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Abstract: Biomasses are renewable sources used in energy conversion processes to obtain diverse
products through different technologies. The production chain, which involves delivery, logistics,
pre-treatment, storage and conversion as general components, can be costly and uncertain due to
inherent variability. Optimization methods are widely applied for modeling the biomass supply
chain (BSC) for energy processes. In this qualitative review, the main aspects and global trends
of using geographic information systems (GISs), linear programming (LP) and neural networks to
optimize the BSC are presented. Modeling objectives and factors considered in studies published in
the last 25 years are reviewed, enabling a broad overview of the BSC to support decisions at strategic,
tactical and operational levels. Combined techniques have been used for different purposes: GISs
for spatial analyses of biomass; neural networks for higher heating value (HHV) correlations; and
linear programming and its variations for achieving objectives in general, such as costs and emissions
reduction. This study reinforces the progress evidenced in the literature and envisions the increasing
inclusion of socio-environmental criteria as a challenge in future modeling efforts.

Keywords: biomass supply chain; optimization models; mathematical programming; energy
processes

1. Introduction

The search for energy solutions to replace fossil fuels includes a set of technologies
aimed at sustainable development [1]. Dependence on the oil industry is huge, but the
finite nature of petroleum and its inherent environmental impacts underscore the need for
ecologically friendly processes that can compete economically. Therefore, it is necessary to
pay attention to the optimization of alternative processes and systems [2].

Different thermochemical technologies are used for the conversion of biomass, such
as pyrolysis, gasification and direct combustion (Figure 1) [3]. Pyrolysis can occur in
three forms. Torrefaction produces enhanced biomass with greater calorific power and
lesser density and hygroscopicity [4], slow pyrolysis produces charcoal, and fast pyrolysis
produces bio-oil. Direct combustion for the generation of thermal energy is the oldest and
most consolidated technology [5,6]. The use of biomass is justified by its carbon-neutral
status, i.e., the emissions of carbon dioxide are compensated by its fixation during the
process of photosynthesis. As a result, an overall increase has recently been observed in
the use of biofuels for electricity generation [7]. From a practical standpoint, however, this
balance is not completely neutral due to the emissions involved in biomass transport and
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the disproportion between the replanting of native species and consumption that leads
to deforestation [8]. For this reason, residual biomass (i.e., second-generation biomass)
is preferable in most cases. To reduce emissions and costs, all aspects of the supply
chain—planting, transporting, pre-treatment and final use—can be improved with different
types of optimizations [4].
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and thermal energy (red rectangles) from solid biomass.

Optimization may involve the thermochemical processes indicated in Figure 1 or the
supply chain and management processes. One of the lines of thermochemical process
optimization is that concerning the combustion process itself. Improvements in combus-
tion efficiency generally take into consideration aspects intrinsic to the reaction, such as
composition, stoichiometric proportion of reagents (fuel and air), interaction of phases
(liquid–gas, solid–gas) and geometry of the combustion chamber and accessories (grills,
heat exchangers, etc.). Other thermodynamic processes concerning the conversion system
(boiler, steam generator, etc.) can also be optimized [9]. Such measures enable the entire
lower calorific power of biomass to be converted into heat for use in different processes.

From the global standpoint, the optimization of the supply chain as a whole involves
supply (quality and variability of biomass), logistics, pretreatment, storage and burning.
Complex logistics relating to the transport of biomass and its economic, energy use and
environmental implications may be a barrier to the development of the sector due to
the variations in the calorific power and density of biomass as well as its high moisture
content [10–13].

The steps of the biomass supply chain (BSC) involve the harvesting of planted biomass
or the provision of residual biomass, bagging, storage in warehouses, pretreatment (frag-
mentation, lixiviation, drying, mixing and densification), loading, conversion in the boiler
and energy distribution. Changes can occur in the order in which the steps occur, such
as treatment prior to harvesting (genetic improvement, fertilization, pest control, etc.).
The number of warehouses, boilers and plants depends on the process in question and
logistics relating to the region, while the availability and variability of biomass depend on
the endemic and adaptable species as well as the inherent seasonality. Figure 2 summarizes
the basic steps.
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The optimization approach varies according to the objectives of the model (e.g., mini-
mizing costs, maximizing calorific power or maximizing electricity generation), the char-
acteristics of plant location, and the parameters to create the model. The choice of the
mathematical modeling method depends on how the restrictions are presented to the prob-
lem and the volume of data available a priori. Historical data enable the use of stochastic
programming, whereas data resulting from experiments with multiple variables enable the
use of heuristic or meta-heuristic models, such as artificial neural networks, due to their
high complexity and sometimes nonlinear nature.

The present article offers an overview of how optimization models are intrinsically
related to the supply chain, addressing the basic premises of modeling the BSC to generate
energy and highlighting the economic, environmental and operational particularities of
each process/model. So, the research objective of the article is to distinguish the applica-
bility of optimization modeling in the BSC. The key question is: what is analyzed when
optimizing BSC? What optimization methods have been used globally? What sets them
apart? This article also aims to contribute to the field of biomass research and emerged
from the need to understand academic modeling methods for industrial applications in the
energy field without embarking on an exhaustive systematic review, rather serving as an
overview for the reader on the topic.

This article is structured as follows: Section 1.1 discusses the important characteristics
to consider regarding biomass as the raw material in a BSC. Section 2 offers a succinct
description of the methodology adopted for the study. Section 3 provides an overview
of possible BSC modeling with a discussion on the main recent applications and criteria.
Section 4 presents conclusions on the findings. In this way, it is hoped that the reader
understands the application of mathematical modeling for optimization of the BSC and the
factors involved.

1.1. Biomass Characteristics Influencing the Supply Chain

Biomass is defined as organic material derived from plants and organic (agricultural,
forest, industrial, human, animal and municipal) waste [14]. The main constituents of
plant biomass are cellulose, hemicellulose and lignin, along with lipids, proteins, simple
sugars, starch, inorganic compounds and moisture [15]. Biomass, such as wood, grass,
agricultural waste, animal and human waste, algae, etc., is a natural, renewable source
produced sustainably in large quantities in many parts of the world [16].

Plant-based biomass is classified as herbaceous (grass, agricultural waste, wheat
straw, rice straw, bamboo, etc.) or arboreal (leaves, branches, sawdust and wood scraps)
biomass [17]. Biomass can be converted into fuels, chemical products or heat and electricity.
Biomass as a renewable energy source should have high yield (dry matter per unit of land
area) and energy content [18] as well as attributes such as ease of acquisition, low cost
and neutrality in terms of greenhouse gas emissions without affecting the availability of
land and food [19]. Wiranarongkorn et al. [20] suggested a flowchart for the selection of
plants to compose mixes of biomass. For this purpose, they grouped them by cultivated
region and harvest time, creating a calendar that initially supplies 50% wood chips, and
made analyses of the mixes to determine the chlorine content and predictive indices of
slagging and fouling to prevent corrosion and encrustations, thereby obtaining an adequate
multi-biomass composition.

The composition of biomass influences the process yield and determines the need
for pretreatment for cofiring. Such characteristics vary with the species and seasonal crop
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conditions and should be considered along with the boiler properties. A high moisture
content (mass of water in the biomass per unit of dry mass or mass of water in relation
to total mass) requires biomass drying, while a high concentration of inorganics, such as
chlorine and potassium, suggests a lixiviation step. Steps such as pelleting and briquetting
should also be evaluated. However, the greater the need for preliminary biomass treatment,
the higher the costs. Moisture confers variability to the calorific power, increases transport
costs due to the indirect purchasing of water, can cause obstruction of biomass in lines,
and reduces the efficiency of the firing process due to the increase in time for moisture
vaporization. The cause of reduced combustion efficiency due to solid biomass moisture
is mainly related to a longer time required before biomass begins its combustion process
(evaporation of water, volatilization, pyrolysis and combustion—Figure 3) and poorly
established residence time in the boiler or furnace. Biomass moisture also varies with the
part of the plant used or the climatic season, as biomass tends to equalize its moisture
content with that of the surrounding air. Bartzanas et al. [21] used simulations involving
computational fluid dynamics (CFD) to describe the biomass drying process given the
climatic conditions as part of the boundary conditions necessary for drying calculations
using weather data from Denmark. CFD can simulate accurately, helping to design and
optimize virtually with less experimental runs, and can estimate the moisture content,
among other parameters such as spatial and temporal fluid pressure, temperature, and
velocity. These authors evaluated grass drying both experimentally and numerically (CFD)
and compared them. In particular, Navier–Stokes equations, mass and energy conservation
equations, and Reynolds equations were used. The study revealed the possibility of using
the model as a decision support for drying to recommend cutting decisions based on
meteorological conditions, the mean variation observed between the analytical and CFD
model being only 8%.

Processes 2023, 11, x FOR PEER REVIEW 4 of 17 
 

 

cultivated region and harvest time, creating a calendar that initially supplies 50% wood 
chips, and made analyses of the mixes to determine the chlorine content and predictive 
indices of slagging and fouling to prevent corrosion and encrustations, thereby obtaining 
an adequate multi-biomass composition. 

The composition of biomass influences the process yield and determines the need for 
pretreatment for cofiring. Such characteristics vary with the species and seasonal crop 
conditions and should be considered along with the boiler properties. A high moisture 
content (mass of water in the biomass per unit of dry mass or mass of water in relation to 
total mass) requires biomass drying, while a high concentration of inorganics, such as 
chlorine and potassium, suggests a lixiviation step. Steps such as pelleting and briquetting 
should also be evaluated. However, the greater the need for preliminary biomass 
treatment, the higher the costs. Moisture confers variability to the calorific power, 
increases transport costs due to the indirect purchasing of water, can cause obstruction of 
biomass in lines, and reduces the efficiency of the firing process due to the increase in time 
for moisture vaporization. The cause of reduced combustion efficiency due to solid 
biomass moisture is mainly related to a longer time required before biomass begins its 
combustion process (evaporation of water, volatilization, pyrolysis and combustion—
Figure 3) and poorly established residence time in the boiler or furnace. Biomass moisture 
also varies with the part of the plant used or the climatic season, as biomass tends to 
equalize its moisture content with that of the surrounding air. Bartzanas et al. [21] used 
simulations involving computational fluid dynamics (CFD) to describe the biomass 
drying process given the climatic conditions as part of the boundary conditions necessary 
for drying calculations using weather data from Denmark. CFD can simulate accurately, 
helping to design and optimize virtually with less experimental runs, and can estimate 
the moisture content, among other parameters such as spatial and temporal fluid 
pressure, temperature, and velocity. These authors evaluated grass drying both 
experimentally and numerically (CFD) and compared them. In particular, Navier–Stokes 
equations, mass and energy conservation equations, and Reynolds equations were used. 
The study revealed the possibility of using the model as a decision support for drying to 
recommend cutting decisions based on meteorological conditions, the mean variation 
observed between the analytical and CFD model being only 8%. 

According to Demirbas [22], Van Loo and Koopejan [23] and Rajput et al. [24], 
moisture and ashes cause ignition problems, reduce the adiabatic temperature of the 
flame, increase the necessary residence time and exert a negative impact on the stability 
of the flame. 

 
Figure 3. Biomass combustion process. 

To reduce the impact of moisture, biomass can be densified through pelleting or 
briquetting soon after grinding and then be stored. Densification improves biomass 
quality through the increase in energy density, stability and durability, along with a 
reduction in handling, storage and transport costs [25]. Pellets are cylinders, typically with 
a diameter of 6 to 10 mm, and are generally used in automatic feeding boilers due to good 
fluidity and uniform characteristics in terms of moisture content, size and chemical 
composition, whereas briquettes are fed manually and have a diameter between 30 and 
100 mm [23]. 

Lixiviation involves the removal of undesirable soluble elements in water through 
washing. According to Reza et al. [26], lixiviation with hot water can remove 50–90% of 
inorganics, such as Ca, S, P, Mg and K, from biomass. Rain promotes lixiviation in the 
weeks prior to use or days after harvest but depends on the climate and increases the risk 
of degradation [23]. More abundant in agricultural waste and grasses, such as elephant 
grass, than in forest biomass, inorganic compounds remain in the ash due to their high 

Figure 3. Biomass combustion process.

According to Demirbas [22], Van Loo and Koopejan [23] and Rajput et al. [24], moisture
and ashes cause ignition problems, reduce the adiabatic temperature of the flame, increase
the necessary residence time and exert a negative impact on the stability of the flame.

To reduce the impact of moisture, biomass can be densified through pelleting or
briquetting soon after grinding and then be stored. Densification improves biomass quality
through the increase in energy density, stability and durability, along with a reduction in
handling, storage and transport costs [25]. Pellets are cylinders, typically with a diameter
of 6 to 10 mm, and are generally used in automatic feeding boilers due to good fluidity
and uniform characteristics in terms of moisture content, size and chemical composition,
whereas briquettes are fed manually and have a diameter between 30 and 100 mm [23].

Lixiviation involves the removal of undesirable soluble elements in water through
washing. According to Reza et al. [26], lixiviation with hot water can remove 50–90%
of inorganics, such as Ca, S, P, Mg and K, from biomass. Rain promotes lixiviation in
the weeks prior to use or days after harvest but depends on the climate and increases
the risk of degradation [23]. More abundant in agricultural waste and grasses, such as
elephant grass, than in forest biomass, inorganic compounds remain in the ash due to
their high melting points, thereby reducing boiler efficiency. Significantly greater fouling is
expected with grass-type biomass in comparison to wood due to high chlorine and alkaline
contents [15,27].

According to Adlakha et al. [17], Ca, K and Mg are the dominant inorganic elements
in biomass, with calcium accounting for 80%, while smaller fractions of Na, Al, Si, S, P,
Cl, Mn, Fe, Cr, Ni, Cu, Pb and Zn may be found. Their contents depend mainly on the
characteristics of the soil in which the biomass is grown and are determined through the
analysis of ash composition.
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According to Van Loo and Koopejan [23], chlorine concentration in biomass depends
on the type and quantity of fertilizer. The application of chlorine-free fertilizers reduces
the chlorine content considerably without increasing those of K and S. Another option
for minimizing the effect of chlorine is the capture of alkaline compounds to increase the
melting point of the ash formed during combustion through the use of additives, such as
bauxite, kaolinite, chalk and magnesium oxide [25]. To reduce chlorine content in the ash
deposited during the combustion of wood and straw, Mandø [15] applied phosphorus and
calcium at an optimal molar ratio of 0.8–0.9.

There are reports of the composition of ash together with sulfur and chlorine as factors
related to fouling and corrosion in boilers [25,28–30]. These are mainly alkaline compounds
containing K and Na, which form alkaline silicates that melt at lower temperatures, thereby
fouling surfaces.

2. Methodology

The literature in the field of biomass is very extensive due to the various possible
technologies, types of biomass, and factors involved in BSC. However, literature reviews
sometimes are too specific, showing BSC results and advances without highlighting their
peculiarities and differences among them.

The present integrative, qualitative review used data collected from several electronic
platforms (Science Direct-Germany, SciELO–Brazil, Springer-Germany) available on the
Web and specialized research, i.e., scientific papers published between 1997 and 2023. The
search was based on comprehensive terms. The following keywords were used in the search
for papers: “biomass”, “combustion”, “biomass supply chain”, “linear programming”,
“neural networks biomass” and “geographic information system biomass”.

Articles were selected after reading their abstracts using the following inclusion
criteria: thematic publication within the selected period in Portuguese and English. In the
refined pass of searches, we initially gave preference to the energy generation process, with
no restriction imposed regarding the biomass used. We sought to answer the questions
asked in the introduction through recent research considering trends in energy optimization.
A summary of the methodology can be seen in Figure 4.
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3. Modeling and Biomass Supply Chain

The use of modeling of the biomass supply chain for energy purposes has been widely
explored in the literature and can assist in strategic, tactical and operational decision
making. Differences exist in the comprehensiveness of the levels of decision. Regarding
long-term aspects (e.g., annual), strategic decisions include the design of the boiler itself,
investments, selection of suppliers, allocation of installations, etc. Medium-term aspects
involving transport routes and seasonal inventories are tactical decisions. Operational
problems require more frequent adjustments and involve transport planning and short-term
demands [31].

According to Sun and Fan [32], the BSC problems relating to the harvesting process
are those regarding scheduling forest and crop harvest, as well as the necessary equipment.
There are location and shipping scheduling problems (related to storage), while network
design with material flows and vehicle routes is expected to generate transport problems.

In general, there is a preponderance of the economic focus in optimization of the
biomass supply chain, with limited attention given to the reduction in the carbon emissions
of this chain [33].

Modeling of the biomass supply chain could be single-objective or multi-objective,
with various goals to be optimized at the same time [34]. According to Albashabsheh
and Stamm [35], the use of deterministic methods presupposes prior knowledge of all
parameters. In contrast, other researchers take into consideration uncertainties and more
realistic random parameters relating to the supply, transport and demand for biofuels
as well as the prices of biofuels and biomass, thus characterizing a stochastic or hybrid
model when combined with the deterministic model. The need emerges to make the
optimal solution feasible, independently of the uncertainty (distributions of probability),
and sensitivity analysis could be performed with variation in the input parameters [35,36].
For instance, Sajid [37] observed the impact on the quality, collection and transport of
biomass through uncertainties of the conditions of the 2019 coronavirus pandemic.

The solutions of the model include distinct methods that can be associated with each
other: multi-criteria decision analysis (MCDA), simulation methods, heuristic methods,
geographic information systems (GIS), mathematical programming such as mixed integer
linear programming (MILP), etc. [38]. Considering the multiple possibilities of objectives
and attributes, the model based on MCDA enables ordering the decision criteria in an
explicit way according to relative weights in order to select the most adequate solution [39].
Due to the complexity of real problems, such as those relating to energy and sustainability,
modeling by linear programming can sometimes produce insufficient results, with fuzzy
modeling being more adequate in the use of uncertainties [40]. Heuristic methods, such as
genetic algorithms (GA), are generally used for the treatment of practical examples on a
large scale, aggregating agility in comparison to mathematical modeling [31,38].

Each study presents a particular context that includes the type of available data, the
quality and quantity of data and the general objectives of the study. Basically, all techniques
are used in the BSC, but with different approaches, that is, in different stages of the chain.
Neural networks focus on the biomass feed stage because that is where you have a larger
volume of data, and it is impossible to do so in other steps that envision installation,
mapping and conversions, for example. In this sense, this article is important because it
reinforces the trends in approaches and applications reported in the literature. The context
indicates the most appropriate optimization model. Three of the main types of modeling
are presented below.

3.1. Geographic Information Systems—GISs

Geographic information systems (GISs) use interactive maps for managing geographic
and spatial data, helping decision makers analyze processes. Geographical issues are a
factor that can affect the feasibility of a project due to the location provided by longitude
and altitude parameters [41,42].



Processes 2023, 11, 854 7 of 16

GISs are a useful tool for identifying, selecting and optimizing locations of bioenergy
plants considering physical, biological, social and economic criteria [11]. GIS systems enable
superimposing data from different disciplines, such as vegetation cover and demographic
density, on useful maps for BSC managers of BSC. According to Kim et al. [43], GISs have
been used for the precise analysis of transport distances, costs and impacts of different
projects; facilitating the selection of sites as sources of biomass and their yields; determining
suitable areas to build facilities (strategic decisions); calculating changes in routes (road
network) and regions of demand and high densities; and considering factors such as water
flows, electricity networks for infrastructure, and population for labor. They are used to
help design, plan and manage problems in the BSC [32,42]. This type of consideration and
simulation helps to achieve, for example, minimization of costs in the BSC.

Wang et al. [11] used a GIS in their scenario-defining phase, selecting potential plant
candidates found to be highly suitable according to criteria such as biomass availability,
distance from main roads, distance from electric substations, distance from water bodies,
and the flood risk of potential sitings. Vukašinović and Gordić [42] mapped potential
storage locations and potential locations of biomass plants (forest residues) in a municipality
of Serbia using geographic information system technologies. They concluded that only
6% of the available potential could be used in an economically optimal way. Lozano-
García et al. [44] assessed the potential to use residues of crops (maize, wheat, sugarcane,
barley, sorghum, agave, paddy rice, and pecan nut) in several regions across Mexico
for generating energy by gasification and combustion. Hu et al. [45] developed a linear
complementarity model to simulate the rice straw cofiring system in the electric power
market of Taiwan, making use of GIS spatial analysis to evaluate and describe rice straw
collection, transportation and CO2 reduction. Sahoo et al. [46] integrated GISs to identify
optimal plant sites and calculate the delivered cost with neural network models to assess
sustainably available crop residues. The authors assessed the use of cotton stalks to produce
fuel pellets in the state of Georgia (USA) while maintaining long-term soil health. Zyadin
et al. [47] applied GISs and data from a field survey of farmers to produce land use maps
for forest and agricultural surpluses in two Polish provinces. These were used as a tool to
optimize the locations of future investments in biomass-based power plants. The calculated
amounts of surplus residues of corn, wheat, rye, barley, rapeseed, triticale, and grass
indicated that 30% of the surplus biomass could be safely used for energy generation.

According to Charis et al. [48], problems of BSC and the management of urban solid
waste share a “common denominator”: both depend on the spatial distribution of supply
points and variability in the quantity of resources. The authors pointed out that GISs are
an important tool that can be used to capture the spatiotemporal dynamics of biomass
and waste.

Solid waste management could make good use of maps with GISs. For instance, eco-
points could be strategically located near the neighborhoods with considerable generation
of waste and interest on the part of the population in selective waste collection. Solid
waste management in Brazil has an important legal framework: the National Solid Waste
Policy instituted by Law nº 12.305/2010 and regulated by Decree nº 10.936/2022 [49]. This
policy elicits services or research, development and innovation projects related to the use of
technical-economic optimization tools, such as GIS, linear programming and other methods
also associated with BSC optimization. However, the discussion on optimization methods
that apply to solid waste management and BSC are beyond the scope of this article.

GIS separately or combined with other optimization tools described below could be
applied to the management of BSC or urban solid waste.

3.2. Neural Networks

Neural networks are mathematical models of stochastic nature composed of units or
nodes called neurons that can predict system outputs with high precision, low cost, and
short processing time [50]. They are based on two stages: training and validation. A set
of input data and respective output data are provided in the training step. The modeled
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neural network is formed by a set of layers and weights. The input layer receives the input
data, the output layer provides the result, and the hidden layers enable the neural network
to operate through activation functions [51].

A neural network needs data collection, pre-processing of data, optimizing of the
network design (number of hidden layers, neurons and activated transfer functions, algo-
rithm selection). The linear transfer functions (Purelin and Poslin), Log-Sigmoid function
(Logsig), and Tan-Sigmoid function (Tansig) are often reported in the literature. To train the
network and obtain the best weights of neurons, algorithms such as quasi-Newton (QN),
sealed conjugate (SC) and Levenberg–Marquardt (LM) are cited by Yatim et al. [50] and
Güleç et al. [52].

Neural networks can be applied in the context of seasonal variability in the com-
position and supply of biomass for production chain situations in which the volume
of data enables computational algorithms to learn from varied examples. According to
Yatim et al. [50], artificial neural networks are one of the most applicable and widely used
algorithms in the field of waste-to-energy (combustion) design and optimization as a tool
for higher heating value (HHV) estimation based on ultimate analysis. The correlations
developed make the process cheaper by consuming less time and equipment. In this sense,
the study, conducted in Morocco, used compositions from the literature of 114 different
biomasses to make such correlations.

As “machine learning” establishes, the program is capable of providing outputs based
on new inputs—like a human brain would do—after having learned to relate inputs and
outputs that are related in a highly nonlinear, complex way. In this regard, artificial neural
networks were utilized to predict biomass pyrolysis behavior without known reaction
mechanisms [53]. Zhang et al. [54] reported the use of neural networks to predict HHV,
enthalpies of combustion and other exergetic data based on biomass composition. Uzun
et al. [55], Estiati et al. [56] and Hosseinpour et al. [57] were also able to accurately infer
the higher calorific values of biomass based on fixed carbon, volatile matter, moisture and
ash content (proximate analysis). Meanwhile, Güleç et al. [52] investigated and evaluated a
model to predict HHV from combined ultimate and proximate analyses as a better method
than using them separately. They compared different biomasses, algorithms, activation
functions and hidden layers. According to Jakšić et al. apud Güleç et al. [52], any mixture
of biomass feedstocks using proximate analysis can have their calorific values determined
using an artificial neural network.

Deep neural network algorithms, an advanced version of artificial neural networks
for Big Data analysis, were able to predict and verify the slagging tendency of 571 types of
biomass, indicating that they are a useful tool for the selection of biomass fuels to increase
the life, efficiency, and safety of combustion boilers [58].

3.3. Linear Programming

The optimization method known as linear programming is widely employed because
it also helps in decision making with regards to production planning. This mathematical
model of deterministic origin involves an objective function to be either maximized or
minimized (the objective function generally regards the overall operating cost of a plant
when applied to the optimization of biomass supply chains for energy purposes) and a set of
restrictions (mathematical expressions, such as linear equations or inequations) that address
the selected decision variables (outputs) and parameters (inputs) [59,60]. In the context of
BSC, restrictions in linear programming problems may be related to the thermal demand
required by the boiler, admissible moisture content of biomass (40 to 50%, according
to Annevelink et al. [61]), available pretreatments, prevention of natural degradation,
prevention of boiler corrosion (generally associated with sulfur and chlorine contents in
biomass), limits of pollutant emissions generated during combustion, capacities of the
available stocks, load capacity of transporters of biomass to storage, supply limits (sensitive
to crops and other factors), contractual conditions, such as the minimum purchased from
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suppliers, etc. If one or more decision variables are integers, this is known as mixed integer
linear programming (MILP) [38,62].

The objective may be to understand the maximization of profit, minimization of
operating costs, environmental impact or fuel consumption. The general restrictions of a
supply chain model regard the availability of biomass, processing capacities and market
demands, establishing limits to be met [34].

According to Wu et al. [38], the main cost involved in the supply chain is transport,
followed by the cost of biomass acquisition. Regarding operational costs, the highest one
is that of labor (35.92%), followed by the costs of purchasing and equipment (30.70 and
24.25%, respectively). The large contribution of the purchasing cost with the variability in
the biomass supply pattern and associated uncertainties require well-designed modeling.

Zahraee et al. [39] stressed the importance of MILP in the resolution of problems
involving modeling due to the occurrence of discrete phenomena. However, in the case of
biomass chain modeling and optimization, linearity may only reflect specific conditions,
and the model deviates from reality when there are changes in these conditions [63].

The application of linear programming generally occurs in supply chains still to be
established and in which the restrictions (storage limit, transport capacity limit, supply,
demand, etc.) can be expressed by linear expressions that involve input parameters and
decision variables. In most cases, the decision maker adopts linear restrictions after simpli-
fying the problem.

Case Studies of Linear Programming in the Context of Biomass Supply Chains

The literature describes some linear programming (LP) case studies related to BSCs,
as listed below.

Cundiff et al. [64] used linear programming to minimize costs related to transport and
expansion capacity in warehouses, performing an uncertainty study with regards to the
climate and applying it to a plant whose chain involved 20 producers, in the Piedmont
region of Virginia (USA), each with four to seven storage locations.

In the year 2000, Nienow et al. [65] used LP to optimize the optimal cofiring mixture
of coal and wood biomass in the state of Indiana (USA), minimizing costs.

Bruglieri and Liberti [66] adopted LP to generate a preexisting network of the supply,
transport and processing of biomass in Italy. The authors also used MILP to optimize the
decision-making process of the allocation of processing centers and network management.

Rocco and Morabito [67] proposed an optimization model in Brazil using LP to support
decision making in the steam production process involving the management (purchasing,
storage and use) of fuels (sugarcane bagasse, wood chips, firewood, rice straw and oil with
a low fluidity point) and the mode of functioning of one or multiple boilers (switching on,
heating and switching off). The optimization software was the General Algebraic Modeling
System (GAMS), and the global cost was minimized.

Saghaei et al. [68] presented an optimization model in the USA that was initially
nonlinear (presenting multiplication of continuous and binary parameters and the demand
parameter following a normal distribution) but subsequently linearized to minimize the
total cost of the electricity production chain using different biomasses. Biomass flows from
suppliers to storage and from storage to plants were identified as well as stored volumes
(and stored excesses), electricity production at each plant and distribution plan of electricity
from the plants to consumers. In this approach, the energy demand was presumed to follow
a normal distribution. It is to be noted that instead of using a stochastic programming
approach, the writers adopted an interesting linearization technique. The algorithm also
featured different scenarios whose demands had different means and variances and whose
biomass availability also differed.

Wang et al. [11] developed a model using MILP to optimize the harvest of different
biomasses and the logistics of BSCs, quantifying and mapping (13 states of the USA) costs
in different scenarios, with sensitivity analysis of availability, harvesting rate, moisture
content, acquisition ratio and installation capacity.
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Abdelhady et al. [69] used MILP to design a national biomass supply chain network
in Egypt with the aim of maximizing profit through an optimal configuration. The decision
of whether or not to install a power plant with different capacity levels in each location
available was an output (decision variable) of the algorithm.

Ferretti [70] used a mathematical model to maximize profits in Italy with the defi-
nition of optimal weekly quantities of wood scraps for different purposes: combustion,
reintegration to the production cycle, sale and storage, assisting in decision making from
the strategic standpoint. An approximately 15% increase was achieved in profits from
this process.

Starting from the premise that a BSC is stochastic by nature, Aghalari et al. [71] used
mathematical modeling (MILP and a hybrid algorithm) to assess the impact of quality (ash
and moisture content) while optimizing the production of biomass pellets in the USA.

Yahya et al. [33] applied MILP in a case study in Malaysia with 491 variables, 143 inte-
gers and 437 restrictions, addressing different scenarios, with the assessment of the total
supply of nine plants fueled with biomass and an investigation stage to achieve a reduction
in carbon emissions. During the mathematical programming phase, values for CAPEX
and OPEX of different technologies were used as parameters in certain constrains. The
study aided in the decisions of the “operational state of each technology”, in other words,
whether or not a power plant with certain conversion technology should be installed.

Paes et al. [72] performed modeling of the Brazilian energy system, aggregating
explicitly environmental parameters to the most commonly addressed socioeconomic
parameters and imputing penalties, the restriction of greenhouse gas emissions or a carbon
tax, relating a cost to environmental pollution within the objective function. The authors
studied scenarios with and without the application of penalties.

Using a multidisciplinary analysis that included MILP, GIS, economic analysis and
sensitivity analysis, Wu et al. [38] optimized the biomass supply chain in China from the
strategic standpoint in the search for lower costs.

The articles of this section can be subdivided into different applicability groups:

• The first group involves studies that focus in the harvest stage of the BSC. Wang
et al. [11] is included in this group, with applicability reserved for early stages in
the biomass conversion planning. Usually, in this stage the resource availability is
promising but conversion technology has not been considered yet;

• A second group involves Cundiff et al. [64], Bruglieri and Liberti [66], Rocco and
Morabito [67], Abdelhady et al. [69], Yahya et al. [33] and Saghaei et al. [68]; their
models aid the decision maker in the process of power plant location and/or storage
location definition and multiple-facility operational status definition. Some of them
also allow for uncertainty in the model (Saghaei et al. [68], Cundiff et al. [64]);

• A third group focuses on the optimization for different uses for the considered
biomasses; Ferretti [70] and Aghalari et al. [71] could be included in this group;

• A fourth group involves the research of Paes et al. [72] that, despite optimizing the BSC
from an economic standpoint, also uses explicit environmental constrains. Nienow
et al. [65] could also be placed in this group, since their research also helps the power
plant comply with environmental regulations;

• A fifth group involves Wu et al. [38] whose research focuses on holistic approaches
giving great attention to multidisciplinarity (geographic information systems and
mathematical modeling with technical economic analysis and sensitivity analysis).

The studies include cases from America (USA, Mexico and Brazil), the European
Union (Italy, Serbia and Poland), Africa (Egypt and Morocco) and Asia (Malaysia, Taiwan
and China), demonstrating broad applicability of the described tools.

Most optimization strategies, such as LP, aid in the optimal management of the
chain, indicating quantities, purchase schedule, and routes. The physical aspect of the
conversion, whether it is combustion, gasification or pyrolysis, is considered as a black
box, and the algorithms usually require that conversion efficiencies and heating values are
given as input parameters. For instance, Saghaei et al. [68] claimed that heating values
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and power plant efficiencies should be known a priori, while Rocco and Morabito [67]
used as an input parameter the steam that could be generated in each power plant after
combustion; therefore, the second incorporated both the heating value and efficiency in a
single input parameter.

The aforementioned parameters usually come from practice, but it is to be noted that
CFD tools can help for simulating lower heating values of biomass after combustion, burner
efficiency and other parameters. They may be present in optimization algorithms, such as
those required in the start-up phases of power plants.

CFD simulation for solid biomass combustion, gasification or pyrolysis is far from triv-
ial. It usually involves heterogeneous reactions with turbulent flows. Bermúdez et al. [73]
used the software Ansys Fluent to perform CFD simulations of solid biomass combus-
tion (consisting of pyrolysis, gasification, and combustion). The solid part of the domain
was modeled using porous media and used defined scalars and the respective transport
equations, while the gas phase was simply used homogeneous reactions. This shows the
complexity of combining this type of tool with modeling, as well as the complexity of
biomass conversion processes.

Table 1 summarizes some applications of mathematical modeling relating to biomass,
especially linear programming, which is often used with other tools and techniques.
Through these models, there has been a broad approach to programming, with most
of them minimizing the global cost. It can be noted that at this stage, the biorefinery or
plant does not have a large enough volume of data to allow it to use other techniques. In
general, the previous integrated use of GIS makes it possible to indicate the vegetation cover
and its space–time variability, supporting the definition of locations for the installation of
thermoelectric conversion plants and biorefineries.

Table 1. Summary of studies involving the use of mathematical modeling of biomass supply chain.

Authors Type of Modeling/Solver Factors Considered Objective

Cundiff et al. [64]
Linear programming (LP)

optimization software package
CPLEX

Storage
Transport

Losses with storage and handling
Production uncertainty due to

weather

Minimize costs relating to
transport and expansion
capacity in warehouses

Nienow et al. [65] Linear programming (LP)

Cofiring
Production of wood biomass

Transport
Use

Minimize cost of production
of particular demand for
electricity while meeting

environmental regulations

Bruglieri and
Liberti [66]

Mixed integer nonlinear
programming (MINLP)

Mixed integer linear programming
(MILP)

optimization software package
CPLEX

Different biomass transformation
processes

Commodities
Transport
Processing

Minimize costs of
commodities, transport and

processing

Rocco and
Morabito [67]

Mixed Integer linear programming
(MILP)

Purchasing
Transport
Storage

Multiple boilers with different
aspects (switch on, heating and

switch off)

Minimize costs of biomass
supply chain for steam

production: purchasing, fuel
transport, storage and

switching on and heating of
boilers

Saghaei et al. [68]

Stochastic programming MINLP
Metaheuristics

Genetic algorithms (GAs)
Chaos theory

Tent maps
CE (ICE) algorithm

Suppliers
Storage

Energy plants
Consumers

Minimize costs; identify
optimal size and location, flow
between sectors, volumes of

stored and converted
materials, and distribution

strategy
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Table 1. Cont.

Authors Type of Modeling/Solver Factors Considered Objective

Wang et al. [11]

Mixed integer linear programming
(MILP)

General algebraic modeling system
(GAMS)/ optimization software

package CPLEX
Geographic information systems

(GISs)

Supply
Harvest
Storage

Transport
Pre-processing

Optimize biomass supply
chain in 13 states of USA, with

sensitivity analysis

Abdelhady et al.
[69]

MILP
SAM software

Capital costs of plant
Harvest and pre-processing

Logistics
Operation and maintenance

Size of variable capacity
Costs of capital and variable

organization and methods (O&M)
Efficiency of variable plants
Unknown location of plants

Taking climate conditions into
consideration

Establish optimal
configuration of national

biomass supply chain network
in Egypt to maximize profit
with regard to generation of

electricity

Ferretti [70]

Modeling for use of decision support
system

State task network
Genetic algorithms (GAs)

Particle swarm optimization (PSO)

Decision strategy between selling
residual biomass, use for

production of plywood, storage or
production of thermal energy

Maximize profit and optimize
quantities of biomass waste

for different purposes

Aghalari et al. [71]

Stochastic programming MILP
Hybrid algorithm with sample

average approximation
Progressive hedging

Harvest
Storage

Transport
Quality inspection

Production decisions

Generate yield and quality of
biomass supply chain for

production of pellets

Paes et al. [72]

MILP
IBM ILOG CPLEX optimization

software package
Optimization programming language

Costs of operation and expansion
Availability of plants
Energy specifications
Meteorological data

Minimize economic costs of
operation, investment and

emissions

Wu et al. [38] MILP

Purchasing and harvesting
Pretreatment

Costs of loading and unloading
/transport

No losses during transport

Minimize costs of agricultural
biomass supply through
design of optimal supply

chain

In a way, the literature has contemplated several modeling methods for various
technologies of conversion of biomass into energy and bioproducts. However, there is
limited addressing of governmental regulations and policies in BSCs. Different aspects have
been considered in recent studies, with growing attention given to environmental issues.
The current challenge is to ensure the applicability of academic studies to the industrial
environment as well as the efficient and global reuse of multiple residual biomasses.

4. Conclusions

Biomass supply chains generally involve supply, logistics, pre-treatment, storage and
conversion. The achievement of more sustainable production models can be linked to the
execution of more optimized processes as well as the development of more efficacious
technologies from the energy standpoint. First, it is necessary to consider and analyze the
yield and energy conferred by the types of biomass available, as well as whether there is a
need for pre-treatment.

The main trends and directions were discussed with reference to modeling the BSC.
The optimization methods shown here, i.e., GIS, LP (and its variant, mixed integer linear
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programming) and artificial neural networks, among others, such as multi-criteria decision
analysis (MCDA), simulation methods, heuristic methods, fuzzy modeling, and CFD, can
be successfully used in different processes.

The issues raised in the introduction were evaluated. The difference among the
methods lies in the degree of complexity, uncertainty and volume and type of data available.
In this regard, linearity was discussed. The levels of decisions that each type of modeling
encompasses, the focus given to the objective functions, and the aspects of modeling found
in the literature were addressed. This makes us conclude that combined analyses through
more than one tool, enrich modeling.

A preponderance of the use of GISs for spatial analyses of biomass in order to reduce
uncertainties associated with spatial and temporal variations was observed, while neural
networks were found to be widely used for HHV correlations. Linear programming
generally aims to minimize the costs and emissions of the global chain, sometimes using
these other tools in conjunction. Prevention of corrosion appeared timidly in the approaches,
demonstrating a gap to be incorporated into the approaches. Rotting time for stored
biomasses and pre-treatment elapsed time before storage are required parameters in more
realistic BSC linear programming models; no article reviewed considered these aspects.

It is important to say that advantages and disadvantages among the three methods
discussed can be pointed out regardless of whether there are similar approaches or not, but
as explained throughout the article, the approaches usually differ from each other.

Therefore, there are still some challenges to consider in the future research. This study
recommends, as an improvement, compliance with the socio-environmental criteria of
current processes and helping processes respect policies and legislation, as well as the con-
sideration of climate change as an aggravating factor of uncertainty in the complexity of the
BSC. It is also suggested that regulatory targets are achieved with the use of environmental
restrictions due to emissions.

In conclusion, the literature has attested to the applicability of the methods cited,
achieving advances with regards to the optimization of the BSC through mathematical
modeling.
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Cambridge, MA, USA, 2019; pp. 185–236, ISBN 9780128142783.
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