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Abstract 
 

Despite the economic importance of producing high quality sugar, thousands of tonnes of 

sugarcane with atypically low quality can pass undocumented through Australian sugarcane 

mills each season. This ‘atypical’ cane can represent deteriorated or contaminated sugarcane 

that affect mill processes and are misrepresented by current rapid assessment techniques such 

as Near Infra Red (NIR) spectroscopy. Powerful datamining techniques such as support vector 

machines (SVM) and artificial neural networks (ANN) have often been used to improve NIR rapid 

assessment tasks due to their ability to model complex relationships. Unfortunately, there has 

been little research into the use of these techniques to identify atypical cane samples or how 

estimates of cane quality may be affected by atypical cane samples. The objective of this thesis 

was to develop and compare statistical data mining methodologies to accurately measure cane 

attributes for anomalous cases from NIR spectra contained within large NIR databases.  

 

A range of complex and powerful modelling techniques including SVM, ANN and tree-based 

approaches were compared to simpler techniques that are more commonly used to estimate 

cane quality parameters such as partial least squares (PLS). Comparisons were used to identify 

the most effective techniques for estimating cane quality parameters such as Commercial Cane 

Sugar (CCS) as well as for discriminating between atypical and typical cane samples. A novel 

methodological framework was then developed to use predicted class probability to apply 

specific quality estimation models for atypical and typical cane samples. This was achieved by 

first tuning the probability at which a sample was identified as atypical or typical and then apply 

an appropriate model to estimate CCS. The ability of this framework to estimate CCS was 

compared to a baseline PLS model.   

 

There were three important outcomes of this research: 

1. The fast and simple PLS performed as well as complex algorithms such as SVM for the 

estimation of cane quality parameters. 

2. Using appropriate data pre-processing and feature selection techniques PLS 

discriminant analysis was able to classify samples as typical or atypical with 

approximately 90% accuracy.  

3. CCS of atypical samples tended to be overestimated when a single model was used. The 

methodological framework developed in this thesis was able to remove some of this 

bias without increasing overall model error.  
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These results have important implications for the Australian sugarcane industry as well as the 

broader NIR analysis community.  

 

The classification approach developed here can be used to identify the sources and causes of 

atypical cane. This will allow for appropriate interventions to be taken and ultimately reduce 

the occurrences of ‘atypical’ cane consignments. The novel modelling framework developed 

here can be tuned for a specific task without the need to completely rebuild the classification 

model. This gives the ability to quickly reflect changes in the risk associated with 

misclassification. Partial least squares is a lightweight, easy to adjust and interpretable 

modelling approach. The relatively simple and well-understood nature of PLS means that model 

maintenance can be performed quickly. Industry familiarity with the technique will also 

facilitate uptake of the methodologies described in this thesis.  

 

The high skill shown for PLS modelling approaches compared to more complex machine learning 

techniques is an important contribution as a counterpoint to published research that shows a 

clear advantage for complex techniques. The results reinforce the need for future researchers 

to consider a range of modelling approaches and data pre-processing to find the most 

appropriate modelling framework for the task at hand. The inclusion of the class probability as 

a tuneable parameter in the methodological framework was a unique example of how 

classification information can be used in a practical online NIR analysis setup. The outcomes and 

insights from this thesis can be used to inform future researcher, not only for the case of atypical 

cane samples but for any application for imbalanced or complex discrimination tasks.       
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Thesis overview 
 

NIR methods for sugarcane are advanced and work well for most (e.g. 90%) samples. However, 

calibrations of NIR technologies can fail to estimate the true value of quality measures for 

atypical or ‘outlying’ samples accurately. Advances in data science technologies in recent years 

offer new datamining algorithms and approaches that have not widely been considered before 

in the Australian sugar industry. The objective of my thesis was to develop and compare 

statistical data mining methodologies to accurately measure cane attributes for anomalous 

cases from NIR spectra contained within large NIR databases. Specifically, my research 

objectives were to: 

1. Investigate the use of data mining and machine learning algorithms for improved NIRS 

estimates of cane quality. 

• Can data mining algorithms improve estimates of cane quality? 

2. Investigate the use of NIR spectroscopic analysis for the automatic identification of 

atypical cane samples.  

• Can NIR analysis be used to identify atypical cane? 

3. Investigate the use of NIR classification data to improve estimates of cane quality 

parameters, for atypical cane samples. 

• Can class predictions be used to improve estimates of cane quality for different 

classes of cane? 

In this thesis I pursued these objectives in a systematic approach, first comparing modelling 

approaches for estimating cane quality, then extending to classification and finally merging 

lessons learnt from both to develop class-based quality estimates. This overview outlines how 

this process is presented within the thesis (Figure 1).  
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Figure 1. Flow diagram of Thesis chapters. 

 

In Chapter 1 I introduce key concepts explored in the thesis such as near infrared spectroscopy, 

machine learning and sugarcane quality, all in the context of the Australian sugarcane industry. 

The purpose of Chapter 1 was to help situate the research and build motivation for the thesis 

objectives. While Chapter 1 gives an overview of key concepts, each chapter is presented as an 

individual research paper and is therefore readable as a stand-alone document.   

 

Background 
Chapter: 1 

Focus: A review of the literature is used to give the reader the 
necessary background and to motivate the research. 

Data 
Chapter: 2 

Focus: A description of the data and data storage used in the 
thesis 

Objective 1: NIR analysis of cane quality 
Chapter: 3 and 4 

Focus: Investigation of machine learning and data mining 
algorithms for improved NIR analysis of cane quality parameters. 

Objective 2: Identifying atypical cane samples 
Chapter: 5 and 6 

Focus: Investigation of NIR analysis to classify ‘atypical’ cane 
samples. 

Conclusions and Recommendations 
Chapter: 8 

Focus: Insights from the thesis results and recommendations for 
future research 

Objective 3: Quality estimates of atypical cane 
Chapter: 7 

Focus: Investigating the use of predicted sample classes to 
improve NIR analysis of cane quality 
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The objective of Chapter 2 was to provide an overview of the data sources and data types I have 

used in the thesis. The data used in my thesis were sourced from a single mill in northern 

Queensland, Australia. The mill data was collected into a single relational database for 

simplicity. The relational database made it much simpler to extract and compare data. Each 

subsequent Chapter uses a selection of data from the database depending on the requirements 

of the particular experiment. Therefore, details of the data used is provided in each chapter. 

   

In Chapters 3 and 4 I focus on Objective 1: Investigating the use of data mining and machine 

learning algorithms for improved NIRS estimates of cane quality. Within the Australian 

sugarcane industry, partial least squares regression (PLSR) has been used to build NIR models of 

cane quality measures in the lab, on-line and in the field. PLSR relies on the linear relationship 

between sample constituents and electromagnetic absorption at NIR wavelengths. In practice, 

this linear relationship can often break down resulting in relationships that are more complex. 

Recently, machine learning techniques have become popular for their skill with complex data 

and ability to produce robust calibrations.  

 

The objective of Chapter 3 was to compare PLSR with the machine learning technique support 

vector regression (SVR). The two techniques were used to estimate three cane quality 

parameters: brix in juice (Bij), pol in juice (Pij) and apparent purity (Pij/Bij). The results I present 

in Chapter 3 show that the machine-learning algorithm SVR was comparable to the industry 

standard approach using PLSR across a range of quality measures. Importantly, the results of 

Chapter 3 showed that the comparison between PLSR and SVR was similar for each of the quality 

measures and that many of the same samples were difficult to estimate for both techniques. 

These results are important because it suggested that there was no advantage to using a 

different modelling approach for different quality measures. In Chapter 4 I have made use of 

this fact, concentrating on comparing a wider range of modelling techniques for a single quality 

measure. 

 

In Chapter 4 I have compared models on their ability to estimate Commercial Cane Sugar (CCS). 

CCS is the primary quality measure used to calculate cane payments to growers. Therefore it is 

important to be able to quickly and accurately assess in the mill. PLSR was used as a baseline 

and was compared to SVR, as well as Artificial Neural Networks (ANN) and gradient boosted 

regression trees (GBT). The inclusion of ANN and GBT gave a wider range of types of modelling 

approaches. Similar to SVR, ANN and GBT have shown promise for modelling complex, non-
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linear relationships. All three techniques approach complexity in different ways. This chapter 

also placed greater emphasis on variable importance, identifying NIR wavelengths that were 

influential in each of the models used in the comparison. This type of variable importance 

investigation has rarely been applied to ANN and SVR models.  

 

The results I present in Chapter 4 confirm that PLSR was as effective as SVR and ANN but that 

GBT failed to perform as well as other techniques. This was mirrored in the variable importance 

comparison which showed that PLSR, SVR and ANN placed greater value on similar wavelength 

regions while GBT placed much higher significance on a small number of wavelengths. This was 

a valuable contribution to the Australian sugarcane industry and the wider modelling 

community as it was possible to show why the GBT model underperformed. The variable 

importance investigation also showed that it was possible to see inside the ‘black-box’ of ANN 

and SVR. This is a crucial step in building confidence in using machine learning modelling 

approaches. The findings and insights of Chapter 3 and Chapter 4 were important for building 

towards the discrimination between atypical and typical cane samples as there were fewer 

examples of discrimination or classification tasks within the sugarcane industry. By first focusing 

on quality estimation I was able to identify that the types of models and comparison approaches 

used in my thesis were appropriate for the discrimination tasks investigate in Chapters 5 and 6.  

 

In Chapters 5 and 6 I have focused on Objective 2 of the thesis: Investigating the use of NIR 

spectroscopic analysis for the automatic identification of atypical cane samples. Mill researchers 

have identified that in any given season, between one and five percent of samples have 

unusually low laboratory estimates of Pol in juice given their measured Brix in juice. These 

‘atypical’ samples are of particular concern as they can represent deteriorated or contaminated 

cane samples. Deteriorated or contaminated cane has a number of negative impacts on the 

cane milling process such as increasing crystallisation times and requiring more frequent 

cleaning and maintenance periods. Furthermore, lower quality of deteriorated cane means less 

sugar produced and lower profits for growers and millers. The ability to rapidly identify atypical 

samples will lead to the ability to track the sources and allow for interventions that can stop 

atypical cane from arriving at the mill.  

 

The objective of Chapter 5 was to define atypical samples based on laboratory Bij and Pij and 

test the feasibility of discriminating between atypical and typical samples based on NIR data. I 

developed a definition for atypical samples was designed based on a linear regression between 
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Pij and Bij. I then used partial least squares discriminant analysis (PLS-DA) to build discriminate 

models based on NIR spectral data. In practice only approximately three percent of all samples 

were defined as atypical. This large imbalance between classes made discrimination a 

potentially difficult task. The definition of atypical samples that I developed in Chapter 5 was 

well received when presented at an industry conference as they visually matched atypical 

samples in a plot of Pij and Bij values. The definition of atypical samples also matched temporal 

trends in apparent purity. As there was no previous definition for atypical cane it was important 

that I was able to show my definition was an appropriate and useful measure. Furthermore, The 

PLS-DA model I developed was able to correctly classify approximately 86% and 92% of atypical 

and typical samples respectively. This was a crucial result.  Not only because discrimination tasks 

are much rarer in the Australian sugarcane industry, but because atypical samples made up a 

very small portion of all cane processed by the mill. It was important that I was able to show 

that it was feasible to discriminate between atypical and typical cane before further 

investigations could be undertaken because so few examples were available in the literature. 

 

In Chapter 5 I showed that it was feasible to discriminate atypical and typical samples, In Chapter 

6 I expanded on this research to compare a range of modelling approaches. Five modelling 

approaches were considered: PLS-DA, Linear Discriminant Analysis (LDA), random forest (RF), 

Artificial Neural Networks (ANN) and Support Vector Machines (SVM). Furthermore, in Chapter 

6 I considered a range of spectral pre-processing techniques including Standard Normal Variate 

(SNV), Savitzky-Golay first and second derivatives and three wavelet transformations. Finally, 

given the identification of important wavelengths in Chapter 4, I applied a feature selection 

process to the best model in order to investigate whether reducing the number of wavelengths 

improved model performance. It was necessary to consider a range of modelling approaches 

and spectral pre-treatments in order to identify any important interactions and provide a 

reference point for future research. The investigation of feature selection was also important 

not only as a potential method for improving model performance but to show that it was 

possible to reduce model complexity in a transparent and automatic manner. This was 

important in the sugarcane context as there was no prior expert knowledge to say what 

wavelengths may be important for discriminating between atypical and typical cane.  

 

The results I presented in Chapter 6 echoed the results of Chapter 4, showing that the simpler 

PLS based approach was as or more effective than more complex machine learning approaches. 

My results also showed that some spectral pre-processing approaches were more effective for 
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certain modelling approaches and that feature selection could improve model performance. The 

most important result was the ability to discriminate between atypical and typical cane samples 

using PLS-DA, given that PLS approaches are well understood within industry. This result also 

meant that it was worthwhile to continue the research to see if this classification data could be 

used to improve quality estimates in Chapter 7. However, it was also an important contribution 

to the literature to emphasise the importance of testing data pre-processing and how 

calibration data is set-up, rather than only testing a range of modelling approaches. 

 

Finally, in Chapter 7 I brought together the methodologies explored in earlier investigations, in 

order to address Objective 3: Investigating the use of NIR classification data to improve 

estimates of cane quality parameters for atypical cane samples. In Chapter 7 I developed a 

process-based approach to estimating cane quality measures for atypical samples (Figure 2). A 

PLS-DA model was used to predict the probability of a sample being atypical. Three sugarcane 

quality measures (Pol in juice, Brix in juice and CCS) were then estimated using partial least 

squares regression. If a sample was identified as atypical an atypical specific PLSR model was 

used to estimate quality parameters.  

 

 
Figure 2. Methodology overview for modelling cane quality. 

 

 

The result I present in Chapter 7 showed that Pol-based quality estimates (Pij and CCS) for 

samples identified as atypical are over-estimated using a baseline PLSR approach. By making use 

of the probability of a sample being atypical, I was able to reduce this bias without increasing 

overall model root mean square error.  My results show that NIR analysis can be used not only 
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to identify and track atypical samples, but in process control within the mill. By using class 

probability as a tuneable parameter, it was possible to modify NIR models to achieve a desired 

outcome. The most novel aspect of the process-based modelling framework developed in 

Chapter 7 was the use of the class probability as a tuneable parameter. While there is evidence 

of class based modelling approaches, there was no evidence of this type of flexibility used in the 

current literature.  

 

In Chapter 8 I present the conclusions of the thesis and discusses the key outcomes and insights 

from the thesis in terms of the three thesis objectives/research questions. Primarily the 

outcomes and insights of the thesis are presented in terms of their importance for the Australian 

sugarcane industry. However, the contribution of the research to the wider research community 

is also discussed.   
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Chapter 1  

 

NIR Spectroscopy and sugarcane quality: Current 
practices and alternatives for the Australian sugarcane 
industry. 
 

1.1 Introduction 

 

The Australian sugarcane industry strives to remain economically and environmentally 

sustainable. In order to achieve this, the industry funded Sugar Research Australia (SRA) targets 

research development and extension programs for the industry (SRA, 2014). The key focus areas 

of the SRA include variety development, production management, milling efficiency and 

capability development. In a recent update to their strategic plan, SRA further identified several 

priority impact areas including plant breeding and maximising productivity along the value chain 

(SRA, 2015).  The key focus area of milling efficiency and technology seeks innovations that 

improve mill processes and contribute to the long-term sustainability of the milling sector (SRA, 

2015).  One of the main objectives of this key focus area is to identify solutions for cane quality 

issues along the value chain. In 2017 alone Australia produced approximately 36 Million tonnes 

of sugarcane (FAO, 2019). Revenue from sugar exports for 2017 in Australia were valued at 

1,500 Million $AUD (http://asmc.com.au/industry-overview/statistics/).  Given that sugarcane 

production in 2017 for the top 5 producing countries ranged from 758 Million tonnes in Brazil 

to 73 Million tonnes in Pakistan (FAO, 2019, FAO, 2017), the world market for sugarcane can be 

seen as very competitive, making sugar quality increasingly important. Unsurprisingly then, 

sugarcane quality are an integral part of the payment system to growers in Australia. 

 

The cane price paid to Australian growers has historically been based primarily on commercial 

cane sugar (CCS) calculated from measures of Brix in juice, Pol in juice and percent Fibre. Brix in 

Juice (Bij) can be defined as the concentration of total sugars in grams per 100 gram of solution 

and can be measured by brix spindle (BSES, 1991) or refractometer (Nawi et al., 2014). Brix is 

also referred to as Total Soluble Solids (TSS) in other sugar industries (Saxena et al., 2010). Pol 

in juice (Pij) is a measure of the percent sucrose in juice and is measured by polarimeter. 

Polarimeters measure the optical rotation of plane polarized light as it passes through a 

solution. As sucrose is an optically active substance, if it is the only constituent in a solution, the 

polarimeter reading relates directly to the concentration of sucrose in the solution (McCarthy, 
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2003). Therefore, time must be taken to clarify sugarcane juice before Pol can be used as a 

measure of sucrose content (Nawi et al., 2014). These ‘wet’ chemical analyses can be both 

expensive and time consuming. Fibre content is typically measured as a 3-day rolling average of 

representative prepared cane sub-samples based on variety groups. The fibre content of a cane 

sample expressed as a percentage (%Fibre) is used along with Pol and Brix measures in 

calculating CCS (1-1).  CCS is described by Hogarth and Allsopp (2000) as “a measure of pure 

sucrose that is obtainable from the cane” and is measured as:  

CCS = PIC − 
(BIC−PIC)

2   (1-1) 

where,  

PIC = 
Pij(100 − (% Fibre +5))

100   (1-2) 

and    

BIC = 
Bij(100 − (% Fibre +3))

100   (1-3) 

Although more recently molasses and Fibre quality have been included in cane payments 

(Pollock et al., 2007), Brix, Pol and CCS are still important quality measures in Australia. 

 

Deterioration or contamination of sugarcane either pre- or post-harvest can have adverse 

effects on the measurement of Pol and Brix and is likely to produce atypical samples in 

sugarcane NIR analysis systems. Deterioration can be caused by bacterial infections. During 

deterioration, sucrose is metabolised into less economic products such as organic acids, 

complex polysaccharides (e.g. dextran) and gums (Solomon, 2009). Deterioration due to delays 

between harvesting and crushing can lead to increased dextran levels and higher Brix readings 

(Saxena et al., 2010). The presence of complex sugars and gums can cause higher viscosity and 

longer crystalization times (Solomon, 2009) and hence can result in greater need for mill 

maintainence. Lionnet (1986), designed mathematical models of cane deterioration indices as 

delay increased and found that as deterioration increased, Pol became an unreliable measure 

of sucrose leading to underestimates of sucrose content. Contamination of cane can be 

considered high levels of leaf matter or soil. While deterioration can affect Pol, contamination 

can inflate laboratory Brix values calculated by hydrometer. As deterioration and contamination 

can directly affect measures of quality parameters, they will affect grower payment calculations. 

Unfortunately, current methods of accounting for products such as dextran are either long and 

complicated, not specific or expensive and cannot be used in cane payment systems (Van 

Heerden et al., 2014).    
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A major innovation of the milling sector was the adoption of efficient near infrared (NIR) 

spectroscopy technologies for the rapid assessment of cane quality measures on-line (during 

milling) and the use of these measurements in cane payment calculations.  Over the past 2 

decades near infrared (NIR) spectroscopic data has been collected and analysed at mills in the 

Australian Sugar industry by on-line systems. On-line NIR Cane Analysis System used in the sugar 

industry are capable of assessing cane quality parameters such as Brix, Pol, Fibre, ash content 

and sugar content. This data is used in grower cane payment calculations as a cost effective and 

rapid alternative to laboratory analysis and has led to a significant decrease in the costs 

associated with assessing cane quality. However, calibrations of NIR technologies can fail to 

estimate the true value of quality measures for anomalous or ‘atypical’ samples such as 

deteriorated or contaminated cane. While the effect of cane deterioration on laboratory 

analysis has been investigated, there is no clear research on the effects of such atypical samples 

on NIR analysis.  

 

Advances in Data Science technologies in recent years offer new datamining algorithms and 

approaches that have not widely been considered before in the Australian sugar industry. These 

technologies should be explored to determine if they can deliver a solution to: 

1. Identify atypical samples from NIR spectra and  

2. Analyse quality parameters for these samples.  

To ascertain the benefits of these newer technologies, it will be important to benchmark existing 

techniques currently adopted in the Australian sugar industry. Near infrared spectroscopic 

methods have been used to estimate quality parameters, there is no evidence of their use in 

the detection or calibration of spectroscopic models for deteriorated cane or atypical samples 

in general. 
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1.2 NIR Spectroscopy 

 

Near infrared spectroscopy is a fast, efficient, non-destructive method for analysing the 

constituents of biological and chemical samples. The underlying physical principle of NIR 

spectroscopy is that materials absorb energy from electromagnetic radiation resulting in the 

vibration, rotation and stretching of molecular bonds. The energy absorbed is related to specific 

wavelengths of the electromagnetic spectrum. Absorption in the near infrared range (700 nm – 

2500 nm) and mid infrared range (MIR; 2500 nm – 5x104 nm) are related to the vibration of 

organic and water molecular bonds such as C-H, N-H, O-H and C=O bond (Agelet and Hurburgh, 

2010). An important development for NIR analysis was the determination of moisture content 

in whole grains (Massie and Norris, 1965). Later research allowed the assignment of 

wavelengths in NIR spectra of agricultural products to food constituents (Osborne et al., 1993b). 

For example, sucrose can be related to absorption at wavelengths of 1440 nm and 2080 nm. 

The use of the NIR region of the electromagnetic spectrum has the advantage of enabling 

transmission through samples intact due to the longer path lengths compared to the MIR yet 

has the drawback of being sensitive to particle size and sample inhomogeneity. 

 

 1.2.1 NIR spectroscopic analysis 

 

The interpretation of NIR absorption spectra would not be possible without appropriate 

multivariate mathematical techniques. In order to build a model of constituent concentration 

in a material (e.g. moisture in grains or sucrose in sugarcane) a series of data collection and pre-

processing is required before the model can be developed. Figure 1.1 outlines the model 

building process. In order to build a model, raw spectral data and reference data need to be 

collected for each sample. Reference data are the desired predictor variables (e.g. Pol, Brix and 

Fibre for sugarcane) calculated from standard laboratory methods. Spectral data can be 

collected using a range of instrumentation. Recently Fourier Transform NIR (FT-NIR) 

interferometers have increased in popularity and differ from more traditional instruments  due 

to their ability to achieve high signal to noise ratios (Agelet and Hurburgh, 2010).  
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Figure 1.1. Process of NIR model development. Data collected and pre-processed before a 

model of the reference values is calibrated and validated. The model can be updated to 
include new samples identified during operational use.  

 

 1.2.2 Data pre-processing  

 1.2.2.1 Spectral pre-treatment 

 

The most common spectral pre-treatments are mean multiplicative scattering correction (MSC) 

(Geladi et al., 1985), standard normal variate (SNV) transformation (Barnes et al., 1989), and 1st 

or 2nd derivative spectra (Agelet and Hurburgh, 2010, Osborne et al., 1993b, Rinnan et al., 2009). 

More recently, wavelet transforms have been used as improvements to NIR pre-treatment 

(Donald et al., 2006, Mallet et al., 1998, Cen et al., 2006).  MSC and SNV both aim to reduce 

spectral distortion due to the scattering of light off of the sample while spectral derivatives aim 

to remove the effect of overlapping peaks in the spectra and remove spectral baseline offset 

(shift) and slope (linear additive variation) across the wavelengths (Agelet and Hurburgh, 2010). 
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Often some form of MSC or SVN is used in conjunction with a first or second derivative of the 

spectra.  

 

A key consideration in the use of MSC or SNV is that while SNV works on individual spectra, MSC 

requires a baseline or reference spectrum and is built up on the whole spectra set (Agelet and 

Hurburgh, 2010, Sabatier et al., 2014). This requires the storage and maintenance of MSC 

equations so that the same transformation can be made when used for prediction (Rinnan et 

al., 2009), which may make it impractical for on-line or large datasets. Rinnan et al. (2009), 

provide the mathematical basis for MSC and SNV and the reader is referred to their work for a 

more detailed overview of common pre-processing techniques.  

 

A first order derivative will remove constant (horizontal) baseline shifts while a second order 

derivative will remove linear sloping shifts that many biological NIR spectra contain. The two 

most common derivative methods used in NIR spectroscopy are the Norris or Norris-Williams 

derivative (Norris, 1983, Norris and Williams, 1984) and the Savitzky-Golay filter (Savitzky and 

Golay, 1964) (Rinnan et al., 2009). While the Norris derivative mimics a finite difference the 

Savitzky-Golay derivatives are determined by least squares fitting of a polynomial (Rinnan et al., 

2009). The two techniques generally will not produce the same derivative spectrum however, 

modelling accuracy can be similar using either approach (Rinnan et al., 2009). 

 

Spectral pre-treatment in the Australian sugar industry has been largely dependent on 

proprietary software used in the collection of spectral data such as WinISITM and UnscramblerTM. 

Combinations of spectral derivatives and SNV transformations seem to be the most widely used 

in this industry to date (Berding and Brotherton, 1996, Brotherton and Berding, 1998, O'Shea et 

al., 2011) although much of the published work does not detail specifics of the treatments used 

(Berding et al., 1989, Berding and Marston, 2010, Brotherton and Berding, 1995, Staunton et 

al., 1999, Staunton et al., 2004). Although not explicitly stated in publications, these proprietary 

software packages tend to use a Norris-Williams approach to calculating spectral derivatives 

(Guthrie, 2005).  

 

The Savitzky-Golay derivative has often been reported in similar areas of research such as 

spectral classification of soils, varietal discrimination of wine grapes and best and disease 

resistance analysis in sugarcane (Araújo et al., 2014, Sabatier et al., 2014, Gutiérrez et al., 2016). 

How appropriate and effective a given pre-treatment method is will depend on the individual 
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analysis. Subsequently, the lack of detail in current literature on the method used, due in large 

part to its’ proprietary nature, is a concern as it is difficult to assess if there is a preferential 

method for analysis of sugarcane quality parameters.  

 

 1.2.2.2 Training data selection 

 

In building a calibration model it is important to identify sources of variation in the data and 

collect samples for use in calibration that are likely to cover future variability.  While increasing 

the number of samples used in a calibration can help cover the likely range of variability, it can 

also increase noise and cause computational problems as years of data build up. Methods for 

sampling the training set that better represent the structure of the data such as uniform random 

sampling, the Kennard-Stone algorithm and the D-optimal method can help improve NIR models 

(Cao, 2013). Using data selection methods to reduce a large soybean database, Cao (2013) was 

able to improve partial least squares based NIR models.  Cao (2013) recommended D-optimal 

(de Aguiar et al., 1995) or uniform random selection as efficient and effective alternatives to 

using all available data. The principle of the D-optimal method is to maximize the determinant 

of the variance-covariance matrix of the training dataset, while uniform random sample seeks 

to select samples that cover the whole range of the training dataset.  

 

The uniform random selection process has close parallels to the rectangular distribution 

approach taken by the sugar industry in attempting to cover the distribution of the reference 

data (Staunton et al., 1999).  As the amount of data collected by the Australian sugar industry 

has grown, the need to update and remove redundancy in spectral libraries has been addressed.  

Berding and Marston (2010), describe “combing” the spectral library of a stand-alone NIR 

analysis system in order to reduce the number of samples while maintaining overall coverage. 

Statistical methods such as the D-optimal or a formal uniform sampling procedure could be used 

to improve the stability of NIR models used in the Australian sugarcane industry but have not 

been explored to date.  

 

 1.2.2.3 Variable selection 

 

Variable selection seeks to reduce the number of predictor variables by removing regions of the 

spectra that are uninformative or lead to better model performance. Predictor variable 

selection can form part of the model calibration step itself. For example, interval partial least 
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squares (iPLS) (Nørgaard et al., 2000), genetic algorithms (Goicoechea and Olivieri, 2003) and 

iterative predictors and objects weighting partial least squares (IPOW-PLS) (Forina et al., 2003) 

have been used as variable selection tools in NIR spectroscopy. The iPLS method seeks to 

remove uninformative regions by building multivariate models based on spectral regions within 

a moving window of fixed width. The IPOW-PLS and its’ progeny, the modified IPOW-PLS (m-

IPOW-PLS) (Chen et al., 2005) were developed to build PLS models from spectral data while 

simultaneously removing outlier samples and redundant spectral wavelengths. This was 

achieved by iteratively building PLS models and weighting samples and wavelengths for 

importance. Genetic algorithms are designed to mimic natural selection and can select well 

defined spectral regions rather than single points throughout the spectrum (Goicoechea and 

Olivieri, 2003). 

 

There is little evidence in the literature of what spectral variable selection processes are used 

within the Australian sugar industry. Interval Partial Least Squares and genetic algorithms have 

been used in NIR models for sugarcane quality measures (Sorol et al., 2010, Valderrama et al., 

2007a) but are not currently used in the Australia sugarcane industry. Sorol et al. (2010), 

compared several variable selection techniques in building calibrated NIR models for Brix in 

sugarcane juice and concluded that the genetic algorithm approach outperformed the iPLS 

approach used in their study.  Chen et al. (2005), employed IPOWP-PLS and m-IPOW-PLS to build 

models of sugars in aqueous solutions, but these techniques also have not been used in the 

sugarcane industry. Chen et al. (2005), reported improvements compared to standard PLS, their 

final m-IPOW-PLS model also made use of a wavelet pre-processing step that was not used in 

the comparative PLS models. Therefore, appropriate pre-processing may have provided similar 

performance boosts. The added complexity of such modelling processes can be 

counterproductive for large and complex systems.   

 

 1.2.2.4 Spectral outliers 

 

The most commonly used types of outlier detection methods for spectral data are distance 

based methods such as the Mahalanobis Distance (MD). Distance based outlier detection 

methods, produce a measure of the distance of a sample from the multivariate mean of the all 

samples. Outliers are then samples that are relatively far from the multivariate mean. Distance 

based outlier detection can struggle with high dimensionality and non-linearity. The MD 

approach to outlier identification can fail for data sets with multiple outliers due to masking and 
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swamping (Egan and Morgan, 1998). Multiple outliers skew the measures of central tendency 

such that true outliers are not detected (masking) and can make normal observations appear as 

outliers (swamping). In these cases modified techniques are required to ensure outlier 

interpretability and the scalability of the technique (Han et al., 2011). 

 

Resampling by Half Means (RHM) and Smallest Half-Volume (SHV) are two approaches that have 

been suggested as alternatives to traditional MD and leverage approaches. Egan and Morgan 

(1998) showed that these methods outperform MD and leverage based analyses for a range of 

data sets while Liu et al. (2005) recommended the use of RHM and SHV be used in place of MD 

and leverage for the detection of outliers based on their NIR analysis of milk.  

 

Another alternative is to consider datamining techniques more often used for cluster or 

classification model building.  The detection of outliers is similar to clustering and classification 

in a datamining context (Han et al., 2011). Specifically, outlier detection can be thought of as a 

clustering or classification problem where we are looking for a very small cluster. This has led to 

the adoption of datamining algorithms for outlier detection (Han et al., 2011, Campos et al., 

2016). Campos et al. (2016) considered the development of baseline datasets for testing outlier 

detection algorithms. The authors focused on the family of K Nearest Neighbours algorithms, 

indirectly providing an overview of their use in the detection of outliers. 

 

The detection and removal of spectral outliers from training data sets In the Australian sugar 

industry is based on Mahalanobis distance (Berding and Marston, 2010). This provides a method 

of updating the calibrations year to year by adding identified outliers that represent novel 

samples to the calibration data set. A datamining approach to outlier identification has not been 

greatly explored in NIR spectroscopy or the Australian sugar industry. However, in various 

industries datamining algorithms have been used for clustering and classification problems and 

are therefore familiar in the world of spectroscopic analysis.  
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1.2.3 NIR Modelling 

 

From the available literature it is apparent that PLS regression is the primary method used for 

developing NIR models in sugarcane industries worldwide (Sorol et al., 2010, Purcell et al., 2012, 

O'Shea et al., 2011, Ostatek-Boczynski et al., 2013, Oxely et al., 2012). The principle of partial 

least squares regression is the assumption that the orginal predictor variables can be replaced 

by a subset of latent variables expressed as linear combinations of the predictor variables. This 

is well suited to NIR spectral data where wavelengths can be highly correlated which can lead 

to unstable regressions without unique solutions (Agelet and Hurburgh, 2010). As with principal 

components in Principal Component Analysis (PCA), the latent variables are defined as 

orthogonal to each other. Unlike components in PCA, the latent variable in PCA are chosen to 

have both high variance and high correlation with the reference variable (the outcome being 

predicted) (Hastie et al., 2013f).  

 

Artificial Neural Networks (ANN) and Support Vector Machines (SVM) are datamining algorithms 

that are better suited to large and non-linear data sets but have not found widespread use in 

the sugar industry. ANN were developed to philosophically mimic neurons in the brain by 

forming a network of connected input and output ‘neurons’ called nodes (Han et al., 2011). 

Nodes connections are weighted during the training process and weighted inputs are summed 

and transformed using a transform function to produce an output node (Alam et al., 2008). 

Nodes can be grouped into layers with the output nodes of one layer forming the input nodes 

of another. ANN are highly parallelizable and have a high tolerance for noisy data making them 

ideal for large datamining jobs (Han et al., 2011) but are not widely used due to their complexity.  

  

SVM is a more recent method for non-linear calibration and have been regarded as an effective 

alternative to Neural Networks (Agelet and Hurburgh, 2010, Balabin and Lomakina, 2011, 

Kovalenko et al., 2006) and PLS (Thissen et al., 2004a). SVM  has been used in  predicting banana 

quality indices (Sanaeifar et al., 2016), discrimination of adulterated milk (Zhang et al., 2014) 

and determination of amino acid composition of soybeans (Kovalenko et al., 2006) among many 

other applications.  In their study on predicting soil properties from NIR spectra Araújo et al. 

(2014) compared the performance of multiple PLS models on subsets of spectra to global PLS as 

well as boosted regression trees and SVM. The SVM model outperformed the global PLS and 

performed almost as well as the multiple PLS models. Being able to use a single model can be 
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more desirable as often the performance increase of multiple models is overshadowed by the 

extra work required to maintain the model calibrations.  

 

It is important to recognise that the effectiveness of a modelling approach may differ 

between types of problems. For example in a gasoline classification problem, Balabin 

Balabin et al. (2010) described three classes of classification models:  

1. Low performance: e.g. Linear Discriminant Analysis (LDA) 

2. Medium performance: e.g. PLS and ANN and  

3. High performance: e.g. SVM. 

Yet, while SVM outperformed Random Forest and LDA classification models for sugarcane 

varieties based on hyperspectral data (Everingham et al., 2007), Random Forest outperformed 

SVM for classifying bruised apples (Che et al., 2018). Wang et al. (2004) showed that ANN 

performed better at identifying types of fungal contamination while PLS could outperform ANN 

at discriminating between fungal contaminated and  uncontaminated soybeans. In developing 

a NIR spectroscopic model for either a regression or classification problem it is important to test 

a range of modelling approaches. 

 

1.3  NIR spectroscopy in the Australia sugar industry 

 

Over the past two decades near infrared (NIR) spectroscopic data has been collected and 

analyzed by the Australian sugar industry.  Berding et al. (1989), introduced NIR spectroscopy 

for the evaluation of cane quality in clonal trials in a laboratory setting, which was further 

investigated through the early 90’s (Berding et al., 1991, Brotherton and Berding, 1995). By the 

mid 1990’s research had extended to at-line (performed at the mill) analysis (Berding and 

Brotherton, 1996, Brotherton and Berding, 1998). The late 1990’s and early 2000’s saw on-line 

(analysis as part of the mill process itself) NIR Cane Analysis Systems (CAS’s) used in the sugar 

industry (Staunton et al., 1999, Staunton et al., 2004). These systems are capable of assessing 

cane quality parameters.  

 

NIR estimates of quality parameters are used in cane payment calculations as a cost effective 

and rapid alternative to laboratory analysis (Pollock et al., 2007, Staunton et al., 2004). This has 

led to a significant decrease in the costs associated with assessing cane quality measures. For 

example, Berding and Marston (2010) describe a reduction in analytical operation costs to 14% 

of standard procedures by implementing an on-line NIR based cane analysis system. However, 
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NIR models are challenged to accurately estimate the true value of quality measures for unusual 

samples or where spectral signatures are anomalous. Failure to identify or accurately estimate 

these atypical samples can cause a decline in growers’ confidence with NIR technologies. Given 

the economic advatages of NIR analytical techniques it is important to be able to identify these 

atypical samples .  

 

While quality measures such as Brix, Pol, Fibre and Commercial Cane Sugar (CCS) have been the 

primary focus of NIR analysis in the Australian sugar industry, there have also been a range of 

process control applications explored (Simpson et al., 2011). Simpson et al. (2011) identified  

maceration rate control (Lloyd et al., 2010); clarifier phosphate addition (Markley et al., 2009) 

and the first naturally low GI (glycemic index) sugar  (Kannar et al., 2009) as process control 

activities that have used NIR analysis. Mapping of productivity data and nutrient levels and mill 

maintence scheduling are some of the potential uses for NIR analysis in the Australian sugar 

industry that still need to be explored. On the global scale, sugarcane industries have used NIR 

analysis for estimating reducing sugar levels (Valderrama et al., 2007b), trace elements such as 

nitrogen and silicon in mill by products (Purcell et al., 2012), pest and disease resistance 

(Sabatier et al., 2014) and cellulose and lignin in sugarcane bagasse (Rodríguez-Zúñiga et al., 

2014).  

 

Partial Least Squares is the most often used NIR modelling technique within the Australian sugar 

industry (Ostatek-Boczynski et al., 2013, Nawi et al., 2013, Berding and Marston, 2010, Fiedler 

et al., 2001, O'Shea et al., 2011, Oxely et al., 2012, Sorol et al., 2010, Staunton et al., 2004)  as 

well as globally  (Rodríguez-Zúñiga et al., 2014, Sabatier et al., 2014, Valderrama et al., 2007b, 

Valderrama et al., 2007a). Artificial Neural Networks have been used within the Australian sugar 

industry to classify sugar content of sugarcane from NIR spectra collected by scanning sugarcane 

rind (Nawi et al., 2013). Nawi et al. (2013) developed ANN classification models for five Brix 

categories with an average accuracy of 83.1% correct classification rate. Support Vector 

Machines have also been used in classification problems in the Australian sugar industry, using 

hyperspectral rather than NIR spectral data.  Everingham et al. (2007), were able to correctly 

classify sugarcane variety and crop class using an SVM model based on Hyperspectral satellite 

imagery. Unfortunately, there are few other cases of techniques such as ANN or SVM within the 

Australian sugar industry. Potentially this is because fewer classification tasks have been 

explored within the Australian sugar industry. 
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The potential for datamining techniques such as SVM and ANN used to build classification 

models can in the sugarcane industry can be seen in the example of the classification of 

adulterated milk. Zhang et al. (2014), were able to discriminate been adulterated and 

unadulterated cow milk samples from NIR spectra as a form of quality control. NIR analytics 

have also been used to develop models to classify the phenotype or variety. For example, 

recently Gutiérrez et al. (2016) developed a model to classify grape phenotypes from NIR 

spectra. Araújo et al. (2014) were able to improve predictive PLSR models of organic matter and 

clay percentages in soil samples by first clustering soil NIR spectra using a k-means datamining 

algorithm.  Similar methods can be employed by the sugarcane industry to discriminate 

between ‘normal’ and deteriorated or other atypical cane samples. Developing models for 

different types of samples could then potentially be used to improve NIR predictions of quality 

measures in a similar manner to that of Araújo et al. (2014). 

 

1.4 Conclusion 

 

NIR spectroscopy is a well-established non-destructive analysis tool with a proven track record 

in the sugarcane industry. Current data pre-processing, outlier treatment and model calibration 

techniques used in the Australian sugar industry have been adequate for the determination of 

cane quality measures. Atypical samples such as deteriorated or contaminated cane can have 

an adverse effect on milling processes and measurements of cane quality parameters in the 

laboratory. This can lead to lost productivity and inaccurate cane payment determinations. NIR 

analysis has been used as fast and accurate tool for determining cane quality measures as well 

as in mill process control. Despite this there is still a lack of research into the identification and 

treatment of atypical samples or the effect they may have on NIR analytics. There are a number 

of data mining techniques that could fill this current lack. Classification or clustering techniques 

can provide a method for identifying atypical samplse for which to build improved models. 

Alternatively, datamining regression algorithms could be used to capture non-linear 

relationships rather than developing multiple models. Future research in the sugarcane industry 

should consider the advances made in other industries in order to compare current practices 

with innovative new approaches. In particular more research is needed to identify: 

1. If new, more complex modelling approaches can improve NIR analysis methods 

2. If NIR analysis can be used to identify potentially atypical cane samples and 

3. If identification of atypical cane samples can help improve NIR analysis methods 
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1.5 Chapter 1 Summary 

 

Maintaining a high level of sugarcane quality is vital for the Australian sugarcane industry to 

remain competative on a global scale. Deterioration and contamination of sugarcane can lead 

to lower quality sugar production, increase maintenance costs and can adversly affect cane 

payment calculations. While many of the causes of deteroriation and contamination are 

understood there is currently no agreed apon identification measure. Near Infrared 

spectroscopic analysis has been used widely in the Australian sugarcane industry as a fast and 

reliable method of estimating cane quality measures as well as for process control automation 

within sugarcane mills. NIR spectroscopic analysis could potentially be used to identify atypical 

samples such as deteriorated cane and subsequently manage how these samples are treated in 

the mill. Chapter 1 gives an overview of the importance of quality in sugarcane and how NIR 

analysis is used within the sugarcane industry. Chapter 1 aimed to provide an overarching 

background and context for the three objectives explored in the thesis: 

1. Investigate the use of data mining and machine learning algorithms for improved NIRS 

estimates of cane quality (Chapters 3 and 4). 

2. Investigate the use of NIR spectroscopic analysis for the automatic identification of 

atypical cane samples (Chapters 5 and 6).  

3. Investigate the use of NIR classification of cane samples to improve estimates of cane 

quality parameters (Chapter 7). 
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Chapter 2  

 

Overview of data collection and storage 

2.1 Data Acquisition 

 

Data for this project were sourced from the Sugar Research Australia, experiment station at 

Meringa. Dr. David Donald and Stephen Staunton of SRA. The data were acquired during a visit 

to the Meringa SRA experiment station in March 2016 provided the data. The data were 

supplied on an external drive as a copy of industry backup files. All sensitive industry information 

such as NIR model calibrations were removed from the data before it was acquired. The data 

represent NIR on-line research collected over the period 1999 to 2015 from 24 Mills associated 

with Sugar Research Australia and consisted of data from Cane, Sugar or Bagasse Analysis 

Systems (CAS, SAS and BAS).  

   Data collected can be considered as one of three main types of data. 

1. Laboratory Data: This data was collected primarily as spreadsheet data for each Mill 

and season. This linked samples with laboratory data for quality measures such as 

Brix in juice (Bij), Pol in juice (Pij), commercial cane sugar (CCS), ash, fibre and dry 

matter. Samples in these data were primarily identified with unique sample ID 

numbers referring to a consignment to the mill. This data is required as reference 

data on which to build NIR models. 

2. Consignment/Productivity Data: This data was collected primarily as spreadsheet 

data for each Mill and season. This linked samples with productivity data such 

tonnage, quality measures such as Bij, Pij and CCS usually estimated by NIR analysis 

and metadata such as the Farm, Block and Sub-block the sample originated from as 

well as the variety, crop class and whether the consignment was burnt or green 

harvested. Samples in these data were primarily identified with unique sample ID 

number to protect the confidentiality of growers. Consignment data allows 

researchers to investigate potential sources of variability in the Laboratory data and 

possibly in model performance. 

3. NIR spectroscopic data: This data was collected primarily as binary data files 

generated by CASs. These files contain NIR spectra as well as metadata about when 

the NIR scan was taken and the instrument used to produce the spectra. As the NIR 

systems scan automatically as the cane is fed into the mill, a single sample 
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(consignment) had a number of NIR scans. Individual scans are identified by sample 

ID as well as a sequence ID. This data can be used to build models of laboratory based 

quality measures. 

 

In total approximately one terabyte of data were sourced from the Meringa SRA experiment 

station. This data has been securely backed up to a JCU computing infrastructure to ensure the 

data is not lost and remains confidential. In order to link the three main types of data together 

a relational database framework was designed and implemented as a SQLite database.  

 

2.2 Development of database framework 

 

In conjunction with the supervisory team, a framework for a relational database was developed 

(Figure 2.1). The database framework was designed to express the relationships between 

productivity data, laboratory data, NIR analysis results and other consignment data, with the 

spectroscopic data collected from the on-line analysis systems. As can be seen in Figure 2.1 the 

relationship between different types of data were connected through the unique sample 

number. Data tables in the database were designed to have a tall and thin design to reduce the 

sparsity of tables and improve scalability of the database.  

 

As an example of how the database framework operates, we can consider laboratory data 

collection. Typical laboratory results may include quality measures such as brix in juice (Bij), but 

measures such as colour are less likely to be measured. The table LabValue in Figure 2.1 shows 

that each laboratory value (Lab_Value column) is matched to a measurement type (Lab_Type 

column) rather than having a separate column for each type of measurement. With this setup, 

if colour was not measured for a particular sample no data would be added, rather than having 

an empty cell in the table (reduced sparsity). Similarly, if a new type of measure needs to be 

added the value can be added to the LabValue table and an extra entry (row) added to the table 

of laboratory data types (Lab_Type Table; Figure 2.1). This means that an entirely new column 

does not have to be created every time a new type of measurement is added to the database 

(reduced database sparsity and improved scalability).    
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Figure 2.1. Framework template of a relational database designed to store Spectral, 

productivity and laboratory data for the Australian Sugar Industry. Boxes represent individual 
tables in the database; labels in black represent columns within each table. Black lines 

represent relationships between tables and are linked together through “key” columns. E.G., 
Sample ID’s are stored in the Sample table and are linked to a particular Mill through the Mill 

primary key (Mill_PK). 
 

 
The database framework has been implemented in the freely available Structured Query 

Language (SQL) database system SQLite (SQLite 3; www.sqlite.org/copyright.html).  A database 

was created to store the data collected from a northern mill for the period 2004 to 2015. The 

programming language Python (python 2.7.1; www.python.org) was used to create small 

programs to collect the data from the numerous source files and store them in the database 

with some level of automation. Some pre-processing of the source files was required in order 

to identify relevant data and to check sample ID numbers were consistent between data 

formats. Some summary statistical analysis were performed in the statistical program R (R Core 

Team, 2017) by reading data directly from the database. 
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Data from a northern mill for the period 2004 to 2015 was collected and stored in a single SQLite 

database. Data collected into the database included spectral data from the on-line NIR Cane 

Analysis System (CAS), consignment data including farm, block, crop class, variety and 

productivity data, NIR analysis results and laboratory results for a range of quality measures. 

The database currently contains >20 GB of data. As the data is now centrally located it is possible 

to query the database to explore summary statistics for the northern mill. Table 2.1 contains an 

example of the primary laboratory based quality measure data collected into the database. 

Measures such as Bij and Pij were analysed for more samples than measures such as fibre. 

Notably, the 2005 and 2015 laboratory data was not available. The average (mean) of quality 

measures did not seem to vary greatly between seasons.   

 

Table 2.1. A sample of laboratory analysis data for a northern mill from 2004 to 2015. Quality 
measures reported here are Brix in juice (Bij), Pol in juice (Pij), Commercial Cane Sugar (CCS) and 
Fibre. The total number of samples available (N), Mean and Variance (Var) are reported for each 
season where available.  

Season 
Bij (%) Pij (%) CCS (%) Fibre (%) 

N Mean Var N Mean Var N Mean Var N Mean Var 
2004          25 14.79 0.98 
2006 3903 20.74 3.24 3903 18.16 3.75 3903 13.24 2.33 622 15.26 2.08 
2007 3392 21.06 3.33 3392 18.39 4.21 3392 13.38 2.71 457 15.15 3.55 
2008 3069 22.29 2.29 3069 19.77 2.87 3069 14.44 1.78 492 15.61 3.41 
2009 2766 22.02 2.00 2766 19.45 2.34 2766 14.14 1.53 371 15.95 2.71 
2010 3193 21.31 2.41 3193 18.66 2.86 3193 13.50 1.85    
2011 3223 22.17 2.42 3223 19.73 3.19 3223 14.40 2.22 455 16.10 3.39 
2012 4010 21.83 2.71 4010 19.36 2.67 4010 14.24 1.52 460 14.88 2.60 
2013 5631 21.59 1.92 5631 18.96 2.60 5631 13.99 1.99 505 14.65 3.09 
2015 4050 21.47 2.58 4050 19.11 3.19 4050 14.30 2.14 434 13.95 2.12 

 

As the database linked laboratory data to consignment and productivity data, it was also 

possible to consider the distribution laboratory measured quality parameters between factors 

such as farms (Figure 2.2) or varieties (Figure 2.3) across the 2006 to 2010 period. This period is 

shown due to the consistent availability of both farm and laboratory data. From Figure 2.2 it is 

possible to see that although there is often much variability within a particular farm, some farms 

do stand out. For example, farm “110” had a relatively small variability and a median CCS higher 

than most farms in the region. By querying the database, it was possible to identify this farm as 

a research station that had only a limited number of samples. This may explain the low variability 

and higher performance.  From Figure 2.3 it was possible to see that some varieties such as 

Q220 had a lower median CCS and Purity across the period 2006 to 2010. 
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Figure 2.2. Boxplots of laboratory Commercial Cane Sugar (CCS) by farm from a northern mill (2006-2010). Farms are identified by a database specific id 
number. Boxes represent the 25th to 75th percentiles while solid black lines represent median values. Boxplot “whiskers” cover samples no more than 1.5 

times the interquartile range, while points represent ‘outliers’ 
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Figure 2.3. Boxplots of laboratory analysis of sugarcane samples by variety from a northern 

mill (2006 – 2010). Boxplots represent (a) Brix in juice (Bij), (b) Pol in juice (Pij) and (c) 
Commercial Cane Sugar (CCS). Boxes represent the 25th to 75th percentiles while solid black 

lines represent median values. Boxplot “whiskers” cover samples no more than 1.5 times the 
interquartile range, while points represent ‘outliers’. 

 

The ability to link laboratory and consignment or productivity data with the spectral data will 

enable future research to analyse NIR model performance easily across seasons, farms, varieties 

and other possible sources of variation. Moving forward, the project will need to consider 

expanding the database to include more seasons and potentially data from more regions. 

Considering the size of the database, it may also be necessary to consider alternatives to SQLite 

as SQLite databases may not be ideally suited to the growing needs of the Australian sugar 

industry.  
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2.3 Chapter 2 Summary 

 

For this thesis, productivity, laboratory and spectral data were sourced from the Australian 

sugarcane industry through Sugar Research Australia. While data were available from several 

mills, the data used in this thesis was sourced from a single mill in northern Queensland, 

Australia. The mill data was collected into a single relational database for simplicity. The 

relational database made it much simpler to extract and compare data. In future, Sugar 

Research Australia should construct a similar single repository for the NIR spectral analysis. This 

would also be beneficial in facilitating automation of data storage. The objective of Chapter 2 

was to provide an overview of the data sources and data types used in the thesis. Each 

subsequent Chapter uses a selection of data from the database depending on the requirements 

of the particular experiment. Therefore, details of the data used is provided in each chapter.   
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Chapter 3  

 

A comparison of data mining algorithms for improving 
NIR models of cane quality measures 
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3.1 Introduction 

 

Sugarcane quality is regularly measured by near infrared (NIR) analysis on-line in sugarcane mills 

in Australia (Simpson et al., 2011). On-line NIR Cane Analysis System used in the sugar industry 

are capable of assessing cane quality parameters such as Brix, Pol, and Commercial Cane Sugar 

(CCS), which are used in grower cane payment calculations. NIR analysis is used as a cost 

effective, non-destructive and rapid alternative to standard ‘wet chemical’ laboratory analysis. 

Use of NIR technologies has led to a significant decrease in the costs associated with assessing 

cane quality (Berding and Marston, 2010).  

 

NIR analysis uses chemometric techniques to model the relationship between the absorbance 

of NIR light by a sample and its chemical composition. The use of the NIR region of the 

electromagnetic spectrum has the advantage of measuring intact samples. This means samples 

often require less preparation compared to analysis using other regions of the spectrum such 

as the mid infrared. NIR analysis was first introduced for the laboratory analysis of cane quality 

parameters in the late 1980s/early 1990s (Berding et al., 1991, Berding et al., 1989, Brotherton 

and Berding, 1995). Then, in the late 1990s and early 2000s on-line analysis was introduced, 
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allowing cane quality analysis to become part of the mill process (Staunton et al., 1999, Staunton 

et al., 2004). 

 

Partial least squares regression (PLSR) is often considered one of the most common, if not the 

most common method used for developing NIR models (Agelet and Hurburgh, 2010). Within the 

Australian sugarcane industry PLSR has been used to build NIR models of cane quality measures 

in the laboratory (Gateway Laboratories; (O'Shea et al., 2011)), on-line (Staunton et al., 1999) 

and in the field (Nawi et al., 2013). PLSR has also been used to develop NIR-based models for 

nutrient elements such as carbon and nitrogen (Purcell et al., 2012) and biomass measures 

including lignin (Oxely et al., 2012). PLSR for NIR analysis relies on the Beer-Lambert law 

assumption that the quality parameter being estimated and the predictor variables (NIR 

absorbance at particular wavelengths) is approximately linear (Tange et al., 2015). 

  

In practice, the linear relationship between quality measures and absorption at NIR wavelengths 

can often break down (Hageman et al., 2005). Non-linearity can be introduced in two main 

forms: 1) changes to the measuring instrument; and 2) changes in the sample itself (Hageman 

et al., 2005). Machine wear, repair or replacement generally requires re-calibration of the model 

(Fearn, 2001). Differences in particle size in the sample, sample deterioration over time or high 

concentrations of the component being measured can also lead to non-linear effects (Bertran 

et al., 1999).  

 

Recently there has been increased interest in the use of machine learning algorithms, such as 

artificial neural networks and support vector regression (SVR) as alternatives to partial least 

squares, due to their ability to deal with complex data (Tange et al., 2015). However, machine 

learning algorithms have not been widely considered in sugarcane industries in Australia or 

internationally. Artificial neural networks have been used within sugarcane industries globally 

to predict brix and pol from juice samples (Wang et al., 2010). In Australia, artificial neural 

networks have been used to predict sugar content from cane rind (Nawi et al., 2013).  

 

Previous studies have shown that SVR can outperform artificial neural networks (Thissen et al., 

2004a, Balabin and Smirnov, 2012). Recent research as also shown that SVR can produce 

comparable results to PLSR for sugarcane quality parameters in Japan (Tange et al., 2015, 

Ramírez-Morales et al., 2016). Current chemometric techniques for cane quality analysis are 

effective for the vast majority of samples that come through the mill. However, atypical samples 
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such as deteriorated or dirty samples are difficult to model and can result in inaccurate 

estimates of quality measures. The need to analyse these samples further using standard 

laboratory techniques can reduce confidence in NIR technologies.  

 

As NIR estimates of cane quality directly influence grower payment calculations, it is vital that 

we ensure the most robust chemometric techniques available. Given the recent success of 

machine learning approaches for NIR models, it is timely to consider the use of machine learning 

techniques such as SVR in Australia. Therefore, the objective of this chapter was to compare 

SVR with the well-established PLSR for estimating three sugarcane quality parameters (Brix, Pol 

and Apparent Purity) within the Australian sugar industry. 

 

3.2 Materials and methods 

 

To compare the performance of PLSR and SVR for predicting cane quality measures from NIR 

spectra, data were collected from a single sugarcane mill located in northern Queensland, 

Australia. Models for three quality parameters were calibrated and validated using both PLSR 

and SVR and validation performance was compared. Figure 3.1 outlines the analysis 

methodology. All data pre-processing, model calibration and model validation were 

accomplished using the R statistical environment (R Core Team, 2016). 
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Figure 3.1. Overview of methodology used in this chapter 

 

 3.2.1 Data 

 

Laboratory reference data and NIR spectral data used in this study were collected by the on-line 

cane analysis system of a single northern mill. Three quality measures were used in the analysis, 

percent brix in juice (here after referred to as Brix), percent pol in juice (here after referred to 

as Pol) and apparent purity, calculated as the ratio of Pol to Brix (hereafter referred to as Purity). 

Data represent on-site laboratory validated samples of the 2006 harvest season. In total 3,794 

consignments (samples) were available that had laboratory validated references values of cane 
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quality measures as well as linked NIR data and consignment productivity data including the 

farm of origin.  

 

For purposes of analysis, 1,899 samples were randomly selected for calibration and the 

remaining 1,895 samples were used for validation purposes. Samples were split such that no 

samples from the same farm appeared in both the calibration and validation sets. This was done 

so that the validation set was as independent as possible from the calibration set.  

 

NIR data linked to each sample were collected using a FOSS ONLINE 5000 system. Spectral 

wavelengths ranged from 1,100 nm to 2,498 nm at 2 nm intervals. All available wavelengths 

(700) were included in the analysis. Each sample had multiple scans that were averaged in the 

data pre-processing phase. 

 

 3.2.2 Data pre-processing 

 

There were two key stages to data pre-processing. 1) Data cleaning and 2) data transformation. 

In cleaning the data, outlier scans were identified in the calibration and validation data using a 

global Mahalanobis distance. Due to the size of each consignment (sample) delivered to a mill, 

a single sample may be scanned multiple times resulting in multiple (at times more than 20) NIR 

spectra (scans) being recorded. Following Staunton et al. (2004), scans with a global 

Mahalanobis distance greater than 3 were considered outliers and removed from the calibration 

data set. Scans were removed from the validation data set if they would have been considered 

outliers in the calibration data set. Following Fiedler et al. (2001), samples were removed from 

the analysis if they had fewer than three ‘clean’ scans. Table 3.1 records the final number of 

samples and the distribution of quality measures used in the calibration and validation data sets. 

Mean values of quality measures were similar in both the calibration and validation data sets. 

However, Purity values reached lower levels in the validation data. 

 

Table 3.1. Descriptive statistics of final calibration and validation data sets used in the analysis.  
 Calibration (N = 1,857) Validation (N = 1,879) 

Mean SD Range Mean SD Range 

Bij 20.67 1.92 15.2-25.9 20.89 1.57 15.5-24.9 

Pij 18.09 2.07 11.7-22.8 18.34 1.68 12.4-22.6 

CCS 0.8732 0.0287 0.7368-0.9495 0.8771 0.0251 0.6901-0.9444 
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NIR spectral scans were transformed using a Savitzky-Golay (Savitzky and Golay, 1964) first 

derivative with a window width of 17 and scatter corrected using a standard normal variate 

transformation (Barnes et al., 1989). This combination of pre-treatment was found to result in 

good models for both PLSR and SVR in preliminary cross-validation tests. The final NIR spectrum 

for each sample was the average spectra of all clean scans after the transformations were 

applied. 

 

 3.2.3 Partial least squares regression 

 

PLSR linearly transforms the predictor variables into a smaller subset of independent 

components called latent variables. This allows the model to account for co-linearity in NIR 

spectral data, which can otherwise lead to unstable regressions without unique solutions 

(Agelet and Hurburgh, 2010). These latent variables are linear combinations of the original 

predictor variables (i.e. wavelengths). The latent variables are chosen to have both high variance 

and high correlation with the dependent variable (i.e. quality measure) (Hastie et al., 2013c). 

During calibration, the number of latent variables must be chosen. A small number of latent 

variables that still provides accurate predictions is desirable. PLSR is available in many of the 

most common chemometric software packages including Unscrambler (Nawi et al., 2013) and 

WinISI (O'Shea et al., 2011). The key advantages of PLSR are interpretability, ease of use and 

availability in standard software packages. 

 

 3.2.4 Support vector regression 

 

Support vector regression (SVR; (Smola and Vapnik, 1997)) is an extension of the machine 

learning technique, support vector machines originally designed for classification problems 

(Cortes and Vapnik, 1995). Similar to PLSR, support vector regression (SVR) seeks a linear 

relationship between the predictor variables and the dependent variable. Rather than 

minimising the least squares error, SVR seeks to minimise a ‘cost function’ consisting of a 

weighted error term with specific constraints (Thissen et al., 2004a). Specifically, this cost 

function seeks to minimise prediction error (improved accuracy) as well as minimising 

coefficient size (improved generalisation). The cost weight (cost) and error parameter (epsilon) 

must be chosen and are usually optimised through cross-validation. The final SVR model uses 

only observations with an error greater than epsilon. These samples are called the support 
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vectors (Thissen et al., 2004a). This ‘data sparsity’ helps improve generalisation (Tange et al., 

2015) resulting in more robust models. 

 

Another key advantage of SVR is the ability to model complex non-linear problems. This is 

achieved by transforming the original data using a kernel function such as the radial basis 

function (Tange et al., 2015). Non-linear relationships that exist between the original predictor 

variables and the dependent variable may become linear after an appropriate transformation, 

making the relationship easier to model. The parameters of the kernel function must also be 

optimised from the data. For example, the radial basis function has a single parameter (gamma) 

that must be tuned. 

 

The major disadvantage of SVR is that the resulting models are difficult to interpret in terms of 

the original predictor variables. SVR is also largely absent from current commercial NIR analysis 

programs making it difficult to integrate into established NIR analysis systems. The authors 

recommend Tange et al. (2015) for a fuller description of SVR theory and its application to 

sugarcane mill products. 

 

 3.2.5 Model tuning and calibration 

 

Both PLSR and SVR model parameters were tuned using a five-fold cross-validation of the 

calibration data set. Cross-validation estimates the predictive ability of the calibrated model by 

dividing the data into five ‘folds’. Each fold (~20% of calibration samples) was successively 

removed from the analysis and the models were built using the remaining four folds (~80% of 

calibration samples). Cross-validated root mean square error (RMSECV) was then calculated on 

the data that was left out across all folds. 

 

Individual models were tuned for each of the three cane quality measures. The final model for 

each variable was selected as the combination of factors that minimised the RMSECV. Final 

models were then recalibrated using the whole calibration data set. PLSR models were built 

using the pls package in R (Mevik et al., 2015).The in-built scaling option was used to scale the 

spectral and reference data to avoid biasing towards wavelengths with higher absorbance. The 

number of latent variables was the only tuning parameter selected via cross-validation. For each 

model, up to 40 latent variables were tested during cross-validation. A lower number of latent 

variables is desired as it results in a less complex model. 
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SVR models were built using the e1071 package in R (Meyer et al., 2015). As with the PLSR 

models, an inbuilt scaling function was used to scale the data. Two parameters were tuned 

during cross-validation, the cost parameter and the gamma parameter for the radial basis 

function. The epsilon parameter was set to the default value of 0.1. A two stage tuning was 

performed. The first stage considered parameter values on a coarse exponential grid. Costs used 

were 2–3 to 215 while gamma values used were 2–15 to 23. 

 

 3.2.6 Model evaluation 

 

The final calibrated PLSR and SVR models for each quality parameter were applied to the full 

calibration data set and to the independent validation data set. Model performance statistics 

for the calibration data set were recorded as model root mean square error of calibration 

(RMSEC) and calibration coefficient of determination (R2
c ). Calibration results were used to 

show how well the model fit the data used to generate the model. 

 

Model predictive performance was assessed based on the validation data set. Root mean square 

error of prediction (RMSEP) and prediction coefficient of determination (R2
p) were recorded. 

Root mean square error is a measure of the standard deviation of the model errors and should 

be close to zero. Root mean square errors were calculated as  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (3-1) 

where 𝑁𝑁 is the number of samples, while 𝑦𝑦𝑖𝑖  and 𝑦𝑦�𝑖𝑖 are the observed and predicted values of a 

particular quality measure for sample i respectively. 

R2 is a measure of the variance explained by the model such that a value close to 1 is desired. R2 

values were calculated as 

𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2
𝑁𝑁
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1

. (3-2) 

Here, 𝑁𝑁 is the number of samples, 𝑦𝑦𝑖𝑖  and 𝑦𝑦�𝑖𝑖 are the observed and predicted values for sample i 

respectively and 𝑦𝑦� is the observed mean. Results from the independent validation data set were 

used to show how well the models perform on a new range of data. The validation set bias, 

Residual Prediction Deviation (RPD) and the slope of the regression line between predicted and 

observed data were recorded for completeness. The RPD is a ratio of the observed variance and 

model error variance (Agelet and Hurburgh, 2010). RPD values for sugarcane quality estimates 
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are rarely provided in the literature. As such RPD was not been used as a primary measure of 

model performance.  

 

3.3 Results and discussion 

 3.3.1 Model tuning and calibration 

 

The final model tuning parameters are recorded in Table 3.2. Using SNV-First derivative treated 

spectra, PLSR models for Brix, Pol and Purity required 20, 22 and 22 latent variables, 

respectively. This resulted in many fewer variables compared with the original 700 wavelengths 

of the spectra. The tuning parameters for the SVR models were similar for Brix and Pol while 

parameters differed somewhat for Purity. The higher cost parameter for the Purity model 

suggests a more complex model. Simpler models are generally preferred as they are easier to 

interpret. In the context of on-line analysis, models are often used as a ‘black-box’ and 

interpretation of the model may be less important. 

 

Table 3.2. Final model parameters for PLSR and SVR models of Bij, Pij and Apparent Purity. All 
models used standard normal variate- first derivative pre-treated spectra. 

 

PLSR SVR 

No. Latent Variables Cost Gamma 

Bij 20 100 0.00012 
Pij 22 200 0.00012 
Purity 20 300 0.00020 

 

 3.3.2 Model evaluation 

 

For each quality measure, the SVR models better represented the observed values in the 

calibration data set than the PLSR models (Table 3.3). RMSEC values were lower and R2
c values 

higher for SVR models of all quality parameters. This can be expected in the calibration data, as 

the SVR models are more complex than the PLSR models. The largest difference was for models 

of purity, where SVR RMSEC was 33% lower than the PLSR RMSEC and 11% more of the observed 

variation was explained. Both PLSR and SVR models of Purity tended to overestimate low and 

underestimate high values of Purity (Figure 3.2). Figure 3.2 shows that the PLSR model (Figure 

3.2(c)) tended to overestimate lower values of Purity more than the SVR model (Figure 3.2(f)) 

in the calibration set. 
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Table 3.3. Model calibration and validation statistics for PLSR and SVR models of Bij, Pij and 
Apparent Purity. Root Mean Square Error (RMSE) is a measure of the standard deviation of the 
model errors and should be close to zero. R2 is a measure of variance explained by the model 
values close to 1 are desired. Validation Slope, Bias and Residual Prediction Deviation (RPD) 
were recorded for completeness.  

Model  RMSEC R2
c RMSEP R2

p Slopep
a Biasp

b
 RPD p

c 

PLSR Bij (%) 0.28 0.98 0.30 0.96 0.97 -0.04 5.26 

 Pij (%) 0.34 0.97 0.34 0.96 0.96 -0.06 4.98 

 Apparent Purity 0.0132 0.79 0.0146 0.66 0.70 -0.0012 1.72 

SVR Bij (%) 0.25 0.98 0.29 0.96 0.96 -0.03 5.33 

 Pij (%) 0.28 0.98 0.33 0.96 0.98 -0.06 5.15 

 Apparent Purity 0.0088 0.90 0.0148 0.65 0.74 -0.0012 1.70 
aSlope was calculated as the 𝜷𝜷 coefficient of the linear least squares fit of  𝒚𝒚� = 𝛽𝛽𝒚𝒚 + 𝑐𝑐 
bBias was calculated as mean difference between predictions and observations 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖)

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 

cRPD was calculated as the ratio of the standard deviation of the observations in the validation set and 

the RMSEP 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑠𝑠𝑠𝑠(𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝)
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠(𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝) = �∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦�)^2
𝑁𝑁𝑝𝑝
𝑖𝑖=1
𝑁𝑁𝑝𝑝−1

 

 

 
Figure 3.2. Predicted versus Observed values of Brix, Pol and Purity for calibration set data. 
Points represent individual samples for PLSR models (a), (b), (c) and SVR models (d), (e), (f). 

Solid line represents the relationship between predicted and observed data. Dashed line 
represents the 1:1 ratio. Numbers identify the five samples with the largest errors. Points 

above the dashed line were overestimated while points below the line were underestimated. 
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Validation performance statistics for PLSR (RMSEP and R2
p) were comparable with previous 

results reported for the Australian sugar industry. Staunton et al. (2004) reported R2
p of 0.91, 

0.93 for Brix and Pol, respectively, using bias and temperature corrected PLSR models. The 

associated standard errors of prediction were 0.34 and 0.32 respectively. This is comparable 

with the RMSEP of 0.30 (Bij) and 0.34 (Pij) for PLSR achieved in our study (Table 3.3).  

 

Although Staunton et al. (2004) used data from a different Australian mill (Maryborough, 

Queensland, Australia); these results are encouraging as both studies used a large number of 

samples from similar on-line cane analysis systems. In particular, the Staunton et al. (2004) study 

used a FOSS DL 5000 spectrophotometer with a spectral range from 1,100 to 2,500 nm at 2 nm 

intervals. The consistency of these results suggest that the PLSR method represents a good 

baseline against which to test new modelling methods. Berding et al. (1991) reported a standard 

error of prediction (SEp) for Purity (%) of 1.66% with a correlation coefficient of 0.60 for a 

laboratory based NIR analysis. The results of Berding et al. (1991) are similar to the RMSEP and 

R2
p obtained in our study. However, recent research has achieved more promising results 

(Berding and Marston, 2010). 

 

SVR models of Brix and Pol slightly outperformed PLSR models when applied to the independent 

validation data set (Table 3.3). Models of Brix and Pol achieved the same R2
p as the PLSR models 

however validation root mean square errors (RMSEP) were 3.3 % (Brix) and 2.9% (Pol) lower for 

the SVR models. The PLSR model for Purity slightly outperformed the SVR model with an RMSEP 

1.37% lower than the SVR model. This was surprising given that the SVR Purity model 

outperformed PLSR when applied to the calibration data set (Table 3.3). The low R2
p and 

relatively high RMSEP of both PLSR and SVR models of Purity suggest that neither is suitable for 

operational use at this point. Validation values for RPD, slope and bias were similar between 

PLSR and SVR models supporting the conclusions based on RMSEP and R2
p. 

 

As with the calibration data, both PLSR and SVMR models of Purity tended to overestimate 

lower values and underestimate higher values, particularly for Purity samples less than 0.8 

(Figure 3.3 (c) and (f)). The overestimation of low Purity values is likely due to low values being 

under-represented during calibration and the poor ability of NIR models to extrapolate beyond 

the calibration range. When the calibration set is normally distributed (more samples in the 

centre of the data), the predictive performance of an NIR model will decrease for new samples 
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further from the centre (Naes and Isaksson, 1989). Furthermore, both PLSR and SVR can perform 

poorly when extrapolating beyond the calibration range of values (Balabin and Smirnov, 2012). 

 

 In our study, both PLSR and SVR were unable to estimate values of Purity lower than the 

minimum value in the calibration data set (0.7368; Table 3.3) leading to overestimation of 

samples with lower values such as samples 3284 and 3285 (Figure 3.3(f)). Reducing the 

calibration data set to a uniform or rectangular distribution in the laboratory data may have 

improved overall model performance (Cao, 2013). This technique aims to select a uniform 

number of samples across the range of the quality measure so that low and high values are not 

under represented. 

  

 
Figure 3.3. Predicted vs Observed values of Brix, Pol and Purity for validation set data. Points represent 

individual samples for PLSR models (a, b, c) and SVR models (d, e, f). Solid line represents the 
relationship between predicted and observed data. Dashed line represents the 1:1 ratio. Numbers 

identify the five samples with the largest errors. Points above the dashed line were overestimated while 
points below the line were underestimated. 

 

By considering the five samples with the largest errors for each model, it can be seen that the 

same samples tended to be poorly estimated using either SVR or PLSR models (Figure 3.3). For 

example, samples 1704 and 2239 in Purity as well as 637 and 52 in Brix and Pol. Some samples 

may have been poorly estimated because they lay beyond the calibration range such as sample 
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1704 for Purity. Other samples were poorly estimated despite laying close to the centre of the 

data. For example, Purity was poorly estimated for sample 2239 while Brix and Pol were poorly 

estimated for sample 470. As these samples were not identified as outliers in the pre-processing 

stages, future research should consider trying to identify why these samples were difficult to 

predict.  

 

The results of this study show the SVR modelling technique offers slight advantages over the 

traditional PLSR. However, results for Purity suggest that there is still room for improvement. 

Future research should consider comparisons of other modelling techniques on a more 

heterogeneous data set. For example, analysing data collected across multiple seasons, multiple 

NIR systems and multiple locations would allow researchers to better assess the ability of these 

modelling methods to cope with a greater modelling complexity. 

 

The advantages of PLSR are the relative simplicity of the calculation, the availability in standard 

analysis software packages and a higher interpretability of the parameters used in the model. 

In comparison, SVR is difficult to interpret and is not currently available in most software 

packages used by the Australia sugarcane industry. Although SVR did provide modest 

improvement for models of Brix and Pol, the advantage in skill was not sufficient to recommend 

SVR in this study. 

 

3.4 Conclusions 

 

This study compared PLSR and SVR models for three cane quality measures. Results from the 

PLSR models were consistent with previous industry studies and justified the use of PLSR as a 

baseline modelling technique to which approaches that are more sophisticated can be 

compared. SVR models for percent brix and percent pol in juice slightly improved on PLSR 

models; however, PLSR and SVR models for purity were both considered unsuitable for use 

operationally. In this study, the slight improvement in model skill using SVR was not considered 

sufficient to recommend SVR over PLSR, given the relative ease of use and interpretability of 

PLSR. An important result of this study was that samples that were difficult to estimate with the 

PLSR models were also difficult to estimate using the SVR models. This suggests that in order to 

improve our ability to utilize NIR modelling techniques, we require a better understanding of 

why certain samples are difficult to model and how to identify them. 
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3.5 Chapter 3 Summary 

 

Near infrared (NIR) analysis systems are used to estimate cane quality measures such as brix 

and pol in juice and apparent purity. Within the Australian sugarcane industry, partial least 

squares regression (PLSR) has been used to build NIR models of cane quality measures in the 

lab, on-line and in the field. PLSR relies on the linear relationship between sample constituents 

and electromagnetic absorption at NIR wavelengths. In practice, this linear relationship can 

often break down resulting in relationships that are more complex. Recently, machine learning 

techniques have become popular for their skill with complex data and ability to produce robust 

calibrations. The objective of this paper was to compare PLSR with the machine learning 

technique, support vector regression (SVR). The two techniques were used to estimate three 

cane quality parameters: brix in juice, pol in juice and apparent purity (Pij/Bij). Results from the 

PLSR models were consistent with previous industry studies and justified the use of PLSR as a 

baseline against which to compare approaches that are more sophisticated. The SVR models 

slightly reduced prediction error compared with PLSR models for brix and pol in juice, but slightly 

increased prediction error for apparent purity. The marginal improvement in model skill using 

SVR was not considered sufficient to recommend SVR over PLSR, given the relative ease of use 

and interpretability of PLSR. However, this study showed that certain samples were difficult to 

model with either approach.  

 

The focus of Chapter 3 was Objective 1 of the thesis:  Investigating the use of data mining and 

machine learning algorithms for improved NIRS estimates of cane quality. The outcomes of 

Chapter 3 contributed to the thesis objective in two important ways. Firstly, it was necessary to 

establish that it was possible to produce models of cane quality with similar skill to those 

presented in the literature. Comparisons to literature also established that the PLSR was an 

appropriate method to compare to more complex modelling approaches such as SVR. Secondly, 

the results of Chapter 3 showed that the comparison between PLSR and SVR was similar for each 

of the quality measures and that many of the same samples were difficult to estimate for both 

techniques. These results were important because they contributed to the scope of the Chapter 

4 which concentrated on comparing a wider range of modelling techniques for a single quality 

measure.  
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4.1 Introduction 

 

The world sugarcane market is incredibly competitive. Sugarcane production for the top 5 

producing countries ranged from 736 Million tonnes (Brazil) to 62 Million tonnes (Pakistan) in 

2014 (FAO, 2017). Unsurprisingly then, cane quality is of paramount importance to sugarcane 

industries worldwide. In the Australian sugar industry, Commercial Cane Sugar (CCS) is the 

primary measure of cane quality and is used directly to calculate the payment made to growers. 

Since the first implementation of online Near Infra-Red Spectroscopy (NIRS) in the Australian 

sugarcane industry in 1996, millions of CCS measurements have been made using NIRS analysis. 

Given the importance of cane quality measures, the NIRS models must be both accurate and 

robust. Within the Australian sugarcane industry, Partial Least Squares Regression (PLSR) has 

been the primary chemometric algorithm used to build these NIRS models.  The growing amount 

of NIRS data available to the sugarcane industry presents an opportunity to investigate recent 

advances in machine learning and non-linear data mining algorithms, to maximize the benefits 

of NIRS. 
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Within Australia, NIRS analysis was first introduced for the laboratory analysis of cane quality 

parameters in the late 1980s to early 1990s (Berding et al., 1991, Berding et al., 1989, Brotherton 

and Berding, 1995). In the mid 1990’s at-line analysis was trialled (Berding and Brotherton, 1996, 

Brotherton and Berding, 1998) and by the late 1990s and early 2000s on-line analysis (Staunton 

et al., 1999, Staunton et al., 2004) had been introduced. On-line analysis allowed cane quality 

analysis to become part of the mill process. PLSR is often considered one of the most common, 

if not the most common method used for developing NIRS models (Agelet and Hurburgh, 2010). 

Within the Australian sugarcane industry PLSR has been used to build NIRS models of cane 

quality measures in the laboratory (O'Shea et al., 2011), on-line (Staunton et al., 1999) and in 

the field (Nawi et al., 2013).  

PLSR for NIRS analysis relies on the assumption that the quality parameter being estimated and 

the predictor variables (NIR absorbance at particular wavelengths) is approximately linear 

(Miller, 1993, Tange et al., 2015). In practice, the linear relationship between quality measures 

and absorption at NIR wavelengths can often break down. Non-linearity can be introduced in 

two main forms: 1) changes to the measuring instrument; and 2) changes in the sample itself 

(Hageman et al., 2005). Machine wear, repair or replacement generally requires re-calibration 

of the model (Fearn, 2001). Differences in particle size in the sample, sample deterioration over 

time or high concentrations of the component being measured can also lead to non-linear 

effects (Bertran et al., 1999). Machine learning and non-linear algorithms such as support vector 

regression (SVR), artificial neural networks (ANN) or Gradient Boosted Trees (GBT) may be 

better suited to these types of complex situations (Balabin and Lomakina, 2011, Hageman et al., 

2005).  

SVR has been regarded as an effective alternative to ANN (Agelet and Hurburgh, 2010, Balabin 

and Lomakina, 2011, Kovalenko et al., 2006) and PLSR (Thissen et al., 2004a). The results from 

Chapter 3 showed that SVR was as effective as PLSR for Brix and Pol based quality measures in 

Australia. Similarly positive results have been shown in the Japanese sugarcane industry (Tange 

et al., 2015). Tange et al. (2015) found that SVR had an advantage over PLSR for the 

determination of sugar quality parameters such as Brix and Pol. Tange et al. (2015) found that a 

single global SVR calibration, using data from various stages of the milling process, produced a 

36% reduction in RMSEP for estimates of Pol compared to a PLSR model built specifically for 

Molasses NIRS data. 

ANN have shown promise at classifying crop quality rather than directly estimating quality 

parameter values. Nawi et al. (2013) found that hand-held NIRS machines calibrated using ANN 
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could correctly classify sugar content of sugarcane from NIR spectra collected by scanning 

sugarcane skin with 75% accuracy. More recently, Jam and Chia (2017) showed that an ANN 

calibrated model was able to correctly classify total soluble solids in pineapples with 73% 

accuracy when whole pineapples were scanned. 

One of the most often stated drawbacks of machine learning techniques is their ‘black box’ 

nature. However, recent research has shown it is possible to identify influential spectral 

wavelength regions within SVR models (Feilhauer et al., 2015, Üstün et al., 2007). Similarly, 

several methods have been explored to better understand and interpret ANN models used in 

ecological studies (Olden and Jackson, 2002, Olden et al., 2004, Özesmi and Özesmi, 1999). 

Unfortunately, these methods are not widely evident in NIRS analysis literature. For example, 

although Üstün et al. (2007) introduced a variable importance measure for SVR in 2007, several 

comparison studies published since, have not considered variable importance as part of model 

comparison (Balabin et al., 2010, Cui and Fearn, 2017, Ni et al., 2014, Pierna et al., 2011). If 

variable importance were explored, it may be possible to link models back to physical properties 

removing some of the ‘black box’ nature of these methods and help improve adoption by 

industry.  

Data mining algorithms based on regression trees may provide an alternative, interpretable 

non-linear modelling approach. Tree based methods are structurally interpretable but often do 

not have the same predictive performance as other datamining techniques (Hastie et al., 

2013e). Ensemble tree methods such as Random Forests (Breiman, 2001) and Gradient Boosted 

Trees (Friedman, 2001) (GBT) have been proposed as methods to improve tree based predictive 

performance.  While we could find no examples of GBT used to assess agronomic quality 

parameters, GBT has successfully been used for remote sensing and mobile soil testing 

applications (Loggenberg et al., 2018, Nawar and Mouazen, 2017, Viscarra Rossel and Behrens, 

2010). 

Recently, Nawar and Mouazen (2017) showed that RF (RMSEP = 0.14) and GBT (RMSEP = 0.20) 

calibrated Vis/NIR models of soil total carbon, could perform as well or better than an ANN 

calibration (RMSEP = 0.20) for a mobile soil testing rig at a specific site (Hagg field), using local 

and regional data. However, results were site and data specific with GBT (RMSEP = 0.20) 

outperforming ANN (RMSEP = 0.27) when only local data were used. In agricultural industries, 

RF and extreme gradient boosted trees (XGBT) have recently shown promising results at 

detecting water stressed vineyards from remotely sensed hyperspectral data (Loggenberg et al., 

2018). Loggenberg et al. (2018) showed that RF and XGBT were able to classify water stressed 
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vineyards with up to 83.3% and 80.0% accuracy respectively where spectral data from 473 nm 

– 708 nm were used. 

Given the importance of robust, accurate NIRS analysis of cane quality for the Australian 

sugarcane industry, we investigate if the additional complexity of machine learning and non-

linear data mining algorithms deliver a substantial advantage over a simpler, traditional 

modelling approach. As many approaches to modelling non-linearity exist, it is also important 

to test a variety of modelling techniques. Therefore, the objective of this chapter was to 

compare chemometric models of CCS using four calibration techniques that approach non-

linearity in different ways: partial least squares, support vector regression, artificial neural 

networks and gradient boosted trees. Furthermore, we endeavour to explore how spectral 

information is used within these different modelling techniques. 

 

4.2 Theory 

 4.2.1 Partial least squares regression 

 
The approach of partial least squares (PLS) was first developed around 1975 by Herman Wold 

as a form of two block regression (Wold et al., 2001) and has become one of the most widely 

used regression techniques in chemometrics. Many variants have since been developed 

including orthogonalized PLS (Trygg and Wold, 2002) and interval PLS (i-PLS) (Nørgaard et al., 

2000) among many others.  

 

Here we describe the basics of the PLS regression (PLSR) algorithm for a single response variable 

(y). The standard form of a multivariate regression in terms of NIR spectroscopic analysis can be 

expressed as 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒇𝒇, (4-1) 

where y is a vector (y = [y1, …, yN]) of 𝑁𝑁 reference values to be predicted, X is N-by-P matrix (X = 

[x1 …, xp]) of NIR spectroscopic data, 𝜷𝜷 is a vector of regression coefficients and f  is a vector of 

model errors. PLSR linearly transforms the predictor variables into a smaller set of independent 

components called latent variables (LV = [lv1 …, lvA]).  This allows the model to account for co-

linearity which can lead to unstable regressions without unique solutions (Agelet and Hurburgh, 

2010). The latent variables are defined as orthogonal to each other and are related to the 

original data (X) by the N-by-A weighting matrix W and loading matrix P as 

𝑳𝑳𝑳𝑳 = 𝑿𝑿𝑿𝑿(𝑷𝑷𝐓𝐓𝑾𝑾)−𝟏𝟏.                                                                                            (4-2) 
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The latent variable in PCA are developed iteratively so that the first LV has both high variance 

and high correlation with the reference values (y) (Hastie et al., 2013f). The final form of the 

PLSR equation can be expressed as 

𝒚𝒚 = 𝑳𝑳𝑳𝑳𝑳𝑳 + 𝒇𝒇,                                                                                         (4-3) 

where q is a vector of regression coefficients in the latent space. 

 

 4.2.2 Support vector regression 

 
The support vector machine was first developed as a non-linear approach to binary classification 

problems (Cortes and Vapnik, 1995) and was later extended to regression problems through 

two separate approaches; SVR (Smola and Vapnik, 1997) and least squares support vector 

machines (Cui and Fearn, 2017, Suykens et al., 2002, Thissen et al., 2004b). Similar to PLSR, both 

support vector regression approaches seek a linear relationship between the predictor variables 

(X) and the dependent variable (y). Rather than minimizing the mean square error, SVR seeks to 

minimize the ε-insensitive loss function (Smola and Vapnik, 1997). This cost function attempts 

to minimize coefficient size and prediction error(Thissen et al., 2004a). Furthermore, prediction 

errors are penalized linearly except for absolute errors less than a specified cut-off tolerance of 

ε and are weighted through a cost parameter (C), which can be tuned as a trade-off between 

model accuracy and simplicity. 

 

The final form of the SVR function can be described as 

𝒚̂𝒚 = ∑ (𝑁𝑁
𝑖𝑖,𝑗𝑗 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)𝑲𝑲(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) + 𝑏𝑏.                                                                                                                                               (4-4) 

Here ŷ represents the vector of model predictions; N is the total number of samples and 

(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) represent Lagrangian multipliers that result from the numeric optimization of the cost 

function. Only samples with errors beyond ±ε (the support vectors) will have a nonzero α value. 

Samples with an error beyond +ε will have a nonzero αi while samples with an error beyond -ε  

will have a nonzero αi
*. As α differ in size, some samples can be considered more important than 

others (Thissen et al., 2004a).  𝑲𝑲(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) is a kernel function used to map the dependent variable 

matrix to a higher dimensional feature space (Üstün et al., 2007) and b is an offset term in the 

model. A suitable kernel function can allow the SVR to model non-linearities in the data and 

several may need to be tested for any given scenario. In this study, we considered only the 

Gaussian radial basis function (Vert et al., 2004) 

 𝑲𝑲�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗� = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝛾𝛾||𝒙𝒙𝑖𝑖 − 𝒙𝒙||2),                                                                                                                                        (4-5) 
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which is often used in SVM literature (Tange et al., 2015, Thissen et al., 2004a, Vert et al., 2004). 

The radial basis function 𝛾𝛾 parameter, as well as the cost parameter C and ε parameters are 

usually tuned through cross-validation during model calibration. 

 

 4.2.3 Artificial neural networks 

 

In this study, we consider the feed forward single hidden layer network, which forms a two-

stage regression model. The network consists of an input layer representing the original 

dependent variables (X), a hidden layer of M nodes representing a transformed set of predictor 

variables 𝒉𝒉1 to 𝒉𝒉𝑚𝑚 and an output layer representing the predictions ŷ (Figure 4.1). Each hidden 

node is a transformation of a linear combination of the weighted original input variables as 

𝒉𝒉𝑚𝑚 = 𝑓𝑓�𝑎𝑎0𝑚𝑚 + 𝒂𝒂𝐦𝐦𝐓𝐓 𝑿𝑿�;  𝑚𝑚 = 1, … ,𝑀𝑀;𝒂𝒂𝐦𝐦 = [𝑎𝑎1𝑚𝑚, … ,𝑎𝑎𝑃𝑃𝑃𝑃].                                               (4-6) 

Here, am is the vector of weights representing the connections of all P inputs to node m and a0m 

represents the bias adjustment of node m. The transformation 𝑓𝑓(𝑣𝑣) is called the activation 

function and is often a sigmoidal function of the form 𝑓𝑓(𝑣𝑣) = 1/(1𝑒𝑒−𝑣𝑣) (Hastie et al., 2013d).  

The output is then computed as a transformed linear combination of the hidden nodes using 

𝐨𝐨 = 𝑔𝑔�𝑏𝑏0 + 𝒃𝒃𝐓𝐓𝑯𝑯�;  𝒃𝒃 = [𝑏𝑏1, … , 𝑏𝑏𝑀𝑀];  𝑯𝑯 = [𝒉𝒉1, … ,𝒉𝒉𝑀𝑀]. (4-7) 

Here, b is a vector of weights for the connections between the M nodes of the hidden layer and 

the output layer while b0 is a bias term.  

 

 
Figure 4.1. A simple neural network with weights. X nodes represent the input variables (e.g. 
NIR data), H nodes represent nodes in the single hidden layer and the O nodes represent the 
output (ŷ). Bias nodes are identity vectors such that bias weights are simply constants added 

to the transformations. 
 

In this study the final transformation function 𝑔𝑔(𝑣𝑣) was linear so that 𝑔𝑔(𝑏𝑏0 + 𝐛𝐛𝐓𝐓𝐇𝐇) = 𝑏𝑏0 +

𝒃𝒃T𝑯𝑯. However, the softmax transformation is also regularly used (Hastie et al., 2013d). All 

connection weights (a's and b's) and all bias terms (a0's and b0's) are learned from the data 
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during calibration by minimizing least squares error through gradient decent. The large number 

of weights mean that the ANN models can be extremely flexible but also run the risk of 

overfitting. This can be mitigated with a decay parameter (Hastie et al., 2013d). 

 

Networks can be made more complex by adding more nodes or more hidden layers. However, 

the user must then define the number of layers, the number of nodes in each layer and the 

decay rate. ANN are highly parallelizable and have a high tolerance for noisy data making them 

ideal for large data mining jobs (Han et al., 2011). 

 

 4.2.4 Gradient boosted trees 

 

Boosting encompasses a range of modelling procedures that attempt to combine the output of 

several 'weak' models into a single powerful model. In general, a weak model (base learner) is 

sequentially fitted to slightly modified versions of the data. For boosted tree models, the base 

learner is a (usually small) regression tree model. In gradient boosted models, each tree is fitted 

to the residuals of the previous model by regression. In stochastic gradient boosting, the tree 

model fitted at each iteration is developed on a subset of the training data. Similarly, to the ANN 

approach a regularization weight (shrinkage rate) is applied to the learning process to help 

prevent overfitting. This shrinkage rate along with the number of iterations (number of trees 

built) and the number of terminal nodes of the tree (depth) must be provided. A slower 

shrinkage rate will require a larger number of iterations (Hastie et al., 2013a). 

 

Here we consider stochastic gradient boosted tree models described by (Friedman, 2001, 

Friedman, 2002) as implemented by Ridgeway (2015) in the following steps (Hastie et al., 2013a, 

Ridgeway, 2015):  

1. Select a loss function 𝐿𝐿(𝒚𝒚, 𝑓𝑓(𝒙𝒙)) (e.g. squared error loss for least-squares regression), 

the number of trees J, the depth of each tree K the shrinkage rate λ and subsampling 

rate p. 

2. Initialize the predicted values as a constant, 𝑓𝑓0(𝒙𝒙) = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜌𝜌 ∑ 𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝜌𝜌)𝑁𝑁
𝑖𝑖=1  

3. For iteration j in 1, …, J: 

a. For each observation i in 1, …, N, compute the negative gradient as the 

temporary response 
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𝑟𝑟𝑖𝑖𝑖𝑖 = − 𝜕𝜕
𝜕𝜕𝜕𝜕(𝑥𝑥𝑖𝑖)

𝐿𝐿(𝑦𝑦𝑖𝑖 , 𝑓𝑓(𝑥𝑥𝑖𝑖))�
𝑓𝑓(𝑥𝑥𝑖𝑖)= 𝑓𝑓𝑗𝑗−1(𝑥𝑥𝑖𝑖)

.  (4-8) 

b. Randomly select 𝑝𝑝 × 𝑁𝑁 cases from the dataset without replacement. 

c. Fit a regression tree with K terminal nodes to the rij of the selected cases. 

d. Compute the terminal node predictions ρk for k = 1 …, Kj as: 

𝜌𝜌𝑘𝑘𝑘𝑘 = arg min
𝜌𝜌

� 𝐿𝐿(𝑦𝑦𝑖𝑖 , 𝑓𝑓𝑚𝑚−1(𝑥𝑥𝑖𝑖) + 𝜌𝜌)
𝑥𝑥𝑖𝑖∈𝑆𝑆𝑘𝑘𝑘𝑘

 (4-9) 

where Skj is the subset of x that define terminal node k. 

e. Update predicted values as 

 𝑓𝑓𝑗𝑗(𝒙𝒙) = 𝑓𝑓𝑗𝑗−1(𝒙𝒙) + 𝝀𝝀 ∙  ∑ 𝜌𝜌𝑘𝑘𝑘𝑘
𝐾𝐾𝐾𝐾
𝑘𝑘=1 (𝑥𝑥 ∈ 𝑆𝑆𝑘𝑘𝑘𝑘).  (4-10) 

4. Output final prediction: 𝒚𝒚� = 𝑓𝑓𝐽𝐽(𝑥𝑥).                      

 

 4.2.5 Variable importance measures 

 

PLSR models are considered relatively easy to interpret. A number of measures can identify how 

input variables contribute to the model. Mehmood et al. (2012) provide an overview of these 

measures. One simple measure of variable importance within PLSR models are the PLS estimates 

of the regression coefficients (𝜷̂𝜷) that describe the linear regression 𝒚̂𝒚 = 𝑿𝑿 𝜷̂𝜷. By substituting 

equation (4-2) into equation (4-3) and equating equation (4-1) to equation (4-3), it can be seen 

that the 𝜷̂𝜷 coefficients can be estimated as 

𝜷̂𝜷 = 𝑾𝑾(𝑷𝑷𝐓𝐓𝑾𝑾)𝒒𝒒. (4-11) 

As linear regression coefficients, 𝜷̂𝜷 values give an indication of magnitude and direction of the 

influence each variable has within the model. 

 

Compared to PLSR, there are few methods of interpreting variable importance or influence 

within SVR models (Ben Ishak, 2016, Üstün et al., 2007). Üstün et al. (2007) proposed a variable 

importance measure based on the inner product of the values and the original X matrix. The α 

values are comparable to the PLS regression coefficients (Jam and Chia, 2017). Only samples 

with an α value greater than zero are included in the model (the support vectors). The 'P profile' 

of variable importance can be calculated as: 

𝐩𝐩𝐫𝐫 = 𝑿𝑿𝐬𝐬𝐬𝐬′ ⋅ 𝜶𝜶𝐬𝐬𝐬𝐬, (4-12) 

where X sv is an M-by-V matrix of V support vectors for M original variables and αsv is a vector of 

V α values for the support vectors. The pr values give a magnitude and direction similar to 

regression coefficients. 
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Assessing variable importance within neural networks has been explored within ecological 

studies. Olden et al. (2004) compare nine methods used to assess neural network variable 

importance in ecological studies. Olden et al. (2004) found that the Olden method of connection 

weights (Olden and Jackson, 2002) consistently outperformed other methods at identifying true 

variable importance in Monte Carlo simulations where true variable importance was known. 

Olden and Jackson (2002) proposed that variable importance within an ANN model could be 

assessed as the sum of the product of raw connection weights between input nodes, all hidden 

layer nodes and output node. For example, in the simple network described in Figure 4.2, the 

Olden index for input variable one would be calculated as 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛1 = (𝑎𝑎11 × 𝑏𝑏1) + (𝑎𝑎12 × 𝑏𝑏2). 

 
Figure 4.2. A simple neural network with weights. X nodes represent the input variables (e.g. 
NIR data), H nodes represent nodes in the single hidden layer and the O nodes represent the 
output (ŷ). The olden connection weight index value for I1 would be calculated as 𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐧𝐧𝟏𝟏 =

(𝐚𝐚𝟏𝟏𝟏𝟏 × 𝐛𝐛𝟏𝟏) + (𝐚𝐚𝟏𝟏𝟏𝟏 × 𝐛𝐛𝟐𝟐). 
 

As with the PLSR and SVR indices, the Olden connection weight values give both a magnitude 

and direction. This was considered an advantage over the similar 'Garson' index (Garson, 1991) 

which used absolute weights, which could lead to misrepresentation of variable importance 

when the sign of weights changes between connections (Olden and Jackson, 2002). 

Variable importance within a single tree based regression model can be assessed using the 

approximate relative influence measured as the empirical improvement in squared error 

(𝐼𝐼𝑖𝑖2̂ (𝑇𝑇)) over all splits occurring on that variable (Friedman, 2001). Friedman (2001) extended 

this to boosted trees, suggesting that for a collection of trees [𝑇𝑇𝑗𝑗]1
𝐽𝐽 the approximate relative 

importance of a variable can be calculated as the average across all trees 

𝐼𝐼𝑖𝑖2̂ =
1
𝐽𝐽
�𝐼𝐼𝑖𝑖2̂ (𝑇𝑇𝑗𝑗)
𝐽𝐽

𝑗𝑗=1

. (4-13) 
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Unlike the variable importance measures reported for PLSR, SVR and ANN, this variable 

influence is an actual indication of model improvement and therefore does not give a direction 

of influence. 

 

4.3 Materials and methods 

 
Four regression models (PLSR, SVR, ANN and GBT) of CCS were built from NIR spectroscopic data 

collected from the on-line cane analysis system for the 2006 harvest season. Data were 

randomly divided into a calibration (~50%) and validation (~50%) set such that no samples from 

the same farm appeared in both sets.  All models were calibrated using 5-fold cross-validation 

with the aim of minimizing root mean square error (RMSECV) while producing simple models. 

Models were then applied to an independent data set and performance was compared based 

on predictive root mean square error (RMSEP) and 𝑅𝑅2 (𝑅𝑅𝑝𝑝2).  

RMSE values were calculated as 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
,                                                                                    (4-14) 

while R2 values were calculated as 

𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1

.                (4-15) 

Here, 𝑦𝑦𝚤𝚤�  are predicted values and 𝑦𝑦𝑖𝑖  are laboratory observed values and 𝑦𝑦� is the mean observed 

value of all N observations.  

Model errors were then investigated graphically to assess model performance throughout the 

range of CCS values. Finally, wavelength importance within each model was investigated. Figure 

4.3 outlines the methodological process used in this analysis. 
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Figure 4.3. A flow diagram of methodology. 

 

All analysis were performed within the R statistical language and computing environment (R 

Core Team, 2017). The pls package (Mevik et al., 2015) was used to generate the PLSR model. 

The ‘e1071’ (Meyer et al., 2015) and nnet (Venables and Ripley, 2002) packages were used to 

build SVR and ANN models respectively, while the gbm package (Ridgeway, 2015) was used to 
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build the GBT model. Spectral pre-processing algorithms were applied using the prospectr 

package (Stevens and Ramirez-Lopez, 2013). Variable importance measures for PLSR and ANN 

were calculated using the plsVarSel (Mehmood et al., 2012) and NeuralNetTools (Beck, 2016) 

packages respectively. 

 

 4.3.1 Data and pre-processing 

 

Sugarcane samples and associated NIR spectra were sourced from an on-line cane analysis 

system from a sugarcane mill located in Northern Queensland. Cane samples represent 

consignments sent to the mill for processing during the 2006 crush season. To maintain grower 

and farm confidentiality, samples and farms were de-identified as unique ID numbers rather 

than grower personal details. 

In total for the 2006 season, 3,794 consignments (samples) were collected that had consignment 

data, laboratory measured CCS values and NIRS data. The average consignment size for the 2006 

season was 22.8 tonnes of cane. A FOSS 5000 on-line NIRS system, collected spectral data on 

shredded cane as absorbance (log(1/reflectance)). Absorbance was recorded from 1,100 nm to 

2,498 nm at 2 nm intervals. Given the size of each consignment, as many as 30 scans were 

collected as a consignment was processed.  

 Samples were divided into a training set (1,899 samples) and a test set (1,895 samples) for the 

analysis. Samples were randomly divided so that no samples from the same farm appeared in 

both the training and test set. This gave some independence to the test set. 

Table 4.1. Description of CCS reference data. One sample was removed from the test set during 
removal of spectral outlier (1894 samples rather than 1895).  

Data set Number of samples Mean Median Std. Dev. Range 
Training 1,899 13.1% 13.4% 1.68% 7.6% – 16.9% 
Test 1,894 13.4% 13.5% 1.33% 8.5% – 17% 
Total 3,793 13.2% 13.5% 1.52% 7.6% – 17% 

 

CCS is a measure of the pure sucrose that is obtainable from the cane and is based on the effect 

impurities in cane have on the mill process (Mackintosh, 2000). CCS is calculated from pol in 

juice (Pij), brix in juice (Bij) and fibre measures as 

𝐶𝐶𝐶𝐶𝐶𝐶 (%) = 3×𝑃𝑃𝑃𝑃𝑃𝑃(95−%𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)−𝐵𝐵𝐵𝐵𝐵𝐵(97−%𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)
200

 .                                                    (4-16) 

CCS values used in this study were the recorded laboratory values using industry defined 

methods. Laboratory Pij and Bij values used in the CCS calculation were derived from samples 

of first expressed juice. Fibre values used in CCS calculation are derived from a fibre class 



 
 

55 
 

calculation.   The range of CCS values represented by the training set included CCS values below 

that observed in the test set (Table 4.1). This gave the training set a slight skew towards lower 

values, but ensured that the range of CCS values in the test set were represented in the training 

set. 

 

In order to match the multiple spectra recorded to the single CCS measure of a sample, a 

sequence of spectral transformation, outlier removal and spectral averaging was applied to the 

raw spectral data. All recorded spectra were first transformed using a Savitzky-Golay first 

derivative (Savitzky and Golay, 1964) with a 17 point window, using a second degree polynomial. 

This reduced the spectral range from 1,100 nm – 2,498 nm to 1,116 nm – 2,484 nm as the leading 

and tailing eight wavelengths were removed rather than extrapolated. The standard normal 

variate of the first derivative spectra was then taken. The pre-processing method used here was 

chosen as it was previously found to work well for a range of cane quality measures (Chapter 3).   

 

Spectral outliers were then identified using a global Mahalanobis distance based on the 

transformed training data set. Following the methodology of Chapter 3, scans with a global 

Mahalanobis distance greater than three were removed from the analysis. For the test data set, 

global Mahalanobis distances were calculated with respect to the training data set. The final 

spectra used in the analysis was the average of all remaining scans for each sample. Following 

the methodology of Chapter 3, samples with less than three scans were removed from the 

analysis. This resulted in the removal of a single sample from the analysis. Figure 4.4 shows raw 

and pre-processed mean and standard deviation of all spectra used in the analysis. 
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Figure 4.4. Typical Sugarcane spectrum used in the analysis as (a) Raw spectra and (b) First 

Derivative-SNV spectra. Solid lines represent average spectrum while grey shaded area 
represents +/- one standard deviation from the mean. 

 

 4.3.2 Model calibration 

 

Each calibration technique required the tuning of a number of parameters. Model parameters 

were tuned using a five-fold cross-validation on the training data set (Hastie et al., 2013b). Table 

4.2 records the parameters tuned for each model and the range of values tested. Preliminary 

testing of parameter values was used to select adequate ranges for each parameter. PLSR has 

only one tuneable parameter, the number of latent variables so this was the only parameter 

tuned. The kernel pls method within the pls package was used to develop the PLSR models. Data 

were auto-scaled using the inbuilt scaling function within the pls package. The SVR models built 

in this study used Vapnik’s ε-insensitive loss function (Cui and Fearn, 2017, Suykens et al., 2002, 

Thissen et al., 2004b) and a radial basis function. For these models cost (C) and the radial basis 

function 𝛾𝛾 parameters were tuned. Following the methodology of Chapter 3, the ε parameter 

was set to 0.1 for all SVR models. This was considered adequate given the accuracy of the 

laboratory measurements. As with the PLSR models, data were auto-scaled using the inbuilt 

scaling function within the e1071 package. 
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Table 4.2. Parameters tuned through cross-validation for each model and the values tested. 
Model Parameter Values 

PLSR No. Latent Variables 2, 3, 4, …, 39, 40 
SVR Cost (C ) 

Gamma ( γ ) 
2-5, 2-3,2-1, 2, 23, 25, 27, 29, 211,213, 215

 

2-15, 2-13,2-11, 2-9, 2-7, 2-5, 2-3, 2-1, 2, 23, 25
 

ANN No. Hidden Nodes 
Decay Rate 

2, 3, 4, 5, 10, 15, 20 
0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 

GBT No. trees 
Tree depth 
Shrinkage 
 

100, 200, 300, …, 9900, 10000 
4, 5, 6, 7, 8, 9 

0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.90 

 

ANN models built were single hidden layer feed forward neural networks. The number of hidden 

nodes within the hidden layer and the decay rate were the only parameters tuned. Initial 

parameter weights were randomly set. Data were scaled to within the range 0-1 to improve 

model performance in the ANN model. For GBT models, number of trees, tree depth, shrinkage 

rate and minimum number of observations were tuned. Data were assumed to follow a 

Gaussian distribution within the gbm package. Regression trees are insensitive to parameter 

size and no scaling was applied to data for building GBT models.  

 

In each case, the RMSECV was recorded as the mean of the RMSE values for each of the five 

folds of the training dataset. The final combination of parameters was selected as the simplest 

model with a RMSECV within one standard error of the absolute minimum RMSECV (Hastie et 

al., 2013b, Kuhn, 2017, James et al., 2013). The standard error of the RMSECV was calculated 

from the five RMSE values calculated for each parameter combination. PLSR models were 

simplified by minimizing the number of latent variables. SVR models were considered simpler if 

the C and γ values were smaller, while ANN models with a smaller number of hidden nodes and 

a smaller shrinkage rate were considered simpler. For GBT models, a smaller number of trees 

and a smaller tree depth was considered a simpler model. 

 

 4.3.3 Model validation 

 
The final models used the parameter combinations identified by the cross-validation process, 

re-calibrated on the entire training set. The calibration root mean square error (RMSEC) and R2
c 

were recorded. The final models were then applied to the independent test set and predictive 

statistics were recorded (RMSEP and R2
p). The test set bias, Residual Prediction Deviation (RPD) 

and the slope of the regression line between predicted and observed data were recorded as 

part of the model comparison (section 4.4.1 Model comparison). The relationship between the 

predicted and laboratory observed CCS values was then explored graphically and the samples 
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with the largest errors were noted as part of a deeper error investigation (section 4.4.2 Error 

investigation). 

 

 4.3.4 Variable importance 

 

Variable (wavelength) importance measures for each final model were calculated as described 

in the theory section. PLSR coefficient values were used to indicate variable importance within 

the model. Following Feilhauer et al. (2015), the SVR coefficient based index described by Üstün 

et al. (2007) was calculated as the dot product of the coefficients and support vectors recorded 

for the final model by the svm package. The Olden index as calculated by the NeuralNetTools 

package was used to describe variable importance within the final ANN model, while the relative 

influence returned by the gbm package in R was used to describe variable importance within 

the final GBT model. As we were only interested in the relative importance within the model, 

the absolute values for PLSR, ANN and SVR model indices were used. The regions of the NIR 

spectrum identified as important within each model were then compared (section 4.4.3 Variable 

Importance). 
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4.4 Results and discussion 

 4.4.1 Model comparison 

 

Validation performance statistics for PLSR (Table 4.3) were comparable with previous results 

reported for the Australian sugar industry. Staunton et al. (2004) reported R2
p of 0.87 using a 

bias and temperature corrected model. The associated Standard Error of Prediction (SEP) was 

0.38. The SEP reported by Staunton et al. (2004) can be compared to the RMSEP of 0.37% 

obtained in this study, given the large number of samples (>1,000) used in validating the models 

in each study. Staunton et al. (1999) also reported similar SEP and R2
p values for CCS. Using 

samples from across five mills and three seasons, CCS SEP was 0.33% and R2
𝑝𝑝 was reported as 

0.957 (Staunton et al., 1999). Although Staunton et al. (1999) used data from a number of 

Australian sugar mills, the similarity to results presented here is encouraging as both studies 

used a large number of samples from similar on-line cane analysis systems. The similarity 

between earlier studies and the results presented here suggest that the PLSR method 

represents a good baseline against which to test new modelling methods. 

Table 4.3. Calibration and predictive statistics of the four models.  Validation Slope, Bias and 
Residual Prediction Deviation (RPD) were recorded for completeness. 

Method Parameter values RMSEC R2
c RMSEP R2

p Slopep
a Biasp

b RPDp
c 

PLSR LV = 18 0.36% 0.96 0.37% 0.92 0.93 -0.04% 3.57 
SVR C = 32 

γ = 2-11 
0.25% 0.98 0.37% 0.92 0.95 -0.07% 3.60 

ANN Nodes =  2 
Decay = 0.02 

0.31% 0.97 0.36% 0.93 0.93 -0.05% 3.70 

GBT Trees = 1100 
Depth = 8 
Shrinkage = 0.05 

0.06% 0.99 0.51% 0.85 0.86 -0.05% 2.60 

aSlope was calculated as the 𝜷𝜷 coefficient of the linear least squares fit of  𝒚𝒚� = 𝛽𝛽𝒚𝒚 + 𝑐𝑐 
bBias was calculated as mean difference between predictions and observations 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖)

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 

cRPD was calculated as the ratio of the standard deviation of the observations in the validation set and 

the RMSEP 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑠𝑠𝑠𝑠(𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝)
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠(𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝) = �∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦�)^2
𝑁𝑁𝑝𝑝
𝑖𝑖=1
𝑁𝑁𝑝𝑝−1

 

 

The SVR model performed as well as the PLSR model while the ANN model had a slightly lower 

RMSEP (0.36%) and slightly higher R2
p (0.93). However, the validation bias in SVR was slightly 

larger in magnitude than for the PLSR model. It is also important to note that the difference 

between RMSEC and RMSEP was large for the final SVR and GBT models compared to the PLSR 

and ANN models (Table 4.3). This can indicate that the model was over-fitted to the training set. 

The final SVR model required 879 support vectors (46% of the training set) while the GBT used 
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a large number of iterations (1,100 in the final model). Further tuning could be applied to reduce 

the dependence of these models on the training set. 

A similar trend was evident in for Bij, Pij and apparent purity in Chapter 3. However, as few 

comparison studies report calibration statistics, it is difficult to determine from the available 

literature, whether this is a common feature of SVR spectroscopic models in general. The 

differences in RMSEP were not likely to be significantly different. This suggests that SVR or ANN 

could replace PLSR without loss of performance but may not provide a strong improvement in 

performance. 

The final GBT model had a noticeably higher RMSEP and lower R2
p than any other model (Table 

3). This suggests that the GBT model may not be sufficient for the estimation of CCS. The GBT 

model also had the lowest regression slope (0.86) between the predicted and laboratory 

observed CCS values and may struggle to estimate extreme low or high CCS values (Williams et 

al., 2017).  

Comparison of RPD, slope and bias between models agreed with results based on RMSEP and 

R2
p values. Generally there was little difference between ANN, SVR and PLSR models, with a 

notably lower RPD score for the GBT model. Following Araújo et al. (2014), RPD is used only in 

comparison rather than as a primary score of model skill.  

Araújo et al. (2014) reported similar RMSEP values for GBT and SVR models of soil organic matter 

based on Vis-NIR spectroscopic data. GBT and SVR models of organic matter and clay 

outperformed PLSR models in that study. In a similar study, GBT models for organic carbon, clay 

and pH failed to improve on PLSR models (Viscarra Rossel and Behrens, 2010). Although the 

results from Araújo et al. (2014) and Viscarra Rossel and Behrens (2010) are not directly 

comparable to the results presented here, they do indicate that the use of GBT in regression 

problems is application specific. Based on comparison with PLSR, SVR and ANN model 

performance in our study, it would appear GBT is not a viable option for estimating sugarcane 

quality parameters. 

The performance improvement for SVR and ANN models often reported in literature was not 

observed in this study. For example, recent research in the Japanese sugarcane industry 

concluded that SVR models did provide an improvement in RMSEP for estimates of two cane 

quality measures (Tange et al., 2015). Tange et al. (2015) used NIR data of several mill products 

to produce global calibrations for Brix and sucrose in sugarcane.  The greater variability inherent 
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in such as global model may have contributed to the greater difference between SVR and PLSR 

models.  

Balabin and Lomakina (2011), compared SVR, LS-SVM, ANN and PLSR for NIR spectroscopic 

analysis of quality measures for diesel fuels and concluded that ANN and SVM based techniques 

outperformed PLS based techniques. More importantly, Balabin and Lomakina (2011) 

concluded that the advantage of SVM based techniques was more apparent when there was a 

greater non-linearity within the data. Hageman et al. (2005) reported a similar effect, when 

comparing calibration techniques for robustness to temperature effects. In our study the 

relationship between CCS and NIRS data seems to be relatively linear, resulting in little 

difference in performance between PLSR, SVR and ANN.  

The current study was limited to data from one season, machine and geographic region. The 

ability of SVR and ANN to PLSR in this study, and the reported advantages of machine learning 

techniques in more complex situations, provides strong evidence that future research within 

the Australian sugar industry should consider a comparison of models for more global 

calibrations which include season and/or region variability. Including more geographical and 

temporal information into the calibration data would improve model robustness for 

applications to different regions and seasons. 

 

 4.4.2 Error investigation 

 

The relationship between predicted and laboratory CCS values was plotted for each model in 

order to investigate errors visually (Figure 4.5). The spread in the plotted data about the linear 

regression line (solid black), reflects the overall model performance. A much higher spread is 

visible for the GBT predictions. Despite all models having a low negative bias overall (Table 4.3), 

there is some evidence that the models tend to overestimate lower CCS values and 

underestimate higher CCS values. This can be seen as the linear regression (solid black line) sits 

above the 1:1 line (dashed line) and is most visible for the GBT model (Figure 4.5(d)) and least 

visible for the SVR model (Figure 4.5(b)). This suggests that the SVR model was better able to a 

represent accurately the extreme CCS samples. Chapter 3 showed a similar result for apparent 

purity. In that study, an SVR model overestimated (underestimated) apparent purity for low 

(high) values less than a PLSR model. Similar results have also been seen in a comparison of PLSR 

and SVR applied to the NIR spectroscopic analysis of agricultural seeds for Nitrogen content (Cui 

and Fearn, 2017). 
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Figure 4.5. Predicted VS Observed CCS values for validation data set using PLSR (a), SVR (b), 

ANN (c) and GBT (d). Dashed lines represent the 1:1 ratio while solid lines represent the line of 
best fit. Numbers (red) represent the samples with the largest errors for each model. 

 

Identifying the 10 samples with the largest error for each method showed that some samples 

were always difficult to estimate regardless of the algorithm used to build the model (Figure 

4.5). These samples are of particular interest, as they were not considered spectral outliers 

during the data cleaning stage. For each model, the majority of the 10 extreme outliers were 

over predictions (above the 1:1 line) at low-to-mid CCS levels. This agrees with the results of 

Chapter 3 that showed that the same samples were over-predicted by PLSR and SVR models of 

brix in juice, pol in juice and apparent purity.  

 

The tendency for all models to misrepresent certain samples may be a result of the calibration 

set insufficiently representing the variation of CCS and spectral data in the validation set (Agelet 

and Hurburgh, 2010, Isaksson and Naes, 1990, Naes and Isaksson, 1989). Samples that were 
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difficult to estimate may also represent data entry errors in the reference data, or genuinely 

atypical samples. For example, it is possible that these samples represent deteriorated or 

contaminated cane samples. It has been shown that as cane deteriorates the standard 

refractometer approach to calculating Pij becomes unsuitable (Lionnet, 1986). This may show 

up as a mismatch in NIR spectroscopic analysis as the nature of the reference measure the NIRS 

model is trying to predict has changed. This would have flow-on effects to measures such as 

CCS, which are based on Pij. 

 

 4.4.3 Variable importance 

 

Wavelength importance within each model was visualized alongside the correlation between 

the transformed absorbance spectra and laboratory measured CCS values (Figure 4.6). The PLSR 

coefficient based importance measure (Figure 4.6 (a)) suggested that the PLSR model generally 

suppressed the influence of wavelengths above 1,900 nm. This higher wavelength region was 

noisier than other regions, with few identifiable peaks. In contrast, there were several well-

defined regions below 1,900 nm that had high influence within the PLSR model. The 1,600 nm 

– 1,800 nm and 1,150 nm – 1,250 nm regions were important within the PLSR model. These two 

regions feature CH first overtones and CH second overtones respectively (Shenk et al., 2008). 

This suggests that the PLSR model focused on regions of the spectrum with similar information. 

The ability to identify regions with similar information build confidence in the models ability to 

extract genuine information from the spectral data. 
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Figure 4.6. Standardized influence of each wavelength for the PLSR (a), SVR (b), ANN (c) and 

GBT (d) models. Indices were standardized relative to the maximum value such that the most 
influential wavelength always had a value of one. Plot (e) shows the derivative spectrum used 

in the analysis and the correlation to CCS at each wavelength. 
 

Wavelengths between 1,600 nm and 1,900 nm that were important within the PLSR model had 

higher correlations between the transformed spectra and laboratory measured CCS (Figure 

4.6(a) and Figure 4.6(e)). However, wavelengths in the 1,150 – 1,250 nm range tended to have 

lower correlations (Figure 4.6(e)) despite being important in the PLSR model. Wavelengths 

above 1900 nm were often highly correlated with CCS but were not relatively important in the 

PLSR model. This may be a result of the PLSR model attempting to suppress wavelengths with a 

low signal to noise ratio. Within the Australian sugar industry, wavelengths above 1,900 nm are 

generally removed from analysis due to the low signal to noise ratio. This means that including 

these higher wavelengths can often result in lower reproducibility using the model, despite the 

relatively strong correlations. 

 

The SVR (Figure 4.6(b)) and ANN (Figure 4.6(c)) models had similar wavelength importance 

signatures to the PLSR model. In both machine learning algorithms the 1,150 nm – 1,250 nm 

and 1,600 nm – 1,900 nm regions had some of the most important wavelengths, generally with 
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well-defined peaks. The GBT model was characterized by a few narrow wavelength regions with 

relatively high importance. The wavelengths identified as important also had some of the 

highest correlations with CCS (Figure 4.6(d) and Figure 4.6(e)). This is likely a consequence of 

the tree based nature of the GBT model. Few, highly important variables are a feature of simple 

trees and is often considered an advantage in variable selection methods (Feilhauer et al., 2015). 

 

In contrast to the three other models investigated, the GBT model identified wavelengths in the 

spectral region above 1,900 nm as having high relative importance. The high importance the 

GBT model placed on wavelengths above 1,900 nm may have contributed to the relatively low 

predictive performance of the model when compared to PLSR, SVR and ANN. The selection of 

only a few very important wavelengths may also have contributed to the lower performance. 

CCS is not derived from a single organic compound, but is instead an estimate of the relationship 

between several measures including sucrose and fibre. In this respect in may be difficult to 

summarize CCS using only a small number of wavelengths. 

 

Simpler and more robust models may have been possible if the low signal to noise spectral 

region above 1,900 nm was removed from the analysis. Although previous research has 

identified higher wavelengths as problematic within the Australian sugarcane industry, it was 

worthwhile comparing models using the full spectral range. By using the full spectral range, it 

was possible to identify that the two machine learning algorithms made use of the same spectral 

regions as the PLSR algorithm, which is more commonly used in industry. As far as we are aware, 

this is the first time these indices have been reported as part of the investigation of SVR and 

ANN models within agricultural industries. 

 

4.5 Conclusions 

 

Three calibrations techniques were compared to partial least squares regression as methods for 

estimating CCS from a large NIRS data set of sugarcane samples. On a single independent data 

set, SVR and ANN performed similarly to PLSR and could feasibly replace the more typical 

approach without loss of overall skill. However, given the similar performance and relative 

simplicity of the PLSR model, there is no strong evidence to recommend a switch within the 

Australian sugar industry.  

A deeper investigation of sample errors showed that all four of the calibrated models poorly 

estimated many of the same samples. Difficult to estimate samples, may represent deteriorated 
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cane, or samples that are under-represented in the calibration set. This suggested that 

understanding why samples are difficult to predict, identifying these samples and adapting 

models accordingly would be more beneficial than simply applying a new calibration technique. 

Adaptations could involve something as complex as developing separate models are as relatively 

simple as developing a calibration set that better represents these samples. 

 

Analysis of wavelength influence in each model showed the techniques emphasized similar 

spectral regions and in generally suppressed the contribution of wavelengths above 1,800 – 

1,900 nm. Wavelength importance also offered some insight into possible reasons the GBT 

model did not perform as well as other models tested.  Future studies comparing algorithms 

should strongly consider using a similar approach to help better understand how new methods 

use spectral data compared to methods better understood within the industry, such as PLSR. An 

understanding of the wavelengths that are influential within the model can also inform the 

design and development of new cane analysis systems.  

 

By comparing PLSR, SVR, ANN and GBT this research has provided an overview of various 

machine learning and non-linear calibration techniques that are relatively novel within the 

Australian sugarcane industry. This overview has highlighted several key recommendations for 

the Australian sugar industry: 

1. SVR and ANN models provided no strong improvement over PLSR, suggesting industry 

does not need to modify current approaches. However, future research may consider 

SVR or ANN for situations where non-linear effects may be an issue. 

2. Methods for determining the importance of spectral bands within SVR and ANN 

models were explored. Future research should make use of similar methods to help 

better understand how/why a novel model does/does not perform well.  

3. The use of data from a single season and mill was a limitation of this study. Future 

research should consider a more global calibration approach by including more 

temporal or spatial variability in the dataset. This would result in models that are 

more robust and may be a better comparison of the potential benefits of novel 

techniques. 
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4.6 Chapter 4 Summary 

 

On-line near infrared spectroscopic (NIRS) analysis systems, play an important role in assessing 

the quality of sugarcane in Australia. As quality measures are used to calculate the payment 

made to growers, it is imperative that NIRS models are both accurate and robust. Machine 

learning and non-linear modelling approaches have been explored as methods for developing 

improved NIRS models in a variety of industrial settings, yet there has been little research into 

their application to cane quality measures. This chapter compared chemometric models of 

Commercial Cane Sugar (CCS) based on four calibration techniques. CCS was estimated using 

Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), Artificial Neural 

Networks (ANN) and Gradient Boosted Trees (GBT). SVR (RMSEP = 0.37%) and ANN (RMSEP = 

0.36%) performed similarly to PLSR (RMSEP = 0.37%) on the validation data set, while GBT 

exhibited a much lower skill (RMSEP = 0.51%). Analysis of important wavelengths in each model 

showed that PLSR, SVR and ANN techniques emphasized the importance of similar spectral 

regions. This comparison of variable importance has rarely been provided in previous studies. 

  

The focus of Chapter 4 was Objective 1 of the thesis: Investigating the use of data mining and 

machine learning algorithms for improved NIRS estimates of cane quality. Results from Chapter 

4 confirmed that PLSR was as effective as SVR and ANN but that GBT failed to perform as well 

as other techniques. The similar performance of PLSR, SVR and ANN models was an important 

result as PLSR is a straight forward approach that is easy to understand and is already well 

established within industry applications. This comparison also provides a counterpoint to many 

studies presented in the literature where ANN and SVR outperform PLSR. As such these results 

emphasise the importance of comparing modelling approaches.  

 

The results of the variable importance comparison showed that PLSR, SVR and ANN placed 

importance on similar wavelength regions while GBT placed much higher importance on a small 

number of wavelengths. This was a valuable contribution to the Australian sugarcane industry 

and the wider modelling community as it was possible to show why the GBT model 

underperformed. The variable importance investigation also showed that it was possible to see 

inside the ‘black-box’ of ANN and SVR. This is a crucial step in building confidence in using 

machine learning modelling approaches. The lessons learnt from the research of Chapters 3 and 

4 were used in developing similar methodology for identifying atypical samples in Chapters 5 

and 6. 
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Chapter 5  

 

A feasibility test for detection of atypical cane samples 
using near infrared spectroscopy 
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5.1 Introduction 

 

In any given harvest season, tens of thousands of cane consignments are processed by a 

sugarcane mill. Of these, thousands of consignments (if not all) are tested under laboratory 

conditions for quality measures such as Brix in juice (Bij) and Pol in juice (Pij). Mill researchers 

have noted that in any given season, 1–5% of samples often have unusually low laboratory 

estimates of Pij given the recorded Bij value (Figure 5.1). These ‘atypical’ samples are of 

particular concern as they may represent deteriorated or contaminated cane samples. 
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Figure 5.1. Bij and Pij laboratory measured values for data from a northern Queensland 

sugarcane mill from 2006 to 2009. In each season, a small number of samples appear to have 
particularly low Pij for their reported Bij (red-circled points). These samples will have low 

apparent purity compared to cane with similar levels of Bij and may represent deteriorated or 
contaminated samples. 

 

Deteriorated or contaminated cane has a number of negative impacts on the cane milling 

process. Deterioration in particular can lead to higher viscosity, longer crystallisation times, 

elongated crystals, and distorted Pol readings (Solomon, 2009).During deterioration, sucrose is 

metabolised into less economic products such as organic acids, complex polysaccharides (e.g. 

dextran) and gums (Solomon, 2009). Deterioration due to delays between harvesting and 

crushing can lead to increased dextran levels and higher Brix readings (Saxena et al., 2010). 

Contamination by impurities such as soil can inflate Brix readings, which may lead to reduced 

quality indices such as Apparent Purity (AP) and Commercial Cane Sugar (CCS). 

 

Given the potential impacts to mill operations, it would be beneficial to be able to identify these 

atypical samples in real time as they enter the mill. Although many indicators of cane 

deterioration exist, most are considered impractical for use during the milling process (Van 

Heerden et al., 2014). As such, observed ‘atypical’ samples are not recorded as deteriorated or 

contaminated. Clearly, a rapid, inexpensive indicator is still required within the Australian sugar 

industry. 
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Near Infra Red Spectroscopy (NIRS) has been used widely within the sugarcane industry as a 

rapid and cost effective method for analysing cane properties. In many mills, cane quality 

measures such as Bij and Pij are calculated using NIRS methods during the milling process. NIRS 

can accurately estimate Bij, Pij and CCS in an online setting, as shown by Staunton et al. (2004) 

and in Chapter 4. Unfortunately, there is no evidence in the literature for NIRS classification of 

deteriorated or otherwise atypical cane samples. Therefore, the purpose of this manuscript was 

two-fold. Firstly, to develop a method for defining the observed ‘atypical’ cane samples based 

on a large collection of laboratory measured Bij and Pij data; and secondly to test the feasibility 

of detecting these samples using an NIRS model. The ability to identify atypical samples in a 

rapid and non-invasive manner will be useful in quality control measures within the mill and 

could lead to improved NIRS models specific to these particular samples. 

 

5.2 Materials and methods 

 

This analysis was performed in two stages. Firstly, two approaches for defining atypical samples 

based on laboratory data were compared and the most appropriate definition was chosen. 

Secondly, an NIRS model was built using PLS-DA in order to determine the feasibility of 

identifying atypical cane samples from NIR data collected during the milling process 

 

 5.2.1 Data 

 

Data were collected from a single sugarcane mill in North Queensland, Australia. Data spanned 

the 2006 to 2009 harvest seasons. Laboratory measures of Bij, Pij and AP were collected with 

paired NIR spectroscopy data. In total, there were 13,014 samples included in the analysis (Table 

5.1). 

 
Table 5.1. Summary of sample laboratory data by harvest season (2006–2009). 

Season Count 
Bij (%) Pij (%) AP (%) 

Median Range Median Range Median Range 
2006 3,794 21.0 14.5-25.9 18.4 11.0-22.8 87.9 69.0-95.0 
2007 3,389 21.2 15.2-25.2 18.6 10.4-22.9 87.8 54.5-95.6 
2008 3,067 22.3 17.5-25.9 19.8 12.8-23.5 89.1 62.7-94.8 
2009 2,764 22.1 17.2-26.2 19.6 13.6-23.7 88.7 72.3-95.5 
Total 13,014 21.6 14.5-26.2 19.1 10.4-23.7 88.3 54.5-95.6 

 
NIRS data linked to each sample were collected using a FOSS ONLINE 5000 system. Spectral 

wavelengths ranged from 1,100 nm to 2,498 nm at two nm intervals. Wavelengths used in the 

analysis were selected based on industry recommendations. 



 
 

71 
 

 

 5.2.2 Defining atypical cane samples 

 

The atypical samples highlighted in Figure 5.1 are difficult to define as cane samples are not 

regularly identified as deteriorated, contaminated or otherwise ‘atypical’. Therefore, we sought 

to define these atypical samples based on laboratory records of Bij and Pij. In particular, we 

were interested in identifying samples that have a particularly low Pij compared to samples with 

similar recorded Bij values.  

 

These samples were likely to have relatively low AP. Therefore, two approaches to defining 

atypical samples were explored (i) samples with low AP compared to all observed values and (ii) 

samples with low residuals from a linear regression of Pij on Bij, compared to all observed 

values. For each approach, atypical samples were identified based on all available samples and 

the difference in cane quality measures (Bij, Pij and AP) were explored. A single approach was 

then chosen as the definition for atypical samples, for use in the second stage of the study. 

 

 5.2.2.1 Atypical samples based on apparent purity 

 

Deteriorated samples generally have lower purity than healthy cane. As an initial approach 

atypical sample were defined as samples with a low AP. Apparent purity was calculated as the 

ratio of Pij to Bij, expressed as a percentage: 

𝐴𝐴𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑃𝑃
𝐵𝐵𝐵𝐵𝐵𝐵

× 100. (5-1) 

Apparent purity was assumed to have a normal distribution and atypical samples were identified 

as being below the expected first percentile (the lowest 1% of samples) of the appropriate 

normal distribution. The appropriate cut-off point for the normal distribution was calculated 

using the qnorm function in the R statistical programming language (R Core Team, 2017). In 

practice, samples with an AP of less than 80.96% were considered atypical ‘low AP’ samples 

(Figure 5.2(a)). 

 

 5.2.2.2 Linear regression residuals 

 

A strong linear relationship exists between Bij and Pij (Figure 5.1 and Figure 5.2). As Pij is a subset 

of all dissolved solids in a solute (Bij), a linear model was built as: 

𝑃𝑃𝑃𝑃𝑃𝑃� = 𝑀𝑀 × 𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐶𝐶. (5-2) 
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Where M and C are the slope and intercept of the line of best fit between Bij and Pij. 𝑃𝑃𝑃𝑃𝑃𝑃�  is the 

model estimate of Pij.  

 

The studentized residuals (𝑃𝑃𝑃𝑃𝑃𝑃� − 𝑃𝑃𝑃𝑃𝑃𝑃) of this equation were used to identify atypical samples. A 

negative residual implies the sample has a Pij lower than expected for its measured Bij, while a 

positive residual implies that the samples has a Pij higher than expected. Samples with a 

studentized residual lower than the expected cut-off for the first percentile (the lowest 1% of 

samples) were considered atypical. In practice, samples with a residual lower than -2.33% were 

considered atypical (Figure 5.2(b)). The linear regression was fitted using the lm function in the 

R statistical programming language (R Core Team, 2017). The appropriate cut-off point for the 

t-distribution was calculated using the qt function. 

 

 
Figure 5.2. Distribution of typical (black) and atypical (grey) samples for (a) AP and (b) residual 
definitions of atypical. Using the AP definition (a) samples were considered atypical if they had 
an AP of less than 80.96%. Using the residual definition (b) samples were considered atypical if 

they had a Pij residual of less than -2.33%. I.E. samples had a Pij 2.33% lower than would be 
expected for the recorded Bij. For both definitions, 2.8% of all samples were considered 

atypical. 
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 5.2.3 Detecting atypical cane samples using NIRS 

 

The method of Partial Least Squares discriminant analysis (PLS-DA) was used to build an NIRS 

classification model to identify atypical and typical samples, based on the definition chosen in 

stage 1. In order to build PLS models the following steps were taken. 

1. Pre-process NIRS data and split into training and test set 

2. Tune PLS-DA model on a training set 

3. Apply calibrated PLS-DA models to test data and evaluate 

 

 5.2.3.1 Partial Least Squares Discriminant Analysis 

 

Although not originally designed for classification problems, partial least squares discriminant 

analysis (PLS-DA) has been identified as one of the most used classification techniques within 

chemometrics (Barker and Rayens, 2003). In PLS-DA, a dummy matrix is used to represent the 

categorical response variable (the known classes) (Song et al., 2016). PLS-DA has recently been 

used in NIRS analysis to discriminate between organic and Non-organic apples (Song et al., 2016) 

and has previously been found to be a moderately good classifier for gasoline analysis (Balabin 

et al., 2010) and an effective method of identifying the geographical origin of a Brazilian 

sugarcane spirit (Cirino de Carvalho et al., 2016). 

 

 5.2.3.2 Data pre-processing 

 

Data were randomly split 50:50 into a training and test set using a stratified approach so that 

the ratio of atypical to typical samples remain the same in each set. Following Chapter 3, NIR 

spectral scans were transformed using a Savitzky-Golay (Savitzky and Golay, 1964) first 

derivative with a window width of 17 and scatter corrected using a standard normal variate 

transformation (Barnes et al., 1989). As each sample had multiple associated NIRS scans, the 

final NIR spectrum for each sample was the average spectra after the transformations were 

applied. All samples in the analysis had at least three associated NIRS scans. 
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 5.2.3.3 Model tuning 

 

The PLS-DA model was tuned using a combination of up-sampling and five-fold cross-validation 

of the training dataset. The number of latent variables was the only parameter tuned. Models 

with up to 40 latent variables were tested. 

  

Models were tuned in order to maximise the Receiver Operator Characteristic, Area Under 

Curve score (AUC). The AUC can be a better measure of model performance for unbalanced 

classes than the overall accuracy (correct classification rate). Cross-validation estimates the 

predictive ability of the calibrated model by dividing the data into five “folds”. Each fold (~20% 

of calibration samples) was successively removed from the analysis and the models were built 

using the remaining four folds (~80% of calibration samples). Up sampling was used to correct 

for the unbalanced classes (many more typical than atypical samples). For each fold, atypical 

samples in the calibration portion were resampled with replacement until there were the same 

number of typical and atypical samples. Cross-validated ROC AUC was then calculated on the 

data that were left out across all folds. 

 

To capture uncertainty in the cross-validation results caused by the random nature of the up-

sampling process, the 5-fold cross-validation was performed 5 times. The final combination of 

parameters was selected as the simplest model with a cross-validated AUC within one standard 

error of the absolute maximum AUC. The standard error of the cross-validated AUC was 

calculated from the 25 (five times five cross-validation runs) AUC values calculated for each 

number of latent variables. 

The final PLS-DA model using the chosen number of latent variables was re-calibrated on the 

full training dataset. The PLS-DA model was calibrated and built using the caret package in R 

(Kuhn, 2017) and used the softmax method to calculate class probabilities. The predicted class 

was taken as the class with the highest probability.  

 

 5.2.2.4 Model evaluation 

 

The final model was applied to the test set and the predictive AUC was recorded. Overall model 

Accuracy (correct classification rate), Sensitivity (correct classification rate of atypical samples) 

and Specificity (correct classification rate of typical samples) were also recorded for both the 
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training and test data set. Model skill was also explored by month of harvest, to assess 

performance throughout the harvest season. 

 

5.3 Results and discussion 

 5.3.1 Defining atypical cane samples 

 

The AP definition (Figure 5.2(a)) of atypical tended to identify more samples with both low Bij 

(< 17%) and Pij (< 13%) as atypical than the residual definition (Figure 5.2(b)). In contrast, the 

residual definition tended to identify more samples with high Bij (>25%) as atypical.  

Consequently, atypical samples tended to have lower average Pij, Bij and AP using the AP 

definition (Table 5.2).  

 

The AP definition also had a larger difference in average quality measures between typical and 

atypical samples. This suggests that defining atypical samples based on low AP, better identifies 

samples with lower quality measures. However, by comparing Figure 5.1 and Figure 5.2 it is 

evident that the residual definition better matches the graphically atypical samples. The 

difference appears to be that the AP definition does not account for changes in AP throughout 

the harvest period (Figure 5.3). 

 

Table 5.2.  Summary of typical and atypical samples mean for each definition of typical and 
atypical samples. Numbers in brackets represent the standard deviation (SD) of the mean 

Definition 
approach 

Sample 
Type 

Percentage of 
Samples (%) 

Bij (%) 
Mean [SD] 

Pij (%) 
Mean[SD] 

AP (%) 
Mean[SD] 

Low Purity Typical 97.2 21.5[1.73] 19.0[1.84] 88.1[2.36] 
 Atypical 2.8 19.3[2.33] 15.0[2.02] 77.9[4.17] 
Residual Typical 97.2 21.5[1.78] 18.9[1.92] 88.1[2.47] 
 Atypical 2.8 21.5[1.98] 17.1[2.32] 79.2[4.93] 

 

AP tended to increase until approximately August before plateauing (Figure 5.3). This aligns with 

sucrose accumulation in the stalk, which increases as the cane matures before beginning to 

plateau at around 300 days after planting (Muchow et al., 1996). Using the AP definition, 32.45% 

of May harvested samples were considered atypical (Figure 5.3(a)). As AP is lower in immature 

cane many of these samples were likely healthy cane that should not be considered atypical.    

In comparison, using the residual definition only 12.08% of May harvested samples were 

considered atypical (Figure 5.3(b)) and the AP of atypical samples tended to increase throughout 

the harvest season. This suggests that by considering the linear relationship between Bij and Pij, 

the residual definition of atypical may be more representative of atypical samples that were 
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deteriorated or contaminated rather than cane with low quality measures. For this reason, we 

consider the residual definition of atypical samples for identification in the NIRS analysis. 

 

Figure 5.3. Box and whisker plots of the monthly distribution of AP across all years. Boxes 
represent 50% of all samples per month with thick horizontal lines identifying the median AP. 

Points represent typical (black) and atypical (grey) samples based on (a) AP and (b) residual 
definitions of atypical. 

 

5.3.2 Detecting atypical cane samples using NIRS 

 

The final model had a ROC AUC of 0.935 on the test set. This suggests that the model could 

distinguish between typical and atypical samples based on the residual definition. Likewise, the 

overall model accuracy, recorded as the correct classification rate, was high (Accuracy = 91.6%). 

However, given the highly unbalanced nature of the data set (97.2% typical 2.8% atypical) the 

overall accuracy must be viewed with caution. For example, if all samples were identified as 

typical the overall CCR would be 97.2%. 

 

To understand model performance the correct classification rates of atypical (Sensitivity) and 

typical (Specificity) samples were recorded (Table 5.3). On the test set the PLS-DA analysis 

correctly classified 86.6% of atypical samples and 91.8% of typical samples. These results are 

encouraging as the model could correctly identify most atypical samples and suggest that it is 

indeed feasible to identify atypical cane samples online using NIRS analysis. 
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Table 5.3. PLS-DA model skill for calibration and validation datasets. A high ROC AUC (close to 
1) indicates a good model. Model Accuracy was recorded as the overall correct classification 
rate (%). Sensitivity gives the correct classification rate of atypical samples while specificity gives 
the correct classification rate of typical samples. 

 ROC AUC Accuracy (%) Sensitivity (%) Specificity (%) 

Training Set 0.968 92.1 87.2 92.2 
Test Set 0.935 91.6 86.6 91.8 

 

Further analysis showed that model skill varied throughout the harvest period (Figure 5.4). For 

samples harvested early (May) and late (November), the model tended to be over sensitive, 

correctly classifying all atypical samples (high sensitivity) but also identifying samples that are 

more typical as atypical (lower specificity). 

 

This drop in model skill may be due to the model being over fitted to samples harvested mid-

season. Early and late harvested samples represent the lowest and highest Bij and Pij values. 

Furthermore, cane is rarely harvested as early as May or as late as November. This suggests that 

these samples were underrepresented in the modelling process. Future research should 

consider reducing the training dataset so that low and high Bij and Pij (or early and late 

harvested) samples are not underrepresented. 
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Figure 5.4. Model skill by harvest month. Accuracy represents the overall correct classification 

rate. Sensitivity represents the correct classification rate of atypical samples and Specificity 
represents the correct classification rate of typical samples. 

 

The relatively high sensitivity and specificity mask the comparatively large number of typical 

samples misclassified. In total 519 typical samples were misclassified while only 155 atypical 

samples were correctly classified. This suggests that the current model may not be suitable for 

certain tasks in a practical setting. Future research will need to consider ways to improve on the 

current modelling techniques to ensure that the operational models are fit for purpose.  

 

One such method may be to consider class probabilities. The PLS-DA model can return a pseudo-

probability of the class of each sample (Ballabio and Consonni, 2013). Figure 5.5 shows that the 

misclassified samples tended to sit close to the boundary between typical and atypical samples. 

This suggests that the number of typical samples misclassified could be reduced by cut-off point 

at which the model identifies a sample as atypical. By default, the predicted class is the class 

with a probability of more than 50%. By increasing this value, it would be possible to fine-tune 

the model to reduce the misclassification of typical samples. 

 



 
 

79 
 

 
Figure 5.5. Distribution of correctly and incorrectly classified samples within the Pij/Bij space. 

Correct typical (purple) and correct atypical (light orange) represent samples that were 
correctly predicted to be typical and atypical respectively. Incorrect typical (dark purple) 

represent atypical samples that were predicted to be typical, while incorrect atypical (dark 
orange) represent typical samples that were predicted to be atypical. 

 

The results shown in this analysis are promising. The ability to identify these atypical samples in 

real time using NIRS analysis will enable researchers to understand when and where these 

samples are occurring. As NIRS models can struggle to estimate extreme values accurately 

(Chapter 4), models could be built specifically for atypical samples and applied in real time if a 

sample is identified as atypical. 

    

5.4 Conclusion 

 

The objective of this research was to define the atypical samples observed in laboratory mill 

data, and to test if it was feasible to use NIRS instrumentation to identify atypical cane samples 

as they are processed in the mill. We defined atypical samples using a Pij ‘residual’ approach.  

By comparing this ‘residual’ approach with an approach based on AP, we were able to show that 

the observed atypical samples were not simply samples with a low apparent purity. The main 

advantage of the residual approach was that early harvested cane was less likely to be consider 

atypical then if all samples with a low AP were considered atypical. Once defined, a PLS-DA 
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model could correctly discriminate between typical and atypical samples with high enough 

accuracy to show that it is indeed feasible to identify these samples during the milling process. 

  

Further refinement is needed before this methodology is ready for industrial deployment. 

Industry will need to consider carefully, the appropriateness of the definition of ‘atypical’ used 

in this research and the effect these atypical samples have on NIRS estimates of cane quality 

measures. The methodology outlined in this research provides a basis for future research 

that could easily consider new definitions of atypical samples. 

 

5.5 Chapter 5 Summary 

 

Mill researches have noted that in any given season, 1–5% of samples often have unusually low 

laboratory estimates of Pol in juice (Pij) given the recorded Brix in juice (Bij) value. These 

‘atypical’ samples are of particular concern as they may represent deteriorated or contaminated 

cane samples. Deteriorated or contaminated cane has a number of negative impacts on the 

cane milling process. Deterioration in particular can lead to higher viscosity, longer 

crystallisation times and overall lower cane purity. Many indicators for cane deterioration have 

been proposed but most are considered expensive, time consuming or unreliable, making them 

impractical for use during the milling process. Near Infra Red Spectroscopic (NIRS), analysis has 

been implemented in many Australian sugarcane mills to replace or supplement laboratory 

analysis of cane quality. However, there is little evidence in the literature that NIRS has been 

used to classify atypical samples. The purpose of this Chapter was to test the feasibility of 

predicting possible atypical cane samples using NIRS analysis. Data were collected from a single 

Australian sugarcane mill from 2006 to 2009. In total, 13,014 samples were collected with Bij, 

Pij, apparent purity (AP) and NIR spectroscopic data. Atypical samples were defined based on 

laboratory Bij and Pij values as cane deterioration/contamination data are not routinely 

measured. A partial least squares discriminant analysis (PLS-DA) was then used to build an NIRS 

model to identify the defined atypical cane samples. On a test set, the PLS-DA analysis had a 

correct classification rate of 91.6% of all samples with 86.6% of atypical samples correctly 

classified and 91.8% of ‘typical’ samples correctly classified.  

 

The focus of Chapter 5 was Objective 2 of the thesis: Investigating the use of NIR spectroscopic 

analysis for the automatic identification of atypical cane samples.  In order to do this it was first 

necessary to define ‘atypical’ cane. Chapter 5 showed that the definition of atypical samples 
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that was developed matched the samples that appeared atypical graphically. The definition of 

atypical samples also matched temporal trends in apparent purity. As there was no definition 

for atypical cane it was important to show that the developed definition was appropriate and 

useful measure. In practice only approximately three percent of all samples were defined as 

atypical. This large imbalance between classes made discrimination a potentially difficult task. 

This made the high accuracy of the PLS-DA modelling approach used an important outcome. 

The feasibility test presented in Chapter 5 was a necessary to show that the difficult task of 

correctly identifying atypical samples was possible. This paved the way for a more extensive 

comparison of modelling approaches.  
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6.1 Introduction 

 

Within the Australian sugarcane industry, sugarcane is routinely analyzed for quality measures 

such as Pol in juice (Pij) and Brix in juice (Bij), both in the laboratory and using Near Infrared 

(NIR) spectroscopy. Bij is representative of the concentration of total dissolved sugars and is 

measured by brix spindle in the laboratory (BSES, 1991). Pij is representative of the 

concentration of sucrose in juice and is measured by polarimeter in the laboratory. In any given 

crush season, anywhere from 1% to 5% of laboratory-analysed cane can be observed to have 

unusually low Pij relative to their Bij. These ‘atypical samples’ are of particular concern as they 

may represent deteriorated or contaminated cane that can negatively affect the milling 

processes and throw off grower payment calculations.  In many mills only a fraction of cane 

consignments are analysed in the laboratory, with fast online NIR analysis performed on the 

vast majority of samples. This means that the majority of occurrences go undocumented and 

appropriate interventions at the mill and farm level cannot be applied. On-line NIR analysis 

systems offer a potential solution but significant challenges must be overcome in order to build 

an appropriate model calibration. 
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 As cane deteriorates, sucrose is converted to sugars that are more complex. These sugars can 

deflate laboratory Pol readings and cause crystal elongation leading to longer drying times. 

Contamination of juice with high levels of dirt or leaf matter can inflate laboratory Bij measures 

lowering cane payment measures. Unfortunately, there is little published work on spectroscopic 

analysis of deterioration, contamination or indeed discrimination problems within the 

sugarcane industry. One possible reason for this is the difficulty of strictly defining the point at 

which cane should be considered ‘deteriorated’. Many measures, such as ethanol levels, ash 

content, or quality measures such as apparent purity (ratio of Pij/Bij) are either non-

discriminatory, difficult to measure or overly inflated by the deterioration process and are not 

generally used in process control (Van Heerden et al., 2014).  

 

Discrimination of atypical samples in an online system face two further challenges in the scale 

of variability and the imbalance of available samples. Online systems could include 

contamination from a range of sources (e.g. soil and leaves) as well as different types of 

deteriorated cane (e.g. sour or stale cane) (Van Heerden et al., 2014). In a laboratory setup, 

Tulip and Wilkins (2004) used spectral data in the visual (400 nm – 1,100 nm) and NIR (1,100 nm 

– 2,500 nm) range to estimate the dirt concentration in cane samples with good accuracy. Their 

results suggest that predicted soil type could be used to help estimate dirt concentration. 

However, there was no evidence of how effective this would be in an online system. A similar 

approach - where contaminated or deteriorated samples are created for a laboratory 

experiment - has been used in other industries such as decay in oranges (Li et al., 2016), 

identifying adulterated milk (Zhang et al., 2014), detecting fungal contamination in barley 

(Senthilkumar et al., 2016) and bacterial spoilage of kiwi juice (Niu et al., 2018). A devised 

experiment gives ideal conditions and by necessity have a limited size. This means they are 

unlikely to cover the full range of variability experienced in an online environment.   

 

Atypical samples such as deteriorated or contaminated samples are unlikely to occur as 

frequently as typical samples. In a laboratory experiment, the number of typical and atypical 

samples may not accurately reflect the occurrence in a real-world scenario. For example, Fiedler 

et al. (2001) suggested that it was difficult to classify specific cane varieties using on-line NIR 

analysis as the majority of consignments were of the same variety. However, Everingham et al. 

(2007) were able to correctly assign a variety class at the paddock level based on Hyperion 

satellite image data using Vis/NIR wavelengths (400 nm – 2,400 nm) and machine learning 

algorithms. 
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Many different modelling approaches and pre-processing techniques have been explored for 

discrimination problems using spectral data. In a comparison using gasoline data, Balabin et al. 

(2010) described three classes of classification models:  

1. Low performance including Linear Discriminant Analysis (LDA) and soft independent 

modelling of class analogy 

2. Medium performance including Partial Least Squares (PLS) and artificial neural networks 

(ANN)  and  

3. High performance models including K-Nearest Neighbours (KNN) and Support Vector 

Machine (SVM). 

The effectiveness of modelling approaches can differ between problems. For example, SVM 

outperformed random forest (RF) and LDA classification models for sugarcane varieties based 

on hyperspectral data (Everingham et al., 2007) while RF outperformed SVM in the identification 

of bruises in apples (Che et al., 2018). Wang et al. (2004) concluded that PLS could outperform 

ANN at discriminating between soybeans with and without fungal contamination, yet ANN 

performed better at discriminating between types of fungi contamination. 

 

More complex models such as SVM and ANN are often better suited to non-linear or complex 

systems. ANN approach non-linearity by forming a network of linear relationships between 

predictor variables and the output and using a nonlinear transfer function between layers 

(Hastie et al., 2013d). SVM tackle non-linearity through use of the ‘kernel trick’ (Agelet and 

Hurburgh, 2010), transforming the original predictor variables into a higher dimensional space. 

These approaches are often difficult to maintain, require a large amount of training data and 

can be difficult to explain the importance of specific wavelengths. Less complex models such as 

LDA and PLS are easy to build and maintain, offer clear variable importance and are capable of 

dealing with small non-linear effects (Bertran et al., 1999). RF models offer an alternative to 

variable transformation for dealing with non-linearity, by building an ensemble of simple 

decision trees (Hastie et al., 2013g). RF models have shown to be useful in identifying important 

wavelengths in NIR analysis (Feilhauer et al., 2015). 

 

Spectral pre-treatments such as spectral derivatives and wavelet transforms are regularly used 

to enhance spectroscopic model performance. Spectral derivatives such as those proposed by 

Savitzky and Golay (1964) fit a polynomial to the spectral signature and calculate the derivative 

at each spectral wavelength. These derivatives are used to enhance chemical signals in the 
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spectra and remove spectral base line shift across wavelengths (Agelet and Hurburgh, 2010). As 

shown in Chapter 3 and Chapter 4 of this thesis, spectral derivatives are effective in the 

estimation of cane quality parameters. Alternative methods such as wavelets can be used to 

compress and extract information within spectral data. Wavelets were developed within the 

signal processing community, with the aim of compressing as much information from a signal 

into a compact form. Wavelet transformations have been shown to reduce the number of 

variables in NIR models without reducing model performance (Trygg and Wold, 1998). Cen et 

al. (2006) found that wavelet transformation was more effective than derivative spectra when 

discriminating infant formula while (Donald et al., 2006) showed that adaptive discrete wavelet 

transformation could improve discrimination between sugarcane samples from different 

experimental design factors.  

 

Feature selection has also been used to improve performance of NIR analysis, with a wide range 

of techniques available (Xiaobo et al., 2010). In particular, genetic algorithms have been 

explored in a range of spectroscopic problems and have been found to be a competitive 

approach to feature selection (Cirino de Carvalho et al., 2016, Niu et al., 2018, Balabin and 

Smirnov, 2011, Yang et al., 2017). Within the sugarcane industry, the use of automatic feature 

selection techniques is not well documented. In general all available spectral data is used or 

specific wavelength ranges are defined based on industry knowledge of the problem being 

addressed.  

 

As the majority of sugarcane mills in Australia assess cane using NIR spectroscopic analysis, a 

simple and fast NIR model to identify these atypical samples is needed. This would enable 

industry to trace the origin of samples with unusually low Pij or to develop a process control 

logic to change how atypical samples are managed by the mill. In order to develop such a model 

it is necessary to overcome the challenges of a large variable data set and a large imbalance in 

class sizes. It is important that the interactions and possible advantages of different approaches 

be explored. Unfortunately, there is little evidence of this problem being explored in the 

agricultural literature. Therefore, the objective of this chapter was to compare a range of 

modelling and pre-processing techniques for the classification of ‘atypical’ sugarcane samples 

using an on-line NIR cane analysis dataset.  
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6.2 Materials and methods 

 

Five modelling approaches were used to discriminate between atypical and typical samples. The 

five approaches used were Linear Discriminant Analysis, Partial Least Squares Discriminant 

Analysis, Random Forest, Support Vector Machine and Artificial Neural Network.  For each 

modelling approach, the use of five spectral pre-treatments and raw spectral data were 

considered. These included first and second Savitzky-Golay derivatives (Savitzky and Golay, 

1964) and three wavelet transformations (Daubechies-8, Least Asymmetric-8, Coiflet-6). The 

most appropriate pre-treatment for each model was used in model comparisons.  

 

Figure 6.1 shows an overview of the model calibration and validation process. Data with 

recorded laboratory and spectral data were split evenly into a training set and validation set, 

using a random stratified approach such that the ratio of atypical to typical samples was 

maintained in each set. This was important so that the validation set consisted of realistic data 

(Kuhn and Johnson, 2013b).  Each combination of modelling and pre-processing approaches was 

tuned and calibrated using the training set while model comparisons were based solely on the 

validation set. Following Cui and Fearn (2017), training and validation splitting was performed 

multiple times. By repeating the training / validation split it is possible to capture variability in 

model performance due to the specific data used to build the model. The data was divided into 

a training and validation set 10 times. Down-sampling of the majority class was used during 

model calibration in order to correct for the imbalanced nature of the data. Down-sampling or 

under-sampling selects a subset of the majority class of equal size to the minority class (Kuhn 

and Johnson, 2013b). In order to capture variability in the model calibrations, each model was 

built 10 times. This resulted in 100 models built for each combination of pre-processing and 

modelling techniques. 
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Figure 6.1 Overview of methodology used in this chapter. Data were split evenly into training 

and validation sets 10 times. For each split, models were rebuilt 10 times to capture variability 

in random down sampling. Models were tuned using five-fold cross-validation and final models 

were built using the entire training set. Model performance investigation was performed on 

validation set results. 

 

Model hyper-parameters were tuned through five-fold cross-validation within each training / 

validation split. The set of hyper-parameters that maximized the Receiver Operating 

Characteristic (ROC), Area under curve statistic (AUC) was considered the best model set and 

was used in model validation. AUC can be a better measure of classifier performance for 

machine learning classifiers (Bradley, 1997, Jin and Ling, 2005). A perfect model will have an 

AUC of one while a non-informative model will have a value of 0.5, while a completely incorrect 

classification would have a value of zero. Models were rebuilt on the entire training data set and 

applied to the validation set. AUC, correct classification rates for atypical (CCRatypical) and typical 

(CCRtypical) samples as well as overall Accuracy were calculated as performance measures. 

CCRatypical was equivalent to model Sensitivity and was calculated as:  
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𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

× 100 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

× 100, (6-1) 

where TP and FN are the true positive rate and false negative rate respectively. Similarly, 

CCRtypical was equivalent to model Specificity and was calculated as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

× 100 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

× 100, (6-2) 

Here TN and FP are the true negative and false positive rate respectively. Accuracy was 

calculated as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

× 100 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

× 100. (6-3) 

 

Training and validation set skill were recorded as the average of 100 models. All data analysis 

was performed using the R statistical language and environment (R Core Team, 2017). Model 

calibration and validation was performed using the caret package in R (Kuhn, 2017). 

 

 6.2.1 Data 

 

Laboratory and spectral data were collected from a single mill in Northern Queensland, Australia 

for the 2006 to 2009 harvest seasons. Laboratory measures collected were juice Brix (Bij) and 

Pol (Pij). Bij is a measure of the total dissolved sugars in a solution while Pij is used as a measure 

of sucrose in juice. Both Bij and Pij were measured on first expressed juice following standard 

industry practices and reported as a percentage. In total, there were 13,129 samples with 

measured Bij and Pij values used in defining atypical samples.  Following the process outlined in 

Chapter 5, atypical samples were defined based on the linear relationship between Bij and Pij. 

Atypical samples made up 2.67% of all samples from 2006 to 2009 and varied from year to year, 

ranging from 1.92% in 2006 to 3.57% in 2007.  

 

A FOSS 5000 on-line NIRS system, collected spectral data on shredded cane as absorbance 

(log(1/reflectance)). Absorbance was recorded from 1,100 nm to 2,498 nm at 2 nm intervals. 

Following, spectral outliers were removed based on a Global Mahalanobis distance (GH). This 

was done to attempt to remove scans that had a low amount of cane and may be affected by 

reflection from the chute where the scans take place. Following the methodology of Chapter 4, 

individual scans with a GH greater than three were removed from the analysis and samples with 

less than three ‘clean’ scans were removed from the. The final spectra for each sample was 

recorded as the average of all scans for that sample. In total, there were 12,798 samples with 

available laboratory and spectral data.  
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Removal of outlier spectra did not greatly affect the ratio of atypical samples (2.53% compared 

to 2.67%), showing that atypical samples were not spectral outliers in particular. Graphical 

differences between averaged raw spectra for atypical and typical samples were minimal and 

difficult to identify (Figure 6.2).  Absorbance was lower for atypical samples between 1,450 nm 

and 1,850 nm. Slight difference were also noted around 1,200 nm and between 1,600 nm to 

1,800 nm (lower absorbance for atypical samples). The close similarity between spectral 

signatures of atypical and typical highlight the need for effective data pre-processing and 

modelling methods to discriminate between sample classes. 

 

 
Figure 6.2. Raw spectral data for atypical (red) and typical (black) samples. 
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 6.2.2 Spectral pre-processing 

 

Models were built using raw spectral data and spectral pre-processing techniques: 

1. Raw: Raw spectral data as described in the Data section. All wavelengths (1,100 

nm – 2,498 nm at 2nm) were used as potential predictors. 

2. SNV-First: A combination of Standard Normal Variate and Savitzky-Golay first 

derivative transformation. 

3. SNV-Second: A combination of SNV and Savitzky-Golay Second derivative 

transformation.  

4. D8: Daubechies wavelet transformation (Daublet) using eight coefficients.  

5. LA8: Least asymmetrical wavelet transformation (Symmlet) using eight 

coefficients.  

6. C6: Coiflet wavelet transformation using six coefficients.  

 

Savitzky-Golay and wavelet transformations were considered in this study as both have been 

shown to be effective pre-treatments for the analysis of sugarcane quality measures. For 

example, Savitzky-Golay was effective for both analysis of sugarcane quality measures as shown 

in Chapter 4 and in a feasibility test for identifying atypical cane samples, as in Chapter 5. 

Wavelet transformation has been used in sugarcane spectral classification problems (Donald et 

al., 2006). However, there is little literature on the effectiveness of different basis functions. 

Daublet, Symmlet and Coiflet transformations were trialled as some of the most common bases 

used in the wider literature (Singh et al., 2008). SNV-First and SNV-Second transformations 

applied SNV before SG derivatives were taken. Both cases used a window length of 13 and a 

second-degree polynomial to estimate the derivatives. The use of a window length of 13 

resulted in the loss of 12 variables, reducing the spectral range to 1,112 nm – 2,486 nm at 2nm 

intervals. SNV-First and SNV-Second transformations were computed using the prospectr 

package in R (Stevens and Ramirez-Lopez, 2013).  

 

Prior to wavelet transformations, the spectral range was reduced to 1,112 nm – 2,486 nm. The 

removal of 12 variables resulted in a length of 688 variables, allowing for a four level 

decomposition and was similar to the loss of range in the derivative spectra. Wavelet 

transformations were computed using the wavelets package in R (Aldrich, 2013). All wavelet 

coefficients and the level four scaling coefficients were used as potential predictor variables. 

Figures 6.3 to 6.7 show the processed spectra for SNV-First (Figure 6.3), SNV-Second (Figure 
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6.4), D8 (Figure 6.5), LA8 (Figure 6.6) and C6 (Figure 6.7) pre-processing. As with raw spectral 

data, graphical differences between atypical and typical samples were minimal and difficult to 

identify for all pre-processing techniques investigated. 

 

 
Figure 6.3. Average of SNV-First pre-processed spectra for typical (black) and atypical (red) 

samples. 
 

 
Figure 6.4. Average of SNV-Second pre-processed spectra for typical (black) and atypical (red) 

samples. 
 



 
 

92 
 

 
Figure 6.5. Average of Wavelet-C6 pre-processed spectra for typical (black) and atypical (red) 

samples. 
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Figure 6.6. Average of Wavelet-D8 pre-processed spectra for typical (black) and atypical (red) 

samples. 
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Figure 6.7. Average of Wavelet-LA8 pre-processed spectra for typical (black) and atypical (red) 

samples. 
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 6.2.3 Model calibration 

 

Five modelling approaches were investigated: 

1. LDA: Linear discriminant analysis 

2. PLS-DA: Partial least squares for discriminant analysis  

3. RF: Random Forests  

4. SVM: Support vector machines for classification.  

5. ANN: A feed-forward artificial neural network with back-propagation of errors. 

These approaches cover a range of modelling philosophies. LDA is simple, linear and is based on 

Bayesian statistical theory. It is the only method capable of naturally producing a probabilistic 

prediction. PLS-DA is based on least squares regression and is capable of modelling slight non-

linearities, while random forest represents a non-linear, ensemble modelling process. Finally, 

SVM and ANN are machine-learning algorithms, which approach classification and regression 

problems from a data driven rather than a statistical perspective. All model building, including 

cross-validation was managed through the caret package (Kuhn, 2017). 

 

 6.2.3.1 Linear discriminant analysis 

 

LDA is a simple technique and by default has no hyper-parameters that require tuning. However, 

spectral data are often highly correlated. In order to avoid collinearity, pre-processed spectral 

data were further transformed using Principal Component analysis. The number of PC’s retained 

(PCs) was tuned through cross-validation as a hyper-parameter. Models were tuned over 0 – 

100 PC’s at steps of 4. A ‘zero’ PC option was included as spectral pre-treatments may effectively 

remove the need for principal component analysis. LDA modelling was based on the lda function 

in the MASS package (Venables and Ripley, 2002). Prior probabilities were estimated from the 

data. In the case of down-sampled data, this prior probability would be 0.50 for both classes. 

Prior probabilities were considered in the calculation of the predicted posterior probabilities 

required for AUC. Both class and probability predictions were returned for new samples. 

 

 6.2.3.2 Partial least squares discriminant analysis 

 

PLS for discriminant analysis uses the same approach as PLS regression and requires the number 

of latent variables to be tuned as a hyper-parameter (Barker and Rayens, 2003).  The number of 

latent variables was tuned through cross-validation over a range of 1 – 20. This range was 
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chosen as it was shown to be appropriate in Chapters 3 and 4. PLS-DA models were built using 

the plsda function in the caret package, which builds on the pls package of Mevik et al. (2015). 

Within PLS-DA, class labels are replaced by a pair of dummy variables for atypical and typical 

classes (each sample having a score one in either atypical or typical dummy variable). A 

multivariate partial least squares regression model is then built to predict the two dependent 

variables (Martens et al., 1992).  Class probabilities were calculated using the softmax function. 

Class predictions can be considered the class with the highest probability (>0.5).   

 

 6.2.3.3 Random Forest 

 

Classification and regression trees (CART) offer a unique way to model complex, non-linear 

interactions in high dimensional data (Breiman et al., 1984). Random Forest build on this by 

developing an ensemble of individual trees (Breiman, 2001). Random forests seek to reduce the 

variance of standard bagging techniques by randomly selecting a subset of variables to test at 

each split of the tree, making each tree independent of all other trees in the ensemble (Hastie 

et al., 2013g).  Each tree produces a class prediction and the predicted class label was assigned 

by majority vote across all trees. RF models were built using the randomForest package in R 

(Liaw and Wiener, 2002). Cross-validation was used to tune the number of variables tried at 

each split (mtry). Twenty values were tested between 2 and all available variables (e.g. for 

derivative and wavelet data: 2, 38, 74, …, 615, 651, 688). The predicted class probability used in 

calculating the AUC was estimated as the proportion of votes for each class. 

 

 6.2.3.4 Support Vector Machine 

 

Support vector machines are a classification approach from the machine learning community. 

SVM are data sparse, making use of only a fraction of the available data in the final model and 

use the ‘kernel trick’ to model non-linearities by projection into a higher dimensional space. 

Here we use the cost sensitive c-svc approach as implemented within the kernlab package 

(Karatzoglou et al., 2004). SVM classifiers were built using a radial basis function. The SVM 

hyper-parameters cost (cost) and σ (sigma) were tuned through a grid search in the base 2 

exponential set. Cost values tested were 2(-5,-3,-1, 0, 3, 5, 7), while sigma values tested were 2(-11,-9,-7,-

5,-3). Each combination of cost and sigma were tested through cross-validation and the 

combination with the highest ROC AUC was chosen. SVM return a prediction between -1 

(typical) and +1 (atypical) where sign is used to assign class labels. Pseudo posterior probabilities 
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are estimated using a sigmoidal function (Lin et al., 2007, Platt, 1999). These probabilities were 

used in calculating the AUC. 

    

 6.2.3.5 Artificial Neural Network 

 

ANN models were built as single hidden layer backpropagation networks, with a single output 

node. ANN models were built using the nnet package (Venables and Ripley, 2002). This package 

uses a logistic function as the ‘activation function’ for the hidden nodes and the output node. 

Internally, entropy (maximum conditional likelihood), rather than squared error was used as the 

error measure during back-propagation. . The size (number of nodes in the hidden layer) and 

decay (the decay rate) hyper-parameters were tuned using a grid search. The size parameter 

was tuned over a range of 2 to 12 at 2 node intervals, while six decay parameter values were 

tested (0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05). Each combination of size and decay rate were 

tested through cross-validation and the combination with the highest ROC AUC was chosen. 

Unlike other models described here, parameters were range-scaled rather than auto-scaled, 

following the methodology used in Chapter 4. Neural networks produce a probability-like 

logistic score for the target class (values between 0 and 1), with class labels being assigned as 

the target class if the score <0.5. The logistic score was used as the probability for the estimation 

of the AUC. 

    

6.2.4 Feature selection 

 

Genetic algorithm feature selection (GAFS) is a computationally expensive wrapper method for 

feature selection. As GAFS is based on the idea of genetic evolution, sets of features are retained 

and mixed from generation to generation, based on some model performance. This results in 

an iterative improvement in the feature sets. In this study, GAFS was used to improve the PLS-

DA model as described in section 2.4.2, with the cross-validated ROC used as the model 

performance on which selection was based.  The GAFS approach was run using the gafs function 

in caret package (Kuhn and Johnson, 2013a, Scrucca, 2013, Mitchell, 1999). The following 

default settings were used for the GAFS procedure: 

• iters = 100: The maximum number of ‘generations’,  

• popSize = 50: The population size at each iteration,  

• pmutation = 0.1: The probability of random mutation, 

• pcrossover = 0.8: The probability of crossover, 
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• elite = 0: The number of the best children to keep into the next generation. 

 

In this setup, the maximum number of parameters (wavelengths or wavelet coefficients) that 

could be used in any given individual was not restricted. The number of iterations in the GAFS 

model was tuned through repeated 5-fold cross-validation (5-fold cross-validation is repeated 4 

times). Figure 6.8 outlines the GAFS procedure used in this study. 

 

 
Figure 6.8. Diagram of GAFS-PLSDA feature selection used in this analysis. The GAFS-PLSDA 
process was performed on the training data set of each of the J = 10 random training/test 

splits. 
 

Despite tuning the number of iterations, the GAFS procedure can over-fit to the training data 

set. We investigated the use of the cross-validation results as a filter selection process, in order 

to reduce the dependence on the specific samples used to train the model.  Four selection levels 

were investigated: 

a. OptVariables: A final GAFS model was built using the entire training set and the 

cross-validated number of iterations, the selected wavelengths were identified 

for use in building PLS-DA models 

b. Imp50: Wavelengths that were selected in > 50% of the 20 cross-validation 

GAFS models were identified for use in final models, 

c. Imp70: Wavelengths that were selected in > 70% of the 20 cross-validation 

models were identified for use in final models. 
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d. Imp90: Wavelengths that were selected in > 90% of the 20 cross-validation 

models were identified for use in final models. 

For each ‘selection level’, a PLS-DA model was built following the methodology in section 

6.2.3.2, using only the selected wavelengths. 

 

6.3. Results and discussion 

 6.3.1 Model comparison 

 

All modelling approaches trialled in this study were able to achieve an AUC of greater than 0.9 

and an Accuracy of greater than 80% when applied to the validation set using the best pre-

processing technique for each model (Table 1). PLS-DA achieved the highest average AUC score 

for the validation set (AUC = 0.9502). SVM and LDA performed similarly (AUC = 0.9479 and AUC 

= 0.9465 respectively) while ANN had the lowest validation set AUC (AUC = 0.9154). Similar 

differences between modelling techniques were also seen in overall model Accuracy, correct 

classification rates of atypical samples (CCRatypical) and correct classification rates of typical 

samples (CCRtypical) (Table 6.1). For example, PLS-DA had the highest average Accuracy and CCR 

scores while ANN had the lowest.  The Accuracy shown across all modelling techniques is 

positive as the majority of samples (at least 83%) could be correctly classified as either typical 

or atypical. This is consistent with similar research in discriminating deteriorated or agricultural 

products such as bruised fruits and with spectroscopic classification problems that deal with 

highly imbalanced data. Importantly, model performance was similar for both atypical and 

typical cane samples. This suggests that down-sampling was successfully able to promote 

balanced models that were not biased towards better performance of the majority class.
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Table 6.1.   Average model skill for each modelling approach using the best combination of pre-
processing and feature selection. The average is taken across 10 training/validation splits each 
with 10 random initializations. The model with the highest overall skill (AUC) is highlighted in 
bold font. Tuning parameter values recorded as the mode(min, max). 

Model Pre- 
processing Tuning 

Training Validation 

AUC CCRatypical CCRtypical Accuracy AUC CCRatypical CCRtypical Accuracy 

LDA SNV-First PCs: 72 
(36, 100) 

0.9709 94.93% 88.70% 88.86% 0.9465 88.11% 88.34% 88.33% 

PLS-DA SNV-First LVs: 14 
(12, 20) 

0.9716 94.49% 89.14% 89.27% 0.9502 88.65% 88.75% 88.75% 

RF SNV-Second mtry: 218 
(74-688) 

0.9976 100.00% 84.37% 84.76% 0.9260 85.46% 83.99% 84.03% 

SVM SNV-Second 

sigma: 2-11 
(2-11, 2-11) 
cost: 23 
(23, 27) 

0.9881 98.96% 87.99% 88.26% 0.9479 88.96% 87.60% 87.63% 

ANN SNV-First 

nodes: 2 
(2, 12) 
decay: 5*10-4 
(10-4, 10-3) 

0.9636 99.06% 83.99% 84.38% 0.9154 85.27% 83.66% 83.70% 

       

The relative performance of the tested modelling techniques may be somewhat surprising given 

previous comparison studies. When comparing a range of modelling techniques to classify fuels, 

Balabin et al. (2010) identified SVM as a highly effective classifier, PLS and ANN as medium 

effective classifiers and LDA as one of the least effective classifiers.  In our study, PLS-DA was 

the most effective performer while LDA performed similarly to SVM. The relatively good 

performance of PLS-DA and LDA may suggest that the classification problem was relatively 

linear, such that the ability to model nonlinearity inherent in SVM did not provide an advantage. 

Similar comparisons were found for estimating the cane quality parameter CCS (Commercial 

Cane Sugar) in Chapter 4. PLS-DA and LDA may also have had an advantage over SVM as PLS-DA 

and LDA both made use of feature extraction techniques (Latent variables in PLS-DA and PCA 

applied during the LDA process).  

 

Interestingly, although all modelling techniques were improved by the use of some pre-

processing technique, the advantage was not always large (Figure 6.9). RF with SNV-Second had 

the largest increase compared to Raw spectral data, while ANN with SNV-First pre-processing 

only slightly improved model performance. Figure 6.9 also shows that the use of Wavelet pre-

processing could actually lead to decreased model performance compared to Raw spectral data. 

The interaction between pre-processing and modelling techniques shown in Figure 6.9 highlight 

the importance of using a pre-processing technique that is appropriate for the modelling 

technique especially during comparisons of model skill.  
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Figure 6.9. Accuracy (correct classification rate of all samples) for each combination of spectral 

pre-processing and modelling technique. Bars represent the average of all model runs. 
 

Pre-processing techniques such as spectral derivatives and wavelet transformation attempt to 

highlight information otherwise hidden in the spectral data. Derivation of absorption spectra 

can help resolve overlapping absorption peaks from different sample constituents (Osborne et 

al., 1993a). This increased resolution can make it easier to identify the presence of specific 

compounds and can often lead to simpler more robust models (Agelet and Hurburgh, 2010). For 

example, PLS-DA required half as many latent variables using SNV-Second compared to Raw 

spectral data (Table 6.2). Table 6.2 contains the calibration results for all combinations of models 

and spectral pre-processing, while Table 6.3 contains the validation results. Re-running these 

analyses using only SNV resulted in model performance similar to Raw spectral data. This 

suggested that the spectral derivative stage was largely responsible for the improved 

performance seen using SNV-First and fewer latent variables using SNV-Second (data not 

shown).  
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Table 6.2. Average model skill for each modelling approach / pre-processing combination during 
the calibration phase. The average is taken across 10 train/validation splits each with 10 random 
initializations. Bracketed skill values are the interquartile range (Q3 – Q1) and represent a robust 
measure of spread across all individual model runs.  Shading represents the best pre-processing 
for each modelling approach. The model with the highest overall skill (AUC) is highlighted in bold 
font. Tuning parameter values recorded as the mode (min, max). 

Model 
Pre- 

processing 
Tuning AUC CCRatypical CCRtypical Accuracy 

LDA Raw PCs: 52 (28, 100) 0.9096  

(0.0163) 

88.33%  

(4.32%) 

78.70%  

(1.78%) 

78.94%  

(1.61%) 

SNV-First PCs: 72 (36, 100) 0.9709 

(0.0068) 

94.93% 

(2.47%) 

88.70% 

(1.46%) 

88.86%  

(1.38%) 

SNV-Second PCs: 40 (28, 100) 0.9570 

 (0.0085) 

92.86%  

(3.09%) 

87.09% 

(1.53%) 

87.24%  

(1.42%) 

wavelet-C6 PCs: 84 (40, 100) 0.9176 

 (0.0149) 

89.33%  

(3.70%) 

78.81% 

(2.10%) 

79.08%  

(2.11%) 

wavelet-D8 PCs: 92 (56, 100) 0.8938  

(0.0194) 

87.37%  

(3.24%) 

74.61% 

(2.25%) 

74.93%  

(2.16%) 

wavelet-LA8 PCs: 84 (40, 100) 0.9330  

(0.0149) 

90.29%  

(3.70%) 

81.53% 

(2.51%) 

81.75%  

(2.54%) 

PLS-DA Raw LVs: 15 (13, 20) 0.9222  

(0.0164) 

91.04%  

(3.86%) 

79.52%  

(1.80%) 

79.81%  

(1.74%) 

SNV-First LVs: 14 (12, 20) 0.9716  

(0.0060) 

94.49%  

(2.47%) 

89.14%  

(1.51%) 

89.27%  

(1.51%) 

SNV-Second LVs: 7 (5, 9) 0.9645  

(0.0081) 

94.17%  

(2.01%) 

88.04%  

(1.74%) 

88.20%  

(1.71%) 

wavelet-C6 LVs: 7 (5, 8) 0.9474  

(0.0242) 

94.78%  

(2.47%) 

80.04%  

(2.10%) 

80.42%  

(2.04%) 

wavelet-D8 LVs: 7 (4, 7) 0.9355  

(0.0313) 

94.85%  

(5.56%) 

75.97%  

(2.34%) 

76.45%  

(2.17%) 

wavelet-LA8 LVs: 5 (5, 7) 0.9569  

(0.0180) 

95.19%  

(3.86%) 

82.04%  

(2.07%) 

82.38%  

(1.89%) 

SVM Raw sigma: 2-11 (2-11, 2-9) 

cost: 27 (23, 27) 

0.8662  

(0.0271) 

81.15%  

(4.48%) 

76.61%  

(4.17%) 

76.72%  

(3.97%) 

SNV-First sigma: 2-11 (2-11, 2-11) 

cost: 25 (25, 27) 

0.9704  

(0.0104) 

98.05%  

(2.47%) 

85.04%  

(1.99%) 

85.37%  

(1.91%) 

SNV-Second sigma: 2-11 (2-11, 2-11) 

cost: 23 (23, 27) 

0.9881  

(0.0054) 

98.96%  

(1.85%) 

87.99%  

(1.65%) 

88.26%  

(1.57%) 

wavelet-C6 sigma; 2-11 (2-11, 2-9) 0.9913  99.69%  81.64%  82.10%  
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Model 
Pre- 

processing 
Tuning AUC CCRatypical CCRtypical Accuracy 

cost: 23 (23, 27) (0.0052) (0.62%) (2.43%) (2.36%) 

wavelet-D8 sigma: 2-11 (2-11, 2-9) 

cost: 23 (23, 27) 

0.9923  

(0.0071) 

99.91%  

(0.00%) 

78.47%  

(2.36%) 

79.02%  

(2.30%) 

wavelet-LA8 sigma: 2-11 (2-11, 2-9) 

cost: 23 (23, 27) 

0.9944  

(0.0027) 

99.88%  

(0.00%) 

82.64%  

(2.20%) 

83.08%  

(2.13%) 

ANN Raw nodes: 4 (2, 8) 

decay: 5*10-4 (10-4, 5*10-3) 

0.9369  

(0.0177) 

97.09%  

(0.15%) 

80.09%  

(3.05%) 

80.52%  

(2.97%) 

SNV-First nodes: 2 (2, 12) 

decay: 5*10-4 (10-4, 10-3) 

0.9636  

(0.0103) 

99.06%  

(1.23%) 

83.99%  

(1.70%) 

84.38%  

(1.68%) 

SNV-Second nodes: 6 (2, 12) 

decay: 10-4 (10-4, 10-4) 

0.9510  

(0.0094) 

99.98%  

(0.00%) 

78.20%  

(3.04%) 

78.75%  

(2.97%) 

wavelet-C6 nodes: 4 (2, 8) 

decay: 5*10-4 (10-4 , 5*10-3) 

0.9385  

(0.0138) 

98.44%  

(0.62%) 

79.19%  

(2.96%) 

79.68%  

(2.84%) 

wavelet-D8 nodes: 4 (2 - 12) 

decay: 5*10-4 (10-4, 10-2) 

0.9228  

(0.0147) 

95.46%  

(0.15%) 

78.67%  

(2.83%) 

79.10%  

(2.76%) 

wavelet-LA8 nodes: 4 (2 - 10) 

decay: 5*10-4  (10-4,  5*10-3) 

0.9330  

(0.0139) 

97.76%  

(0.00%) 

79.15%  

(2.77%) 

79.63%  

(2.62%) 

RF Raw mtry: 38 (2-700) 0.9664  

(0.0108) 

100.0%  

(0.00%) 

72.89%  

(3.62%) 

73.58%  

(3.53%) 

SNV-First mtry: 38 (2-688) 0.9896  

(0.0044) 

100.0%  

(0.00%) 

79.01%  

(2.67%) 

79.54%  

(2.60%) 

SNV-Second mtry: 218 (74-688) 0.9976  

(0.0011) 

100.0%  

(0.00%) 

84.37%  

(3.94%) 

84.76%  

(3.84%) 

wavelet-C6 mtry: 507 (110-688) 0.9961  

(0.0030) 

100.0%  

(0.00%) 

80.96%  

(2.77%) 

81.45%  

(2.70%) 

wavelet-D8 mtry: 507 (38-688) 0.9953  

(0.0032) 

100.0%  

(0.00%) 

79.64%  

(3.35%) 

80.16%  

(3.27%) 

wavelet-LA8 mtry 218 (74-688) 0.9969  

(0.0030) 

100.0%  

(0.00%) 

84.65%  

(2.90%) 

85.04%  

(2.83%) 
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Table 6.3. Average model skill for each modelling approach / pre-processing combination for 
the validation stage. The average is taken across 10 train/validation splits each with 10 random 
initializations. Bracketed skill values are the interquartile range (Q3 – Q1) and represent a robust 
measure of spread across all individual model runs.  Shading represents the best pre-processing 
for each modelling approach. The model with the highest overall skill (AUC) is highlighted in bold 
font. Tuning parameter values recorded as the mode (min, max). 

Model 
Pre- 

processing 
Tuning AUC CCRatypical CCRtypical Accuracy 

LDA Raw PCs: 52 (28, 100) 0.8648  

(0.0140) 

78.77%  

(4.63%) 

78.41%  

(2.03%) 

78.42%  

(1.97%) 

SNV-First PCs: 72 (36, 100) 0.9465  

(0.0124) 

88.11%  

(4.48%) 

88.34%  

(1.29%) 

88.33%  

(1.31%) 

SNV-Second PCs: 40 (28, 100) 0.9330  

(0.0136) 

86.73%  

(4.32%) 

86.85%  

(1.59%) 

86.84%  

(1.56%) 

wavelet-C6 PCs: 84 (40, 100) 0.8642  

(0.0124) 

79.28%  

(5.09%) 

78.56%  

(2.20%) 

78.58%  

(2.04%) 

wavelet-D8 PCs: 92 (56, 100) 0.8192  

(0.0212) 

74.95%  

(5.71%) 

74.21%  

(2.79%) 

74.23%  

(2.76%) 

wavelet-LA8 PCs: 84 (40, 100) 0.8860  

(0.0127) 

80.96%  

(4.94%) 

81.23%  

(2.43%) 

81.22%  

(2.27%) 

PLS-DA Raw LVs: 15 (13, 20) 0.8745  

(0.0149) 

80.12%  

(4.32%) 

79.18%  

(2.08%) 

79.2%  

(2.01%) 

SNV-First LVs: 14 (12, 20) 0.9502  

(0.0116) 

88.65%  

(3.70%) 

88.75%  

(1.69%) 

88.75%  

(1.63%) 

SNV-Second LVs: 7 (5, 9) 0.9386  

(0.0114) 

87.32%  

(4.32%) 

87.65%  

(1.96%) 

87.65%  

(1.95%) 

wavelet-C6 LVs: 7 (5, 8) 0.8754  

(0.0188) 

80.47%  

(4.32%) 

79.6%  

(2.13%) 

79.62%  

(2.01%) 

wavelet-D8 LVs: 7 (4, 7) 0.8344  

(0.0168) 

76.31%  

(5.09%) 

75.31%  

(2.58%) 

75.34%  

(2.45%) 

wavelet-LA8 LVs: 5 (5, 7) 0.8913  

(0.0178) 

81.84%  

(4.94%) 

81.69%  

(1.89%) 

81.69%  

(1.92%) 

SVM Raw sigma: 2-11 (2-11, 2-9) 

cost: 27 (23, 27) 

0.8236  

(0.0264) 

72.97%  

(7.56%) 

76.11%  

(4.06%) 

76.03%  

(3.91%) 

SNV-First sigma: 2-11 (2-11, 2-11) 

cost: 25 (25, 27) 

0.9221  

(0.0132) 

85.94%  

(4.94%) 

84.59%  

(2.10%) 

84.63%  

(1.97%) 

SNV-Second sigma: 2-11 (2-11, 2-11) 

cost: 23 (23, 27) 

0.9479  

(0.0127) 

88.96%  

(4.32%) 

87.60%  

(1.87%) 

87.63%  

(1.87%) 

wavelet-C6 sigma; 2-11 (2-11, 2-9) 0.8924  81.51%  81.17%  81.18%  
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Model 
Pre- 

processing 
Tuning AUC CCRatypical CCRtypical Accuracy 

cost: 23 (23, 27) (0.0149) (4.32%) (2.33%) (2.27%) 

wavelet-D8 sigma: 2-11 (2-11, 2-9) 

cost: 23 (23, 27) 

0.8609  

(0.0169) 

78.42%  

(4.32%) 

77.87%  

(2.36%) 

77.89%  

(2.15%) 

wavelet-LA8 sigma: 2-11 (2-11, 2-9) 

cost: 23 (23, 27) 

0.9000  

(0.0132) 

82.26%  

(4.32%) 

82.17%  

(2.03%) 

82.17%  

(1.91%) 

ANN Raw nodes: 4 (2, 8) 

decay: 5*10-4 (10-4, 5*10-3) 

0.8725  

(0.0237) 

80.02%  

(4.94%) 

79.69%  

(3.35%) 

79.70%  

(3.25%) 

SNV-First nodes: 2 (2, 12) 

decay: 5*10-4 (10-4, 10-3) 

0.9154  

(0.0126) 

85.27%  

(4.32%) 

83.66%  

(1.86%) 

83.70%  

(1.79%) 

SNV-Second nodes: 6 (2, 12) 

decay: 10-4 (10-4, 10-4) 

0.8557  

(0.0280) 

78.46%  

(4.32%) 

77.51%  

(2.76%) 

77.54%  

(2.72%) 

wavelet-C6 nodes: 4 (2, 8) 

decay: 5*10-4 (10-4 , 5*10-3) 

0.8769  

(0.0228) 

81.99%  

(5.56%) 

78.67%  

(2.55%) 

78.75%  

(2.39%) 

wavelet-D8 nodes: 4 (2 - 12) 

decay: 5*10-4 (10-4, 10-2) 

0.8639  

(0.0287) 

79.87%  

(4.94%) 

78.14%  

(2.98%) 

78.19%  

(2.76%) 

wavelet-LA8 nodes: 4 (2 - 10) 

decay: 5*10-4  (10-4,  5*10-3) 

0.8707  

(0.0233) 

80.93%  

(5.09%) 

78.60%  

(3.08%) 

78.66%  

(2.90%) 

RF Raw mtry: 38 (2-700) 0.7850  

(0.0250) 

70.41%  

(7.56%) 

71.86%  

(3.78%) 

71.82%  

(3.51%) 

SNV-First mtry: 38 (2-688) 0.8847  

(0.0203) 

81.24%  

(4.32%) 

78.54%  

(3.22%) 

78.61%  

(2.92%) 

SNV-Second mtry: 218 (74-688) 0.9260  

(0.0154) 

85.46%  

(4.32%) 

83.99%  

(3.60%) 

84.03%  

(3.41%) 

wavelet-C6 mtry: 507 (110-688) 0.9009  

(0.0243) 

83.43%  

(4.94%) 

80.57%  

(2.82%) 

80.64%  

(2.79%) 

wavelet-D8 mtry: 507 (38-688) 0.8765  

(0.0247) 

80.64%  

(4.48%) 

79.30%  

(3.19%) 

79.33%  

(2.99%) 

wavelet-LA8 mtry: 218 (74-688) 0.9224  

(0.0174) 

84.83%  

(4.94%) 

84.34%  

(3.36%) 

84.35%  

(3.21%) 

 

The higher resolution afforded by SNV-Second pre-processing may explain why SNV-Second 

produced the best performance for the RF, SVM and ANN models but not the LDA and PLS-DA 

models. The ability to better separate overlapping peaks may have provided less advantage for 

LDA and PLS-DA models which both made use of a separate feature extraction technique. These 

results reinforce the idea that complex modelling techniques may not always offer 
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improvements in model skill.  The relatively high performance of PLS-DA is especially 

encouraging as PLS is widely used within the sugarcane industry and widely available in 

commercial spectral analysis packages which would reduce the barriers to implementation of a 

classification system within the Australian sugarcane industry.  

 

 6.3.2 Feature selection 

 

As PLS-DA with SNV-First pre-processing was identified as the most effective modelling strategy 

where all spectral data were used, we looked at feature selection as a possible method of 

further improving PLS-DA model performance. The genetic algorithm feature selection (GAFS) 

approach described in section 6.2.4 was applied to the PLS-DA modelling process (GAFS-PLSDA). 

Figure 6.10 identifies the features selected by the final GAFS-PLSDA model (OptVariables) as 

well as the features selected using the cross-validation runs (e.g. Imp50 = features selected in 

>50% of cross-validation runs). Wavelengths above 1,900 nm were selected less often and may 

be less important in identifying atypical samples. The most commonly selected wavelengths 

were centred on 1,200 nm, 1,400 nm and 1,700 nm (Figure 6.10). These three regions can all be 

associated with C-H stretching overtones or combinations. First overtone of O-H stretching, 

around 1,400 nm may also relate to various sugars such as sucrose (1,440 nm) and glucose 

(1,480 nm) or moisture (1,450 nm).  
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Figure 6.10. Wavelengths selected by GAFS-PLSDA for SNV- First derivative spectra. 

OptVariables represent features selected by the final GAFS-PLSDA model while Imp50 – Imp90 
represent the features that were selected across cross-validation runs. For example Imp50 = 

features selected in >50% of cross-validation runs. Thick black line represents the average 
spectral signature. Horizontal bars represent the selected wavelengths. Bars are shaded to 

represent the number of training sets for which each variable was selected. 
 

The use of GAFS-PLSDA improved model performance for the PLS-DA SNV-First modelling 

approach (Table 6.4). Using the cross-validation results appears to have had the desired effect 

of improving test set performance as the largest improvement was obtained using the GAFS-

Imp50 approach. By only including features that were selected in more than 50% of cross-

validation runs, accuracy improved by 1.82% relative to no feature selection being used, while 

CCRatypical improved by 2.21% and CCRtypical improved by 1.81%. Using the GAFS-Imp50 approach, 

removed many wavelengths above 1,900 nm, which is known to be a noisier region and may 

have caused overfitting to the training data set. The more rigorous filter of GAFS-Imp70 and 

GAFS-Imp90 reduced model performance (Table 6.4). While these methods may have helped 

identify influential features, the heavy-handed filtering may have broken down relationships 
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between features that were otherwise captured by the genetic algorithm procedure, reducing 

the effectiveness of the PLS-DA model.  

 

The increase in performance using GAFS for PLS-DA models was relatively modest. The 

effectiveness of feature selection for PLS-DA may be low due to the inherent feature extraction 

included in PLS modelling. Latent variables are designed to explain the variance in feature space 

(spectral data) with respect to the response variable (class labels). This means that non-

informative variables should be down-weighted, such that removing them may not improve 

model performance.  

 

Table 6.4. Average model skill for PLS-DA using SNV-First and GAFS feature selection. The 
average is taken across 10 train/test splits each with 10 random initializations. The model with 
the highest overall skill (AUC) is highlighted in bold font. Tuning parameter values recorded as 

the mode(min - max). 

Feature  
Selection Tuning 

Train Test 

AUC CCRatypical CCRtypical Accuracy AUC CCRatypical CCRtypical Accuracy 

none LVs: 14 (12, 20) 0.9716 94.49% 89.14% 89.27% 0.9502 88.65% 88.75% 88.75% 

OptVariables LVs: 14 (12-16) 0.9709 95.04% 90.10% 90.22% 0.9560 89.95% 89.75% 89.76% 

Imp50 LVs: 14 (10-16) 0.9716 94.54% 90.63% 90.73% 0.9619 90.65% 90.39% 90.40% 

Imp70 LVs: 13 (10-18) 0.9976 91.46% 89.58% 89.63% 0.9492 87.56% 89.49% 89.44% 

Imp90 LVs: 7 (2-16) 0.9881 69.69% 69.11% 69.12% 0.7243 65.54% 69.10% 69.01% 

 

 6.3.3 Limitations and future research 

 

The results of this study showed that NIR spectroscopy could be used to develop models capable 

of correctly identifying atypical and typical sugarcane samples with equal skill. In particular, the 

combination of PLS-DA and SNV-First pre-processing resulted in greater than 88% correct 

classification rate for both atypical and typical samples and greater than 90% when a feature 

selection stage was used. However, the large imbalance in classes means that even though 

classification rates were equal, the model still identifies more typical samples as atypical than 

correctly identified atypical samples (Table 6.5). Table 6.5 shows the confusion matrix for the 

PLS-DA model using SNV-First pre-processing. On average many more samples are incorrectly 

classified as atypical (FP) than are correctly classified (TP), despite the high sensitivity (CCRatypical). 
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Table 6.5. Confusion matrix for PLS-DA using SNV-First. Values represent number of samples 
and are averaged across all model runs. N represents the total number of samples in the 
validation set. Values in dashed boxes represent sub-totals. TN, FN, FP and TP represent the true 
negative, false negative, false positive and true positive rates respectively. The same number of 
typical and atypical samples were present in each model run.  

  Predicted  

O
bs

er
ve

d 

N = 6399 Typical Atypical  

Typical TN = 5535.37 FP = 701.63 6237 

Atypical FN = 18.38 TP =143.62 162 

 5553.75 845.25  

 

In a practical process control endeavour, it may be more beneficial to increase the accuracy of 

typical samples at the expense of fewer atypical samples being identified. For example, the 

boundary between ‘atypical’ and ‘typical’ is unlikely to be a hard cut-off. This means that some 

samples currently predicted as ‘atypical’ may be only slightly deteriorated such that no change 

in processing is required. The lack of clear definition between atypical and typical was a 

challenge and potential limitation in this project. To address the issue, future research should 

consider having models return a probability that a sample is atypical. The probability that a 

sample is atypical would provide a convenient tuneable cut-off for process control. A next step 

may also include a more in-depth analysis of the samples that are incorrectly classified this may 

give a clearer picture of the differences between typical and atypical samples. Unfortunately, 

this was outside the scope of the current work.  

 

Future research will also need to consider model performance across years and model transfer 

between NIR systems. Although data from four years was included in this study, data from all 

years was evenly divided between calibration and validation sets. Year to year variability would 

affect model performance on data from years not included in the model building process (Guo 

et al., 2017; Hong et al., 2019; Shetty et al., 2012).  One method to overcome this is to update 

the model to include samples with reference (laboratory) values from the current year (Hong et 

al., 2019, Huang et al., 2016, Shetty et al., 2012). However, this would require more samples 

analysed in the laboratory and could prove expensive or inefficient. An alternative may be the 

use of semi-supervised or ‘active learning’ to update models using samples without reference 

data (Gujral et al., 2011, Guo et al., 2017, Nikzad-Langerodi et al., 2018).  For example, Guo et 

al. (2017) were able to improve variety classification of maize seeds based on hyperspectral 

imaging using a pre-labelling method. Improved classification was achieved by adding selected 

new samples and their predicted class to the training set and then retraining the model.  
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The results presented here highlight the importance of considering the influences of pre-

processing on comparisons of modelling techniques. Different pre-processing approaches were 

required to achieve better performance for different modelling techniques. A more subtle effect 

was the effect of pre-processing on hyper-parameter tuning. Partial least squares is often used 

for NIR analysis within agricultural industries. In order to build robust models, simple models 

are often sought. In this case, second derivative or wavelet transformations may have been a 

more appropriate pre-processing technique.  Future model comparisons should consider that 

the reverse could also be true. The range of valid hyper-parameter values for model tuning may 

differ depending on the pre-processing approach used.  

 

6.4 Conclusions 

 

Chapter 6 investigated the classification of ‘atypical’ sugarcane samples in a large online cane 

analysis dataset. The variability of an online system and the large imbalance in class sizes were 

particular difficulties faced in this analysis. Despite these challenges, a combination of PLS-DA, 

SNV-First derivative transform and down-sampling resulted in a well-balanced discriminative 

model. This methodology can be used to develop a discriminative model that identifies all 

samples as atypical or typical samples not just those analysed within the laboratory. The 

methodology can also be used to develop process control logic that allows atypical samples to 

be treated separately if needed. The relatively high performance of PLS-DA is particularly 

promising as PLS approaches are already used within the sugarcane industry and are simple and 

fast to develop and update.  Here we have described an initial estimation of ‘atypical’ and 

developed a framework for developing discriminatory models. In future, the sugarcane industry 

will need to investigate the differences between atypical and typical cane. The methodology 

outlined here could easily be adapted to any new definition of ‘atypical’ or other highly 

imbalanced classification problem such as variety discrimination. 

 

6.5 Chapter 6 Summary 

 

In any given season, thousands of tonnes of sugarcane with atypically low quality can pass 

undocumented through Australian sugarcane mills. This cane can negatively affect mill 

processes and throw off grower payment calculations. Mill laboratory operators often observe 

a small subset (1% - 5%) of cane consignments that have an unusually low juice Pol (Pij; a 

measure of sucrose content) relative to juice brix (Bij; a measure of dissolved sugars), that can 
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indicate deteriorated or contaminated cane. Many mills only test a small subset of cane in the 

laboratory, with the majority of consignments analysed using fast near infrared (NIR) 

spectroscopic techniques. This chapter compared five modelling approaches: Linear 

discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA), random forest 

(RF), Artificial Neural Networks (ANN) and Support Vector Machines (SVM). Model performance 

was reported as the correct classification rate (CCR) of typical and atypical samples based on 

independent test sets. The best performance was achieved by PLS-DA (CCRatypical = 88.65% and 

CCRtypical = 88.75%), while ANN had the lowest performance (CCRatypical = 85.27% and CCRtypical = 

83.66%). PLS-DA accuracy modestly increased if wavelengths were filtered based on genetic 

algorithm feature selection (CCRatypical = 90.39% and CCRtypical = 90.65%).  

 

The focus of Chapter 6 was Objective 2 of the thesis: Investigating the use of NIR spectroscopic 

analysis for the automatic identification of atypical cane samples. The results of Chapter 6 

echoed the results of Chapter 4, showing that the simpler PLS based approach was as or more 

effective than more complex machine learning approaches such as SVM and ANN. Results also 

showed that some spectral pre-processing approaches were more effective for certain 

modelling approaches and that feature selection could improve model performance. The most 

important result was the ability to discriminate between atypical and typical cane samples using 

PLS-DA, given that PLS approaches are well understood within industry. The methodology used 

in this chapter could be used to identify atypical consignments allowing mills to track 

occurrences to farms and if necessary develop process control operations for atypical cane. 

Furthermore, the use of a relatively simple modelling technique such as PLS-DA means model 

updates can be made efficiently and with confidence as PLS is already well established within 

the industry. 

 

The outcomes of Chapter 6 were also an important contribution to the literature to emphasise 

the importance of testing data pre-processing and how calibration data is set-up, rather than 

only testing a range of modelling approaches. The PLS-DA modelling process developed in 

Chapter 6 was used in the development of a process-based modelling framework for estimating 

cane quality parameters in Chapter 7. 
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Chapter 7  

 

Correcting NIR estimates of cane quality for atypical cane 
samples in an online analysis system 
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7.1 Introduction 

 

For over a decade near infrared (NIR) spectroscopic analysis has played a crucial role in the 

sugarcane industry as a rapid and inexpensive method for estimating cane quality parameters 

such as Brix in juice (Bij), Pol in juice (Pij) and Commercial Cane Sugar (CCS).  The importance of 

quality estimation cannot be understated as measures such as CCS are often the primary 

measure on which grower payments are determined (Pollock et al., 2007).  However, the 

potential of NIR as a process control tool is often overlooked within the Australian sugarcane 

industry (Simpson et al., 2011).   

 

NIR spectroscopic analysis for quality monitoring has been used online in Australian sugarcane 

mills for close to two decades. The first online systems were Cane Analysis Systems (CAS) and 

were designed to estimate quality measures from shredded cane (Staunton et al., 2004, 

Staunton et al., 1999). These systems were developed to estimate quality measures such as Bij, 

Pij and CCS(Staunton et al., 2004). But also considered other constituents that can affect 

millability such as ash, fibre and dry matter percentage in cane, as well as elemental constituents 

such as nitrogen, potassium, calcium and magnesium (Staunton et al., 1999).  Later online 

systems were developed to assess similar measures for raw sugar (Bevin et al., 2002) and 

bagasse (Staunton and Wardrop, 2006), with inroads being made towards assesment for mill 
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mud andother mill byproducts (Keeffe, 2013, Ostatek-Boczynski et al., 2013, Purcell et al., 2012). 

The ability to continuously monitor these properties throughout the milling processes has the 

potential to be beneficial by allowing any sudden changes in quality parameters to be quickly 

identified. While there are a range of published results focusing on the accuracy of NIR analysis 

there are very little available literature on how this data is used by the sugar industry. 

 

In a review of process control within the Australian sugarcane industry Simpson et al. (2011) 

suggested  

“ …the real power of NIR technology is not solely in the data that is produced, 

but in how that data is applied to bring gains to the industry.” 

Examples of the use of NIR in process control included maceration rate control (Lloyd et al., 

2010); clarifier phosphate addition (Markley et al., 2009) and perhaps most impresively, the 

development of LoGiCaneTM, the first naturally low GI (glycemic index) sugar  (Kannar et al., 

2009). Traceablility and mapping of productivity data and nutrient levels; mill maintence 

scheduling and identification of the best use of bagasse were also noted as potential added 

value from NIR analysis within mills. However, there is no evidence of these approaches being 

further developed in the current literature.  

 

Maceration is the process of adding wash-water to the milling operation and is crucial for 

efficent sugar extraction. Lloyd et al. (2010) describe a trial at the Marian Mill in Queensland, 

Australia. Here, online NIR based estimates of cane fibre were used in conjunction with mill 

operational data in order to automatically adjust maceration addition rates. The trial was 

successfully completed and allowed easy control of maceration rates but improvement of 

standard practices could not be statistically tested. Similarly,  Markley et al. (2009) describe 

small trials at Marina mill in 2010 for phosphate and flocculent clarifier addition. A minimum 

level of phosphate in juice is required for the proper performance of juice clarifiers that help 

remove dirt and mud from juice. NIR estimates of juice phosphate levels were used to 

automatically control the addition of phosphate to the juice. Control logic was also used to 

adjust flocculant additon based on NIR estimates of incoming ash, which can be indicative of 

dirt and mud levels. While these reports show that NIR can be used for process control in 

practice there was little or no evidence of the true benefits or further adoption of these 

approaches by industry. In comparison, LoGiCaneTM provides a very strong case for the possible 

benefits of using NIR analysis for process control.  
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Low GI foods have health benefits by reducing the rate of glucose and insulin production in the 

body compared to high GI foods. LoGiCaneTM was developed to have a lower GI than regular 

white or raw sugars by increasing the presence of polyphenols and minerals (O'Shea et al., 

2010). NIR analysis of sugar is used to monitor polyphenols and minerals. Spray applications can 

then be used to increase their levels as need using molasses extracts (Simpson et al., 2011). For 

more details interested readers should refer to the original patent application (Kannar et al., 

2009). The ability to monitor and control mill processes based on real-time analysis is central to 

the success of this innovative product. Despite this, there is little evidence in the literature of 

further developments in process control or other value adding initiatives that make use of online 

NIR analysis. Some of the most recent applications appear in the South African sugarcane 

industry where NIR quality monitoring has been shown to be beneficial in mill maintanence by 

allowing mills to identify that evaporator inversion loss were the cause of undetermine sucrose 

losses (Dairam et al., 2016) and to produce continuous measures of target purity differences, an 

indicator of malfunctions in the centrifuge (Gounden and Walthew, 2018).  

 

The apparent lack of development in this area may be due to a lack of trust in NIR analysis and 

a perceived lack of benefit of process control. As an example, in considering NIR analysis within 

the South African industry Walford (2019) suggested that two main hurdles to acceptance of 

NIR analysis  were that factorty staff “considered conventional analysis as the absolute truth” 

and an inherent resistance to change. This means that any errors in NIR analysis would seriously 

erode trust while any accurate predictions may be met with stoic indifference. Futhermore, the 

lack of economic or wider benefits in the literature suggest that much of the potential value of 

online analysis is likely lost on any but those directly involved in milling. Apart from the case of 

LoGiCaneTM and direct quality measure used in cane payment, the uses of online NIR analysis 

found in the literature are focused on benefits to the mill, largely through automation. This 

would make it difficult to engage with industry parties in the wider value chain.  

 

One area where online NIR analysis and process control could have a large impact across the 

value chain is in the identification and treatment of deteriorated, contaminated or otherwise 

atypical cane. Cane deterioration in particular can be very detrimental to mill processes. 

Deterioration largely occurs due to bacterial infections. Bacteria enter the cane through any 

damage and metabolise sucrose into less economic products such as organic acids, complex 

polysaccharides (e.g. dextran) and gums (Solomon, 2009). Any damage to the cane stalk can be 

a potential entryway for bacteria. Therefore, insect damage and animal damage pre-harvest can 
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cause adverse deterioration. Mechanical harvesting chops cane stalks into small billet so that 

any delays in crushing can lead to further deterioration (Saxena et al., 2010).  The presence of 

complex sugars and gums can cause higher viscosity and longer crystalization times (Solomon, 

2009) and hence can result in greater need for mill maintainence.  Lionnet (1986) showed that 

cane deterioration can also affect pol readings. In particular as the cane deteriorates Pol as 

measured by a polimeter becomes an unreliable representation of sucrose. This suggests that 

Pol is a different measure for deteriorated cane which will have a direct effect on the calculation 

of cane quality measures used in cane payment schemes in the Australian sugar industry. 

 

Contamination in the form of high levels of leaf trash or dirt can also affect standard analysis of 

cane quality measures. In particular, contamination can inflate laboratory Brix values calculated 

by hydrometer. If high levels of contaminates are noticed, laboratory Brix measures can be 

suitably adjusted. However, the effect of such events on NIR analysis are as yet undocumented. 

One reason for this is the lack of a consistent industry wide definition for when  sugarcane 

should be considered deteriorated or contaminated. Furthermore, methods for calculating 

deterioration indicators such as the presence of ethanol and manitol are time consuming and 

expensive (Van Heerden et al., 2014).  

 

The results of Chapters 5 and 6 have shown that online NIR analysis can be used to identify 

‘atypical’ cane samples. These atypical samples were defined as sugarcane that did not follow 

the linear relationship between Pij and Bij and had unusally low laboratory Pij compared to their 

recorded Bij. These samples could represent deteriorated (unusually low Pij) or contaminated 

(unusually high Bij) samples. Classification rates in Chapter 6 were  greater than 80% for both 

atypical and typical cane samples when the full NIR spectrum was used and greater than 90% 

when a feature selection process was used. These results suggest that the PLS-DA modelling 

framework could be used to trace atypical cane samples to identify causes or in process control 

logic in the mill. However, like many reported NIR analyses, there is as yet no practical examples 

of how this information could be used to benefit the sugar industry as a whole. Atypical cane 

samples represent only a small fraction of all samples processed by the mill (approximately 3%; 

Chapter 5). It is possible then that NIR analysis may struggle to match laboratory estimates of 

these samples.  

 

The objective of this Chapter was to combine the methodologies for quality estimation and 

atypical sample detection developed and applied in previous Chapters. The aim was to use the 
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lessons learnt to demonstrate the ability of NIR analysis to estimate three cane quality 

measures: Brix in juice (Bij), Pol in juice (Pij) and Commercial Cane Sugar (CCS) for atypical 

samples. Specifically, to demonstrate how a process-based workflow can be used to modify 

these estimates in a practice. Cane deterioration and contamination can have a large impact on 

cane quality parameters and is a potentially powerful tool in showing the benefits of using data 

from online NIR analysis. Furthermore, the importance of cane quality is easily recognised not 

only within the mill but all along the value chain. 

 

7.2 Materials and methods 

 

The research methodology (Figure 7.1) used the following steps: 

1. Partial least squares discriminant analysis (PLS-DA; (Barker and Rayens, 2003)) 

classification model is built to identify cane samples as typical or atypical following the 

methodology outlined in Chapter 6. The PLS-DA model using feature selection was used 

as it provided the greatest accuracy for both typical and atypical samples compared to 

other classification techniques considered (Chapter 6). Classification models were used 

to  produce a probability that a sample is atypical. 

2. Partial least squares regression (PLSR; (Wold et al., 2001)) is then used to build models 

of Bij, Pij and CCS (Chapter 3 and Chapter 4). For each quality, measure two PLSR models 

are built: A baseline model using all available samples and a model specifically for 

atypical samples. 

3. A process-based approach was then used to sample quality measures. If a sample was 

considered atypical, the atypical model was used, otherwise the baseline model was 

used. A calibration set was used to select the cut-off probability at which a sample was 

considered atypical based on overall RMSEC.  

4. The strengths and weaknesses of the baseline models and the process-based approach 

were compared based on model performance on an independent validation set. 

All models were tuned through cross-validation on a calibration data set and validated on an 

independent validation set. All models were built using R (R Core Team, 2017).  
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Figure 7.1. Overview of methodology 

 

 7.2.1 Data 

 

Data were collected from a single sugarcane mill in Northern Queensland, Australia. Data 

represent consignments from the 2006 - 2009 season that had sufficient NIR spectral data and 

laboratory analysis of cane quality measures. Brix in juice (Bij), Pol in juice (Pij) and commercial 

cane sugar (CCS) measures were acquired from the laboratory. Building on the methodologies 

developed in Chapter 5 and Chapter 6, atypical samples were defined based on the linear 

relationship between Pij and Bij across all seasons. In total 12,798 samples were included in the 

analysis. Spectral data were pre-processed using a combination of standard normal variate 

(Barnes et al., 1989) and Savitzky-Golay First derivative transformation (Savitzky and Golay, 

1964). The SG derivative used a second degree polynomial and a window width of 13. Spectral 

pre-processing was computed using the prospectr package in R (Stevens and Ramirez-Lopez, 

2013). 

 

Data were divided evenly into a calibration and validation data set of 6,993 samples each. Data 

were divided using a stratified random sampling approach such that the proportion of typical 

and atypical samples was maintained in each set (Table 7.1). The cane quality parameters was 

relatively evenly distributed between the calibration and validation sets, with similar levels of 

typical and atypical samples from each season represented in each set. From (Table 7.1) it can 

be seen that samples defined as atypical tended to have lower Pij and CCS.  
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Table 7.1. Overview of data used in this Chapter. Pij, Bij, CCS and AP are laboratory measured 
data represented by the mean and standard deviation (SD). 

Set Season Type 
Number 

of 
samples 

Pij (SD) Bij (SD) CCS (SD) 

Calibration 
 

2006 
 

atypical 35 17.7(1.61) 22.01(1.45) 11.99(1.33) 
typical 1844 18.26(1.9) 20.79(1.77) 13.33(1.49) 

2007 
 

atypical 52 16.3(2.58) 20.79(2.16) 11.04(2.32) 
typical 1595 18.5(1.96) 21.1(1.8) 13.51(1.51) 

2008 
 

atypical 39 17.48(1.92) 21.82(1.54) 12.21(1.76) 
typical 1474 19.79(1.68) 22.28(1.54) 14.47(1.29) 

2009 
 

atypical 36 18.02(1.88) 22.34(1.56) 12.12(1.74) 
typical 1324 19.52(1.51) 22.02(1.41) 14.22(1.18) 

Validation 
 

2006 
 

atypical 37 17.72(1.46) 22.25(1.38) 11.86(1.15) 
typical 1805 18.22(1.86) 20.75(1.73) 13.31(1.46) 

2007 
 

atypical 53 16.09(2.83) 20.67(2.37) 10.9(2.54) 
typical 1616 18.52(1.93) 21.13(1.78) 13.52(1.49) 

2008 
 

atypical 36 17.49(2.08) 21.85(1.62) 12.11(1.84) 
typical 1472 19.88(1.61) 22.34(1.48) 14.54(1.24) 

2009 
 

atypical 36 18.04(1.74) 22.37(1.47) 12.22(1.64) 
typical 1344 19.48(1.49) 22(1.41) 14.19(1.17) 

 

 7.2.2 Discrimination of atypical and typical samples 

 

Following the methodology outlined in Chapter 6, a discrimination model was built using PLS-

DA to differentiate between atypical and typical samples (Figure 7.2). The PLS-DA models were 

built using the caret package in R (Kuhn and Johnson, 2013a, Martens et al., 1992). Class 

probabilities were calculated using the softmax function. Class predictions were considered the 

class with the highest probability (>0.5). The number of latent variables was tuned through a 

five-fold cross-validation over a range of 1 – 20. The cross-validated ROC AUC score was used to 

select the best number of latent variables as the number of latent variables that maximized the 

AUC. 

 

A genetic algorithm feature selection process was used in order to identify influential 

wavelengths (Xiaobo et al., 2010). Based on the results of Chapter 6, the wavelengths used were 

those that were selected in more than 50% of GAFS runs during cross-validation as this proved 

to result in higher model accuracy in validation (GAFS-Imp50; Chapter 6). In comparison to 

Chapter 6, a single realization was used so that misclassifications could be investigated in greater 

detail. 
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Figure 7.2. Discrimination model methodology. 

 

Discrimination model performance was recorded as overall Accuracy such that:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
× 100. (7-1) 

Correct classification rates for atypical and typical samples were also recorded, where 

𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
× 100 (7-2) 

and 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
× 100. (7-3) 

Model performance was recorded for both the calibration and validation data sets. When the 

final model was applied to the calibration and validation data sets, the softmax probabilities 

were recorded along with class predictions. 

 

 7.2.3 Estimating cane quality 

 

Following the methodology outlined in Chapter 4, PLSR models of Bij, Pij and CCS. PLSR models 

were built using the pls package (Mevik et al., 2015) in R. The number of latent variables was 

tuned through five-fold cross-validation of the calibration set. The best number of latent 
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variables was selected based on the one standard error approach (Hastie et al., 2013b, Kuhn, 

2017), using model RMSECV (root mean square error of cross-validation) as the objective 

function. The one standard error approach was used to reduce the tendency of the model to 

overfit to the training set as pre-testing showed that the ‘best’ result was usually the maximum 

number of latent variables allowed. Cross-validation sets were split such that each split covered 

the variability of the target quality measure. 

 

For each quality measure, three PLSR models were built: 

1. baseline: all samples from the calibration set were used in developing the PLSR models 

2. atypical: Only samples defined as atypical were used in model development 

Model performance was investigated based on RMSE, R2 and Bias. RMSE values were calculated 

as 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
,                                                                                    (7-4) 

while R2 values were calculated as 

𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1

.                (7-5) 

and Bias was calculated as 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = ∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖)𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 .  (7-6) 

Validation set performance statistics RMSEP, R2
p and Biasp were recorded for all samples as well 

as for atypical and typical samples individually. Results from the baseline models were used to 

investigate the difference in model performance between sample types. Baseline and atypical 

models were then used in the process-based approach (Figure 7.3). The validation set Residual 

Prediction Deviation (RPD) and the slope of the regression line between predicted and observed 

data were also recorded for completeness. The RPD statistic represents a ratio of the observed 

variance and model error variance and is considered an important statistic in reporting NIRS 

model analysis (Williams et al., 2017).  
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Figure 7.3. Methodology overview for modelling cane quality. 

 

 7.2.4 Process-based estimation of cane quality 

 

A process-based approach was used to estimate cane quality of typical and atypical samples 

independently using predicted class probability (Figure 7.4). For each sample, the final PLS-DA 

model was used to predict the probability that a sample was atypical. If the predicted probability 

was greater than some cut-off (p) then the final PLSR models for atypical samples were used to 

predict sample quality parameters. Otherwise, the baseline PLSR models were used. This 

process-based approach allowed the cut-off value p to be tuned to suite any desired outcome. 
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Figure 7.4. Methodology overview for process-based estimates of cane quality. 

 

The calibration set was used to tune the cut-of probability (p) for each quality measure. The best 

p value was defined as the lowest cut-off that resulted in no reduction in overall RMSEP (RMSEP 

of all samples) compared to the baseline model. The value p was changed from 0 (all samples 

considered atypical) to 1 (all samples considered typical) at intervals of 0.001. This resulted in 

the lowest possible RMSEP for atypical samples, without reducing overall model performance. 

The effect of cut-off value on model performance and the discrimination ROC curve were 

explored graphically. Finally, model performance on the validation set using the optimum cut-

offs were compared to the baseline modelling approach.  

 

7.3 Results and discussion 

 7.3.1 Discrimination of atypical and typical samples 

 

The final discrimination model used 14 latent variables, based on the 345 wavelengths selected 

by the genetic algorithm feature selection stage. The discrimination model performed well for 

both calibration and validation data sets (Table 7.2). The similarity between calibration and 

validation sets is promising as it suggests that the model was not overfit to the training set. 

However, performance may be optimistic as the Calibration set was representative of the 

validation set (Table 7.2). The results presented in Table 7.2 are similar to those reported in 

Chapter 6 with a slightly higher correct classification rate for atypical samples and slightly lower 

correct classification rate for typical samples. Model performance was considered appropriate 

for the further investigation of class probabilities. 
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Table 7.2. Calibration and validation statistics for classification model. True/False atypical count 
records the number of samples correctly and incorrectly identified as atypical. Atypical rate 
records the percentage of samples predicted as atypical. In both calibration and validation sets 
2.53% of samples were defined as atypical. 

Set 
True 

Atypical 
Count 

False 
Atypical 
Count 

Atypical 
Rate AUC CCRatypical CCRtypical Accuracy 

Calibration 149 632 12.21% 0.9708 91.98% 89.87% 89.92% 

Validation 152 664 12.75% 0.9629 93.83% 89.35% 89.47% 

 

The results presented in Table 7.2 make use of the default model classification and are 

equivalent to using a probability cut-off of 0.5. That is, a sample was considered atypical if the 

predicted probability index was greater than 0.5. Although classification rates are relatively high 

for both atypical and typical samples, there was more than four times as many false atypical 

classifications as true atypical classifications (Table 7.2), resulting in a predicted atypical rate of 

>12%. This is much higher than the defined rate of 2.57%. 

 

The samples incorrectly identified as atypical may be a result of ‘arbitrary’ cut-off that defines 

atypical samples. For example, atypical samples were defined as having unusually low 

laboratory Pij relative to laboratory Bij which may be caused by deterioration or contamination. 

Samples that have low levels of deterioration or contamination may be identified as atypical 

even though the lab measured Pij has not been affected. 

 

The use of down-sampling resulted in a model with good skill for both atypical and typical 

samples. However, the much higher number of false atypical samples may be inappropriate 

depending on the intended application. Modifying the probability cut-off and exploring the ROC 

curve in the calibration set showed that using a cut-off of 0.652 resulted in a predicted atypical 

rate of 2.47%. This was much closer to the defined rate. These results showed that the pseudo-

probability cut-off could be used to modify the correct classification rates of typical and atypical 

samples as needed and therefore could be used as a tuneable parameter for process decisions. 

 

 7.3.2 Quality estimation of atypical samples using PLSR 

 

All three quality measures were well estimated by the baseline PLSR model (Table 7.3). 

RMSEP for Bij (RMSEP  = 0.289%), Pij (RMSEP  = 0.362%) and CCS (RMSEP  = 0.394%) 

were low and compare well with the results found in Chapter 3 and Chapter 4 as well as 
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previous research (Staunton et al., 1999, Staunton et al., 2004). When all samples were 

considered bias was also relatively low for all measures. The consistency of these results 

with previous industry results confirm that the PLSR models used are a good baseline to 

explore the differences in model skill between atypical and typical samples. 

 

Table 7.3. Validation set skill for baseline PLSR and process based class modelling approaches. 
Model skill was assessed as Bias, RMSE and R2 for Bij, Pij and CCS. Model skill was recorded for 
atypical and typical and across all samples.  Validation Slope and Residual Prediction Deviation 

(RPD) were recorded for completeness. 
Model Measure Tuning 

parameters 

Type Biasp RMSEP Rp
2 Slopep

a RPDp
b 

Baseline 

PLSR 

 

Bij No. LVs: 14 Atypical -0.089 0.450 0.946 0.961 4.333 

Typical 0.015 0.285 0.973 0.974 6.127 

All 0.012 0.290 0.973 0.973 6.034 

Pij No. LVs: 15 Atypical 0.717 1.016 0.804 0.876 2.266 

Typical -0.008 0.331 0.969 0.974 5.663 

All 0.011 0.365 0.963 0.962 5.229 

CCS No. LVs: 15 Atypical 0.890 1.181 0.651 0.804 1.697 

Typical -0.015 0.351 0.941 0.954 4.120 

All 0.008 0.394 0.931 0.928 3.810 

Process 

based 

Bij No. LVs: 14 

Atypical LV’s: 7 

Cut-off: 0.929 

Atypical -0.093 0.453 0.946 0.963 4.297 

Typical 0.015 0.285 0.973 0.974 6.126 

All 0.012 0.291 0.972 0.973 6.030 

Pij No. LVs: 15 

Atypical LV’s: 10 

Cut-off: 0.601 

Atypical 0.296 0.839 0.867 0.928 2.746 

Typical -0.018 0.347 0.966 0.974 5.401 

All -0.010 0.368 0.963 0.969 5.184 

CCS LV’s: 15 

Atypical LV’s: 11 

Cut-off: 0.616 

Atypical 0.407 0.937 0.780 0.903 2.139 

Typical -0.028 0.370 0.935 0.959 3.915 

All -0.017 0.394 0.931 0.948 3.812 
aSlope was calculated as the 𝜷𝜷 coefficient of the linear least squares fit of  𝒚𝒚� = 𝛽𝛽𝒚𝒚 + 𝑐𝑐 
bBias was calculated as mean difference between predictions and observations 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖)

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 

cRPD was calculated as the ratio of the standard deviation of the observations in the validation set and 

the RMSEP 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑠𝑠𝑠𝑠(𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝)
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠(𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝) = �∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦�)^2
𝑁𝑁𝑝𝑝
𝑖𝑖=1
𝑁𝑁𝑝𝑝−1

 

 

When RMSEP and Biasp were considered for atypical and typical samples separately, it was 

evident that atypical samples had higher RMSE, lower R2 and larger biases (Table 7.3). In 

particular, RMSEP of atypical samples was more than twice as large as typical samples for Pij 
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and CCS. Comparison of RPD values between atypical and typical values agreed with the results 

for RMSEP with higher values for typical samples and lower values for atypical samples 

suggesting that atypical samples were more difficult to estimate. 

 

The large RMSEP of atypical samples for Pij and CCS would likely not be considered accurate 

enough for practical application if atypical samples were estimated alone. Bias of atypical 

samples for Pij (Bias = +0.706) and CCS (Bias = +0.903) were much higher than typical samples. 

The positive bias represented a tendency to overestimate Pij and CCS for atypical samples. 

Graphically, the bias of atypical samples was much more evident for Pij (Figure 7.5(c)) and CCS 

(Figure 7.5(e)) than Bij (Figure 7.5(a)).  Interestingly, the tendency to overestimate atypical 

samples was not limited to samples with low Pij or CCS. While lower values had a larger 

overestimation atypical samples were overestimated regardless of observed value. 

 

The overestimation and higher RMSE of Pij and CCS for atypical samples is an important result. 

The baseline PLSR approach has the advantage of being relatively simple to maintain. 

Furthermore, it is possible to ‘look inside’ the model and identify how spectral data are related 

to the quality measure estimated. This simple approach has been shown to work as well as more 

complex machine learning approaches (Chapter 3; Chapter 4). However, the results presented 

here show that atypical samples represent a definable subset of samples that are consistently 

miss-represented. This result suggests that identifying atypical samples could be used to directly 

affect the NIR analysis of cane quality. Specifically a positive bias or overestimated cane samples 

represent an overpayment for the mill compared to laboratory analysis. Identifying atypical 

samples and removing this bias would reduce expense for the mill as well as identifying samples 

that may reduce mill efficiency and allowing for early management interventions. 
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Figure 7.5. Model errors as function of observed value for Bij (a, b), Pij (c, d) and CCS (e, f). 
Errors represent the baseline PLSR (a, c and e) and process-based (b, d, f) PLSR modelling 

approaches. 
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 7.3.3 Tuning cut-off for tuned class approach 

 

Modelling atypical samples as a separate population resulted in lower calibration RMSEC 

compared to the default PLSR models for each quality measure. RMSEC of atypical samples on 

the calibration set for Bij, Pij and CCS were (0.506%), (0.599%) and (0.585%) respectively. This 

was a reduction of (2.67%) (36.21%) and (46.33%) relative to the baseline PLSR model. These 

results suggest that if perfect knowledge of atypical samples was possible, quality estimates for 

atypical samples could be improved. However, RMSEC of atypical samples was still larger than 

results for overall model performance.  

 

Probability cut-off points for Bij, Pij and CCS tuned class approach were 0.929, 0.616 and 0.601 

respectively (Table 7.3). The cut-off for Pij and CCS reduced the correct classification rate of 

atypical samples to < 70% but also reduced the predicted atypical rate to < 5% (Figure 7.6(a)). 

This atypical rate is much closer to the 2.53% observed rate. The selected cut-off reduced the 

calibration RMSE of Pij (Figure 7.6(c)) and CCS (Figure 7.6(d)) without reducing the overall RMSE. 

In comparison, the selected cut-off for Bij resulted in all samples being considered typical and 

therefore did not reduce the calibration RMSE of atypical samples. This suggests that it was not 

effective to treat atypical samples separately when estimating Bij but was effective for Pij and 

CCS.  
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Figure 7.6. Model accuracy measures for calibration data. (a) ROC curve for PLS-DA model. 

Line shows the trade-off between Sensitivity (CCRatypical) and Specificity (CCRtypical) for a given 
cut-off probability. Figures (b), (c) and (d) show RMSEC at various cut-off probabilities for Bij, 
Pij and CCS respectively. Lines represent atypical (red), typical (black) and all samples (grey).  

 

 7.3.4 Comparison of modelling approaches 

 

When applied to the validation data set, the process-based approach maintained very similar 

RMSE to the baseline PLSR model for each quality measure (Table 7.3). This shows that tuning 

on the calibration set was effective. The close match between tuned and baseline PLSR on the 

validation set may also be attributed to the calibration set being a good representation of the 

validation set. However, there were evident differences in the RMSEP of atypical samples. In 

particular, RMSEP of atypical samples for Pij and CCS were approximately 17% and 20% lower 

than baseline models (Table 7.3). RMSEP of Bij for atypical samples actually increased when the 

process-based approach was used. 

 

The greatest difference between baseline and process-based approaches was the Bias of 

atypical samples for Pij and CCS. Bias of Pij and CCS was 0.296% and 0.407% respectively when 
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the process-based approach was used. This was more than 50% lower than the respective 

baseline models. While RMSEP for quality measures were lower for Pij and CCS the spread of 

errors may have been higher (Figure 7.5).  This spread is likely due to errors in the atypical 

models themselves as well as errors due to the classification model. For example, the two 

samples with the highest error in CCS for the baseline model (Figure 7.5(e)) have the same errors 

using the process-based approach (Figure 7.5(f)). This means that despite being defined as 

atypical samples, they were not predicted to be atypical by the process-based approach. These 

may be true outliers that could have been removed from the model building process to improve 

model accuracy or may be misclassifications due to the change in cut-off value p. These results 

suggest that both PLS-DA and PLSR models could be improved further. 

 

The advantages of the baseline PLSR modelling approach are the ease of use, relative simplicity 

and good overall modelling accuracy. The PLSR approach is already widely established within 

industry and overall accuracy in terms of RMSEP was not effectively improved by using a 

process-based approach. In comparison the process-based approach requires the maintenance 

of several algorithms each of which can allow errors to creep into the estimation of cane quality 

parameters. However, with the added complexity of the process-based approach comes the 

reduction in bias of atypical samples for Pij and CCS. A drop in CCS bias of 0.483% CCS represents 

0.483 tonnes of sugar per 100 tonnes of ‘atypical’ cane produced. At 2.54% atypical rate and a 

conservative 500,000 tonnes of cane processed by the mill each year, this is equivalent to a 

saving of approximately 62 tonnes of sugar paid for by the mill when using the process-based 

approach. 

 

Results from Chapter 6 suggested that identification of atypical samples at the mill could be 

used to identify when and where atypical samples are occurring allowing for management 

interventions. The results of this study show that it is also possible to use the information 

generated by a classification model in process control within a sugarcane mill. In this study we 

demonstrated that this could have direct effects on quality estimates. However, a similar 

approach could be used in future to separate atypical cane for use in alternative production 

lines such as biofuels or to reschedule mill maintenance. By using a probability output rather 

than a simple binary classification, it is possible to modify the process to suit the desired 

outcome.  
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7.4 Conclusion 

 

Sucrose based quality measures such as Pij and CCS of atypical samples tend to be 

overestimated by NIR analysis. This overestimation makes sense if atypical samples are indeed 

deteriorated or contaminated. However, to the best of our knowledge, this is the first time such 

a bias has been reported in the literature. The fact that a definable and identifiable subset of 

samples is consistently misrepresented will have important implications for the sugarcane 

industry in terms of cane payment calculations and potentially mill maintenance. By making 

effective use of NIR analysis that identifies atypical samples it was possible to remove some of 

this bias. This potential benefit comes at the cost of a more complex modelling approach and 

the need to maintain multiple models. The use of such a methodology for modifying cane quality 

estimates will need to be considered carefully, given the importance of quality in cane payment 

schemes. However, these results highlight the power of NIR analysis for mill processes and the 

potential benefits of making the most of NIR analysis data.  Future research could consider 

extending this methodology to address a range of early interventions such as mill maintenance 

scheduling and tracking the source of atypical samples.  
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7.5. Chapter 7 summary 

 

In any given season, laboratory processes in sugarcane mills identify a certain percentage of 

atypically low quality cane samples. Recent research has shown that these samples can be 

detected using NIR analysis systems already used in mills. However, there was still little research 

on how NIR based quality measures should be estimated for these samples. Chapter 7 explored 

a process-based approach to estimating cane quality measures for atypical samples using NIR 

analysis. A PLS-DA model was used to predict the probability of a sample being atypical. Three 

sugarcane quality measures (Pol in juice, Brix in juice and CCS) were then estimated using partial 

least squares regression. If a sample was identified as atypical an atypical specific PLSR model 

was used to estimate quality parameters. Results of this study showed that Pol-based quality 

estimates (Pij and CCS) for samples identified as atypical are over-estimated using a baseline 

PLSR approach. By making use of the probability of a sample being atypical, it was possible to 

reduce this bias without increasing overall model root mean square error.   

 

The focus of Chapter 7 was Objective 3 of the thesis:  Investigating the use of NIR classification 

data to improve estimates of cane quality parameters for atypical cane samples. The results 

from Chapter 7 showed that Pol-based quality estimates (Pij and CCS) for samples identified as 

atypical are over-estimated using a baseline PLSR approach. By making use of the probability of 

a sample being atypical, it was possible to reduce this bias without increasing overall model root 

mean square error.  These results show that NIR analysis can be used not only to identify and 

track atypical samples, but in process control within the mill. By using class probability as a 

tuneable parameter, it was possible to modify NIR models to achieve a desired outcome. The 

most novel aspect of the process-based modelling framework developed in Chapter 7 was the 

use of the class probability as a tuneable parameter. While there is evidence of class based 

modelling approaches, there was no evidence of this type of flexibility used in the current 

literature.  
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Chapter 8 
 

Thesis conclusions  
 

My thesis investigated statistical methodologies to measure sugarcane attributes for anomalous 

cases from NIR spectra. Specifically I answered three main research questions:  

1. Can data mining algorithms improve estimates of cane quality? 

2. Can NIR analysis be used to identify atypical cane? 

3. Can class predictions be used to improve estimates of cane quality for atypical samples? 

The results I have presented in this thesis answered these questions, and provided a better 

understanding of the role of data mining algorithms in on-line NIR analysis as well as a 

framework for improving quality estimates of atypical samples. Specifically, the key outcomes 

of the thesis showed that: 

1. The partial least squares (PLS) modelling framework was easily comparable in 

performance to the more complex algorithms such as support vector machines and 

artificial neural networks. This was true for both the regression and classification 

problems explored. 

2. A modelling approach that combined down-sampling and pre-processing was used to 

develop a balanced PLS discriminant analysis (PLS-DA) model capable of accurately 

classifying atypical cane samples. 

3. A methodological framework that used class probability predictions was developed to 

remove bias in CCS estimates for atypical samples without reducing overall model error. 

My research also provided a number of insights into the detection and treatment of atypical 

samples that can lead to recommendations for the sugarcane industry in Australia and other 

primary industries where online NIR analysis is in use. 

 

One major insight drawn from my investigations was the good performance of PLS for both 

regression and classification tasks compared to the more complex and non-linear approaches 

tested. This was an important result as the PLS approach to regression is already well established 

within the Australian sugarcane industry. In a broader modelling context, PLS may be a 

preferable approach in on-line NIR analysis systems as it is a simple model to maintain and 

recalibrate, has a sound theoretical background and is easy to interpret. The SVM and ANN 

approaches were comparable with PLS and could be used in place of PLS models. The major 
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drawback of these approaches would be the difficulty in maintaining the models and the 

complexity of explaining the modelling process, which may prevent adoption within the 

Australian sugarcane industry. One advantage of SVR was seen in the estimation of quality 

parameters. SVR models tended to perform better for samples with values close to the limits of 

the calibration range. Industry may wish to continue to explore the use of machine learning 

algorithms especially for tasks where a more global model is required or where more evident 

non-linear effects are expected. In contrast to SVR and ANN approaches, tree-based approaches 

tended to perform noticeably worse than PLS models and were not suited to online NIR cane 

analysis systems for either regression or classification tasks.  

 

 
 

Data pre-processing, feature selection and appropriate calibration data selection were used to 

improve model performance. In exploring the identification of atypical samples, it was shown 

that a particular spectral pre-processing might be more or less effective for a particular 

modelling approach. This should be kept in mind in future research, especially if a range of 

modelling approaches are being explored. Results also showed that for models of quality 

parameters, PLSR, SVR and ANN placed importance on similar wavelength ranges. This suggests 

that a faster algorithm such as PLS could be used to identify wavelengths for use with more 

complex models. This is important as many feature selection routines are computationally 

expensive and can be impractical to apply to machine learning algorithms that are also 

computationally expensive. 

 

The importance of an appropriate calibration range for regression is widely accepted. In 

estimating quality measure, regression model skill was reduced for validation samples that were 

outside the range of the calibration set. Properly structuring the calibration set was also 

important for classification tasks. Specifically, down-sampling during model calibration played a 

large role in ensuring that models performed well for both atypical and typical classes. While 

down-sampling help improve model performance, it also reduced the variability captured during 

the calibration process as the majority of typical samples were removed. The relatively low 

Insight 1: PLS models performed as well as more complex models for regression 

and classification tasks. The sugarcane industry should have confidence in the 

continued use of these algorithms. Industry should only consider machine 

learning models for specific tasks where high non-linearity is expected. 
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number of atypical samples with observed data is also a concern for calibrating models of quality 

measures specifically for atypical cane. One potential solution is to collect more data for atypical 

cane (e.g. deteriorated or contaminated cane samples) however, this may be impractical in 

commercial applications. An alternative is for future research to explore semi-supervised 

approaches that could better leverage the NIR data from samples with no available laboratory 

data. This would extend upon the methodological framework laid out in this thesis. 

 

 
My work showed that the CCS of samples with atypically low Pij compared to Bij tended to be 

overestimated by baseline NIR modelling approaches. In order to reduce this bias, a modelling 

framework was developed that first classified a sample as atypical then applied an appropriate 

quality estimation model. This methodological framework made use of the predicted pseudo-

probability that a sample would be atypical, in order to tune the point at which as sample should 

be considered atypical. Such a ‘process-based’ approach has rarely been used within industry. 

The novel use of class probability rather than distinct class assignment provides an advantage 

by allowing the modelling framework to be tuned for a specific task without the need to 

completely rebuild the classification model. This is important within industry as the modelling 

framework can be quickly tuned to reflect changes in the risk associated with misclassification. 

For example, is it more important to catch all atypical samples, or to reduce the number of 

typical samples that are treated as atypical?  

 

 
 

In this thesis I have shown that it was possible to identify atypical low quality cane samples using 

NIR analysis. The ability to classify atypical cane samples could be used to track occurrences and 

Insight 2: The importance of appropriate training data samples and training set 

construction cannot be overstated. Down-sampling and feature selection were 

important for developing balanced classification models for imbalanced classes. 

Future research needs consider semi-supervised techniques to make better use 

of all available data.  

Insight 3: PLS-DA can be used for imbalanced classification tasks in NIR analysis 

within the Australian sugarcane industry. Using a pseudo-probability allowed for 

the ‘definition’ of atypical samples to be tuned to the desired task. Future 

research need to consider true probabilistic models for discrimination tasks.  
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identify causes of atypical samples such as deterioration or soil contamination. Furthermore, a 

novel use case was presented that used classification information to reduce the bias is estimates 

of CCS for atypical cane samples. Future research will need to consider using the methodological 

framework described here in practice alongside standard operations. This would allow industry 

to validate the framework further and could offer further insight into the types of samples 

identified as atypical if identified samples can be assessed in the laboratory.  

 

The methodologies I have explored and the methodological framework I have developed in this 

thesis have strong implications for the Australian sugarcane industry. However, my research 

also makes important contributions to the broader NIR spectroscopic community. The high skill 

shown for PLS modelling approaches compared to more complex machine learning techniques 

is an important contribution as a counterpoint to published research that shows a clear 

advantage for complex techniques. My results reinforce the need for future researchers to 

consider a range of modelling approaches and data pre-processing to find the most appropriate 

modelling framework for the task at hand. Another key contribution was the development of 

the ‘process-based’ methodological framework. There are few examples of class based quality 

or constituent estimation. The inclusion of the class probability as a tuneable parameter was a 

unique example of how classification information can be used in a practical online NIR analysis 

setup. The outcomes and insights from this thesis can inform future research, not only for the 

case of atypical cane samples but for any application for imbalanced or complex discrimination 

tasks.     



 
 

136 
 

References 
 

AGELET, L. E. & HURBURGH, C. R. 2010. A tutorial on near infrared spectroscopy and its 

calibration. Critical Reviews in Analytical Chemistry, 40, 246-260. doi: 

http://dx.doi.org/10.1080/10408347.2010.515468. 

ALAM, M. K., STANTON, S. & HEBNER, G. B. 2008. Plastics analysis in two laboratories. Handbook 

of near-infrared analysis. Third Edition ed.: CRC Press/Taylor & Francis Group. 

ALDRICH, E. 2013. Wavelets: A package of functions for computing wavelet filters, wavelet 

transforms and multiresolution analyses. 0.3-0 ed.  

ARAÚJO, S. R., WETTERLIND, J., DEMATTÊ, J. A. M. & STENBERG, B. 2014. Improving the 

prediction performance of a large tropical vis-nir spectroscopic soil library from brazil 

by clustering into smaller subsets or use of data mining calibration techniques. 

European Journal of Soil Science, 65, 718-729. doi: 

http://dx.doi.org/10.1111/ejss.12165. 

BALABIN, R. M. & LOMAKINA, E. I. 2011. Support vector machine regression (svr/ls-svm)-an 

alternative to neural networks (ann) for analytical chemistry? Comparison of nonlinear 

methods on near infrared (nir) spectroscopy data. Analyst, 136, 1703-1712. doi: 

http://dx.doi.org/10.1039/C0AN00387E. 

BALABIN, R. M., SAFIEVA, R. Z. & LOMAKINA, E. I. 2010. Gasoline classification using near 

infrared (nir) spectroscopy data: Comparison of multivariate techniques. Analytica 

Chimica Acta, 671, 27-35. doi: http://dx.doi.org/10.1016/j.aca.2010.05.013. 

BALABIN, R. M. & SMIRNOV, S. V. 2011. Variable selection in near-infrared spectroscopy: 

Benchmarking of feature selection methods on biodiesel data. Analytica Chimica Acta, 

692, 63-72. doi: http://dx.doi.org/10.1016/j.aca.2011.03.006. 

BALABIN, R. M. & SMIRNOV, S. V. 2012. Interpolation and extrapolation problems of 

multivariate regression in analytical chemistry: Benchmarking the robustness on near-

infrared (nir) spectroscopy data. Analyst, 137, 1604-1610. doi: 

http://dx.doi.org/10.1039/C2AN15972D. 

BALLABIO, D. & CONSONNI, V. 2013. Classification tools in chemistry. Part 1: Linear models. Pls-

da. Analytical Methods, 5, 3790-3798. doi: http://dx.doi.org/10.1039/C3AY40582F. 

BARKER, M. & RAYENS, W. 2003. Partial least squares for discrimination. Journal of 

Chemometrics, 17, 166-173. doi: http://dx.doi.org/10.1002/cem.785. 



 
 

137 
 

BARNES, R. J., DHANOA, M. S. & LISTER, S. J. 1989. Standard normal variate transformation and 

de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43, 772-

777. doi: http://dx.doi.org/10.1366/0003702894202201. 

BECK, M. 2016. Neuralnettools: Visualization and analysis tools for neural networks.  

BEN ISHAK, A. 2016. Variable selection using support vector regression and random forests: A 

comparative study. Intelligent Data Analysis, 20, 83-104. doi: 

http://dx.doi.org/10.3233/IDA-150795. 

BERDING, N. & BROTHERTON, G. A. 1996. Analysis of samples from sugarcane evaluation trials 

by near ifra-red spectroscopy using a new at-line, large cassette presentation module. 

In: WILSON, J. R., HOGARTH, D. M., CAMPBELL, J. A. & GARSIDE, A. L. (eds.) Sugarcane: 

Research towards efficient and sustainable production. CSIRO Division of Tropical Crops 

and Pastures, Brisbane.  

BERDING, N., BROTHERTON, G. A., LE BROCQ, D. G. & SKINNER, J. C. 1991. Near infrared 

reflectance spectroscopy for analysis of sugarcane from clonal evaluation trials: I. 

Fibrated cane. Crop Science, 31, 1017-1023. doi: 

http://dx.doi.org/10.2135/cropsci1991.0011183X003100040035x. 

BERDING, N., BROTHERTON, G. A., LEBROCQ, D. G. & SKINNER, J. C. 1989. Application of near 

infrared reflectance (nir) spctroscopy to the analysis of sugarcane in clonal evaluation 

trials. Proceedings of the Australian Society of Sugar Cane Technologists, 11, 8-15.  

BERDING, N. & MARSTON, D. H. 2010. Operational validation of the efficacy of spectracane™, a 

high-speed analytical system for sugarcane quality components. Proceedings of the 

Australian Society of Sugar Cane Technologists, 32, 445-459.  

BERTRAN, E., BLANCO, M., MASPOCH, S., ORTIZ, M. C., SÁNCHEZ, M. S. & SARABIA, L. A. 1999. 

Handling intrinsic non-linearity in near-infrared reflectance spectroscopy. 

Chemometrics and Intelligent Laboratory Systems, 49, 215-224. doi: 

http://dx.doi.org/10.1016/S0169-7439(99)00043-X. 

BEVIN, C., STAUNTON, S., STOBIE, R., KINGSTON, J. & LONERGAN, G. 2002. On-line use of near 

infrared spectroscopy in a sugar analysis system (sas). Proceedings of the Australian 

Society of Sugarcane Technologists, 24.  

BRADLEY, A. P. 1997. The use of the area under the roc curve in the evaluation of machine 

learning algorithms. Pattern Recognition, 30, 1145-1159. doi: 

http://dx.doi.org/10.1016/S0031-3203(96)00142-2. 

BREIMAN, L. 2001. Random forests. Machine Learning, 45, 5-32. doi: 

http://dx.doi.org/10.1023/a:1010933404324. 



 
 

138 
 

BREIMAN, L., FRIEDMAN, J., OHLSEN, R. & STONE, C. 1984. Classification and regression trees, 

Wadsworth International Group. 

BROTHERTON, G. A. & BERDING, N. 1995. Near infra-red spectroscopic applications for milling: 

Prospects and impications. Proceedings of the Australian Society of Sugarcane 

Technologists, 13, 21-19.  

BROTHERTON, G. A. & BERDING, N. 1998. At-line analysis of well-prepared cane using near infra-

red spectroscopy. Proceedings of the Australian Society of Sugar Cane Technologists, 20, 

34-42.  

BSES 1991. The standard laboratory manual for australian sugar mills : Volume 2 analytical 

methods and tables, Indooroopili, Queensland, Australia, BSES. 

CAMPOS, G. O., ZIMEK, A., SANDER, J., CAMPELLO, R. J. G. B., MICENKOVÁ, B., SCHUBERT, E., 

ASSENT, I. & HOULE, M. E. 2016. On the evaluation of unsupervised outlier detection: 

Measures, datasets, and an empirical study. Data Mining and Knowledge Discovery, 1-

37. doi: http://dx.doi.org/10.1007/s10618-015-0444-8. 

CAO, N. 2013. Calibration optimization and efficiency in near infrared spectroscopy. Ph.D. 

Dissertation, Iowa State University. 

CEN, H., BAO, Y., HUANG, M. & HE, Y. 2006. Comparison of data pre-processing in pattern 

recognition of milk powder vis/nir spectra. In: LI, X., ZAÏANE, O. R. & LI, Z. (eds.) 

Advanced data mining and applications: Second international conference, adma 2006, 

xi’an, china, august 14-16, 2006 proceedings. Berlin, Heidelberg: Springer Berlin 

Heidelberg. 

CHE, W. K., SUN, L. J., ZHANG, Q., TAN, W. Y., YE, D. D., ZHANG, D. & LIU, Y. Y. 2018. Pixel based 

bruise region extraction of apple using vis-nir hyperspectral imaging. Computers and 

Electronics in Agriculture, 146, 12-21. doi: 

http://dx.doi.org/10.1016/j.compag.2018.01.013. 

CHEN, D., SHAO, X., HU, B. & SU, Q. 2005. Simultaneous wavelength selection and outlier 

detection in multivariate regression of near-infrared spectra. Analytical Sciences, 21, 

161-166. doi: http://dx.doi.org/10.2116/analsci.21.161. 

CIRINO DE CARVALHO, L., DE LELIS MEDEIROS DE MORAIS, C., GOMES DE LIMA, K. M., CUNHA 

JUNIOR, L. C., MARTINS NASCIMENTO, P. A., BOSCO DE FARIA, J. & HENRIQUE DE 

ALMEIDA TEIXEIRA, G. 2016. Determination of the geographical origin and ethanol 

content of brazilian sugarcane spirit using near-infrared spectroscopy coupled with 

discriminant analysis. Analytical Methods, 8, 5658-5666. doi: 

http://dx.doi.org/10.1039/C6AY01325B. 



 
 

139 
 

CORTES, C. & VAPNIK, V. 1995. Support-vector networks. Machine Learning, 20, 273-297. doi: 

http://dx.doi.org/10.1007/BF00994018. 

CUI, C. & FEARN, T. 2017. Comparison of partial least squares regression, least squares support 

vector machines, and gaussian process regression for a near infrared calibration. Journal 

of Near Infrared Spectroscopy, 25, 5-14. doi: 

http://dx.doi.org/10.1177/0967033516678515. 

DAIRAM, N., RAMARU, R., NGEMA, S., SUTAR, N. & MADHO, S. 2016. Sucrose losses across the 

gledhow evaporators determined using nirs predictions. Proceedings of the Annual 

Congress - South African Sugar Technologists' Association, 391-405.  

DE AGUIAR, P. F., BOURGUIGNON, B., KHOTS, M. S., MASSART, D. L. & PHAN-THAN-LUU, R. 1995. 

D-optimal designs. Chemometrics and Intelligent Laboratory Systems, 30, 199-210. doi: 

http://dx.doi.org/10.1016/0169-7439(94)00076-X. 

DONALD, D., COOMANS, D., EVERINGHAM, Y., COZZOLINO, D., GISHEN, M. & HANCOCK, T. 2006. 

Adaptive wavelet modelling of a nested 3 factor experimental design in nir 

chemometrics. Chemometrics and Intelligent Laboratory Systems, 82, 122-129. doi: 

http://dx.doi.org/10.1016/j.chemolab.2005.05.013. 

EGAN, W. J. & MORGAN, S. L. 1998. Outlier detection in multivariate analytical chemical data. 

Analytical Chemistry, 70, 2372-2379. doi: http://dx.doi.org/10.1021/ac970763d. 

EVERINGHAM, Y. L., LOWE, K. H., DONALD, D. A., COOMANS, D. H. & MARKLEY, J. 2007. 

Advanced satellite imagery to classify sugarcane crop characteristics. Agronomy for 

Sustainable Development, 27, 111-117. doi: http://dx.doi.org/10.1051/agro:2006034. 

FAO. 2017. Faostat [Online]. Food and Agriculture Organisation of the United Nations. Available: 

http://faostat.fao.org/ [Accessed 18/07/2017]. 

FAO. 2019. Faostat [Online]. Food and Agriculture Organisation of the United Nations. Available: 

http://faostat.fao.org/ [Accessed 17/12/2019]. 

FEARN, T. 2001. Review: Standardisation and calibration transfer for near infrared instruments: 

A review. Journal of Near Infrared Spectroscopy, 9, 229-244. doi: 

http://dx.doi.org/10.1255/jnirs.309. 

FEILHAUER, H., ASNER, G. P. & MARTIN, R. E. 2015. Multi-method ensemble selection of spectral 

bands related to leaf biochemistry. Remote Sensing of Environment, 164, 57-65. doi: 

http://dx.doi.org/10.1016/j.rse.2015.03.033. 

FIEDLER, F. M., EDYE, L. A. & WATSON, L. J. 2001. The application of discriminant analysis to on-

line near infrared spectroscopy of prepared sugar cane. Proceedings of the Australian 

Society of Sugar Cane Technologists, 23, 317-321.  



 
 

140 
 

FORINA, M., CASOLINO, C. & ALMANSA, E. M. 2003. The refinement of pls models by iterative 

weighting of predictor variables and objects. Chemometrics and Intelligent Laboratory 

Systems, 68, 29-40. doi: http://dx.doi.org/10.1016/S0169-7439(03)00085-6. 

FRIEDMAN, J. H. 2001. Greedy function approximation: A gradient boosting machine. The Annals 

of Statistics, 29, 1189-1232.  

FRIEDMAN, J. H. 2002. Stochastic gradient boosting. Computational Statistics & Data Analysis, 

38, 367-378. doi: http://dx.doi.org/10.1016/S0167-9473(01)00065-2. 

GARSON, D. G. 1991. Interpreting neural-network connection weights. AI Expert, 6, 46-51.  

GELADI, P., MACDOUGALL, D. & MARTENS, H. 1985. Linearization and scatter-correction for 

near-infrared reflectance spectra of meat. Applied Spectroscopy, 39, 491-500. doi: 

http://dx.doi.org/10.1366/0003702854248656. 

GOICOECHEA, H. C. & OLIVIERI, A. C. 2003. A new family of genetic algorithms for wavelength 

interval selection in multivariate analytical spectroscopy. Journal of Chemometrics, 17, 

338-345. doi: http://dx.doi.org/10.1002/cem.812. 

GOUNDEN, T. & WALTHEW, D. 2018. Nirs as a tool for improved process monitoring. 

Proceedings of the Annual Congress - South African Sugar Technologists' Association, 

350-356.  

GUJRAL, P., AMRHEIN, M., ERGON, R., WISE, B. M. & BONVIN, D. 2011. On multivariate 

calibration with unlabeled data. Journal of Chemometrics, 25, 456-465. doi: 

http://dx.doi.org/10.1002/cem.1389. 

GUO, D., ZHU, Q., HUANG, M., GUO, Y. & QIN, J. 2017. Model updating for the classification of 

different varieties of maize seeds from different years by hyperspectral imaging coupled 

with a pre-labeling method. Computers and Electronics in Agriculture, 142, 1-8. doi: 

http://dx.doi.org/10.1016/j.compag.2017.08.015. 

GUTHRIE, J. A. 2005. Robustness of nir calibrations for assessing fruit quality. PhD, Central 

Queensland University. 

GUTIÉRREZ, S., TARDAGUILA, J., FERNÁNDEZ-NOVALES, J. & DIAGO, M. P. 2016. Data mining and 

nir spectroscopy in viticulture: Applications for plant phenotyping under field 

conditions. Sensors, 16, 236. doi: http://dx.doi.org/10.3390/s16020236. 

HAGEMAN, J., WESTERHUIS, J. & SMILDE, A. 2005. Temperature robust multivariate calibration: 

An overview of methods for dealing with temperature influences on near infrared 

spectra. Journal of Near Infrared Spectroscopy, 13, 53-62. doi: 

http://dx.doi.org/10.1255/jnirs.30910.1255/jnirs.457. 

HAN, J., KAMBER, M. & PEI, J. 2011. Data mining: Concepts and techniques, Elsevier. 



 
 

141 
 

HASTIE, T., TIBSHIRANI, R. & FRIEDMAN, J. H. 2013a. Boosting and additive trees. The elements 

of statistical learning. 2 ed.: Springer. 

HASTIE, T., TIBSHIRANI, R. & FRIEDMAN, J. H. 2013b. Cross-validation. The elements of statistical 

learning. 2 ed.: Springer. 

HASTIE, T., TIBSHIRANI, R. & FRIEDMAN, J. H. 2013c. The elements of statistical learning, New 

York, USA, Springer. 

HASTIE, T., TIBSHIRANI, R. & FRIEDMAN, J. H. 2013d. Neural nets. The elements of statistical 

learning. 2 ed.: Springer. 

HASTIE, T., TIBSHIRANI, R. & FRIEDMAN, J. H. 2013e. "Off-the-shelf" procedures for data mining. 

The elements of statistical learning. 2 ed.: Springer. 

HASTIE, T., TIBSHIRANI, R. & FRIEDMAN, J. H. 2013f. Partial least squares. The elements of 

statistical learning. 2 ed.: Springer. 

HASTIE, T., TIBSHIRANI, R. & FRIEDMAN, J. H. 2013g. Random forests. The elements of statistical 

learning. 2 ed.: Springer. 

HOGARTH, D. M. & ALLSOPP, P. G. (eds.) 2000. Manual of cane growing: Bureau of Sugar 

Experiment Stations. 

HONG, X.-Z., FU, X.-S., WANG, Z.-L., ZHANG, L., YU, X.-P. & YE, Z.-H. 2019. Tracing geographical 

origins of teas based on ft-nir spectroscopy: Introduction of model updating and 

imbalanced data handling approaches. Journal of Analytical Methods in Chemistry, 

2019, 8. doi: http://dx.doi.org/10.1155/2019/1537568. 

HUANG, M., TANG, J., YANG, B. & ZHU, Q. 2016. Classification of maize seeds of different years 

based on hyperspectral imaging and model updating. Computers and Electronics in 

Agriculture, 122, 139-145. doi: http://dx.doi.org/10.1016/j.compag.2016.01.029. 

ISAKSSON, T. & NAES, T. 1990. Selection of samples for calibration in near-infrared spectroscopy. 

Part ii: Selection based on spectral measurements. Applied Spectroscopy, 44, 7. doi: 

http://dx.doi.org/10.1366/0003702904086533. 

JAM, M. N. H. & CHIA, K. S. 2017. Investigating the relationship between the reflected near 

infrared light and the internal quality of pineapples using neural network. International 

Journal on Advanced Science Engineering and Information Technology, 7. doi: 

http://dx.doi.org/10.18517/ijaseit.7.4.3143. 

JAMES, G., WITTEN, D. & HASTIE, T. 2013. Linear model selection and regularization. In: 

CASELLA, G., FIENBERG, S. & OLKIN, I. (eds.) An introduction to statistical learning (with 

applications in r). New York, NY, USA: Springer. 



 
 

142 
 

JIN, H. & LING, C. X. 2005. Using auc and accuracy in evaluating learning algorithms. IEEE 

Transactions on Knowledge and Data Engineering, 17, 299-310. doi: 

http://dx.doi.org/10.1109/TKDE.2005.50. 

KANNAR, D., KITCHEN, J. & O'SHEA, M. 2009. Process for the manufacture of sugar and other 

food products. Australia patent application WO/2009/043100. 

KARATZOGLOU, A., SMOLA, A., HORNIK, K. & ZEILEIS, A. 2004. Kernlab - an s4 package for kernel 

methods in r. Journal of Statistical Software, 11, 1 - 20. doi: 

http://dx.doi.org/10.18637/jss.v011.i09. 

KEEFFE, E. C. 2013. Rapid nutrient determination of sugarcane milling by-products using near 

infrared spectroscopy. Masters by Research. 

KOVALENKO, I. V., RIPPKE, G. R. & HURBURGH, C. R. 2006. Determination of amino acid 

composition of soybeans (glycine max) by near-infrared spectroscopy. Journal of 

Agricultural and Food Chemistry, 54, 3485-3491. doi: 

http://dx.doi.org/10.1021/jf052570u. 

KUHN, M. 2017. Caret: Classification and regression training. 6.0-76 ed.  

KUHN, M. & JOHNSON, K. 2013a. Applied predictive modeling. Springer. 

KUHN, M. & JOHNSON, K. 2013b. Remedies for severe class imbalance. Applied predictive 

modeling. New York, NY: Springer New York. 

LI, J. B., HUANG, W. Q., TIAN, X., WANG, C. P., FAN, S. X. & ZHAO, C. J. 2016. Fast detection and 

visualization of early decay in citrus using vis-nir hyperspectral imaging. Computers and 

Electronics in Agriculture, 127, 582-592. doi: 

http://dx.doi.org/10.1016/j.compag.2016.07.016. 

LIAW, A. & WIENER, M. 2002. Classification and regression by randomforest. R News, 2, 18-22.  

LIN, H.-T., LIN, C.-J. & WENG, R. C. 2007. A note on platt’s probabilistic outputs for support vector 

machines. Machine Learning, 68, 267-276. doi: http://dx.doi.org/10.1007/s10994-007-

5018-6. 

LIONNET, G. R. E. 1986. Post-harvest deterioration of whole stalk sugarcane. South African Sugar 

Technologists Association. Durban, South Africa: South African Sugar Association.  

LIU, R., CHEN, W.-L., XU, K.-X., QIU, Q.-J. & CUI, H.-X. 2005. Fast outlier detection for milk near-

infrared spectroscopy analysis. Guang pu xue yu guang pu fen xi = Guang pu, 25, 207-

210.  

LLOYD, T., EASTMENT, S. & MITCHELL, P. 2010. Milling train maceration control utilising nir 

technology. Proceedings of the Australian Society of Sugar Cane Technologists, 32, 688 

- 695.  



 
 

143 
 

LOGGENBERG, K., STREVER, A., GREYLING, B. & POONA, N. 2018. Modelling water stress in a 

shiraz vineyard using hyperspectral imaging and machine learning. Remote Sensing, 10, 

202. doi: http://dx.doi.org/10.3390/rs10020202. 

MACKINTOSH, D. 2000. Sugar milling. In: HOGARTH, D. M. & ALLSOPP, P. G. (eds.) Manual of 

canegrowing. Brisbane: Bureau of Sugar Experiment Stations. 

MALLET, Y., DE VEL, O. & COOMANS, D. H. 1998. Integrated feature extravtion using adaptive 

wavelets. In: LIU, H. & MOTODA, H. (eds.) Feature extraction, construction and selection: 

A data mining perspective. Dordrecht, The Netherlands Kluer Academic. 

MARKLEY, J., GRIFFIN, K., STAUNTON, S., THORBURN, P. & CROWLEY, T. 2009. Increasing in-mill 

nir effectiveness and communicating data to all sectors for improved decision making 

in the sugarcane value chain. Project CSR038. Sugar Research and Development 

Corporation.  

MARTENS, H., NAES, T. & NAES, T. 1992. Multivariate calibration, John Wiley & Sons. 

MASSIE, D. R. & NORRIS, K. H. 1965. Spectral reflectance and transmittance properties of grain 

in the visible and near infrared. Transactions of the ASAE, 8, 598. doi: 

http://dx.doi.org/10.13031/2013.40596. 

MCCARTHY, S. 2003. The integration of sensory control for sugar cane harvesters. Doctor of 

Phyilosophy, University of Southern Queensland. 

MEHMOOD, T., LILAND, K. H., SNIPEN, L. & SÆBØ, S. 2012. A review of variable selection 

methods in partial least squares regression. Chemometrics and Intelligent Laboratory 

Systems, 118, 62-69. doi: http://dx.doi.org/10.1016/j.chemolab.2012.07.010. 

MEVIK, B.-H., WEHRENS, R. & LILAND, K. H. 2015. Pls: Partial least squares and principal 

component regression. 2.5-0 ed.  

MEYER, D., DIMITRIADOU, E., HORNIK, K., WEINGESSEL, A. & LEISCH, F. 2015. E1071: Misc 

functions of the department of statistics, probability theory group (formerly: E1071), tu 

wien. 1.6-8 ed.  

MILLER, C. E. 1993. Sources of non-linearity in near infrared methods. NIR news, 4, 3-5. doi: 

http://dx.doi.org/10.1255/nirn.216. 

MITCHELL, M. 1999. An introduction to genetic algorithms, Cambridge, Massachusetts, The MIT 

Press. 

MUCHOW, R. C., ROBERTSON, M., WOOD, A. & KEATING, B. A. 1996. Effect of nitrogen on the 

time-course of sucrose accumulation in sugarcane. Field Crops Research, 47, 143-153. 

doi: http://dx.doi.org/10.1016/0378-4290(96)00022-6. 



 
 

144 
 

NAES, T. & ISAKSSON, T. 1989. Selection of samples for calibration in near-infrared spectroscopy. 

Part i: General principles illustrated by example. Applied Spectroscopy, 43, 8. doi: 

http://dx.doi.org/10.1366/0003702894203129. 

NAWAR, S. & MOUAZEN, A. 2017. Comparison between random forests, artificial neural 

networks and gradient boosted machines methods of on-line vis-nir spectroscopy 

measurements of soil total nitrogen and total carbon. Sensors, 17, 2428. doi: 

http://dx.doi.org/10.3390/s17102428. 

NAWI, N. M., CHEN, G. & JENSEN, T. 2014. In-field measurement and sampling technologies for 

monitoring quality in the sugarcane industry: A review. Precision Agriculture, 15, 684-

703. doi: http://dx.doi.org/10.1007/s11119-014-9362-9. 

NAWI, N. M., CHEN, G., JENSEN, T. & MEHDIZADEH, S. A. 2013. Prediction and classification of 

sugar content of sugarcane based on skin scanning using visible and shortwave near 

infrared. Biosystems Engineering, 115, 154-161. doi: 

http://dx.doi.org/10.1016/j.biosystemseng.2013.03.005. 

NI, W., NØRGAARD, L. & MØRUP, M. 2014. Non-linear calibration models for near infrared 

spectroscopy. Analytica Chimica Acta, 813, 1-14. doi: 

http://dx.doi.org/10.1016/j.aca.2013.12.002. 

NIKZAD-LANGERODI, R., LUGHOFER, E., CERNUDA, C., REISCHER, T., KANTNER, W., PAWLICZEK, 

M. & BRANDSTETTER, M. 2018. Calibration model maintenance in melamine resin 

production: Integrating drift detection, smart sample selection and model adaptation. 

Analytica Chimica Acta, 1013, 1-12. doi: http://dx.doi.org/10.1016/j.aca.2018.02.003. 

NIU, C., YUAN, Y., GUO, H., WANG, X., WANG, X. & YUE, T. 2018. Recognition of osmotolerant 

yeast spoilage in kiwi juices by near-infrared spectroscopy coupled with chemometrics 

and wavelength selection. RSC Advances, 8, 222-229. doi: 

http://dx.doi.org/10.1039/C7RA12266G. 

NØRGAARD, L., SAUDLAND, A., WAGNER, J., NIELSEN, J. P., MUNCK, L. & ENGELSEN, S. B. 2000. 

Interval partial least-squares regression (ipls): A comparative chemometric study with 

an example from near-infrared spectroscopy. Applied Spectroscopy, 54, 413-419. doi: 

http://dx.doi.org/10.1366/0003702001949500. 

NORRIS, K. Extracting information from spectrophotometric curves. Predicting chemical 

composition from visible and near-infrared spectra.  Food research and data analysis: 

proceedings from the IUFoST Symposium, September 20-23, 1982, Oslo, Norway/edited 

by H. Martens and H. Russwurm, Jr, 1983. London: Applied Science Publishers, 1983. 



 
 

145 
 

NORRIS, K. & WILLIAMS, P. 1984. Optimization of mathematical treatments of raw near-infrared 

signal in the measurement of protein in hard red spring wheat. I. Influence of particle 

size. Cereal Chemistry.  

O'SHEA, M. G., STAUNTON, S. & BURLEIGH, M. 2010. Implementation of on-line near infrared 

(nir) technologies for the analysis of cane, bagasse and raw sugar in sugar factories to 

improve performance. Proceedings of the International Society of Sugar Cane 

Technologists, 27, 15.  

O'SHEA, M. G., STAUNTON, S. P., DONALD, D. & SIMPSON, J. 2011. Developing laboratory near 

infra-red (nir) instruments for the analysis of sugar factory products. Proceedings of the 

Australian Society of Sugar Cane Technologists, 33, 1-8.  

OLDEN, J. D. & JACKSON, D. A. 2002. Illuminating the “black box”: A randomization approach for 

understanding variable contributions in artificial neural networks. Ecological Modelling, 

154, 135-150. doi: http://dx.doi.org/10.1016/S0304-3800(02)00064-9. 

OLDEN, J. D., JOY, M. K. & DEATH, R. G. 2004. An accurate comparison of methods for quantifying 

variable importance in artificial neural networks using simulated data. Ecological 

Modelling, 178, 389-397. doi: http://dx.doi.org/10.1016/j.ecolmodel.2004.03.013. 

OSBORNE, B., FEARN, T. & HINDLE, P. H. 1993a. Physics of the interaction of radiation with 

matter. Practical nir spectroscopy with applications in food and beverage analysis. 

Harlow, UK: Longman Scientific and Technical. 

OSBORNE, B., FEARN, T. & HINDLE, P. H. 1993b. Practical nir spectroscopy with applications in 

food and beverage analysis, Harlow, UK, Longman Scientific and Technical. 

OSTATEK-BOCZYNSKI, Z. A., PURCELL, D. E., KEEFFE, E. C., MARTENS, W. N. & O'SHEA, M. G. 2013. 

Rapid determination of carbon, nitrogen, silicon, phosphorus, and potassium in sugar 

mill by-products, mill mud, and ash using near infrared spectroscopy. Communications 

in Soil Science and Plant Analysis, 44, 1156-1166. doi: 

http://dx.doi.org/10.1080/00103624.2012.756004. 

OXELY, J., FONG CHONG, B., SANT, G. G. & O'SHEA, M. G. 2012. Accelerating the characterisation 

of sugarcane biomass using near-infrared (nir) spectroscopic techniques. Proceedings of 

the Australian Society of Sugar Cane Technologists, 34, 9.  

ÖZESMI, S. L. & ÖZESMI, U. 1999. An artificial neural network approach to spatial habitat 

modelling with interspecific interaction. Ecological Modelling, 116, 15-31. doi: 

http://dx.doi.org/10.1016/S0304-3800(98)00149-5. 

PIERNA, J. A. F., LECLER, B., CONZEN, J. P., NIEMOELLER, A., BAETEN, V. & DARDENNE, P. 2011. 

Comparison of various chemometric approaches for large near infrared spectroscopic 



 
 

146 
 

data of feed and feed products. Analytica Chimica Acta, 705, 30-34. doi: 

http://dx.doi.org/10.1016/j.aca.2011.03.023. 

PLATT, J. 1999. Probabilistic outputs for support vector machines and comparisons to 

regularized likelihood methods. Advances in large margin classifiers, 10, 61-74. doi: 

http://dx.doi.org/10.1.1.41.1639. 

POLLOCK, J., O’HARA, I. M. & GRIFFIN, K. 2007. Aligning the drivers in the value chain—a new 

cane payment system for mackay sugar. Proceedings of the Australian Society of Sugar 

Cane Technologists, 29, 1-8.  

PURCELL, D., OSTATEK-BOCZYNSKI, Z. A., KEEFFE, E. C., MARTENS, W. N. & O'SHEA, M. G. 2012. 

Development of near infrared (nir) spectroscopic methods to predict carbon, nitrogen, 

silicon, phosphorus and potassium levels in mill by-products. Proceedings of the 

Australian Society of Sugar Cane Technologists, 34, 8.  

R CORE TEAM 2016. R: A language and environment for statistical computing. 3.3.1 ed. Vienna, 

Austria: R Foundation for Statistical Computing.  

R CORE TEAM 2017. R: A language and environment for statistical computing. 3.4 ed. Vienna, 

Austria: R Foundation for Statistical Computing.  

RAMÍREZ-MORALES, I., RIVERO, D., FERNÁNDEZ-BLANCO, E. & PAZOS, A. 2016. Optimization of 

nir calibration models for multiple processes in the sugar industry. Chemometrics and 

Intelligent Laboratory Systems, 159, 45-57. doi: 

http://dx.doi.org/10.1016/j.chemolab.2016.10.003. 

RIDGEWAY, G. 2015. Gbm: Generalized boosted regression models. 2.1.1 ed.  

RINNAN, Å., BERG, F. V. D. & ENGELSEN, S. B. 2009. Review of the most common pre-processing 

techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28, 1201-

1222. doi: http://dx.doi.org/10.1016/j.trac.2009.07.007. 

RODRÍGUEZ-ZÚÑIGA, U. F., FARINAS, C. S., CARNEIRO, R. L., SILVA, G. M., CRUZ, A. J. G., LIMA 

CAMARGO GIORDANO, R., CAMPOS GIORDANO, R. & ARRUDA RIBEIRO, M. P. 2014. Fast 

determination of the composition of pretreated sugarcane bagasse using near-infrared 

spectroscopy. BioEnergy Research, 7, 1441-1453. doi: 

http://dx.doi.org/10.1007/s12155-014-9488-7. 

SABATIER, D. R., MOON, C. M., MHORA, T. T., RUTHERFORD, R. S. & LAING, M. D. 2014. Near-

infrared reflectance (nir) spectroscopy as a high-throughput screening tool for pest and 

disease resistance in a sugarcane breeding programme. 86th Annual Congress of the 

South African Sugar Technologists' Association (SASTA 2013), Durban, South Africa, 6-8 

August 2013, 101-106.  



 
 

147 
 

SANAEIFAR, A., BAKHSHIPOUR, A. & DE LA GUARDIA, M. 2016. Prediction of banana quality 

indices from color features using support vector regression. Talanta, 148, 54-61. doi: 

http://dx.doi.org/10.1016/j.talanta.2015.10.073. 

SAVITZKY, A. & GOLAY, M. J. E. 1964. Smoothing and differentiation of data by simplified least 

squares procedures. Analytical Chemistry, 36, 1627-1639. doi: 

http://dx.doi.org/10.1021/ac60214a047. 

SAXENA, P., SRIVASTAVA, R. P. & SHARMA, M. L. 2010. Impact of cut to crush delay and bio-

chemical changes in sugarcane Australian Journal of Crop Science, 4, 692-699.  

SCRUCCA, L. 2013. Ga: A package for genetic algorithms in r. 2013, 53, 37. doi: 

http://dx.doi.org/10.18637/jss.v053.i04. 

SENTHILKUMAR, T., JAYAS, D. S., WHITE, N. D. G., FIELDS, P. G. & GRÄFENHAN, T. 2016. 

Detection of fungal infection and ochratoxin a contamination in stored barley using 

near-infrared hyperspectral imaging. Biosystems Engineering, 147, 162-173. doi: 

http://dx.doi.org/10.1016/j.biosystemseng.2016.03.010. 

SHENK, J. S., WORKMAN, J. J. & WESTERHAUS, M. O. 2008. Applications of nir spectroscopy to 

agricultural products. In: BURNS, D. A. & CUIRCZAK, E. W. (eds.) Handbook of near-

infrared analysis. Third ed. 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL, 

USA: CRC Press/Taylor & Francis Group. 

SHETTY, N., GISLUM, R., JENSEN, A. M. D. & BOELT, B. 2012. Development of nir calibration 

models to assess year-to-year variation in total non-structural carbohydrates in grasses 

using plsr. Chemometrics and Intelligent Laboratory Systems, 111, 34-38. doi: 

http://dx.doi.org/10.1016/j.chemolab.2011.11.004. 

SIMPSON, J., STAUNTON, S. P. & O'SHEA, M. G. 2011. A review of nir applications for process 

control purposes. Proceedings of the Australian Society of Sugar Cane Technologists, 33, 

8.  

SINGH, C. B., CHOUDHARY, R., JAYAS, D. S. & PALIWAL, J. 2008. Wavelet analysis of signals in 

agriculture and food quality inspection. Food and Bioprocess Technology, 3, 2. doi: 

http://dx.doi.org/10.1007/s11947-008-0093-7. 

SMOLA, A. & VAPNIK, V. 1997. Support vector regression machines. In: MOZER, M. C., JORDAN, 

J. I. & PETSCHE, T. (eds.) Neural information processing systems. Cambridge, 

Massachusetts, USA: MIT Press. 

SOLOMON, S. 2009. Post-harvest deterioration of sugarcane. Sugar Tech, 11, 109-123. doi: 

http://dx.doi.org/10.1007/s12355-009-0018-4. 



 
 

148 
 

SONG, W., WANG, H., MAGUIRE, P. & NIBOUCHE, O. Differentiation of organic and non-organic 

apples using near infrared reflectance spectroscopy—a pattern recognition approach.  

SENSORS, 2016 IEEE, 2016. IEEE, 1-3. 

SOROL, N., ARANCIBIA, E., BORTOLATO, S. A. & OLIVIERI, A. C. 2010. Visible/near infrared-partial 

least-squares analysis of brix in sugar cane juice: A test field for variable selection 

methods. Chemometrics and Intelligent Laboratory Systems, 102, 100-109. doi: 

http://dx.doi.org/10.1016/j.chemolab.2010.04.009. 

SRA. 2014. Sugar research australia strategic plan 2013/14 - 2017/18. Available: 

http://www.sugarresearch.com.au/icms_docs/188322_Strategic_Plan_201314-

201718.pdf [Accessed 2016-03-02]. 

SRA. 2015. Sugar research australia strategic plan 2013/14 - 2017/18: 2015 update. Available: 

http://www.sugarresearch.com.au/icms_docs/220936_Strategic_Plan_2015_Update.

pdf [Accessed 2016-03-02]. 

STAUNTON, S., LETHBRIDGE, P., GRIMLEY, S., STREAMER, R., ROGERS, J. & MACKINTOSH, D. 

1999. On-line cane analysis by near infra-red spectroscopy. Proceedings of the 

Australian Society of Sugar Cane Technologists, 21, 20-27.  

STAUNTON, S., MACKINTOSH, D. & PEATEY, G. 2004. The application of network nir calibration 

equations at the maryborough sugar factory. Proceedings of the Australian Society of 

Sugar Cane Technologists, 26, 1-14.  

STAUNTON, S. & WARDROP, K. 2006. Development of an online bagasse analysis system using 

nir spectroscopy. Austrailan Society of Sugar Cane Technologists.  

STEVENS, A. & RAMIREZ-LOPEZ, L. 2013. An introduction to the prospectr package. R package. 

R package Vignette. 0.1.3 ed.  

SUYKENS, J. A., VAN GESTEL, T. & DE BRABANTER, J. 2002. Least squares support vector 

machines, World Scientific. 

TANGE, R. I., RASMUSSEN, M. A., TAIRA, E. & BRO, R. 2015. Application of support vector 

regression for simultaneous modelling of near infrared spectra from multiple process 

steps. Journal of Near Infrared Spectroscopy, 23, 75-84. doi: 

http://dx.doi.org/10.1255/jnirs.1149. 

THISSEN, U., PEPERS, M., ÜSTÜN, B., MELSSEN, W. J. & BUYDENS, L. M. C. 2004a. Comparing 

support vector machines to pls for spectral regression applications. Chemometrics and 

Intelligent Laboratory Systems, 73, 169-179. doi: 

http://dx.doi.org/10.1016/j.chemolab.2004.01.002. 



 
 

149 
 

THISSEN, U., ÜSTÜN, B., MELSSEN, W. J. & BUYDENS, L. M. C. 2004b. Multivariate calibration 

with least-squares support vector machines. Analytical Chemistry, 76, 3099-3105. doi: 

http://dx.doi.org/10.1021/ac035522m. 

TRYGG, J. & WOLD, S. 1998. Pls regression on wavelet compressed nir spectra. Chemometrics 

and Intelligent Laboratory Systems, 42, 209-220. doi: http://dx.doi.org/10.1016/S0169-

7439(98)00013-6. 

TRYGG, J. & WOLD, S. 2002. Orthogonal projections to latent structures (o-pls). Journal of 

Chemometrics, 16, 119-128. doi: http://dx.doi.org/10.1002/cem.695. 

TULIP, J. & WILKINS, K. 2004. Dirt level estimation in prepared cane using vis/vnir spectroscopy. 

Proceedings of the Australian Society of Sugar Cane Technologists, 26, 58-58.  

ÜSTÜN, B., MELSSEN, W. J. & BUYDENS, L. M. C. 2007. Visualisation and interpretation of 

support vector regression models. Analytica Chimica Acta, 595, 299-309. doi: 

http://dx.doi.org/10.1016/j.aca.2007.03.023. 

VALDERRAMA, P., BRAGA, J. W. B. & POPPI, R. J. 2007a. Validation of multivariate calibration 

models in the determination of sugar cane quality parameters by near infrared 

spectroscopy. Journal of the Brazilian Chemical Society, 18, 259-266.  

VALDERRAMA, P., BRAGA, J. W. B. & POPPI, R. J. 2007b. Variable selection, outlier detection, 

and figures of merit estimation in a partial least-squares regression multivariate 

calibration model. A case study for the determination of quality parameters in the 

alcohol industry by near-infrared spectroscopy. Journal of Agricultural and Food 

Chemistry, 55, 8331-8338. doi: http://dx.doi.org/10.1021/jf071538s. 

VAN HEERDEN, P. D. R., EGGLESTON, G. & DONALDSON, R. A. 2014. Ripening and postharvest 

deterioration. In: MOORE, A. D. & BOTHA, F. C. (eds.) Sugarcane physiology, 

biochemistry & functional biology. Wiley Blackwell. 

VENABLES, W. N. & RIPLEY, B. D. 2002. Modern applied statistics with s, New York, Springer. 

VERT, J. P., TSUDA, K. & SCHÖLKOPF, B. 2004. A primer on kernel methods. In: SCHÖLKOPF, B., 

TSUDA, K. & VERT, J. P. (eds.) Kernel methods in computational biology. Cambridge, MA, 

USA: MIT Press. 

VISCARRA ROSSEL, R. A. & BEHRENS, T. 2010. Using data mining to model and interpret soil 

diffuse reflectance spectra. Geoderma, 158, 46-54. doi: 

http://dx.doi.org/10.1016/j.geoderma.2009.12.025. 

WALFORD, S. 2019. Near infrared spectroscopy: Rethinking the analysis of sugarcane factory 

streams.  



 
 

150 
 

WANG, D., DOWELL, F. E., RAM, M. S. & SCHAPAUGH, W. T. 2004. Classification of fungal-

damaged soybean seeds using near-infrared spectroscopy. International Journal of Food 

Properties, 7, 75-82. doi: http://dx.doi.org/10.1081/JFP-120022981. 

WANG, X., YE, H. J., LI, Q. T., XIE, J. C., LU, J. J., XIA, A. L. & WANG, J. 2010. Determination of brix 

and pol in sugar cane juice by using near infrared spectroscopy coupled with bp-ann. 

Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 30, 1759-1762. 

doi: http://dx.doi.org/10.3964/j.issn.1000-0593(2010)07-1759-04. 

WILLIAMS, P., DARDENNE, P. & FLINN, P. 2017. Tutorial: Items to be included in a report on a 

near infrared spectroscopy project. Journal of Near Infrared Spectroscopy, 25, 85-90. 

doi: http://dx.doi.org/10.1177/0967033517702395. 

WOLD, S., SJÖSTRÖM, M. & ERIKSSON, L. 2001. Pls-regression: A basic tool of chemometrics. 

Chemometrics and Intelligent Laboratory Systems, 58, 109-130. doi: 

http://dx.doi.org/10.1016/S0169-7439(01)00155-1. 

XIAOBO, Z., JIEWEN, Z., POVEY, M. J. W., HOLMES, M. & HANPIN, M. 2010. Variables selection 

methods in near-infrared spectroscopy. Analytica Chimica Acta, 667, 14-32. doi: 

http://dx.doi.org/10.1016/j.aca.2010.03.048. 

YANG, M., CHEN, Q., KUTSANEDZIE, F. Y. H., YANG, X., GUO, Z. & OUYANG, Q. 2017. Portable 

spectroscopy system determination of acid value in peanut oil based on variables 

selection algorithms. Measurement, 103, 179-185. doi: 

http://dx.doi.org/10.1016/j.measurement.2017.02.037. 

ZHANG, L. G., ZHANG, X., NI, L. J., XUE, Z. B., GU, X. & HUANG, S. X. 2014. Rapid identification of 

adulterated cow milk by non-linear pattern recognition methods based on near infrared 

spectroscopy. Food Chemistry, 145, 342-348. doi: 

http://dx.doi.org/10.1016/j.foodchem.2013.08.064. 

 

 


	Front Matter
	Acknowledgements
	Statement of access
	Statement of sources declaration
	Statement on the contribution of others
	Abstract
	Table of contents
	List of tables
	List of figures
	Publications

	Thesis overview
	Chapter 1 NIR Spectroscopy and sugarcane quality: Current practices and alternatives for the Australian sugarcane industry
	Chapter 2 Overview of data collection and storage
	Chapter 3 A comparison of data mining algorithms for improving NIR models of cane quality measures
	Chapter 4 A comparison of non-linear regression methods for improved on-line near infrared spectroscopic analysis of a sugarcane quality measure
	Chapter 5 A feasibility test for detection of atypical cane samples using near infrared spectroscopy
	Chapter 6 Model comparison for online identification of atypical cane samples in a sugarcane mill using NIR analysis
	Chapter 7 Correcting NIR estimates of cane quality for atypical cane samples in an online analysis system
	Chapter 8 Thesis conclusions
	References



