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Abstract

Adversary emulation is commonly used to test
cyber defense performance against known threats to
organizations. However, designing attack strategies is
an expensive and unreliable manual process, based on
subjective evaluation of the state of a network. In this
paper, we propose the design of adversarial human-like
cognitive models that are dynamic, adaptable, and
have the ability to learn from experience. A cognitive
model is built according to the theoretical principles of
Instance-Based Learning Theory (IBLT) of experiential
choice in dynamic tasks. In a simulation experiment,
we compared the predictions of an IBL attacker with
a carefully designed efficient but deterministic attacker
attempting to access an operational server in a network.
The results suggest that an IBL cognitive model that
emulates human behavior can be a more challenging
adversary for defenders than the carefully crafted
optimal attack strategies. These insights can be used
to inform future adversary emulation efforts and cyber
defender training.

Keywords: Cyber security, Adversary emulation,
Instance-Based Learning Theory, Cognitive models

1. Introduction

Cyber systems have gradually populated all the
personal and collective layers of society. From
banks to hospitals, from electric grids to industrial
facilities, the interconnectivity of systems has created
new opportunities for criminals. Cyber security is a
domain of great complexity, defined by uncertainty, lack
of visibility, extreme speeds, and partial information.
In this adversarial context, defenders and attackers
confront each other using digital weapons that are

beyond the limits of human capabilities for perception
and assessment. Defenders need extensive experience
to effectively defend against dynamic and distributed
attacks.

Cyber wargaming and adversary emulation (i.e.,
Red teams) are common practices in organizations
to train defenders (i.e., Blue teams) and to develop
appropriate defense algorithms (Colbert et al., 2020;
Ferguson-Walter et al., 2018). However, the design
of emulated adversaries can be expensive and time
consuming, especially for scaled networks with a large
attack surface and rich defense arsenals. Autonomous
agents have been developed to mitigate this problem
(Applebaum et al., 2016; Shandilya et al., 2022; Theron
et al., 2018).

In particular, game theory has served as an important
computational aid in automating the generation of cyber
defense strategies. However, these strategies often rely
on assumptions of static environments and parameters,
including perfect availability of information; and perfect
rationality of decision makers (attackers and defenders
alike). These are not realistic or useful assumptions,
if one wants to generate realistic attack or defense
algorithms (Abbasi et al., 2015). Although efforts have
been made to relax these assumptions (Denning, 2014;
Ferguson-Walter et al., 2019), the design of agents that
can represent the strategies of attackers or defenders
continues to be challenging. Generally, current machine
learning techniques for intrusion detection or malware
analysis only perform low-level analyst tasks and
often result in large errors and false alarms that can
confuse the defense team (Gonzalez et al., 2014).
These systems often require continuous retraining and
extensive fine-tuning, which is time consuming and
inconsistent with the growing need for adaptability and
responsiveness against novel threats (Apruzzese et al.,
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2018; Rosenberg et al., 2021).
These limitations, combined with the rapidly

evolving capabilities of cyber attackers and the rise
of intelligent autonomous and environmentally aware
malware (Thanh & Zelinka, 2019; Theron et al., 2018)
present cyber security experts and researchers with a key
challenge of developing intelligent defense systems that
can learn and understand strategies of dynamic attackers
and preempt their intrusions (Dhir et al., 2021).

Cognitive models have been used as embedded
computational agents to simulate human interactions
with software and networks (Gonzalez et al., 2014;
Mitsopoulos et al., 2021; Veksler et al., 2020). Previous
work has focused independently on understanding
defense behaviors and developing cognitive models of
blue agents (Du et al., 2022; Dutt et al., 2011), or the
attack preferences and biases of the attacker (Cranford
et al., 2020). However, the attacker and the defender are
influenced by each other in adversarial cyber scenarios
(West & Lebiere, 2001), and such dynamics between
attackers and defenders can make defenders more
vulnerable to such adversarial actions compared to even
random attackers (Moisan & Gonzalez, 2017).

Cognitive agents based on the well-established
Instance-Based Learning Theory (IBLT) (Gonzalez
et al., 2003), a cognitive theory of decision based on
experience, have been used to model the cognitive
processes of cyber defenders. Dutt et al. (2011)
proposed an IBL model that accurately represents
the cyber situation awareness of a human analyst,
making concrete predictions of the recognition and
comprehension processes of a security expert in a cyber
attack. A more recent model from Du et al. (2022)
uses a cyber security scenario in which the IBL agent
learned to defeat the most aggressive deterministic
attack strategy, called Beeline.

Humans were also found to handle random attacks
better than adaptive attackers in a simple, abstract
game (Moisan & Gonzalez, 2017). This suggests that
commonly used random-based security algorithms may
be less effective than human-inspired adaptive defense
strategies. In a phishing experiment, Rajivan and
Gonzalez (2018) have found that individual creativity is
a predictor of an adversary’s ability to evade detection.
Cognitive biases and emotions are also believed to
affect cyber behaviors, decision making, and strategies
of attackers (Ferguson-Walter et al., 2021; Johnson
et al., 2021). We hypothesize that cognitive models of
human adversaries can be more useful in training cyber
defenders than deterministic attacker strategies.

In this paper, we propose a cognitive model of a
dynamic red agent using the theoretical principles of
IBLT. In a cyber security simulation experiment, we

compared the performance of the IBLRed agent with
that of a deterministic, highly accurate and targeted
BeelineRed, in attacking a network defended by a
dynamic IBLBlue agent. We first developed the
IBLRed attacker and trained it in a cyber security
scenario against a dormant defender. We then tested this
attacker and the best deterministic one (BeelineRed)
against a dynamic defender developed previously
(IBLBlue).

2. Instance-Based Learning Theory

IBLT is a cognitive theory of decision making.
It is based on the idea that decisions are made
by recognizing similar past experiences, integrating
them into the generation of the expected utility of
decision alternatives, and selecting the alternative with
the maximum expected utility. The development of
cognitive models for cyber defense is based on a large
body of work on cognitive models of cyber defenders,
cyber attackers, and end users in a cyber security context
(e.g., Gonzalez et al., 2020).

Although both the process and the mechanisms of
IBLT have been published, we repeat the mathematical
formulations of the theory here for completeness. The
central element of IBLT is the ”instance”. It represents
a unit of memory resulting from the evaluation of
potential choice alternatives. Each decision is stored in
an instance, structured with three elements that are built
over time: a situation state s which is composed of a set
of features f ; a decision or action a taken corresponding
to an alternative in state s; and an expected utility or
experienced outcome x of the action taken in a state.
Concretely, for an IBL agent, an option k = (s, a) is
defined by action a in state s. At time t, assume that
nkt different instances (ki, xikit) for i = 1, ..., nkt,
associated with k. Each instance i in memory has an
Activation value, which represents the ease of retrieving
this information from memory (Anderson & Lebiere,
1998). Here, we consider a simplified version of
the Activation equation which only captures recency,
frequency, and noise in memory:

Λikit = ln

( ∑
t′∈Tikit

(t− t′)−d

)
+ σ ln

1−ξikit

ξikit
, (1)

where d and σ are the decay and noise parameters,
respectively, and Tikit ⊂ {0, ..., t − 1} is the set
of previous timestamps in which the instance i was
observed. The rightmost term represents a noise for
capturing individual variation in activation, and ξikit is
a random number drawn from a uniform distribution
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U(0, 1) at each step and for each instance and option.
Activation of an instance i is used to determine the

probability of retrieving an instance from memory. The
probability of an instance i is defined by a soft-max
function:

Pikit =
eΛikit

/τ∑nkt

j=1 e
Λjkjt

/τ
, (2)

where τ is the Boltzmann constant (i.e., the
“temperature”) in the Boltzmann distribution. For
simplicity, τ is often defined as a function of the same σ
used in the activation equation τ = σ

√
2.

The expected utility of option k is calculated
based on Blending as specified in discrete choice tasks
(Gonzalez & Dutt, 2011):

Vkt =

nkt∑
i=1

Pikitxikit. (3)

The choice rule is to select the option that
corresponds to the maximum blended value. When
the agent receives results that are delayed, the agent
updates the expected utilities using a credit assignment
mechanism (Nguyen et al., 2021).

3. Cyber Security Scenario

Testing the attacker and defender agents requires a
simulation or training platform that encapsulates cyber
elements in an integrated environment. On such a
platform, defense agents can confront attack agents in
cyber scenarios and network simulations. Here, we use
the CybORG AI gym (Baillie et al., 2020; Brockman
et al., 2016; Standen et al., 2021b) with adversarial
cyber operations scenarios to allow users to train agents
in a simple but realistic environment. We adapt the
CAGE cyber defense scenario (Standen et al., 2021a) to
perform experimental simulations using IBL agents as
cyber defenders and cyber attackers. This framework
was also presented in (Du et al., 2022; Prébot et al.,
2022) and in the following we outline its main structural
elements and the particularities of the cyber defense
scenario.

The attacker (hereafter the Red agent) interacts with
the environment through high-level actions that aim to
progress and impact the network; the defender (hereafter
the Blue agent) aims to stop the progression of the
attacker and remove it from the network.

Fig. 1 illustrates the topology of the network chosen
for this scenario. The network is divided into three
subnets: subnet 1 consists of user hosts that are not
critical, subnet 2 consists of enterprise servers designed

to support the user activities on Subnet 1, and subnet 3
contains the critical operational server and operational
hosts.

Figure 1. Adaptation of the Cage Challenge Network

Fig.2 summarizes the phases of a targeted attack
led by the Red agent (red arrows) and countermeasures
for the Blue agent to stop it (blue arrows). The Red
agent starts by searching for hosts on the network with
DiscoverRemoteSystems. To identify vulnerabilities in a
target host, the next step is to DiscoverNetworkServices.
A successful ExploitRemoteService on target can obtain
User level access for the Red agent, which can
be escalated to a more privileged Root level by
PrivilegeEscalate. The Blue agent can Remove its
adversary at the User level and use Restore if the Red
agent has escalated. It can also Analyse the activities
for additional information or passively Monitor the
network.

3.1. Red Agent

We used two types of red agents: (1) a deterministic
agent, BeelineRed, and (2) a dynamic agent, IBLRed.
Both red agents start at the host User0 as their network
entry point.

The BeelineRed was proposed in the Cage
Challenge scenario (Standen et al., 2021b), and it
assumes that the attacker has prior knowledge of the
network layout and moves directly to the operational
server following the red path (User0 → User1 →
Enterprise1 → Enterprise2 → Op Server0) (see
Fig. 1) in a predictive and deterministic way.

In contrast, IBLRed, a novel contribution of this
research, is a dynamic cognitive agent that learns from
experience. This is a cognitive model built according to
IBLT to represent human-like memory-based decisions
that can adapt its actions dynamically, according to the
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Figure 2. Effect of actions on the host state (diagram from Standen et al., 2021a)

conditions of the environment and the actions of the blue
agent. The instances represent each decision made and
are structured with the following three elements.

State, s: The state of the instances of the IBLRed

agent is composed of features, f , constructed using
the concept of Attack Models and Attack Graphs
introduced by Sheyner et al. (2002) to model the security
vulnerabilities of a network and their exploitation from
the perspective of an attacker. Specifically, contextual
characteristics include the success status of the previous
action of the IBLRed agent and the resources it
occupied. A slot is dedicated to each type of resource in
various states as shown in Fig. 2. Specifically, a subnet
can be newly Detected or already Scanned, while hosts
are classified as Detected, Scanned, Exploited (User),
Exploited (Root), Impacted.

The starting status denotes when the IBLRed agent
has just successfully established its foothold on the
network on User0. At that point, only the User subnet
is detected in addition to its entry point User0, while
the rest of the slots are empty. The most successful final
state for the IBLRed agent is where all hosts and servers
are exploited at the Root level and when the critical
Op Server0 is impacted.

Action Space, a: The action space for the IBLRed

agent is dynamically constructed at each step based on
the status of each host in the network. Each action
consists of a target host and an applicable command.

As shown in Fig. 2, IBLRed can choose to Discover*
more hosts in the network, or advance the attack status
of known hosts.

Utility, z: A reward is calculated at each step, based
on the attack status, as shown in Table 1. Higher
rewards are assigned when the IBLRed agent is able to
access more significant systems. Only root access to the
systems and successful impact on the operational server
are rewarded. The IBLRed agent receives a reward of 0
for any other action.

Event or Action Reward
Administrator access on a Host 0.1
Administrator access on a Server 1
Successfully Impact Op Server0 10

Table 1. Events and actions costs

3.2. Blue Agent

We used two types of blue agents: (1) a deterministic
agent SleepyBlue and (2) a dynamic agent IBLBlue.
SleepyBlue passively Monitors the network and does
not attempt to stop the Red agent. The IBLBlue,
has been proposed and tested recently by Du et al.
(2022). This agent, also built according to IBLT, learns
from experience and adapts its actions dynamically,
according to the conditions of the environment and
the actions of the red agent. Experiments demonstrate
that IBLBlue provided with delayed feedback learn
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to exploit the deterministic nature of BeelineRed and
achieve near-zero loss.

At each step, based on the observed state of the
network and the consequences of the attacker’s previous
actions, the blue agent selects a host or server to act
on and one of four possible actions: Analyze is used
to collect information about the level of compromise
of the selected host; Remove is used to remove a
suspected malicious agent from the host or server; if the
malicious agent cannot be removed, the blue agent can
Restore a host or server to a previous stable state; and
Monitor to just continue observing the system, which
has essentially no effect on the network state.

4. Hypotheses and Simulation Methods

Hypothesis 1. The first hypothesis tests the behavior
of two red agents: the BeelineRed agent and the
IBLRed agent, against the SleepyBlue agent.

We expect that: (a) our newly proposed IBLRed

agent will learn from experience, and will achieve a
similar level of performance as the BeelineRed, the
best known strategy in the Adapted Cage Challenge
scenario, after learning; (b) the BeelineRed agent will
consistently receive the highest reward and maximum
impact on the operational server, since BeelineRed

represents a deterministic but highly effective attacker;
and (c) the IBLRed agent will initially perform poorly,
since it can only learn from experience, but would learn
to take advantage of such an ineffective defender with
practice.

Hypothesis 2. The second hypothesis tests the
behavior of two red agents: the BeelineRed agent
and the IBLTrained

Red agent, against the IBLBlue agent
(Du et al., 2022). IBLTrained

Red is IBLRed pre-trained
against SleepyBlue for 2000 episodes. This type of
agent is designed to simulate the advanced stealthy
threat actors in the real world who gain unauthorized
access to a computer network and remain undetected
for an extended period when the cyber defender is still
”sleeping”.

We expect BeelineRed to initially achieve higher
reward and longer impact duration than IBLTrained

Red

agent. However, the determinism and static nature
of BeelineRed will be exploited by the learning
IBLBlue agent, resulting in worse attack performance
of BeelineRed than IBLTrained

Red .

Methods. Each of the two hypotheses were tested in
separate simulation experiments. We ran 40 IBL runs,
each with 2000 episodes. The duration of the episode
was set to 25 steps to ensure that the Blue agent could

fully observe the attack strategies. All IBL models were
run with default decay d = 0.5 and noise σ = 0.25.
This means that the results presented here are all a priori
predictions of how a human defender IBLBlue and a
human attacker IBLRed are expected to behave under
these conditions.

The performance of the Red agent was evaluated for
each episode, using the following metrics: (1) Reward:
the reward received during the execution of the scenario;
(2) Impact duration: the average number of steps
per episode that the Red agent successfully impacts the
operational server; (3) Progress: the average number of
steps per episode that the Red agent took to penetrate
the Enterprise subnet and Operational subnet; and (4)
Action frequency: the average proportion of command
usage at each step in an episode.

The performance of the Blue agent was also
evaluated in terms of: (1) Action frequency:
proportions of command usages at each step; and (2)
Number of options: the average number of defense
choices available to the blue agent. This represents
the decision space left to the defender after each action
of the Red agent. Options are combinations of blue
commands and hosts.

5. Results

5.1. Red Agent Performance

Attacker Reward. Fig. 3-Left panel shows the test
of Hypothesis 1 and Fig. 3-Right panel the test
of Hypothesis 2 in terms of the reward obtained by
the Red agents. To test the observations, we ran a
one-way between subjects ANOVA using attacker type
as the main factor and attacker reward as the dependent
variable, aggregating for the first 500 and the last 500
episodes.

As expected in Hypothesis 1, the IBLRed agents
(M = 59.09, SD = 43.78) performed significantly
worse than the BeelineRed agents (M = 112.8,
SD = 0) when faced with SleepyBlue in the first
500 episodes [F (1, 39998) = 30105, p < .001, η2 =
0.43]. In contrast, the IBLRed agents (M = 104.64,
SD = 38.68) are able to reach comparable average
performance as the BeelineRed agents (M = 112.8,
SD = 0) in the last 500 episodes By the end of the
2000th episode, 55% of the IBLRed agents received a
higher reward than BeelineRed, which requires them
to quickly penetrate the network to Impact Op Server0,
and at the same time fully exploit the remaining
valuable systems when the opportunity arises. Most
importantly, the IBLRed agent learned such a complex
and efficient strategy purely from experience according
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to IBLT (Gonzalez et al., 2003) and without any explicit
encoding of any strategy.

Also, as expected in Hypothesis 2, given that
the IBLBlue agent also starts naively learning from
experience, the BeelineRed agents performed better
(M = 112.8, SD = 30.39) than the IBLTrained

Red

agents (M = 80.34, SD = 45.02) in the first 500
episodes [F (1, 39998) = 20579, p < .001, η2 =
0.34]. However, the IBLTrained

Red agents posed a more
persistent threat than the BeelineRed agents, while
the performance of the BeelineRed agents deteriorates
rapidly. The BeelineRed agents (M = 54.60,
SD = 34.31) performed significantly worse than the
IBLTrained

Red agents (M = 5.15, SD = 14.68) in
the last 500 episodes [F (1, 39998) = 31185, p <
.001, η2 = 0.44].

Figure 3. Reward

Impact duration. The main goal of the attacker is to
maintain constant Impact over Op Server0. Fig. 4-Left
panel shows the test of Hypothesis 1 and 4-Right panel
shows the test of Hypothesis 2, in terms of the number
of successive impacts performed by the red agent on the
Op Server

As expected in Hypothesis 1, the IBLRed agents
are capable of achieving a comparable impact on the
network (M = 9.0, SD = 3.37) as the BeelineRed

agent (M = 6.4, SD = 1) when faced with SleepyBlue

in the last 500 episodes [F (1, 39998) = 901.4, p <
.001, η2 = 0.31].

Also, as expected in Hypothesis 2, IBLTrained
Red

achieves shorter impact duration (M = 5.08, SD =
3.77) than BeelineRed (M = 8.93, SD = 2.34)
in the first 500 episodes [F (1, 39998) = 17240, p <
.001, η2 = 0.95]. This relative disadvantage reversed in
last 500 episodes, where the IBLTrained

Red had a higher
impact duration (M = 3.25, SD = 2.82) than the
BeelineRed: (M = 0.18, SD = 1.11) [F (1, 39998) =
14699, p < .001, η2 = 0.94].

Figure 4. Impact duration: The number of

successive impacts performed by the red agent on

Op Server

5.2. Further Exploration of Red Agents’
Behavior

To further explore the behavior of red agents with
respect to Hypothesis 2, we analyzed the number of
steps that the attacker takes to reach a subnet (Enterprise
and Operational). Considering the layered network
structure shown in Fig. 1, the progress of the Red
agents can be marked by two milestones: penetration
of the Enterprise subnet and the Operational subnet.
As expected in Hypothesis 2, we can observe the
increasingly delayed and impeded forward progress of
BeelineRed from Fig. 5.

BeelineRed takes on average 15 more steps
to enter the Enterprise subnet than initially, and
longer for the Operational one too. However,
IBLTrained

Red shows relatively stable performance over
the course of the 2000 episodes and as IBLBlue gains
experience. IBLTrained

Red takes longer time to penetrate
the Enterprise subnet (M = 4.77, SD = 0.33) and
the Operational subnet (M = 15.67, D = 0.61) than
BeelineRed (Enterprise: (M = 4.59, SD = 0.33),
Operational: (M = 12.04, D = 0.38)) in the first
500 episodes [Enterprise: F (1, 39998) = 66.02, p <
.001, η2 = 0.06] [Operational: F (1, 39998) =
12489, p < .001, η2 = 0..93]. This relative
disadvantage reversed in last 500 episodes, where the
IBLTrained

Red propagated faster into Enterprise subnet
(M = 6.12, SD = 0.40) and the Operational subnet
(M = 16.90, D = 0.52) than the BeelineRed:
Enterprise: (M = 19.20, SD = 0.99) [F (1, 39998) =
74265, p < .001, η2 = 0.99], Operational: (M =
21.27, D = 0.97), [F (1, 39998) = 7940, p <
.001, η2 = 0.89].

Fig. 6 compares the average distribution of the use
of attack commands at each step of the first 500 episodes
(Left panels) in Stage 2 versus the last 200 episodes
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Figure 5. Hypothesis 2 - Progress: The number of

steps it takes for the attacker to reach subnet

Enterprise and Op

(Right panels). IBLTrained
Red and BeelineRed present

similar proportions of actions at the beginning, with
higher Sleep proportion for IBLTrained

Red . The difference
becomes much larger in the final episodes. BeelineRed

is stuck into a loop of ExploitRemoteService and
PrivilegeEscalate, while IBLTrained

Red maintained a
consistent distribution. This comparison constitutes
further evidence of the inefficacy of deterministic
heuristic strategies. The disappearance of Discover*
actions and Impact actions can help explain the reason
for the rapid drop in reward within the episodes.

Figure 6. Average frequency of attacker command

usage at each step in an episode

5.3. Exploration of IBLBlue agent’s Behavior

The Blue agent performance in terms of Reward
and Impact duration has been evaluated in (Du et al.,
2022). We are not going to repeat those results
here, and they are essentially reversed results for the
IBLBlue and BeelineRed interactions we presented
above. Instead, we will focus this section on the
exploration of Hypothesis 2 from the defender’s side.

As presented in Fig. 7, the dynamics of the use
of defensive commands by the agent IBLBlue shows
a difference when confronting the agent BeelineRed

in contrast to the agent IBLRed. IBLBlue agents
faced with a BeelineRed attacker are able to minimize
the proportion of costly Restore action and stop the
attacker with Remove in an earlier state of the cyber-kill
chain. Those fighting with IBLTrained

Red failed to derive
a defense strategy better than a random defense.

Figure 7. Average frequency of defender command

usage at each step in an episode

Size of the Option Space: Psychology and behavioral
research suggests that too many choices can overload
decision makers (Reed et al., 2012; Schwartz & Ward,
2004). Defenders face this challenge of information
overload. Fig. 8 analyzes the number of options
available to the IBLBlue agent during the 25 steps of
the episodes. As shown in the left panel, when IBLBlue

fought against BeelineRed, it was able to reduce the
option space in the final 500 episodes compared to the
first 500 episodes.

In contrast, Fig. 8-Right panel shows that the option
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space stays about the same size from the first 500
episodes to the last 500 episodes. That is, the IBLBlue

agent was unable to simplify the option space with
experience against the IBLTrained

Red agent by impeding
its progress and minimize the number of exploited hosts.

Figure 8. Number of choice options for defender

6. Discussion

Adversary emulation strategies can be used to train
cyber defense teams, develop intelligent systems for
cyber defense, and test cyber defense capabilities.
However, the process of developing effective adversary
emulations can be expensive and their evaluation is
often subjective (Russo et al., 2019; Yoo et al.,
2020). A first contribution of this paper is to
demonstrate that it is possible to evaluate cyber defense
intelligent systems by generating a “cyber-war between
bots”; where automated cyber defenders can be paired
with automated cyber attackers to determine their
performance and strategy.

Second, we demonstrate that cognitive models,
aimed at emulating human cognitive processes of
decision making, can be instrumental in generating
defense automation capabilities (Gonzalez et al., 2014).
Concretely, we demonstrate that cognitive models that
emulate human adversaries can be better test cases for
cyber defense teams and for technological capabilities.
We present a cognitive model of an attacker based on
IBLT (Gonzalez et al., 2003), IBLRed. IBLRed is first
trained against a static and inactive defender, SleepBlue.
The main feature of IBLRed is that it can learn from
interactive feedback on the task, and we showed that
it can reach the same level of effectiveness as the best
adversarial strategy in this scenario, BeelineRed. This
result suggests that an IBL cognitive model can be
an effective dynamic and adaptive emulator of attack
strategies. Importantly, the IBL attacker can adapt and
learn according to the dynamics of the cyber defense
environment.

A third contribution of this paper is to demonstrate
the performance of an IBL model of the defender
IBLBlue when paired with two different types
of emulated attackers: the optimal attack strategy
BeelineRed, and a human-like attacker IBLTrained

Red .
This IBLBlue defender can learn the optimal strategy
again, but a human-like attack strategy IBLTrained

Red

is more difficult for the IBLBlue defender to learn
than an optimal but stable optimal attack strategy. The
explanation is that using a cognitive model to emulate
attackers is more effective than using deterministic
strategies. Cognitive models are dynamic and adaptive
to the defender’s actions, while the Beeline strategy is
static and consistent. The IBLBlue agent was able to
learn the Beeline strategy and eventually take advantage
of it, while it did not effectively hinder the progress of
the IBLRed agent.

Our analyses show that it takes significantly more
steps over time for the Beeline attacker to reach
the Enterprise subnet and ultimately more steps to
reach the Operational server. The IBLBlue learns
over time to prevent these actions from this Beeline
strategy. However, it is significantly more difficult
to prevent IBLRed from reaching the Enterprise and
the Operational servers. We further verify that there
is important learning that occurs from the first to the
last episodes in terms of the actions taken by the
attacker. For example, the number of impact actions
is significantly reduced from the first to the last 500
episodes when the IBLBlue agent confronts the Beeline
strategy, but the reduction in impact actions is minimal
when the IBLBlue agent confronts the human-like
IBLRed agent.

Exploring the actions taken by the IBLBlue agent
suggests that the agent learns to decrease restore actions
when confronted with the agent BeelineRed, while
maintaining a more consistent distribution of actions
when confronted with the agent IBLRed. When
analyzing the options with which the IBLBlue agent
is confronted at each particular time, we observed an
interesting effect: the IBLBlue agent learned to reduce
its decision option space against the BeelineRed, while
the option space of the IBLBlue agent against the
IBLRed did not decrease substantially.

6.1. Conclusion and Limitations

In conclusion, we provide important steps towards
establishing emulated adversaries that can be effective
for training cyber defenders and supporting the
development of autonomous cyber defenders. We
demonstrate that it is possible to use cognitive
models that emulate human-like strategies to produce
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adversaries that are adaptive to the actions of defenders.
These models can ultimately be more effective in
learning cyber defense strategies than static and
deterministic adversaries. However, demonstrating
the benefits of the use of cognitive models in
real-world cyber security environments remains a
research challenge. Extending the scenario to the
size of real-world networks can exponentially expand
the state space in the cognitive model, and research
on partially observable states for the defender will be
required to account for imperfect network monitoring
infrastructures. Future work will aim at verifying the
predictions of the effectiveness of human defenders
when confronted with these two types of attack
strategies, and to improving the game model to be more
representative of real-world environments.
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