
Runtime-Assisted Cache Coherence Deactivation
in Task Parallel Programs

Paul Caheny∗†, Lluc Alvarez∗, Mateo Valero∗†, Miquel Moretó∗†, Marc Casas∗
∗Barcelona Supercomputing Center (BSC)
†Universitat Politècnica de Catalunya (UPC)

{firstname}.{lastname}@bsc.es

Abstract—With increasing core counts, the scalability of
directory-based cache coherence has become a challenging prob-
lem. To reduce the area and power needs of the directory,
recent proposals reduce its size by classifying data as private
or shared, and disable coherence for private data. However,
existing classification methods suffer from inaccuracies and
require complex hardware support with limited scalability.

This paper proposes a hardware/software co-designed ap-
proach: the runtime system identifies data that is guaranteed by
the programming model semantics to not require coherence and
notifies the microarchitecture. The microarchitecture deactivates
coherence for this private data and powers off unused directory
capacity. Our proposal reduces directory accesses to just 26% of
the baseline system, and supports a 64× smaller directory with
only 2.8% performance degradation. By dynamically calibrating
the directory size our proposal saves 86% of dynamic energy
consumption in the directory without harming performance.

Index Terms—Cache memory, Memory architecture, Parallel
programming, Runtime environment

I. INTRODUCTION

Since the end of Dennard scaling [1], multicore archi-
tectures have proliferated in the High-Performance Comput-
ing (HPC) domain. Among the different paradigms, shared-
memory multiprocessors have been dominant due to their
advantages in programmability. The ease of programmability
of shared-memory architectures is granted by hardware cache
coherence, which manages the cache hierarchy transparently
to the software. Modern architectures typically use directory-
based coherence protocols, since they are the most scalable
approach. However, directory-based protocols incur significant
area and power overheads, as the number of directory entries
scales up with the size of the caches and the size of each
directory entry scales up with the number of cores [2].

In recent years, much emphasis has been placed on reducing
the costs of directory-based coherence protocols. Many of
these studies realise that, fundamentally, coherence is only
needed for data that is shared between multiple logical cores,
at least one of which will write to it. Otherwise data races
do not happen and coherence is not required. Based on this
observation, many works propose to identify data that does not
require coherence and to exploit this information to optimise
the coherence protocol. State-of-the-art techniques aimed at
identifying shared and private data rely on Operating System
(OS) page table and Translation Lookaside Buffer (TLB)
support [3]–[7], which can only operate at page granularity
and require extensive changes in the TLBs.

The popularisation of large-scale multicores in HPC has
also driven the evolution of parallel programming paradigms.
Traditional fork-join programming models are not well suited
for large-scale multicore architectures, as they include many
elements (heterogeneous cores, dynamic voltage and frequency
scaling, simultaneous multithreading, non-uniform cache and
memory access latencies, varying network distances, etc.)
that compromise uniform execution across threads and, thus,
significantly increase synchronisation costs. For this reason,
task-based programming models such as OpenMP 4.0 [8]
have received a lot of attention in recent years. Task-based
parallelism requires the programmer to divide the code into
tasks and to specify what data they read (inputs) and write
(outputs). Using this information the runtime system (RTS)
manages the parallel execution, discovering dependences be-
tween tasks, dynamically scheduling tasks to cores, and taking
care of synchronisation between tasks.

This paper presents Runtime-assisted Cache Coherence
Deactivation (RaCCD), a hardware/software co-designed ap-
proach that leverages the information present in the RTS of
task-based data-flow programming models to drive a more
efficient hardware cache coherence design. RaCCD relies on
the implicit guarantees of the memory model of task-based
data-flow programming models, which ensure that, during the
execution of a task, its inputs will not be written by any other
task, and its outputs will neither be read nor written by any
other task. As a result, coherence is not required for input
and output data of a task during its execution. In RaCCD,
the RTS is in charge of identifying data that does not need
coherence by inspecting the inputs and outputs of the tasks.
Before a task is executed, the RTS notifies the hardware about
the precise address ranges of the task inputs and outputs. Using
simple and efficient hardware support, RaCCD deactivates
coherence for these blocks during the execution of the task.
When the task finishes, the RTS triggers a lightweight recovery
mechanism that invalidates the non-coherent blocks from the
private caches of the core that executed the task. As a con-
sequence, RaCCD reduces capacity pressure on the directory,
allowing for smaller directory sizes. We extensively explore
reduced directory sizes with RaCCD and propose a mechanism
to dynamically calibrate the directory size to reduce energy
consumption without harming performance. This paper makes
the following contributions beyond the state-of-the-art:

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185529801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• RaCCD, a mechanism to deactivate cache coherence
driven by runtime system meta-data regarding task in-
puts and outputs. This mechanism requires simple and
efficient architectural support, and avoids the complexity,
scalability and accuracy problems of other solutions.

• An extensive evaluation that demonstrates the potential
of RaCCD to reduce capacity pressure on the directory.
RaCCD reduces directory accesses to just 26% of those
in the baseline system. Moreover, it allows reducing the
directory size by a factor of 64× with only a 2.8%
performance impact on average. This results in 93% and
94% savings in dynamic energy consumption and area of
the directory, respectively.

• An Adaptive Directory Reduction (ADR) mechanism
to calibrate the directory size during execution to save
energy consumption in the directory without harming
performance, achieving an 86% saving in dynamic energy
consumption in the directory.

II. BACKGROUND AND MOTIVATION

A. Cache Coherence Deactivation

In recent years, significant work has been done in reducing
the complexity and cost of hardware-based cache coherence
techniques. A fundamental observation of many approaches in
this area is that coherence is only required to correctly handle
data races. Such data races only happen to shared data that is
concurrently accessed by multiple cores, at least one of which
will write to it. In contrast, when data races do not take place,
coherence can be relaxed. Such data race-free situations exist
in the case of private data that is only accessed by a single
core during the execution, shared read-only data that is never
modified during the execution, and temporarily private data
that is accessed from different cores at different points in time,
but never concurrently. In the rest of this paper, we refer to the
private, shared read-only and temporarily private data which
we may deactivate coherence for as non-coherent data.

The categorisation of data as coherent and non-coherent
can be used for coherence deactivation, which is a technique
that avoids the tracking of non-coherent blocks in the di-
rectory. Consequently, directories exploit their capacity more
efficiently and, as long as the data classification mechanism is
accurate, the number of entries required in the directory can
be drastically reduced to save area and energy consumption.
To deactivate coherence, cache misses for non-coherent blocks
in the private caches request data from the LLC or main mem-
ory without accessing the directory. Therefore, no coherence
actions take place for this data. This requires triggering a
recovery operation to avoid inconsistencies when non-coherent
data becomes shared or when temporarily private data migrates
from one core to another. A more aggressive solution is to self-
invalidate the non-coherent blocks of the private caches [9],
so they never need to be tracked in the directory.

B. Identification of Non-Coherent Data

State-of-the-art techniques to identify non-coherent data use
TLB and OS page table support [3]–[7]. These approaches

float A[N][N][M][M];

for (int j = 0; j<N; j++) {
 for (int k = 0; k<j; k++)
 for (int i = j+1; i<N;i++)
 #pragma omp task depend(in:A[i][k][:][:])

 depend(in:A[j][k][:][:])
 depend(inout:A[i][j][:][:])
 sgemm(A[i][k],A[j][k],A[i][j]);

 for (int i = j+1; i<N;i++)
 #pragma omp task depend(in:A[j][i][:][:])

 depend(inout:A[j][j][:][:])
 ssyrk(A[j][i],A[j][j]);

 #pragma omp task depend(inout:A[j][j][:][:])
 spotrf(A[j][j]);

 for (int i= j+1; i<N; i++)
 #pragma omp task depend(in:A[j][j][:][:])

 depend(inout:A[i][j][:][:])
 strsm(A[j][j], A[i][j]);
}

Fig. 1: Cholesky task-based code (right) and task dependence graph (left).

require changes in the page table and the TLBs to monitor
TLB misses and categorise data as shared, private, or shared
read-only. When a page is accessed for the first time, it is
categorised as private, and the OS sets a private bit in the
page table and in the TLB of the accessing core. When another
core accesses the page, the OS marks the page as shared and
triggers a flush of the cache blocks and the TLB entries of the
page in the first core. Subsequent accesses by any core to the
shared page trigger the coherence actions defined by the cache
coherence protocol. A limitation of this approach is that, once
a page is categorised as shared, it never transitions back to
private, so temporarily private pages are categorised as shared.
This problem is particularly important in the presence of
dynamic schedulers, where private data often migrates between
cores. In addition, this data classification method works at a
page granularity, which can lead to misclassified blocks.

Extensive and costly modifications in the system are re-
quired to identify temporarily private data in TLB-based
approaches [10]–[12]. The idea is to, upon a TLB miss, check
if the page is present in some other TLB and categorise
the page as private if the page is not present in any other
TLB. Doing this requires TLB-L1 inclusivity, very complex
hardware support to perform TLB-to-TLB miss resolution,
and costly TLB invalidations during page re-classifications.
In addition, this technique is still not accurate because TLB
entries may suffer from dead time, that is, the elapsed time
since the page is last accessed until it is evicted from the TLB.
This can be solved by adding a decay mechanism that predicts
if the page is going to be accessed again and invalidates
decayed TLB entries during the TLB-to-TLB miss resolutions.
This solution introduces performance overheads due to extra
TLB misses, and it also requires additional hardware support
in the TLBs and modifications to the TLB coherence protocol.

C. Task-Based Programming Models

Task-based data-flow programming models such as
OpenMP 4.0 [8] conceive the execution of a parallel pro-
gram as a set of tasks with data dependences between them.
Typically, the programmer writes sequential code and adds
annotations to define the tasks and the data they access. The
annotations specify the range of data accessed by each task
using array sections and whether the data is read, written, or

both (labelled input, output and inout, respectively). The RTS
dynamically executes tasks by means of a Task Dependence
Graph (TDG). The TDG is a directed acyclic graph where the
nodes represent tasks and the edges are data dependences be-
tween tasks. Figure 1 shows the task-based implementation of
a Cholesky factorisation algorithm and its corresponding TDG.
The code uses OpenMP 4.0 clauses to specify tasks and their
data dependences (#pragma omp task depend(in/out/inout)).

Following an execution model which decouples the static
specification of the code from its dynamic execution, threads
first execute the application code (creating all the tasks they
encounter) until they reach a global synchronisation point.
Then, they execute tasks asynchronously. When tasks are
created they are inserted into the TDG based on their data
dependences. Only when all the dependences of a task have
been satisfied does a task move from created, to ready. Ready
tasks are stored in a ready queue from which the scheduler
distributes tasks among all threads for asynchronous execution.
This decoupling of the specification of the program from its
dynamic execution eases programmability and enables many
optimisations at the RTS level in a generic and application-
agnostic way [13]–[16].

D. Opportunities to Deactivate Coherence

The execution model of task-based programming models
guarantees that, during the execution of a task, its inputs will
not be modified by another task and its outputs will not be
accessed by any other task. This precludes data races occurring
on the task inputs and outputs, making coherence redundant.
Thus, the RTS can precisely identify non-coherent data without
the hardware complexity nor the accuracy problems of other
approaches. To exploit this, the RTS can direct the hardware
cache coherence substrate to deactivate coherence for the
inputs and outputs of tasks during their execution, and self-
invalidate the non-coherent data when tasks finish.

Figure 2 shows the percentage of non-coherent blocks for a
set of representative benchmarks under the OS page table (PT)
and RaCCD approaches. PT identifies blocks as non-coherent
by default, and they become coherent if they are accessed
by more than one core. PT does not employ the extra com-
plexity of TLB based approaches and thus does not identify
temporarily private data as non-coherent. RaCCD identifies all
task inputs and outputs as non-coherent. In Figure 2 a block is
marked as coherent if it is ever accessed as coherent during the
execution. On average RaCCD identifies 78.6% of the blocks
as non-coherent, 2.9× more than identified by PT (26.9%).
RaCCD significantly outperforms PT in CG, Gauss, Histo,
Jacobi, Kmeans and RedBlack because, in these benchmarks,
the data often migrates from one core to another in different
application phases, so identifying temporarily private data is
very important. RaCCD and PT perform similarly well on
MD5 due to its streaming read behaviour with low data reuse,
while in KNN, PT slightly improves over RaCCD. In JPEG
the tasks have no input or output annotations, which is the
worst-case scenario for our approach, so RaCCD is unable to
identify any non-coherent blocks.

Fig. 2: Percentage of non-coherent cache blocks

It is clear that task-based programming models and coher-
ence deactivation are a natural fit. Most of the data accessed
in task parallel programs does not require coherence, and the
RTS can easily and precisely identify this data to guide coher-
ence deactivation. As a consequence, most of the dataset of the
application does not need to be tracked in the directory, and
its size can be reduced to save area and power consumption.

III. RACCD: RUNTIME-ASSISTED CACHE
COHERENCE DEACTIVATION

This paper presents RaCCD (Runtime-assisted Cache Co-
herence Deactivation), a hardware/software co-designed ap-
proach that leverages information present in the runtime sys-
tem (RTS) of task-based data-flow programming models to
direct a more efficient hardware cache coherence design. The
goal of RaCCD is to identify data that is guaranteed to be data
race-free at the RTS level, and to deactivate coherence for it at
the microarchitecture level. Thus, the size of the directory may
be drastically scaled down, reducing its storage requirements
and power consumption without any performance impact.

RaCCD takes advantage of the implicit guarantee present
in task-based data-flow programming models that, during the
execution of a task, no data races will occur on its inputs
and outputs. This guarantee provides scope to deactivate
coherence for task inputs and outputs while they execute. In
order to achieve this co-operation between the programming
model and the hardware cache coherence substrate, the RTS
communicates the addresses of task inputs and outputs just
before task execution. On the microarchitecture side, minimal
hardware support is introduced to store this information and
allow non-coherent memory accesses during task execution.
When tasks finish, the RTS manages the invalidation of the
input and output data from the private caches, ensuring no
incoherent data is present in the cache hierarchy.

A. Runtime System - Architecture Interface

RaCCD offers an interface between the RTS and the ar-
chitecture so that they cooperate in the management of non-
coherent memory regions. The interface consists of two new
ISA instructions that are issued by the RTS at the beginning
and at the end of the execution of each task to allow the
deactivation of coherence at the microarchitecture level.

• raccd register(initial address, size): Before executing a
task, the RTS uses this instruction to inform the microar-
chitecture of the initial address and size of an input or
output of the task. An instruction is issued to specify each
input and output of the task. The microarchitecture then
deactivates coherence for these address ranges.

Time

Th 0

Th 1

Wake-up

T3 T5

T2 T4

Schedule Task
Deactivate
coherence

Invalidate
non-coherent

data

T1

Fig. 3: Runtime system support with additional operations to deactivate
coherence and invalidate non-coherent data.

• raccd invalidate(): When a task finishes, the RTS uses
this instruction to invalidate all non-coherent data from
the private cache of the core which executed the task.

An alternative implementation could manage non-coherent
memory regions through a memory mapped schema. We have
selected the ISA extension approach due to its simplicity. As
only a few instructions are issued per executed task, both
solutions are expected to behave similarly.

B. Runtime System Extensions

RaCCD extends the operational model of task-based pro-
gramming models to assist coherence deactivation at the
microarchitecture level. Figure 3 shows the behaviour of two
threads, including the three main phases of a task parallel
program: scheduling, task execution and wake-up. The two
additional operations RaCCD introduces are also shown: de-
activate coherence and invalidate non-coherent data.

In the scheduling phase, the thread requests a ready task
from the scheduler, which selects a ready task based on a
scheduling policy. Then, in the task execution phase, the
scheduled task is executed. Finally, in the wake-up phase,
tasks that depend on the executed task are analysed. If all
the dependences are satisfied, the dependent task is marked as
ready and placed in the ready queue, from where the scheduler
may allocate it to an executing thread in the scheduling phase.

RaCCD enables deactivating coherence for the inputs and
outputs of the tasks. To do so, just before a task is executed,
the thread iterates over the inputs and outputs of the task.
For each input and output of the task the thread executes a
raccd register instruction, communicating to the hardware the
start address and the size of the memory region. Note that the
specification of the address ranges of task inputs and outputs is
already required by task based parallel programming models.
This information allows such programming models to correctly
execute tasks dynamically at runtime. Therefore, RaCCD does
not place any additional requirements on existing task parallel
programming models. An example of these address range
specifications is shown in the annotated code in Figure 1.

Based on the information communicated from the RTS to
the hardware, RaCCD deactivates coherence for the inputs and
outputs of the executing task. This action is performed without
any further involvement of the RTS or the programmer.

To ensure that no incoherent data is present in the cache
hierarchy, RaCCD makes use of a simple mechanism. When a
task finishes executing, the thread that ran the task executes a
raccd invalidate blocking instruction. This instruction triggers

L1 D-cache

Tag DataFlags NC

NCRT

Start@ End@

CPU

Core

LLC

Directory

Fig. 4: Architectural support for RaCCD: Non-Coherent Region Table
(NCRT), and a Non-Coherent (NC) bit per cache block in the private cache.

the invalidation of any non-coherent data in the private caches
of the core that executed the task. Section III-C describes the
hardware support required to perform this operation. When the
raccd invalidate instruction is completed, any modifications
made to the outputs of the finished task are either cached
in the LLC only or stored in memory. As a result, the valid
output data is visible to all subsequent tasks that may consume
it. Thus, the thread can proceed to the wake-up phase.

C. Architectural Support

1) Hardware Extensions: RaCCD introduces simple and
efficient hardware support to manage non-coherent memory
regions. The hardware additions, shown shaded in Figure 4,
consist of a new per-core structure called the Non-Coherent
Region Table (NCRT), and a Non-Coherent (NC) bit per cache
block in the private data caches.

The NCRT holds the start and end addresses of the non-
coherent memory regions specified as inputs and outputs of
a task while it executes on a core. The entries of the NCRT
consist of two fields to store the start and end physical address
of a non-coherent memory region. Our experimental setup
uses 42-bit physical addresses, but the design is open to any
physical address size. The RTS is responsible for managing
the contents of the NCRT by executing the raccd register and
raccd invalidate instructions before and after tasks execute.
Private cache misses look up the NCRT to determine if the
request to the LLC is coherent or non-coherent.

RaCCD also introduces a NC bit in the tag array of the
private data caches to distinguish coherent from non-coherent
blocks. The NC bit is also introduced in the request and
response messages between the private caches and the LLC,
and between the LLC and the memory controllers.

2) Registering Non-Coherent Memory Regions: Non-
coherent memory regions are registered in the NCRT when
the RTS executes the raccd register instruction for task inputs
and outputs. The start and end addresses passed by the RTS
are virtual addresses, so they must be translated to physical
addresses before registering them in the NCRT. Figure 5 shows
a synthetic example of this process.

To translate the virtual address range to a physical address
range the execution of the raccd register follows an iterative
process. The start address is iteratively incremented by the
page size to generate a list of virtual pages that belong to the
virtual address range. At every iteration, the virtual page is
looked up in the TLB to retrieve the corresponding physical
page. Contiguous physical pages retrieved in consecutive it-
erations are collapsed in the same physical address range in

NCRT

Start@ End@

TLB

Virt PhysStart@ : 0xaa044

0xaa000

0xab000

0xac000

0xad000

0xb2000

0xb3000

0xb7000

0xb8000

0xb2044 0xb3fff

0xb7000 0xb8088

End@ : 0xad088

Page size : 0x1000

Fig. 5: Address translation for non-coherent memory regions in the NCRT.

the NCRT. When a non-contiguous physical page is retrieved
or the whole virtual address range is traversed, the physical
address range is registered in the NCRT. Depending on the
size of the memory region to translate, this iterative process
can take multiple cycles to register a non-coherent memory
region in the NCRT. The example in Figure 5 requires 4 TLB
accesses and registers 2 collapsed regions in the NCRT.

Note that, due to the virtual-to-physical address mappings
of the non-coherent memory regions, a virtual address range
specified as input or output in the task annotations can require
more than one entry in the NCRT. However, in the full system
simulations in our evaluation, we observe that the unmodified
Linux kernel allocates the contiguous virtual memory pages of
the data sets of the benchmarks to contiguous physical pages,
so this situation has minimal impact on our experiments.
Finally, if no space is available in the NCRT, the non-coherent
memory region is not registered and accesses to this region
happen as in the baseline coherent architecture.

3) Non-Coherent Memory Accesses: Non-coherent memory
requests correspond to memory references within the depen-
dences of the task a core is currently executing. During task
execution, the core first attempts to resolve accesses in its
private cache, as in the baseline architecture. In RaCCD, if the
access misses in the private cache, the core then consults the
NCRT to determine whether the memory reference is within
a non-coherent memory region. Note that this operation adds
a delay to the private cache misses. If the memory address
hits in the NCRT, RaCCD triggers a non-coherent variant of
the coherence transaction to the next level of the memory
hierarchy. If the memory address misses in the NCRT, the
access proceeds to the next level of the memory hierarchy as
in the baseline architecture, i.e. as a coherent transaction.

Non-coherent requests are resolved without communicating
with, or creating an entry in, the directory. To do so, non-
coherent requests are sent to the LLC. If the request misses in
the LLC, the LLC issues a non-coherent request to memory.
Then the LLC miss is resolved when the requested data arrives
to the LLC via a non-coherent response. Once the data has
been filled in the LLC, the private cache miss is resolved when
the LLC forwards the data to the private cache via a non-
coherent response. This response sets the NC bit in the non-
coherent block delivered to the private cache. Note that the
NCRT is not accessed during this process, as the non-coherent
information is carried in the request and response messages.

In the case of write-through private caches, evictions of
non-coherent cache blocks are silent. Writes to non-coherent
blocks use a non-coherent variant of the respective coherent
transaction. This variant simply writes the data in the LLC

without communicating with the directory. In the case of write-
back private caches, evictions of clean non-coherent blocks
are silent. Write-backs of dirty non-coherent blocks also use
a non-coherent variant of the respective coherent transaction.

Thus, RaCCD allows cache blocks specified as task inputs
or outputs to flow through the memory hierarchy with coher-
ence deactivated, lowering capacity pressure in the directory.

4) Coherence Recovery: When a task finishes, the RTS
executes a raccd invalidate instruction to invalidate the non-
coherent data from the private caches. When the core executes
this instruction, it sequentially traverses the blocks of its
private cache and flushes all cache blocks that have the NC
bit set. Clean non-coherent blocks are silently evicted, while
dirty non-coherent blocks are written back to the LLC via
a non-coherent write-back transaction. Once the flushing is
complete, the raccd invalidate instruction commits and the
RTS proceeds into the wake-up phase to notify any dependent
tasks of the just completed task execution.

D. Adaptive Directory Reduction

One of the main benefits of RaCCD is that it decreases
the storage requirements of the directory without impacting
performance. However, reducing the size of the directory at
design time can significantly hurt the performance of non-
task parallel programs. For this reason, we propose Adaptive
Directory Reduction (ADR), a hardware mechanism to dynam-
ically reconfigure the size of the directory. The goals of this
technique are to capitalise on the benefits of RaCCD without
impacting non-task programs, and to adapt the directory size
to the exact requirements of any task-parallel program.

To dynamically resize the directory, RaCCD powers off
parts of the directory, similarly to how it is done in other
pipeline structures [17] and in set-partitioned caches [18],
[19]. To power off parts of the directory we use a Gated-
Vdd technique [20] that drastically reduces the leakage power.
When resizing the directory, we only change its number of sets
while keeping the associativity constant.

To drive reconfigurations, RaCCD adds a monitor that
tracks the occupancy of the directory. When a new entry
is allocated to the directory, the monitor is increased and,
when an entry is evicted, the monitor is decreased. When the
occupancy monitors reach certain thresholds θinc and θdec, the
size of the directory is increased or decreased, respectively.
In our experiments, we decide to halve or double the size
of directory to simplify the indexing function. Finer grain
reconfigurations could be done, but would be more complex
to handle. In this case, using θinc = 80% · current size and
θdec = 20% · current size provides a hysteresis loop with
good reaction time with a reduced number of reconfigurations.

When a directory reconfiguration happens, the tag bit selec-
tion and the indexing function are updated, and the contents of
the directory are moved to the appropriate entries according to
the new tag bit selection and indexing function. This operation
is time consuming, adds power overheads and blocks directory
accesses during reconfigurations. However, if reconfigurations
happen occasionally, these overheads are largely compensated

by the benefits of the adaptive mechanism, similarly to set-
partitioned caches [18], [19]. To support multiple directory
sizes, the tag has to work for the smallest possible directory
size, leaving some bits unused as the directory size increases.

E. Additional Considerations

Task-based data-flow programming models guarantee no
data races will occur for data that is only accessed from
within tasks which specify the data as a dependence. OpenMP
allows the programmer to step outside this guarantee by
accessing such data from code outside a task specification.
However, when doing so, OpenMP puts the responsibility on
the programmer to avoid inconsistencies by explicitly adding
code annotations (#pragma omp flush) to flush the data from
the private caches. This means OpenMP already guarantees
that data accessed as both non-coherent and coherent will
only exist in the LLC or memory at the time of a transition
between coherent and non-coherent, so RaCCD simply needs
to allocate or deallocate a directory entry as required when a
block transitions between coherent and non-coherent.

RaCCD allows deactivating cache coherence in task parallel
programs without affecting the execution of legacy code and
non task-based programs. For these programs the hardware
support for RaCCD can be powered down, so the only over-
head introduced is the small area of the NCRTs. Moreover,
RaCCD simply restricts the data to which the cache coherence
protocol applies, so it is compatible with any coherence
protocol without modification or extra verification cost.

The proposed hardware support for RaCCD can be extended
to support context switches and multiprogrammed workloads.
A simple and effective solution is to tag the NCRTs with the
OS thread ID. As a result, different processes and threads can
use the NCRTs concurrently and the NCRTs do not need to be
saved and restored at a context switch. When the OS migrates
a thread from a source core to a destination core, the NCRT
entries belonging to the thread must also be migrated. Also,
all the non-coherent data in the private cache of the source
core must be invalidated with a raccd invalidate instruction.

The proposed coherence recovery mechanism for RaCCD
flushes all the non-coherent blocks from the private cache
of the core. To prevent performance penalties in SMT cores
the non-coherent bit per block added to the private caches
can be extended to store the thread ID of the block. This
requires 1/2/3 extra bits for 2/4/8-way SMT cores and allows to
selectively invalidate the non-coherent data of only one thread.

IV. EXPERIMENTAL FRAMEWORK

A. Full-System Simulation Infrastructure

We employ gem5 [21] to simulate an x86 full-system envi-
ronment that models the application, the RTS, the OS and the
microarchitecture in detail. We simulate a 16-core processor
using the detailed out-of-order CPU and ruby memory model.
Table I summarises the main parameters of the simulated
architecture. We extend gem5 with the proposed architectural
support for RaCCD presented in Section III-C, which is also
summarised in the RaCCD section of Table I.

TABLE I: Configuration of gem5 full-system simulations.
Cores 16 Out-of-order cores, 4 inst. wide, 1.0GHz

Branch predictor
Tournament: 2K local pred., 8K global and choice
pred., 4-way BTB 4K entries, RAS 16 entries

Execution
ROB 128 entries. IQ 64 entries, 4 INT ALU,
2 FP ALU, 2 LD/ST units, 256/256 INT/FP RegFile.

L1I / L1D cache Each 32KB, 2-way, 64B/line (2 cycles)

ITLB / DTLB Each 256 entries fully-associative (1 cycle)

L2 cache
Shared unified 32MB, banked 2MB/core
64B/line, 15 cycles, 8-way, pseudoLRU

Coherence Protocol MESI with blocking states, silent evictions

Directory
Total 524288 entries, banked 32768 entries/core
15 cycles, 8-way, pseudoLRU

NoC 4x4 mesh, link 1 cycle, router 1 cycle

RaCCD

NCRT 32 entries/core, 1 cycle access time

NC bit 1 bit per cache block in the private L1 data caches

Our simulations use Ubuntu 14.04 with kernel version 4.3.
We use the Nanos++ 0.10a [22] RTS, which supports OpenMP
4.0 [8]. The runtime system is extended to communicate with
RaCCD using the instructions described in Section III. The
ISA is extended to support the new instructions and their
execution is modelled in the microarchitecture. The latency of
the raccd register instruction depends on the iterative process
for the virtual-to-physical address translation of the non-
coherent regions. Similarly, the latency of the raccd invalidate
instruction depends on the number of non-coherent blocks that
must be invalidated from the private caches. Both mechanisms
are simulated in cycle-by-cycle detail in gem5.

Power consumption is evaluated with McPAT [23] using a
process technology of 22 nm, voltage of 0.6V and the default
clock gating scheme. We add the changes suggested by Xi et
al. [24] to improve the accuracy of the models. The hardware
structures of RaCCD are modeled using CACTI 6.0 [25].

B. Benchmarks

The evaluation uses a set of representative parallel bench-
marks programmed with OpenMP 4.0 task annotations. CG
is the conjugate gradient algorithm for solving large sparse
systems of linear equations. Gauss solves the stationary heat
diffusion problem using the iterative Gauss-Seidel method
with a 4-element stencil. Histogram computes a cumulative
histogram for all pixels of an image using a cross-weave
scan. Jacobi solves the stationary heat diffusion problem using
the iterative Jacobi method with a 5-element stencil. JPEG
performs the decoding of JPEG images with fixed encoding
of 2x2 MCU size and YUV color. Kmeans implements the
Kmeans clustering algorithm which has important applications
in statistics and data mining. KNN implements the K-nearest
neighbours algorithm which is an important algorithm in pat-
tern recognition and machine learning. MD5 cryptographically
hashes random input buffers. RedBlack solves the stationary
heat diffusion problem with a 4-element stencil. Table II
shows the input set sizes used for each benchmark. The
benchmarks are compiled with Mercurium 1.99 source-to-
source compiler [26], using gcc 4.6.4 as a backend.

Fig. 6: Normalised cycles by directory size. Configuration 1:N has N times less directory entries than the baseline.

TABLE II: Application problem sizes
Application Problem Set

CG 3D Matrix N3 = 884736, 3 iters.

Gauss 2D Matrix N2 = 2359296, 10 iters.

Histo 1000x1000 pixel image, 50 bins

Jacobi 2D Matrix N2 = 2359296, 10 iters.

JPEG 2992 x 2000 pixel JPEG image

Kmeans 150000 pts., 30 dims, 6 clusters, 3 iters.

Knn 16384 training pts, 8192 pts to classify, 4 dims, 4 classes

MD5 128 buffers of 512KB to hash

Redblack 2D Matrix N2 = 2359296, 10 iters.

V. EVALUATION

A. Static Directory Reduction

This section evaluates the behaviour of RaCCD versus the
baseline fully coherent system (FullCoh), and the Page Table
approach (PT) [5]. The FullCoh system tracks coherence for
all memory accesses, while PT and RaCCD deactivate coher-
ence for the non-coherent data they identify. To implement PT
we add a private/shared bit per TLB entry and intercept page
faults in the simulator to record which cores access each page.
When a page fault is resolved and the translation is stored in
the TLB, we set the TLB entry to private if only one core has
ever accessed the page, otherwise we set it to shared.

We study the impact of RaCCD on execution time, directory
accesses, LLC hit rate, NoC traffic and energy consumption.
For each metric we compare the three system types over a
wide range of directory sizes to show the trend as directory
capacity is reduced. Our experiments consider a range of seven
directory sizes, labelled 1:N , meaning that the directory has N
times less entries than the LLC. In the 1:1 configuration, both
the LLC and the directory have the same number of entries,
32768 per core, while in the 1:256 configuration, the directory
is reduced to just 128 entries per core. Figures 6 and 7 present
results for the 9 benchmarks as the capacity of the directory
is reduced. Figure 7 shows the results in pairs of benchmarks,
one shaded dark and one shaded light, and each benchmark
is split in three lines for FullCoh, PT and RaCCD using three
line styles: long dash, fine dash and solid line, respectively.

1) Performance: Figure 6 reports the number of execution
cycles for the 7 directory sizes normalised to the 1:1 con-
figuration of FullCoh. In RaCCD and PT, accesses to non-
coherent data are not tracked in the directory. On average
there is a negligible performance difference between the three
systems (< 2%) in the 1:1 configuration. Kmeans is the

only benchmark that suffers performance degradations, 9.2%
in PT and 14.6% in RaCCD in the 1:1 configuration. This
is due to the coherence recovery mechanism, which flushes
non-coherent blocks at the end of a task execution, harming
the hit rate in the private caches and causing an increased
number of writebacks from the private caches to the LLC
(up by 2.3% in PT and 4.7% in RaCCD). Among the other
8 benchmarks the largest increase in writebacks seen under
RaCCD or PT is 0.2%. This demonstrates that RaCCD and
PT achieve competitive performance with FullCoh when the
directory size is not constrained.

As the directory size is reduced, Figure 6 shows a significant
performance impact in FullCoh. Just halving the directory size
already degrades performance by 22% on average. In the 1:256
configuration we see degradations ranging from 8.6% (MD5)
to 171% (Jacobi) with an average performance penalty of
71%. A dramatic drop in LLC hit ratio (from 56% to 24%
on average) is the cause of such performance degradation.

In contrast to FullCoh, PT and RaCCD show significantly
less performance degradation as the directory size is reduced.
RaCCD tolerates directory reductions much better than PT.
At 1:8 on average PT shows a 15% penalty whereas RaCCD
suffers only 0.9%. At the most extreme directory reduction of
1:256, the average performance penalty for RaCCD is 10%,
still less than the 15% degradation PT suffers at 1:8.

2) Directory Accesses: Figure 7a shows the number of ac-
cesses to the directory. Results are normalised to FullCoh 1:1.
The coherence deactivation in PT and RaCCD drastically
reduces the number of accesses to the directory. This is
because data with coherence deactivated under PT or RaCCD
will have an L1 miss resolved at the LLC or main memory
without reference to, or allocation in, the directory.

Figure 7a shows that at 1:1 RaCCD requires only between
6% and 37% of the directory accesses incurred by FullCoh
across all the applications except JPEG. For JPEG, RaCCD
reduces directory accesses by only 5.2% versus FullCoh.
This is due to the low opportunity for RaCCD to deactivate
coherence in JPEG as shown in Figure 2. JPEG is the
only application where PT is clearly better than RaCCD. On
average all approaches incur an increasing number of directory
accesses as the directory size is reduced. This is the result of
capacity pressure causing thrashing in the directory. On aver-
age across the directory sizes (1:1 to 1:256), RaCCD maintains
an advantage ranging from 74% to 77% over FullCoh and 38%
(1:256) to 53% (1:16) over PT.

(a) Directory accesses (b) LLC hit ratio

(c) NoC traffic (d) Energy consumption

Fig. 7: Metrics by directory size. Configuration 1:N has N times less directory entries than the baseline.

3) LLC Hit Rate: When an entry is evicted from the direc-
tory to free space for a new allocation, the corresponding cache
line must also be invalidated from the LLC. As the directory
comes under increasing capacity pressure with reduced size,
evictions to free space for new allocations in the directory
cause invalidations in the LLC, as the directory is inclusive of
the LLC. This negatively impacts LLC hit rate as cache lines
that will be reused get invalidated. The coherence deactivation
approaches mitigate this by reducing capacity pressure on
the directory. The result of Directory-L1 inclusivity is clearly
apparent in Figure 7b. We see a rapid deterioration in the LLC
hit rate for FullCoh as the directory size is reduced. Moving
from the 1:1 to the 1:4 configuration, the average LLC hit rate
drops from 56% to 27%. In the 1:256 configuration, the LLC
hit rate decreases to 24% on average.

In the case of the coherence deactivation approaches, we see
the largest benefits in Gauss, Jacobi, Kmeans and Redblack.
At 1:256 the hit rate under RaCCD is 3.7× FullCoh and
23% higher than PT for these four applications on average.
MD5 does not suffer reduced LLC hit rate with reduced
directory capacity. Its predominant memory access pattern is
streaming read with very little data reuse, and thus its LLC
accesses are dominated by compulsory misses, which neither
directory capacity nor coherence deactivation have an impact
on. Therefore, the LLC hit rate is in the low, narrow range
of 16% to 20% regardless of directory size and system type.
On average across all benchmarks, at the extreme directory
reduction of 1:256, the hit rate of PT has deteriorated to 47%
down from 55% at 1:1, which RaCCD improves on with a hit
rate of 51% at 1:256 also down from 55% at 1:1

4) Network-on-Chip Traffic: Figure 7c shows the NoC
traffic as the directory capacity is reduced. Reduced direc-
tory capacity impacts NoC traffic negatively due to capacity
pressure requiring replacement of entries which will be reused
in future. KNN has a small working set size. Therefore, even
under FullCoh, it only suffers a significant increase in NoC
traffic at the most extreme directory reduction of 1:256, where
it incurs 39% more traffic than the baseline. Under both PT and

RaCCD KNN sees a negligible increase in NoC traffic of less
than 1.5% at 1:256 It is clear from Figure 7c that NoC traffic is
well constrained under both coherence deactivation approaches
with RaCCD showing a slight advantage over PT on average
as the directory size is reduced. At the most extreme directory
size reduction of 1:256, compared with the respective 1:1, NoC
traffic has grown by 19% for PT and 15% for RaCCD, whereas
under FullCoh it has increased by 91%.

5) Energy Consumption: Figure 7d shows the impact of re-
ducing the directory size on energy consumption. It reports the
normalised dynamic energy consumed in the directory, which
represents 1.55% of the total processor energy. Comparing
dynamic energy consumption for both coherence deactivation
approaches against FullCoh, we see substantial energy reduc-
tions among all benchmarks except JPEG under RaCCD.

Reducing the directory size from the 1:1 configuration down
to the 1:256 configuration reduces the dynamic energy in all
cases. This is due to lower energy consumption per access as
the directory size is reduced. Comparing the two coherence
deactivation techniques, RaCCD wins over PT on average
across all directory sizes except in JPEG, where PT has a
significant advantage over RaCCD. At the 1:1 configuration,
RaCCD consumes 71% less dynamic energy than FullCoh and
45% less than PT and maintains a margin of at least 38%
benefit over PT for all the directory sizes down to 1:256, where
it consumes 80% less than FullCoh and 43% less than PT.

RaCCD also impacts the energy consumed in the NoC and
LLC, which respectively make up 15% and 26% of total en-
ergy consumed. Comparing FullCoh and RaCCD for the 1:256
directory size, RaCCD saves 35% and 19% of the dynamic
energy consumption in the NoC and LLC, respectively.

Table III shows the storage requirements of the directory
size configurations considered in this paper. Each directory
entry is made up of 42 bits of tag and 3 bytes to store the
state of the cache block and the bit-vector of sharer cores. It
can be observed that the storage requirements of the directory
linearly decrease along the proposed configurations, reaching
up to a 97.5% reduction of the directory area for 1:256.

TABLE III: Directory size and area
1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 64 1 : 256

KB 4224 2112 1056 528 264 66 16.5

Area (mm2) 106.08 53.92 34.08 21.28 14.88 6.18 2.64

B. Adaptive Directory Reduction

The Adaptive Directory Reduction (ADR) mechanism dy-
namically reduces the directory size during the execution while
still providing just enough capacity based on its occupancy.
Figure 8 shows the average occupancy of the directory during
the execution of the benchmarks. In FullCoh the occupancy
of the directory only monotonically increases (up to capacity)
during execution. In PT and RaCCD, the occupancy of the
directory may increase or decrease because capacity pressure
in the LLC may force the replacement of coherent blocks (and
their associated directory entries) with non-coherent blocks
(which do not have an associated directory entry). By deac-
tivating coherence for non-coherent blocks, PT and RaCCD
achieve lower directory occupancy than FullCoh across all
benchmarks. On average, FullCoh presents an occupancy of
65.7%, PT has 20.3%, and RaCCD reduces it to only 10.8%.

Figures 9 and 10 show the performance and dynamic energy
consumption in the directory under RaCCD+ADR versus the
FullCoh, PT and RaCCD 1:1 configurations. All results are
normalised to the FullCoh 1:1 configuration per benchmark.
Figure 9 shows that RaCCD achieves competitive performance
with FullCoh (< 2% difference on average) when comparing
both in the 1:1 case. The only exception is Kmeans, where the
flushing of non-coherent cache blocks at the end of the task
execution affects L1 cache hit rate. Figure 9 also shows that
combining the ADR mechanism with RaCCD does not harm
performance, since the overheads of resizing the directory are
negligible due to the low number of reconfigurations.

Reducing the capacity demand in the directory allows ADR
to use smaller directory sizes and thus reduce dynamic energy
consumption. We can see in Figure 10 that RaCCD+ADR
reduces energy consumption compared to RaCCD 1:1 across
all benchmarks, without negatively impacting performance.
RaCCD+ADR reduces dynamic energy consumption in the
directory versus RaCCD 1:1 in a range from 13% (JPEG)
to 78% (CG). On average the reduction by RaCCD+ADR of
dynamic energy consumption in the directory is 50% versus
RaCCD 1:1 and 72% against PT 1:1.

C. RaCCD Overheads

RaCCD introduces minimal overheads to reduce the capac-
ity pressure on the directory. Performance-wise, the NCRT
adds a delay of 1 cycle to the private cache misses, but this
causes a negligible overhead of 0.1% compared to an ideal
NCRT design with zero latency. In addition, augmenting the
NCRT latency to 2, 3, 5 and 10 cycles only adds average
overheads of 0.5%, 0.7%, 1.2% and 3.5%, respectively.

In terms of storage requirements, RaCCD only requires 5.25
KB for all the NCRTs and 1KB for the NC bits in the caches.
The overheads in energy consumption are also negligible, as
the NCRTs consume less than 0.1% of the total energy.

Fig. 8: Average occupancy of the directory.

Fig. 9: Normalised performance with adaptive directory reduction.

Fig. 10: Normalised energy consumption with adaptive directory reduction.

VI. RELATED WORK

A. Microarchitectural Cache Coherence Optimisations

Many works propose to re-think the directory organisation
to reduce its size. These techniques are less aggressive than
coherence deactivation because the data categorisation is done
in the directory itself, so private blocks are still tracked in the
directory. Gupta et al. [27] introduce vectorised directory en-
tries to track coherence at a coarse grain. Choi et al. [28] pro-
pose a similar solution that uses segments instead of vectors.
SPACE [29] stores sharing patterns in a separate table and each
directory entry stores a pointer to this table. SCD [30] uses
a hierarchical approach where root entries contain pointers to
potential sharers, reducing the space required for large sharing
vectors. Tagless coherence directories [31] use bloom filters to
track private blocks, which reduces the storage requirements
but has a high cost in power. Cuckoo directories [32] propose
a hashing technique that reduces the conflict misses in sparse
directories. RegionScount [33] and Cantin et al. [34] track
coherence at a coarse granularity in a separate hardware
structure and filter broadcasts in snoop-based cache coherence
protocols. Alisafaee [35] proposes modifying the directory
to track shared, private and temporarily private data and
compacting consecutive private blocks in one single region
entry. Zebchuk et al. [36] refine the previous idea by presenting
an improved hardware design that fixes some race conditions
and reduces the NoC traffic and energy consumption.

The ARMv8 architecture [37] allows the specification of
shareable domains, i.e., memory regions private to one core
or shared among cores. The way Arm processors exploit
shareable domains is implementation dependent. To the best of
our knowledge, they are mostly used to define coherence do-
mains in clustered multicores and in heterogeneous processors
with integrated GPUs. In addition, Arm processors typically
specify such domains at boot time, so they are not intended
to dynamically deactivate coherence in parallel programs.

B. Hardware/Software Cache Coherence Optimisations

As explained in Section II-A, TLB and OS support can
be added to identify non-coherent data and to deactivate
coherence for private pages [5], shared read-only pages [38],
and temporarily private pages [10]–[12], although the latter
requires extensive hardware support in the TLBs. VIPS [6]
uses the TLB-based data categorisation to apply a write-back
policy to the private data and a write-through policy for the
shared data, which allows to simplify the coherence protocol
to only two states (valid/invalid). TLB-based classification
is also used to filter snoop requests [4], to optimise the data
placement in NUCA caches [3], and to partition the cache hi-
erarchy according to the requirements of the applications [39].

Some works optimise cache coherence by exploiting the se-
mantics of Data-Race-Free (DRF) programming models such
as Deterministic Parallel Java [40]. DRF programming models
add well-defined synchronisation points and ensure no data
races will happen to any data between two synchronisation
points. However, unlike OpenMP, DRF programming models
do not offer means to differentiate shared and private data.

VIPS-M [6] classifies shared and private data in the TLBs
and exploits the DRF properties to eliminate the directory. To
do so, VIPS-M uses a write-through policy for shared blocks
while, for private blocks, it deactivates coherence and self-
invalidates them from the private caches at synchronisation
points. Due to the lack of directory, VIPS-M needs to im-
plement synchronisation in the LLC, which has a very high
cost in large-scale multicores. VIPS-H [7] extends VIP-M to
hierarchical coherence, tracking shared and private data at
the different levels of the hierarchy to cut-off the forwarding
of self-invalidations. Compared to these approaches, RaCCD
deactivates coherence of private blocks without affecting the
memory accesses to shared blocks nor the atomic operations.

DeNovo [41] exploits the DRF semantics to eliminate the
transient states of the cache coherence protocol. This reduces
the number of states of the protocol, makes it easier to verify,
and reduces the size of the directory entries. However, instead
of categorising shared and private data, DeNovo applies this
to all the cache blocks. This breaks the implementation of
atomic operations, that rely on the transient states to correctly
handle data races. This issue can be addressed by adding hard-
ware support to implement synchronisation primitives [42]. In
contrast to DeNovo, RaCCD deactivates coherence of private
blocks to reduce the capacity pressure and the number of
entries of the directory, not the size of the entries, and does it
without affecting the synchronisation mechanisms.

Compile-time techniques [43], [44] have also been proposed
to classify shared and private data. This approach introduces a
new form of malloc for the compiler to indicate the category
of the data, and the operating system passes the categorisation
to the microarchitecture during the memory allocation. The
main problem of this approach is that it relies on alias analyses
to determine the variables that are going to be accessed in the
different parts of the code, which is extremely challenging in
non-trivial codes and, specially, in the presence of pointers.

C. Task-Based Programming Models

RaCCD targets OpenMP 4.0 [8]. However, it can be
adapted to any runtime-managed task-based programming
model that specifies data dependences between tasks, ei-
ther using the real data addresses or some abstraction from
which the runtime system can extract the addresses, such
as OmpSs [22], Codelets [45], Charm++ [46], StarPU [47],
Legion [48], Sequoia [49] and Habanero [50]. Similar prop-
erties are also present in streaming programming models
such as Fastflow [51], StreamIt [52] or RaftLib [53], as
well as in offload programming models like OpenACC [54]
and OpenHMPP [55], that could also benefit from RaCCD.
However, in task-based programming models that do not
specify data dependences, like Cilk [56] or Intel TBB [57],
the runtime system does not know what data is going to be
accessed by the tasks, so the proposed ideas are not applicable.

Similar to RaCCD, other works exploit the task annotations
to perform optimisations [14], [15]. The input and output
information allows the runtime system to transparently manage
GPUs [47], [58], stacked DRAM memories [59], multi-node
clusters [60], and scratchpad memories [61]. With some ad-
ditional hardware support, the runtime system can do value
approximation [62], software-guided prefetching [13], dead
block prediction [16], accelerate critical tasks [63], reduce co-
herence traffic in CC-NUMA systems [64], [65], and optimise
communications in producer-consumer task relationships [66].

VII. CONCLUSIONS

This paper proposes a hardware/software co-design ap-
proach which strikingly mitigates the challenges of scaling
directory-based cache coherence protocols. Our approach har-
nesses information present in the runtime system of task
parallel programming models, which includes the precise
specification of data that is going to be accessed by the
tasks. With this information the runtime system directs cache
coherence deactivation by communicating the addresses of
non-coherent memory regions to the hardware cache coherence
substrate. The microarchitecture maintains this information
in cost-effective hardware structures and uses it to generate
non-coherent requests for the specified memory regions. As a
consequence, the data specified in the task annotations is never
tracked in the directory, so our proposal dramatically reduces
its capacity requirements. Our approach allows a 64× smaller
directory with only a 2.8% performance degradation.

ACKNOWLEDGEMENTS

This work has been supported by the RoMoL ERC Ad-
vanced Grant (GA 321253), by the European HiPEAC Net-
work of Excellence, by the Spanish Ministry of Economy and
Competitiveness (contract TIN2015-65316-P), by the General-
itat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-
1272) and by the European Unions Horizon 2020 research
and innovation programme (grant agreements 671697 and
779877). M. Moreto has been partially supported by the
Spanish Ministry of Economy, Industry and Competitiveness
under Ramon y Cajal fellowship number RYC-2016-21104.

REFERENCES

[1] R. H. Dennard, F. H. Gaensslen, H. nien Yu, V. L. Rideout, E. Bassous,
Andre, and R. Leblanc, “Design of ion-implanted MOSFETs with very
small physical dimensions,” IEEE Journal of Solid-State Circuits, vol. 9,
no. 5, pp. 256–268, Oct. 1974.

[2] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory
Consistency and Cache Coherence, 1st ed. Morgan & Claypool
Publishers, 2011.

[3] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reac-
tive nuca: Near-optimal block placement and replication in distributed
caches,” in International Symposium on Computer Architecture (ISCA),
2009, pp. 184–195.

[4] D. Kim, J. Ahn, J. Kim, and J. Huh, “Subspace snooping: Filtering
snoops with operating system support,” in International Conference on
Parallel Architectures and Compilation (PACT), 2010, pp. 111–122.

[5] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato, “In-
creasing the effectiveness of directory caches by deactivating coherence
for private memory blocks,” in International Symposium on Computer
Architecture (ISCA), 2011, pp. 93–104.

[6] A. Ros and S. Kaxiras, “Complexity-effective multicore coherence,”
in International Conference on Parallel Architectures and Compilation
(PACT), 2012, pp. 241–252.

[7] A. Ros, M. Davari, and S. Kaxiras, “Hierarchical private/shared clas-
sification: The key to simple and efficient coherence for clustered
cache hierarchies,” in International Symposium on High Performance
Computer Architecture (HPCA), 2015, pp. 186–197.

[8] “OpenMP Application Program Interface. Version 4.0. July 2013.”
[9] A. R. Lebeck and D. A. Wood, “Dynamic self-invalidation: Reducing

coherence overhead in shared-memory multiprocessors,” in International
Symposium on Computer Architecture (ISCA), 1995, pp. 48–59.

[10] A. Esteve, A. Ros, A. Robles, M. E. Gómez, and J. Duato, “Tokentlb: A
token-based page classification approach,” in International Conference
on Supercomputing (ICS), 2016, pp. 26:1–26:13.

[11] A. Esteve, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Efficient
tlb-based detection of private pages in chip multiprocessors,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 3, pp.
748–761, Mar. 2016.

[12] A. Esteve, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Tlb-based
temporality-aware classification in cmps with multilevel tlbs,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 8, pp.
2401–2413, Jan. 2017.

[13] V. Papaefstathiou, M. G. Katevenis, D. S. Nikolopoulos, and D. Pnev-
matikatos, “Prefetching and cache management using task lifetimes,” in
International Conference on Supercomputing (ICS), 2013, pp. 325–334.

[14] M. Casas, M. Moreto, L. Alvarez, E. Castillo, D. Chasapis, T. Hayes,
L. Jaulmes, O. Palomar, O. Unsal, A. Cristal et al., “Runtime-aware
architectures,” in International Conference on Parallel and Distributed
Computing (Euro-Par), 2015, pp. 16–27.

[15] M. Valero, M. Moreto, M. Casas, E. Ayguade, and J. Labarta, “Runtime-
aware architectures: A first approach,” International Journal on Super-
computing Frontiers and Innovations, vol. 1, no. 1, pp. 29–44, Jun. 2014.

[16] M. Manivannan, V. Papaefstathiou, M. Pericàs, and P. Stenström,
“RADAR: runtime-assisted dead region management for last-level
caches,” in International Symposium on High Performance Computer
Architecture (HPCA), 2016, pp. 644–656.

[17] D. H. Albonesi, R. Balasubramonian, S. G. Dropsbo, S. Dwarkadas,
E. G. Friedman, M. C. Huang, V. Kursun, G. Magklis, M. L. Scott,
G. Semeraro, P. Bose, A. Buyuktosunoglu, P. W. Cook, and S. E. Schus-
ter, “Dynamically tuning processor resources with adaptive processing,”
IEEE Computer, vol. 36, no. 12, pp. 49–58, Dec 2003.

[18] P. Ranganathan, S. V. Adve, and N. P. Jouppi, “Reconfigurable caches
and their application to media processing,” in International Symposium
on Computer Architecture (ISCA), 2000, pp. 214–224.

[19] K. Varadarajan, S. K. Nandy, V. Sharda, B. Amrutur, R. R. Iyer,
S. Makineni, and D. Newell, “Molecular caches: A caching structure for
dynamic creation of application-specific heterogeneous cache regions,”
in International Symposium on Microarchitecture (MICRO), 2006, pp.
433–442.

[20] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“Gated-vdd: A circuit technique to reduce leakage in deep-submicron
cache memories,” in International Symposium on Low Power Electronics
and Design (ISLPED), 2000, pp. 90–95.

[21] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Computer Architure News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[22] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “OmpSs: A proposal for programming hetero-
geneous multi-core architectures,” Parallel Processing Letters, vol. 21,
no. 2, pp. 173–193, 2011.

[23] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in International
Symposium on Microarchitecture (MICRO), 2009, pp. 469–480.

[24] S. Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks, “Quantifying
sources of error in McPAT and potential impacts on architectural
studies,” in International Symposium on High Performance Computer
Architecture (HPCA), 2015, pp. 577–589.

[25] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A tool to model large caches,” 2009.

[26] J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé, and
J. Labarta, “Nanos mercurium: a research compiler for OpenMP,” in
European Workshop on OpenMP (EWOMP), 2004, pp. 103–109.

[27] A. Gupta, W.-D. Weber, and T. Mowry, “Reducing memory and traffic
requirements for scalable directory-based cache coherence schemes,” in
International Conference on Parallel Processing (ICPP), 1990, pp. 312–
321.

[28] J. H. Choi and K. H. Park, “Segment directory enhancing the limited
directory cache coherence schemes,” in International Parallel Processing
Symposium and Symposium on Parallel and Distributed Processing
(IPPS/SPDP), 1999, pp. 258–267.

[29] H. Zhao, A. Shriraman, and S. Dwarkadas, “Space: Sharing pattern-
based directory coherence for multicore scalability,” in International
Conference on Parallel Architectures and Compilation (PACT), 2010,
pp. 135–146.

[30] D. Sanchez and C. Kozyrakis, “Scd: A scalable coherence directory
with flexible sharer set encoding,” in International Symposium on High
Performance Computer Architecture (HPCA), 2012, pp. 1–12.

[31] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos, “A tagless
coherence directory,” in International Symposium on Microarchitecture
(MICRO), 2009, pp. 423–434.

[32] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo
directory: A scalable directory for many-core systems,” in International
Symposium on High Performance Computer Architecture (HPCA), 2011,
pp. 169–180.

[33] A. Moshovos, “Regionscout: Exploiting coarse grain sharing in snoop-
based coherence,” in International Symposium on Computer Architecture
(ISCA), 2005, pp. 234–245.

[34] J. F. Cantin, M. H. Lipasti, and J. E. Smith, “Improving multiprocessor
performance with coarse-grain coherence tracking,” in International
Symposium on Computer Architecture (ISCA), 2005, pp. 246–257.

[35] M. Alisafaee, “Spatiotemporal coherence tracking,” in International
Symposium on Microarchitecture (MICRO), 2012, pp. 341–350.

[36] J. Zebchuk, B. Falsafi, and A. Moshovos, “Multi-grain coherence
directories,” in International Symposium on Microarchitecture (MICRO),
2013, pp. 359–370.

[37] “Programmer’s Guide for ARMv8-A. Version 1.0. 2015.”
[38] B. Cuesta, A. Ros, M. E. Gomez, A. Robles, and J. Duato, “Increasing

the effectiveness of directory caches by avoiding the tracking of non-
coherent memory blocks,” IEEE Transactions on Computers, vol. 62,
no. 3, pp. 482–495, Mar. 2013.

[39] P.-A. Tsai, N. Beckmann, and D. Sanchez, “Jenga: Software-defined
cache hierarchies,” in International Symposium on Computer Architec-
ture (ISCA), 2017, pp. 652–665.

[40] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian, “A
type and effect system for deterministic parallel java,” in Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2009, pp. 97–116.

[41] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C. Chou, “Denovo: Rethinking
the memory hierarchy for disciplined parallelism,” in International
Conference on Parallel Architectures and Compilation (PACT), 2011,
pp. 155–166.

[42] H. Sung, R. Komuravelli, and S. V. Adve, “Denovond: efficient hardware
support for disciplined non-determinism,” in International Conference

on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2013, pp. 138–148.

[43] Y. Li, A. Abousamra, R. Melhem, and A. K. Jones, “Compiler-assisted
data distribution for chip multiprocessors,” in International Conference
on Parallel Architectures and Compilation (PACT), 2010, pp. 501–512.

[44] Y. Li, R. Melhem, and A. K. Jones, “Practically private: Enabling
high performance cmps through compiler-assisted data classification,”
in International Conference on Parallel Architectures and Compilation
(PACT), 2012, pp. 231–240.

[45] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao, “Using
a ”Codelet” program execution model for exascale machines: Position
paper,” in Workshop on Adaptive Self-Tuning Computing Systems for the
Exaflop Era (EXADAPT), 2011, pp. 64–69.

[46] L. V. Kale and S. Krishnan, “CHARM++: A portable concurrent object
oriented system based on C++,” in Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 1993,
pp. 91–108.

[47] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A unified platform for task scheduling on heterogeneous multicore
architectures,” in International Conference on Parallel and Distributed
Computing (Euro-Par), 2009, pp. 863–874.

[48] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Express-
ing locality and independence with logical regions,” in International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC), 2012, pp. 66:1–66:11.

[49] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park,
M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Sequoia:
Programming the memory hierarchy,” in International Conference on
High Performance Computing, Networking, Storage and Analysis (SC),
2006, pp. 83:1–83:11.

[50] J. Shirako, J. M. Zhao, V. K. Nandivada, and V. N. Sarkar, “Chunking
parallel loops in the presence of synchronization,” in International
Conference on Supercomputing (ICS), 2009, pp. 181–192.

[51] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and
M. Torquati, “Accelerating code on multi-cores with fastflow,” in Inter-
national Conference on Parallel and Distributed Computing (Euro-Par),
2011, pp. 170–181.

[52] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit: A language
for streaming applications,” in International Conference on Compiler
Construction (CC), 2002, pp. 179–196.

[53] J. C. Beard, P. Li, and R. D. Chamberlain, “Raftlib: A c++ template
library for high performance stream parallel processing,” in International

[62] I. Brumar, M. Casas, M. Moretó, M. Valero, and G. S. Sohi, “ATM:
approximate task memoization in the runtime system,” in International
Parallel and Distributed Processing Symposium (IPDPS), 2017, pp.
1140–1150.

Workshop on Programming Models and Applications for Multicores and
Manycores (PMAM), 2015, pp. 96–105.

[54] “The OpenACC Application Programming Interface. Version 2.5. Octo-
ber 2015.”

[55] R. Dolbeau, S. Bihan, and F. Bodin, “Hmpp: A hybrid multi-core
parallel programming environment,” in Workshop on General-Purpose
Computation on Graphics Processing Units (GPGPU), 2007.

[56] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
in Symposium on Principles and Practice of Parallel Programming
(PPoPP), 1995, pp. 207–216.

[57] J. Reinders, Intel threading building blocks - outfitting C++ for multi-
core processor parallelism. O’Reilly Media, 2007.

[58] J. Planas, R. M. Badia, E. Ayguade, and J. Labarta, “Self-adaptive
OmpSs tasks in heterogeneous environments,” in International Parallel
and Distributed Processing Symposium (IPDPS), 2013, pp. 138–149.

[59] L. Alvarez, M. Casas, J. Labarta, E. Ayguade, M. Valero, and M. Moreto,
“Runtime-guided management of stacked dram memories in task parallel
programs,” in International Conference on Supercomputing (ICS), 2018,
pp. 379–391.

[60] J. Bueno, X. Martorell, R. M. Badia, E. Ayguadé, and J. Labarta, “Imple-
menting OmpSs support for regions of data in architectures with multiple
address spaces,” in International Conference on Supercomputing (ICS),
2013, pp. 359–368.

[61] L. Alvarez, M. Moreto, M. Casas, E. Castillo, X. Martorell, J. Labarta,
E. Ayguade, and M. Valero, “Runtime-guided management of scratchpad
memories in multicore architectures,” in International Conference on
Parallel Architectures and Compilation (PACT), 2015, pp. 379–391.

[63] E. Castillo, M. Moretó, M. Casas, L. Alvarez, E. Vallejo, K. Chronaki,
R. M. Badia, J. L. Bosque, R. Beivide, E. Ayguadé, J. Labarta, and
M. Valero, “CATA: criticality aware task acceleration for multicore
processors,” in International Parallel and Distributed Processing Sym-
posium (IPDPS), 2016, pp. 413–422.

[64] P. Caheny, L. Alvarez, S. Derradji, M. Valero, M. Moretó, and M. Casas,
“Reducing cache coherence traffic with a numa-aware runtime ap-
proach,” IEEE Transactions on Parallel and Distributed Systems, vol. 29,
no. 5, pp. 1174–1187, May 2018.

[65] P. Caheny, M. Casas, M. Moretó, H. Gloaguen, M. Saintes, E. Ayguadé,
J. Labarta, and M. Valero, “Reducing cache coherence traffic with
hierarchical directory cache and numa-aware runtime scheduling,” in
International Conference on Parallel Architectures and Compilation
(PACT), 2016, pp. 275–286.

[66] M. Manivannan, A. Negi, and P. Stenström, “Efficient forwarding
of producer-consumer data in task-based programs,” in International
Conference on Parallel Processing (ICPP), 2013, pp. 517–522.

	Introduction
	Background and Motivation
	Cache Coherence Deactivation
	Identification of Non-Coherent Data
	Task-Based Programming Models
	Opportunities to Deactivate Coherence

	RaCCD: Runtime-assisted Cache Coherence Deactivation
	Runtime System - Architecture Interface
	Runtime System Extensions
	Architectural Support
	Hardware Extensions
	Registering Non-Coherent Memory Regions
	Non-Coherent Memory Accesses
	Coherence Recovery

	Adaptive Directory Reduction
	Additional Considerations

	Experimental Framework
	Full-System Simulation Infrastructure
	Benchmarks

	Evaluation
	Static Directory Reduction
	Performance
	Directory Accesses
	LLC Hit Rate
	Network-on-Chip Traffic
	Energy Consumption

	Adaptive Directory Reduction
	RaCCD Overheads

	Related Work
	Microarchitectural Cache Coherence Optimisations
	Hardware/Software Cache Coherence Optimisations
	Task-Based Programming Models

	Conclusions
	Acknowledgements
	References

