196 research outputs found

    Using an Adaptive HPC Runtime System to Reconfigure the Cache Hierarchy

    Full text link
    The cache hierarchy often consumes a large portion of a processor’s energy. To save energy in HPC environments, this paper proposes software-controlled reconfiguration of the cache hierarchy with an adaptive runtime system. Our approach addresses the two major limitations associated with other methods that reconfigure the caches: predicting the application’s future and finding the best cache hierarchy configuration. Our approach uses formal language theory to express the application’s pattern and help predict its future. Furthermore, it uses the prevalent Single Program Multiple Data (SPMD) model of HPC codes to find the best configuration in parallel quickly. Our experiments using cycle-level simulations indicate that 67 % of the cache energy can be saved with only a 2.4 % performance penalty on average. Moreover, we demonstrate that, for some applica-tions, switching to a software-controlled reconfigurable streaming buffer configuration can improve performance by up to 30 % and save 75 % of the cache energy. I

    Power, Reliability, Performance: One System to Rule Them All

    Get PDF
    En un diseño basado en el marco de programación paralelo Charm ++, un sistema de tiempo de ejecución adaptativo interactúa dinámicamente con el administrador de recursos de un centro de datos para controlar la energía mediante la programación inteligente de trabajos, la reasignación de recursos y la reconfiguración de hardware. Gestiona simultáneamente la fiabilidad al enfriar el sistema al nivel óptimo de la aplicación en ejecución y mantiene el rendimiento a través del equilibrio de carg

    A protocol reconfiguration and optimization system for MPI

    Get PDF
    Modern high performance computing (HPC) applications, for example adaptive mesh refinement and multi-physics codes, have dynamic communication characteristics which result in poor performance on current Message Passing Interface (MPI) implementations. The degraded application performance can be attributed to a mismatch between changing application requirements and static communication library functionality. To improve the performance of these applications, MPI libraries should change their protocol functionality in response to changing application requirements, and tailor their functionality to take advantage of hardware capabilities. This dissertation describes Protocol Reconfiguration and Optimization system for MPI (PRO-MPI), a framework for constructing profile-driven reconfigurable MPI libraries; these libraries use past application characteristics (profiles) to dynamically change their functionality to match the changing application requirements. The framework addresses the challenges of designing and implementing the reconfigurable MPI libraries, which include collecting and reasoning about application characteristics to drive the protocol reconfiguration and defining abstractions required for implementing these reconfigurations. Two prototype reconfigurable MPI implementations based on the framework - Open PRO-MPI and Cactus PRO-MPI - are also presented to demonstrate the utility of the framework. To demonstrate the effectiveness of reconfigurable MPI libraries, this dissertation presents experimental results to show the impact of using these libraries on the application performance. The results show that PRO-MPI improves the performance of important HPC applications and benchmarks. They also show that HyperCLaw performance improves by approximately 22% when exact profiles are available, and HyperCLaw performance improves by approximately 18% when only approximate profiles are available

    Beyond the socket: NUMA-aware GPUs

    Get PDF
    GPUs achieve high throughput and power efficiency by employing many small single instruction multiple thread (SIMT) cores. To minimize scheduling logic and performance variance they utilize a uniform memory system and leverage strong data parallelism exposed via the programming model. With Moore's law slowing, for GPUs to continue scaling performance (which largely depends on SIMT core count) they are likely to embrace multi-socket designs where transistors are more readily available. However when moving to such designs, maintaining the illusion of a uniform memory system is increasingly difficult. In this work we investigate multi-socket non-uniform memory access (NUMA) GPU designs and show that significant changes are needed to both the GPU interconnect and cache architectures to achieve performance scalability. We show that application phase effects can be exploited allowing GPU sockets to dynamically optimize their individual interconnect and cache policies, minimizing the impact of NUMA effects. Our NUMA-aware GPU outperforms a single GPU by 1.5×, 2.3×, and 3.2× while achieving 89%, 84%, and 76% of theoretical application scalability in 2, 4, and 8 sockets designs respectively. Implementable today, NUMA-aware multi-socket GPUs may be a promising candidate for scaling GPU performance beyond a single socket.We would like to thank anonymous reviewers and Steve Keckler for their help in improving this paper. The first author is supported by the Ministry of Economy and Competitiveness of Spain (TIN2012-34557, TIN2015-65316-P, and BES-2013-063925)Peer ReviewedPostprint (published version

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Adaptive Parallelism for Coupled, Multithreaded Message-Passing Programs

    Get PDF
    Hybrid parallel programming models that combine message passing (MP) and shared- memory multithreading (MT) are becoming more popular, especially with applications requiring higher degrees of parallelism and scalability. Consequently, coupled parallel programs, those built via the integration of independently developed and optimized software libraries linked into a single application, increasingly comprise message-passing libraries with differing preferred degrees of threading, resulting in thread-level heterogeneity. Retroactively matching threading levels between independently developed and maintained libraries is difficult, and the challenge is exacerbated because contemporary middleware services provide only static scheduling policies over entire program executions, necessitating suboptimal, over-subscribed or under-subscribed, configurations. In coupled applications, a poorly configured component can lead to overall poor application performance, suboptimal resource utilization, and increased time-to-solution. So it is critical that each library executes in a manner consistent with its design and tuning for a particular system architecture and workload. Therefore, there is a need for techniques that address dynamic, conflicting configurations in coupled multithreaded message-passing (MT-MP) programs. Our thesis is that we can achieve significant performance improvements over static under-subscribed approaches through reconfigurable execution environments that consider compute phase parallelization strategies along with both hardware and software characteristics. In this work, we present new ways to structure, execute, and analyze coupled MT- MP programs. Our study begins with an examination of contemporary approaches used to accommodate thread-level heterogeneity in coupled MT-MP programs. Here we identify potential inefficiencies in how these programs are structured and executed in the high-performance computing domain. We then present and evaluate a novel approach for accommodating thread-level heterogeneity. Our approach enables full utilization of all available compute resources throughout an application’s execution by providing programmable facilities with modest overheads to dynamically reconfigure runtime environments for compute phases with differing threading factors and affinities. Our performance results show that for a majority of the tested scientific workloads our approach and corresponding open-source reference implementation render speedups greater than 50 % over the static under-subscribed baseline. Motivated by our examination of reconfigurable execution environments and their memory overhead, we also study the memory attribution problem: the inability to predict or evaluate during runtime where the available memory is used across the software stack comprising the application, reusable software libraries, and supporting runtime infrastructure. Specifically, dynamic adaptation requires runtime intervention, which by its nature introduces additional runtime and memory overhead. To better understand the latter, we propose and evaluate a new way to quantify component-level memory usage from unmodified binaries dynamically linked to a message-passing communication library. Our experimental results show that our approach and corresponding implementation accurately measure memory resource usage as a function of time, scale, communication workload, and software or hardware system architecture, clearly distinguishing between application and communication library usage at a per-process level

    Runtime-assisted cache coherence deactivation in task parallel programs

    Get PDF
    With increasing core counts, the scalability of directory-based cache coherence has become a challenging problem. To reduce the area and power needs of the directory, recent proposals reduce its size by classifying data as private or shared, and disable coherence for private data. However, existing classification methods suffer from inaccuracies and require complex hardware support with limited scalability. This paper proposes a hardware/software co-designed approach: the runtime system identifies data that is guaranteed by the programming model semantics to not require coherence and notifies the microarchitecture. The microarchitecture deactivates coherence for this private data and powers off unused directory capacity. Our proposal reduces directory accesses to just 26% of the baseline system, and supports a 64x smaller directory with only 2.8% performance degradation. By dynamically calibrating the directory size our proposal saves 86% of dynamic energy consumption in the directory without harming performance.This work has been supported by the RoMoL ERC Advanced Grant (GA 321253), by the European HiPEAC Network of Excellence, by the Spanish Ministry of Economy and Competitiveness (contract TIN2015-65316-P), by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272) and by the European Unions Horizon 2020 research and innovation programme (grant agreements 671697 and 779877). M. Moreto has been partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under Ramon y Cajal fellowship number RYC-2016-21104.Peer ReviewedPostprint (author's final draft

    A User Friendly Phase Detection Methodology for HPC Systems' Analysis

    Get PDF
    International audienceA wide array of today's high performance computing (HPC) applications exhibits recurring behaviours or execution phases throughout their run-time. Accurate detection of program phases allows reconfiguring the system for a better power/performance trade off; and can reduce the simulation time of programs by identifying regions of code whose performance is critical to the entire program. Program phases are also reflected in different behaviours the system goes through or system phases, which can be used as an alternative means of program phase detection for users lacking expertise. In this paper, we present an execution vector based (EV-based) phase detection, which is an on-line methodology for detecting phases in the behaviour of a HPC system and determining execution points that correspond to these phases. We also present a methodology for defining a small set of EVs representative of the system's behaviour over a fixed period of time and show that EV-based phase detection identifies recurring phases. Our methodology is illustrated with benchmarks and a real life application

    PRISM: an intelligent adaptation of prefetch and SMT levels

    Get PDF
    Current microprocessors include hardware to optimize some specifics workloads. In general, these hardware knobs are set on a default configuration on the booting process of the machine. This default behavior cannot be beneficial for all types of workloads and they are not controlled by anyone but the end user, who needs to know what configuration is the best one for the workload running. Some of these knobs are: (1) the Simultaneous MultiThreading level, which specifies the number of threads that can run simultaneously on a physical CPU, and (2) the data prefetch engine, that manages the prefetches on memory. Parallel programming models are here to stay, and one programming model that succeed in allowing programmers to easily parallelize applications is Open Multi Processing (OMP). Also, the architecture of microprocessors is getting more complex that end users cannot afford to optimize their workloads for all the architectural details. These architectural knobs can help to increase performance but it is needed an automatic and adaptive system managing them. In this work we propose an independent library for OpenMP runtimes to increase performance up to 220% (14.7% on average) while reducing dynamic power consumption up to 13% (2% on average) on a real POWER8 processor

    Runtime-guided mitigation of manufacturing variability in power-constrained multi-socket NUMA nodes

    Get PDF
    This work has been supported by the Spanish Government (Severo Ochoa grants SEV2015-0493, SEV-2011-00067), by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P), by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), by the RoMoL ERC Advanced Grant (GA 321253) and the European HiPEAC Network of Excellence. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047. M. Casas is supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the 7th R&D Framework Programme of the European Union (Contract 2013 BP B 00243). This work was also partially performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-CONF-689878). Finally, the authors are grateful to the reviewers for their valuable comments, to the RoMoL team, to Xavier Teruel and Kallia Chronaki from the Programming Models group of BSC and the Computation Department of LLNL for their technical support and useful feedback.Peer ReviewedPostprint (published version
    corecore