175 research outputs found

    The Use of Cyber Ranges in the Maritime Context

    Get PDF
    A good defensive strategy against evolving cyber threats and cybercrimes is to raise awareness and use that awareness to prepare technical mitigation and human defence strategies.  A prime way to do this is through training.  While there are already many sectors employing this strategy (e.g., space, smart buildings, business IT) maritime has yet to take advantage of the available cyber-range technology to assess cyber-risks and create appropriate training to meet those risks.   Cyber security training can come in two forms, the first is so security professionals can raise their awareness on the latest and most urgent issues and increase defence skill levels.  The second form is directed at non-security professionals (e.g., ship builders, crew) and the general public, who are just as affected by cyber threats but may not have the necessary security background to deal with the issues.  Conducting training programmes for both requires dedicated computing infrastructure to simulate and execute effective scenarios for both sets of trainees.  To this end, a cyber range (CR) provides an environment for just that.  The purpose of this paper is to use studies on the concept of cyber ranges to provide evidence on why the maritime sector should embrace this technology for maritime-cyber training, and envision how they will provide maritime training and risk assessment to combat tomorrow’s threats.</jats:p

    A review of cyber-ranges and test-beds:current and future trends

    Get PDF
    Cyber situational awareness has been proven to be of value in forming a comprehensive understanding of threats and vulnerabilities within organisations, as the degree of exposure is governed by the prevailing levels of cyber-hygiene and established processes. A more accurate assessment of the security provision informs on the most vulnerable environments that necessitate more diligent management. The rapid proliferation in the automation of cyber-attacks is reducing the gap between information and operational technologies and the need to review the current levels of robustness against new sophisticated cyber-attacks, trends, technologies and mitigation countermeasures has become pressing. A deeper characterisation is also the basis with which to predict future vulnerabilities in turn guiding the most appropriate deployment technologies. Thus, refreshing established practices and the scope of the training to support the decision making of users and operators. The foundation of the training provision is the use of Cyber-Ranges (CRs) and Test-Beds (TBs), platforms/tools that help inculcate a deeper understanding of the evolution of an attack and the methodology to deploy the most impactful countermeasures to arrest breaches. In this paper, an evaluation of documented CR and TB platforms is evaluated. CRs and TBs are segmented by type, technology, threat scenarios, applications and the scope of attainable training. To enrich the analysis of documented CR and TB research and cap the study, a taxonomy is developed to provide a broader comprehension of the future of CRs and TBs. The taxonomy elaborates on the CRs/TBs dimensions, as well as, highlighting a diminishing differentiation between application areas

    The use of cyber ranges in the maritime context: Assessing maritime-cyber risks, raising awareness, and providing training

    Get PDF
    A good defensive strategy against evolving cyber threats and cybercrimes is to raise awareness and use that awareness to prepare technical mitigation and human defense strategies. A prime way to do this is through training. While there are already many sectors employing this strategy (e.g., space, smart buildings, business IT), the maritime sector has yet to take advantage of the available cyber-range technology to assess cyber risks and create appropriate training to meet those risks. Cyber security training can come in 2 forms; the first is so security professionals can raise their awareness on the latest and most urgent issues and increase defense skill levels, and the second form is directed at non-security professionals (e.g., ship builders, crew) and the general public, who are just as affected by cyber threats, but may not have the necessary security background to deal with the issues. Conducting training programs for both requires dedicated computing infrastructure to simulate and execute effective scenarios for both sets of trainees. To this end, a cyber range (CR) provides an environment for just that. The purpose of this paper is to use studies on the concept of cyber ranges to provide evidence for why the maritime sector should embrace this technology for maritime-cyber training, and envision how they will provide maritime risk assessment and raise awareness to combat tomorrow’s threats

    KYPO Cyber Range: Design and Use Cases

    Get PDF
    The physical and cyber worlds are increasingly intertwined and exposed to cyber attacks. The KYPO cyber range provides complex cyber systems and networks in a virtualized, fully controlled and monitored environment. Time-efficient and cost-effective deployment is feasible using cloud resources instead of a dedicated hardware infrastructure. This paper describes the design decisions made during it’s development. We prepared a set of use cases to evaluate the proposed design decisions and to demonstrate the key features of the KYPO cyber range. It was especially cyber training sessions and exercises with hundreds of participants which provided invaluable feedback for KYPO platform development

    Cyber Ranges and TestBeds for Education, Training, and Research

    Get PDF
    In recent years, there has been a growing demand for cybersecurity experts, and, according to predictions, this demand will continue to increase. Cyber Ranges can fill this gap by combining hands-on experience with educational courses, and conducting cybersecurity competitions. In this paper, we conduct a systematic survey of ten Cyber Ranges that were developed in the last decade, with a structured interview. The purpose of the interview is to find details about essential components, and especially the tools used to design, create, implement and operate a Cyber Range platform, and to present the findings

    Design Considerations for Building Credible Security Testbeds: Perspectives from Industrial Control System Use Cases

    Get PDF
    This paper presents a mapping framework for design factors and an implementation process for building credible Industrial Control Systems (ICS) security testbeds. The security and resilience of ICSs has become a critical concern to operators and governments following widely publicised cyber security events. The inability to apply conventional Information Technology security practice to ICSs further compounds challenges in adequately securing critical systems. To overcome these challenges, and do so without impacting live environments, testbeds are widely used for the exploration, development, and evaluation of security controls. However, how a testbed is designed and its attributes, can directly impact not only its viability but also its credibility. Combining systematic and thematic analysis, and the mapping of identified ICS security testbed design attributes, we propose a novel relationship map of credibility-supporting design factors (and their associated attributes) and a process implementation flow structure for ICS security testbeds. The framework and implementation process highlight the significance of demonstrating some design factors such as user/experimenter expertise, clearly defined testbed design objectives, simulation implementation approach, covered architectural components, core structural and functional characteristics covered, and evaluations to enhance confidence, trustworthiness and acceptance of ICS security testbeds as credible. These can streamline testbed requirement definition, improve design consistency and quality while reducing implementation costs

    A Cyber-War Between Bots: Human-Like Attackers are More Challenging for Defenders than Deterministic Attackers

    Get PDF
    Adversary emulation is commonly used to test cyber defense performance against known threats to organizations. However, designing attack strategies is an expensive and unreliable manual process, based on subjective evaluation of the state of a network. In this paper, we propose the design of adversarial human-like cognitive models that are dynamic, adaptable, and have the ability to learn from experience. A cognitive model is built according to the theoretical principles of Instance-Based Learning Theory (IBLT) of experiential choice in dynamic tasks. In a simulation experiment, we compared the predictions of an IBL attacker with a carefully designed efficient but deterministic attacker attempting to access an operational server in a network. The results suggest that an IBL cognitive model that emulates human behavior can be a more challenging adversary for defenders than the carefully crafted optimal attack strategies. These insights can be used to inform future adversary emulation efforts and cyber defender training

    Lessons Learned From Complex Hands-on Defence Exercises in a Cyber Range

    Get PDF
    We need more skilled cybersecurity professionals because the number of cyber threats and ingenuity of attackers is ever growing. Knowledge and skills required for cyber defence can be developed and exercised by lectures and lab sessions, or by active learning, which is seen as a promising and attractive alternative. In this paper, we present experience gained from the preparation and execution of cyber defence exercises involving various participants in a cyber range. The exercises follow a Red vs. Blue team format, in which the Red team conducts malicious activities against emulated networks and systems that have to be defended by Blue teams of learners. Although this exercise format is popular and used worldwide by numerous organizers in practice, it has been sparsely researched. We contribute to the topic by describing the general exercise life cycle, covering the exercise's development, dry run, execution, evaluation, and repetition. Each phase brings several challenges that exercise organizers have to deal with. We present lessons learned that can help organizers to prepare, run and repeat successful events systematically, with lower effort and costs, and avoid a trial-and-error approach that is often used

    Cyber Security of Critical Infrastructures

    Get PDF
    Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods
    corecore