
itive examples are still covered but no negative example is
covered anymore. Hence, the clause is added and the algo-
rithm returns the two inferred clauses as solution.

Both specializations were refinements under 6-subsumption

(Sec. 4.3.1, “Refinement Operators”).

4.3 Generality Models and Refinement Operators

Instead of entailment (}=), #-subsumption is often used in
ILP as generality model. It is incomplete with respect to
= but decidable, simple to implement, and efficiently com-
putable. If we have background knowledge B, then we are
not simply interested in whether a clause C' is more general
than a clause D but in whether C' together with B is more
general than D (together with B). This is captured by the
notions of relative (to background knowledge) entailment
respectively f-subsumption.

4.3.1 Refinement under (Relative) f-subsumption

Definition 5. Let C and D be clauses and B a set of clauses.
C 0-subsumes D, written C > D, iff there exists a
substitution 8 such that C6 C D.
C' 0-subsumes D relative to B, written C =g D, if
B |= CH — D for a substitution 6.

A Horn clause language quasi-ordered by #-subsumption
with an additional bottom element is a lattice. This does
not generally hold for relative subsumption. Least upper
bounds are called least general generalizations (lgg) [31].
Lggs and greatest lower bounds are computable and hence
may be used for generalization and specialization. though
they do not properly fit into our general notion of refinement
operators because they neither map single clauses to sets of
clauses nor single programs to sets of programs.

A useful restriction is to let background knowledge be a
finite set of ground literals. In this case, lggs exist under sub-
sumption relative to B and can be reduced to (non-relative)
Iggs. The bottom-up system GOLEM uses this scenario.

In general, (relative) 6-subsumption is sound but not com-
plete. If C = D (C' =5 D)then C' = D (C U B = D) but
not vice versa. For a counter-example of completeness let
C = P(f(X)) — P(X)and D = P(f(f(X))) — P(X)
then C' = D* but C % D. As the example indicates, the
incompleteness is due to recursive rules and therefore espe-
cially critical for program synthesis.

Refinement Operators. A specialization operator refines a
clause by

e applying a substitution for a single variable or
¢ adding one most general literal.

A generalization operator uses inverse operations.

4 D is simply the result of self-resolving C.
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Application of these operators is quite common in ILP,
e.g., in the systems MIS, FOIL, GOLEM, and PROGOL.

4.3.2 Refinement under (Relative) Entailment

Due to the incompleteness of #-subsumption regarding re-
cursive clauses, refinement under (relative) entailment has
been studied. Relative entailment is defined as follows:

Definition 6. Let C' and D be clauses and B a finite set of
clauses. Then C' entails D relative to B, denoted C' =5 D,
if {C}UB = D.

Neither lggs nor greatest specializations exist in general
for Horn clause languages ordered by (relative) entailment.

Refinement Operators. Roughly speaking, entailment is
equivalent to resolution plus #-subsumption. This leads to
specialization operators under (relative) entailment. Objects
of refinement under entailment are not single clauses but sets
of clauses, i.e., programs. A specialization operator under
entailment refines a definite program by

¢ Adding a resolvent of two clauses or

¢ adding the result of applying the #-subsumption special-
ization operator to a clause or

e deleting a clause.

4.4 Automatic Programming Systems

The three general-purpose systems FOIL, GOLEM, PROGOL
are successful in learning non-recursive concepts from large
data sets, yet have problems to learn recursive programs:
Due to their use of the covering approach (extensional cov-
erage), they need complete example sets and background
knowledge to induce recursive programs. Since they (at least
FoIL and GOLEM) explore (i) only the §-subsumption lat-
tice of clauses and (ii) do this greedily, correct clauses may
be passed. Finally, their objective functions in the search for
clauses is to cover as many as possible positive examples.
Yet base clauses typically cover only few examples such that
these systems often fail to induce correct base cases.

Hence ILP systems especially designed to learn recur-
sive programs have been developed. They address differ-
ent issues: Handling of random examples, predicate inven-
tion, usage of general programming knowledge, and usage
of problem-dependent knowledge of the user, which goes be-
yond examples. A comprehensive survey of automatic pro-
gramming ILP systems can be found in [8].

Inverting entailment by structural analysis. Several sys-
tems—CRUSTACEAN [1], CLAM [33], TIM [12], MRI [9]—
address the issue of inducing recursive programs from
random examples by inverting entailment based on struc-
tural analysis, similar to Sec. 3, instead of searching in the
f-subsumption lattice. These systems also have similar re-
strictions regarding the general schema of learnable pro-
grams. However, some of them can use background knowl-
edge; MRI can find more than one recursive clause.
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Top-down induction of recursive programs. Top-down
systems can principally—even if they explore the 6-sub-
sumption clause-lattice only—generate arbitrary (in partic-
ular all recursive) Horn clauses.’ Thus, if a top-down cov-
ering system would use intensional instead of extensional
coverage, it could principally induce recursive programs
from random examples. Certainly, this would require to find
clauses in a particular order—base clauses first, then recur-
sive clauses, only depending on base clauses and themselves,
then recursive clauses, only depending on base clauses, the
previously generated recursive clauses, and themselves, and
so on. This excludes programs with mutually interdepend-
ing clauses. The system SMART [24] is based on these ideas.
It induces programs consisting of one base clause and one
recursive clause. Several techniques to sensibly prune the
search space allows for a more exhaustive search than the
greedy search applied by FOIL, such that the incomplete-
ness issue of §-subsumption-based search is weaken.

The system FILP [2] is a covering top-down system that
induces functional predicates only, i.e., predicates with dis-
tinguished input- and output parameters, such that for each
binding of the input parameters exactly one binding of the
output parameters exists. This makes negative examples un-
necessary. FILP can induce multiple interdependent predi-
cates/functions where each may consist of several base- and
recursive clauses. Hence, intensional coverage is not assured
to work. FILP starts with a few randomly chosen examples
and tries to use intensional covering as far as possible. If,
during the intensional proof of some example, an instance
of the input parameters of some predicate appears for which
an output is neither given by an example nor can be derived
intensionally, then FILP queries for this “missing” example
and thereby completes the example set as far as needed.

Using programming knowledge. Flener argued, in sev-
eral papers, for the use of program schemas that cap-
ture general program design knowledge like divide-and-
conquer, generate-and-test, global-search etc., and has im-
plemented this in several systems. He distinguishes between
schema-based systems inducing programs of a system-
inherent schema only and schema-guided systems, which
take schemas as dynamic, problem-dependent, additional
input and thus are more flexible. Flener’s DIALOGS [6] sys-
tem uses schemas and strong queries to restrict the search
space and thereby is able to efficiently induce comparatively
complex programs including predicate invention.

Jorge and Brazdil have—besides for clause structure
grammars defining a program class and thus similar to
schemas as dynamic language-bias—argued for so called al-
gorithm sketches. An algorithm sketch is problem-dependent

5 Hence, although 6-subsumption is incomplete with respect to entailment
due to recursive clauses, every clause, in particular the recursive clauses, can
be generated by refinement based on 8-subsumption—if one searches top-
down starting from the empty clause or some other clause general enough
to @-subsume the desired clauses.
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algorithm knowledge about the target function and provided
by the user in addition to examples. This idea is implemented
in their SKIL and SKILIT systems [13].

4.5 Discussion

Compared to the classical approaches in Sec.3 (except for
IGOR2), ILP has broadened the class of inducible relations
by allowing for background knowledge, using particular
search methods and other techniques (Sec. 4.4).

Shapiro [35] and Muggleton and De Raedt [26] argued for
clausal logic as universal language in favor to other univer-
sal formalisms such as Turing machines or L1SP. Their argu-
ments are: (i) Syntax and semantics are closely and in a nat-
ural way related. Hence if a logic program makes errors, it is
possible to identify the erroneous clause. Furthermore, there
are simple and efficient operations to manipulate a logic pro-
gram with predictable semantic effects (cp. Sec. 4.3.1). Both
is not possible for, say, Turing machines. (ii) It suffices to
focus on the logic of the program, control is left to the inter-
preter. In particular, logic programs (and clauses) are sets of
clauses (and literals), order does not matter.

The first argument carries over to other declarative for-
malisms such as equational logic, term rewriting, and func-
tional logic programming (FLIP [5] is an IPS system in this
formalism). The second argument also carries over to some
extent, declarative programming all in all shifts the focus off
control and to logic. Yet in this generality it only holds for
non-recursive programs or ideal, non-practical, interpreters.
For the efficient interpretation of recursive programs how-
ever, order of clauses in a program and order of literals in
a clause matters. Hence we think that declarative, (clausal-
and/or equational-)logic-based formalisms are principally
equally well suited for IPS.

Logic programs represent general relations. (Partial)
functions are special relations—their domains are distin-
guished into source and target (or: a functional relation
has input and output parameters) and they are single-valued
(each instantiation of the input parameters implies a unique
instantiation of the output parameters). Regarding functional-
and logic programming, there is another difference: Func-
tional programs are typically typed, i.e., their domain is par-
titioned and inputs and outputs of each function must belong
to specified subsets, whereas logic programs are typically
untyped. Interestingly, all three “restrictions” of functions
compared to relations have been shown to be advantageous
from a learnable point of view in ILP. The general reason is
that they restrict the problem space such that search becomes
more efficient and fewer examples are needed to describe the
intended function. In particular, no negative examples are
needed since they are implicitly given by the positive ones.

ILP is built around the natural generality structure of the
problem space. Regarding functional relations, we observe
an “oddity” of this structure. For definite programs, “more
general”, with respect to the minimal Herbrand model,
means “more atoms”. If the relation is a function, an ad-
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ditional ground atom must have a different instantiation of
the input parameters compared to all other included atoms.
Thus, “more general” in the case of definite programs rep-
resenting functions reduces to “greater domain”. In other
words: All functions with the same domain are incomparable
with respect to generality. Since most often one is interested
in total functions, generality actually provides no structure
at all of the space of possible solutions.

5. Functional Generate-and-Test Approaches

The functional IPS methods in this third block have in
common that their search is generate-and-test based. 1/O-
examples are not used as a means to construct programs but
only to test generated programs.

5.1 Genetic Programming

Genetic programming (GP) [20], like other forms of evolu-
tionary algorithms is inspired by biological evolution. GP
systems maintain populations of candidate solutions, get
new ones by stochastical methods like reproduction, mu-
tation, recombination/crossover, and selection, and thereby
try to maximize fitness. Evolutionary search can be use-
ful when the problem space is too broad to conduct an ex-
haustive search and simultaneously nothing or few is known
about the fitness landscape, i.e., when it is not possible to
construct sensible heuristics. The randomness of the search
cares for a widespread exploration of the problem space
which is guided by the fitness measure. On the other side,
this “chaotic” search in a space with unknown properties
makes it difficult to give any guaranties regarding solutions
and leads to only approximated solutions. A GP problem is
specified by fitness cases (e.g., example inputs of the tar-
get function), a fitness function, and primitives to be used in
evolved expressions. There are no predefined goal criteria or
preference biases in GP systems. The search is completely
guided by the fitness function that is to be maximized.

Data structures and recursion do not play a predomi-
nant role in GP. A typical evolved program is an arithmetic
expression or a propositional formula. Koza and his col-
leagues [21] integrated recursion into GP. One of the ma-
jor issues is the handling of non-terminating programs. As
a generate-and-test approach, GP relies on testing evolved
candidate programs against the given examples. If non-
termination may appear then a runtime limit is applied.
This raises two problems if non-terminating programs are
frequently generated: (i) The difficulty of assigning a fit-
ness value to an aborted program and (ii) the runtime use-
lessly consumed by evaluating non-terminating programs.
Wong and Mun [38] deal with this problem by a meta-
learning approach to decrease the possibility of evolving
non-terminating programs.

Others try to avoid non-termination completely: In her

system POLYGP [39], Yu integrates implicit recursion through

the use of user-provided higher-order functions. Kahrs [15]
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evolves primitive recursive functions over the natural num-
bers. Binard and Felty [4] evolve programs in SYSTEM F,
a typed lambda calculus where only total recursive func-
tions are expressible. The primitive recursive functions are
contained as proper subclass.

Hamel and Shen [10] have developed a method lying in
the intersection of ILP, GP and algebraic specification. They
evolve (recursive) algebraic specifications, i.e., equational
theories over many-sorted signatures, using GP search meth-
ods. Instead of providing a fitness function, a target theory is,
as in ILP, specified by positive and negative facts—ground
equations in this case. Additionally, a background theory
may be provided. The fitness function to be maximized is
derived from such a specification. Candidate theories satis-
fying more positive facts, excluding more negative facts, and
being of smaller syntactical complexity are preferred.

5.2 ADATE

The ADATE system [29], to our knowledge the most power-
ful inductive programming system regarding inducible pro-
grams, is an evolutionary system in that it maintains a popu-
lation of programs and performs a greedy search guided by
a fitness function. Yet unlike GP, it is especially designed
to evolve recursive programs and applies sophisticated pro-
gram transformation operators, search strategy, and program
evaluation functions to this end.

Programs are represented in ADATE-ML, a subset of
STANDARD ML. Programs are rated according to a user-
provided output evaluation function, user provided prefer-
ence biases, and syntactical and computational complexity.

5.3 Systematic Enumeration of Programs

Two further recent methods, MAGICHASKELLER [16] and
the software testing system GVST [19] essentially systemat-
ically enumerate programs of a certain class.

MAGICHASKELLER uses higher-order functions as back-
ground knowledge. Katayama argues that by using higher-
order functions, programs can be represented in a com-
pact form and by using strong typing, the problem space
is narrowed such that a simple brute-force enumeration
of programs could make sense. He furthermore considers
MAGICHASKELLER as a base-line which could be used to
evaluate the performance of more sophisticated methods. As
a first result, Katayama compares MAGICHASKELLER and
POLYGP for the problems Nth, Length, and Map, and states
that POLYGP, in contrast to MAGICHASKELLER, needs dif-
ferent higher-order functions for each of these problems,
needs several runs to find a solution, needs additional pa-
rameters to be set, and, nevertheless, consumes more time to
induce a solution.

5.4 Discussion

One general advantage of generate-and-test methods is their
greater flexibility, in at least to aspects: First regarding the
problem space—there are no principle difficulties in enu-
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merating even very complex programs. Second regarding the
form of the incomplete specification. Whereas the search op-
erators of an analytical technique depend on the specification
(e.g., I/O-examples) such that different forms of specifica-
tion need different search operator techniques, the search is
more independent from the specification in generate-and-test
methods such that more expressive forms of specification
can easily be integrated. In particular, fitness functions in
GP or the objective function in ADATE are more expressive
than I/O-examples since no fixed outputs need to be provided
but general properties to be satisfied by computed outputs
can be specified.

The disadvantage of generate-and-test methods is that
they generally generate far more candidate programs until a
solution is found and hence need much more time than data-
driven methods to induce programs of equal size. Several an-
alytical and generate-and-test systems have been compared
empirically in [11]. A further problem is non-termination.
As generated programs need to be tested against the pro-
vided examples, non-termination is a serious issue. Higher-
order functions or formalisms that a-priori only include total
functions are helpful to circumvent this problem.

6. Conclusions and Further Research

In the previous sections, we described several approaches
and systems to the inductive synthesis of functional and
logic programs and discussed pros and cons and relations
between them.

One obvious dimension to classify them is the way of how
example data is used: As basis to construct candidate solu-
tions (Sec. 3) or to test and evaluate independently generated
candidates (Sec. 5). (In ILP, both approaches are found.) The
analytical approach tends to be faster because many repre-
sentable programs are a priori excluded from being gener-
ated. On the other side, since it strongly depends on the data
and the language bias, it is much less robust and flexible re-
garding the whole problem specification including types of
data, preference-, and language biases. Besides further de-
veloping both general approaches separately, we think that
examining ways to combine them could be useful to achieve
a satisfiable combination of robustness, flexibility, expres-
siveness, and efficiency. Our system IGOR2 and the well-
known ILP system PROGOL indicate the potential of such
an integration.

One important topic, that certainly has not received suffi-
cient attention in the context of inductive program synthesis,
is learning theory, including models of learning and criteria
to evaluate candidate programs. PAC-learning, the predom-
inant learning model in machine learning, is well-suited for
restricted representation languages and noisy data, hence ap-
proximate solutions. Yet in program synthesis, we have rich
representation languages, often assume error-free examples,
and want have programs that exactly compute an intended
function or relation. Moreover, efficiency, not only of the in-
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duction process, but of the induced program, becomes an
important issue. Muggleton’s U-learning model® captures
these needs and is probably a good model or initial point
to develop learning models for inductive program synthesis.

There has certainly been significant progress since the
beginnings in the seventies. Yet inductive program synthe-
sis still is not yet in a status to be applied to real problems.
We think that it is now time for a more target-oriented ap-
proach. This does not mean to replacing general approaches
by problem-dependent ad hoc techniques. We rather think
that identifying and promoting specific application fields and
domains could help to spark broader interest to the topic as
well as to sensibly identify strengths and weaknesses of ex-
isting methods, to extend them and to identify possibilities
to integrate them in a useful way.

In the context of software engineering, we think that
test-driven development (TDD) would be a good starting
point to bring IPS to application. The paradigm requires
preparing tests “(incompletely) defining” a function before
coding it. Hence, IPS could smoothly fit in here. Moreover,
TDD typically features a strong modularization such that
only small entities need to be synthesized.

Within algorithms research, one could try to find (classes)
of problems for which “better” than currently known algo-
rithms are expected to exist and to apply IPS methods to
them. One such domain are problems in artificial general
intelligence (AGI), a research field that again—after estab-
lished AI is nowadays narrowed to many different specific
problems—takes up the original goal of Al of creating artifi-
cial agents that reason and act human-like. There is a serious
interest in IP in the currently emerging AGI community.
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Abstract

Inductive programming systems characteristically exhibit an
exponential explosion in search time as one increases the
size of the programs to be generated. As a way of over-
coming this, we introduce incremental learning, a process in
which an inductive programming system automatically mod-
ifies its inductive bias towards some domain through solving
a sequence of gradually more difficult problems in that do-
main.

We demonstrate a simple form of incremental learning
in which a system incorporates solution programs into its
background knowledge as it progresses through a sequence
of problems. Using a search-based inductive functional pro-
gramming system modelled on the MagicHaskeller system
of Katayama (2007), we perform a set of experiments com-
paring the performance of inductive programming with and
without incremental learning. Incremental learning is shown
to produce a performance improvement of at least a fac-
tor of thirty on each of the four problem sequences tested.
We describe how, given some assumptions, inductive pro-
gramming with incremental learning can be shown to have
a polynomial, rather than exponential, time complexity with
respect to the size of the program to be generated. We discuss
the difficulties involved in constructing suitable problem se-
quences for our incremental learning system, and consider
what improvements can be made to overcome these difficul-
ties.

Keywords Inductive programming, Inductive functional
programming, Incremental learning

1.

Inductive Programming (IP) differs from more conventional
machine learning techniques in that it features the use of a
general, expressive programming language as a space of hy-
potheses for describing patterns in data. Herein lies both the
attraction and the apparent downfall of IP: having such an
expressive hypothesis space allows IP to be used to model
complex or recursive patterns that simply cannot be rep-
resented with the more conventional methods (feedforward
neural networks or decision trees, for example). On the other
hand, this expressivity also means that [P methods can be-
come intractable very quickly when applied to larger prob-

Introduction

29

lems. State of the art IP systems such as ADATE (Ols-
son 1995), Igor II (Kitzelmann 2007), and MagicHaskeller
(Katayama 2007) have shown promise on relatively simple
arithmetic and list processing problems, but are not currently
capable of synthesising the kinds of complex programs that
realistic practical applications would demand. See Hofmann
et al. (2009) for a recent evaluation of the capabilities of
these systems.

How can we solve this dilemma, and get the benefits of a
general, expressive hypothesis space as well as a method
that is computationally tractable? It has been proposed
(Solomonoff 2002; Schmidhuber 2004) that combining IP
with incremental learning may provide a solution. An incre-
mental learning system is one that can automatically modify
its inductive bias towards a given domain through solving a
sequence of successively more difficult problems in that do-
main. In other words, incremental learning is about gaining
the expertise required to solve hard problems through the
experience of solving easier ones. If successfully equipped
with an incremental learning mechanism, a system should
be able to learn to solve complex problems without the need
for a human expert to hand-code extensive domain-specific
knowledge or algorithms into its workings.

In this paper we present experimental evidence that in-
cremental learning is a viable means for producing orders of
magnitude performance improvements in IP. We start with
a review of previous work in IP that features incremental
learning (section 2). We then describe the particular incre-
mental learning mechanism to be evaluated here (section 3),
and give an overview of the IP system that was used in our
experiments (section 4). We present the experiments them-
selves along with their results, and give an explanation for
these results in the form of a computational complexity ar-
gument (section 5). Finally, we discuss the limitations of our
chosen incremental learning mechanism, and consider what
improvements are required before it can be of practical use
(section 6).

2. Previous work

Quinlan and Cameron-Jones (1993) were probably the first
to demonstrate a form of incremental learning in an IP con-
text. They showed how their inductive logic programming
system, FOIL, was able to solve more than half of the prob-
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lems in a sequence of 18 textbook logic programming ex-
ercises presented to it in order of gradually increasing dif-
ficulty. This was made possible by having the system add
each solution program to its background knowledge as it
went along. It could therefore potentially re-use solutions to
earlier problems as primitive elements in the construction of
solutions to later problems.

More recently, Schmidhuber et al. (1997) studied an in-
cremental learning mechanism which they termed ‘adaptive
Levin search’. The idea behind adaptive Levin search is that,
in a search-based IP system, the inductive bias can be con-
trolled by weighting the different programming language
primitives according to how frequently they should be used.
As a system solves a succession of problems, these weights
are gradually modified according to how often each prim-
itive actually occurs in solution programs. Thus, the sys-
tem becomes biased towards re-using primitives that were
present in successful programs in the past. Adaptive Levin
search was shown to produce some performance improve-
ment on a selection of simple problem sequences.

Schmidhuber (2004) later followed up the work on adap-
tive Levin search with a fully fledged incremental learning IP
system called OOPS. OOPS supported both a weight modi-
fication mechanism with a similar role to the one in adaptive
Levin search, as well as an ability to invoke chunks of code
from past programs in solutions to new problems. However,
in the problem sequence that Schmidhuber tested, which in-
volved solving the general ‘towers of Hanoi’ problem, only
the weight modification mechanism was shown to provide a
direct performance benefit.

Khan et al. (1998) made a brief study into incremental
learning in inductive logic programming, under the name of
‘repeat learning’. Using the Progol inductive logic program-
ming system, they demonstrated how helper predicates in-
vented in order to solve one problem may be re-used when
constructing the solution to another. They chose a problem
domain concerning the inference of the general descriptions
of moves in chess.

In this paper, we have chosen to focus on the kind of in-
cremental learning mechanism that was employed in FOIL,
that in which a system adds solution programs to its back-
ground knowledge as it progresses through a problem se-
quence. As we shall see, this simple method is remarkably
powerful. The main drawback of Quinlan’s and Cameron-
Jones’ short study is that they did not provide a direct com-
parison between scenarios with and without incremental
learning. We shall remedy that with the experiments pre-
sented here.

3. Incremental learning mechanism

We aim to give a convincing demonstration of one simple
but effective incremental learning mechanism. The mecha-
nism works as follows: a sequence of successively more dif-
ficult, but related, problems is presented to an IP system. The

Robert Henderson

system must solve the problems in the order given, and will
incorporate each solution program into its object language
as a new primitive function (i.e. into its background knowl-
edge) as it goes along. This addition of these new functions
to the system’s object language is what constitutes the mod-
ification of its inductive bias. For an appropriately designed
problem sequence, we would expect the time taken for the
system to solve whole the sequence, with the help of incre-
mental learning, to be much less than if it were tasked simply
with solving the final problem of the sequence in isolation.

One can see how this mechanism might be expected to
work effectively by considering how, particularly in func-
tional programming, it is often natural to express the solu-
tion to a complex problem in terms of the solutions to one
or more simpler problems already solved. This breaks the
program down into smaller, more managable units, and is a
technique commonly known as procedural abstraction when
used by human programmers.

4. Implementation

We implemented, for the purpose of this study, a sim-
ple brute-force search based IP system modelled on the
MagicHaskeller system of Katayama (2007). We shall re-
fer to our implemented system as ‘MagicLisper’ (it was
written in Common Lisp). In this section, we first review
MagicHaskeller and explain our reasons for choosing it, then
we describe how our system differs from MagicHaskeller in
a few respects. We also talk through an example usage of
our system on an IP problem.

4.1 Review of MagicHaskeller

MagicHaskeller is a search-based inductive functional pro-
gramming system that infers programs from input-output
training examples. Its main distiguishing feature is the brute-
force algorithm that it uses to synthesise solution programs.
More or less, it simply generates and tests all possible pro-
grams in its object language in order of length, using a
breadth-first search, until it finds one that matches the train-
ing examples. This is tractable because of two features of
MagicHaskeller’s object language. Firstly, the language is
strongly typed, with only type-consistent programs being
considered by the search algorithm. Secondly, recursion is
supported not explicitly, but via the use of certain of higher-
order primitive operations known as morphisms (Augusteijn
1998). These morphisms are essentially generalisations of
standard functional programming operations such as map
and reduce, and with them, many useful recursive processes
can be expressed concisely. Ultimately, these two features
combine to produce a search space that contains rather few
obviously useless programs, allowing brute-force search to
fare well.

For this investigation into incremental learning, we chose
to use a system based on MagicHaskeller for two rea-
sons. Firstly, MagicHaskeller’s search algorithm is fast;
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synthesising simple recursive programs takes only a mat-
ter of seconds. Secondly, the search algorithm is sim-
ple and predictable; it is easy to understand exactly why
MagicHaskeller succeeds or fails in finding a solution to a
given problem, which helps immensely when one is design-
ing problem specifications. It is for this second reason in
particular that we chose MagicHaskeller as our base rather
than an alternative such as ADATE or Igor II.

4.2 Differences between our system and
MagicHaskeller

The object language of MagicLisper has the same form
as the ‘de Bruijn lambda calculus’ language used in the
version of MagicHaskeller described in (Katayama 2007).
There is one significant structural difference: for the sake
of simplicity, MagicLisper’s type system does not support
parametric polymorphism; instead, every primitive function
in its object language has one or more explicit ground types.
The default library of primitive functions and constants used
by MagicLisper is given in table 1. Also see figure 1 for
precise definitions of the morphism primitives.

In this paper we shall use a Lisp-style notation to rep-
resent programs. So, for example, the following program
(sum-elems), which sums the elements of a list, in Haskell
notation:

(\ al -> paralist (\ a2 a3 a4 -> + a4 a2) al 0)
is written in the Lisp notation as:
(A (al1) (paralist (A (a2 a3 a4d) (+ a4 a2)) al 0))

MagicHaskeller searches through programs in order of
length, or more precisely, it searches through programs in
order of the total number of functor and lexical variable in-
vocations they contain. In MagicLisper, we generalise on
this process by requiring that primitive functors each be as-
signed a numerical weight. Programs are synthesised in or-
der of total weight, this being the sum of the weights of their
component functor and lexical variable invocations. Lexical
variables always receive a weight of 0.4. The weights of the
default primitive functors range between 2.0 and 4.5 (see ta-
ble 1). As an example of how to calculate the total weight
of a program, consider the sum-elems program mentioned
above, which has a weight of 12:

‘ paralist + a4 a2 al 0 ‘ Total
Weight‘ 40 34 04 04 04 3.4‘ 12

Note that symbols occuring in lambda parameter lists do not
contribute to the calculation.

The weighting feature allows one to manually bias the
system towards using certain primitives by assigning them
lower weights. This extra flexibility allows our system to po-

tentially handle a larger primitive library than MagicHaskeller,

since more rarely used primitives can be given higher
weights to minimise their negative impact on the search per-
formance. Note that if one sets all the weights to the same
value, our search algorithm reduces to that of MagicHaskeller.
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In this study, the weights were chosen by hand; however, we
note that for a more advanced system it would make sense to
have these weights tuned automatically. To justify our choice
of weight values, we have tested MagicLisper’s performance
on a selection of nine non-incremental problems, both with
and without the customised weights (table 2). The problems
all exhibit a significant increase in solution speed due to the
custom weights, ranging from a factor of 2.4 to a factor of
165.7.

MagicLisper does not employ the memoisation or fusion
rule optimisations of MagicHaskeller. Finally, MagicLisper
requires the user to explicitly specify the maximum number
of ‘steps’ for which to test any candidate solution program
on a given training example. Each step corresponds to one
evaluation by the interpreter of a sub-expression within a
program, and this ‘number of steps’ is an approximate speci-
fication of the maximum time to spend testing each program.

4.3 Example usage of our system

Let us briefly look at MagicLisper in action on a simple
problem. Consider the following specification for a function
which finds the length of a list:

) —0 [10 steps]
| — 1 [20 steps]
(10 4 7 2) — 4 [50 steps]

To solve this, MagicLisper first determines the type of the
program implied by the specification: in this case, it is a
function mapping a list of integers to an integer. It then per-
forms an iterative deepening search through the space of pro-
grams matching that type; on the nth iteration, it generates
and tests programs whose total weight is less than or equal
to n. When testing a program, MagicLisper runs it on each
training input in turn, for no more than the specified num-
ber of steps in each case. The whole search finishes when
MagicLisper finds the program with the smallest weight that
satisfies all of the training examples, which is in this case:

(A (al1) (paralist (A (a2 a3 a4) (inc a4)) al 0))

The above program has a weight of 11.6, so is found on the
12th search iteration.

5. Incremental learning experiments

In this section, we describe a set of experiments with Mag-
icLisper that demonstrate the incremental learning mecha-
nism of section 3, that in which solution programs are suc-
cessively added to the system’s object language as new prim-
itives.

5.1 Method and results

We measured the performance of MagicLisper on four prob-
lem sequences, both with and without the aid of incremen-
tal learning in each case. Full specifications of these prob-
lem sequences along with the experimental results are given
in figures 2, 3, 4, and 5. Each specification consists of a



32

Name Type Weight
— The empty list —

nil list 2.1
— List operations —

cons (A (int list) list) 2.1
car (A (1ist) int) 32
cdr (A (List) list) 32
— Integer constants —

0 int 34
1 int 34
— Integer operations —

inc (XA (int) int) 34
dec (XA (int) int) 3.4
+ (A (int int) int) 3.4
* (XA (int int) int) 3.4
— If-then-else —

if (X (bool int int) int) 2.5
if (X (bool list list) list) 2.5
— Boolean constants —

t bool 3.5
£ bool 3.5
— Boolean operations —

not (XA (bool) bool) 3.5
and (A (bool bool) bool) 3.5
or (A (bool bool) bool) 3.5
— Integer comparions operations —

eql (XA (int int) bool) 2.0
< (XA (int int) bool) 2.0
— Morphisms —

paranat (A ((X (int int) int) int int) int) 4.0
paranat (A ((X (int 1list) list) int list) list) 4.0
paranat (A ((A (int bool) bool) int bool) bool) 4.0
paralist (A ((A (int list int) int) list int) int) 4.0
paralist (X ((\ (int list list) list) list list) list) 4.0
paralist (A ((X (int list bool) bool) list bool) bool) 4.0
analist (A ((\ (1ist) 1list) list) list) 4.5

Robert Henderson

Table 1. The default library of primitive functions and constants used by MagicLisper. The type system consists of: integers

(int), lists of integers (1ist), and booleans (bool). A compound type expression of the form: (A (a b

...) T) represents

a function whose argument types are a, b, etc., and whose return type is . The role of the weights is to bias the system towards
using certain primitives more than others when constructing programs; primitives with lower weights are used more frequently

(see section 4.2).
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(define (paranat f n x)
(if (zero? n)
b4
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(f (-n 1) (paranat £ (- n 1) x))))

(define (paralist f 1st x)
(if (null? 1st)
X

(f (car 1st) (cdr 1st) (paralist f (cdr 1lst) x))))

(define (analist f 1st)
(let ((pair (£ 1st)))
(if (null? pair)

0]

(cons (car pair) (analist f (cdr pair))))))

Figure 1. Definitions of MagicLisper’s morphism primitives given in the Scheme dialect of Lisp: natural number paramor-

phism, list paramorphism, and list anamorphism.

Name Description Time / s Time /s Speed-up

(custom weights)  (uniform weights) factor
append Appends two lists together. < 0.1 14.5 > 145.0
make-list Constructs the list of n instances of a given value. 0.1 13.3 133.0
length Finds the length of a list. 0.2 1.9 9.5
sum-elems Finds the sum of the elements in a list. 0.5 19.9 39.8
evenp Tests if a given integer is even. 0.7 1.7 24
nth Finds the nth element of a list. 0.9 26.0 28.9
last-elem Finds the last element of a list. 1.5 248.5 165.7
member Tests if a given value is a member of a list. 6.7 > 251.4 > 37.5
pow Raises one integer to the power of another. 9.6 31.2 33

Table 2. Some typical problems that MagicLisper can solve without the aid of incremental learning. In each case, between
3 and 5 training examples were given. Solution times were measured in two different scenarios: ‘custom weights’, in which
the lexical variable and primitive weights were set up as described in section 4.2, and ‘uniform weights’, in which the lexical
variable and primitive weights were all set to the value 1. The ‘speed-up factor’ column gives the proportional increase in speed
due to the custom weights: time (uniform weights) divided by time (custom weights). The measurements were made on a 2
GHz Intel Core II Duo desktop PC with 2 GB of RAM running GNU CLISP.

main problem, and a sequence of sub-problems whose so-
lutions may act as building blocks out of which the solu-
tion to the main problem can be constructed. For example,
in the sort problem sequence (figure 4) we tasked our sys-
tem with inferring an algorithm to sort a list of numbers.
Sub-problems included the simpler but related task of tak-
ing the smallest element out of a list and bringing it to the
front (extract-least-elem), and the yet simpler tasks of
finding the smallest element in a list (Least-elem), and of
removing a given element from a list (remove-elem).
When designing the problem sequences, we used our
knowledge of how one might implement the solution pro-
grams by hand in order to choose appropriate sub-problems.
We also used some degree of trial and error in tweaking
the problem sequences until incremental learning worked

effectively (for example, remove-first-block was orig-
inally the first stage in our design for the block-lengths
problem sequence; we added an extra stage, car-p, when
it became apparent that our system was taking too long to
solve remove-first-block from the default starting con-
ditions). For now, let us emphasise the point that readily
comprehensible and effective problem breakdowns often ex-
ist. In the next section (6) we shall consider in detail the issue
of how much human effort is required to produce these prob-
lem breakdowns, as well as what ways can be developed to
reduce or remove the need for this human effort.

For every problem and sub-problem, in order to obtain
some guarantee that the program found was indeed the cor-
rect general solution, we checked it against a set of test ex-
amples. When designing our problem specifications, if any
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deref-list: dereferences a list of indices into another list. Incremental specification

— Training examples — 1. | nth: returns the nth element of a list.

O, (M - 0 [20 steps] — Training examples —

), 6 — 6 [50 steps] 0, (5) - 5 [15 steps]

(102), (8645) — (684) (200 steps] 1, (86) — 6 [30 steps]

— Test examples — 3, (410 77 34 58) — 34 [150 steps]

(32213405), (77 42 3 —10 8 61) — — Test examples —
(=10 3 3 42 —10 8 77 61) 8, (84937192547 —5

@847, (9525841917 — 4, (11 23 45 15 27 89 102 56) — 27
e 2

Results

Stage Time/s Depth Solution

nth 0.9 12 (X (al a2) (car (paranat (X (a3 a4) (cdr a4)) al a2)))

deref-list 3.6 13 (X (al a2) (paralist () (a3 a4 a5) (cons (nth a3 a2) a5)) al nil))

Total 4.5

Non-incremental: TIMEOUT (950.2 seconds, depth 18)

Figure 2. The deref-1ist problem sequence: specification and results.

. Incremental specification
reverse: reverses a list.

— Training examples — 1. | append-elem: appends an element to the end of a list.

O -0 [20 steps] — Training examples —

8) — (8) [40 steps] 8, O — (8 [15 steps]

@37 — (73 [150 steps] 4, (9) — (9 4) [30 steps]

(9471) - (1749 [800 steps] 7, 381 — (381N [100 steps]

— Test examples — — Test examples —

(2917 -34891012) — 6, 4713986) - 4713986 6)
(1210984 -37192) 3, (88888 — (88888 3)

(645211182 —

(281112546) 2. [reverse |

Results
Stage Time /s Depth  Solution
append-elem 1.0 12 (X (al a2) (paralist (A (a3 a4 a5) (cons a3 a5)) a2 (cons al nil)))
reverse 0.1 10 (X (al) (paralist (X (a2 a3 a4) (append-elem a2 a4)) al nil))
Total 11

Non-incremental: SOLUTION FOUND (569.6 seconds, depth 19)
(X (al) (paralist (X (a2 a3 a4) (paralist (A (ab a6 a7) (cons a5 a7)) a4 (cons a2 nil))) al nil))

Figure 3. The reverse problem sequence: specification and results.
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sort: sorts a list of integers in ascending order.
— Training examples —

O —=0 [30 steps]
(M — (M [100 steps]
42 - 24D [500 steps]
987 — (789 [2000 steps]

32323 —(22333
— Test examples —

(106 -30 725 —-2316

(=30 -2 1234566

)

8

[10000 steps]

N
10)
(111868643311
(1111133466
(10 2 105 —78 46 45
(=78 2 10 23 45

gl e

23) —
46 105)

Incremental specification

1. | remove-elem: removes the first instance of a given ele-
ment from a list.
— Training examples —

6, (60 — O [15 steps]
7, 87 — (8 [30 steps]
3, 33 — 3 [30 steps]
10, (2410721 — (24721 [200steps]

— Test examples —

43, (956 4327 — (956 27
8, (684828 — (64828)
9, (7529 — (75 2)
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min: returns the smaller of two integers.

— Training examples —

2,1 =1 [10 steps]
3, 10 — 3 [10 steps]
7, 7T — 7 [10 steps]

— Test examples —
-5, =10 — —10
-3, 20 — -3
27, 27 — 27

least-elem: returns the smallest element in a list of
integers.

— Training examples —

3 — 3 [20 steps]
847 — 4 [100 steps]
96292 — 2 [200 steps]

— Test examples —
(10 745578 — 5
(77 34 59 34 208) — 34

extract-least-elem: brings the smallest element to front
of a list of integers.

— Training examples —

@’ — (8 [50 steps]
(10 49) — 4 10 [200 steps]
(862725 — (286725 [2000 steps]

— Test examples —
32123 —- (13223
(54 70 14 59 14 20) — (14 54 70 59 14 20)

5. [sort

Results
Stage Time /s Depth  Solution
remove-elem 7.8 14 (X (al a2) (paralist (X (a3 a4 a5) (if (eql a3 al) a4 (cons a3 a5))) a2 a2))
min 0.0 7 (X (al a2) (if (< a2 al) a2 al))
least-elem 0.7 13 (X (al) (paralist (A (a2 a3 a4) (min a4 a2)) al (car al)))
extract-least-elem 33 14 (X (al) (cons (least-elem al) (remove-elem (least-elem al) al)))
sort 4.5 14 (X (al) (analist (X (a2) (paralist (X (a3 a4 a5) (extract-least-elem a5)) a2 a2)) al))
Total 16.3

Non-incremental: TIMEOUT (586.6 seconds, depth 19)

Figure 4. The sort problem sequence: specification and results.

failure occurred at the testing stage, we added new training
examples and re-ran the experiment. For the final specifica-
tions given in the figures, every solution program has passed
all of its test examples.

We recorded the times taken for MagicLisper to solve
the stages of each sequence. Total times was determined by
adding these values together. Following each sub-problem
in a sequence, the inferred solution program was added to
the library of primitives and assigned a weight of 2.5, 2.5,
3.5, or 3.0 in the case of problem sequences deref-1ist,
reverse, sort, and block-lengths respectively. The li-
brary of primitives was reset to its default state between
problem sequences. We also tested how our system fared

when solving each main problem on its own with the de-
fault primitive library, i.e. without incremental learning. We
allowed at least 500 seconds for every problem; if this time
limit was exceeded then the computation was aborted af-
ter allowing for the current search iteration to finish, and
‘TIMEOUT’ was indicated in the results table. Also given
in each results table are the search depths, in units of pro-
gram weight, at which any solution was found or a timeout
occurred, as well as the solution programs themselves. The
experiments were performed on a 2 GHz Intel Core II Duo
desktop PC with 2 GB of RAM running GNU CLISP.
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block-lengths: replaces all blocks of consecutive iden-
tical elements in a list with their lengths.

— Training examples — 3.| length: finds the length of a list.
0O -0 [50 steps] — Training examples —
8 — () [200 steps] O =0 [10 steps]
(76 - QD [700 steps] (8) — 1 [20 steps]
®8834) — (211) [5000 StePS] (10 4 72) — 4 [50 s[eps]
6554 — A21 [5000 steps] — Test examples —
— Test examples —
TTTTT55577224999 — 2224_78372839214)1335H9

532213

b88491212) —
(12111110

O00007000555555) —
513 6) 4. | length-first-block: finds the length of the first block of

consecutive identical elements in a list.
— Training examples —

Incremental specification Q) — 1 50 steps]
1. | car-p: tests whether an object is the first element of a (46) — 1 [100 steps]
list. 998693 — 2 [1000 steps]
— Training examples — — Test examples —
0, O — f [15 steps] (3333876345 — 4
1, O — £ [15 steps] 555555522 =7
4, (4) — t [15 steps]
5, 2) — £ [15 steps]
8, 82 — ¢t [15 steps]
7, 627 — f [15 steps] 5.| convert-first-block-to-length: replaces the first block
— Test examples — of consecutive identical elements in a list with its length.
7, 87TT7T647) — £ — Training examples —
3, 3814 — ¢t O -0 [20 steps]
@®) — (1) [100 steps]
2. | remove-first-block: removes the first block of consecu- (76) — (16) [400 steps]
tive identical elements from a list. (883 4) — (23 4) [2000 steps]
— Training examples — (5553 — (33) [2000 steps]
® = 0 [30 steps] — Test examples —
(46) — (6 [100 steps] (8886666 — (3666 6)
(1313 — (313 [400 steps] (4154292 — (115422
998693 — (869 3) [1000 steps]
(555549 — 49 [1000 steps]

— Test examples —
(T7774433788722) —

(4433788722 6. | block-lengths
(1651222) —(651222)
99999 — O

Results
Stage Time/s Depth  Solution
car-p 0.4 11 (X (al a2) (paralist (A (a3 a4 a5) (eql a3 al)) a2 f))
remove-first-block 0.5 12 (X (al) (paralist (X (a2 a3 a4) (if (car-p a2 a3) a4 a3)) al al))
length 0.2 12 (X (al) (paralist (A (a2 a3 a4) (inc a4)) al 0))
length-first-block 6.9 15 (X (al) (length (paralist (X (a2 a3 a4) (cdr a4)) (remove-first-block al) al)))
convert-first-block-to-length 4.8 14 (X (al) (paralist (X (a2 a3 a4) (cons (length-first-block al) (remove-first-block al))) al al))
block-lengths 0.1 9 (X (al) (analist (X (a2) (convert-first-block-to-length a2)) al))
Total 12.9

Non-incremental: TIMEOUT (561.8 seconds, depth 19)

Figure 5. The block-lengths problem sequence: specification and results.
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remove-elems min
least-elem

extract-least-elem

sort
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car-p length
remove-first-block
length-first-block
convert-first-block-to-length

block-lengths

Figure 6. Dependency graphs for the solutions to the sort and block-lengths problem sequences. Each arrow x — y

means ‘program x invokes program y’.

5.2 Analysis

The total times taken for our system to solve the incremental
specifications ranged between 1 and 16 seconds. On the
other hand, all of the non-incremental scenarios took more
than 500 seconds, with a solution only being found at all in
the case of reverse. This amounts to an increase in speed
due to incremental learning of at least a factor of thirty in
every case.

On inspection of the solution programs for the incremen-
tal sequences, we see that the majority of programs do in-
deed invoke earlier solutions, as expected. Indeed, for the
longer sequences sort and block-lengths we can visu-
alise a graph of dependencies between the solution programs
(figure 6).

The timing results indicate that, at worst, incremental
learning can greatly improve the performance of IP, while,
at best, it is able to make otherwise intractable problems
tractable. To see why this should be the case, consider the
following computational complexity argument. Assuming
that it takes constant time to generate and test each program,
then the time taken for MagicLisper’s search algorithm to
solve a given problem will be proportional to the total num-
ber of programs generated. We expect this to be approxi-
mately O[b%], where b is the search branching factor, roughly
proportional to the size of the primitive library, and d is the
search depth of the lowest-weight solution program that ex-
ists for the problem. Now, if we make an assumption that
with incremental learning we can always divide a problem
into sub-problems whose solution depths are bounded by a
constant dy, then the time taken to solve the problem in in-
cremental stages is no more than O[n (b +nAb)%], where n
is the number of stages, by is the branching factor of the de-
fault primitive library and Ab is the increase in the branching
factor that occurs each time we add a new primitive. Let us
also assume that the number of stages required to satisfac-
torily break down a problem is roughly proportional to the
depth of the lowest-weight solution program that we’d get if
the problem were solved non-incrementally, in other words,
n = kd. This gives us a time taken of O[kd(by + kdAb)%],
or simply O[d90*1] with respect to d, if the problem is solved
incrementally, compared with O[by?] if it is solved non-

incrementally. In this way, IP with incremental learning can
allow a system solve, in polynomial time, problems that take
exponential time with non-incremental IP.

6. Limitations and further work

The main contribution of this paper has been to demonstrate
a simple, working methodology for incremental learning
in IP. This methodology involved equipping a brute-force
search based IP system with an ability to reuse solution
programs by adding them to its primitive library. We showed
that this mechanism can be effective by demonstrating its use
on four problems, each of which had been broken down into
an appropriate sequence of sub-problems. Our IP system was
able to solve the problems orders of magnitude more quickly
when making using of the incremental sequences than when
simply solving the main problems in isolation.

In this section we address the limitations of our simple in-
cremental learning methodology; in particular we talk about
the difficulties involved in constructing problem sequences.
‘We consider how to overcome these limitations, and discuss
how, by eliminating the need for problem sequences to be
designed by a human expert, we aim to enable a much more
useful, autonomous form of incremental learning.

6.1 Limitations of the simple methodology

The main drawback of the simple incremental learning
methodology presented in this paper is the significant amount
of human effort and expertise required to design effec-
tive problem sequences. Based on our experience design-
ing problem sequences for MagicLisper, we feel that the
need for this effort and expertise is largely due to what we
shall call ‘brittleness’ in the system’s learning mechanism.
In other words, problem specifications must obey certain
conditions in order for learning to work, and they ‘break
easily’, i.e. if these conditions are not met perfectly, then the
system will fail to find a solution at all.

One source of brittleness in our mechanism is the fact that
solutions to sub-problems are only useful if a solution to the
main problem can be expressed in terms of them directly.
It is not enough for a sub-problem simply to be related
to the main problem, for example if their solutions would
share some common structure. In consequence, the success
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or failure of incremental learning is very sensitive to the
exact choice and order of sub-problems. Often, the only way
to predict if a particular sub-problem will be effective is to
use ones knowledge of how one might implement the target
program by hand; in other words, using the IP system does
not save one much effort over hand-coding the program. Our
methodology suffers from brittleness in two other ways too.
Firstly, the IP system will not tolerate any error or noise in
the training examples. Secondly, if any of the step counts
associated with the training examples are too low, the system
will again completely fail to find a solution.

6.2 Overcoming the limitations

Our simple methodology seems capable of scaling up to rel-
atively complex problems, but at the cost of a degree of hu-
man effort expended in designing problem sequences at least
as great as would be required to code the solutions by hand.
In this subsection we discuss how to eliminate the three
sources of ‘brittleness’ described in the last subsection, with
the aim of developing a mechanism that is flexible enough to
perform incremental learning over loosely constructed sets
of problems, rather than precisely constructed sequences.
The need to specifiy step counts with training examples

should be the easiest limitation to overcome. In MagicHaskeller,

it is already unnecessary to specify step counts, because the
system simply tests all programs until termination, relying
on the fact the primitive library belies the possibility of infi-
nite loops. However, we don’t expect this approach to remain
feasible as we start to generate more complex programs, be-
cause the number of programs that run for a long time before
termination will become much larger. Instead, we propose
using an algorithm like ‘Levin search’ (Schmidhuber 2004),
in which the iterative deepening nature of our IP search is
extended so as to automatically re-test programs for longer
and longer step counts as the search progresses.

The need for a solution to a main problem to be express-
ible directly in terms of solutions to sub-problems could be
overcome as follows. Suppose that we modify our incremen-
tal learning mechanism such that, instead of adding actual
solution programs to the primitive library, it attempts to de-
rive re-usable procedural abstractions from groups of solu-
tion programs, and then adds these abstractions as the new
primitives. The potential re-usabilility of a procedural ab-
straction can be measured objectively using a principle of
‘minimum description length’: if a procedure, when reused
in multiple solution programs, serves to reduce the combined
size of these programs by more than its own size, then we
can deem it a useful abstraction. Though the best way to dis-
cover candidate abstractions is an open question, it would
seem a reasonable starting point to try a brute-force search.
This method of incremental learning would be much more
adaptable and generic than our original mechanism, in that
it should be able to extract useful inductive bias from almost
any kind of shared structure or commonality between solu-
tion programs. We know of at least one previous implemen-
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tation of a similar idea: the ‘Duce’ system (Muggleton 1987)
can discover abstractions that encapsulate shared structure
among groups of statements in propositional logic.

To overcome the lack of toleration of errors or noise in the
training examples, we feel that the most satisfactory solution
will ultimately be to reformulate our IP methodology within
a probabilistic framework. In such a framework, a program
would no longer describe a deterministic mapping from in-
puts to outputs, rather it would represent a conditional prob-
ability distribution over the set of possible outputs given the
inputs. Such a reformulation is highly desirable if our aim
is to develop a machine learning technique of practical use,
since real-world data is usually noisy. Indeed, the develop-
ment of probabilistic frameworks for IP is an active area
of research, particularly within inductive logic programming
(De Raedt and Kersting 2004).

In overcoming the above limitations, our eventual goal is
to produce an IP methodology capable of performing incre-
mental learning simply from a corpus of data, without the
need for that data to be organised into problem sequences
by a human expert. To see how this might work, first con-
sider how a system could perform incremental learning if
provided with a large bank of related problems of various
difficulties, in no particular order. Such a system could re-
peatedly scan through the problems, briefly attempting to
solve each as it goes. Some of the problems might be easy
enough to solve immediately, and the system could then use
the solutions of these to derive procedural abstractions which
it would add to its primitive library. On the next scan through
the problem bank, these new primitives should enable the
system to solve some problems that were previously out of
its reach. Ideally, the process iterates until most of the prob-
lems are solved. Consider next how one might extend this
idea in order to create a system capable of automonomously
learning a model for a complex environment or corpus of
data. In a such a situation, it might often be the case that var-
ious parts of the environment or corpus can be described by
simple models. By analogy with the ‘bank of problems’ sce-
nario, one may imagine an incremental learning system that
initially looks for these simple models, adds abstractions de-
rived from those models to its background knowledge, then
searches for more complex models, and so on. We may think
of this process as an automation of the scientific method.

7. Conclusion

In this paper, we have demonstrated a simple but effective
incremental learning mechanism for an inductive program-
ming system. It works by having the system incorporate so-
lution programs into its object language as new primitive
functions as it progresses through a sequence of problems.
The mechanism is capable of producing orders of magni-
tude improvements in problem solving performance, but at
the expense of considerable human effort spent in designing
appropriate problem sequences. However, we have sketched
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a number of possible improvements to the mechanism which
should reduce or remove much of the need for this human
guidance. Our aim is that this methodology can eventually
be developed into a powerful generic machine learning tech-
nique by which a system can learn a model of a large, com-
plex dataset in an autonomous fashion.
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Abstract

We use generic programming techniques to generate well-typed
lambda terms. We encode well-typed terms by generalized al-
gebraic datatypes (GADTs) and existential types. The Spine ap-
proach (Hinze et al. 2006; Hinze and Loh 2006) to generic pro-
gramming supports GADTs, but it does not support the definition
of generic producers for existentials. We describe how to extend
the Spine approach to support existentials and we use the improved
Spine to define a generic enumeration function. We show that the
enumeration function can be used to generate the terms of simply
typed lambda calculus.

1. Introduction

This paper discusses the problem of given a type, generate lambda
terms of that type. There exist several algorithms and/or tools for
producing lambda terms given a type (Augustsson 2005; Katayama
2005; Koopman and Plasmeijer 2007). The approach discussed in
this paper uses generic programming techniques on Generalized
Algebraic Datatypes (GADTs) and existentials to enumerate well-
typed lambda terms. The enumeration function is much simpler
than previous work, and the main problem lies in making generic
programming techniques available for GADTSs and existentials in
functions that produce values of a particular datatype, such as an
enumeration function.

Since their introduction to Haskell, Generalized Algebraic
Datatypes (GADTS) (Xi et al. 2003; Cheney and Hinze 2003; Pey-
ton Jones et al. 2006) are often used to improve the reliability of
programs. GADTs encode datatype invariants by type constraints in
constructor signatures. With this information, the compiler rejects
values for which such invariants do not hold during type-checking.
In particular, GADTSs can be used to model sets of well-typed terms
such that values representing ill-typed terms cannot be constructed.
Other applications of GADTs include well-typed program transfor-
mations, implementation of dynamic typing, staged computation,
ad-hoc polymorphism and tag-less interpreters.

Given the growing relevance of GADTs, it is important to pro-
vide generic programming support for generalized datatype defi-
nitions. The generation of datatype values using generic program-
ming is of particular interest. Generic value generation has been
used before to produce test data, which can be used to check the
validity of program properties (Koopman et al. 2003). In generic
value generation, the datatype definition acts as a specification
for test data. However, this specification is often imprecise, since
it gives rise to either values that do not occur in practice, or,
worse, ill-formed values (for example, a program fragment with
unbound variables). For this reason, QuickCheck (Claessen and
Hughes 2000) allows the definition of custom generators.
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GADT definitions may specify types more precisely than nor-
mal datatypes. In the case of well-typed terms, the constraints in
the datatype definition describe the formation rules of a well-typed
value. It follows that a generic producer function on a GADT might
produce values that are better suited for testing program properties.
For example, it should be possible to use a generic value genera-
tion function with a GADT encoding lambda calculus, in order to
produce a well-typed lambda term with which a tag-less interpreter
can be tested.

The spine view (Hinze et al. 2006; Hinze and Léh 2006), which
is based on “Scrap Your Boilerplate” (Lammel and Peyton Jones
2003), is the only approach to generic programming in Haskell that
supports GADTs. The main idea behind the spine view is to make
the application of a data constructor to its arguments explicit. The
spine view represents a datatype value by means of two cases: the
representation of a datatype constructor, and the representation of
the application to constructor arguments. A generic function can
then be defined by case analysis on the spine view. Hinze and
Lo6h (2006) describe how to use the spine view to represent GADT
values and define generic functions to consume and produce such
values.

Besides GADT definitions, our definition of well-typed terms
uses existentially quantified type variables. In particular, the type
of expression application is that of the function return type. The ar-
gument type is hidden from the application type and is therefore ex-
istentially quantified. Under certain conditions, the spine view sup-
ports the definition of generic functions that consume existentially
typed values. Unfortunately, it cannot be used to define a generic
function that produces them. It follows that the spine view can-
not in general be used to define generic enumerators for well-typed
terms.

This paper extends the spine view to allow the use of producer
functions on existential types. We make the following contribu-
tions:

e We show how to support existential types systematically within
the spine view. We extend the spine view to encode existentially
quantified type variables explicitly. This enables the definition
of generic functions that perform case analysis on such types.
As a consequence, the extended spine view supports the defi-
nition of generic producers that work on existential types. We
demonstrate the increased generality by defining generic serial-
ization and deserialization for existential types and GADTs.

e We define a generic enumeration function that can be used with
GADTs and existential types. This function can be used to enu-
merate the well-typed terms represented by a GADT. Consider
a GADT that represents terms in the simply typed lambda cal-
culus. The enumeration of terms with type Expr ((b — ¢) —
(a — b) — a — ¢) yields the term that corresponds to function
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composition. The enumeration function requires explicit sup-
port for existential types in producers. For that reason it cannot
be defined in approaches such as that of Hinze and Loh (2006).

This paper is organized as follows. Section 2 introduces the
spine view and gives several examples illustrating why this view
is not suitable to define producers for existential types. Section 3
describes our extensions to the spine view, which enable producer
support for existential types. Section 4 uses the extended spine view
to define a generic enumeration function. The enumeration function
is then used to produce well-typed lambda calculus terms. Section 5
discusses related work, and section 6 concludes.

2. The spine view

The spine view was introduced by Hinze et al. (2006). This view
supports the definition of generic functions that consume (such
as show or eq) or transform (such as map) datatype values. We
introduce the spine view using the generic show function as an
example. This function prints the textual representation of a value
based on the type structure encoded by the view. To implement
this function, we need case analysis on types to implement type-
dependent behavior.

2.1 Case analysis on types

The spine view uses GADTs to implement case analysis on types.
We define a type representation datatype where each constructor
represents a specific type:

data Type::* — x where
Int :: Type Int
Maybe ::Type a — Type (Maybe a)
Either ::Typea — Typeb — Type (Either a b)
List :: Type a — Type [a]
(:—) :=Typea— Typeb — Type (a — b)

An overloaded function can be implemented by performing case
analysis on types. To perform case analysis on types we pattern
match on the type representation values. The GADT pattern match-
ing semantics (Peyton Jones et al. 2006) ensures that the type vari-
able a is refined to the target type of the matched constructor:

show :: Type a — a — String
show Int n = showlnt n
show (Maybe a) (Just x) = paren ("Just" e showax)

show (Maybe a) Nothing = "Nothing"
show (Either a b) (Left x) = paren ("Left" e show ax)
show (Either a b) (Right y) = paren ("Right" e show b y)
show (List a) ((:) xxs) = paren (" (:)"

o show ax

e show (List a) xs)
show (List a) [] ="

This function prints a textual representation of a datatype value.
Note that we choose to print lists in prefix syntax rather than the
usual Haskell notation. The operator ( @ ) separates two strings
with a white space, and paren prints parentheses around a string
argument.

2.2 The spine representation of values

Type representations can be used to implement overloaded func-
tions, but such functions are not generic. The user needs to define
new show cases for every datatype added to the program. To define
generic functions, we make use of the spine view.

The spine view represents all datatype values by means of two
cases: a constructor and the application of a (partially applied)
constructor to an argument. This is embodied in the Spine datatype:
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data Spine:: x — * where

Con ::ConInfoa — Spine a

(:0:) :: Spine (a — b) — Typed a — Spine b
infixl 0 :o:

The Con case of the spine view stores a value constructor of type
a together with additional information including the constructor
name, the fixity, and the constructor tag. This additional informa-
tion is stored in the datatype Conlnfo. The application case (:¢:)
consists of a functional value Spine that consumes a-values, and
the argument a paired with its type representation in the datatype
Typed. We show Typed, and a simplified Conlnfo containing only
the constructor name below:

data Conlnfo a = ConInfo{ conName :: String,conVal ::a}
data Typeda = (:>:) {val::a,rep::Typea}

To write a generic function, we first convert a value to its Spine
representation. We show how to perform this conversion using the
type-indexed function roSpine:

toSpine :: Type a — a — Spine a

toSpine Int X = Con (conint x x)

toSpine (Maybe a) (Justx) = Con (conjust Just) :0:x :>: a
toSpine (Maybe a) Nothing = Con (connothing Nothing)
toSpine (Either a b) (Left x) = Con (conleft Left) :o: x :>: a
toSpine (Either a b) (Right y) = Con (conright Right) :o:y :>: b
toSpine (List a) ((:) x xs) = Con (concons (3))

0ix>racolxs > Lista

toSpine (List a) [] = Con (connil [])

Because we reuse the constructor information in later sections of
the paper, we define Conlnfo values separately. We give some
examples below:

conint::Int — a — Conlnfo a
coninti = Conlnfo (showlnt i)

connothing, conjust::a — Conlnfo a
connothing = Conlnfo "Nothing"
conjust = Conlnfo "Just"

In summary, to enable generic programming using the spine
view, we define a GADT for type representations, the Spine
datatype, and conversions from datatype values to their spine rep-
resentations. The conversions for datatypes are written only once,
and then the same conversion can be reused for different generic
functions. The conversion to the spine representation is regular
enough that it can be automatically generated from the syntax trees
of datatype declarations!

Equipped with the spine representation, we can write a number
of generic functions. For example, this is the definition of generic
show:

show :: Type a — a — String
show rep x = paren (gshow (toSpine rep x))

gshow :: Spine a — String
gshow (Con con) = conName con
gshow (con :o: arg) = gshow con e show (rep arg) (val arg)

This function is a simplified variant of the show function defined
in the Haskell prelude. All datatype values are printed uniformly:
constructors are separated from the arguments by means of the e
operator, and parentheses are printed around fully applied construc-
tors.

! At the time of writing, Template Haskell cannot handle GADT declara-
tions. Our prototype generates the spine representation for a GADT using a
manually constructed declaration syntax tree instead of parsing the GADT
declaration and processing it via Template Haskell.
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2.3 Transformer functions

The spine view also supports the definition of generic transformer
functions. Examples of such functions include incrementing all Int
values in a tree, and applying a function to all nodes of a specific
type in a tree.

To write such a function, we need to convert the spine represen-
tation back to the represented value affer it has been traversed and
transformed. This is achieved by the fromSpine function:

fromSpine ::Spine a — a
fromSpine (Con con) = conVal con
fromSpine (con :: arg) = fromSpine con (val arg)

See Hinze et al. (2006) for examples of transformer functions using
the spine view.

2.4 A view for producers

It is impossible to write read, the inverse to show using the current
Spine datatype. We could for example use the following type for
read:

read :: Type a — String — [(a, String) ]

This function produces all possible parses of type a (paired with un-
used input) from a representation for the type a and an input string.
To write such a generic function, we would need a spine represen-
tation to guide the parsing process. Unfortunately, a representation
Spine a cannot be used for this purpose. A value of Spine a rep-
resents a particular value of type a (for example, a singleton list)
rather than the full datatype structure (a description of the cons and
nil constructors and their arguments). To enable a generic defini-
tion of generic read and other producer generic functions, Hinze
and Loh (2006) introduce the type spine view. This view describes
all values of a rather than a particular one.

type TypeSpine a = [Signature a]
data Signature :: * — * where

Sig ::ConlInfo a — Signature a

(::) :: Signature (a — b) — Type a — Signature b
infixl 0 :&:

Here we again have two cases, one for encoding a constructor and
another for the application of a (partially) applied constructor to an
argument. The application case contains only a type representation
and no argument value anymore. A value of TypeSpine a is a list
of constructor signatures representing all constructors of the repre-
sented datatype. The type-indexed function typeSpine produces the
type spine representations of all datatypes on which generic pro-
gramming is to be used.

typeSpine :: Type a — TypeSpine a
typeSpine Int = [Sig (conint i i)

| i — [minBound..maxBound])
typeSpine (Maybe a) = [Sig (connothing Nothing)

,Sig (conjust Just) :®: a]
typeSpine (Either a b) = [Sig (conleft Left) :®: a

,Sig (conright Right) :®: b]

= [Sig (connil [])
,Sig (concons (%)) :@: a:®: List a]

typeSpine (List a)

The generic parsing function, read, builds a parser that deseri-
alizes a value of type a:

read:: Type a — Parser a

For the purposes of this paper, we assume that Parser is an
abstract parser type with a monadic interface, with some standard
derived functions:
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return :ra — Parser a
(>=) :: Parser a — (a — Parser b) — Parser b
ap :: Parser (a — b) — Parser a — Parser b
(>) :: Parser a — Parser b — Parser b
noparse  ::Parsera
alternatives :: [Parser a] — Parser a
readInt :: Parser Int
lex :: Parser String
token :: String — Parser ()
readParen ::Parser a — Parser a

The definition of generic read uses readInt to read an integer
value. For other datatypes, we make parsers for each of the con-
structor representations and merge all the alternatives in a single
parser.

read:: Type a — Parser a

read Int = readlnt

read rep = alternatives [readParen (gread conrep)
| conrep — typeSpine rep)|

The generic parser of a constructor is built by induction on its
signature representation. The base case (Sig) tries to recognize the
constructor name and returns the constructor value. The application
case parses the function and argument parts recursively and the
results are combined using monadic application:

gread:: Signature a — Parser a
gread (Sig c) = token (conName c) >> return (conVal ¢)
gread (con :®: arg) = gread con ‘ap* read arg

In the definition of generic read, we could also have used parser
combinators based on an applicative interface (McBride and Pater-
son 2007) instead of a monadic one. For an example of parser com-
binators with an applicative interface see Swierstra and Duponcheel
(1996). In Section 3.1 we show that existentially typed values can-
not be parsed using purely applicative parser combinators, because
generic read on existentials makes essential use of bind (>>=).

2.5 Generalized algebraic datatypes

Recall that generalized algebraic datatypes are datatypes to which
type-level constraints are added. Such constraints can be used to
encode invariants that datatype values must satisfy. For example,
we can define a well-typed abstract syntax tree by having the
syntactic categories of constructs in the target type of constructors:

data Expr :: * — * where
EZero ::ExprInt
EFalse ::Expr Bool
ESuc  ::Exprint — Exprlint
ENot  ::Expr Bool — Expr Bool
ElsZero::ExprInt — Expr Bool

We have constants for integer and boolean values, and operators
that act on them.

GADTs can easily be represented in the spine view. For in-
stance, the definition of foSpine for this datatype is as follows:

toSpine :: Type a — a — Spine a
toSpine (Expr Int) EZero

toSpine (Expr Bool) EFalse
toSpine (Expr Int)  (ESuc e)

= Con (conezero EZero)
= Con (conefalse EFalse)
= Con (conesuc  ESuc)
01 e > Expr Int

= Con (conenot  ENot)
:0: e :>: Expr Bool

toSpine (Expr Bool) (ElsZero ¢) = Con (coneiszero ElsZero)
0t e > Expr Int

toSpine (Expr Bool) (ENot e)
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This definition requires the extension of Type with the representa-
tion constructors Expr and Bool. Generic functions defined on the
spine view, such as generic show, can now be used on Expr.

What about generic producer functions? These can be used on
Expr too, because it is also possible to construct datatype represen-
tations for GADTSs in the type spine view:

typeSpine :: Type a — TypeSpine a

typeSpine (Expr Int) = [Sig (conezero EZero)

,Sig (conesuc  ESuc) :®: Expr Int]
typeSpine (Expr Bool) = [Sig (conefalse EFalse)

,Sig (conenot  ENot) :@: Expr Bool

,Sig (coneiszero ElsZero) :®: Expr Int]

To parse boolean expressions, we invoke the generic read func-
tion as follows:

readBoolExpr :: Parser (Expr Bool)
readBoolExpr = read (Expr Bool)

The parser for integer expressions would use a different argument
for Expr. In this example, we are assuming that the expression to be
parsed is always of a fixed type. A more interesting scenario would
be to leave the type of the GADT unspecified and let it be dynami-
cally determined from the parsed value. This would be useful if the
programmer wants to parse some well-typed expression regardless
of the type that the expression has.

A possible solution to parsing a GADT without specifying its
type argument would be to existentially quantify over that argument
in the result of the parsing function. Next, we discuss how the spine
view deals with existential types.

2.6 Existential types and consumer functions

In Haskell, existential types are introduced in constructor declara-
tions. A type variable is existentially quantified if it is mentioned in
the argument type declarations but omitted in the target type. For
example, consider dynamically typed values:

data Dynamic:: x* where
DynVal:: Type a — a — Dynamic

The type variable a in the declaration is existentially quantified. It
is used to hide the type of the a-argument used when building a
Dynamic value. The type a is kept abstract when pattern matching
a Dynamic value, but by case analyzing the type representation
it is possible to dynamically recover the type a. Thus, statically,
Dynamic values all have the same type, but, dynamically, the type
distinction can be recovered and acted upon.

To represent dynamic values in Spine, we add type representa-
tions for Type itself and Dynamic. Hence, we add the following
two constructors to Type:

data Type::x — x where
Type :: Type a — Type (Type a)
Dynamic :: Type Dynamic

Now, Dynamic values may be represented as follows by the
spine view:

toSpine :: Type a — a — Spine a

toSpine Dynamic (DynVal rep val) = Con (condynval DynVal)
:0: rep :>: Type rep
01 val > rep

While Dynamic values may be easily represented, this is not
the case for all datatypes having existential types. Recall that in a
spine representation, every constructor argument is paired with its

Alexey Rodriguez Yakushev, Johan Jeuring

type representation in the datatype Typed. In general, in construc-
tors having existential types, it may not be possible to build such a
pair because the representation of the existential type may be miss-
ing. The constructor DynVal is a special case, because it carries the
representation type of the existential a. For an example where the
representation of a constructor with existential types is not possi-
ble, consider adding an application constructor to the expression
datatype:

data Expr:: * — * where

EApp :: Expr (a — b) — Expra — Expr b
and consider the corresponding toSpine alternative:

toSpine :: Type a — a — Spine a

toSpine (Expr b) (EApp fun arg) = Con (coneapp EApp)
w0 fun :>: Expr (a:— b)
ot arg > Expra

This code is incorrect due to the unbound variable a which stands
for the existential representation. The conclusion here is that the
spine view can be used on an existential type, as long as the
constructor in which it occurs carries a type representation for it.

2.7 Ecxistential types and producer functions

The view for producer functions, the type spine view, cannot repre-
sent existential types equally well as the spine view. For instance,
consider how to generate such a representation for dynamic values:

typeSpine :: Type a — [Signature a]

typeSpine Dynamic = [Sig (condynval DynVal) :®: Type a :®: a)

What should the representation a be? There are two options, we
either fix it to a single type representation or we range over all
possible type representations. Choosing one type representation
would be too restrictive, because read would only parse dynamic
values of that type and fail on any other type. We try the second
option:

typeSpine Dynamic = [Sig (condynval DynVal) :®: Type a :®: a
| a — types]

This code does not yet have the behavior we desire. For typeSpine
to be type-correct, types must return a list of representations all
having the same type. Because Type is a singleton type (each type
has only one value), fypes returns a single type representation. We
would like fypes to generate a list of all possible type representa-
tions, but different type representations have different types. There-
fore, types should return representations whose represented type is
existentially quantified. To this end, we define the type of boxed
type representations:

data BType = Va.Boxed (Type a)
applyBType :: (Va.Typea — c) — BType — ¢
applyBType f (Boxed a) =fa

Now we can define the type spine of dynamic values, for which we
assume a list of boxed representations (types):

types :: [BType]
typeSpine Dynamic = [Sig (condynval DynVal) :@: Type a :®: a
| Boxed a — types)|

The boxed representations are used to construct a list of construc-
tor signatures that represent a dynamic value of the correspond-
ing type. There are infinitely many type instances of polymorphic
types, therefore there are infinitely many Dynamic constructor rep-
resentations. An infinite type spine is not a desirable representation
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to work with. The read function would try to parse the input us-
ing every Dynamic constructor representation. If there is a correct
parse, parsing would eventually succeed with one of the represen-
tations. However, if there is no correct parse, parsing would not
terminate. Moreover, this representation precludes implementing
more efficient variants of parsing.

Infinite type spine representations for datatypes with existen-
tials make the use of generic producers on such datatypes unprac-
tical. Before describing a modified type spine view that solves this
problem, we explore a couple of non-generic examples to motivate
our design decisions.

We start with the parser definition for Dynamic values. In the
code above, we are able to parse any possible dynamic value be-
cause there are DynVal constructor signatures for all possible types.
For each signature, we build a parser that parses the corresponding
type representation and a value having that type.

Now, rather than parsing the two arguments of the constructor
DynVal independently, we introduce a dependency on representa-
tions. First, we parse the type representation for the existential.
Then, we use it to build a parser of the corresponding type and
parse the second argument. In this way, we no longer need to have
an infinite representation of types because we obtain the represen-
tation of the existential during the parsing process:

read:: Type a — Parser a

read Dynamic = do
Boxed a +— readType
value <« reada
return (DynVal a value)

To this end, we use a function that parses type representations.
Because the result may be of an arbitrary type, readType produces
a representation that is boxed:

readType :: Parser BType

We defer the presentation of readType to Section 3.4.

The same technique can be used to parse any constructor having
an existential type. For example, the definition for parsing expres-
sion applications is as follows:

read (Expr b) = do
Boxed a — readType
Sfun — read (Expr (a :— b))
arg «— read (Expr a)
return (EApp fun arg)

In this example, the type representation that is parsed is used to
build the type representations for the two remaining arguments.

These two examples show that constructors with existential
types must be handled differently from other constructors. In such
constructors, the constructor argument representations depend on
the type representation of the existential type. In our examples, this
dependency is witnessed by the dynamic construction of parsers
based on the type representation that was previously parsed.

3. Animproved Spine view: support for
existential types

We start this section by showing how to extend the spine view for
producers to represent existential types explicitly. Then, we show
why this extension is also necessary for the consumer spine view.

3.1 The existential case for producer functions

We have learned two things from the read examples for construc-
tors with existential types. First, we need a way to represent ex-
istential variables explicitly, so that generic functions can handle
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existential type variables specifically. And second, there is a de-
pendency from constructor arguments on the existential variable.
For example, we can only parse the function and argument parts
of an expression application, if we have already parsed the existen-
tial type representation. We modify the type spine view to accom-
modate these two aspects. We extend the constructor signatures in
this view with a constructor to represent existential quantification:
AllEx. The dependency of type b on an existential type a is made
explicit by means of a function from type representations of type a
to representations of b.

data Signature :: * — x where
Sig ::a— Signature a
(::) :: Signature (a — b) — Type a — Signature b
AllEx:: (Va.Type a — Signature b) — Signature b

Interestingly, the type variable a is universally rather than existen-
tially quantified. Why is this the case? The type spine view rep-
resents all possible values of a datatype, therefore the existential
variable must range over all possible types. This also explains the
name of the constructor A//Ex, which stands for all existential type
representations.

There is another modification to the type spine view. The Sig
constructor no longer carries constructor information. Instead, this
information is stored at the top-level of the representation:

type TypeSpine a = [Conlnfo (Signature a)]

This change is not strictly necessary but it is convenient. Suppose
that the constructor information is still stored in Sig. Now, appli-
cations that need to perform a pre-processing pass using construc-
tor information (for example, for more efficient parsing) would be
forced to apply the function in Al/Ex only to obtain the constructor
information. Having this information at the top-level, rather than at
the Sig constructor, avoids the trouble of dealing with A//Ex unnec-
essarily.

The function typeSpine has to be modified to deal with the new
representation:

typeSpine :: Type a — TypeSpine a
typeSpine Int = coninti (Sigi)

| i — [minBound..maxBound]|
typeSpine (Maybe a) = [connothing (Sig Nothing)

sconjust  (SigJust  :®:a)]
typeSpine (Either a b) = [conleft (Sig Left :®: a)

,conright  (Sig Right :®:D)]
typeSpine (List a) = [connil (Sig[])

,concons (Sig (:) :®: a :®: List a)|
typeSpine Dynamic =
[condynval (AlIEx (Aa — Sig (DynVal a) :®: a))]

Now let us rewrite the read function using the new type spine
view. First of all, the constructor is parsed in read, because the
constructor information is now at the top-level:

read:: Type a — Parser a
read Int = readlnt
read rep = alternatives [ readParen (conParser conrep)
| conrep — typeSpine rep]
where conParser conrep = token (conName conrep)
>> gread (conVal conrep)

The function that performs generic parsing is not very different for
the first two Signature constructors:

gread:: Signature a — Parser a
gread (Sig c) = return ¢
gread (con :®: arg) = gread con ‘ap‘ read arg
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The existential case is the most interesting one. We first parse the
type representation, and then continue with parsing the remaining
part of the constructor.

gread (AllEx f) = readType >= applyBType (gread of)

This example effectively captures the read examples for dynami-
cally typed values and for expression applications. The type repre-
sentation is used to build the parser for the remaining constructor
arguments. This dependency is expressed using the bind operation
on parsers (>>). This means that the definition of generic read for
existential types must be based on monadic parser combinators, and
therefore applicative parser combinators cannot be used.
There is one function that we use to read type representations:

readType :: Parser BType

Because type representations are somewhat special, we deal with
them separately in Section 3.4.

3.2 Choice in the representation of existentials

There a choice in the representation of existential quantification.
Consider the representation of DynVal given above. The function
argument of A//Ex receives a type representation and uses it to build
the partially applied constructor value Sig (DynVal a). This value
requires only one more argument which is represented by a.

An alternative way to encode DynVal is to make all of the
constructor arguments explicit:

typeSpine :: Type a — TypeSpine a

typeSpine Dynamic =
[condynval (AlIEx (Aa — Sig DynVal :®: Type a :®: a))]

The two approaches differ in whether a generic function has access
to the type representation in the application case (:&:). It would
seem that the second representation of DynVal is more flexible
because it would allow the production of values different than a
for the first argument. However, Type is a singleton type, so the
only value (excluding L) that inhabits the type represented by
Type ais a itself. It follows that the second representation of DynVal
is not an improvement over the first. For this reason, we always
choose to expose the representation of an existential by means of
the existential case only (Al/EX).

3.3 The existential case for consumer functions

Producer functions need a modified type spine view (TypeSpine)
to handle existential types. Do we need to modify the spine view
(Spine) for consumers too? After all, we were able to define roSpine
for Dynamic using the existing view. There is a good reason why
we still need to modify the spine view to handle existentials in an
appropriate way. Consider the read and show functions for exam-
ple. There is a clear dependency on the representation of existential
types during parsing. It is not possible (or at least very impracti-
cal) to parse a dynamic value without first having the type repre-
sentation for it. Therefore, existential type representations should
appear earlier than the constructor arguments that depend on it in
the text input used for parsing. This means that show must pretty
print the type representation for the existential before the dependent
constructor arguments. However, the current spine view makes this
difficult because the representation for the existential may appear
in any position.

We solve the problem above making the dependence between
existential types and constructor arguments explicit. Like the type
spine view, the new constructor encodes the dependency on exis-
tentials using a function. The type variable is existentially quanti-
fied because in this case we are representing a specific constructor
value:
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data Spine:: x — * where
Con ::a — Spinea
(:0:) :: Spine (a — b) — Typed a — Spine b
Ex :Typea— (Typea— Spineb) — Spineb
As in the type spine view, the constructor information is lifted out

of the Con constructor onto the top-level. The new function foSpine
is as follows:

toSpine:: Type a — a — Conlnfo (Spine a)

toSpine Int x =conintx  (Con x)

toSpine (Maybe a) (Just x) = conjust  (Con Just
0rx >l a)

toSpine (Maybe a) Nothing = connothing (Con Nothing)

toSpine (Either a b) (Left x) = conleft (Con Left
01X >l a)

toSpine (Either a b) (Righty) = conright  (Con Right
101y > b)

toSpine (List a) (x:xs) =

concons (Con (:) :0: x :>: a :0: x5 :>: List a)
toSpine (List a) [ = connil (Conl])

toSpine Dynamic ~ (DynVal a x) = condynval (Ex a dynSig)
where dynSig a = Con (DynVal a) :0: x :>: a

The show function is modified as follows to use the constructor
information that appears at the top-level:

show:: Type a — a — String
show rep x = paren (conName spinecon
e gshow (conVal spinecon))
where spinecon = toSpine rep x

Generic show does not change much for the two first spine cases:

gshow ::Spine a — String
gshow (Con con) =""
gshow (con :o: arg) = gshow con e show (rep arg) (val arg)

For the existential case, generic show prints the type representation
first and continues printing the remaining constructor values:

gshow (Ex af) = showType a e gshow (fa)
The function for printing type representations is explained next:

showType :: Type a — String

3.4 Handling type representations

In the example above, we have used the function readType to parse
a type representation. The function readType returns a boxed rep-
resentation since the represented type is dynamically determined
during parsing. Unfortunately, it is not easy to define producers that
return boxed representations using generic programming. If special
care is not taken, such functions may loop when invoked. In the
following we describe the problem in more detail and we propose
a solution.

3.4.1 Parsing type representations

The obvious way to parse a type representation is to do it generi-
cally by using the read function. To this end, we use generic read
to parse boxed type representations:

readType :: Parser BType
readType = read BType
Unfortunately, the function given above is non-terminating. First,

remember that BType uses existential quantification, and hence its
type spine is:

typeSpine BType = [conboxed (AllEx (Aa — Sig (Boxed a)))]

Since the type spine uses an existential case, gread would try
to parse a BType-value calling readType recursively. Therefore,
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trying to parse a boxed type representation would lead to parsing an
existential type, which leads to parsing a boxed type representation
and so on.

How can we solve this problem? A desperate solution would be
to give up using generic programming in the definition of readType.
This approach is undesirable because every generic producer would
need to have a type representation case. Worse even, every such
case would have to handle all type representation constructors. If
there are n generic functions and m represented types, the program-
mer would need to write n X m cases. Despite this significant prob-
lem, it is worth exploring a non-generic variant of readType and try
to generalize it.

readType = alternatives (map readParen
[ do foken "Int"
return (Boxed Int)
, do token "Maybe"
Boxed arg < readType
return (Boxed (Maybe arg))
, do token "Either"
Boxed left «— readType
Boxed right «— readType
return (Boxed (Either left right))
, do roken "List"
Boxed arg < readType
return (Boxed (List arg))

)

This example shows that parsing a type representation is no
different than parsing a normal datatype in that the type argument
of the GADT plays no role here. This example also illustrates
the verbosity of writing such boilerplate without using generic
programming.

The code of readType suggests that we could forget the “GADT-
ness” of type representations during parsing. This is the first step
we take towards being able to define generic producers for boxed
representations, namely, defining the datatype of type codes, a non-
GADT companion to type representations:

data TCode :: * where

Cint :: TCode

CMaybe ::TCode — TCode

CEither ::TCode — TCode — TCode
CList :: TCode — TCode

CArrow ::TCode — TCode — TCode

CType :: TCode — TCode
CDynamic :: TCode
CTCode ::TCode

Besides naming and the absence of a type argument, this datatype
is identical to type representations. To make the relation between
type codes and type representations precise, we introduce two con-
version functions. The first function converts a type representation
to a type code, erasing the type information in the process:

eraseType :: Type a — TCode
eraseType Int = Cint

eraseType (Maybe a) = CMaybe (eraseType a)

eraseType (Either a b) = CEither (eraseType a) (eraseType D)
eraseType (List a) = CList (eraseType a)

eraseType (a:— b) = CArrow (eraseType a) (eraseType b)
eraseType (Typea) = CType (eraseType a)

eraseType Dynamic = CDynamic

eraseType TCode = CTCode

Conversely, we want to be able to convert from a type code to
a type representation. Note, however, that the resulting type-index
depends on the value of the type code and hence the result is a
boxed representation:
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interpretTCode :: TCode — BType
interpretTCode Cint = Boxed Int
interpretTCode (CMaybe a) = applyTCode (Boxed o Maybe) a
interpretTCode (CEither a b) =

applyTCode (Ar — applyTCode (Boxed o Either r) b) a
interpretTCode (CList a) = applyTCode (Boxed o List) a
interpretTCode (CArrow a b) =

applyTCode (Ar — applyTCode (Boxedo (r:— )) b) a
interpretTCode (CType a) = applyTCode (Boxed o Type) a
interpretTCode CDynamic = Boxed Dynamic
interpretTCode CTCode = Boxed TCode

applyTCode ::Vc.(Va.Typea — ¢) — TCode — ¢
applyTCode f code = applyBType f (interpretTCode code)

Using type codes it is now possible to implement parsing of
type representations generically. To implement readType, we parse
a type code value and then we interpret it to obtain a type represen-
tation:

readType :: Parser BType
readType = read TCode == return o interpretTCode

Here TCode is the type representation for type codes, we do not
show the spine and type spine views for this datatype as they are no
different from that of other datatypes.

Showing a type representation was no problem previously, we
could have written showType as follows:

showType :: Type a — String
showType a = show (Type a) a

However, to remain compatible with read we use type codes as the
means to pretty print type representations:

showType :: Type a — String
showType = show TCode o eraseType

Summarizing, readType is a special function. It cannot be de-
fined by instantiating read to boxed representations. Such an in-
stantiation leads to non-termination because parsing a boxed repre-
sentation uses the existential case of generic parsing, which in turn
makes the recursive call to readType. To solve this problem, we de-
fined type codes, a non-GADT analogue of type representations.
Non-termination is no longer an issue with type codes. To parse
a type code we no longer need to parse existential types, which
prevents the recursive call to readType. This machinery enables the
definition of readType as a generic program. This machinery can be
reused for other generic producers, for example, see the definition
of enumerateType in Section 4.

3.5 Equality of type representations

In this section, we have introduced machinery to handle type repre-
sentations generically, namely type codes and conversion functions
between type codes and type representations. In Section 4, we show
an advanced GADT example that requires a last piece of machin-
ery: equality on type representations.

Below we show a function which compares two type represen-
tations, if the two representations are equal, it returns a proof that
the two values represent the same type. First, we introduce the type
of type equalities:

data TEq::* — % — x where
Refl:: TEqaa

A value of type TEq a b can be used to convince the type checker
that two types a and b are the same at compile time. Since two type
representations may not be the same, function teq returns the result
in a monad:
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teq::Monad m = Typea — Typeb — m (TEq a b)
teq Int Int = return Refl

teq (Maybe a) (Maybe b) =liftM cong, (teq a b)

teq (List a) (List b) = liftM cong, (teq a b)

teq (Either a c) (Either b d) = liftM2 cong, (teq a b) (teq c d)
teq (Lamac) (Lambd) =IliftM2 cong, (teqab) (teq c d)
teq (a:— c) b:—d) =IiftM2 cong, (teq a b) (teq c d)
teq — _ = fail "Different reprs"

Here, we use /iftM and [iftM2 to turn congruence functions into
functions on monads. Congruence functions are used to lift equality
proofs of types to arbitrary type constructors. These are defined as
follows:

cong;::TEqab — TEq (fa) (fb)

cong; Refl = Refl

congy:TEqab—TEqcd — TEq(fac) (fbd)

cong, Refl Refl = Refl

3.6 Type codes and dependently typed programming

In the literature of generic programming based on dependent
types, sets of types having common structure are modelled by
universes (Benke et al. 2003). Values known as universe codes
describe type structure and an interpretation function makes the
relationship between codes and types explicit.

The generic programming approach that this chapter describes
would greatly benefit from the use of dependent types. Our ap-
proach is slightly redundant due to the necessity of both type rep-
resentations and type codes. If we were to revise our approach to
use dependent types, the generic machinery would be based on type
codes only. Previously, the type representation datatype described
the relationship between types and the values that represent them.
Using dependent types, this relationship would be defined by inter-
pretation on codes and therefore type representations would not be
necessary. Furthermore, producers like readType would no longer
need to generate type representations. It follows that it would not
be possible to accidentally define a non-terminating variant of such
producers.

3.7 On the partiality of parsing typed syntax trees

Parsing is necessarily a partial operation. A parser for lists will
fail to produce a value if the string to parse is not the textual
representation of a list. Generic read is also a partial operation: the
constructor names to be recognized in the input depend on the type
representation argument of gread.

Generalized algebraic datatypes make the behavior of gread
more interesting. When a GADT is used, the set of constructors to
recognize in the input will, in general, be a subset of all constructors
in the GADT. For example, gread (Expr Int) parses all constructors
with target type Expr Int but it fails to recognize the constructors
EFalse and ENot. Note that this behavior is closely related to type-
checking: what would be type-checking errors in a different context
are presented here as parsing errors.

A more interesting case is that of expression application. In this
case, a representation for the function argument type is parsed and
it steers the parsing of the function and the argument expressions.
In this case, a type incompatibility between function and argument
would be revealed as a parsing error.

4. Application: enumeration applied to simply
typed lambda calculus

Generalized algebraic datatypes can encode sophisticated invari-

ants using type-level constraints. We can combine such precise

datatypes with generic producer functions, to generate values that
have interesting properties. The example of this section combines
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a datatype representing terms of the simply typed lambda calculus
with a generic function that enumerates all the values of a datatype.
Using this function we can, for example, generate the terms that
have the type of function composition.

4.1 Representing the simply typed lambda calculus

Terms of the simply typed lambda calculus can be represented as
follows:

data Lam :: % — % — x where
Vz ::Lama (EnvConsae)
Vs :Lamae— Lama (EnvConsbe)
Abs ::Lam b (EnvConsae) — Lam (a —b)e
App::Typea — Lam (a —>b)e —Lamae—Lambe

The datatype Lam can be read as the typing relation for the sim-
ply typed lambda calculus. A value of type Lam a e represents the
typing derivation for a term of type a in an environment e. Environ-
ments are encoded by list-like type constructors:

data EnvConsae
data EnvNil

Each Lam constructor is a rule of the typing relation. The first
constructor (Vz) represents a variable occurrence of type a, which
refers to the first position of the environment (EnvCons a e). We
can build a variable occurrence that refers to a deeper environment
position by means of the weakening constructor Vs. Lambda ab-
stractions are typed by means of the Abs constructor. In this case,
a b-expression that is typeable in an environment containing a in
the first position can be turned into a lambda abstraction of type
a — b. The application constructor is almost like application in our
previous example, EApp, except that App includes a representation
for the existential type.

The spine representation for this datatype can be defined as
follows:

toSpine (Lam a e) Vz = convz (Con Vz)

toSpine (Lam a (EnvCons b e)) (Vs tm) =
convs (Con Vs :o: tm :>: Lam a e)

toSpine (Lam (a :— b) e) (Abs tm) = conabs (Con Abs :o: body)
where body = tm :>: Lam b (EnvCons a e)

toSpine (Lam b ¢) (App a tm| tmy) = conapp (Ex a app)
where app a = Con (App a) :o: tmy :>: Lam (a :— b) e :o: tmy

>:Lamae

The type representations are pattern matched in the Vs and Abs
constructors to build the representation in the right hand side. The
App constructor has an existential type, therefore we use Ex in the
spine representation. Using the type representation, we can now
print lambda terms.

For producer functions, we define the type spine view on Lam
as follows:

typeSpine (Lam a ) = concat
[[convz (Sig Vz) | EnvConsa’ e’ «— [e],Refl — teqaa’]
,[convs (Sig Vs :®: Lamae’) | EnvCons b e’ — [e]]
,[conabs (Sig Abs :@®: Lam b (EnvCons a’ e)) | a’ :— b« |a]]
;[conapp

(AllEx
(Ab — Sig (App b) :®: Lam (b:— a) e :®: Lam b e))]

]

We test whether a constructor signature has the desired target type
by performing pattern matching on type representations. The cases
Vz and Vs are only usable if the environment type argument is not
empty. Additionally, the target type of Vz requires the equality of
the type and the first position in the environment. Therefore, the Vz
case invokes type equality (feq) on the term type (a) and the type
of the first environment position (a’). The abstraction constructor
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(Abs) requires an arrow type, which is checked by pattern matching
against an arrow type representation. The application constructor
can always be used, because there is no restriction on the target
type of App.

This type spine representation is more informative and larger
than previous examples. The reason is that the GADT type argu-
ment is more complex because of the use of type-level environ-
ments. Furthermore, the type constraint in Vz requires the use of
type equality (feq). Fortunately, it is possible to generate the type
spine representation by induction on the syntax of the datatype dec-
laration. It would be possible to automate this process using exter-
nal tools such as DrIFT and Template Haskell if these tools sup-
ported GADTs.

4.2 Breadth first search combinators

The generic enumeration function generates all possible values of
a datatype in breadth first search (BFS) order. The order used in the
search corresponds to the search cost of terms generated. The type
BFS is used for the results of a breadth first search procedure:

type BFS a = [[a]]

The type BFS represents a list of multisets sorted by cost. The first
multiset contains terms of cost zero, the second contains terms of
cost one and so on. Using this datatype, a consumer can inspect
the terms up to a certain cost bound and hence the search does
not continue if further terms are not demanded. This is useful
because the enumeration function returns a potentially infinite list
of multisets.

Multiple BFS values can be zipped together by concatenating
multisets having terms of equal cost:

Py it [BFSa] — BFS a
2pps [1 =11
zipyfs xss = if all null xss then [] else
concatMap head xss’ : zipyg (map tail xss’)
where xss’ = filter (— o null) xss

It is more convenient to manipulate BFS results using monadic
notation. Therefore, we define return and bind on BFS:

returnyg x = [[x]]
(>>=pf)::Vab.BFSa— (a— BFSb) — BFSb

(s=pps) x5 f=
foldr (Axs xss — zipy, (map fxs +-[[]:xss])) [] xss

Return creates a search result that contains a value of cost zero.
Bind feeds the terms found in a search xss to a search procedure
/- The cost of the term passed to f is added to the costs of that
search procedure. Consider, for example, the search results aSearch
consisting of the terms Axy — y and Ax y — x with costs three and
four respectively; and a search procedure that produces a term of
cost one by adding an abstraction to its argument:

aSearch  =1[],[],[],[Abs (Abs Vz)],[Abs (Abs (Vs Vz))]]
f tm = [[],[Abs tm]]

Then, the expression (aSearch >>= f) evaluates to the following:
(11, [1: 11, [Abs (Abs (Abs Vz)) |, [Abs (Abs (Abs (Vs Vz)))]]

The two terms in the initial search result now have an additional
abstraction argument and have costs of four and five respectively.

The cost addition property of bind can be stated more formally
as follows:

49

propBind::BFS a — (a — BFS b) — Bool
propBind xss f = all (all costBind) (costs xss f)
where costBind (c, (cxss,¢f)) = ¢ = Cxss +¢f
costs::BFS a — (a — BFS b) — BFS (Int, (Int, Int))
costs xss f = cost (cost xss >>=pg A(Cxss,X) —
cost (fx) >=pp A(cr,y) —
returnpgs (Cxss, cf))

where cost annotates each BFS result value with its cost:

cost::BFS a — BFS (Int,a)
cost = zipWith (Asz — map ((,) sz)) [0..]

Additionally we use a function that increases the cost of the values
found in a search procedure:

spend::Int — BFS a — BFS a
spend n = (!ln) oiterate ([]:)

When using a very expensive search procedure, it is useful to
increase the cost of terms exponentially:

raise::Int — BFSa — BFS a
raise base xss = traverse 0 xss where
traverse _ ] =]
traverse O (xs:xss) =[]:xs:traverse 1 xss
traverse exp (xs: xss) = spend (base®P — base®P~! — 1)
(xs:traverse (exp+ 1) xss)

For example, spend 2 aSearch and raise 2 aSearch evaluate to:
([ 11,10, [1, 11, [Abs (Abs V)], [Abs (Abs (Vs Vz))]]

(L L L [ L0 [ [ [Abs (Abs Vz),
LU L5001 [Abs (Abs (Vs Vz)) ]

AR
s LDy

respectively.

4.3 Generic enumeration

The generic enumeration function returns values of a datatype,
classified by cost in increasing order. The cost of a term is the
number of datatype constructors used therein (constructors used in
type representations are an exception and we discuss them last in
the definition of enumerateType).

enumerate:: Typea — BFS a
enumerate a = zipyy [genumerate (conVal s) | s < typeSpine a]

At the top-level, function genumerate is invoked on each construc-
tor signature and the resulting search results are zipped together.

The first case of genumerate returns the constructor value as the
search result assigning it a cost of one. The second case performs
search recursively on the function and argument parts and combines
the results using BFS monadic application apyg :: BFS (a—b) —
BFSa— BFSb.

genumerate ::Signaturea — BFSa
genumerate (Sig c) = spend 1 (returnpg c)
genumerate (fun :®:arg) =

genumerate fun ‘apy,‘ enumerate arg

The third case deals with existential types and hence in our partic-
ular application it deals with expression application. This case first
enumerates all possible types, and then constructs a constructor sig-
nature using f, for each type, and enumeration is called recursively:

genumerate (AllExf) = enumerateType
= genumerate o applyBType f

As usual with producer functions, enumerateType returns a boxed
representation. The enumeration of types is performed on type
codes, which interpretTCode converts to boxed representations.
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enumerateType :: BFS BType
enumerateType = raise 4 (enumerate TCode)
>>= 5 returnyg o interpretTCode

For the examples in this paper, we are not interested in values that
have very complex existential types. Therefore, we keep their size
small by assigning an exponential cost to existentials. This also has
the effect of reducing the search space, which makes the generation
of interesting terms within small cost upperbounds more likely.

4.4 Term enumeration in action

For convenience, we define a wrapper function to perform enumer-
ation of lambda terms:

enumerateLam :: Type a — Int — BFS (Lam a EnvNil)
enumerateLam a cost = take (cost+ 1)
(enumerate (Lam a EnvNil))

Our term datatype can perfectly deal with open terms. But the user
interface becomes simpler if only closed terms are provided. There-
fore, the wrapper function only generates closed lambda terms.

A direct invocation of the enumeration function will result in an
attempt to generate an infinite number of terms. For convenience,
our wrapper function takes a cost upperbound that limits the cost
of terms that are reported. Because of lazy evaluation, the search
procedure stops when all terms within the cost bound are reported.
The user may choose to increase the cost upperbound in subsequent
invocations if the desired term is not found.

The language that the Lam datatype represents is very simple.
There are no datatypes, recursion, and arithmetic operations. For
example, we cannot expect the enumeration function to generate
the successor or predecessor functions for naturals if functions of
the type Int — Int are requested. In principle, it is not difficult to
extend the language by adding the appropriate constants to Lam.
For example, we could add naturals and arithmetic operations on
them. We could also add list constructors and elimination functions
and even recursion operators such as catamorphisms and paramor-
phisms.

However, we can keep our language simple and still gener-
ate many interesting terms. We focus our attention to parametri-
cally polymorphic functions. Although we do not model paramet-
ric polymorphism explicitly in Lam, such functions are naturally
generated when the requested type is an instance of the polymor-
phic type. For instance, a request with type Int — Int generates the
identity function.

To make the intent of generating polymorphic functions more
explicit, we define a few types that are uninhabited in the Lam lan-
guage. These types play the role of type variables in polymorphic
type signatures:

data A
data B
data C
data D

Of course, we also introduce the corresponding type representation
constructors:

data Type::* — x where

A:: Type A
B:: Type B
C::TypeC
D::Type D

In our first example, we generate the code for the identity function.
The type of the identity function is Va.a — a, which in our notation
translates to A :— A. The function we expect to generate is Ax — x,
which in Lam is written as Abs Vz. This term consists of two
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constructors, therefore a cost upperbound of two should suffice to
generate it. The application enumerateLam (A :— A) 2 results in:

([];[],[Abs Vz]]

It is instructive to sketch the search procedure as it looks for the
identity function. First, enumerate is called on the identity type
with a closed environment. This function calls genumerate on all
constructor signatures that match the desired type. The two variable
cases Vz and Vs are not considered, because they cannot be used
with an empty environment. Application can always be used but
recall that it requires an existential type representation, so the cost
is at least 5, which is more expensive than the function that we
are looking for. The abstraction case matches the identity type so
enumeration is called recursively to generate the abstraction body.
Now, a term of type A is requested with a type A in the first position
in the environment. The case Vz matches perfectly with this request
so the term Abs Vz is returned with cost two.

There are infinitely many lambda calculus terms of a given
type when that type is inhabited. A simple way to way to obtain
a new term is by creating a redex that reduces to the term that we
currently have. For example, we can obtain a new identity function
by adding a redex in the function body: Ax — (Ax — x) x. Can this
term be found by our enumeration function? Yes, provided that we
increase the cost upperbound to include that of our new term. The
new term is essentially two identity functions plus an application
constructor, which makes a cost upperbound of nine. We evaluate
enumerateLam (A :— A) 9 which yields:

(1,11, [Abs Vzl, [1,[1,[1, [, [1, [1, [Abs (App A (Abs Vz) VZ)]]

This example shows that the search space is somewhat redundant.
A way to speed up term search would be to avoid the generation
of redundant terms by adding constraints to Lam. For example, we
could avoid redeces by preventing the generation of abstractions in
the left part of applications.

Another interesting example is the generation of the application
function. This function has type Va b.(a — b) — a — b, which
in our notation is written ((A :— B) :— A :— B). We evaluate
enumerateLam ((A :— B) :— A :— B) 10 to generate an application
function, which results in:

([,[1,[Abs Vz], {111, 11, [1, (][], ],
[Abs (Abs (App A (Vs Vz) Vz))]]

These are the encodings for the functions Ax — x and Ax y —
x y. The careful reader may wonder why the other identity term
Ax — (Ax — x) x, which has cost 8 in the previous example, is not
generated. The answer is that the cost of the term includes that of
the type representation used in the application constructor. Since
this example has a different type, the type representation would be
A :— B rather than A. It follows that the term Ax — (Ax — x) x is
not generated because it has a cost of 14.

Our last example is function composition. The type of this
function is Va b c.(b — ¢) — (a — b) — a — c. To generate
composition, we evaluate

last (enumerateLam ((B:— C) :— (A:— B) :— (A:— C)) 19)
which yields to the encoding of Axy z — x (y 2):
[Abs (Abs (Abs (App B (Vs (Vs Vz)) (App A (Vs Vz) Vz))))]

5. Related work

To the best of our knowledge, only the spine approach (Hinze et al.
2006; Hinze and Loh 2006) enables generic programming on gen-
eralized algebraic datatypes in Haskell. This is the approach on
which the work in this chapter is based. Because both the spine
and the type spine view can encode GADTs, both consumer and
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producer functions can be defined on such datatypes. Interestingly,
to properly support GADTs for producer functions, the approach
should also support existential types. For example, when reading a
GADT from disk, we may want the GADT type argument to be dy-
namically determined from the disk contents. Therefore, we would
existentially quantify over that argument. However, the spine ap-
proach supports existential types for consumers but not for produc-
ers.

Generalized algebraic datatypes are inspired by inductive fam-
ilies in the dependent types community. We are aware of two ap-
proaches (Benke et al. 2003; Morris 2007) that support definitions
by induction on the structure of inductive families. Both approaches
make essential use of evaluation on the type level to express the
constraints over inductive families. Examples of type families on
which generic programming is applied include trees (indexed by
their lower and upper size bounds), finite sets, vectors and tele-
scopes. Neither approach gives examples for the support of exis-
tential types so it is not clear whether these are supported.

Weirich (2002) proposes a language that provides a construct
to perform runtime case analysis on types. In order to support uni-
versal and existential quantification, the language includes analyz-
able type constants for both quantifiers. This approach supports the
definition of consumers and producers. Moreover, if the language
is extended with polymorphic kinds it supports quantification over
arbitrarily kinded types.

Our approach to defining breadth-first search combinators is not
novel. Spivey (2000) defines a set of breadth-first search combina-
tors such as monadic join and composition, and proves desirable
properties for them. There are many similarities between our work
and that of Spivey. It would be interesting to see whether our com-
binators satisfy the same properties as the combinators proposed by
Spivey.

Koopman and Plasmeijer (2007) generate lambda calculus
terms by performing systematic enumeration based on a grammar.
To reduce the size of the search space, the grammar has syntactic
restrictions such as that the applications of certain operands are
always saturated, and recursive calls are always guarded by a con-
ditional. The candidate terms are then reported to the user based on
whether they satisfy an input-output specification, which is estab-
lished by evaluation.

Djinn (Augustsson 2005) generates lambda calculus terms
based on a user-supplied type. This tool implements the decision
procedure for intuitionistic propositional calculus due to Dyckhoff
(1992). Similarly, the work of Katayama (2005) makes use of a type
inference monad to generate well-typed terms. Later, the candidate
terms are evaluated and checked against an input-output specifi-
cation. As in our approach, Djinn and the approach of Katayama
generate only well-typed terms so there is no need for a type check-
ing phase to discard ill-typed terms.

The main difference between the work of Koopman and Plas-
meijer (2007) and ours is that our generator is typed-based. It fol-
lows that our generator never returns ill-typed terms because the
search space is reduced by means of type-level constraints in the
GADT. Generating ill-typed terms has advantages. For example,
Koopman’s approach can generate the Y-combinator. On the other
hand, ill-typed terms are usually not desirable, so these have to be
discarded through either evaluation (Koopman), which slows down
the generation algorithm. In Koopman’s work the generation of ill-
typed terms is prevented to some extent by the syntactic constraints
imposed on the grammar.

A type-based generator, such as Djinn, Katayama’s generator
and our approach, is able to synthesize polymorphic functions
without the need for input-output specifications. Koopman’s work,
however, cannot generate polymorphic functions based solely on
type information.
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Djinn supports user-defined dataypes. Katayama and Koop-
man’s generators are able to generate recursive programs. Our ap-
proach currently generates programs for a rather spartan language.
However, it should be possible to add introduction and elimination
constants for (recursive) datatypes, and recursion operators such as
catamorphisms and paramorphisms.

Both Djinn and our approach enumerate terms guided by type
information. However, the two approaches are very different. Djinn
has a carefully crafted algorithm that handles the application of
functional values in such a way that it is not necessary to exhaus-
tively enumerate the infinite search space. As a consequence, Djinn
is able to detect that a type is uninhabited in finite time. In contrast,
our approach produces function applications by means of exhaus-
tive enumeration. First, all the possible types of an argument are
enumerated, and, for each of them, function and argument terms
are enumerated to construct an application. The good side of an ex-
haustive approach like ours is that it can generate all possible terms
of a given type. For example, it can generate all Church numerals,
whereas Djinn only generates those corresponding to zero and one.
On the bad side, if unbounded, our approach does not terminate
when trying to generate a term for an uninhabited type.

We have not performed a careful performance comparison but
we believe that our generator may be the slowest of the approaches
considered here. Probably the main culprit for inefficiency is the
implementation of the existential case. Currently this case enumer-
ates all possible types, even if no applications for that argument
type can be constructed. Ill-typed terms are never generated, but re-
sources are nevertheless consumed when attempting to enumerate
terms having possibly uninhabited types. It is difficult to make the
algorithm smarter about generating types because, being generic, it
does not make assumptions about the particularities of lambda cal-
culus. On the other hand, it is possible to reduce the search space by
adjusting the definition of Lam. For example, we could forbid the
formation of redeces to avoid redundancy of terms, or even adopt
the syntactic restrictions used in Koopman’s work.

While our approach may be less efficient, it has the virtue of
simplicity: the core of the generation algorithm consists of roughly
a dozen lines of code and there is no need for an evaluation or a type
checking phase. Furthermore, it has the advantage of an elegant
separation between the grammar constraints and the formulation of
the enumeration algorithm. This allows us to use the enumeration
function to generate other languages, whereas the other generators
are specific to lambda calculus.

6. Conclusions

We have presented an extension of the spine approach to generic
programming, which supports the definition of generic producers
for existential types. This extension allows the definition of, for ex-
ample, generic read for datatypes that use existential quantification.

Our approach opens the way for a new application of generic
programming. By taking the standard enumeration generic function
and extending it with a case for existentials, we obtain a function
that enumerates well-typed terms. For example, we can instantiate
enumeration to the GADT that represents terms of the simply typed
lambda calculus and use the resulting function to search for terms
that have a given type. Such an application was not previously
possible because producers that handle existential types could not
be generically defined.
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Abstract

Instance-based learning is one of the most widely-used
paradigms in the field of automatic induction. Several rea-
sons back its popularity, among them, we must stand out its
capability to cope with different data representations: these
methods are designed on the basis of a similarity princi-
ple (similar examples should share similar properties) which
makes them easily adaptable to different datatypes via re-
defining the similarity (distance) function. In this sense,
multiple distances and similarity functions can be found in
the literature.

However, the most notorious downside when speaking
of distance-based or similarity-based methods concerns the
low expressivity of the models (if any) these methods learn.
Decisions are made from expressions such as “example x
is more similar or nearer to example y then” which results
in little practical knowledge, very specially when structured
data is involved. However, in many application areas we
require patterns to describe the similarities of the data.

In [Estruch 2008], we have addressed and formalised
the problem of turning distance-based methods outputs into
comprehensible and consistent patterns. In this work, we
first overview our framework and then instantiated it for the
case of data represented by lists of symbols.

Keywords inductive operators, induction with distances,
list-based representations

1.

Inductive Programming is concerned with the automated
construction of declarative programs from data. We can dis-
tinguish several approaches to this problem according to the
knowledge representation adopted. For instance, the field
known as Inductive Logic Programming (ILP) [Muggleton
1999] aims to induce consistent first order theories from data
represented as first order objects (atoms or clauses). A nat-
ural extension of this comes when we move to higher-order
logics [Bowers et al. 2000, Lloyd 2003]. The synthesis of
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functional programs arises when the training data consists in
a sample of inputs and outputs of a evaluation function [Ols-
son 1995, Schmid 2003]. A more generic framework cor-
responds to the induction of functional-logic theories. This
paradigm centres on performing induction within a formal
context that combines the strengths of logic and functional
programming [Ferri et al. 2001].

Although declarative languages constitutes an elegant and
powerful framework for program synthesis, they show some
limitations when the semantic of the data representation
does not match the implicit semantic managed by these
declarative languages. An example of this is found when
working with lists or sequences'. From a declarative point of
view, lists are recursively defined in terms of a special item
(head) and a tail, which is another (sub)list. This perspective
makes difficult the search of patterns in data that does not
suit this definition. For instance, if we are given the lists
abaca and bc, it is not immediate to learn a pattern of the
form b * cx because of the simple fact that the heads of the
lists do not match.

Unfortunately, list-based representations appear in many
real-world domains, which might put some limits on the ap-
plicability of declarative tools. For instance, in bioinformat-
ics, compounds such as amino-acids have a direct represen-
tation as sequences of symbols. Furthermore, other much
more complex molecules can also be described in terms of
sequences by using the so-called 1-D or SMILE represen-
tation [Swamidass et al. 2005]. Another example is found
in text or web mining where documents are usually trans-
formed into sequences of words. Very common software
utilities such as command line completion or orthographic
correctors work on lists as well.

At this point, we could wonder if some of the tools em-
ployed in inductive programming (generalisation operators)
could be upgraded to deal with list-based representations in
a more satisfactory way and overcome this limitation. In
[Estruch et al. 2005, 2006], we consider the possibility by
analysing the relationship between distance and generalisa-
tion

!'In this section, the terms list and sequence will be used indistinctly.
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Note that most of the applications that handle sequences
usually employ distances in order to find the most simi-
lar sequences in data. Distances (and consequently, metric
spaces) play an important role in many inductive techniques
that have been developed to date. Similarity offers a well-
founded inference principle for learning and reasoning since
it is commonly assumed that similar objects have similar
properties. Given the importance of lists as a datatype for
knowledge representation, several distances can be found in
the literature, being the edit distance [Levenshtein 1966] the
best-known. The drawback is that these methods do not infer
a model (or patterns) from data as declarative inductive (or
more general, symbolic) learners do.

Therefore, if we were able to find out a connection be-
tween distance and generalisation we could, on the one hand,
define more suitable generalisation operators to work with
structured data in general and with lists in particular; and on
the other hand, we could come up with induction techniques
capable of transforming distance-based method outputs into
symbolic models, and consequently, more comprehensible
explanations for the user.

Although, there might be many different ways to establish
a connection between distance and generalisation, ensuring
the consistency between them is compelling one. Note that if
the generalisation process is not driven by the distance, this
might result in patterns that does not capture the semantic
of the distance giving wrong explanations about why objects
are similar. Let us see an example of this. If we consider
the edit distance over the lists bbab, bab and aaba, we
see that the list ab is close to the previous lists (distances
are 2, 1, and 2 respectively). However, a typical pattern
that can be obtained by some model-based methods, *ba*,
does not cover the list ab. The pattern does cover the list
dededfafbakgagggeewdsc, which is at distance 20 from the
three original lists. The pattern and the distance are up to
some point inconsistent since those elements that are most
similar to the initial examples are excluded.

Although there are other important works on hybridisa-
tion, they tend to ignore the problem of consistency between
the semantic of the model learnt and the semantic of the un-
derlying distance. Basically, what we do is to define some
simple conditions that a generalisation operator should have
in order to behave in a consistent way wrt. a distance. These
operators are called distance-based generalisation operators.

In this paper, we address the problem of inducing patterns
from lists of symbols embedded in a metric space. In other
words, the work we present here can be seen as an instantia-
tion for lists of the general framework aforementioned. This
paper is organised as follows. Section 2 contains an overview
of our proposal. In Section 3, we analyse how our framework
could be used to learn symbolic patterns from lists. To this
end, we introduce two different pattern languages £, and an-
other more expressive L1, and study how to define (minimal)

distance-based operators in all of them. Finally, conclusions
and future work are given in Section 4.

2. Setting

In this section we summarise the main concepts of our
framework which integrates distances and generalisation.
For a more detailed presentation of it we refer the reader to
[Estruch 2008].

The underlying idea in our proposal is that, in order to
have a true connection between distance and generalisation,
the generalisation process have to take the underlying dis-
tance into consideration (or at least the two must be consis-
tent). This special relation is formalised through three no-
tions: reachability, intrinsicality and minimality.

Reachability implies that the generalisation of two ele-
ments ought to include those paths (a sequence of elements
in the metric space) that allow us to reach both elements
from each other by making small “steps”. The concept of
short step must be understood in the sense of the distance.

The second property arises from the observation that the
distance between two elements is always given by the length
of the shortest paths. Thus, if we want our generalisation to
be compatible with the distance, we need the elements be-
longing to the shortest paths to be covered by the generali-
sation. This condition is called intrinsicality.

The two above properties have been defined for two el-
ements since they are established in terms of the distance
which is a binary function. But generalisation operators are
not binary, thus for more than two elements, the connection
between distance and generalisation turns a bit unclear. It
seems that the properties of reachability and intrinsicality
must be extended for this generic case. Distance-based algo-
rithms suggest that it would make sense to impose the notion
of intrinsicality for some pairs of elements. The pairs of el-
ements that will have to comply with the intrinsicality prop-
erty will be set by a path or connected graph which we will
call nerve. Furthermore, we obtain with this a more generic
notion of reachability since all the elements in the set are
reachable from any of them by moving from one element to
another through combinations of (intrinsical) paths.

In Figure 1, generalisations G'1 and G2 do not connect the
three elements to be generalised. Only the generalisations
(G3 and G4 connect the three elements through combinations
of straight segments.

Finally, the last property concerns with the notion of
minimality, which is understood not only in terms of fitting
the set (i.e., semantic minimality) but also as the simplicity
of the pattern (i.e., syntactic minimality). In Figure 1, G3
is an example of a very specific and rather complicated
generalisation of A, B and C.
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® @
B@ B

Gl G2 G3 G4

Figure 1. Generalising the elements E = {A, B,C}. El-
ements in E are not reachable through a path of segments
in generalisations G1 and G2. For any two elements in F,
generalisations G3 and G4 include a path of segments con-
necting them.

2.1 Distance-based Inductive Operators

Next, we formally show how the three previous notions are
employed in order to define the so-called distance-based
generalisation operators.

A generalisation of a finite set of elements ¥ C X could
be seen as any superset of E in X. Therefore, a generalisa-
tion operator (denoted by A) simply maps sets of elements
E into supersets. As known, this superset can be extension-
ally or intensionally defined, being the latter one more use-
ful from a predictive/explanatory point of view. Symbolic
patterns constitute a widely-spread manner of representing
intensional generalisations. For instance, the pattern ax* de-
notes all the lists headed by the symbol a. We denote by £
the pattern language and by Set(p) the set of all the ele-
ments in X that the pattern p € L represents. For instance,
Set(ax) = {a,aa,ab,...}. If necessary, L expressiveness
can always be increased by combining patterns via logical
operators (e.g. pattern disjunction). In this work, disjunction
is denoted by the symbol + and the expression p; + ps rep-
resents the set Set(p;) U Set(p2). For simplicity, the pattern
p=p1+...+p, willbeexpressedasp =Y ., p;.

Now, we can already introduce the definition of binary
distance-based pattern and binary distance-based generali-
sation operator.

DEFINITION 1. (Binary distance-based pattern and binary
distance-based generalisation operator) Let (X,d) be a
metric space, L a pattern language, and a set of elements
E = {e1,ea} C X. We say that a pattern p € L is a
binary distance-based (db) pattern of E if p covers all the
elements between e, and ey®. Additionally, we say that A
is a binary distance-based generalisation (dbg) operator if
A(eq, ea) always computes a binary distance-based pattern.

As previously said, for the case of more than two elements
to be generalised, the concept of “nerve” of a set of elements
FE is needed to define non-binary dbg operators. Informally,

2 Given a metric space (X, d) and two elements e1, e2 € X, we say that an
element e3 € X is between e1 and e2, or is an intermediate element wrt.
d, if d(el, 62) = d(el, 63) —+ d(eg, 62)

anerve of E is simply a connected® graph whose vertices are
the elements belonging to E. Observe that if E = {ej, es},
the only possible nerve is a one-edged graph. Formally,

DEFINITION 2. (Nerve function) Let (X,d) be a metric
space and let S be the set of undirected and connected
graphs over subsets of X. A nerve function N : 2% — Sg
maps every finite set E C 2% into a graph G € Sg, such
that each element e in E is inequivocally represented by a
vertex in G and vice versa. We say the obtained graph N (E)
is a nerve of L.

E={el, 2, €3, e4}
vl v2

el e2 el
e2
€3 e4

Figure 2. Two nerves for the set F. (Left) 11 is a complete
graph. (Right) v5 is a 3-star graph.

e3 e4

Some typical nerve functions are the complete graph, and
a radial/star graph around a vertex (see Figure 2).

Recall that the nerve corresponds to the notion of reach-
ability and indicates which intermediate elements must be
covered by the generalisations. In a more precise way,

DEFINITION 3. (Skeleton) Let (X, d) be a metric space, L
a pattern language, a set E C X, and v a nerve of E. Then,
the skeleton of E wrt. v, denoted by skeleton(v), is defined
as a set which only includes all the elements z € X between
x and y, for every (z,y) € v.

Consequently, we look for generalisations that include the
skeleton. From here, we can define the notion of distance-
based pattern wrt. a nerve.

DEFINITION 4. (Distance-based pattern and distance-based
pattern wrt. a nerve v) Let (X, d) be a metric space, L a
pattern language, E a finite set of examples. A pattern p is
a db pattern of E if there exists a nerve v of E such that
skeleton(v) C Set(p). If the nerve v is known, then we will
say that p is a db pattern of E wrt. v.

And, from here, we have:

DEFINITION 5. (Distance-based generalisation operator)
Let (X, d) be a metric space and L be a pattern language.
Given a generalisation operator A, we will say that A is a
dbg operator if for every E C X, A(E) is a db pattern of
E.

The above definition can be characterised for one nerve
function in particular.

DEFINITION 6. (Distance-based generalisation operator
wrt. a nerve function) Let (X,d) be a metric space and

3 Here, the term connected refers to the well-known property for graphs.
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L a pattern language. A generalisation operator A is a dbg
operator wrt. a nerve function N if for every E C X then
A(E) is a db pattern of E wrt. N(E).

In general it is quite hard to prove that a generalisation
operator is db wrt. any nerve function. Fortunately, for most
of the applications it is enough to exist a particular nerve
function wrt. A is distance-based. If the nerve is known be-
forehand, we speak of distance-based generalisation opera-
tors wrt. a nerve function N.

PROPOSITION 1. Let L be a pattern language endowed with
the operation + and let A’ be a binary dbg operator in L.
Given a finite set of elements E and a nerve function N,
the generalisation operator A defined as follows is a dbg
operator wrt. N.

An(E) = Z

V(e1,e;)EN(E)

Ab(ei, 6]')

PROOF 1. It follows from the definition of dbg operator.

2.2 Minimality

Given the definition of dbg operator in the previous section,
we can now guarantee that a pattern obtained by a dbg
operator from a set of elements ensures that all the original
elements are reachable inside the pattern through intrinsic
(direct) paths. However, the generalisation can contain many
other, even distant, elements.

An abstract, well-founded and widely-used principle that
connects the notions of fitness and simplicity is the well-
known M DL/MML principle [Rissanen 1999, Wallace
and Dowe 1999]. According to this principle, in our frame-
work, the optimality of a generalisation will be defined in
terms of a cost function, denoted by k(FE, p), which consid-
ers both the complexity of the pattern p and how well the
pattern p fits E in terms of the underlying distance.

From a formal viewpoint, a cost function k : 2X x £ —
R+ U {0} is a mapping where we assume that F is always
finite, p is any pattern covering E and k(E, p) can only be
infinite when Set(p) = X.

As usual in MDL/MML approaches, most of the
k(E,p) functions will be expressed as the sum of a com-
plexity (syntactic) function ¢(p) (which measures how com-
plicated the pattern is) and a fitness function ¢(E|p) (which
measures how the pattern fits the data F). As said, the most
novel point here is that ¢(E|p) will be expressed in terms of
the distance employed.

As ¢(p) measures how complex a pattern is, this function
will strongly depend on the sort of data and the pattern space
L we are dealing with. For instance, if the generalisation of
two real numbers is a closed interval containing them, then
a simple choice for ¢(p) would be the length of the interval.

As ¢(FE|p) must be based on the underlying distance, a
lot of definitions are based on or inspired by the well-known

concept of border of a set*. But as the concept of border of
a set is something intrinsic to metric spaces, several general
definitions of ¢(F|p) can be given independently from the
datatype as shown in Table 1.

[ IT£ [ <(Elp) l
1|l Any D veer Te
re = infrerBle,re) ¢ Set(p)
2 Any 2 veer Te
re = suprcrB(e,re) C Set(p)
3 || Any D vecE Minercaser(pdle e)
4 Set(p) isa VcEEmine’EBSet(p)d(e)e/)
bound set +maz . cpgerpmde e”)

Table 1. Some definitions of the function c(E|p): 1-
Infimum of uncovered elements, 2-Supremum of covered
elements, 3-Minimum to the border, 4-Minimum and maxi-
mum to the border.

Now, we can introduce the definition of minimal distance-
based generalisation operator and minimal distance-based
generalisation operator relative to one nerve function.

DEFINITION 7. (Minimal distance-based generalisation
operator and minimal distance-based generalisation op-
erator relative to one nerve function N) Let (X, d) and N
be a metric space and a nerve function, and let A be a dbg
operator wrt. N defined in X using a pattern language L.
Given a finite set of elements E C X and a cost function k,
we will say that A is a minimal distance-based generalisa-
tion (mdbg) operator for k in L relative to N, if for every
dbg operator A" wrt. N,

k(E,A(E)) < k(E,A'(E)),for every finite set E C X.
(1
In similar terms, we say that a dbg operator A wrt. a
nerve function N is a mdbg operator relative to N if the
expression (1) holds for every dbg operator A" wrt. N.

The previous definition says nothing about how to compute
the mdbg operator, and as we will see later, this might
be difficult. A way to proceed is to first try to simplify
the optimisation problem as much as possible, as the next
definition shows:

DEFINITION 8. (Skeleton generalisation operator wrt. a
nerve function N) Ler (X, d) be a metric space and N a
nerve function. The skeleton generalisation operator Ay is
defined for every set E C X as follows:

AN(E‘) = argmiane[l:skeleton(N(E))=Set(p) k(Eap)

which means the simplest pattern that covers the skeleton of
the evidence (given a nerve) and nothing more. Clearly, it is
a dbg operator because it includes the skeleton, but it might
not exist because it cannot be expressed.

The following section is devoted to defining db and mdbg
operators for the list data type.

4 Intuitively, if a pattern p; fits E better than a pattern p2, then the border
of p1 (Op1) will somehow be nearer to E than the border of ps (Op2).
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3. Inductive Operators for Lists

Lists or sequences is a widely-used datatype for data rep-
resentation in different fields of automatic induction such
as structured learning, bioinformatics or text mining. In this
section, we apply our framework to finite lists of symbols by
introducing two cost functions and two pattern languages for
this sort of data and studying different dbg and mdbg oper-
ators for each particular combination of language and cost
function. Due to space limitations as well as comprehen-
sibility’s sake, we sketch those proofs that are excessively
long and would make the reading unnecessarily difficult. If
needed, a complete detail of them can be found in [Estruch
2008].

3.1 Metric space, pattern languages and cost functions

Several distance functions for lists have been proposed in
the literature. For instance, the Hamming distance defined
for equally-length lists in [Hamming 1950], or the distance
in [Edgar 1990], defined for infinite-length lists but which
can easily be adapted for finite lists.

However, the most widely used distance function for lists
is the edit distance (or Levenshtein distance [Levenshtein
1966]), which is the one we are working with. Specifically,
we set the edit distance in such a way that only insertions
and deletions are allowed (a substitution can be viewed as a
deletion followed by an insertion or vice-versa).

Two different pattern languages Lo (single-list pattern
language) and £, (multiple-list pattern language) will be in-
troduced in this section. The patterns in L are lists that are
built from the extended alphabet ¥/ = {A\} UX U V where
A denotes the empty list, 2 = {a,b,c,...} is the alphabet
(also called ground symbols) from which the lists to be gen-
eralised are defined, and V' = {V, V4,...} is a set of vari-
ables. The same variable cannot appear twice in a pattern.
Each variable in a pattern represents a symbol from {A}UX.
Finally, the pattern language £; is defined from £, by means
of the operation + (see Subsection 2.1) and aims to improve
the expressiveness of L. For instance, if we let ¥ = {a, b},
then, the patterns p; = aVi1 Vs and po = bV;V5b belong
to Lo where Set(p1) = {aaa, aad, aba, abb, aa, ab, a} and
Set(p2) = {baab, babb, bbab, bbbb, bab, bbb, bb}. In other
words, the pattern p; denotes all those lists headed by the
symbol a whose length ranges between 1 and 3. In a similar
way, po contains all the lists headed and ended by b whose
length ranges between 2 and 4. Likewise, the pattern ps =
p1 + p2 belongs to £ and Set(ps) = Set(p1) U Set(p2) =

{aaa, aab, aba, abb, aa, ab, a, baab, babb, bbab, bbbb, bab, bbb, bb}.

With regard to the cost function, it is convenient to dis-
cuss some issues about the computation of the semantic cost
function c¢(+|-) for this particular setting. We will do this
by means of an example. Suppose we are given the pattern
p = ViVoV3V4aVs5 Vs V7 Vg and the element e = ccaba which
is covered by p. The computation of ¢(e|p) is equivalent to
find one of the nearest elements to e, namely ¢, which is not

covered by p. Note that €’ is not covered by p when the sym-
bol a does not occur in €’ (e.g. ¢/ = ccb) or the number of
symbols before or after each occurrence of @ in € is greater
than 4 (e.g. ¢/ = ccbbbaba). From this two possibilities, it is
clear in this case that ¢’ = ccb is the nearest element to e not
covered by p. This simple example allows us to affirm that
the calculus c(e|p) can be as complicated as determining the
number of times a sequence $; occurs in a sequence S,. Gen-
erally speaking, if s,, is the sequence of ground symbols in a
pattern p and ¢’ is the nearest element to e not covered by p,
then e’ will be a supersequence or a subsequence of ¢ which
will be obtained by modifying all the occurrences of s, in
e. Of course, as for the general form c¢(E|p), this operation
must be repeated for all the elements in E.

Therefore, if the learning problem requires the use of a
cost function (e.g. because we are interested in minimal gen-
eralisations), it might be more convenient to approximate
¢(E|p), instead of handling the original definition. For in-
stance, we propose a naive but intuitive approximation of ¢
inspired on the one we introduced in [Estruch 2008] for sets:

|E — Er| +c(Bilpe), Ipe = V1 ...V}
and B = {e € E : lengthof e < j}
|E|, otherwise.

d(Elp=) p)=
=1

The justification is as follows. If there exists a pattern
pr = Vi...Vj in p, then it is immediate that for every
element e such that its length [ is equal to or less than j,
its nearest element not covered by p is, at least, at a distance
j — U+ 1, which is the value computed by c(e|V; ... V}).
Otherwise, we assume that the nearest element of e is, at
least, at a distance of 1. Implicitly, we are assuming that the
nearest element to e can be obtained by removing (or adding)
one specific ground symbol from (to) e.

The simplicity of ¢/ (+|-) will help us to study and compare
the computation of the mdbg in Ly and L. As for L, the
cost function is directly defined as ko(E,p) = ¢/(E|p) (that
is, the complexity of the pattern is disregarded). As for £4,
we use k1(E,p) = c1(p) + ¢ (E|p) where ¢1(p) measures
the complexity of a pattern p € L£; by counting both the
ground and variable symbols in p.

3.2 Notation and previous definitions

The function Seq(-) defined over a pattern p € Ly returns
the sequence of ground symbols in p. For example, setting
p = ViaaVib, then Seq(p) = aab. The bar notation | - |
denotes the length of a sequence (here a sequence can be an
element, a pattern, etc.). For instance, in the previous case,
|[p| = 5. The i-th symbol in a sequence p is denoted by
p(i). Following with the example, p(1) = Vi, p(2) = a,
..,p(5) = b. Any sequence is indexed starting from 1.
The set of all the indices of p is denoted by I(p). Thus,
I(p) = {1,2,3,4,5}. We sometimes use superscript as
a shorthand notation to write sequences and patterns. For
instance, V°a3V? is equivalent to V; ... VsaaaVgVs, and
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V2(ab)3c is the same as V; Voabababe. Finally, we will often
introduce mappings that are defined from one sequence to
another. By Dom(-) and I'm(-) we denote the domain and
the image, respectively, of a mapping.

The first concept that is required is:

DEFINITION 9. (Maximum common subsequence) Given
a set of sequences E = {ey,...,e,}, and according to
[T.H. Cormen and Stein 2000], the maximum common sub-
sequence (mcs, to abbreviate) is the longest (not necessarily
continuous) subsequence of all the sequences in F.

This concept is already widely used in pattern recognition.
Note that the mcs of a group of sequences is not necessarily
unique. The following definitions will let us work with the
concept of common subsequence in a more algebraic fash-
ion.

DEFINITION 10. (Alignment) Given two elements e; and
ez, we say that the mapping Mg} : I(e1) — I(ez) is an
alignment of ey with es if:

i) Vi € Dom(M2), ex(i) = ex(ME2 (3)
i1) Mg} is a strictly increasing function in Dom (Mg} ).

(Remark 1) If Dom(Mg}) = 0, we say that M¢! is the
empty alignment of e; with es. Thus, for every pair of ele-
ments we can affirm that there is always at least one align-
ment between them.

(Remark 2) Note that the alignment definition does not ex-
clude the case e¢; = es.

(Remark 3) We call e (i) = eo(M¢] (7)) a (symbol) match-
ing. Thus, [Dom(M¢E})| (or equivalently, [ Im(MS})]) is the
number of matchings between e; and es captured by M, 521,
and the subsequence obtained by considering the :-th sym-
bols of e; where i € Dom(M¢}) is the sequence of match-
ings. For the sake of simplicity, we denote this sequence by
Seq(Mg;).

DEFINITION 11. (Optimal alignment) Given two elements
e1 and ey, if Seq(M¢S}) is a mcs of ey and ey, then we say
that Mg} is an optimal alignment.

Since I(e;) and I(ez) are finite sets, an alignment M/} can
be written as a 2 X n matrix where n (which we denote as
Rang(M¢})) is the number of matchings. Hence,

Mer — a1 ... Qin
€2 any N 0 oYY
where eq(a1;) = ea(ag;) for all 1 < ¢ < n (condition %)
from Definition 10) and a1; < ay(;41) and ag; < az(;41) for
all 1 <4 < (n — 1) (condition 7) from Definition 10). An
element of M} placed at row 4 and column j is denoted by
(Mg} )ij-
Let us illustrate all these ideas by means of an example.

EXAMPLE 1. Given the elements e; = caabbc and e5 =
aacd where I(e1) = {1,2,3,4,5,6} and I(es) = {1,2,3,4}.
An alignment M} (M in short) is

2 3 6 ¢ a a b b c
M= < 1 2 3 ) - a a c d
Note that M satisfies both conditions from Definition 10.
Following with M, we have that Dom(M) = {2,3,6},
Im(M) = {1,2,3}, Rang(M) = 3 and Seq(M) = aac.
Finally, M is an optimal alignment.

Given that different optimal alignments can be defined over
two elements e; and ez, we might be interested in obtaining
a concrete optimal alignment. To do this, we define a total
order over all of them which lets us formally specify which
optimal alignment we want.

DEFINITION 12. (Total order for optimal alignments) Given

two elements e1 and es and given the optimal alignments
M¢: (M in short) and NG (N in short) defined as

M= a1 ... Qip N = b11 N bln
a921 ... Qan b21 e bgn
we say that M < N iff (a11,...,01n,a021,-..,02,) <LO

(b11, ..+, b1n, ba1, ..., bay) where <po is the Lexicograph-
ical Order for numerical tuples.

EXAMPLE 2. Given e; = aab and es = ab, we define the

optimal alignments
3 e (2 3
0) = (10)

Every alignment between two elements e; and e; induces a
special pattern p which covers both e; and es. This pattern is
unique and we call it the pattern associated to an alignment.

Then M} < Ng1.

DEFINITION 13. (Pattern associated to an alignment and
optimal alignment pattern) Let ey and es be two elements
in X* and let M} (M in short) be an alignment of ey with
ea. We say that a pattern p € Lg is a pattern associated to
the alignment M (denoted by pyr), if

i) Seq(M) = Seq(p)

i1) the variable symbols in p are distributed as follows (let-
ting n = Rang(M), l1 = |e1], l2 = |ea):

o The number of variables in the pattern p before the first
ground symbol is equal to

(M)11 —1)+((M)21 — 1)

e The number of variables between whatever two ground
symbols p(i) and p(j) (i < j) in Seq(p) such that there
does not exists i < k < j where p(k) is a ground symbol,
is equal to

(M)1¢it1) = (M)1i = 1) + (M)2@iy1) — (M)2; — 1)
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® The number of variables after the last ground symbol in
p is equal to

(lh = (M)1n) + (la = (M)2n)

If Mg} is an optimal alignment of ey with es, we say that
Pyl is an optimal alignment pattern.

For instance, the pattern associated to the alignment M in
Example 1 is ppy = ViaaVaVicVy, which is an optimal
alignment pattern because M is an optimal alignment. Note
that if M is the empty alignment then py; = Vi+i2 and
Seq(M) = A.

The alignment and optimal alignment concepts (Defini-
tions 10 and 11) can be easily extended to cope with pat-
terns. Given two patterns p; and pz, M} is an alignment of
p1 with p where only matchings between ground symbols
are taken into account, that is, Vi € Dom(MPp!),p1(i) =
p2(MPi(i)), p(i) € ¥ and po(MP1(i)) € X. Analogously,
MP! is an optimal alignment if Seq(MP!) is a msc of p
and po.

To conclude, we introduce a binary bottom-up general-
isation operator (called T-transformation) defined over L,
which allows us to move through the pattern language.

DEFINITION 14. Given two patterns py and ps in Ly we
define the binary mapping

T(): Lox Ly

(p1,p2)

— ‘CO

— 1 (p1,p2) =p, suchthat

1. Let M} (M in short) be the minimum optimal alignment
of p1 with pa, then Seq(p) = Seq(M).
2. If Seq(M) = X then p = Vmesllpile2l} | Otherwise, the
distribution of the variables in p is:
® Before the first ground symbol in p, the number of
variable is equal to:

max{(M)11 — 1,(M)2; — 1}

® Between two consecutive ground symbols in p, the
number of variables is equal to:

max{(M)i(i41)—(M)1i—1,(M)ay1)—(M)2;—1}

o After the last ground symbol in p, the number of vari-
ables is equal to (letting n = Rang(M), Iy = |p1
and ly = |p2]):

max{ly — (M)1n,l2 — (M)2,}

EXAMPLE 3. Given the patterns p1 = abcVi, pa = ViabeecVa
and p3 = dVi, then T (p1,p2) = VabeV?® and 1 (p1,p3) =
V4,

PROPOSITION 2. For every pair of patterns p1 and py in Lo,
if p =1 (p1,p2) then Set(p1) C (p) and Set(p2) C (p).

PROOF 2. It directly comes from the definition of the 1-
transformation.

Next, we explain how to define dbg operators for the differ-
ent pattern languages, and we study the possibility of finding
mdbg operators for (Lo, ko) and (L1, k1).

3.3 Single list pattern language (L)

One would expect that if A(F) computes a pattern p such
that Seq(p) is a mes of the lists in E, then A(+) is a dbg op-
erator. However, we find that this operator is not, in general,
distance-based. The following example illustrates this:

EXAMPLE 4. Let E = {e1,e3,e3} where e; = c’a’b?,
es = ®a?d* and es = a’b3d*c® are the elements to be
generalised. Initially, we are going to fix a nerve for these
elements, namely, the complete nerve (see Figure 3).

el=cccccaaabbb

e2=cccccaadddd

e3=aaabbbddddcccce

Figure 3. A complete nerve v for the evidence £ =
{61362563}'

The pattern p = V195V generalises E, and Seq(p) is
a mcs of the lists in E. However, this pattern is not a db
pattern of E since, for example, the element a>b® (which is
between e, and es) and the element a*d* (which is between
eo and e3) are not covered by p. As a matter of fact, no
pattern containing the ground symbol c will be db and this
result is independent of the nerve chosen.

The explanation for this apparently counterintuitive result
is based on how the distance between the different pairs of
elements e; and ¢; is calculated. In fact, although all the lists
in E have subsequence ¢ in common, this subsequence is
never taken into account to compute the distance d(e;, e;),
for any pair (e;, e;) in v. Therefore, the operator definition
we propose next not only uses the concept of mcs but also
uses others such as the T-transformation and the concept of
nerve which ensures the condition of being db. First, we deal
with the binary generalisation operator, and then we extend
it for the n-ary case.

In the first stage, for any two elements e; and es to be
generalised, we need to somehow find out which patterns in
L can cover those elements between e and es.

PROPOSITION 3. Given the elements e1, ex and e, if e is
between e1 and es, then there exists an optimal alignment
pattern p associated to an optimal alignment of e; and e
such that e € Set(p).

PROOF 3. (Sketch) Let M and M, be the optimal align-
ments of e; with e and e with ea, respectively. We define
the mapping M between e and es as the composition of
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Mgt and M¢,. The goal is to prove first that M is an op-
timal alignment of e; with ey and then, see that the associ-
ated pattern p,, covers e. For this last step we distinguish
two cases: 1) M is the empty alignment and consequently
p,, = Vleiltleal According to Proposition 21 in [Estruch
2008], if e is between e and es, then |e| < |e1|+ |ez2], hence
e € Set(p,,). it) M is not empty and we aim to prove that
the variable symbols in M are distributed in such a way that
we can ensure that e € Set(p,, ).

We will use the proposition above along with the T-transformation
to define binary db operators.

COROLLARY 1. Given the elements ey and ea, if {p;}7— is
the set of all the optimal alignment patterns of e1 and es,
then the generalisation operator defined as follows is db.

Ab(ehe?) :T (phT (p27‘ T (pnflapn)) . . )

PROOF 4. For every optimal alignment pattern, we know
from Proposition 2, that

Set(p;) C Set(Ab(ey,ez)) )
Then, from Proposition 3, we can write that
Y element e between ey and e; = Jp; : e € Set(p;) (3)
Now, combining (2) and (3), we can affirm that

V element e between e1 and e; = e € Set(Ab(el, e2))
(€]

Hence, the generalisation operator is distance-based.

Next, we extend Corollary 1 for an arbitrary number of
elements.

COROLLARY 2. Given a finite set of elements © C X and a
function nerve N, the generalisation operator A defined in
Algorithm 1 (where AY is defined in Corollary 1) is db wrt.
N.

PROOF 5. For every (e;,e;) € N(E), Set(Ab(e;,e;)) C
Set(A(E)) by the definition of the 1-transformation. There-
fore, for every finite set E, A(FE) is distance-based w.r.t.
N(E).

Algorithm 1 returns a pattern p such that Set(Ab(e;, e;)) C
Set(p), for every pair of elements in N(E), by itera-
tively applying the {-transformation over all the patterns
Ab(e;, e;). The else-block is important since it ensures that
Seq(p) # A, if all the sequences Seq(A(eq,e;)) have a
subsequence in common. Let us see an example of this.

EXAMPLE 5. Given E = {e1,eq,e3,e4} where ey = abe,
es = cabed, e3 = ¢, eq = cab and the nerve N(E) =
{(e1,e2), (e2,e3), (€2, eq4)}. The binary distance-based gen-
eralisations (lines 5-7 in the algorithm) are:

L[0] = Ab(er,es) = VabeV
L[1] = Ab(eg,e3) = VeabV
L[2] = Ab(eg, 64) = V30V4

Data: £ = {e,...,e,}, Ab (binary dbg operator) and
v (anerve of F)
Result: Distance-based pattern of F wrt. v

1 begin

2 k «— 0;

3 L« [|/ x empty list x /;

4  for(e;,ej) € N(E)do

5 L[k}] — Ab(ei, ej);

6 k—k+1,

7 end

8 S—{a; € :Y0<j<k:a; € Seq(L]j]);
9 if S = 0 then return Ve {|LU][:V0<j<k}

o else

i1 p «— First(L);

12 Remove(L,p);

13 while L # 0 do

14 Find p; € L: 3a; € S,a; € Seq(1 (p,p:));
15 p <1 (p,pi);

16 Remove(L, pj);

7 end

18 return p;

9 end

o end

Algorithm 1: An algorithm to compute a db pattern of
a set of lists &/ wrt. a nerve v.

If we applied the T-transformation in any arbitrary order
over the set of binary patterns, we could obtain for example:

p <« VabcV
p — T(p,VeabV)=VZ2abV?
p — 1(pV3V)=V?

However, if the T-transformation is applied as the algorithm
indicates (lines 8-17), then S = {c} and the patterns would
be merged in the following order:

p «— T VabcV
p o= T V3V =Vic!
p «— T(p,VecabV)=V3cV*

With regard to the computation of mdbg operators in
(Lo, ko), the algorithm above always return the mdbg. On
the one hand, if all the binary patterns have a subsequence in
common, the algorithm computes a distance-based pattern p
such that Seq(p) # X and the function ¢/ (FE|p) = | E| which
attains a minimum value. On the other hand, the algorithm
returns a pattern with variable symbols only, and whose
length is the minimum length required to be distance-based.
Therefore, p is minimal as well.

3.4 Multiple list pattern language (L)

We will define dbg operators in £, via Ay (Proposition 1).
The binary operator A® required by Ay is the one intro-
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duced in Corollary 1. An example of how this operator works
is shown below:

EXAMPLE 6. Given a finite set of elements E = {e1,e2,e3,e4}

where e; = a?b%d, es = da®c?, es = db® and e4 = ad
and the nerve N(E) = {(e1, e2), (e1,e3), (e1,e4)}.

Ab(er,e0) = p1 = Va?Vvd
Aer,e3) = py = Vb2
Ab(er,eqs) = p3 = VaVid

Finally,
AN(E) = Va*V® + Vo + VaV3d

Observe that the solution for this example in L is just a
pattern consisting of variable symbols only, which shows the
utility of £;. Next, let us see how to obtain mdbg operators
in Ll .

Since the only way we know to define a distance-based
operator in £ consists in fixing a nerve beforehand, it is
reasonable to study how to define mdbg operators relative
to a nerve function. However, the calculus of the mdbg
operator is not easy at all. Basically, the question is whether
the mdbg operators relative to a nerve function N can be
defined in terms of A and the ]-transformation. However,
this result seems hard to be established. On the one hand,
we ignore how to explicitly define most of the A’ operators
(since Corollary 1 only establishes a sufficient condition)
and on the other hand, we must take into consideration some
inherent limitations of the T-transformation:

1. The mdb pattern might not be found by applying the
T-transformation over Ay if this one uses the binary
operator A® defined in Corollary 1: we will illustrate this
by means of an example.

EXAMPLE 7. Given the set E = {e1,e2,e3}, where
e1 = ajasas, s = aiagay and es = asasas, and
N(E) = {(e1,e2), (e1, e3)}. The optimal alignment pat-
terns which are associated to (e1,es) and (e1,e3), re-
spectively, are a1V* and VasV?3. Then a1V* is a db
pattern of (e1, ea) (since it is the only optimal alignment
pattern) and V as V3 is a db pattern of (e, e3) (since it
is the only optimal alignment pattern). Hence, the pat-
tern p = a;V* + VayV3 is db wrt. N(E). However,
the pattern p' = a,V* + a2V? is distance-based (the
only element between e1 and es, which is not covered
by asV3, is ayasaqsas but this is covered by a,V*) but
Set(p') ¢ Set(p). The mdb pattern for E will have |p'|
or even fewer symbols and this will never be achieved
by the T-transformation over the optimal alignment pat-
terns.

Therefore, given that A® is defined from the concept of
optimal alignment patterns and A is defined from A®,
it is not possible that the mdbg operator can be expressed
in terms of the T-transformation and A .

2. The mdbg pattern might not be found by applying the
1-transformation over skeleton(N (E)): from the previ-
ous point, we could think that the mdb pattern cannot be
found because the optimal alignment patterns are exces-
sively general. However, if it was so, it would mean that
starting the search from something extremely specific,
namely the skeleton, the mdb pattern should be found.
However, this is not true as the next example reveals:

EXAMPLE 8. Given E = {ej, ea,e3,¢e4,e5} where e; =
ac3b?, es = ab?, ez = ab’ce, ey = d and es = fgh and
the nerve depicted below:

acchb abbe

e2=abb

el=acccbb e3=abbce

Figure 4. A naive generalisation of the set &/ w.r.t. the nerve
N(E). Circled elements are the intermediate elements.

If we group the elements according to its similarity and
then apply the T-transformation over the different group:s,
the pattern obtained would attain a lower value for
k1(E,-). Taking this strategy into account, we can distin-
guish several meaningful grouping criteria. For instance,
those elements which contain the subsequence abb (G1)
and those which do not (G»). That is,

G1 = {ac*b? ach? ac®b? ab?, ... ab’d}
Go = {dfgh, fdgh, fgdh, fghd}

In this particular case, it does not matter how the ele-
ments in the groups are ranked in order to apply the 1-
transformation since the final result remains invariable.
Thus, we can write

p1 =1 (G1)+ T (G2) = VaV3bVbV? + V fVgVhV

For any other binary splitting, we would have elements
having no subsequence in common in the same group
(e.g. abb and df gh). The shortest patterns would be

p2 = aV3p?Vv24 vt
ps = VO
Using three groups, another interesting possibility can be

explored. For instance, G1 = { fgh}, those elements con-
taining the subsequence d (Gs) and the remaining ones

e5=fgh



62

(G3). Depending on the order of the elements in G2 we
could obtain by applying the uparrow-transformation.

=V5+aV3?V?
= V3dV?3 + aV3b?V? + fgh

P4
Ps

Finally, it is not worth using more than three groups
because of the excessive length of the pattern obtained.
Evaluating the different patterns, we have that:

k1(E,p1) =c(p1) + (Elp1) =17+ 5 =22
k1(E,p2) = c(p2) + ¢ (Elp2) = 12+ 10 = 22
kl(E,pg) = C(pg) + C/(Elp;g) =6+17=23
k1(E,py) = c(ps) + ¢ (E|py) =13+ 13 =26
ki(E,ps) = c(ps) + ¢ (Elps) =18 +5 =23

But the following patterns are also distance-based for E:

ps = V3VZ4VH
pr = aVP+V*?
where
k1(E,ps) = c(ps) + ¢/ (Elps) = 10+ 10 = 20
k1(B.pr) = c(pr) + ¢/ (Elpr) = 10+ 10 = 20

However, neither pg nor p; can be derived from a 1-
transformation since this tends to extract the longest
common subsequence. Observe that all the elements
which have the subsequence c or a also contain the sub-
sequence abb in common.

From this previous analysis, we can conclude that the T-
transformation is not enough in itself to explore the search
space. We need a generalisation tool which is not based on
the concept of the longest common subsequence. For this
purpose, we introduce the so-called inverse substitution.

DEFINITION 15. (Inverse substitution) Given a pattern p
in Lo or in L1 an inverse substitution o~ is a set of in-
dices where each index denotes a ground symbol in p to be
changed by a variable. Thus, po~' represents the new pat-

tern which is obtained by applying o~ over p.

Basically, an inverse substitution just changes ground
symbols by variables. For example, given p = VaabV and
o~ = {2,4} then po—! = V2aV2. Now, we are in condi-
tions to introduce the next proposition:

PROPOSITION 4. Given a finite set of elements E = {eq, . ..
and a nerve function N. If we set S = skeleton(N (E)) then
there exists a partition P of the set S and a collection of in-
verse substitutions {cy ', ... o1} such that the pattern

> T (fewor 1))

VPi:{eki}Z;izlep

p:

is a mdb pattern of E relative to N(E).

aen}
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PROOF 6. (Sketch). We can assume that there exists a pat-
tern p = > | p; such that k(E,p) attains a minimum
value. The pattern p induces a partition of E = UE; in such
a way that e; € E; iff e; € Set(p;). Next, we remove re-
peated elements in the different E; in order to make sure that
the subsets E; are pairwise disjoints. Finally, the proposition
can be proved using the concepts of inverse substitution and
T-transformation over the partition we have set.

This latter proposition leads to an exhaustive search algo-
rithm in order to compute the mbdg operator. This algorithm
turns out to be useless in general due to the size of the search
space (the number of different possibilities for the partition
of skeleton(N(E)) and substitutions). In fact, for a partic-
ular version of £;, we have proved that this optimisation
problem is N P-Hard (see [Estruch 2008]).

Hence, the other option is to approximate the calculus of
the mdb patterns. To do this, we use a greedy search schema
driven by the cost function. That is, for each iteration, the
T-transformation is applied over the pair of patterns that
reduces th cost function most. This idea is formalised in the
Algorithm 2 and illustrated in Example 9.

Input: £ = {ey,...,e,}, Ab (binary dbg operator)
and N (nerve function)
Output: A pattern which approximates a mdb pattern
of Ewrt. N(E)

1 Ax(E)

2 begin

3 k+—1;

4 for (e;,e;) € N(F) do
5 pr— A(es, e5);

6 k+—k+1;

7 end

8 p= ZZ:M%;

9 do

10 k, — ki1(E,p);

i1 p' — argmin{k:i(E,p;;) : V1 <14,j,<
n,pij =1 ({pi,pj}) + (0 —pi —pj)}s

ky — ki(E,p');

if k,y < k, thenp — p/;

14 while £, < k,,

s return p;

6 end

17 //The notation p — p; — p; employed in the algorithm
means all the patterns in p except p; and p;.;

12
13

Algorithm 2: A greedy algorithm which approximates
the mdbg operator.
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EXAMPLE 9. Let E and N(E) be the set of examples and
the nerve employed in Example 6. Remember that,

pP1 = Ab(el, 62) = Va2V5
p2 = A(er,e3) = Vo2
p3 = Ab(eh e4) = VaV3d

and

p=Va’V®+ Vb + VaV?d
see lines 4-8 in the algorithm. Next, we have to apply the 1-
transformation over each pair of binary generalisations and
we choose the one which attains a lower value of k1(E,-)
(see lines 9-14). In our case, we must consider two possibil-
ities:

o= 1 (Va®V5, Vo) +VaV3d = VEB+VaVid
= V8
p2 = T (Va®V>® VaV3d)+V5? = VaV®+V5p?

Since k1(E,p2) = 19 is less than ki(E,p1) = 27, we
choose the pattern ps. The process stops when the pattern
cannot be further improved. Note that the next iteration leads
to

T (VaVe vop?) = V8

which performs worse than ps. Therefore, the algorithm
returns po.

4. Conclusions and Future Work

This work is based in our approach for a correct integration
of distance-based methods with symbolic inductive learners
[Estruch et al. 2005, 2006]. This proposal relies on the novel
concept of (minimal) distance-based generalisation operator,
which aims to induce consistent (minimal) patterns from
data embedded in a metric space.

However, the main contribution that we present here, con-
sists in studying how to apply our framework in order to in-
fer consistent symbolic patterns from a particular structured
data type (lists) and a distance function (edit distance). More
concretely, we have seen how to define (minimal) distance-
based generalisation operators for this domain.

To do this, we have introduced two different pattern lan-
guages Lo and £;. The first language is made up of pat-
terns which consist of finite sequences of ground and vari-
able symbols. The language £; extends Ly in that the dis-
junction of patterns is permitted. Additionally, we have de-
fined a cost function for each language in order to study the
minimality of the patterns we can obtain.

We have proved that for more than two sequences, the
widely-used concept of maximum common subsequence
does not necessarily lead to distance-based generalisation
operators. In order to obtain this sort of operators, we need
to introduce a new concept: namely, the concept of sequence
associated to an optimal alignment. This kind of sequences
leads to certain patterns that when combined, allows us to
define distance-based operators. As for the minimality of

these operators, we have shown this is a computational hard
problem in £;. For this reason, we have introduced a greedy
search algorithm which allows us to approximate minimal
generalisations.

Further work refers to the following questions. One is
about the computational complexity of the greedy search al-
gorithm which approximates minimal patterns. This has a
quadratic complexity with the number of subpatterns in the
pattern obtained by Proposition 1. Unfortunately, this oper-
ation still has a high cost, if we want to run our algorithm
over large data sets. Thus, it would be convenient to try other
heuristics with a lower complexity but that ensure a good ap-
proximation. Another one is devoted to the pattern languages
that have been investigated. Note that both £y and £, are
subfamilies of the regular languages. A very interesting line
of work would consist in extending all the results presented
in this paper in order to include pattern representations based
on other more expressive subfamilies of regular languages.
By doing this, we could obtain not only new grammar infer-
ence algorithms but also new grammar learners that would
ensure the consistency of the inferred model wrt. the un-
derlying distance, something which does not happen when
traditional grammar learners are applied.
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Abstract

This paper describes our efforts and solutions in porting our
IP system IGOR 2 from the termrewriting language MAUDE
to HASKELL. We describe how, for our purpose necessary
features of the homoiconic language MAUDE can be simu-
lated in HASKELL using a stateful monad transformer. With
our new implementation we are now able to use higher-order
context during our synthesis and extract information from
type classes useable as background knowledge. Keeping our
new implementation as close as possible to our old, we could
keep all features of our system.

Keywords
MAUDE, HASKELL, IGOR 2, System Design

1.

Inductive programming (IP) dares to tackle a problem as
old as programming itself: Help the human programmers
with their task of creating programs, solely using evidence
of an exemplary behaviour of the desired program. Con-
trary to deductive program synthesis, where programs are
generated from an abstract, but complete specification, in-
ductive program synthesis is concerned with the synthesis
of programs or algorithms from incomplete specifications,
such as input/output (I/0O) examples. Focus is on the synthe-
sis of declarative, i.e., logic, functional, or functional logic
programs. The aims of IP are manyfold. On the one hand,
research in IP provides better insights in the cognitive skills
of human programmers. On the other hand, powerful and
efficient IP systems can enhance software systems in a va-
riety of domains—such as automated theorem proving and
planning—and offer novel approaches to knowledge based
software engineering such as model driven software devel-
opment or test driven development, as well as end user pro-
gramming support in the XSL domain [Hofmann 2007].
Beginnings of IP research addressed inductive synthesis
of functional programs from small sets of positive I/O ex-
amples only [Biermann et al. 1984]. One of the most in-
fluential classical systems was THESYS [Summers 1977]
which synthesised linear recursive LISP programs by rewrit-
ing I/O pairs into traces and folding of traces based on recur-
rence detection. Currently, induction of functional programs
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is covered by the analytical approaches IGOR 1 [Kitzelmann
and Schmid 2006], and IGOR 2 [Kitzelmann 2007] and by
the evolutionary/generate-and-test based approaches ADATE
[Olsson 1995] and MAGICHASKELLER [Katayama 2007].

Analytical approaches work example-driven, so the struc-
ture of the given I/O pairs is used to guide the construction
of generalised programs. They are typically very fast and
can guarantee certain characteristics for the generated pro-
grams such as minimality of the generalisation w.r.t. to the
given examples and termination. However they are restricted
to programs describeable by a small set of I/O pairs.

Generate-and-test based approaches first construct one or
more hypothetical programs, evaluate them against the I/O
examples and then work on with the most promising hy-
potheses. They are very powerful and usually do not have
any restrictions concerning the synthesisable class of pro-
grams, but are extremely time consuming.

Two decades ago, some inductive logic programming
(ILP) systems were presented with focus on learning recur-
sive logic programs in contrast to learning classifiers: FFOIL
[Quinlan 1996], GOLEM [Muggleton and Feng 1990], PRO-
GOL [Muggleton 1995], and the interactive system DI-
ALOGS [Flener 1996]. Synthesis of functional logic pro-
grams is covered by the system FLIP [Herndndez-Orallo and
Ramirez-Quintana 1998].

IP can be viewed as a special branch of machine learn-
ing because programs are constructed by inductive generali-
sation from examples. Therefore, as for classification learn-
ing, each approach can be characterised by its restriction and
preference bias [Mitchell 1997]. However, IP approaches
cannot be evaluated with respect to some covering measure
or generalisation error since (recursive) programs must treat
all 1/O examples correctly to be an acceptable hypothesis.

The task of writing programs writing programs—pardon
the pun—is per se reflexive, so it is virtually self-suggesting
to use reflexive, also called homoiconic languages. Unfortu-
nately only a few homoiconic languages are declarative and
adequate for IP, e.g. L1SP and MAUDE. Nevertheless, they
lack interesting features like polymorphic types with type
classes or higher-order functions. State-of-the-art functional
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languages with a large community and good library support
as e.g. HASKELL do not provide reflexive features, though.

Nevertheless, we value the pros of a state-of-the-art func-
tional language more and so grasp the nettle and build our
own homoiconic support. This paper describes our efforts
and solutions in porting our IP system IGOR?2 from the
termrewriting language MAUDE to HASKELL facing prob-
lems in simulating reflexive properties. This is done mainly
to overcome MAUDE’s restricted higher-order context, but
also to use information about type classes as background
knowledge. IGOR 2’s key features are kept unchanged. They
are

e termination by construction,
¢ handling arbitrary user-defined data types,
e utilisation of arbitrary background knowledge,

e automatic invention of auxiliary functions as sub pro-
grams,

¢ learning complex calling relationships (tree- and nested
recursion),

e allowing for variables in the example equations,

¢ simultaneous induction of mutually recursive target func-
tions.

Furthermore it provides insights in less theoretical but
more pragmatic implementation details of the systems. The
next Section 2 gives an overview of the theory behind
IGOR 2 and its strong linkage to MAUDE, and in Section
3 we describe the library specification of our new imple-
mentation in HASKELL. We conclude with an outlook on
future work in Section 5.

2. IGOR2 and MAUDE

IGOR 2’s [Kitzelmann 2008] main objective is to overcome
the strong limitations—only a small fixed set of primitives
and no background knowledge, strongly restricted program
schemas, linearly ordered I/O examples—of the classical an-
alytical approach but not for the price of a generate-and-test
search. This is realized by integrating analytical techniques
into a systematic search in the program space. A prototype
is implemented in MAUDE.

2.1 The IGOR 2-Algorithm

We only sketch the algorithm here. For a more detailed
description see [Kitzelmann 2008].

IGOR 2 represents I/0 examples, background knowledge,
and induced programs as constructor (term rewriting) sys-
tems (CSs) over many-sorted (typed) first-order signatures.
Signatures for CSs are the union of two disjoint subsig-
natures called defined function symbols and constructor
symbols, respectively. Terms containing only constructor
symbols (and variables) are called constructor terms. A
CS is then a set of directed equations or rules of the form
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F(p1,...,pn) — t where F is a defined function symbol
and the p; are constructor terms. This corresponds to pattern
matching over user-defined datatypes in functional program-
ming. A CS is evaluated by term rewriting. Terms that are
not rewritable—these include, in particular, all constructor
terms—are called normal forms. For CSs representing 1/0
examples or background knowledge hold the additional re-
striction that right-hand sides (rhss) are constructor terms.
This particularly means that also background knowledge
must be provided in an extensional form.

In order to construct confluent CSs, i.e., CSs with unique
normal forms, IGOR 2 assures that patterns of rules belong-
ing to one defined function are disjoint, i.e., do not unify.
IGOR 2’s inductive bias is—roughly speaking—to prefer
CSs with fewer disjoint patters, i.e., CSs that partition the
domain into fewer subsets. With respect to this preference
bias, IGOR 2 starts with one initial rule per target function.
An initial rule is the least general generalisation—with re-
spect to the subsumption order ¢ > t’' (¢ subsumes or is
more general than t'), if there exists a substitution o with
to = t'—of the provided I/O examples. Initial rules entail
the I/O examples with respect to equational reasoning and
are correct with respect to the I/O examples in this sense.
However, an initial rule may contain variables in its right-
hand side (rhs) not occurring in its left-hand side (lhs), i.e.
pattern. We call such variables unbound and rules and their
rhs containing them, open. Unbound variables may be in-
stantiated arbitrarily within rewriting such that CSs contain-
ing open rules do not represent functions. Hence, CSs are
transformed during the search by taking an open rule 7 out
of a CS and replacing it by a set of new rules R such that
(i) either the unbound variables are eliminated in the rhs of
7 in R or r is completely discarded from R, and (ii) the re-
sulting CS is still correct with respect to the I/O examples
and equational reasoning. Different sets R may be possible
as replacements for an open rule, i.e., a refinement operator
takes an open rule r and yields a set of sets R of rules. In one
search step, an open and best rated CS with respect to the
preference bias and one open rule from it is chosen. Then all
refinement operators are applied to r yielding a set of sets of
rules each. The union of these sets is the set of possible re-
placements R of r. Now r is replaced in each CS containing
it by each possible R. A goal state is reached if all best rated
CSs are closed. This set constitutes the solution returned by
IGOR 2.

There are three transformation operators: (i) The I/O ex-
amples belonging to the open initial rule are partitioned into
subsets and for each subset, a new initial rule (with a more
specific pattern than the original rule) is computed. (ii) The
open rhs is replaced by a (recursive) call to a defined func-
tion. The arguments of the call may again contain calls to
defined functions. Hence, computing the arguments is con-
sidered as a new subproblem. (iii) If the open rhs has a con-
structor as root, i.e., does not consist of a single unbound
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variable, then all subterms containing unbound variables are
treated as subproblems. A new auxiliary function is intro-
duced for each such subterm.

Splitting an open rule. The first operator partitions the I/O
examples belonging to a rule into subsets such that the pat-
terns of the resulting initial rules are disjoint more specific
than the pattern of the original rule. Finding such a partition
is done as follows: A position in the pattern p with a variable
resulting from generalising the corresponding subterms in
the subsumed example inputs is identified. This implies that
at least two of the subsumed inputs have different construc-
tor symbols at this position. Now all subsumed inputs are
partitioned such that all of them with the same constructor
at this position belong to the same subset. Together with the
corresponding example outputs this yields a partition of the
example equations whose inputs are subsumed by p. Since
more than one position may be selected, different partitions
leading to different sets of new initial rules may result.
For example, let

reverse(]]) =
reverse([X]) = [X]
reverse([X,Y]) = [Y, X]

be some examples for the reverse-function. The pattern of
the initial rule is simply a variable @, since the example
input terms have no common root symbol. Hence, the unique
position at which the pattern contains a variable and the
example inputs different constructors is the root position.
The first example input consists of only the constant [| at
the root position. All remaining example inputs have the
list constructor cons as root. Put differently, two subsets
are induced by the root position, one containing the first
example, the other containing the two remaining examples.
The least general generalisations of the example inputs of
these two subsets are [] and [Q)| Qs] resp. which are the (more
specific) patterns of the two successor rules.

Introducing (Recursive) Function Calls and Auxiliary
Functions. 1In cases (ii) and (iii) help functions are in-
vented. This includes the generation of I/O-examples from
which they are induced. For case (ii) this is done as follows:
Function calls are introduced by matching the currently con-
sidered outputs, i.e., those outputs whose inputs match the
pattern of the currently considered rule, with the outputs
of any defined function. If all current outputs match, then
the rhs of the current unfinished rule can be set to a call
of the matched defined function. The argument of the call
must map the currently considered inputs to the inputs of the
matched defined function. For case (iii), the example inputs
of the new defined function also equal the currently consid-
ered inputs. The outputs are the corresponding subterms of
the currently considered outputs.

For an example of case (iii) consider the last two reverse
examples as they have been put into one subset in the previ-
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ous section. The initial rule for these two examples is:

reverse([Q|Qs]) = [Q2]Qs2] (1)

This rule is unfinished due two the two unbound variables in
the rhs. Now the two unfinished subterms (consisting of ex-
actly the two variables) are taken as new subproblems. This
leads to two new examples sets for two new help functions
subl and sub2:

subl([X]) = X sub2([X]) =]
subl([X,Y]) =YV sub2([X,Y]) = [X]

The successor rule-set for the unfinished rule contains three
rules determined as follows: The original unfinished rule (1)
is replaced by the finished rule:

reverse([Q|Qs]) = [subl([Q|Qs] | sub2[Q|Qs]]

And from both new example sets an initial rule is derived.

Finally, as an example for case (ii), consider the exam-
ple equations for the help function sub2 and the generated
unfinished initial rule:

sub2([Q[Qs] = Qs2 2)

The example outputs, [], [X] of sub2 match the first two ex-
ample outputs of the reverse-function. That is, the unfin-
ished rhs s2 can be replaced by a (recursive) call to the
reverse-function. The argument of the call must map the in-
puts [X], [X, Y] of sub2 to the corresponding inputs [], [X]
of reverse, i.e., a new help function, sub3 is needed. This
leads to the new example set:

sub3([X])
sub3([X,Y]

[
[X]

The successor rule-set for the unfinished rule contains two
rules determined as follows: The original unfinished rule (2)
is replaced by the finished rule:

sub2(|Q|Qs] = reverse(sub3([Q|Qs]))

Additionally it contains the initial rule for sub3.

2.2 IGOR2’s use of MAUDE’s Term Rewriting and
Homoiconic Capabilities

In the functional subpart of MAUDE, a module essentially
defines an order-sorted signaturel 3, a set of variables
X, and a term rewriting system over > and X. Hence,
IGOR 2’s 1/O examples, background knowledge, and in-
duced programs are valid and evaluateable MAUDE mod-
ules. Since I/O examples, background knowledge, and in-
duced CSs are input and output respectively, i.e., data for
IGOR 2, we need some homoiconic capabilities: A MAUDE

! Order-sorted signatures are a non-trivial extension of many-sorted signa-
tures. In an order-sorted signature, the sorts partially ordered into sub- and
supersorts.
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program (IGOR2) needs to handle MAUDE programs as
data. This is facilitated by MAUDE’s meta-level. For all
constructs of MAUDE modules—signatures, terms, equa-
tions, and complete modules—sorts and constructors to rep-
resent them are implemented in the META-LEVEL mod-
ule and its submodules in MAUDE’s standard library. Fur-
thermore, functions to transform terms etc. to their meta-
representation—upTerm, upEqs, and upModule—are pre-
defined there. Meta-represented terms, equations, modules
and so on are ferms of types Term, Equation, Module etc.
and may be rewritten by a MAUDE program like any other
term.

Let us examine in some more detail, how terms and equa-
tions are meta-represented in MAUDE: Constants and vari-
ables are meta-represented by quoted identifiers containing
name and type of the represented constant or variable. E.g.,
upTerm(nil) where nil is a constant of sort List yields
the constant *nil.List of sort Constant which is a sub-
sort of Term and upTerm(X) where X is a variable of sort
List yields the constant *X:List of sort Variable which
is also a subsort of Term. Other terms are represented by a
quoted identifier as root and a list of meta-terms in brack-
ets as arguments. E.g., upTerm(Reverse(nil)) yields the
term ’Reverse[’nil.List] of sort Term.

The constructor in mixfix notation for representing an
equation is eq_=_[_] . where the first two _ may take a term
in meta-representation each (the rhs and lhs of the equation)
and the third _ an attribute set (belonging to an equation).
The resulting term is of sort Equation.

Now consider a MAUDE module M containing the two
equations

eq reverse(nil) = nil
eq reverse(cons(X,nil)) = cons(X,nil)

where X is a variable of sort Item. Applying upEqs (’M,
false) then yields:

eq ’Reverse[’nil.List] = ’nil.List [none]
eq ’Reverse[’cons[’X:Item,’nil.List]] =
cons[’X:Item,’nil.List] [nonel

This is a term of the sort EquationSet.
Also concepts of rewriting, e.g., matching and substitu-
tions, are implemented for the meta-level. For example,

metaMatch (upModule (’M,false), ’X:List,
cons[’Y:Item,’nil.List], nil, 0)

yields the term
’X:List <- ’cons[’Y:Item,’nil.List]

of sort Assignment which is a subsort of Substitution.

3. IGOR2in HASKELL

As L1SP, MAUDE is a dynamically typed, homoiconic lan-
guage. This means that (i) the majority of its type checking
is done at run-time so type information is available at this
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point, and, as seen in the previous section, (ii) it supports
treating 'code as data’ and vice versa ’data as code’ very
well. This is quite useful for program synthesis, because the
data structure to represent hypotheses about possible pro-
grams can directly be treated as code and evaluated, and
of course the other way round too. Any piece of code can
be lifted into a data structure and be modified. Furthermore,
names of functions or data type constructors can be reified,
so the interpreter’s symbol table is accessable at runtime.
This makes it possible get the constructors of an arbitrary
data type or the type of a function at run-time without much
effort.

From the viewpoint of IP, HASKELL has on this mat-
ter its weak spot. As a typical statically typed language,
types are only necessary until type checking is done. Once
a piece of code has passed the type checker, type infor-
mation can safely be dropped. Although this improves ef-
ficiency for compiled programs, when doing program syn-
thesis, this information is necessary though. Lifting code
to a meta-level and back, as done with MAUDE’s upXYZ
functions is only available quite restricted. Also reification
cannot be done so easily since again, there is no access to
the symbol table after type checking. There are various li-
brary extensions for HASKELL especially for GHC, to alle-
viate these problems, e.g. Template Haskell (TH) [Sheard
and Jones 2002] for compile-time metaprogramming and
Data.Dynamic and Data.Typeable to allow for dynamic
typing. Why they are not useful for us though, we will ex-
plain soon.

Usually, in HASKELL expressions are represented as an
algebraic data type:

data Exp

= VarE Name

| ConE Name

| LitE Lit

| AppE Exp Exp

Template Haskell’s dual quasi-quoting ([||]) and splicing
($) operators would provide us with the means to transform
code into such an algebraic data type and these expressions
back into code, similar to MAUDE’s upXYZ functions. So
[111] would be LitE (IntegerL 1) inside the TH’s Q
monad and $(LitE (IntegerL 1)) would be replaced by
the Integer value 1 by the compiler. However, this is only
done at compile-time and without types of the quoted code
itself. This simply comes from TH’s use case to be able
to write code-generating macros, so the purpose of quoting
and splicing is really to coerce expressions into real code at
compile-time and evaluate it at run-time instead of having an
algebraic representation of that code at run-time.

Similarly, the dynamic typing library extension of HAS-
KELL is not appropriate for us, too. Its main idea is by
creating a type class Typeable to be able to compare
the type of arbitrary and unknown values. For example
the function toDyn :: Typeable a => a -> Dynamic
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from Data.Dynamic. Without knowing the type of an arbi-
trary value, but being a member of Typeable, a representa-
tion of its type can be created and e.g. compared. However,
in our case we are not interested in a type representation of
an expression, but of the type representation of an expression
when interpreted as code.

In the rest of this section we will look at the HASKELL-
specific details of the new IGOR 2 implementation.

3.1 Expressions, Types, and Terms

Finally, there is nothing else for us but to write our own ex-
pression type and tag it with an also algebraic representation
of its underlying type.

type Name = String
data TExp

= TVarE Name Type
| TConE Name Type
| TLitE Lit Type
| TAppE TExp TExp Type
| TWildE Type
data Lit

= CharL Char

| IntL Int

| StringL String

So a typed expression is either a variable, a constant, a
literal, or an application of them. For simplicity let a Name
be just a String. Neglecting the types for the moment,
the expression (:) 1 ((:) 2 [1)? would be represented as
follows:

TAppE (TAppE (TConE ”:”)
(TLitE (IntL 1)))
(TAppE (TAppE (TConE ”:7)
(TLitE (IntL 2)))
(TConE ”[1”))

The algebraic data type of a type looks similar, where a type
is either a type variable, a type constant, an arrow, or an
application of them.

type Cxt = [Typel
data Type
= ForallT [Name] Cxt Type
— variables in scope, class context, type
VarT Name
ConT Name
ArrowT

I
I
I
| AppT Type Type

Additionally, there is a forall type, allowing us to restrict
a type variable to a certain type class. As a short example,
the type (Show a):: a -> [Int] is represented as the
following algebraic expression:

ForallT [”a”] [AppT (ConT ”Show”)
(VarT ”a”)]

Zaka1:2:[] or [1,2]
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(AppT (AppT ArrowT (VarT a”))
(AppT ListT (ConT ”Int”)))

For our convenience, we also create the class Typed to
easily have access to a type of an expression or the like.

class Typed t where

type0Of :: t -> Type
instance Typed TExp where
— omitted

For TExp, the function type0f is just a projection on the last
argument, i.e. the type of an expression constructor.

To work with TExp and Type in the sense of terms we
make them all instances of a class Term which provides
the basis for fundamental operations on terms. The func-
tion sameSymAtRoot compares two term only at their root
symbol, subterms returns all immediate subterms of a term
and root is the inverse of it such that root t (subterms
t)= t. The functions isVar, toVar, and fromVar provide
a type independent way to check for variables, access their
name and create a variable from a name.

class (Eq t) => Term t where

sameSymAtRoot t -> t -> Bool
subterms t -> [t]

root t -> ([t] -> t)
isVar t -> Bool

toVar t -> Name -> t
fromVar t -> Name

instance Term Type where
— omitted

instance Term TExp where
— omitted

Both, Types and TExp are instances of the class Term.

3.2 Specification Context

Up to now, we have seen how to represent expressions and
types, but as mentioned earlier, this is not sufficient, since
synthesis of a program takes place in a certain context.
A small specification, which is itself a HASKELL module,
could e.g. look like the following listing.

module FooMod where

data Peano = Z | S Peano
deriving (Eq, 0Ord)

count :: [a] -> Peano
count [] Z

count [a]
count [a,Db]

S z

S S z

Such a given specification is parsed and the IO examples for
count are translated into TExp-expressions. Furthermore,
all data type definition with their constructors and types
have to be stored in a record modelling the context of this
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specification, i.e. all types and functions which are in scope.
Since the standard Prelude is assumed to be allways in
scope, their types and constructors are included statically.
We use a named record for managing the context, where
each field in this record is a Map from Data.Map storing the
relevant key value pairs.

import qualified Data.Map as M

data SynCtx = SCtx
{ sctx_types (M.Map Name Type)
— function name —> its type
, Sctx_ctors (M.Map Name Type)
—— constructor name —> its type
, sctx_classes (M.Map Name [Namel)
— class name —> its superclasses
, sctx_members (M.Map Name [Name])
— class name —> member functions names
, sSctx_instnces (M.Map Type [Namel)
— type —> classes
, Sctx_typesyns
}deriving (Show)

(M.Map Type Type)

It is common practise to hide the relevant plumbing of state-
ful computation inside a state monad [Wadler 1992], and so
do we. While we are at it we can start stacking monads with
monad transformers [King and Wadler 1992] and add error
handling. Later we will go on in piling monads, and because
this is the bottom one it is self-evident to the add the error
monad here. Our context monad now looks as follows with
an accessor function 1ookIn for our convenience.

type C a = StateT SynCtx (ErrorT String a)

(lookIn) (0rd a) =>
a -> (SynCtx -> M.Map a b) -> C b
(lookIn) n f = gets f >>= \m ->
maybe (fail ”Not in context!”)
return

(M.lookup n m)

The function lookIn can now be used, preferably infix,
wherever we need information about names or types. For
example with ”Peano” lookIn sctx_classes we get
the names of the classes Peano is an instance of, here
[,,Eq” s !90rd”] .

3.3 Using Terms

The cornerstones of our synthesis algorithm are unifica-
tion and anti-unification. Due to our type-tagged expres-
sion, computing the most general unifier or the least gen-
eral generalisation of two terms will become stateful, when
considering polymorphic types with type classes. Not only
the terms have to be unified or generalised, but with re-
spect to their types. For this purpose we create the classes
Unifiable and Antiunifiable and make both TExp and
Type instances of them.

Substitutions which replace variables by terms are essen-

tial when unifying or antiunifying terms. Let a Substitution
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be a list of pairs, such that the variable with the name on the
left side is replaced by the term on the right side of the pair.
Then we define our unification monad U t again as a monad
transformer as follows.

type Substitution t = [(Name,t)]
nullSubst = []

type U t = StateT (Substitution t) C ()

Note that the last argument of StateT is the unit type.
Consequently, a computation inside U t has no result, or put
differently, the result is the state itself, i.e. the substitution
which is modified on the way. Therefore, when computing
the most general unifier (mgu) or the substitution with which
two terms match matchingsS, unify and match respectively
are executed in the U t monad with the empty substitution
as initial state. As result the final state is returned.

class (Term t) => Unifiable t where
unify 0t >t > U t

mgu :: t -> t -> C (Substitution t)
mgu x y = execStateT (unify x y) nullSubst

match 0t >t -> U ¢t

matchingS :: t -> t -> C (Substitution t)
matchingS x y =
execStateT (match x y) nullSubst

(Unifiable t) =>

t -> t -> C Bool
equal y x = matchingS x y >> return . null
‘catchError ¢ \_ -> return False

equal

Remember that we stacked the U t monad on top of our
context monad C which supports error handling. So if two
terms do not unify or match respectively, then fail is in-
voked inside C, otherwise a potentially empty substitution is
returned inside C. The function matchings returns the sub-
stitution that matches the first term on the second term and
equal returns True if the computation inside U t succeeds
with an empty substitution, False otherwise.

The class Antiunifier looks similar, but instead of
a Substitution it uses the data type VarImg as state.
VarImg stores a list of terms, i.e. the so called image, to-
gether with the variable subsuming these terms.

type VarImg t = [([t],Name)]
nullImg = []

type AU t = StateT (VarImg t) C t

However, unlike in the U t monad, there is a result of a
computation in the AU t monad: The least general gener-
alisation of the given terms. With the function antiunify
we throw the state away and return the result of the monadic
computation.
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class (Term t) => Antiunifiable t where
aunify :: [t] -> AU t

antiunify o [t] > C ¢t
antiunify t =
runStateT (aunify t) nulllmg

The types TExp and Type are now added as instances to
these type classes. We omit the concrete implementations,
since they are straight forward following the structure of
the algebraic data types. All that is left to say that two
TExps only unify/match/antiunify if and only if their types
unify/match/antiunify.

3.4 Rules, Hypotheses, and other Data Types

Now let us introduce the basic data types for the synthesis.

First of all we have a Rule, with a list of TExps on the
left-hand side (1hs) and one TExp on the right-hand side
(rhs).

data Rule = R { 1lhs
, Trhs

[TExp]
TExp 7

Usually we are talking about a certain rule, a rule covering
some I/O examples of a specific function. Therefore we
need to store information about this specific function and the
covered I/O examples together with the Rule in a covering
rule CovrRule.

data CovrRule = CR

{ name :: Name
, rule :: Rule
, Covr [Int] }

The accessor functions name, rule, and covr return the
name of the function, the rule itself, and the indices of the
covered I/O examples. A CovrRule makes therefore only
sense, when there is something the indices refer to. The data
structure I0Data answers this purpose. It is more or less
a map, relating function names to list of rules, i.e. the I/O
examples. Let for simplicity be I0Data just a synonym.

type IOData = M.Map Name [Rule]

The indices in a CovrRule are just the position of rules in
the list stored under a name. The indices should not be vis-
ible outside I0OData. For this purpose there are a couple of
functions to create and modify CovrRule referring to a cer-
tain I0Data. We refrain from the concrete implementations
here.

getAll :: Name -> IOData
-> Maybe [CovrRulel]
getNth :: Name -> IOData

-> Int -> Maybe CovrRule

As the names suggest, getAll is simply a lookup and re-
turns just a list of covering rules, each covering one I/O pair,
and getNth just picks the n*" of all. The following functions
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are used to breakup and fuse covering rules. So breakup re-
turns a list of covering rule, each covering one I/O pair of
those covered by the original one, and fuse is the inverse of
it, fusing many covering rules into one which covers all their
I/O pairs.

breakup CovrRule -> IOData -> [CovrRulel
fuse :: [CovrRule] -> C CovrRule

We have to be inside the C monad for fusing, because we
need to antiunify the rules to be covered.

Hypotheses are the most fundamental data record storing
a list of open covering rules, the closed rules as a list of
declarations Decl, for each function one, and all calling
dependencies between all functions to prevent the system to
generate non-terminating programs.

type Decl = (Name, [Rule])

data Hypo = HH { open [CovrRule]
, clsd [Decl]
, callings CallDep 1}

The basic idea behind calling dependencies is that if func-
tion f calls function g, then f depends on g (f — g). The
argument(s) of a call could either increase, decrease or re-
main in size, thus the dependency could be of either type LT,
EQ, or GT (=, =, =5).

Calling dependencies are transitive, so if f — g and g —
h then also f — h. The kind of the transitive dependency
has the maximal type of all compound dependencies with
the obvious ordering LT < EQ < GT.

If already a calling dependency f — ¢ exists, the follow-
ing possibilities for g calling f are allowed:

f =, g = g isnotallowed to call f
fog=95f
fSg=gSforg=f
f=9=f>f
If there is no such calling dependency, all possibilities are

allowed. To check, whether a call is admissible and to get all
allowed possible calls two functions exist.

admissible (Name ,0Ordering ,Name)
-> CallDep
-> Bool
allowedCalls :: Name
-> CallDep

-> M.Map Name [Ordering]

The first one checks if the given (new) calling dependency
is admissible, and the second returns for each function in a
CallDep which additional calls to it are allowed. If a func-
tion is not mentioned in the Map returned by allowedCalls,
anything goes.

3.5 Comparing Rules and Hypotheses

To compare rules and hypotheses to decide which to process
we establish the class Rateable with the member func-
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tion rate which returns for each member an Int value in-
side C.

class Rateable r where
rate :: r -> C Int

Hypotheses should be rated with regard to their number
of different partition, i.e. patterns on the left-hand side of
all their rules that do not match any other pattern. This
is motivated by some kind of Occam’s razor, preferring
programs with few rules.

instance Rateable Hypo where
rate h = numberOfPartitions h

numberOfPartitions :: Hypo -> RatingData
numberOfPartitions h = 1iftM length $
foldM leastPatterns $ allRules h
where
leastPatterns [] p return [pl]
leastPatterns (pl:ps) p2 = do
plgtp2 <- match ‘on‘ 1lhs pl p2
p2gtpl <- match ‘on‘ 1lhs p2 pl
if plgtp2 then return (p2:ps)
else if p2gtpl then return (pl:ps)
else 1liftM (p1l:)

(leastPatterns ps p2)

Covering rules are rated with regard to the longest chain of
function calls they are in, so preferring rules causing less
nested function calls. To compute the length of this longest
path in the call dependencies, always a CallDep is required.

instance Rateable (CallDep,CovrRule) where
rate (cd,cr) = return.length (
longestPath (name cr) cd)

3.6 The Synthesis Monad

For searching a space of hypotheses we need to maintain a
data structure representing this search space. In each step,
the best hypothesis w.r.t to a certain heuristic is selected and
from it an appropriate rule, again w.r.t an a priori defined
heuristic is chosen. Refining one rule results in multiple sets
of rules, because multiple refinement operators are used and
each operator may result itself in multiple rules.

So let r be a rule and p; . .. p,, are refinement operators,
then are p;(r) the rules resulting in applying p; to r. If
R is the set of all rules occurring in any hypothesis h,
then is H the set of all hypotheses, with H included in the
powerset of R, where each h is treated as a set of rules.
Applying the refinement operators to a rule r in R results
in R = R\ {r} U{p1(r),...,pn(r)}, thus changing H
to H = H\ {h|r € h} U {h;|h; = b\ {r} U p;(r)} for
1=1...n.

This makes the implementation of our search approach
lack elegance when compared to breadth-first search combi-
nators proposed by Spivey [Spivey 2000, Spivey and Seres
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2000], where the space for breadth-first search can be de-
fined as an infinite list. Katayama for example efficiently
uses this approach [Katayama 2008, 2007], because he is
able to define his search space intensionally a priori.
Following the current implementation, this is not appli-
cable for us. Hypotheses represent partial or unfinished pro-
grams, so our search space changes over time, because re-
finement operators may but need not finish a hypothese but
refine it to multiple, also unfinished, successor hypotheses.
Thus, refining one rule may affect multiple hypotheses and
change the ordering in the search space after each step.
Therefore we need to pull the whole search space explic-
itly through all our computations. Again, a stateful monad
transformer on top of our C monad does the trick.

data Igor =
Igor { iodata I0Data
, searchSpace HSpacel}

type I a = StateT Igor C a

modifyHS
modifyHS f =
modify (\igor@(Igor _ sp _) ->

igor{searchSpace = f spl})

(HSpace -> HSpace) -> IM(Q)

modifyI0 ::(I0Data -> IOData) -> IMQ)
modifyIO0 f =
modify (\igor@(Igor io _ _) ->

igor{iodata = f iol})

The data structure Igor bundles the data structures
I0Data, known from section 3.4 to manage the various 10
examples and HSpace, a priority queue on hypotheses w.r.t.
to their heuristical rating. HSpace also supports efficient
access to hypotheses by their rules to facilitate updating hy-
potheses after one refinement step. Igor serves as state for
the monad I. The functions modifyHS and modifyI0 allow
us to modify HSpace and I0OData inside I.

The main loop returns a list of equivalent programs in-
side I, w.r.t. the given heuristic, explaining the IO examples
of the target function. Each program consists of a list of dec-
larations Decl where each Decl defines one function by at
least one Rule. First it fetches the currently best hypotheses,
extracts the call dependencies and the unfinished rules from
this hypothesis. If there are no open rules in all candidate
hypotheses, the loop is exited and the candidate hypotheses
are returned as result. Otherwise one rule is chosen for re-
finement, refined using the call dependencies and thus mod-
ifying the search space. After all, the loop is entered again.

type Prog = [Decl]

enterLoop I [Prog]
enterLoop = do
chs <- currentBestHypos

(deps,crs) <- chooseOneHypo chs
if (null crs)
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then stopWith chs

else chooseOneRule crs >>=
refine deps >>
enterLoop

Finally, refine computes all refinements, introduced in
Section 2, of the given unfinished rule with refineRule
and propagates the result, a set of all possible refinements,
to the whole search space and updates all affected hypothe-
ses with propagate.

refine CallDep

-> CovrRule

-> I O

refine cd cr =
refineRule cd cr >>=

(modifyHS .) propagate $ cr

refineRule CallDep -> CovrRule
-> IM [(CovrRules,[Calll)]
refineRule cd cr = do

parts <- partition cr

cllfs <- callFunction cd cr

subfs <- inventSubfunction cr

return $ parts ++ subfs ++ cllfs

4. Empirical Results

To test our new implementation (in the following named as
IGOR 2j7) against the old we have chosen some usual exam-
ple problems on lists. As usually, they incorporate different
recursions patterns, simple linear as in last or mutual recur-
sive as in odd/even. Most of the problems suggest for invent-
ing auxiliary function as e.g. lasts, repeatlst, sort, reverse,
oddpos but only reverse is explicitly only solvable with.

Most of the problems have the usual semantics on lists
and can be found in a standard library of a functional Lan-
guage. Table 1 shows a short explanation of each of them
nevertheless.

The tests were run on a laptop with a 1.6Ghz Intel Pen-
tium processor with 2GB RAM using Ubuntu 8.10. IGOR2.2
with MAUDE 2.4 and version 0.5.9.4 of the HASKELL im-
plementation have been used. All programs as well as the
used specification and a batch file for the HASKELL imple-
mentation can be downloaded from our webpage?.

Keeping in mind that MAUDE is an interpreted language
and IGOR 2 is compiled, it is not surprising that the new
implementation is faster. A cutback to a Y10 or more in most
of the cases is more than expected, though. Table 2 shows all
runtimes and the approximte ratio of old to new.

3http://www.cogsys.wiai.uni-bamberg.de/effalip/download.
html
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Table 1. Problem descriptions

add is addition on Peano integers,

append appends two lists,

drop drops the first n elements of a list,

evenpos  are all elements in a list which index is
even,

init are all elements but the last of a list,

last is the last element in a list,

last maps last over a list of lists,

length is the length of a list as Peano integer,

odd/even  defines odd and even mutually recursive on
Peano integers,

oddpos are all elements in a list which index is odd,

repeatfst  overwrites all elements in a list with the
first,

repeatlst  overwrites all elements in a list with the
last,

reverse reverses a list,

shiftl shifts all elements in a list one position to
the left,

shiftr shifts all elements in a list one position to
the right,

sort sorts a list of Peano integers using ins as

background knowledge which inserts into
a sorted list,

swap changes the position of two consecutive
elements in a list element in a list,

switch changes the position of the first and the last
element,

take takes the first n elements from a list, and

weave merges two lists into one by alternating

their elements.

5. Conclusion

We introduced the new program design of our system
IGOR 2, which has been ported from MAUDE to HASKELL.
We described how, for our purpose necessary, features of
the homoiconic language MAUDE can be simulated in HAS-
KELL using a stateful monad transformer. Although we can
not model MAUDE’s full reflexive capabilities, we can simu-
late all functionality necessary in our use case. With our new
implementation we paved the way to use higher-order con-
text during our synthesis and extract information from types
and their classes useable as background knowledge. Keep-
ing our new implementation as close as possible to our old,
it was possible to keep all features of our system as e.g. ter-
mination by construction of both synthesised programs and
IGOR 2-algorithm, minimality of generalisation, using arbi-
trary user-defined data types and background knowledge,
and others.

For the future we plan to utilise universal properties of
higher-order functions such as fold, map and filter to in-
troduce certain recursion schemes as programming patterns
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Table 2. Runtimes on different problems in seconds

IGOR2 IGOR2y 10orR2m™*

IGOR 2

add 0.236  0.076 1/3
append  46.338  0.080 /579
drop 0.084 0.004 1/21
evenpos 0.056  0.004 1/14
init 0.024 0.004 /e
last 0.024  0.001 1/24
lasts 6.744  0.020 1/337
length 0.028  0.001 1/28

odd/even  0.080  0.004 1/20
oddpos 18.617  0.048 1/388
repeatfst  0.052 0.004 1/13
repeatlst ~ 0.100  0.004 1/25
reverse 0.617  0.032 /19

shiftl 0.084 0.008 /11
shiftr 0.308  0.020 1/15
sort 0.148 0.012 1/12
swap 0.108  0.008 1/14
switch 2.536  0.036 /70
take 1.380 0.012 /115
weave 0.348  0.036 1/13

* rounded to nearest proper fraction

when applicable. In this context we will make use of type
information which is now accessable. Furthermore, it should
be promising to reconsider the current algorithm to make use
of lazy data structures to better take advantage of the bene-
fits of lazy evaluation. Memoization could also be helpful to
avoid propagating the change of a rule over the whole search
space.
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Abstract

The development of software engineering has had a great
deal of benefits for the development of software. Along with
it came a whole new paradigm of the way software is de-
signed and implemented - object orientation. Today it is
a standard to have UML diagrams automatically translated
into program code wherever possible. However, as few tools
really go beyond this we demonstrate a simple functional
representation for objects, methods and variables. In addi-
tion we show how our inductive programming system Igor
can not only understand those basic notions like referencing
methods within objects or using a simple protocol like some-
thing we called message-passing, but how it can even learn
them by a given specification - which is the major feature of
this paper.

Keywords Inductive Programming, Object Oriented Pro-
gramming, Igor, Maude, Java, Recursion

1. Introduction

Since mainstream software for business use is commonly not
created with functional programming languages it is about
time to raise the question whether it is possible to adapt
object oriented language features to a functional setting. Igor
is a system for synthesizing recursive functional programs,
which learns recursive functions solely from input/output
(I/0) examples, and will henceforth be our system of choice
concerning program induction. Since /gor is naturally based
on functional programming, the main focus of this paper
lies on finding a way to use Igor for program inference in
an object oriented background. This requires us to express
the behavior of objects and method calls by I/O examples.
In order to do so, it is necessary to find a way to express
object oriented programs in a functional way. The main part
of this paper will be concerned with this task on a very
general scale. It is not meant to be a complete approach but
an analysis of what is possible and what is not.

At the same time, it is necessary to enable an object ori-
ented programmer to provide input to the synthesis system
as unobtrusive as possible. For this purpose, we have devised
an interface for Eclipse which will allow a programmer to
use annotations in order to provide input for our induction
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process, thus seamlessly integrating with software engineer-
ing tools like Rational Software Architect (RSA). Since it is
not the focus of this paper to explain the functionality of this
prototype we only mention it for the sake of completeness -
more on this subject is to be found in [Hieber 2008].

In section 2 we start off with a short survey of current
and past research in the field of functional programming and
object orientation. Section 3 is a short roundup about Induc-
tive Programming (IP) and Igor while section 4 focuses on
how we represent object orientation to /gor and how it can
even learn all of the concepts created. The prototype plug
in for Eclipse, which is a further result of our research, will
then be described very shortly in section 5 before we finally
conclude in section 6.

2. The Status Quo

In the past 30 years, many different inductive programming
(IP) systems have been developed, many of them sharing a
functional approach. The extraction of programs from in-
put/output examples started in the the seventies and has
been greatly influenced by Summers’ [Summers 1977] pa-
per on the induction of LISP programs. After the great suc-
cess of Inductive Logical Programming (ILP) on classifica-
tion learning in the nineties, the research focus shifted more
to this area. Prominent ILP systems for IP are for example
FOIL [Quinlan and Cameron-Jones 1993], GOLEM [Mug-
gleton and Feng 1990] or PROGOL [Muggleton 1995] - sys-
tems which make use of Prolog and predicate logic.

Later, the functional approach was taken up again by the
analytical approaches Igor! [Kitzelmann and Schmid 2006],
and /gor2[Kitzelmann 2007] and by the evolutionary/generate-
and-test based approaches Adate[Olsson 1995] and
MagicHaskeller[Katayama 2007].

All in all you can subsume the concern of Inductive Pro-
gramming as the search for algorithms which use as little
additional information as possible to generate correct com-
puter programs from a given minimal specification consist-
ing of input/output examples.

At the same time functional languages have had to face
the development in programming paradigms which led to
many approaches to support object orientation. Established
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functional languages have their own object oriented exten-
sions like OCaml [Remy and Vouillon 1998] or OOHaskell
([Kiselyov and Laemmel 2005]). Additionally there are var-
ious approaches to include an object system into a functional
language without changing the type system or the compiler
(see e.g. [Kiselyov and Laemmel 2005] for a Haskell related
overview).

For our purpose we do not need such sophisticated tech-
niques (yet), therefore we content ourselves with taking on a
quite naive and very simplified perspective, though sufficient
for our case, and treat objects merely as tuples.

On the other hand there are some very powerful tools
for object oriented programmers which support automated
code-generation to a certain extent and the community for
Automated Software Engineering is very productive to take
this even further. In this context it is inevitable to have a look
at program synthesis since we ideally do not want to stop at
automatically generating class files from UML diagrams like
IBM’s RSA, or generate a GUI by “‘WYSIWYG® editors such
as NetBeans or Visual Studio.

3. Inductive Programming & IGOR

Summers’ theories have been taken up again in [Schmid
2003], where the Igor system was put into existence. The
basic idea is to generate a set of (recursive) equations from
a specification consisting of input/output examples. Its first
system was written in LISP and it was closely connected to
Summers’ suggestions. A few years later a newer version
of Igor was created and it extended the prior version by a
number of improvements. In [Kitzelmann 2008] you find
a more detailed description of Igor2 as a system which
now employed mechanics such as anti-unification of the
initial input/output examples and a best-first search over
succeeding sets of equations which are to be formed by
term-rewriting. Since this shift in the way programs were
now processed did not play to the strengths of LISP like
the former version, /gor2 was written in the reflective term-
rewriting language Maude.'

In order to understand how the system works before we
go ahead and use it, let us consider the following example of
the list-operator length.

Listing 1: Input/Output Examples for Igor

length ([]) = 0
length ([y]) = succ(0)
length ([y,x]) = succ(succ(0))
length ([y,x,z]) = succ(succ(succ(0)))
Given those examples, Igor correctly identifies the fol-
lowing recursive program:

Listing 2: Recursive Program for length

length (sub2 (cons(x0,x1)))
x1

subl (cons (x0,x1))
sub2 (cons (x0,x1))
length[] = 0

length (cons(x0,x1)) = succ(subl(cons(x0,x1)))

see http://maude.cs.uiuc.edu/
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This is what Igor produces from our specification (we
have only adjusted the syntax to increase readability), es-
pecially the two functions sub1l and sub2 have been auto-
matically introduced by the system. The succ operator is the
well known successor in order to define the natural numbers
as peano numbers. Evidently this system’s output is purely
functional so we are going to be concerned with finding out
how to bring this closer to an object oriented context.

4. Igor and Object Orientation

As already mentioned, Igor is firmly based within the func-
tional paradigm along with all its strengths and weaknesses.
Nevertheless it is going to be subject of our concern in which
way it could be possible to represent an object-oriented spec-
ification with Maude and feed it to Igor. For this we are go-
ing to put together some example specifications, have them
synthesized and evaluate the output. In order to do so it is
important to understand how we could possibly map the way
object-oriented programs are presented to a functional nota-
tion. We are going to deal with this problem’s theory first
and then try and find out how Igor will react to our input.
When we are dealing with Maude specifications in the
following chapters, let the following notation be established:

[object].[datatype]

This is the way data types are represented by Maude
and we will stick to it for the sake of transparency. For the
Maude results we will also establish a notation since the
code generated is not quite readable. So the way results will
be displayed like this:

ResultRule/Pattern(EquationLHS) =
(EquationRHS)

4.1 Representing the Object

In this attempt we will try and keep it simple, as we are
only exploring so the motto is to start small. When thinking
about objects we can agree that they basically consist of
an identifier, a set of (member) variables > and a set of
methods. So it seems quite advisable to represent any object
like this:

identifier.String X properties.List X methods.List —
Object

Let us for now just take properties and methods as black
boxes, we will deal with them after this. Apart from the elab-
oration on those, there are only two things left in order to get
a basic quasi object-oriented system: calls and exceptions.
The former is the basic notion of a messages sent between
objects in our system. The latter are a vital part of any high
level programming language and, more importantly, we are
going to need them in order to correctly specify some of our
components. Since error handling is not the major part of our

2 ak.a. properties - see section 4.4
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concern, let it just be introduced as black box - we are not
going to analyse it any further.
Messages shall be defined like this:

ParamList X Object — Message

So a message consists of a number of arguments (Param-
List) and an object which in case of a function call can carry
the return value back to the sender, which leaves us with the
following definition of the object in the Maude specification:

Listing 3: Object Constructor
op --- : Identifier PropList MethodList — Object [ctor]
Note the ___ as the constructor’s name - it is Maude
syntax for n-ary operators with blanks as constructors (three
underscores — three parameters). The constructor uses an
identifier, a set of properties and a list of methods in order
to create a new object. Now that we have an idea of how to
represent an object, let us try and find out how we can do the
same thing on methods.

4.2 Representing the Method

Before going on we have to bear in mind that - for now -
we are dealing with methods only on a syntactic level. We
only want to find out how to represent them in the context
of an object. We are not concerned with the procedures
within the method’s body nor with how they are used. All
we need to know for now is what information we need about
a method on the object level in order to keep it as abstract as
possible. Remember that we want to have this representation
to be kept within the MethodList in our newly defined object.
Right now we can say that a representation of a method must
contain the following information:

o Method Name
e Return Value

e Argument Specification

When we formally put this together it ends up looking
like this:

identifier.String X
arguments.List — Method

return-value. DType X

The DType is again to be taken as black box here since
we are not interested in type inference or casting, so to
understand that it is necessary information for any object
calling the method is enough in this context.

This leaves us with the definition in Maude as follows:

Listing 4: Method Constructor

op met : Identifier DType ParamList —> Method [ctor].

As we have seen before, this is basic Maude notation for
defining an operator called met. It takes three parameters
(Identifier, DType and ParamList) and produces a Method.
Since this is a classical constructor the [cfor] command is
used at the end of the definition.

4.3 Representing the Method Call

Before we can actually call a method we have to resolve the
identifier within the object which supposedly encapsulates
it. In order not to become too confusing we are going to step
away from objects for one moment and just focus on the
way you might find a method within an object. For this let
us assume that there exists a method list as depicted in 4.1
and an object trying to call a method by an identifier. The
idea is to get a matching process like:

Identifier X MethodList — Method

By now we have introduced a few basic notations in ob-
ject orientation. They all share the tuple-structure which is
important in order to build the bridge to functional program-
ming. As a consequence, these concepts can now be mod-
elled in Maude (see section A.1) making it easy for us to
construct simple examples in order to demonstrate how Igor
responds to them. As a start we have picked the ‘identifier-
match® which is the mapping procedure we have just in-
troduced. The full Maude specification is to be found in
listing16 in this section we will only display short snippets
in order to illustrate.

Listing 5: Identifier Match
sorts List Method Identifier DType ParamList NPException

subsort Method < NPException .

In the first part there are some sort definitions which
are quite obvious and should be familiar by now. The only
slightly strange thing is the second line. Here we basically
bring in the exception since we want a NPException (=
Null Pointer Exception) to be thrown in case an identifier
is not found within the method list. The exception is here
derived from Method which is obviously not very elegant or
- strictly spoken - even wrong. But since we have not yet
constructed a well defined object framework we can forsake
the strict rules which would come along with it and just
have the exception be the subclass of Method. This gives us
the chance to explain another concept in Maude - sorts and
subsorts. You can see that there is a number of sorts defined,
was well as a relation between Method and NPException.
The operator used here is < which can be seen like an arrow
pointing from the specific to the more general sort.

The next part of the specification (listing 6) gives us
some constructors and properties before we can go ahead
and define our input examples.

Listing 6: Identifier Match - Constructors and Properties

op [] : = List [ctor]

op cons : Method List —> List [ctor] .

op mm : Identifier DType ParamList — Method [ctor]
ops idl id2 id3 : — Identifier

op parlist : —> ParamList [ctor]

op exc : —> NPException .

op dt : —> DType .
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op match : Identifier List —> Method [metadata “induce”]

vars ml m2 m3 : Method .

Here we find a basic procedure of constructing a list (11
1,2), a method (mm operator), some random identifiers, ar-
guments, an exception as well as a datatype. Note that identi-
fiers, arguments, exception and datatype are just instantiated
without any concrete data attached but for the current level
of abstraction it is not necessary to do so. The operator match
now is the method to be induced by Igor and after declaring
a few properties as methods all there is left to do is to assert
our input/output examples.

Listing 7: Identifier Match - Input/Output Examples

eq match(idl, [] ) = exc .
eq match(id2, [] ) = exc .

eq match(idl, coms(mm(idl, dt, parlist) ,[]) ) =
mm(idl, dt, parlist) .

eq match(idl, cons(mm(id2, dt, parlist), []) ) = exc .
eq match(id2, cons(mm(idl, dt, parlist) ,[]) ) = exc .
eq match(id2, cons(mm(id2, dt, parlist), []) ) =

mm(id2, dt, parlist) .
[...]

The equations in listing 7 are used to give Igor some basic
examples in the problem domain. Here we bring together
what we have defined earlier (Listings 5 and 6). The first
two are quite obvious and finally explain why we insisted
on exceptions earlier. Of course there could just be an empty
method as a return value, but since we are trying to conquer
the object oriented world with Igor, it feels more natural to
express it this way. All the other examples (see complete
listing 16) are summarised quite quickly - every time the
method called is contained in the method list it is returned.

If this is now fed to Igor, one of the resulting hypotheses
(translated into a little more readable syntax) returned is a
set of equations. X1 and X2 are identifiers, X3 is a list, dt
a datatype and parlist a list of parameters:

1. match(X1,[]) = exc
2. Subl(X1, cons(mm(X2,dt, parlist), X3)) =
case (X1 == X2)of False — X1
. Sub2(X1, cons(mm(X2,dt, parlist), X3)) =
case (X1 == X2)of True — X3
4. match(X1, cons(mm(X2,dt, parlist), X3)) =
case (X1 == X2)of False —
match(Subl(X1, cons(mm(X2,dt, parlist),
case (X1 == X2)of True —
mm(X1,dt, parlist)

)

From this simple example we can already see how Igor
tackles this problem. The base case is the first equation.
Equations 2 to 4 ensure that the number of methods in the
list is gradually decreased every time the first method in the
list does not correspond to the one called. So at the end the
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list of methods becomes either void (— equation 1) or the
method is found at the head of the current method list (—
equation 5).

Already we can observe how Igor tries to find a recur-
sive solution to this problem, which may seem a little com-
plicated for this purpose, but it is exactly what we wanted
to achieve and so we can go on at this point knowing that
Maude and Igor can handle what we outlined earlier.

4.4 Concerning Properties

For our purpose, properties are very similar to methods.
They just happen to be much more simple since there is
no need for a list of arguments to be carried around. This
comes all down to this simple line in our object specification
in Maude:

Listing 8: Property Constructor

op prop : Identifier DType —> Property< [ctor].

The way a property is referenced is exactly the same as
we have just done it with methods just that our MethodList
would now be a PropertyList - so there is no point in repeat-
ing the procedure all over.

4.5 Messages

As already mentioned, we are going to relate every action
within our system to messages. In 4.1 we have defined the
specification of them and this is how they look in Maude:

Listing 9: Message Constructor

op msg : ParamList Object —> Message [ctor]

We have seen how the matching of identifiers works,
so let us now find out about messages sent between two
imaginary objects. Since we are now only concerned with
the way data is wrapped within them we drop overhead
like identifiers and the like for now and focus on the core
procedure which takes a message and its arguments and
returns an object as result value.

We are going to test this with an example problem - the
even operation which determines if a number is even or not.
As before, we first have to define a couple of sorts.

Listing 10: Identifier Match Sorts

sorts InVec Object .

sorts Message ParamList .
sorts Nat Bool Param .
subsorts Param < Nat Bool .
subsorts Object < Nat Bool .

As we want to compute some real data this time, we have
to refer Param and Object to real values as we do here.

Listing 11: Identifier Match Constructors

op <> : —> ParamList [ctor] .

op msg : ParamList Object —> Message [ctor]
op null : —> Object [ctor]

op 0 : — Nat [ctor] .

op s : Nat — Nat [ctor]

op t : — Bool [ctor]
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op f : = Bool [ctor] .
op cpar : Param ParamList — ParamList [ctor] .

op method : Message —> Message [metadata “induce”] .

Next to the already known definitions of message and
the usual list operations there are some more definitions. In
addition to the successor operator (we call it just s this time)
we need the boolean values true (t) and false (f). What we
want for Igor to do now is to unwrap a message, take the
argument list as input and put the result back into a message.
Formulated with input/output examples this is what we get:

Listing 12: Identifier Match Input/Output Examples
eq method( msg(cpar( 0, <>), null) ) =
msg(<> ,t ) .

eq method( msg(cpar( s(0), <>), null) ) =
msg( <> , f ) .

eq method( msg(cpar( s(s(0)), <>), null) ) =
msg( <> , t ) .

eq method( msg(cpar( s(s(s(0))), <>), null) ) =
msg( <> , f ) .

eq method( msg(cpar( s(s(s(s(0)))), <>), null) ) =
msg( <> , t ) .

So we assume that Igor simulates an object getting a
message with a natural number as parameter, returning a
message containing a boolean. Now we will once again run
this through the system and get the following set of equations
(with X1 being a natural number):

. method(msg(cpar(0, <>),null)) = msg(<>,t)
. method(msg(cpar(s(0), <>),null)) = msg(<>, f)

AW =

. method(msg(cpar(s(s(X1)),<>),null)) =
method(Subl9(msg(cpar(s(s(X1)), <>),null)))

On the level of semantics this looks just like what we
wanted. On every left hand side there is a message with
arguments and the right hand side contains messages with
return value. So Igor has learnt the concept of message-
passing, but since we provided a real problem specification
encapsulated within the message this time, we will have to
evaluate the resulting program for functional validity also.
For this it seems appropriate to take off the wrapping from
the synthesised equations and just show the important bits.

. Subl9(s(s(X1))) = X1

. method(0) =t

. method(s(0)) = f

. method(s(s(X1))) = method(Subl9(s(s(X1))))

AW o0 =

Now this looks just like what we intended. Equations 2
and 3 are the base cases, 4 and 1 make sure that any number
bigger than 1 will gradually be reduced by two until one of
the base-cases is reached. Then the result value is ultimately
returned.

4.6 Back Into Perspective

Before we try and draw a conclusion out of the results
learned let us quickly summarize what we have gained so

. Subl9(msg(cpar(s(s(X1)), <>),null)) =msg(cpar(X1, <>), null)

far. We have modelled a simple object-oriented protocol
consisting of Objects, Properties, Methods and Message-
Calls. Modelling those concepts in a functional way has
brought our program synthesis system - /gor - to understand
and even ‘learn‘ simple routines like ‘identifier-matching’
and ‘message-passing‘. Now for a final test let us have a
look how it can handle some of the syntactic sugar which
is widespread in object oriented programming languages - a
simple iteration over a collection. The task is to take a set of
abstract objects and apply a method to every object within
the set (which is actually a list). In listing 13 (proper Maude
example in listing 20) we take one collection of objects and
as we iterate over them we apply a method to them and put
the results into a new collection. The results are represented
in listing 21.

Listing 13: Iterate Collection Input/Output Examples

eq iterate ([]) = {} .

eq iterate( put(Y,[]) ) = put2( met(Y), {}) .

eq iterate( put(X,put(Y,[])) ) = put2( met(X), put2( met(
Y {)

[...]

As you can see from the equations in listing 13 we employ
two different collections and along with it two different
constructors put and put2, which are like a cons operator.
This is not necessary but in order to illustrate that we are
actually removing the objects from one to another collection
it seems to be more appropriate.

In our second example in listing 22 we go the same
way we already did with methods and objects. We expand
our simple iteration example by enhancing the method call
itself. Another layer of abstraction is added or, if you will,
some more object oriented ‘overhead* by adding more detail
into the method call like identifier and the parent object the
method is to be invoked on. Now it is not just me#(Y) but a
method call specified like this:

object.Object X identifier.String X return-value. DType
xarguments.ParamList — Method

The result (listing 21) shows that, like before, all the addi-
tional information is just wrapped around the detected proce-
dure which still does nothing else than moving objects from
one collection to another. The following equations display
the result in a more readable notation. Note that X1 is an
Object, X2 a Collection, idl an Identifier, dt1 a DType and
pp a ParamlList.

. Subl(push(X1, X2)) = call(X1,id1, dt1, pp)
. Sub2(push(X1, X2)) =it_apply(Subb(push(X1, X2))))
. Subb(push(X1,X2)) = X2
-it_apply([]) =]
. it.apply(push(X1, X2)) =
push(Subl(push(X1, X2)), Sub2(push(X1, X2)))

L S S

Not only have we modeled primitive object-oriented con-
cepts - we have had Igor synthesize them on its own just by
providing some generic input/output examples. After that we
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went one step further trying to model some object-oriented
procedures like iteration or the ‘foreach‘ loop just by using
those primitives. It turned out that /gor does not appear to be
struggling with the example specification - even though we
have wrapped them in quite a complex model - especially
in the ‘foreach® example. We have constructed some more
examples to show that we can now use our primitive objects
to build a more complex model consisting solely of the con-
cepts illustrated in this section. This means that it is possi-
ble to take this further, modeling a complete object-oriented
model just with a functional programming language. At the
same time it has to be said that we did indeed skip quite a lot
of things as type-inference, inheritance, references (pointers)
or exceptions, to name but a few. Since it has been pointed
out that the model constructed in this paper does not claim
to be a full scale approach we cannot conclude that a serious
foundation has been created to build on.

But we have demonstrated that it is basically possible to
model parts of an object oriented system functionally, which
is quite an interesting observation and is definitely worth a
more thorough approach.

In the next chapter we have a glance at auroJAVA, a plug-
in for eclipse which was designed to integrate Igor into the
eclipse workbench together with a simple way to provide
input/output specifications to our system. The output of the
system uses our simple protocol to generate ‘quasi-object-
oriented‘ notation.

5. AutoJava

Since this paper’s focus is clearly on the theoretical part of
how to design an object oriented program with a functional
programming language it seems quite obvious not to get
too much involved into the practical part of devising an
application for this. However, AutoJava is a plug in for
eclipse which basically provides a functionality to use Igor
in an object oriented environment and as the focus of this
paper is not on this prototype we are just going to have a
short look at how a java file in this tool would look like:

Listing 14: Automated Solution of Last

/% %
*@JgorMETA (
* methodName = "last”.
* retValue "Object”.
* params "List”.
*)
*@JIgorEQ(
* equations = {
* “([x])=x".
* o ([x,y])=y 7.
* “(lx,y,z])=z".
* "([x,z,c,n])=n".
* 3
*)
*@Method( last);
*/
public void last (){
/% xx
/% The following code has automatically been generated
by AutoJava
/% according to the user specification in the
annotations above
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/% the result is printed below
sk k/

// hypo(true, 2, eq ’Subl[’cons[’XIl:Object, cons[’ X2:

Object ,
// ’X3:List]]] = ’cons[’X2:0bject, X3:List] [none] .
//eq ’last[’ cons[’XI]:Object,’ [ “].List]] = 'XI:0bject [
none] .

//eq ’last[’ cons[’X]:Object, cons[’X2:0bject,’ X3:List
J1] = ’last[’ Subl[’ cons|[

// "X1:0bject,  cons[’X2:O0bject, X3:List]]]] [none]
-)

In this example we can see that java annotations * con-
tain the specification which is considerably simplified from
what we have seen so far. The most important parts are Ig-
orMETA which contains method name, return value and in-
put arguments of the method to infer. In the second bit Ig-
orEQ, the input/output can be specified.

6. Conclusion

By now we have shown that it is possible to successfully
model objects, methods, properties and messages in our sim-
ple protocol, moreover, we had igor synthesize all of them.
So machine learning approaches have been used in order to
have a system learn how to describe generic processes within
programming languages. We provided a showcase of how
functional programming can be combined with object orien-
tation. The running plug in should prove this to be true and
opens up many paths for future expansion.

A rather interesting point is the integration of the specifi-
cation within the annotations which creates an entry point for
large-scale applications such as IBMs RSA. As the developer
can annotate his UML diagrams and have those annotations
transferred into the auto-generated code you could think of
a use case like Igor using the specification during the code
generation filling in the method implementation.

All in all there has to be said that even though the results
presented in this paper do not seem very novel or breathtak-
ing. But they nevertheless show that by enabling functional
programs to deal with object orientation we can play to the
strengths of both paradigms. Even though it has been men-
tioned that our model does not claim to be complete or even
fully correct - it feels like that we have created an inspira-
tion for some next steps which might gradually improve the
methodology and finally result in a larger scale prototype
which actually produces Java code instead of functional pro-
grams.

3see http://java.sun.com/j2se/1.5.0/docs/guide/language/

annotations.html
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A. Complete Listings
A.1 Maude Specifications and some Results

Note: Igor frequently produces more than one output hy-
pothesis - for the sake of transparency only one of them is
listed in our results sections.

Listing 15: Object

fmod OBIJECT is

%% Knowledge about how objects wrap properties and
methods

%% Uses 'IDENTIFYER—MATCH’ in the way methods are
called on an object

%% The same goes for property extraction

sorts InVec Object Prop Method PropList MethodList List
ListEl NPException
subsorts Method < NPException
subsorts Prop < NPException
subsorts List < PropList MethodList
subsorts ListEl < Prop Method
sorts Identifier DType
sort MyBool

%% DT definitions

#%% list to store any value

op [] : = List [ctor]

%% object constructor , taking a list of properties & a
list of methods together with an

#%% identifier for the object

op --- : Identifier PropList MethodList —> Object [ctor
1 .

op met : Identifier DType —> Method [ctor].

op prop : Identifier DType — Prop

ops idl id2 id3 : — Identifier

op dt : —> DType

op exc : —> NPException

%% standard operations
op cons : ListEl List —> List [ctor]

%% defined function names (to be induced, preds, bk)

Kok

op mcall : Object Identifier —> Method [metadata ”
induce”]

var oid : Identifier

exc
exc

eq mcall( (oid [] []), idl )
eq mcall( (oid [] []), id2 )

eq mcall( (oid [] cons(met(idl, dt), []) ), idl ) = met
(id1, dt) .
eq mcall( (oid [] coms(met(id2, dt), []) ), idl ) = exc

eq mczill( (oid [] coms(met(idl, dt), []) ), id2 ) = exc

eq mca;ll( (oid [] coms(met(id2, dt), []) ), id2 ) = met
(id2, dt) .

eq mcall( (oid [] cons( met(idl, dt), cons( met(id2, dt
Yy, [1) ) ), idl ) = met(idl, dt)

eq mcall( (oid [] cons( met(id2, dt), cons( met(idl, dt
), [1) ) ), idl ) = met(idl, dt)

eq mcall( (oid [] cons( met(id2, dt), cons( met(idl, dt
), [1) ) ), id2 ) = met(id2, dt)

eq mcall( (oid [] cons( met(idl, dt), cons( met(id2, dt
), cons( met(id3, dt), []))) ), idl ) =
met(idl, dt)

eq mcall( (oid [] cons( met(id3, dt), cons( met(idl, dt
), cons( met(id2, dt), []))) ), idl ) =
met(idl , dt)

eq mcall( (oid [] cons( met(id3, dt), cons( met(id2, dt
), cons( met(idl, dt), []))) ), idl ) =
met(idl , dt)

endfm

Listing 16: Identifier-Match

fmod IDENTIFIER—MATCH is

%% Knowledge about how methods are called by providing
an identifyer sk

#%x If a list of methods contains the called identifyer
, the method is returned sxx

sorts InVec List Method Identifier DType ParamList
NPException
subsort Method < NPException

op [] : = List [ctor]

op cons : Method List — List [ctor]

op mm : Identifier DType ParamList — Method [ctor]
ops idl id2 id3 : — Identifier

op parlist : — ParamList [ctor]

op exc : —> NPException

op dt : — DType

op match : Identifier List — Method [metadata “induce”
1

vars ml m2 m3 : Method

exc
exc

eq match(idl, [] )
eq match(id2, [] )

eq match(idl, cons(mm(idl, dt, parlist) ,[]) )= mm(idl,
dt, parlist)

eq match(idl, cons(mm(id2, dt, parlist), []) ) = exc
eq match(id2, cons(mm(idl, dt, parlist) ,[]) ) = exc .
eq match(id2, cons(mm(id2, dt, parlist), []) ) = mm(id2

, dt, parlist)

eq match(idl, cons(mm(idl, dt, parlist), cons(mm(id2,
dt, parlist), [])) ) = mm(idl, dt, parlist)

eq match(idl, cons(mm(id2, dt, parlist), cons(mm(idl,
dt, parlist), [])) ) = mm(idl, dt, parlist)

eq match(id2, cons(mm(id2, dt, parlist), cons(mm(idl,
dt, parlist), [])) ) = mm(id2, dt, parlist)

eq match(idl, cons(mm(idl, dt, parlist), cons(mm(id2,
dt, parlist), cons(mm(id3, dt, parlist), []))) ) =
mm(idl, dt, parlist)

eq match(idl, cons(mm(id3, dt, parlist), cons(mm(idl,
dt, parlist), cons(mm(id2, dt, parlist), []))) ) =
mm(idl, dt, parlist)

eq match(idl, cons(mm(id3, dt, parlist), cons(mm(id2,
dt, parlist), cons(mm(idl, dt, parlist), []))) ) =
mm(idl, dt, parlist)

endfm

Listing 17: Identifier-Match Result

eq: match(X1,()) = exc;
ceq: Subl(XI,cons(mm(X2,dt, parlist) ,X3))

X1 if == (X1,

X2) = false;

ceq: Sub2(XI,cons(mm(X2,dt, parlist),X3)) = X3 if == (X1,

X2) = false;

ceq: match (X1, cons(mm(X2,dt, parlist),X3)) = match(Subl (X1

,cons (mm(X2,dt, parlist) ,X3)),Sub2 (X1, cons (mm(X2, dt,
parlist),X3))) if == (X1,X2) = false;

ceq: match (X1, cons(mm(X2,dt, parlist) ,X3)) = mm(X1,dt,

parlist) if == (X1,X2) = true;
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Listing 18: OO-Call

fmod OO—CALL is

sorts InVec Object

sorts Message ParamList

sorts Nat Bool Param Res
subsorts Param < Nat Bool
subsorts Res < Nat Bool
subsorts Object < Nat Bool

%% DT definitions

op * : —> Object [ctor]

op <> : —> ParamList [ctor]

op msg : ParamList Object —> Message [ctor]

op null : — Object [ctor]
op 0 : — Nat [ctor]

op s : Nat — Nat [ctor]
op t : — Bool [ctor]

op f : — Bool [ctor]

%% Standard Operators xxx

%% op call Message —> Message [metadata “pred.
nomatch™] . s

op cpar Param ParamList —> ParamList [ctor]

%% defined function names (to be induced, preds, bk)
*k ok

op method Message —> Message [metadata “induce”]

%% input encapsulation sx

op in : Message — InVec [ctor]

vars pl ParamList
vars n : Nat

%% input output examples for “even” xxx
eq method( msg(cpar( 0, <>), null) ) = msg<> ,t )
eq method( msg(cpar( s(0), <>), null) ) = msg( <> , f

) .
eq method( msg(cpar( s(s(0)), <>), null) ) = msg( <> ,

t ) .

eq method( msg(cpar( s(s(s(0))), <>), null) ) = msg( <
, ) .

eq method( msg(cpar( s(s(s(s(0)))), <>), null) ) = msg(
< , t)

endfm

Listing 19: OO-Call Result

eq: method(msg(cpar (XI,<>),null)) = msg(<>,f) if == (Xl,s
(0)) = true AND == (X1,s(0)) = true AND == (X1,s(0))
= true;

ceq: method(msg(cpar(X1,<>),null)) = msg(<>,f) if == (X1,
s(s(s(0)))) = true AND == (X1,s(s(s(0)))) = true AND
== (X1,s(s(s(0)))) = true AND == (X1,s(s(s(0)))) =
true AND == (X1,s(s(s(0)))) = true;

ceq: method(msg(cpar(X1,<>),null)) = msg(<>,t) if == (XI,
s(s(s(0)))) = false;

Listing 20: Iterate-Collection
fmod ITERATE—COLLECTION is

sorts Object Collection ResultCollection Method Result
InVec

xx% DT definitions (constructors)

op [] : = Collection [ctor]

op {} : = ResultCollection [ctor]

op put : Object Collection —> Collection [ctor]

op put2 : Result ResultCollection — ResultCollection [
ctor]

op met : Object — Result

Thomas Hieber, Martin Hofmann

%% defined function names (to be induced, preds, bk)
op iterate Collection —> ResultCollection [metadata

s

induce”]
#%% input encapsulation
op in : Collection — InVec [ctor]

vars UVWXYZF : Object

eq iterate ([]) = {} .

eq iterate( put(Y,[]) ) = put2( met(Y), {}) .

eq iterate( put(X,put(Y,[])) ) = put2( met(X), put2(
met(Y) .{}))

eq iterate( put(Y,put(X,put(Z,[1))) ) = put2( met(Y),
put2 ( met(X), put2( met(Z).{}))) .

endfm

Listing 21: Iterate-Collection Result

eq: Subl(put(X1,X2)) = met(X1);

eq: Sub2(put(X1,X2)) iterate (Sub5(put(X1,X2)));

eq: Sub5(put(X1,X2)) X2,

eq: iterate(()) = {};

eq: iterate(put(X1,X2)) = put2(Subl(put(X1,X2)),Sub2(put(
X1,X2))),

Listing 22: Foreach-Do
fmod FOREACH-DO is

sorts InVec Object Prop Method PropList MethodList List
ListEl ParamList Collection
subsorts List < PropList MethodList
subsorts ListEl < Prop Method
subsorts Object < Method
sorts Identifier DType

sx% DT definitions (constructors) sk
op [] : = Collection [ctor]
op pp : —> ParamList

s%% STANDARD OPERATORS
op push Object Collection —> Collection [ctor]

s+ METHOD DECLARATION s
op call : Object Identifier DType ParamList — Method [

ctor].
op idl : — Identifier [ctor]
op dtl : —> DType [ctor]

%% defined function names (to be induced, preds, bk)
*k ok

op it_apply
induce”]

s

Collection — Collection [metadata

%% input encapsulation s¥x
op in : Collection — InVec [ctor]

sx% VARIABLES s
vars a b ¢ : Object

##%% ITERATION SPECIFICATION s
eq it-apply ([1) = []

eq it_apply( push(a, []) ) = push( call(a, idl, dtl, pp
). 1) .

eq it_apply ( push(a, push(b, [])) ) =
push( call(a, idl, dtl, pp), push( call(b, idl, dtl,
pp), [ ) .

eq it_apply( push(a, push(b, push(c, []))) ) =
push( call(a, idl, dtl, pp), push( call(b, idl, dtl,
pp). push( call(c, idl, dtl, pp). [1)) )
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endfm
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Abstract

This paper reports the on-going research on formalization
of the algorithm behind MagicHaskeller, an inductive func-
tional programming system based on systematic search, as
a monadic interpretation of inference rules of a variant of
Herbelin’s LIT.

1.

In TFP2005 symposium we presented an algorithm to gen-
erate a stream of all the possible expressions with a given
type from a given set of expressions by using breadth-first
search [Katayama 2005], and since then the algorithm has
been released and updated as a generate-and-test style induc-
tive functional programming system, called MagicHaskeller.
The research, started as an antithesis to genetic programming
that tends to ignore systematic search, has attracted some
positive-minded scientists, while its lack in enough formal-
ization has been a source of difficulty in understanding and
theoretically manipulating the algorithm.

In the same year of 2005 Augustsson released Djinn, that
generates one or some functional programs with the given
type, based on theorem proving by Roy Dyckhoff’s LJT
[Dyckhoff 1992] (a.k.a. G4ip by Hudelmaier [Hudelmaier
1992]). That has driven us to work on formalization of our
exhaustive search algorithm, though Dyckhoft’s LIT cannot
straightforwardly be applied to exhaustive program/proof
generation because it replaces equivalent expressions for
making its D=4 rule efficient, but actually replacing equiv-
alent expressions corresponds to several proofs, and thus
should multiply the number of proofs.

As the matter of fact, there is also a correspondence be-
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tween automatic proof and the algorithm behind MagicHaskeller.

This on-going research starts with monadic interpretation of
each rule of a variant of Herbelin’s LJT[Herbelin 1995] in
combination of Spivey’s algebraic framework for combi-
natorial search[Spivey 2006], and aims at associating our
algorithm presented at [Katayama 2005] with generation of
the stream of all the proofs for the given proposition.
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2. Basic ideas

We use Spivey’s monad for combinatorial search[Spivey
2006]. By using his algebraic interface, we can easily im-
plement combinatorial search using the bind operator > for
combinations and plus operator & for alternative selections.
Hence, when generating proofs of some proposition, if the
proposition matches conclusions of plural inference rules,
we only need to generate proofs of premises of such rules
and compute the direct sum of such processes (which means
backtracking when generating a single proof), and if the
proposition matches the conclusion of an inference rule
which has plural premises, we only need to generate proofs
of the premises and compute the direct product of such pro-
cesses. In general, such alternation and combination of proof
tree generation can be interpreted in the way shown in Ta-
ble 1, where £[X] denotes the monadic value holding the
infinite stream of proofs of X, and (®) denotes a multipli-
cation, whose definition is dependent on how to construct
a pair of proofs. (®) can be defined in Haskell as follows
using monadic operators defined in [Spivey 2006]:
z(®)y =x>Aa — y>Ab — return (a ® b)
ie.
o(®)y = UftM2 (®) z y

Table 1. interpretation of alternatives and combinations

rules interpretations
B < E[A] = £[B] @ €[C]
A A
riB yiC o gla) = eBl()ElC]
xRy A

3. A simple, but more concrete example

Let us consider a more concrete and more interesting infer-
ence rule set, with which we can indeed generate an infinite
set of A-expressions. Consider the inference rule set shown
in Table 2.

We assume that each premise is not a list but a set.

The rule set can be used to infer the types of A-expressions.
Also, it can be used to mechanically generate a proof of a
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Table 2.
I''z:Ajbe: B
I'Xze:: A— B

where x does not appear as a label in I"

—R

ket Ay I'ke,: A,
rf:A —..—-A,— Bt fer..e, = B

where B is atomic

Ax+—L

proposition by matching from the bottom to the top, and we
are interested in generating the infinite set of all the proofs.

The proviso for Ax-+—L rule is added in order to permit
only n-long normal form and identify n-equivalent proofs.
This limitation does not only limit the unnecessary search
space expansion by n-equivalent program generations when
generating programs (proofs) from the bottom to the top,
but also make implementation simpler and more efficient
by preventing the proposition to be proved from matching
plural conclusions of inference rules.

In order to show the implementations, we first define a
datatype of A-expressions:

data Fzpr = FEzpr :$Expr -- function application

| Lambda Var Expr -- lambda abstraction

| V Var -- variable
Then, the rule set can be interpreted as follows.
ECFA— Bl ={Az)(&[z: AT F B]) (1)
EM-Bl= € &M f=THB],  if Bisatomic. (2)
f=Tel
E f Ay — ... = Ay — BFB] = wrap™ (

return(V f) (:$) E[THA1] (:$) ... (:$) E[TFA,]
) 3

EL; f = THB] = zero, if T does not return B.  (4)

We assume (: $) is left associative. zero means the empty
set. (Au.)(m) means mapping A-abstraction by u of each
element of m, i.e.

(Au.) (m) = fmap (Lambda u) m
or

(Au.) (m) = mv (return o Lambda )

Rule —R is straightforwardly interpreted to Equation 1.
As for the atomic case corresponding to Ax+ —L, the in-
terpretation should be the & sum of all the possible choices
of f € I' as in Equation 2, that return the same type as the
requested one.

We silently insert the wrap operation from [Spivey 2006],
that pushes the search process deeper in the search tree,
into the product operation, which corresponds to function
application. This is done because we regard the search depth
as the program (proof) size, measured by the number of
function applications. !

""The wrap operation can be included in (:$), though for efficiency it
should be applied as soon as the arity is known.

Susumu Katayama

4. Interpretation of Cut-free LJT

The rule set shown in Table 2 can equivalently be translated
to Herbelin’s cut-free LJT[Herbelin 1995], except for the
proviso that prevent n-equivalent expressions from being
generated. Without the proviso, the interpretation becomes
as follows:

ETHA— Bl ={z)(€[z:: A,TF B])
EB@]”::TGFE[F; f:THA — B

EM-Bl= €D &I f=THB], if Bis atomic.
f=Tel

5. Remaining work

We have not presented the structural rules for bundling the
variables with the same type, which are useful for efficient
implementation, especially in combination with memoiza-
tion. Neither have we presented rules related to universal
quantification, for which we implement unification algo-
rithm on the top of state monad transformer that keeps track
of the current substitution, which transforms Spivey’s monad
of combinatorial search.

Our recent work on removing semantically equivalent ex-
pressions [Katayama 2008] requires more complicated im-
plementation, and we have not proved the exhaustiveness
under such circumstances. We hope that further formaliza-
tion will reinforce this line of research.
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Abstract

This research is on improving the efficiency of our previous
work for removing semantically equivalent expressions in
program search results.

1.

In [Katayama 2008] we have proposed a Las Vegas algo-
rithm for removing all the semantically equivalent programs
except one by Monte-Carlo search within the program space,
for the purposes of

Introduction

¢ speeding up exhaustive search by bootstrapping,

e improving the readability of search results (like search
engines such as Google which bundle “similar pages™)

e providing guesses on how quickly the search space bloats

We tried generating an infinite stream of all the typed \-
expressions with the given type that consist of given prim-
itive set, in the increasing order of program size. The results
were impressing — the algorithm’s estimation of the num-
ber of functions with type V a. [a] — [a] which consist of
nil, cons, and foldr, and is constructed with \-abstractions
and 10 or less function applications was below a hundred.
Moreover, even when we used a set of tens of library func-
tions as the primitive set, there were only hundreds of func-
tions with type V a.[a] — [a], which is constructed with
A-abstractions and 7 or less function applications. Those in-
teresting results suggest a new possibility of search-based
non-heuristic inductive functional programming.

On the other hand, the filtration algorithm requires more
computational cost than that is expected from the fewness of
the final result, because it is dependent on execution of huge
amount of expressions generated. Especially to our regret,
if the set of programs to be filtered is not very redundant,
i.e., if it does not include a lot of semantically equivalent
expressions (e.g. when using the primitive set with only
constructors and induction functions), program generation
with such filtration costs more time than that without it.
Hence we improve the efficiency of the filtration algorithm.

Evaluating semantical equivalence of syntactically dif-
ferent expressions by supplying random arguments is not a
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new idea. [Martin 1971] discussed a method that guesses the
equivalence of two algebraic expressions by evaluating them
using finite field arithmetic. Monte-Carlo search for program
errors is called random testing in the field of software engi-
neering. Due to the space limitation, interested readers are
referred to references in [Katayama 2008].

2. The old algorithm

Monte-Carlo algorithms are randomized algorithms whose
final results may be inaccurate, while Las Vegas algorithms
always yield the correct answers if they halt, though their
computational costs are random and unknown before execu-
tion. It is often the case that a Monte-Carlo algorithm can be
converted into a Las Vegas algorithm by repetition until the
correct answer is obtained, especially when we can tell if the
obtained result is correct or not.

Our algorithm presented in [Katayama 2008] is based on
a similar idea, though we cannot exactly decide if the ob-
tained infinite stream exhaustively include semantically dif-
ferent expressions. Here is the rough sketch of the filtration
algorithm presented in [Katayama 2008]:

e let S, the search result until depth d; define equivalence
by a random point set r: f ~,. g p=4 vp er.f(p) =g(p);
e generate a stream of random point sets {7’,1},1;071,_“;

e compute the quotient set Sy / ~,., and the complete set
of representatives; expressions without uniqueness proof
will simply be dropped;

e use iterative deepening, and refine ~,., at each iteration
by letting rq C 7r441; thanks to the deepening, dropped
but distinct expression will resurrect.

The above algorithm requires at least nb times of executions
when filtering n expressions for computing the depth b, be-
cause each expression has to be executed for b or more ran-
dom points. Obviously this is inefficient and rather deterio-
rates the efficiency, because the number of expressions expo-
nentially increases as the iteration goes deeper. For this rea-
son, when applying this filter to subexpressions during pro-
gram generation for efficiency, [Katayama 2008] uses a more
efficient filter which permits minor redundancy that uses
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Table 1. Experimental results. (0.m. means out of memory, and co means no result in an hour.)
\ time (sec) | number of programs at each depth
generating Int — Int from the mnat primitive set until depth 10.
not filtered (redundant) 3512 2 6 78 326 1506 7910 44806 283014
with old Filter 2 |2 2 3 12 27 62 146 448 N/A
with old Filter 1 + Filter 2 2412 2 3 12 27 28 107 282 842
with the new filter 1mji2 2 3 12 27 52 109 321 1009
generating [C'har] — [Char] from the reallyall primitive set until depth 9.
not filtered (redundant) om. | 2 5 42 225 1755 12228 98034 771730 N/A
with old Filter 2 om. |2 1 3 21 113 299 1082 N/A
with old Filter 1 + Filter 2 7212 1 3 21 98 264 981 3692
with the new filter 5112 1 5 35 160 422 1611 6256

only a small fixed number of random points per expression,
and then apply the above inefficient but not redundancy-
permitting filter to the final result. Its idea is that the set of
expressions is already thinned up by the efficient filter when
the inefficient filter is applied, and thus the usage of the in-
efficient filter is not the bottleneck any longer.

By using this two-staged filtration, the total computa-
tional cost using a rich primitive set have reduced from the
original algorithm not using such filtrations and the one us-
ing only the above inefficient filter. However, when using
minimal primitive sets that consist of constructors and induc-
tion functions, the algorithm using the two-staged filtration
is still slower than the original algorithm without filtrations.
In this research we seek more efficient filtration process.

3. The improved algorithm

We focus on improving the execution time of filtration
(which includes that of the generated (sub)expressions)
rather than that of program synthesis, because the time pro-
filing reports show that most of the total computation time
is comprised of that part. Two-staged filtration is dependent
on iterative deepening, and when new expressions are gen-
erated, expressions at the shallower nodes in the search tree
are re-executed with a different random point set as the argu-
ment, and re-categorized into new equivalence classes based
on it, along with the newly generated expressions. The new
improved algorithm omits the re-execution.

Given the set of expressions before filtration at depth d
as x4, the resulting set y, of expressions at depth d after the
first filtration of the two-staged filtration was

Yo = pick(So [/ ~r,)
Yd piCk((Sd / N7'd)\Nrd71 (Sd—l / N"'d—l))

where pick is a function that collects representatives from
equivalence classes, \, is an operator for set subtraction
by using the equivalence defined by the point set r, and

Sd = U?:O Zj.

The new algorithm computes y, as
Ya = pick
(Uto(@ani / ~r)\wr, (Sacica [ ~2)) Ui [ o, )
The ideas are:

e the computation of Sy / ~;, costs |Sq||r4| because r4
includes all the points in 7;|;<4; thus we want to use 7
instead of 4 for computing x4;

® Because 7;|;>¢ is a refinement of r(, representatives of
ZTd—i | ~reli>o should fall into different equivalence
classes of x4—; / ~,|i>0, and in order to avoid dupli-
cates we subtract Sg—1 / ~p,.

Also, by starting with small number of random points, we
can keep the random values small at first, by which we can
expect edge and corner cases to be checked often.

4. Experimental results

Table 1 shows some results on the mnat primitive set and the
reallyall primitive set defined in [Katayama 2008]. mnat
consists only of 0, successor function, and addition and
paramorphism for natural numbers. reallyall is rather a
large primitive set consisting of 5 boolean operations, 12
instances of (in)equality predicates, and 24 list operations
taken from the Standard Prelude. All the experiments are
conducted using the same parameters as [Katayama 2008]
on Intel Pentium D 2.8.GHz machine running Linux 2.6.24.

The proposed filter requires less time for generating more
programs than the old filter.
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