318 research outputs found

    Tools for Optimization of Biomass-to-Energy Conversion Processes

    Get PDF
    Biomasses are renewable sources used in energy conversion processes to obtain diverse products through different technologies. The production chain, which involves delivery, logistics, pre-treatment, storage and conversion as general components, can be costly and uncertain due to inherent variability. Optimization methods are widely applied for modeling the biomass supply chain (BSC) for energy processes. In this qualitative review, the main aspects and global trends of using geographic information systems (GISs), linear programming (LP) and neural networks to optimize the BSC are presented. Modeling objectives and factors considered in studies published in the last 25 years are reviewed, enabling a broad overview of the BSC to support decisions at strategic, tactical and operational levels. Combined techniques have been used for different purposes: GISs for spatial analyses of biomass; neural networks for higher heating value (HHV) correlations; and linear programming and its variations for achieving objectives in general, such as costs and emissions reduction. This study reinforces the progress evidenced in the literature and envisions the increasing inclusion of socio-environmental criteria as a challenge in future modeling efforts

    Optimizing cost of sugarcane logging and transportation to milling using iterative fuzzy inference system

    Get PDF
    The problem in this research is optimizing logging distribution from three sugarcane plantation locations to three sugar mill locations. In the existing method, each sugar factory location is only supplied by one plantation location, which is located closest to the factory location. This article proposes the Iterative Fuzzy Inference System (IFIS) method to optimize the cost. IFIS used two FIS. The first FIS was carried out iteratively to find the best factory priority as a destination for delivery of logged sugarcane. The second FIS was conducted to find the best log quantity from each plantation to be sent to each mill. This research contributes to optimization. On the plantation side, the harvested products from one plantation are sent to all the mills that need them, and on the mill side, the mill only accepts sugar cane shipments as needed, so no sugar cane has to wait long in the mill

    Simulation of site-specific irrigation control strategies with sparse input data

    Get PDF
    Crop and irrigation water use efficiencies may be improved by managing irrigation application timing and volumes using physical and agronomic principles. However, the crop water requirement may be spatially variable due to different soil properties and genetic variations in the crop across the field. Adaptive control strategies can be used to locally control water applications in response to in-field temporal and spatial variability with the aim of maximising both crop development and water use efficiency. A simulation framework ‘VARIwise’ has been created to aid the development, evaluation and management of spatially and temporally varied adaptive irrigation control strategies (McCarthy et al., 2010). VARIwise enables alternative control strategies to be simulated with different crop and environmental conditions and at a range of spatial resolutions. An iterative learning controller and model predictive controller have been implemented in VARIwise to improve the irrigation of cotton. The iterative learning control strategy involves using the soil moisture response to the previous irrigation volume to adjust the applied irrigation volume applied at the next irrigation event. For field implementation this controller has low data requirements as only soil moisture data is required after each irrigation event. In contrast, a model predictive controller has high data requirements as measured soil and plant data are required at a high spatial resolution in a field implementation. Model predictive control involves using a calibrated model to determine the irrigation application and/or timing which results in the highest predicted yield or water use efficiency. The implementation of these strategies is described and a case study is presented to demonstrate the operation of the strategies with various levels of data availability. It is concluded that in situations of sparse data, the iterative learning controller performs significantly better than a model predictive controller

    Air pollution and livestock production

    Get PDF
    The air in a livestock farming environment contains high concentrations of dust particles and gaseous pollutants. The total inhalable dust can enter the nose and mouth during normal breathing and the thoracic dust can reach into the lungs. However, it is the respirable dust particles that can penetrate further into the gas-exchange region, making it the most hazardous dust component. Prolonged exposure to high concentrations of dust particles can lead to respiratory health issues for both livestock and farming staff. Ammonia, an example of a gaseous pollutant, is derived from the decomposition of nitrous compounds. Increased exposure to ammonia may also have an effect on the health of humans and livestock. There are a number of technologies available to ensure exposure to these pollutants is minimised. Through proactive means, (the optimal design and management of livestock buildings) air quality can be improved to reduce the likelihood of risks associated with sub-optimal air quality. Once air problems have taken hold, other reduction methods need to be applied utilising a more reactive approach. A key requirement for the control of concentration and exposure of airborne pollutants to an acceptable level is to be able to conduct real-time measurements of these pollutants. This paper provides a review of airborne pollution including methods to both measure and control the concentration of pollutants in livestock buildings

    Economic Modeling of Agricultural Production in North Dakota Using Transportation Analysis and Forecasting

    Get PDF
    Agricultural industry is crucial for the economy; agricultural transportation is an integrated part of that industry. Optimization of the transportation and logistics costs is an important part of the transportation economics. This study focuses on the minimization of the total cost of transportation logistics. Sugar-beet is one of the important crops in the state of North Dakota and there has been sporadic research in the sugar-beet transportation economic modeling. Therefore, this research focuses on the transportation economic modeling of the sugar-beet including yield forecasting to reduce the uncertainty in this process. This study begins with developing a yield forecasting model which is presented as a way to sustain the agricultural transportation under stochastic environments. The stochastic environment includes variation in weather conditions, precipitation, soil type, and randomness of natural disasters. The yield forecasting model developed uses Normalized Difference Vegetation Index (NDVI), Geographical Information System (GIS), and statistical analysis. The second part of this study focuses on economic model to calculate the total cost associated with the sugar-beet transportation. This model utilizes the GIS analysis to calculate the distances travelled from member coop farms during harvest and transport to processing facilities in various locations. This model sheds light on the critical cost factors associated with the total economic analysis of sugar-beet harvest, transportation, and production. Since the sugar-beet yield varies significantly based on different factors, it provides for a variable optimal harvesting time based on the plant maturity and sugar content. Sub-optimized pilers location result in the high transportation and utilization costs. The third part of this research focuses on minimizing the sum of transportation costs to and from pilers and the piler utilization cost. A two-step algorithm, based on the GIS with global optimization method, is used to solve this problem. In conclusion, this research will provide a primary stepping stone for farmers, planners, and engineers to develop a data driven analytical tool which will help to minimize the total logistics cost of the sugar-beet crop while at the same time keeping the sugar content intact and predict the sugar yield and truck volume

    Development of soft computing and applications in agricultural and biological engineering

    Get PDF
    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and applied in the last three decades for scientific research and engineering computing. In agricultural and biological engineering, researchers and engineers have developed methods of fuzzy logic, artificial neural networks, genetic algorithms, decision trees, and support vector machines to study soil and water regimes related to crop growth, analyze the operation of food processing, and support decision-making in precision farming. This paper reviews the development of soft computing techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is discussed

    Optimization of Agricultural Machinery Allocation in Heilongjiang Reclamation Area Based on Particle Swarm Optimization Algorithm

    Get PDF
    Aiming at the imbalance of seasonal agricultural machinery operations in different regions and the low efficiency of agricultural machinery, an experiment is proposed to use particle swarm algorithm to plan agricultural machinery paths to solve the current problems in agricultural machinery operations. Taking the harvesting of autumn soybeans at Jianshan Farm in Heilongjiang Reclamation Area as the experimental object, this paper constructs the optimization target model of the maximum net income of farm machinery households, and uses particle swarm algorithm to carry out agricultural machinery operation distribution and path planning gradually. In this paper, by introducing 0 - 1 mapping, the improved algorithm adopts continuous decision variables to solve the optimization of discrete variables in agricultural machinery operations. The test results show that the particle swarm algorithm can realize the optimal allocation of agricultural machinery path, and the particle swarm algorithm is scientific and explanatory to solve the agricultural machinery allocation problem. This research can provide a scientific basis for farm agricultural machinery allocation and decision analysis

    Statistical data mining algorithms for optimising analysis of spectroscopic data from on-line NIR mill systems

    Get PDF
    Justin Sexton investigated techniques to identify atypical sugarcane from spectral data. He found that identifying atypical samples could help remove bias in estimates of CCS. His results can be used to track occurrences of atypical cane or improve quality estimates providing benefits at various stages along the industry value chain
    corecore