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Abstract

Hybrid parallel programming models that combine message passing (MP) and shared-

memory multithreading (MT) are becoming more popular, especially with applica-

tions requiring higher degrees of parallelism and scalability. Consequently, coupled

parallel programs, those built via the integration of independently developed and

optimized software libraries linked into a single application, increasingly comprise

message-passing libraries with differing preferred degrees of threading, resulting in

thread-level heterogeneity. Retroactively matching threading levels between inde-

pendently developed and maintained libraries is difficult, and the challenge is ex-

acerbated because contemporary middleware services provide only static scheduling

policies over entire program executions, necessitating suboptimal, over-subscribed

or under-subscribed, configurations. In coupled applications, a poorly configured

component can lead to overall poor application performance, suboptimal resource

utilization, and increased time-to-solution. So it is critical that each library executes
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in a manner consistent with its design and tuning for a particular system architec-

ture and workload. Therefore, there is a need for techniques that address dynamic,

conflicting configurations in coupled multithreaded message-passing (MT-MP) pro-

grams. Our thesis is that we can achieve significant performance improvements over

static under-subscribed approaches through reconfigurable execution environments

that consider compute phase parallelization strategies along with both hardware and

software characteristics.

In this work, we present new ways to structure, execute, and analyze coupled MT-

MP programs. Our study begins with an examination of contemporary approaches

used to accommodate thread-level heterogeneity in coupled MT-MP programs. Here

we identify potential inefficiencies in how these programs are structured and executed

in the high-performance computing domain. We then present and evaluate a novel

approach for accommodating thread-level heterogeneity. Our approach enables full

utilization of all available compute resources throughout an application’s execution

by providing programmable facilities with modest overheads to dynamically recon-

figure runtime environments for compute phases with differing threading factors and

affinities. Our performance results show that for a majority of the tested scientific

workloads our approach and corresponding open-source reference implementation

render speedups greater than 50 % over the static under-subscribed baseline.

Motivated by our examination of reconfigurable execution environments and their

memory overhead, we also study the memory attribution problem: the inability to

predict or evaluate during runtime where the available memory is used across the

software stack comprising the application, reusable software libraries, and support-

ing runtime infrastructure. Specifically, dynamic adaptation requires runtime inter-

vention, which by its nature introduces additional runtime and memory overhead.

To better understand the latter, we propose and evaluate a new way to quantify

component-level memory usage from unmodified binaries dynamically linked to a

x



message-passing communication library. Our experimental results show that our ap-

proach and corresponding implementation accurately measure memory resource us-

age as a function of time, scale, communication workload, and software or hardware

system architecture, clearly distinguishing between application and communication

library usage at a per-process level.
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Chapter 1

Introduction

Parallel computer simulation has been used as a tool to further scientific understand-

ing for decades, as it provides a way to conduct experiments that would otherwise

be too costly, dangerous, or impractical [7, 52, 58, 75, 76, 87]. Consequently, parallel

programming systems and applications have evolved to improve their performance

and scalability as computer systems have grown to higher degrees of parallelism.

This, in turn, has led to a field of study concerning how best to structure, execute,

and analyze massively parallel and distributed applications. In this work, we study

all three of these aspects in the context of coupled message-passing programs used

predominantly in the high-performance computing (HPC) domain.

1.1 Motivation

Hybrid parallel programming models that combine message passing (MP) and shared-

memory multithreading (MT) are becoming more popular, especially with applica-

tions requiring higher degrees of parallelism and scalability. Consequently, coupled

parallel programs, those built via the integration of independently developed and

1



Chapter 1. Introduction

optimized software libraries linked into a single application, increasingly comprise

message-passing libraries with differing preferred degrees of threading, resulting in

thread-level heterogeneity. Retroactively matching threading levels between indepen-

dently developed and maintained libraries is difficult, and the challenge is exacerbated

because contemporary middleware services provide only static scheduling policies

over entire program executions, necessitating suboptimal over-subscribed or under-

subscribed configurations. In coupled applications, a poorly configured component

can lead to overall poor application performance, suboptimal resource utilization,

and increased time-to-solution. So it is critical that each library executes in a man-

ner consistent with its design and tuning for a particular system architecture and

workload. Therefore, there is a need for techniques that address dynamic, conflicting

configurations in coupled multithreaded message-passing (MT-MP) programs.

1.2 Thesis Statement

Our thesis is that we can achieve significant performance improvements over to-

day’s static under-subscribed approach through reconfigurable execution environ-

ments that consider compute phase parallelization strategies along with both hard-

ware and software characteristics.

1.3 Contributions and Organization

This dissertation presents new ways to structure, execute, and analyze coupled MT-

MP programs. For the remainder of this section, we outline this document’s struc-

ture, summarizing significant contributions along the way. Please note that a sub-

stantial amount of material in this dissertation has been presented or published in

other venues:

2



Chapter 1. Introduction

Samuel K. Gutiérrez, Kei Davis, Dorian C. Arnold, Randal S. Baker, Robert W.

Robey, Patrick McCormick, Daniel Holladay, Jon A. Dahl, R. Joe Zerr, Florian Weik,

and Christoph Junghans. Accommodating Thread-Level Heterogeneity in Coupled

Parallel Applications. In 2017 IEEE International Parallel & Distributed Processing

Symposium (IPDPS), Orlando, Florida, 2017.

Samuel K. Gutiérrez, Dorian C. Arnold, Kei Davis, and Patrick McCormick. On

the Memory Attribution Problem: A Solution and Case Study Using MPI. Journal

on Concurrency and Computation: Practice and Experience (ExaMPI Special Issue

Paper). To Appear.

Chapter 2: Background: We present an overview of core topics in parallel and

distributed computation with a focus on concepts and techniques typical to HPC

and their application to modeling and simulation. Related work and supplemental

background material on specific topics are not presented here but instead located

within relevant chapters that follow.

Chapter 3: Accommodating Thread-Level Heterogeneity: In this chapter,

we study coupled MT-MP applications with dynamic, phased configuration con-

flicts. Focusing on applications based on the Message Passing Interface (MPI), we

address the practical challenges of thread-level heterogeneity. We present a gen-

eral methodology and corresponding implementation for dynamically (at runtime)

accommodating coupled application configuration conflicts in a way that is compos-

able, hardware topology aware, MPI implementation agnostic, works with a variety

of unmodified Pthread-based parallel programming systems, increases overall system

resource utilization, reintroduces lost parallelism, and is straightforward to incorpo-

rate into existing parallel applications. To the best of our knowledge, this is the

first work to satisfy all of these criteria. Significant contributions of this work are

summarized as follows:

3



Chapter 1. Introduction

• We examine contemporary approaches used to accommodate thread-level het-

erogeneity in coupled MT-MP programs. Here, we identify potential inefficien-

cies in how these coupled programs are currently structured and executed in

the HPC domain.

• We present a novel approach for accommodating thread-level heterogeneity.

Our approach enables full utilization of all available compute resources through-

out an application’s execution by providing programmable facilities to dy-

namically reconfigure runtime environments for compute phases with differing

threading factors and affinities.

• We evaluate our methodology by applying it to three production-quality simu-

lation codes employing a variety of parallelization strategies. Our performance

results show that for a majority of the 30 tested scientific workloads our ap-

proach and corresponding open-source reference implementation, Quo, render

speedups greater than 50 % over the static under-subscribed baseline.

Chapter 4: Addressing The Memory Attribution Problem: We present the

design and implementation of memnesia, a novel memory usage profiler for parallel

and distributed message-passing applications. Our approach captures component-

level memory usage statistics from unmodified binaries dynamically linked to a

message-passing communication library. This work is motivated principally by the

lack of parallel tools capable of extracting metrics relevant to our study in Chapter 5

concerning Quo-induced memory overhead. Significant contributions of this work

are summarized as follows:

• We examine contemporary approaches in memory profiling and discuss their

limitations as pertaining to what we call the memory attribution problem: the

inability to predict or evaluate during runtime where the available memory is

used across the software stack comprising the application, reusable software
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libraries, and supporting runtime infrastructure needed to enable the applica-

tion at a given scale, under a given workload, and in a time- and space-sharing

scheduled environment.

• We propose an approach for accurate, per-process quantification of memory

resource usage over time that is able to distinguish between application and

MPI library usage clearly. With this new capability, we show that job size,

communication workload, and hardware/software architecture can influence

peak runtime memory usage.

• We develop a corresponding open-source profiling library named memnesia for

applications using any implementation of the Message Passing Interface. We

develop this software with a specific goal in mind: once memory attribution is

better understood, applications will potentially be able to improve or maintain

their memory utilization as they are developed, maintained, and deployed.

• We evaluate our memory profiler’s runtime overhead and behavior using micro-

benchmarks. Here, we show that memnesia overheads are most apparent at

small-message sizes, where its effect on operational latencies dominates mes-

saging rates. Large-message bandwidth is least affected by the presence of

memnesia instrumentation, as increased operational latencies are amortized

over the transfer of larger payloads. That is, once a transfer is initiated, mem-

nesia instrumentation has no appreciable effect on transfer rate.

• We discuss memnesia’s memory overhead and application perturbation. For the

former, we show that total memory overhead is proportional to 2s
∑m−1

i=0 ni,

where the size of a single trace record s = 25 B, m is the total number of

processes under memnesia supervision, and np is the total number of trace

events triggered by process p ∈ {0, 1, 2, . . . ,m− 1}. For the latter, we show

that for a single process the amount of tool-induced application perturbation
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is proportional to s times the number of trace records already collected by our

event-driven profiler.

Chapter 5: Overhead of Adaptive Parallelism: A Case Study with Quo:

Focusing on runtime and memory costs brought on by the use of our dynamic ap-

proach, we examine Quo’s overhead using proxy and full applications. We show that

Quo’s overhead is modest, imposing small runtime and memory usage penalties over

the static baseline. Our results are summarized as follows:

• We quantify the individual overhead costs for a representative set of Quo

operations, showing that runtime operational latencies average ∼2 ms at 16

processes per node (PPN) across 128 nodes.

• We evaluate the overhead of Quo process quiescence by comparing two ap-

proaches, namely MPI_Barrier() and QUO_barrier(). Our results show

that QUO_barrier() significantly outperforms MPI_Barrier() and is close

to the ideal case where quiescence is not necessary. In particular, our approach

introduces approximately an 8 % overhead, while the naive approach using

MPI_Barrier() introduces approximately 116 % overhead.

• We quantify data remapping overhead at different scales and input configura-

tions using three scientific applications. Because of our approach’s quiescing

and later resumption of tasks (i.e., MPI processes), application data remap-

pings across library domains may increase and are dependent on job scale and

inter-domain data movement requirements. So we study those overheads as

a function of job size and application workload in two distinct regimes. Our

results show that in the worst case data remapping consumes approximately

15 % of overall optimized application runtime—on average consuming about

4 % across the 30 workloads tested.
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• We study Quo-induced memory overhead, focusing on two sources: Quo run-

time state and increased hardware subscription levels often required by our

approach. For the former, our experiments show that Quo’s memory footprint

is influenced primarily by hardware/software architecture, job scale, and pro-

cess distribution—averaging across the 18 experiments ∼1.4 MB of additional

memory per process. For the latter, we show that the cost of maintaining addi-

tional MPI processes is hardware-subscription-, platform- and implementation-

dependent, averaging across the 18 configurations tested ∼14 MB per process.

Chapter 6: Conclusion: We conclude with a summary of our results and discuss

opportunities for future work.
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Chapter 2

Background

In this chapter, we present an overview of core topics in parallel and distributed

computation with a focus on concepts and techniques typical to HPC and their

application to modeling and simulation. We begin with a discussion of parallel

computer architectures and programming models, focusing on Flynn’s taxonomy and

execution models that are of particular interest to this work. We then discuss HPC

platforms and describe how they are commonly programmed. Finally, we conclude

with a short description of parallel speedup.

2.1 Parallel Computers and Execution Models

A parallel computer comprises a potentially distributed collection of connected com-

ponents (processors and memories) that work cooperatively to solve a computational

problem. A standard way to classify these machines is Flynn’s taxonomy, which cat-

egorizes computers according to the number of data streams and instruction (or

control) streams they have [39]. In total there are four possibilities: SISD, MISD,

SIMD, and MIMD.

8



Chapter 2. Background

PE

Instruction Pool

Da
ta

 P
oo

l

(a) SISD

PE

Instruction Pool

Da
ta

 P
oo

l

PE

(b) MISD

Instruction Pool

Da
ta

 P
oo

l

PE

PE

PE

PE

(c) SIMD

Instruction Pool

Da
ta

 P
oo

l
PE

PE

PE

PE

PE

PE

PE

PE

(d) MIMD

Figure 2.1: Flynn’s computer taxonomy.

Single Instruction Stream, Single Data Stream (SISD): A sequential com-

puter architecture exploiting neither instruction stream nor data stream parallelism

as shown in Figure 2.1a.

Multiple Instruction Streams, Single Data Stream (MISD): An uncommon

parallel computer architecture exploiting instruction stream parallelism on a single

stream of data as shown in Figure 2.1b.

Single Instruction Stream, Multiple Data Streams (SIMD): A parallel com-
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puter architecture exploiting data stream parallelism, where a single operation, such

as a multiply, is applied to multiple data simultaneously as shown in Figure 2.1c.

Multiple Instruction Streams, Multiple Data Streams (MIMD): A parallel

computer exploiting both instruction stream and data stream parallelism wherein

multiple autonomous processors execute different operations on different data as

shown in Figure 2.1d. The MIMD classification can be divided into two parallel

execution models: SPMD and MPMD.

Single Program, Multiple Data Streams (SPMD): The most common paral-

lelization strategy used in the high-performance computing domain. Developed by

Darema et al. [34], SPMD is characterized by a set of cooperating tasks executing

the same program while operating on multiple pieces of data.

Multiple Programs, Multiple Data Streams (MPMD): A parallel execution

model that extends the SPMD model to multiple programs.

2.2 High-Performance Computing Platforms

HPC platforms are built for executing parallel numerical calculations of modeled sys-

tems. These parallel computer simulations are used across a broad range of scientific

disciplines because they provide a way to conduct experiments that would otherwise

be too costly, dangerous, or impractical. As a consequence, the compute capability

of high-performance computing systems has grown exponentially over the last two

decades (Figure 2.2) to keep pace with increasingly ambitious goals such as modeling

complex physical phenomena through coupled multi-physics simulation [42].

Large-scale parallel computer simulations require an enormous amount of par-

allelism and memory capacity, so they must execute on parallel computers based

on a distributed memory architecture in which compute nodes with local processors
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Figure 2.2: Performance development of HPC systems as recorded by the Top500.

and memories are networked to create a larger system—a supercomputer. Below we

present architectural details of the top 10 supercomputers according to the November

2017 Top500 list (Table 2.1) and show the scales at which they operate (Table 2.2).

System Node Architecture Network

TaihuLight Sunway SW26010 260C Sunway

Tianhe-2 Xeon E5–2692v2 12C, Xeon Phi 31S1P Express-2 Fat-Tree [74]

Piz Daint Xeon E5–2690v3 12C, Tesla P100 Aries Dragonfly [8]

Gyoukou Xeon D-1571 16C, PEZY-SC2 Infiniband EDR

Titan Opteron 6274 16C, Tesla K20x Gemini 3D Torus [9]

Sequoia IBM Power BQC 16C BG/Q 5D Torus [29]

Trinity Xeon E5–2698v3 32C, Xeon Phi 7250 68C Aries Dragonfly

Cori Xeon E5–2698v3 32C, Xeon Phi 7250 68C Aries Dragonfly

Oakforest Xeon Phi 7250 68C Omni-Path Fat-Tree [72]

K Computer SPARC64 VIIIfx 8C Tofu 6D Torus [6]

Table 2.1: Node and network architectures of contemporary HPC platforms.
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System Node Count Core Count Memory Capacity Rmax

TaihuLight 40,960 10,649,600 1,311 TB 93,015 TFLOPS

Tianhe-2 16,000 3,120,000 1,375 TB 33,863 TFLOPS

Piz Daint 5,320 361,760 438 TB 19,590 TFLOPS

Gyoukou 1,2501 19,860,000 576 TB 19,136 TFLOPS

Titan 18,688 560,640 710 TB 17,590 TFLOPS

Sequoia 98,304 1,572,864 1,536 TB 17,173 TFLOPS

Trinity 19,392 979,968 2,163 TB 14,137 TFLOPS

Cori 12,076 735,200 1,469 TB 14,015 TFLOPS

Oakforest 8,208 558,144 919 TB 13,555 TFLOPS

K Computer 88,128 705,024 1,410 TB 10,510 TFLOPS

1A node is defined here as eight SC2 chips connected to a single Xeon D-1571.

Table 2.2: The scales at which contemporary supercomputers operate.

2.3 Parallel Programming Environments

Most parallel and distributed scientific applications (or software libraries) are pro-

grammed using general-purpose languages parallelized via optimizing compiler tech-

niques (e.g., automatic vectorization), language features or extensions (e.g., parallel

loop constructs), or runtime/middleware system services (e.g., collective inter-process

communication). Supercomputers offer a hierarchy of exploitable concurrency, so

parallelism in scientific programs is achieved by combining approaches that best suit

each level of an architecture-defined hierarchy. An example is the use of message-

passing SPMD for coarse-grained parallelism in which distributed tasks also exploit

loop- and instruction-level parallelism from within a node. Below we describe popular

approaches used in contemporary scientific software engineering.
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2.3.1 Message Passing

In the context of parallel programming models, message passing is a way of struc-

turing cooperation between a collection of tasks executing concurrently on a parallel

computer. In this model, tasks cooperate by sending messages to one another; so the

sharing of data by other means, for example, shared memory, is prohibited. Data

may be exchanged between cooperating tasks using synchronous or asynchronous

messages, or a combination thereof. The former requires synchronization between a

sender and receiver such that the receiver is ready for receipt of a message before the

sender initiates transmission, whereas asynchronous messaging is less restrictive in

that a message may be sent to a task before it is ready (or able) to receive data. The

exchange of data between a single sender and a single receiver is called point-to-point

communication. The generalization of this concept, which allows for the transfer

of data between multiple senders and receivers, is called collective communication.

For more information about message passing models, consult the seminal works by

Hewitt et al. [54], Baker and Hewitt [16], Hoare [55], Valiant [99], and Milner [79].

Now that we have a general understanding of the message passing model let us

now focus on a particular message passing specification: MPI, the Message Passing

Interface [78]. MPI is a portable application programming interface (API) specifi-

cation for point-to-point communication with extensions to the canonical message

passing model that includes collective communication, remote memory access (RMA)

operations, dynamic process creation, and parallel file input/output (I/O). Function

calls defined by the standard’s C and Fortran language bindings express these op-

erations, though other language bindings exist outside the standard’s purview. For

over twenty years, MPI has served as the de facto message passing standard for

parallel and distributed scientific applications. Thus, a tremendous amount of soft-

ware infrastructure has been designed and built around its specification, which has

undergone two major revisions since its official debut in 1994.
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2.3.2 Shared-Memory Multithreading

In the shared-memory model, a collection of tasks share a common address space,

and any data that are not explicitly designated as task-local, accessible only to a

single task, are shared. Tasks are allowed to read and write shared data structures

asynchronously, so multithreaded programs are carefully structured to avoid race con-

ditions, undesirable non-determinism that can affect program correctness. Because

scientific applications require large amounts of memory, shared-memory paralleliza-

tion strategies cannot be used without a distributed-memory component. Conse-

quently, hybrid approaches combining shared-memory multithreading and message

passing are becoming commonplace in scientific software (details in Chapter 3).

2.4 Parallel Speedup

Speedup is a standard metric used to assess the scalability of parallel programs. For

a fixed problem size, x, speedup is defined as follows:

S(p, x) =
T (1, x)

T (p, x)
, (2.1)

where T (1, x) is the time taken by an optimized sequential program to perform a

given computation on a single processor and T (p, x) is the time taken to perform

the same calculation in parallel using p processors. Measuring speedups in this way

quantifies a parallel program’s strong scaling characteristics for a given workload

at increasing processor counts. By contrast, weak scaling measures speedups as a

function of both problem size and processor count and assumes a fixed problem size

per processor, so speedup in this regime is defined as

S(p, x · p) =
T (1, x)

T (p, x · p)
. (2.2)

Demonstrating strong scaling requires solving a fixed problem size faster as p in-

creases, while demonstrating weak scaling requires solving increasing larger problems

within a fixed amount of time.
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2.5 Summary

In summary, supercomputers can be structured and programmed in different ways.

Some are built entirely from commodity components, a classic example is a Beowulf

cluster [20], while others opt for custom hardware altogether—the approach used

for TaihuLight. More commonly, though, a graded approach is taken where both

custom and commodity technologies are integrated into a single distributed memory

machine. As an example let us consider the architectural features of the computers

listed in Table 2.1. Here we will notice that the majority (9/10) are built using

commodity technologies interconnected by specialized high-speed networks. With

this diversity, achieving program and performance portability is challenging, so par-

allelism is achieved and expressed in different ways.
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Accommodating Thread-Level

Heterogeneity

Parallel and distributed software such as multi-physics applications play crucial roles

in science and engineering. Because of their interdisciplinary nature, these applica-

tions are often coupled, that is, built via the integration (or coupling) of indepen-

dently developed and optimized software libraries linked into a single application.

As previously described, in such coupled applications, a poorly performing library

can lead to overall poor application performance, suboptimal resource utilization,

and increased time-to-solution, so it is critical that each library executes in a man-

ner consistent with its design and tuning for a particular system architecture and

workload. Generally, each library (input/compute phase pair) has its optimal run-

time configuration, for example, number and placement of processes or threads. In

coupled applications, effective configuration parameters are determined (most often

heuristically, manually, and offline) for all performance-critical computational phases.

Configuration conflicts arise when an optimal configuration for one phase is sub-

optimal for another, and there are a variety of approaches for resolving configuration
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conflicts. At one extreme lie applications written to parallel and distributed pro-

gramming systems such as Legion [18] and Charm++ [62], which by design resolve

such conflicts at runtime. At the other extreme lie MT-MP applications that use

message passing for inter- and intra-node parallelism and multithreading for addi-

tional intra-node parallelism, where the common approach is to allocate resources

to satisfy the most demanding compute phase. The library with the highest degree

of threading per process has one processing element per thread, and libraries with

fewer threads per process run under-subscribed, using only a fraction of the available

compute resources when running.

In this chapter, we study coupled MT-MP applications with dynamic, phased

configuration conflicts. Focusing on applications based on the Message Passing In-

terface, we address the practical challenges of thread-level heterogeneity, where a

coupled application comprises MPI libraries requiring different degrees of thread-

level parallelism. We present a general methodology and corresponding implemen-

tation for dynamically (at runtime) accommodating coupled program configuration

conflicts in a way that is composable, hardware topology aware, MPI implementation

agnostic1, works with a variety of unmodified Pthread-based parallel programming

systems, increases overall system resource utilization, reintroduces lost parallelism,

and is straightforward to incorporate into existing applications. To the best of our

knowledge, this is the first work to satisfy all of these criteria. Finally, we evalu-

ate our methodology by applying it to three production-quality simulation programs

that employ a variety of parallelization strategies. Our results show that significant

performance improvements are achievable when used in environments positioned to

make effective use of the additional levels of parallelism our approach enables.

1So long as the underlying representation of an MPI process is a system process. This
is true for most MPI implementations with one notable excepion: MPC-MPI [81, 82].
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3.1 Coupled Applications and Their Challenges

As previously described, parallel applications are often built by coupling indepen-

dently developed and optimized software libraries. For example, coupled physics ap-

plications are often implemented in a fashion where each physics library, in turn, up-

dates common application state data. Such scientific libraries tend to have their pre-

ferred data discretization scheme, for example, unstructured meshes, regular meshes,

or particles, so they manage their distributed state and parallelization strategies with

little or no coordination across library boundaries. More generally, libraries inter-

act by exchanging data through APIs that remap data from one library domain to

another, for example, from a field defined on a computational mesh to a system of

linear equations, or from one mesh to another as illustrated in Figure 3.1. Quite

often, such data structure remappings suggest complementary remappings of tasks

to hardware. Inter-library interactions can take place many times during the lifes-

pan of an application. Furthermore, at a given program point these interactions

may change during a simulation to accommodate new requirements, for example,

particular physics appropriate for a specific spatial scale and resolution.

Remap

Remap

Com
puteCo

m
pu
te

…

Figure 3.1: Notional illustration of computational phases interleaved with data struc-
ture remapping phases across library domains.
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3.1.1 Parallelism

Parallel scientific application executions exploit data parallelism, where many in-

stances of the same computation execute in parallel on different data and on different

computational resources. In the canonical MP model, message passing is used for

both inter- and intra-node parallelism (other than SIMD vectorization). For MPI ap-

plications this is called MPI-everywhere. In this model, computational resources are

usually fully subscribed, that is, the program’s set of single-threaded processes is in

one-to-one correspondence with processing elements (i.e., cores or hardware threads)

and parallelism is realized via either SPMD or MPMD schemes. Alternatively, a sci-

entific application can employ a hybrid model using multithreaded message passing

(MT-MP) for inter- and intra-node parallelism. For MPI applications, MT-MP is

an instance of the more general MPI+X model in which applications employ addi-

tional on-node parallelization strategies. This approach is increasingly popular as

core (or hardware thread) counts increase in shared-memory nodes, and because of

the flexibility and performance potential of a hierarchical approach [26, 53, 73].

While MPI+X is gaining popularity, it is not ubiquitous. Restructuring large,

mature code bases to exploit new parallel programming systems effectively is chal-

lenging and generally requires a significant amount of effort that is often unjustifiable

because of cost or priority. Furthermore, it is not uncommon that an MPI-everywhere

version of a scientific code performs as well as or better than its MPI+X instantia-

tion [15, 69], which discourages speculative hybridizing of existing programs. Finally,

while an MPI+X library may be written such that its runtime configuration is set-

table within some range at startup, the particular runtime parameters that give

the best performance may depend on static or dynamic variables such as input and

problem scaling factors. For all of these reasons, coupled scientific codes will for the

foreseeable future continue to be built from libraries that use a mix of non-uniform

runtime configurations as illustrated in Figure 3.2. A runtime configuration may
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Figure 3.2: Interleaved phases of a coupled thread-heterogeneous message-passing
application with non-uniform runtime configuration requirements.

include the total number of processes to use for SPMD or MPMD parallelism, a

process threading degree for shared-memory multithreading, and a mapping of tasks

(processes and threads) to compute resources, for example, PEs and memories.

3.1.2 Conflicting Configuration Requirements

For decades coupled applications had relatively uniform library configuration re-

quirements because they were built from single-threaded message-passing libraries,

so static configurations set at application launch were sufficient. Today, however,

configuration conflicts are common in coupled applications because they comprise

independently developed and maintained scientific libraries that have been written

or ported to hybrid MT-MP programming models.

Static Configurations

In today’s static computing environments, dynamically accommodating inter-library

configuration conflicts is difficult. While it is well understood that binding tasks to

hardware resources can improve the performance of an MPI application [25, 43], par-

allel application launchers such as orterun [27], srun [103], aprun [66], and Hydra [71]

allow only static allocations and static binding capabilities: launch-time configura-
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tions persist for the entire parallel application’s execution. Most single-threaded

applications are launched by binding a single PE dedicatedly to each process. This

approach mitigates ill effects of task migration in multiprocessor architectures, for ex-

ample, cache invalidation that occurs when a thread moves from one PE to another.

Given a static configuration for coupled MT-MP applications with conflicting con-

figurations, the two primary configuration options are over-subscription and under-

subscription. In over-subscribed configurations, all allocated resources are always in

use, that is, the number of PEs equals the number of threads in the computational

phase with the lowest degree of threading per process. In phases that require more

threads, resources are over-subscribed with multiple threads per PE. Figure 3.3 il-

lustrates the evolution of an over-subscribed MPI+X configuration where hardware

utilization u(t) remains constant at 100 %. In this example, MPI-everywhere phases

fully subscribe hardware resources (phases P0-P2, P5-P6), while multithreaded re-

gions over-subscribe them (phases P3-P4). In practice, over-subscription is generally

avoided because increased resource contention in the threaded regions tends to affect

overall application performance and scalability negatively [101].
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Parallel compute phase.
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Figure 3.3: Compute resource utilization u(t) by tasks (processes and threads) over
time of a static over-subscribed MPI+X configuration.
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Figure 3.4: Compute resource utilization u(t) by tasks (processes and threads) over
time of a static under-subscribed MPI+X configuration.

The standard approach for accommodating thread-level heterogeneity in coupled

MPI applications is to statically (at application launch time) under-subscribe com-

pute resources such that the computational phase with the highest degree of thread-

ing per MPI process has one PE per software thread. As a consequence, phases with

fewer threads per process use only a fraction of the available compute resources, thus

leading to poor system resource utilization. Figure 3.4 illustrates the evolution of

compute hardware resource utilization over time for a typical MPI+X configuration.

Over time, hardware utilization fluctuates between 50 % and 100 % as the application

moves in and out of regions with differing degrees of multithreading.

Lost Parallelism Through Resource Under-Subscription

Given an application that strong-scales perfectly (the theoretical upper bound), we

can calculate the theoretical slowdown of static under-subscription approaches using

Amdahl’s law [11],

S =

(
m∑
i=1

pi
si

)−1
, (3.1)
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where n is the total number of available processors; m is the total number of phases;

ti is the optimal threading degree for a phase i; tmax = max(t1, . . . , tm); ui = ti/tmax

is a phase’s processor under-subscription factor; and si = n · ui is the speedup factor

for a given phase. Consider two serial phases L1 and L2 whose percentages of exe-

cution time are equal: p1 = 0.5 and p2 = 0.5. Assuming L1 runs optimally with an

MPI-everywhere parallelization strategy and L2 optimally with an MPI+X strategy,

Figure 3.5 plots the theoretical speedups of three under-subscribed runtime configu-

rations where L1’s threading degree is fixed at t1 = 1 and L2’s varies. We compare

those to an idealized configuration (Ideal) where each phase of the parallel compu-

tation is exposed to all available PEs. This simple model illustrates the potential

losses in parallelism resulting from today’s static under-subscription approach.

In summary, coupled scientific applications based on the MT-MP model can

comprise libraries with conflicting configuration requirements. For such applications,

today’s static computational environments necessitate suboptimal over-subscribed

or under-subscribed configurations. Therefore, there is a need for techniques that

address dynamic, conflicting configurations in coupled MT-MP applications.
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Figure 3.5: Log-log plot of modeled speedups showing the potential losses in paral-
lelism resulting from under-subscription as a function of scale.

23



Chapter 3. Accommodating Thread-Level Heterogeneity

3.2 Background and Related Work

In this section, we begin with a discussion of portable hardware locality and abstract

hardware representation, focusing exclusively on techniques and software systems

used in this work. We then discuss related topics in multiprocessor scheduling,

affinity scheduling, and runtime configuration conflict resolution.

3.2.1 Portable Hardware Locality

Contemporary HPC node architectures are complex and diverse, demanding careful

consideration of their processor and memory configurations. To effectively guide

the dynamic (runtime) mapping of application-specific software (logical) affinities

to hardware resources, one must be able to obtain both the underlying platform’s

resource information and the application’s current usage of those resources. To that

end, we use hwloc [25, 44], an open-source software library that provides services to

gather such information at runtime from the most popular and widely used operating

systems in HPC. Operating system and hardware portability are achieved by the

library’s use of Standard C (ANSI/ISO C), a common, widely supported C standard,

and a plugin architecture that allows for back-end component specialization.

3.2.2 Abstract Hardware Representation

hwloc represents hardware information as a k -ary tree of typed hardware objects

that carry additional information through type-appropriate attributes, for example,

cache level and size. The topology formed by these objects represents memory and

processor relationships existing in hardware, including cache, NUMA, and other gen-

eral hardware affinities such as those existing when processing elements are packaged

together within a socket. Further, abstract hardware topologies need not be full (for
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Figure 3.6: Schematic of a machine with two quad-core sockets.
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Figure 3.7: Hardware topology of the machine diagrammed in Figure 3.6.

all levels each node has exactly 0 or k children), symmetric (being a mirror image of

itself), or homogeneous (built from exactly one type of memory or processor), and so

can represent complex hardware configurations. The binary tree shown in Figure 3.7

depicts the compute node architecture diagrammed in Figure 3.6, namely a uniform

memory access (UMA) machine built from two quad-core sockets, where each core

has a dedicated level one cache (L1) and a shared level two (L2).

3.2.3 Multiprocessor Scheduling

Multiprocessor Scheduling (MSP) is a well-known optimization problem that

can be stated as follows: given q processors and n tasks of varying lengths, find

25



Chapter 3. Accommodating Thread-Level Heterogeneity

a schedule—an assignment of n tasks to q processors—with minimal total length.

Because of the problem’s considerable importance and due to its computational in-

tractability (MSP is known to be NP-hard [19, 41]), many efficient heuristics have

been proposed and studied [12, 31, 57, 67, 77, 91, 100]. Here, we focus on a few that

align with our primary interests.

Affinity Scheduling

Markatos and LeBlanc studied affinity scheduling in their work concerning loop

scheduling algorithms for shared-memory multiprocessors [77]. Their results show

that parallel workloads on such systems can benefit from scheduling policies that

exploit data locality in caches and local memories during parallel loop iteration

assignment to processors. Their work builds on that of Squillante and Lazowska,

which shows that locality-indifferent scheduling increases the cache-reload transient

penalty—the cache misses caused by bringing a task’s working set from main memory

into cache as it is reinitiated after being suspended temporarily [96]—thus negatively

affecting both individual task and overall system performance [91].

An affinity schedule is given by a potentially dynamic specification that ex-

ploits application-specific features (e.g., adjacency graphs, parallelization strategies)

to improve upon application-oblivious schedules. The problem can be stated as

follows: given q processors and a set of cooperating tasks T , find a set of task

scheduling directives M and a binary relation R : T 7→ M that minimizes T ’s

makespan. Most often the derivation of M and R involves offline manual experi-

mentation, but automated techniques have been proposed and studied in the litera-

ture [5, 21, 22, 23, 60, 61, 88, 89]. A task’s CPU affinity mask determines the set of

processors P̂ on which it is eligible to run and is defined as follows: given q linearly

ordered processors P = {p0, p1, pi, . . . , pq−1}, let m be a least significant bit zero

(LSB-0) string defined by mi ← 1 if use of pi is permitted and mi ← 0 otherwise,
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so P̂ = {pi | 0 ≤ i < n,mi = 1}. To better understand what we mean, consider the

following scenarios given four processors P = {p0, p1, p2, p3} and as many cooper-

ating tasks T = {t0, t1, t2, t3}. Relation R1, diagrammed in Figure 3.8a, represents

a configuration commonly used for single-threaded data-parallel workloads: a pro-

cessor is dedicated to a single thread of execution to minimize task migration costs.

If we let Tl = {0, 1} and Tu = {2, 3} be two multithreaded processes taken from

T , then Figure 3.8b represents a typical configuration used to influence the schedule

of multithreaded data-parallel workloads: each multithreaded process is given a set

of dedicated processing elements so that threaded regions can execute in parallel

while maintaining some memory locality—an especially important point on NUMA

architectures. Finally, the relation shown in Figure 3.8c represents a completely per-

missive scheduling policy. That is, each task is runnable (can be scheduled) on any

available processor. In practical terms this means that the operating system’s sched-

uler can assign tasks to resources in any way it sees fit, most likely using completely

fair scheduling.

M1 = {00012 (0x1), 00102 (0x2), 01002 (0x4), 10002 (0x8)}

M2 = {00112 (0x03), 11002 (0xC)} ,

M3 = {11112 (0xF)}

t0

t1

t2

t3

0x1

0x2

0x4

0x8

(a) R1 : T 7→M1

t0

t1

t2

t3

0x3

0xC

(b) R2 : T 7→M2

t0

t1

t2

t3

0xF

(c) R3 : T 7→M3

Figure 3.8: Example task to affinity mask relations.
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3.2.4 Current Approaches in HPC

Affinity scheduling has proven useful for improving HPC workload performance [25,

43, 60, 90], so much that, in one form or another, it is regularly used in practice.

Today, the majority of parallel applications use static affinity (or binding) policies

characterized by their use of a single, persistent configuration set during parallel

application startup. Most single-threaded applications are launched by binding a

single processing element dedicatedly to each process to mitigate the ill effects of

task migration, for example, cache invalidation occurring when a task moves from

one processing element to another. In contrast, multithreaded applications tend to

favor less restrictive process binding policies that allow for maximal hardware-level

parallelism during the execution of threaded regions, meaning in practical terms that

a CPU affinity mask is chosen so a process’s threads are eligible for execution on an

appropriate number of processing elements.

Hybridizing MPI applications has been studied extensively [30, 36, 84, 85]. These

works suggest that choosing between MPI-everywhere and MPI+OpenMP is a non-

trivial task involving careful consideration regarding, but not limited to, algorith-

mic choices in the application and the characteristics of the target architecture.

These works evaluate MPI+OpenMP schemes that use a static under-subscription

approach, whereas we present a general methodology to dynamically accommodate a

broader set of Pthread-based MPI+X schemes that additionally consider both data

and hardware localities at runtime.

The study of dynamic process and memory binding methodologies that consider

application, data, and hardware localities is not new. Broquedis et al. present and

evaluate hwloc by incorporating it into MPI and OpenMP runtimes to dynamically

guide task affinities at runtime [25]. While similar in many respects, our work differs

from theirs in that we present a general methodology for programmatically resolving
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configuration conflicts in dynamic, phased Pthread-based MPI+X programs—a use

case not considered in their work.

For HPC applications there are a variety of published approaches for efficiently

resolving runtime configuration conflicts that arise in thread-heterogeneous envi-

ronments. Carribault et al. present a unified runtime for both distributed- and

shared-memory MPI+X codes [81, 82]. Unlike other MPI implementations, theirs

implements MPI processes as user-level threads (instead of processes), so their sched-

uler can efficiently accommodate both single- and multi-threaded regions during the

execution of an MPI+X application. In contrast, our approach is MPI implementa-

tion agnostic and exposes an API to programmatically influence task placement and

scheduling at runtime. Huang et al. present another MPI implementation that uses

processor virtualization to facilitate application adaptation, including thread-level

heterogeneity [59]. Their approach, however, requires the use of their runtime and

modified versions of others, for example, GNU OpenMP, whereas ours works with

unmodified MPI and OpenMP runtimes. Other parallel and distributed program-

ming systems such as Legion [18] and Charm++ [62] are designed to dynamically

resolve runtime configuration conflicts, but once again require that applications be

rewritten to their respective paradigms.

3.3 Adaptive Parallelism for Coupled MPI+X

Next we present a general, composable runtime approach for programmatically ac-

commodating library configuration conflicts that arise in dynamic, coupled, thread-

heterogeneous MPI+X applications. Our design is influenced by requirements for

generality, composability, efficiency, and pragmatism in the face of production HPC

software realities, that is, easily fitting into large, established code bases that are

still be under active development.
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3.3.1 Adaptive Execution Environments with Quo

Quo (as in “status quo”) is both a model and a corresponding implementation that

facilitates the dynamically varying requirements of computational phases in coupled

MT-MP applications. Specifically, Quo allows an application to dynamically query

and reconfigure its process bindings. While the model is general, the current im-

plementation focuses on Pthread-based MPI+X applications [49]. Fundamentally,

Quo uses hwloc [25] and MPI, interfacing with those libraries and the application as

shown in Figure 3.9. The hwloc library is used to gather system hardware topology

information and to control process binding policy changes during the target applica-

tion’s lifetime. MPI is used primarily for exchanging setup information during Quo

context (QC) setup, which is discussed in a later section.

MPI Application

QUO Library

hwloc MPI Library

Figure 3.9: Quo architecture diagram.

The portable, production-quality, open-source runtime library is written in C, but

also provides C++ and Fortran language bindings. The Quo API operates on QC

pointers. This design allows for the creation and manipulation of multiple QCs within

a single application that are either encapsulated within a library or passed from one

library to another—a key for composability. The remainder of this section presents

the principle concepts and mechanisms that underlie our design and approach.
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3.3.2 Quo Contexts

Quo contexts, which encapsulate state data gathered and manipulated by Quo, are

created via a collective call to QUO_create() in which all members of the initializing

communicator must participate. QCs may be created at any time after the underlying

MPI library has been initialized and remain valid until freed via QUO_free(), which

must occur before the MPI library has been finalized. Quo can maintain multiple

independent, coexisting QCs within a single application.

3.3.3 Hardware/Software Environment Queries

As previously described in Section 3.2.1, contemporary HPC node architectures are

complex and diverse, demanding careful consideration of their resource (PE and

memory) configurations. To effectively guide the dynamic (runtime) mapping of

application-specific software (logical) affinities to hardware resources, one must be

able to obtain both the underlying platform’s resource information and the applica-

tion’s current usage of those resources. In this regard, Quo’s approach is straight-

forward: its API provides thin convenience wrappers around commonly-used hwloc

hardware query routines for hardware information. Relevant hardware information

includes memory localities relative to PEs in non-uniform memory access (NUMA)

architectures and hierarchical hardware relationships (e.g., determining how many

cores are contained in a particular socket).

Process affinity state queries provide another mechanism to influence runtime

software-to-hardware mapping decisions based on the hardware affinities of cooper-

ating processes within a compute node. For example, on a per-node basis, one can

query for the set of MPI processes with affinity to a particular hardware resource.

For these queries, Quo uses a combination of hwloc and MPI services. For a given

QC, Quo uses MPI to share a cached mapping of MPI processes to process IDs,
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and hwloc is used to query the affinities of the relevant processes. We note that to

effectively map tasks to PEs, both intra-process (first party) and inter-process (third

party) affinity state queries are necessary.

3.3.4 Programmable Dynamic Process Affinities

Quo allows arbitrary process binding policies to be enacted and reverted during

the execution of an MPI+X application. Ideally, binding instantiations and rever-

sions will coincide with the entries and exits of the application’s different computa-

tional phases. Accordingly, Quo exposes a straightforward, stack semantics through

QUO_bind_push() and QUO_bind_pop(). For example, a new process binding pol-

icy can be instantiated before entering a computational phase via QUO_bind_push()

and then reverted at the end of that phase via QUO_bind_pop(). This semantics

allows a user to conveniently and dynamically stack an arbitrary number of binding

policies that map to the potentially stacked composition of coupled components in

a Quo-enabled MPI+X application (Listing 3.1 and Figure 3.10).

PE occupied by task Ti.

Parallel compute phase.

Ti

T0

T2

T1

T3

T0

T2

T1

T3

P1 P2 P3 P4 P5 P6P0

u(
t)

t
T0

T4

T1

T5

Figure 3.10: Compute resource utilization by tasks over time u(t) for a Quo-enabled
MPI+X configuration. Consult Table 3.1 for a description of the phases.
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Phase Description

Phase P0

Four single-threaded processes P = {T0, T2, T1, T3} are launched
onto cores R = {C0, C1, C2, C3}, where each process T0,...n−1 ∈ P
has affinity to the core on which it was launched: T0/C0, T2/C1,
T1/C2, T3/C3. Process state data S = {M0,M2,M1,M3} is
initialized for each process in P .

Phase P1
Processes in P execute in parallel during first compute phase,
fully subscribing the compute resources in R.

Phase P2

Processes in P map data from their domain X (resident in S)
to the callee’s domain Y , M : Xm → Yn, where m = |P | and
n = |L|. Then two processes in P , Q = {T2, T3}, are quiesced
while the remaining processes L = P − Q push a new binding
policy such that their hardware affinities expand to cover two
cores each: T0/C0||C1, T1/C2||C3.

Phase P3

Two new threads P̂ = {T4, T5} are spawned by their respective
parents in L onto cores C1, C3: cores once occupied by MPI
processes in Q. State in M0 is shared between T0 and T4, while
M1 in a similar fashion is shared between T1 and T5.

Phase P4

Processes and threads residing in L∪P̂ execute in parallel during
this compute phase, fully subscribing the compute resources in
R. The threaded compute phase completes and the spawned
threads in P̂ die or are suspended by the threading library’s
runtime. Processes in L revert to their previous binding policies
by popping them off their respective affinity stacks.

Phase P5
Processes in Q resume execution on the computational resources
they relinquished in Phase P2.

Phase P6

Processes in P map data from domain Y (resident in Ŝ =
{M0,M1}) back to the caller’s domain X (residing over state
in S), M : Yn → Xm, where n = |L| and m = |P |. That
is, results are disseminated via explicit message passing from n
processes in L to m processes in P .

Table 3.1: Explanation of Quo-enabled MPI+X phases in Figure 3.10.
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Quo offers two variants of QUO_bind_push(). The first pushes a hardware affin-

ity policy specifically outlined by the caller. This variant unconditionally, without

regard to the caller’s current hardware affinities, changes the calling process’s affinity

mask to encompass the PEs dominated by the provided policy. Quo also offers a

more sophisticated version of this call that first queries the caller’s current hardware

affinities to choose the closest target resource that dominates the caller’s current

hardware affinities in hwloc’s hardware object tree. If, for example, the caller cur-

rently has an affinity to a core in socket 3, then a call to the latter variant with a

target resource of SOCKET will automatically expand the caller’s affinity mask to en-

compass all PEs in socket 3. The rationale for this functionality is to maintain data

locality (i.e., memory affinity) while moving in and out of process binding policies,

in this case keeping data resident within one NUMA region across library calls.

Intra- and inter-process affinity state queries are used to guide dynamic bind-

ing policy choices and are often used in concert with QUO_bind_push(). For

added convenience, Quo offers an automatic task distribution capability through

QUO_auto_distrib(). This routine automates the two-step query and bind pro-

cess at the cost of generality. Specifically, this routine allows callers the ability to

distribute tasks across a specified resource with minimal effort. For example, one

can specify that a maximum of two tasks be assigned to each socket on the target

compute resource, and this routine will do so by choosing at most two tasks that are

enclosed within (i.e., have an affinity to) each respective socket. When there exists

a subset of cooperating processes not bound to a particular hardware resource, Quo

favors bound processes, avoiding unbound processes even if the distribution criteria

were not completely satisfied with bound processes. This helps maintain data local-

ity when moving in and out of process binding policies, easing programmer burden.

With these primitives, applications can dynamically create policies tailored specif-

ically to their current needs based on the underlying hardware characteristics and

the current process binding policies of other participating processes within a node.
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3.3.5 Data Dependencies

Before the number of active MPI processes can be safely increased or decreased,

data must be exchanged among node-local processes to satisfy all inter-process data

dependencies. Typically, this occurs via node-local gathers and scatters before and

after Quo-enabled regions as described in Listing 3.1 (P2 and P6) and shown in Fig-

ure 3.11. As is typical for message passing models, inter-process data dependencies

are managed explicitly and programmatically. Once dependencies are satisfied, Quo

can enact arbitrary task reconfigurations.

Selected?

Gather Data (RX) Gather Data (TX)

Execute MT-MP Phase

QUO_barrier()

Scatter Data (TX) Scatter Data (RX)

QUO_barrier()

Yes

No

· · ·

Execute MT-MP Phase

QUO_bind_push()

Compute

QUO_bind_pop()

QUO_barrier()

Figure 3.11: Control flow of a Quo-enabled application.
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3.3.6 Parallel Task Distribution

As discussed in Section 3.3.4, Quo offers an automatic task distribution capability

through QUO_auto_distrib(). Recall that this function aids in mapping tasks to

arbitrary node-local resources such that hardware utilization and data locality for a

given task set are maximized. QUO_auto_distrib’s algorithm is as follows.

Algorithm 1: Automatic SPMD Task Distribution

Input : A hardware resource type, τ .
The maximum number of allowable tasks per resource, m.

Output: A boolean indicating whether or not the caller was selected.
begin

let R be the set of all available node-local resources of type τ ;
let T be the set of all tasks that share memory and a Quo context;
let A be an |R|-element collection of totally ordered task sets (X,≺),
where ≺ is defined by the sequence of insertions into X;

let u be the caller’s unique node-local task identifier in {0, 1, . . . , |T | − 1};
for r ∈ R do

for t ∈ T do
// If t has affinity to r, add it to r’s task set.

if t/r then let Ar ← Ar ∪ {t} ;

let I ←
⋂
r∈R

Ar // Calculate task set intersection.

// If task hardware affinities overlap completely.

if |I| = |T | then
// Allow if a distribution slot exists for the caller.

if u < m · |R| then return true ;

// Prevent if caller shares affinity with other tasks.

else if u ∈ I then return false ;
// Either I = Ø or the caller was not a member of I 6= Ø.

else
for a ∈ A do

// Select if in task set with an index less than m.

if u ∈ a and i(au) < m then return true ;

return false;
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3.3.7 Node-Level Process Quiescence

To make our approach maximally effective, there must be a portable and efficient

mechanism for quiescing sets of MPI processes to yield their use of compute re-

sources to make room for more threads of execution, as detailed in Table 3.1 and

illustrated in Figure 3.10. A naive approach might use MPI-provided facilities such

as an MPI_Barrier() across a sub-communicator containing only processes that

may communicate over shared memory, for example, a sub-communicator created by

calling MPI_Comm_split_type() with MPI_COMM_TYPE_SHARED as its split type.

While this approach certainly works, as demonstrated in an early implementation of

Quo, it introduces prohibitively high overheads and is therefore unusable in practice

(an analysis of process-quiescence-induced application overhead is presented in Sec-

tion 5.1.2). Instead, we employ an efficient, portable approach for compute-node-level

process quiescence via QUO_barrier(). Its underlying machinery is straightforward:

1. At QUO_create() a shared-memory segment is created by one MPI process

and then attached to by all processes P that are (a) members of the initializing

communicator and (b) capable of communicating over shared memory.

2. A pthread_barrier_t is embedded into the shared-memory segment with an

attribute that allows all processes with access to the shared-memory segment

to operate on it. Finally, its count parameter is set to the number of MPI

processes that must call pthread_barrier_wait() to complete the barrier,

i.e., the number of processes in P .

3.3.8 Policy Management

Policies that influence how logical (software) affinities are mapped to hardware re-

sources may be managed with Quo in a variety of ways. In a caller-driven approach,
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the caller modifies the callee’s runtime environment and assumes responsibility for

resource selection (the computational resources to be used by a particular compu-

tational phase), MPI process selection (the set of MPI processes that will use the

selected resources), and process affinity selection (pushing and popping binding poli-

cies as the target library’s computational phases are entered and exited, respectively).

A caller-driven approach is appropriate when using off-the-shelf threaded libraries

that are difficult or impossible to modify at the source code level. Caller-driven

approaches require the caller to be cognizant of the inner workings of the target li-

brary to make informed policy decisions. An example caller-driven policy is provided

in Listing A.1. In contrast, callee-driven policies are encapsulated within called li-

braries such that the caller may be oblivious to policy decisions made by the libraries

it uses, as shown in Listing A.2. Because these policies are directly embedded in the

target library and are under developer control, they can be tailored precisely to the

library’s implementation and runtime requirements.

3.4 Quo Performance and Effectiveness

Our performance evaluation is designed to show performance and scaling character-

istics for full applications. We integrate Quo into three production-quality parallel

scientific applications using a variety of parallelization strategies. With these, we

measure and analyze Quo’s costs and benefits, and how these vary with scale. Inte-

grating Quo into different codes demonstrates the generality of the Quo approach.

3.4.1 Experimental Setup

Performance results were gathered from the following systems located at Los Alamos

National Laboratory. Data were collected during regular operating hours, so the
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systems were servicing other workloads alongside the performance evaluation runs.

A summary of architectural details is provided in Table 3.2.

Cielo is a 96-cabinet Cray XE6 system with a 16×12×24 (XYZ) three-dimensional

torus topology built from Gemini ASICs that provide two NICs and a 48-port

router [9]. Each Gemini connects two 16-core nodes (dual eight-core AMD Opteron

Magny-Cours clocked at 2.4 GHz with two NUMA domains per socket), each equipped

with 32 GB of memory. This system has 8,944 compute nodes, totaling 143,104 com-

pute cores, and 272 six-core AMD Opteron Istanbul service nodes. Compute nodes

run Cray Linux Environment (CLE), a Linux-based operating system.

Wolf is a 616-node system connected by a Qlogic Infiniband (IB) Quad Data Rate

(QDR) network in a fat tree topology. Each 16-core compute node (dual eight-core

Intel Xeon Sandy Bridge E5–2670 processors clocked at 2.6 GHz with one NUMA

domain per socket) has a total of 64 GB of memory. Compute nodes run Clustered

High Availability Operating System (CHAOS), a Red Hat Linux derivative [24].

Darwin is a cluster comprising different compute node architectures running

CentOS 7, a Red Hat Linux derivative. Our experiments were conducted on 20-core

compute nodes (2× 10-core 2.6 GHz Intel Xeon E5–2660 v3 processors) equipped

with 128 GB of memory, each connected by 10 Gbit Ethernet.

System CPU
Sockets
Per Node

NUMA
Per Socket

Cores
Per Socket

Cielo AMD 6136 2 2 8

Wolf Intel E5–2670 2 1 8

Darwin Intel E5–2660 2 1 10

Table 3.2: An overview of compute node architectures used for this study.
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3.4.2 Application Results: Evaluating Quo’s Effectiveness

Tables 3.3 and 3.4 detail the three Quo-enabled parallel scientific applications us-

ing all the supported language bindings (C, C++, and Fortran) and a diversity of

parallelization strategies, workloads, and software environments. All application con-

figurations represent real workloads to showcase different application communication

and computation characteristics.

We evaluated Quo’s effectiveness at increasing resource utilization with compar-

isons against a baseline (without Quo) that under-subscribes compute nodes such

that the computational phase with the highest degree of threading per process (tmax)

Identifier Application Description

2MESH

LANL-X is an application used at Los Alamos National Labora-
tory comprising two libraries L0 and L1. L0 simulates one type
of physics on an adaptive structured mesh and L1 simulates a
different physics on a separate, structured mesh. L0 phases are
MPI-everywhere and L1 phases are MPI+OpenMP.

RAGE

xRage+inlinlte: xRage is a multi-physics application used in
a variety of high-deformation flow problems. xRage solves the
Euler equations of conservation of mass, momentum, and energy
on an adaptive structured mesh. All of the other physics are cou-
pled through added terms to the conservation of momentum and
energy equations. inlinlte solves for atomic populations in cases
not in local thermodynamic equilibrium (LTE). xRage phases
are parallelized using MPI-everywhere, while inlinlte phases are
multithreaded with Kokkos [38].

ESMD

MD+Analysis: ESPResSo [13] is a molecular dynamics (MD)
program for coarse-grained soft matter applications. Its analy-
sis routines typically calculate observables (functions of the cur-
rent system state). MD phases are MPI-everywhere and analysis
phases are MPI+OpenMP.

Table 3.3: Application identifiers and descriptions of the applications they represent.
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ID
Quo Version
(Language Binding) Compiler

MPI
Implementation System

2MESH Quo 1.2.4 (Fortran) Intel 15.0.4 Cray MPICH 7.0.1 Cielo

RAGE Quo 1.2.9 (C) Intel 16.0.3 Open MPI 1.6.5 Wolf

ESMD Quo 1.3-alpha (C++) GCC 4.9.3 Open MPI 1.10.3 Darwin

Table 3.4: Target applications and their environments used for this study.

has one PE per thread. This baseline represents the previous, long-standing mode

for production runs of these applications. Table 3.5 shows the application configu-

rations. For baseline experiments, MPI processes are launched with a static process

binding policy set by either aprun (Cray MPICH) or orterun (Open MPI). For exam-

ple, 2MESH is launched with four MPI processes per node (one process per NUMA

domain), each with a NUMA binding policy. In contrast, Quo-enabled experiments

fully subscribe resources at startup such that each MPI process is bound to a sin-

gle core (by the parallel launcher) and MPI+X configuration policies are enacted

dynamically using Quo.

Identifier
MPI+X Process
Binding Policy

Processes
Per Resource tmax

2MESH-W NUMA 1/NUMA 4

RAGE-W Machine 1/Machine 16

ESMD-W Socket 10/Socket 2

2MESH-S NUMA 1/NUMA 4

RAGE-S Machine 1/Machine 16

ESMD-S Socket 5/Socket 4

Table 3.5: Application configurations used in this study.
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Quo Performance Results

We evaluated the three Quo-enabled applications on three different platforms at

scales up to 2,048 PEs (and processes).2 Figure 3.12 shows all the application perfor-

mance and scaling results: 30 sets of experiments, ten different application/workload

combinations, each executed at three different scales. Quo’s effectiveness is deter-

mined principally by two criteria: 1. how much of an application’s overall runtime is

dominated by under-subscribed computational phases and 2. how well these other-

wise under-subscribed computational phases strong-scale at full node utilization.

The overall average speedup across all 30 Quo-enabled workloads was ∼70 %. Of

these workloads, 26 show an overall speedup when using Quo, with more than half

the cases (16) yielding speedups greater than 50 %. RAGE-S3 yields a maximum

Quo-enabled speedup of 476 % at 64 PEs, and seven other workload configura-

tions showed a speedup of greater than 100 %. The reason these workloads realize

huge benefits when dynamically configured using Quo is that their otherwise under-

scribed computational phase (in this case the MPI-everywhere phase) strong-scales

well with the given realistic input sets.

Four of the Quo-enabled workloads yield modest speedups (less than 10 %) and

four other cases in fact demonstrated slowdowns (ESMD-S2–640, 2MESH-W4–128,

2MESH-W4–512, and 2MESH-W4–512). There are three main reasons for this:

1. as previously mentioned, if the under-subscribed phase does not strong-scale well,

Quo’s approach will not yield a significant performance boost; 2. Quo can increase

the costs of data domain remappings; and 3. in some cases, Quo appears to add

some overhead to the multithreaded computational phase. These phenomena can be

observed in Figure 3.12a and Figure 3.12b.

2The seemingly strange PE counts (80, 320, 640) in the ESPResSo experiments are
from runs on a system with 40 hardware threads per node (2 hardware threads per core).
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Figure 3.12: Application results without and with Quo.
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3.5 Practical Considerations

As previously described, commonly used parallel application launchers only provide

for static, whole-application binding policies, or none at all, and each has its syntax

for command-line or configuration-file specification of binding policy. Using Quo

one does not need to specify binding policies via the job launcher: Quo can com-

pletely specify and manage resource bindings efficiently and dynamically. While

Quo is simple, efficient, effective, and convenient, it does introduce some practical

considerations and complexities:

• Increased Code Complexity: With the quiescing and later resumption of tasks,

application data remappings across library domains may increase. Either the

library developer or the library user must be prepared to deal with this added

programming burden. We posit that in a well-engineered library such complex-

ity is manageable.

• Encapsulating Dynamically Driven Code Regions: When using the Quo ap-

proach one must identify and surround computationally-intensive code regions

with calls to QUO_bind_push() and QUO_bind_pop(). Again, in a well-

engineered library these modifications should be trivial—ordinarily, such code

regions are well-bound by a function call or loop body.

• Determining Minimum Threading Levels: Though not brought by the use

of our methodology, determining the minimum required threading level at

MPI_Init_thread() can be challenging in a dynamic multi-library environ-

ment. That is, a threaded library may only execute under certain circumstances

that are not necessarily evident at MPI initialization time, for example, at run-

time requiring a new physics capability. Blindly initializing with the highest

level of thread safety (that is, MPI_THREAD_MULTIPLE) is wasteful because of
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performance degradation brought by higher degrees of required critical section

protection in an MPI library [93].

• Conflicting Runtime Affinity Policies: actions taken by OpenMP runtimes

concerning their static affinity policies can be counterproductive in dynamic

MPI+OpenMP environments such as the one we have presented. For ex-

ample, we have encountered instances where setting a KMP_AFFINITY pol-

icy, a static mechanism used to bind OpenMP worker threads to specific

hardware resources, for Quo-enabled applications has degraded their perfor-

mance in OpenMP-enabled regions by ∼30× on Intel Knights Landing archi-

tectures when compared to a comparable configuration not using Quo. While

we have not yet determined the cause for this slowdown, manually disabling

KMP_AFFINITY alleviates the performance degradation.

3.6 Summary

We have presented a novel approach and implementation for accommodating thread-

level heterogeneity in coupled MPI applications. Our approach, Quo, enables full

utilization of all available compute resources throughout an application’s entire ex-

ecution. Significant performance improvements are achievable when used in envi-

ronments positioned to make effective use of the additional levels of parallelism our

strong-scaling approach enables. Our performance results show that for a majority

of the 30 tested workloads, using Quo renders speedups greater than 50 %, and the

best case speedup was a resounding 476 %.

Quo’s interface is programmable, meaning that it can be used preferentially

in cases where it will improve performance and not used otherwise in favor of a

conventional static policy. Better yet, a graded approach could be used wherein only

that subset of libraries that benefit from strong-scaling are strong-scaled, and to the
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optimal degree within the available bounds. This, in turn, implies that the decision

to actively use Quo, and the strong-scaling factors used when it is, could be made

dynamically, but we have not yet explored this possibility.

One important aspect of analysis remains, namely the precise measurement of

Quo runtime and memory overheads. Before delving into this examination, how-

ever, we must first address the memory attribution problem, as our solution enables

analyses pertinent to the study presented in Section 5.2.
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Addressing The Memory

Attribution Problem

In HPC, parallel programming systems and applications are evolving to improve

performance and energy efficiency, particularly as systems scale to higher degrees

of intra- and inter-node parallelism. As the number of processing elements in these

systems continues to grow, memory capacity to core ratios tend to remain constant

or shrink. The data in Table 4.1 show the ratios of memory capacity to compute

core count for the last ten top-ranked systems of the Top500 [97]. Of these sys-

tems, only three have a memory-to-core ratio (in GB:core) of at least 2:1—the first

was 4:1 in 2002 and the last was 2:1 in 2011—with over half of the remaining seven

systems having less than 1 GB of memory per core. This decrease has been push-

ing many applications toward memory-capacity-bound computing regimes. In these

cases, developers will increasingly rely on understanding how the supporting soft-

ware infrastructure (i.e., operating system (OS), software libraries, and middleware)

affects overall application memory efficiency along three major axes: runtime, job

size (scale), and workload.
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System # Cores Memory Memory/Core

Jun. 2002 Earth Simulator 5,120 20,480 GB 4.00 GB

Nov. 2004 Blue Gene/L 32,768 8,192 GB 0.25 GB

Jun. 2008 Roadrunner 122,400 106,086 GB 0.87 GB

Nov. 2009 Jaguar 298,592 598,016 GB 2.00 GB

Nov. 2010 Tianhe-IA 186,368 229,376 GB 1.23 GB

Jun. 2011 K Computer 705,024 1,410,048 GB 2.00 GB

Jun. 2012 Sequoia 1,572,864 1,572,864 GB 1.00 GB

Nov. 2012 Titan 560,640 710,144 GB 1.27 GB

Jun. 2013 Tianhe-2 3,120,000 1,024,000 GB 0.33 GB

Jun. 2016 Sunway TaihuLight 10,649,600 1,310,720 GB 0.12 GB

Table 4.1: Hardware statistics of the last 10 number one computer systems according
to the Top500 by earliest date of first-place ranking.

HPC application developers commonly couple the high-level application driver

code, software components that drive the use of lower-level parallel programming

systems, with supporting software such as a message passing library, resulting in a

single executable after linking. Such couplings can make it difficult to accurately

attribute an application’s memory usage across the full set of software components.

For example, we may not be able to accurately answer questions such as: What is the

message passing library’s contribution to my application’s overall memory footprint?

In general, this memory attribution problem arises when an application developer

cannot predict or evaluate during runtime where the available memory is used across

the software stack comprising the application, software libraries, and supporting

runtime architecture needed to enable the application at a given scale, under a given

workload, and in a time- and space-sharing scheduled environment.

In summary, improving application memory efficiency is becoming increasingly

important in the development, deployment, and upkeep of parallel and distributed
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programs, but is complicated by concurrent instances of coupled software components

dynamically consuming memory resources over time. At the same time, there is a

lack of parallel tools capable of extracting the relevant metrics to solve the memory

attribution problem. In this work, we address the memory attribution problem in

parallel and distributed message-passing software systems as follows.

• We propose an approach for accurate, per-process quantification of memory

resource usage over time that is able to clearly distinguish between application

and MPI library usage. Our experimental results show that job size, com-

munication workload, and hardware/software architecture can influence peak

runtime memory usage.

• We develop a corresponding open-source profiling library named memnesia [48]

for applications using any implementation of MPI. We develop this software

with a specific goal in mind: once memory attribution is better understood,

applications and MPI implementations will potentially be able to improve or

maintain their memory utilization as they are developed and maintained.

• We evaluate our profiler’s runtime overhead and behavior using both micro-

benchmarks and proxy applications, concluding with an analysis of memnesia’s

memory overhead and perturbation.

To the best of our knowledge this is the first work to both implement and evaluate

such an approach for parallel and distributed software systems.

4.1 Background

In the first half of this section, we discuss application memory utilization in the

context of parallel message-passing programs, and then go on to discuss techniques
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in parallel application analysis, where we summarize well-known taxonomies that

categorize tools along four axes. The last half of this section describes key approaches,

mechanisms, and system software infrastructure used by our memory usage profiler.

4.1.1 Parallel Application Memory Utilization

Application memory utilization is concerned with application memory usage and of-

ten focuses on studying dynamic heap behavior. In this context, an application’s

memory footprint, the minimum memory capacity required to complete its calcula-

tion successfully, is the aggregate of the application driver footprint and each of the

middleware and runtime library footprints. The application driver implements the

numerical methods that underlie a particular system model or simulation, while the

middleware and runtime services coordinate the execution of parallel (and poten-

tially distributed) process instances. An application driver’s footprint is primarily

influenced by 1. its underlying numerical methods, 2. how those methods are im-

plemented (e.g., data structures, parallelization strategies), and 3. the size and fi-

delity of its computational domain. Message passing libraries such as Open MPI [40]

and MPICH [46] are examples of message-passing middleware. Like the application

drivers they support, they consume memory to maintain their internal state, which

is primarily influenced by how they are driven with respect to job size (e.g., the size

of MPI COMM WORLD) and communication workload.

4.1.2 Parallel Application Analysis

Parallel and distributed tools that provide insight into application behavior are im-

portant for the development, deployment, and upkeep of parallel programs. De-

veloping such tools is challenging because data collection and analysis is usually

distributed across a set of computational resources, requiring that their resulting
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outputs be aggregated for further analysis. Tools may be categorized by

• Functionality (correctness or performance): Correctness tools aid in identifying

application (algorithmic) correctness bugs, whereas performance tools aid in

identifying performance bugs.

• Instrumentation methodology (dynamic or static): Dynamic tools generally

operate on unmodified application binaries and use facilities such as ptrace [4]

to observe and control the execution of application processes. In contrast,

static tools insert instrumentation instructions such as probes into applications

during preprocessing-, compilation-, or link-time transformations.

• Measurement methodology (event tracing, event sampling): Event tracing gath-

ers data by activating a set of instrumentation probes at every event associated

with a trace, for example, function interposing, whereas sampling-based mea-

surements are typically interrupt-driven and provide only a statistical view of

application behavior, e.g., program counter sampling.

• Interactivity (online, offline): Online analysis tools are interactive and meant

to be influenced at run time by an end user during data collection and analysis

phases. Offline analysis tools, in contrast, are generally more static, meaning

that the tool is started with and runs alongside an application until termina-

tion, then tool data are written, post-processed, and finally analyzed by other

programs. This approach, while popular in practice because of its simplicity,

tends to scale poorly because of high data storage and analysis costs [86].

4.1.3 Intercepting Application Behavior

Function interposition is a powerful technique used to insert arbitrary code between

a caller and its intended callee [33, 92]. For compiled languages this is typically
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achieved by function symbol overloading, where a duplicate function definition is

introduced into an application such that the duplicate entry’s symbol is resolved

ahead of the intended callee’s, with the consequence that its code is executed instead.

This technique is well known and widely used to instrument dynamically linked

libraries because probes can be introduced into unmodified binaries via the runtime

loader, which is typically achieved by using LD PRELOAD.

The MPI profiling interface (PMPI) provides a straightforward and portable

mechanism for intercepting all MPI-defined functions [78]. Specifically, the MPI spec-

ification requires that libraries provide an alternate entry point, achieved through a

name shift, which can be used for tooling purposes. Listing 4.1 shows an example

of how a tool might intercept application calls to MPI_Barrier() using PMPI and

ultimately function interposing.

Listing 4.1: MPI profiling interface example.

// For MPI_Comm type definition.
#include "mpi.h"

int MPI_Barrier(MPI_Comm comm) {
// Tool code before barrier.
...
// Execute MPI barrier.
int rc = PMPI_Barrier(comm);
// Tool code after barrier.
...
return rc;

}

4.1.4 Collecting Process/System Information

The proc pseudo file system (procfs) offers a convenient interface for obtaining infor-

mation about and influencing the state of a running OS kernel [3]. procfs provides
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user-space access to kernel-maintained state by exposing a file-based access semantics

to the structure hierarchy it maintains (directories and files). Obtaining informa-

tion about current OS state, including that of active processes, is accomplished by

opening and parsing files located below procfs ’s mount point (typically /proc). In

many cases the content of these special files is generated dynamically to provide an

updated view of the operating system’s state.

In Linux, /proc/[pid]/smaps (smaps) shows memory consumption for each

of the process’s mappings [3]. Each smaps entry can be thought of as having two

pieces: a header and a body. The header contains address range occupancy, access

permission, and (if applicable) backing store information, while the body contains

memory map statistics, including resident set size (RSS) and proportional set size

(PSS). The RSS represents how much of the mapping is currently resident in RAM,

including shared pages. In contrast, PSS represents a process’s share of the mapping,

meaning that, for example, if a process has 100 private pages and additionally shares

100 more with another process, then its PSS is 150 (i.e., 100 + 100/2). A process’s

RSS and PSS will change during run time and are both influenced by the amount of

process-driven memory pressure exerted on the system.

4.2 Methods in Memory Utilization Analysis

In this section, we begin with an examination of related work in memory utilization

analysis, describing how contemporary approaches address the previously described

memory attribution problem. We then describe our approach and its corresponding

open-source implementation, memnesia.
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4.2.1 Heap Profiling and Memory Map Analysis

Heap profiling identifies and gathers statistics about call paths containing dynamic

memory management calls, for example, malloc() and free(). Notable heap pro-

filers include Valgrind Massif [80], Google heap profiler (GHP) [45], and memP [28].

GHP and memP work by using LD PRELOAD and function overloading of memory

management calls. This approach to heap profiling has limitations: 1. it does not

work on statically linked binaries, 2. it does not allow a user to distinguish between

memory pages mapped into a process’s address space and memory pages that are

resident in physical memory, 3. it multiply counts shared memory pages and does not

allow a user to determine which cooperating process owns the page, and 4. it does

not allow a user to distinguish application driver memory usage from runtime/mid-

dleware memory usage.

Memory map analysis collects information about a running application by in-

specting application-specific entries in procfs. This approach is appealing for a va-

riety of reasons. First, it is relatively straightforward to implement, avoiding com-

plications brought by user-level interception of memory management functions (e.g.,

some memory management calls cannot be traced, for example when glibc calls

__mmap() [102]) or virtualization (e.g., processes run in isolated virtual environ-

ments do not adequately emulate OS-specific management schemes regarding shared

pages). Second, when compared to heap profiling alone, it can provide a more holis-

tic view into important features that ultimately impact a process’s actual memory

footprint, namely the size and count of private/shared pages and their occupancy in

RAM. Finally, it is language-agnostic and therefore readily applicable to any run-

ning process. As an example, smem [95] is a standalone tool capable of generating a

variety of whole-system memory usage reports based on the PSS metric. Like mem-

nesia, smem uses memory map analysis of smaps for usage reporting but is not a

parallel tracing tool.
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4.2.2 Middleware Attribution of Memory Usage

As previously described, determining how much memory the message-passing library

consumes is challenging and becoming increasingly important in the development,

upkeep, and deployment of parallel programs. Current approaches for MPI library

memory attribution generally can be categorized as library-specific instrumentation

or benchmark-driven library analysis. An example of the former, craymem, can

be found in Cray’s implementation of MPICH [83], where through environmental

controls, internal memory monitoring statistics can be accessed via textual output

(either to a terminal or a file.). Such library-specific approaches are implementation-

dependent and often provide coarse-grained output. For example, the output

# MPICH_MEMORY: Max memory allocated by malloc: 711424 bytes by rank 0
# MPICH_MEMORY: Min memory allocated by malloc: 710024 bytes by rank 1
# MPICH_MEMORY: Max memory allocated by mmap: 83072 bytes by rank 0
# MPICH_MEMORY: Min memory allocated by mmap: 83072 bytes by rank 0
# MPICH_MEMORY: Max memory allocated by shmget: 159307008 bytes by rank 0
# MPICH_MEMORY: Min memory allocated by shmget: 0 bytes by rank 1
# [0] Max memory allocated by malloc:711424 bytes
# [0] Max memory allocated by mmap: 83072 bytes
# [0] Max memory allocated by shmget: 159307008 bytes
# [1] Max memory allocated by malloc: 710024 bytes
# [1] Max memory allocated by mmap: 83072 bytes
# [1] Max memory allocated by shmget: 0 bytes

does not allow a user to determine when during the program’s execution memory

usage high-water marks—the maximum recorded values—were reached or whether

these maxima were transient or sustained for long periods of time.

As an example of the latter, mpimemu [47] provides benchmark-driven memory

attribution for MPI implementations. mpimemu is an MPI program with built-

in memory map monitoring that works by sampling /proc/self/status and

/proc/meminfo, while also imposing a scalable communication workload on the

system. Runtime memory attribution is approximated by calculating usage deltas

between samples collected during its execution and those collected before the MPI

55



Chapter 4. Addressing The Memory Attribution Problem

library was initialized. This approach works for understanding coarse-grained appli-

cation and workload features captured in the given benchmarks, but does not provide

any insight into how a given MPI library’s memory usage is affected when driven by

a specific application or set of applications.

4.2.3 Our Approach

We present an event-driven-analysis approach for accurately capturing both application-

and message-passing-library-specific memory usage of parallel and distributed message-

passing programs. As shown in Table 4.2, our approach overcomes virtually all of

the shortcomings of previous approaches. While our approach generalizes to any

MP system, our reference C++ implementation, memnesia, relies on OS support for

certain procfs features (i.e., smaps) and C entry points into the MPI library.
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Massif — — — — — X

smem X X X X — —

craymem X X — — — —

mpimemu — X X — — —

memnesia X — X X X X

Table 4.2: Tools and their respective attributes.
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Application Instrumentation and Data Collection

We implement our application instrumentation as a runtime system compiled into

a shared library that is loaded into target application binaries at startup via the

runtime loader. In practice this is accomplished via environmental controls: before

application startup, LD PRELOAD is set to include the memnesia runtime, then the

application is launched as usual. The application drives data collection through its

use of MPI. Each entry point into the message passing library becomes an instrumen-

tation point at which we execute tool code between the caller and the intended callee

using function interposition. At each instrumentation point, the memnesia runtime

places calipers—a pair of instrumentation probes—around the target function such

that smaps data are collected immediately before and after callee execution, as shown

in Listing 4.2. Tool data are stored in per-process, in-memory caches maintained by

the memnesia runtime through parallel data aggregation. On program completion,

memory analysis data are written to disk, as shown in Figure 4.4.

Listing 4.2: Code snippet showing memnesia instrumentation of MPI_Barrier().

int MPI_Barrier(MPI_Comm comm) {
int rc = MPI_ERR_UNKNOWN;
{

// Constructor collects /proc/self/smaps sample.
memnesia_scoped_caliper caliper(MEMNESIA_FUNC);
// Execute barrier on behalf of the application.
rc = PMPI_Barrier(comm);

}
// caliper’s destructor collects another smaps sample.
return rc;

}

memnesia trace data are stored in a straightforward on-disk representation made

up of records containing three fields:
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Tool Data 1 Tool Data i Tool Data j Tool Data n

…

Node A
Target

Process 1

Tool Instance 1

Target
Process i

Tool Instance i
…

Node B
Target

Process j

Tool Instance j

Target
Process n

Tool Instance n
…

Analysis

Aggregated 
Tool Data

Figure 4.3: A typical offline tool architecture where analysis probes start with the
application and remain in place for the entirety of the application’s execution. After
all analysis data are written, they are then read, aggregated, and finally analyzed by
a separate tool.

• trigger (8-bit integer): name (ID) of the function triggering data collection.

• time (float): collection time relative to when the MP library was initialized.

• usage (float): observed memory usage calculated by summing PSS entries in

smaps , while ignoring those associated with our instrumentation library—an

enhancement included to improve the accuracy of our reported statistics.

From those data, component-level metrics can be obtained readily. Total appli-

cation memory usage m(t) (that of the application driver and MPI library) at time

t is equal to the smaps usage u reported at that point, i.e., m(t) = u. MPI library
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Analysis
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Node A
Target
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Tool Instance 1

Target
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Tool Instance i
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Node B
Target

Process j

Tool Instance j

Target
Process n

Tool Instance n
…

Aggregated 
Tool Data

Data
Aggregation

Network

Figure 4.4: The tool architecture we adopted, which bears many similarities to its
counterpart shown in Figure 4.3. The key difference is that tool data aggregation is
parallelized using the job’s resources with MPI.

usage m̂(t) at time t is determined by summing all preceding usage deltas (Equa-

tion 4.1 and Figure 4.5)—the intuition is that there is a causal relationship between

MPI library calls and any observed usage deltas (positive or negative), since the MPI

library was the only software component executing between data collection points.

With these values, an application driver’s memory can trivially be calculated as the

difference between total memory usage and MPI library memory usage.

In summary, our approach overcomes virtually all the shortcomings of previous

methods, though our current reference implementation has limitations: 1. memnesia

requires OS support for certain procfs features and C entry points into the MPI
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library, accessed through dynamic linkage, and 2. PSS reporting for applications

that use hugepages [1, 2] is not currently supported.

m̂(tj) =

i<bj+1/2c∑
i=0

∆i, ∆i = u2i+1 − u2i (4.1)
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Figure 4.5: Single-process memory usage and data collection points.

4.3 Micro-Benchmarks and Proxy Applications

Computational benchmarks are commonly used to assess and compare the perfor-

mance of various workloads on differing software (e.g., library, OS) and hardware

(e.g., processor, network) configurations. Individual benchmarks may be designed

to exhibit a minimal set of behaviors to enable precise characterization of specific

hardware or software mechanisms—so-called micro-benchmarks. At the other end of

the spectrum, the net performance characteristics of whole real-world applications

on a range of inputs may be the atomic units of observation. While the latter can

calibrate expectations for the applications tested, such benchmarking may be expen-

sive in terms of resources consumed and time to result and may produce results not

generalizable to other applications.
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As a middle ground, proxy applications have become established as useful tools.

The proxy is intended to be a software construction that is somehow representative

of a larger application (or some components of a larger application) in terms of al-

gorithmic structure (perhaps for the purpose of rapid prototyping) or computational

and communication behavior (for benchmarking). In an effort to generalize beyond

specific applications, in the context of HPC the notion of a “computation dwarf ” has

been developed. In the general sense, a dwarf is not a specific program but a closely

related set of algorithmic methods with closely related computational and communi-

cation behaviors. Widely known lists of dwarfs include Colella’s list of seven [32] and

Asanovic et al.’s extension of that list to thirteen [14], both of which are concerned

with numerically intensive scientific computing. These have inspired other such lists,

for example for symbolic computing [63], but we are concerned with the former.

In the general sense the dwarfs are concepts, not computer codes, but for practical

experimentation concrete programs are needed. For this work, we consider the first

two of Colella’s dwarfs, structured grids and unstructured grids, and their reification

as the well-known proxy applications LULESH [65] and Kripke [70], respectively.

Proxy applications serve as proxies—representatives—of full applications, again in

terms of some specified properties such as problem type or runtime behavior.

4.3.1 Application Drivers: Proxy Applications

In this section, we describe the proxy applications used in our study.

Trivial and Alltoall: Micro-benchmarks that are meant to represent extreme ends

of the in-band (i.e., application-driven) communication spectrum. Our Trivial bench-

mark calls MPI_Init() and then immediately calls MPI_Finalize(), thereby rep-

resenting the most trivial of all MPI applications: one with no communication. We

study the trivial case to understand an MPI library’s minimum required memory
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footprint for parallel application lash-up. Alltoall, by contrast, is meant to repre-

sent applications that impose the most stressful (from the MPI library’s perspec-

tive) communication workload: an all-to-all communication pattern where data are

exchanged between every pair of processes. In particular, this program executes

MPI_Alltoall() over MPI COMM WORLD in a loop, alternating between per-process

message sizes of 2 kB and 4 MB. For each iteration of the loop, new communication

buffers are allocated before the all-to-all data exchange and then freed after its com-

pletion. We use this workload to study the memory efficiency of runtime metadata

structures associated with memory registration and connection management.

Multiple Bandwidth/Message Rate: The OSU multiple bandwidth/message

rate test measures aggregate uni-directional bandwidth between multiple pairs of pro-

cesses using MPI [94]. The purpose of this micro-benchmark is to quantify achieved

bandwidth and message rates between a configurable number of processes concur-

rently imposing a communication workload on a system.

Structured Grids: Kripke: Kripke is a proxy application developed at Lawrence

Livermore National Laboratory, designed to be a proxy for a fully functional discrete-

ordinates (Sn) 3D deterministic particle transport code [70]. It is widely regarded

as an exemplar of Colella’s structured-grid computational dwarf. Figure 4.6a shows

the point-to-point communication structure formed by this application.

Unstructured Grids: LULESH: LULESH is a proxy hydrodynamics code that

is widely regarded as an exemplar of Colella’s second computational dwarf, unstruc-

tured grids [65]. It is in fact a family of implementations specialized to various

programming models and expressed in multiple programming languages. Our work

uses the C++ MPI port [64]. Figure 4.6b shows the point-to-point communication

structure formed by this proxy application.
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Figure 4.6: Point-to-point communication structure formed by each proxy applica-
tion used in this study. Colors are mapped to data transfer totals between MPI
processes (send/receive pairs) using point-to-point communication operations.
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4.4 Results

In this section, we present and discuss our results gathered using our profiling and

analysis infrastructure. We first discuss our tool’s capabilities and the resulting

insight into how memory is allocated as a function of run time, scale, and workload.

Further, we show how memnesia is able to capture features particular to a workload

instance, namely those related to data structure management, message protocol, and

communication pattern, all at a per-process and per-software-component level—a

capability that is not readily available today through other means.

4.4.1 Experimental Setup

Performance results were gathered from the Trinitite and Snow systems located at

Los Alamos National Laboratory, detailed in Table 4.3. Data were collected during

regular operating hours, so the systems were servicing other workloads alongside, but

in isolation from, ours. For each study in this section, experiments were executed

in succession on a single set of dedicated hardware resources. Our experiments used

weak scaling such that each process was given a fixed problem size.

4.4.2 Memory Usage Timelines

Figures 4.7 and 4.8 show per-process memory usage for two proxy applications run-

ning atop different MPI implementations on Snow. Results shown are from 100-cycle

runs of LULESH (963 elements per process) and 50-cycle runs of Kripke (163 zones

per process)—small-scale configurations meant to showcase our tool’s analysis and

reporting capabilities. The left column shows the evolution of MPI library mem-

ory usage (in isolation from the application driver’s) over time and highlights how

different communication substrates and workloads, shown in Figure 4.6, influence

64



Chapter 4. Addressing The Memory Attribution Problem

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Wall Time Since Initialization (s) ×102

1.8

2.0

2.2

2.4

M
em

or
y 

U
sa

ge
 (M

B) ×101 MPI Library Memory Usage

0

215

G
lo

ba
l P

ro
ce

ss
 ID

(a) LULESH (Open MPI)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Wall Time Since Initialization (s) ×102

0

1

2

3

M
em

or
y 

U
sa

ge
 (M

B) ×102 Total Memory Usage

0

215

G
lo

ba
l P

ro
ce

ss
 ID

(b) LULESH (Open MPI)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Wall Time Since Initialization (s) ×102

2.25

2.50

2.75

3.00

M
em

or
y 

U
sa

ge
 (M

B) ×101 MPI Library Memory Usage

0

215

G
lo

ba
l P

ro
ce

ss
 ID

(c) LULESH (MVAPICH2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Wall Time Since Initialization (s) ×102

0

1

2

3

M
em

or
y 

U
sa

ge
 (M

B) ×102 Total Memory Usage

0

215

G
lo

ba
l P

ro
ce

ss
 ID

(d) LULESH (MVAPICH2)

Figure 4.7: Tool output showing per-process memory usage over time for LULESH.
Colors are mapped to a process’s MPI COMM WORLD rank.
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Figure 4.8: Tool output showing per-process memory usage over time for Kripke.
Colors are mapped to a process’s MPI COMM WORLD rank.
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Figure 4.9: memnesia timelines showing aggregate total (i.e., MPI library and appli-
cation) memory usage over time from 216-process (six-node) runs on Trinitite.

usage features. Similarly, the right column shows total memory usage (i.e., appli-

cation and MPI library). Here we can see that both applications share a similar

memory usage pattern: simulation state data dominate overall usage and remain

relatively constant throughout their execution. Figure 4.9 shows aggregate (i.e.,
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Trinitite Snow

Model Cray XC40 Penguin Computing

# Nodes 100 368

OS Cray Linux Environment TOSS/CHAOS [24] (Linux)

CPU 2× 16-core Intel E5–2698 v3 2× 18-core Intel E5–2695 v4

RAM 128 GB 128 GB

Network Aries NICs [10, 68] Intel OmniPath

MPI Cray MPICH 7.6.2 Open MPI 1.10.5, MVAPICH2 2.2

Compiler Intel 17.0.4 GCC 5.3.0

Table 4.3: An overview of hardware and software used for this study.

summed) memory usage reports for three workloads run at 216 processes on Trini-

tite, where for LULESH and Kripke we use the same per-process configurations as

before. Notice that our tool can capture application-specific data structure manage-

ment features, for example, the regular oscillatory behavior exhibited in our Alltoall

benchmark. We omit aggregate memory usage plots at other processor counts be-

cause the weak-scaled simulation state data dominates overall memory usage, so

additional plots would look similar to the ones provided, only differing by some

process scaling factor.

4.4.3 Peak Memory Usage

In this section, we study how job scale, workload, and runtime implementation in-

fluence per-process peak memory usage for MPI libraries and, whenever possible,

compare results gathered from Cray MPICH’s internal usage monitoring (craymem)

to results reported by memnesia using two different smaps metrics: RSS and PSS.

Unless otherwise noted, memnesia’s reporting is based on proportional set size. We

compare RSS and PSS metrics to highlight the differences between the two because
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of memory page sharing. RSS tends to be a more pessimistic, and oftentimes inac-

curate, metric because memory usage attributed to shared pages is counted multiple

times; the multiplier in our case is the number of MPI processes sharing pages on a

node. Table 4.4 shows peak memory usage averaged over MPI processes for four dif-

ferent workloads; the reported error for each entry represents the standard deviation

across the peak memory usage reported for each process. Since craymem reports

three memory usage components ( malloc(), mmap(), and shmget()) without pro-

viding a corresponding time component (i.e., when they occurred relative to one

another), we simply sum those values for reporting.

Our results show that job size, communication workload, and hardware/software

architecture influence peak runtime memory usage, as indicated by craymem (cray)

and memnesia (rss and pss) reporting (Table 4.4 and Table 4.5). Memory usage

spikes observed at 64 processes are caused by crossing a compute node boundary—

our experiments run a maximum of 32 processes per node. Of the workloads, Trivial

achieves the lowest peak usage, while the proxy applications tend to yield the high-

est. The large standard deviations observed in the craymem data are due to large

variations in per-node shmget() usage reporting: a single process reports non-zero

usage, while the rest report zero. While valid, attributing shared-memory usage in

this way is inaccurate for cooperative parallel workloads.

4.4.4 Tool-Induced Application Overhead

To quantify tool-induced overhead, we study how two performance metrics commonly

used to assess message-passing systems, message rate and bandwidth, are affected

while under memnesia supervision. This is accomplished by running the previously

described multiple bandwidth/message rate micro-benchmark in both the presence

and absence of memnesia instrumentation, where the latter serves as our performance

baseline. Data were collected on Snow using Open MPI 1.10.5 over three different
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Number of MPI Processes

1 8 27 64 125 216

Trivial

cray 4.4 ± 0.0 4.9 ± 12.6 6.2 ± 29.4 19.1 ± 33.4 19.1 ± 32.7 23.4 ± 36.9
rss 2.2 ± 0.0 2.4 ± 0.0 2.6 ± 0.0 6.6 ± 0.2 6.7 ± 0.3 6.8 ± 0.4
pss 2.2 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 4.6 ± 0.2 4.7 ± 0.3 4.8 ± 0.4

Alltoall

cray 4.4 ± 0.0 4.9 ± 12.6 6.4 ± 29.2 20.2 ± 33.3 20.2 ± 32.5 24.6 ± 36.7
rss 2.2 ± 0.0 3.0 ± 0.3 4.4 ± 0.0 12.7 ± 0.4 11.6 ± 0.5 11.2 ± 0.5
pss 2.2 ± 0.0 1.1 ± 0.1 2.7 ± 0.0 5.9 ± 0.2 6.0 ± 0.3 5.9 ± 0.4

LULESH

cray 4.4 ± 0.0 5.9 ± 12.6 7.3 ± 29.2 20.2 ± 33.3 20.2 ± 32.5 24.5 ± 36.7
rss 2.4 ± 0.0 5.0 ± 0.2 6.5 ± 0.8 10.4 ± 1.2 10.8 ± 0.8 11.1 ± 0.7
pss 2.4 ± 0.0 2.0 ± 0.1 2.3 ± 0.1 6.3 ± 0.7 6.9 ± 0.1 6.9 ± 0.1

Kripke

cray 4.4 ± 0.0 5.9 ± 12.6 7.2 ± 29.2 20.1 ± 33.3 20.1 ± 32.5 24.4 ± 36.7
rss 2.4 ± 0.0 3.7 ± 0.1 4.3 ± 0.2 8.0 ± 0.2 7.9 ± 0.3 8.0 ± 0.4
pss 2.3 ± 0.0 1.9 ± 0.0 2.1 ± 0.1 5.6 ± 0.2 5.7 ± 0.3 5.8 ± 0.4

Table 4.4: Average reported peak memory consumption (in MB) on Trinitite.

job sizes, plotted in Figure 4.10. We then conclude with an analysis of memnesia’s

memory overhead and application perturbation.

Effects on Message Rate and Bandwidth

Across the board, memnesia overheads are most apparent at small message sizes,

where its effect on operational latencies dominates messaging rates in messages per

second (MPS). Notice that our performance baselines have typical messaging rate

curves where small message transfers yield the highest rates (3.6× 106 , 6.0× 107 ,

and 1.2× 108 MPS for 1 B payloads at 1, 18, and 36 TX/RX pairs, respectively)—

decreasing steadily from there as message size increases. In contrast, with memnesia
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Number of MPI Processes

1 8 27 64 125 216

Trivial

sn-ompi 7.6 ± 0.0 6.5 ± 0.0 6.4 ± 0.0 19.8 ± 0.0 19.9 ± 0.0 20.1 ± 0.0
sn-mv2 7.9 ± 0.0 10.9 ± 0.1 11.0 ± 0.1 24.5 ± 0.0 25.0 ± 0.2 25.7 ± 0.0
tt-mpich 2.2 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 4.6 ± 0.2 4.7 ± 0.3 4.8 ± 0.4

Alltoall

sn-ompi 7.6 ± 0.0 6.6 ± 0.0 6.5 ± 0.4 19.8 ± 0.0 19.9 ± 0.0 20.2 ± 0.2
sn-mv2 8.0 ± 0.0 11.0 ± 0.1 11.0 ± 0.1 24.6 ± 0.3 25.0 ± 0.1 25.8 ± 0.0
tt-mpich 2.2 ± 0.0 1.1 ± 0.1 2.7 ± 0.0 5.9 ± 0.2 6.0 ± 0.3 5.9 ± 0.4

LULESH

sn-ompi 7.6 ± 0.0 7.1 ± 0.5 7.3 ± 0.7 20.6 ± 0.8 20.6 ± 0.6 20.8 ± 0.4
sn-mv2 8.0 ± 0.0 12.3 ± 0.4 12.4 ± 0.7 26.0 ± 0.7 26.3 ± 0.6 27.0 ± 0.4
tt-mpich 2.4 ± 0.0 2.0 ± 0.1 2.3 ± 0.1 6.3 ± 0.7 6.9 ± 0.1 6.9 ± 0.1

Kripke

sn-ompi 7.6 ± 0.0 6.6 ± 0.0 6.5 ± 0.0 19.8 ± 0.0 20.0 ± 0.3 20.3 ± 0.2
sn-mv2 8.0 ± 0.0 11.8 ± 0.1 11.8 ± 0.0 25.3 ± 0.0 25.8 ± 0.1 26.6 ± 0.1
tt-mpich 2.3 ± 0.0 1.9 ± 0.0 2.1 ± 0.1 5.6 ± 0.2 5.7 ± 0.3 5.8 ± 0.4

Table 4.5: Average peak memory consumption (in MB) on Trinitite (tt) and Snow
(sn) as reported by memnesia.

supervision message rates appear to be capped and remain constant irrespective of

message payload size, yielding message rates of approximately 1.0× 102 , 1.4× 103 ,

and 2.4× 103 MPS across all payload sizes. This is caused by the collection of two

smaps samples for each call into the MPI library, thereby increasing latency and

therefore negatively affecting message rate.

Large-message bandwidth is least affected by the presence of memnesia instru-

mentation because increased operational latencies are amortized over the transfer of

larger payloads. That is, once a transfer is initiated, memnesia instrumentation has

no appreciable effect on transfer rate. This micro-benchmark represents a worst-case

scenario; still, memnesia can be useful in practice even though relative differences
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shown here are large. Scientific applications tend not to be rate bound by small mes-

sages, which is the metric that is most severely degraded by the use of memnesia.

Memory Overhead and Perturbation

As argued in Section 4.2, gathering accurate component-level memory usage statis-

tics is difficult. Because our memory profiler is loaded into the target application

binary at startup, it becomes an additional application component and is therefore

subject to the memory attribution problem, so we describe its overheads analyti-

cally. The aggregate memory overhead of our current reference implementation can

be calculated as follows. Given m MPI processes under memnesia supervision, let

np be the total number of trace events triggered by process p, 0 ≤ p < m, where np

equals the total number of times p called into the MPI library. For each trace event,

two records are collected and subsequently stored, as detailed in Section 4.2.3. So to-

tal tool-induced memory overhead given m processes is proportional to 2s
∑m−1

i=0 ni,

where s is a constant representing the size of a single trace record in bytes. Each trace

record contains four entries: an 8-bit identifier naming the function that triggered

data collection, two double-precision floating-point values storing timing information

(start time and duration), and a 64-bit integer storing memory usage in kilobytes.

Assuming 64-bit double-precision floating-point values, s = 25 B.

As previously described, our memory profiler is loaded into the target applica-

tion binary at startup via the runtime loader. Consequently, memnesia’s presence

perturbs application heap behavior through its use of dynamic memory management

(allocations and deallocations). For a single process, the primary unit of observation,

the amount of tool-induced application perturbation is proportional to s times the

number of trace records already collected by memnesia.
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Figure 4.10: Results from the OSU multiple bandwidth/multiple message rate micro-
benchmark, where the number of send/receive pairs vary. Figure a shows our per-
formance baseline, while Figure b shows performance results with memnesia instru-
mentation enabled, both plotted using a log-log scale.
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4.5 Discussion and Summary

Even though storage requirements for memnesia trace records are relatively small,

structural improvements can be made to reduce their size, thereby decreasing over-

all tool-induced memory overhead and application perturbation. Because of the

way our profiler is introduced into the application, tool-induced memory exhaustion

manifests as an application runtime error that ultimately results in parallel job termi-

nation. The current implementation of memnesia requires calling MPI_Finalize()

to flush memory usage statistics to disk for later analysis by other programs. This re-

quirement is potentially problematic for long-running MPI applications because the

amount of memory consumed by the tool grows without bound. A straightforward so-

lution to limit memnesia’s memory usage might include the use of MPI_Pcontrol(),

which allows for a standard, user-accessible interface for controlling when tool data

checkpoints are performed. This capability, in turn, could allow for user-defined

analysis extents, trace data collected over a user-defined time span, that may then

be used to attribute memory usage to specific application phases.

This work addresses the need for an easy to use, reasonably general, open source,

and minimally intrusive tool for attributing dynamic memory usage to individual

libraries comprising a distributed memory application. Our technique is able to

capture features particular to a workload instance at a per-process and per-software-

component level, a capability that is not readily available today through other means.

The key techniques are function interposition and accurate memory map analysis.

Our case study is MPI, addressing the growing need to understand and control

the memory footprint of HPC applications on memory-constrained hardware. MPI

already provides an interposition layer in the form of PMPI, obviating the need

to create one for an arbitrary library via a mechanism such as LD PRELOAD. Our

results show that job size, communication workload, and hardware/software archi-

tecture influence peak runtime memory usage. As an example, our experimental
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results show that different popular MPI implementations exhibit different memory

usage behaviors, and such information could influence the choice of MPI implemen-

tation by application developers or users, and could also be of use to both MPI

implementers and application/library developers to guide memory-use optimization

of their implementations.
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Chapter 5

Overhead of Adaptive Parallelism:

A Case Study with Quo

In this chapter, we study the overhead of dynamically reconfiguring execution envi-

ronments for coupled, thread-heterogeneous MT-MP programs. Focusing on runtime

and memory costs brought on by the use of our dynamic approach, we examine Quo’s

overhead using proxy and full applications. We show that Quo’s overheads are mod-

est, imposing small runtime and memory usage penalties over the static baseline.

5.1 Runtime Overhead

We begin with an examination of Quo runtime overhead, quantifying three major

sources: runtime operations, process quiescence, and data remapping. First, we

measure the operational latencies of key Quo operations at different processor counts

and discuss their performance and scaling characteristics up to 2,048 processes across

128 nodes. Next, using a scientific application as our case study, we contrast the

performance of MPI_Barrier() and QUO_barrier() with that of the ideal case
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requiring no process quiescence. Finally, we examine data remapping costs from the

three applications used in our performance evaluation of Quo in Chapter 3.

5.1.1 Micro-Benchmark Results: Cost of Quo Operations

We quantify the individual overhead costs for a representative set of Quo operations

using a micro-benchmark we developed named QuoBench. For each operation, we

measure the time required to complete that operation 100 times in a tight loop—at

each scale, processes co-located on the same compute node simultaneously execute

this loop. Micro-benchmark results were collected on Cielo, detailed in Section 3.4.1.

Figure 5.1 shows each operation’s average execution time as a function of scale. All

Quo operations, except QUO_create() and QUO_free(), are performed on a per-

node basis, and their overheads are a function of the number of concurrent Quo

processes within a single compute node. This phenomenon is observed in job sizes
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Figure 5.1: Log-log plot of average execution times of Quo operations on Cielo.
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ranging from one to sixteen processes since our test platform contains sixteen-core

compute nodes. QUO_create() and QUO_free() overheads depend on the total

number of processes in the initializing communicator because they require inter-

node process communication when processes are distributed. Figure 5.1 shows that

even beyond 16 processes (i.e., the node width) the cost of these two operations

continues to grow. Even so, their costs are modest at ∼100 ms at 2,048 processes

across 128 nodes. Furthermore, these costs are amortized over the life of a Quo

context: we expect most applications to use long-lived contexts that persist until

library termination. Note that a long-lived context does not imply a single, static

configuration; rather, it implies a single dynamic instance of Quo-maintained state.

5.1.2 Application Overhead from Process Quiescence

To evaluate the overhead of Quo process quiescence—a key Quo mechanism—

we compare two approaches, namely MPI_Barrier() and QUO_barrier(). The

benchmarking application is straightforward: an MPI-everywhere driver program

that calls 2MESH’s computationally intensive MPI+OpenMP library described in

Table 3.3. Depending on the setup, before the multithreaded computation can be

executed there is either no quiescence (ideally) or quiescence using one of the two

approaches. We compare average wall-clock times reported by the application when

using each mechanism. The single-node experiment is as follows.

1. 16 MPI processes are launched with a core binding policy, fully subscribing the

cores in the compute node.

2. Four MPI processes are chosen using QUO_auto_distrib() such that each

has an affinity to a different NUMA domain. The processes in this set P will

enter the threaded compute phase.

3. Before executing the threaded 2MESH phase, processes in P push a NUMA
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binding policy to accommodate the four OpenMP threads they will spawn in

each NUMA domain, while the remaining processes are quiesced using either

MPI_Barrier() or QUO_barrier().

Table 5.1 contrasts the performance of MPI_Barrier() and QUO_barrier()

with that of the ideal case in which four MPI processes (each with a NUMA bind-

ing policy) are launched across all four NUMA domains on the target architecture,

thereby avoiding the need for quiescing any processes, thus mimicking what to-

day’s MPI+X codes do in practice. The results show that our QUO_barrier()

implementation significantly outperforms MPI_Barrier() and is close to the ideal

case where quiescence is not necessary. In particular, our approach introduces ap-

proximately an 8 % overhead, while the naive approach using MPI_Barrier() over

MPI_COMM_WORLD introduces approximately 116 % overhead. Please note that be-

cause this experiment runs on a single compute node this setup mimics the shared-

memory sub-communicator approach outlined in Section 3.3.7.

Quiescence Mechanism Average Execution Time Mechanism Overhead

Ideal 16.46± 0.05 s —

Quo Barrier 17.82± 0.32 s 8.24 %

MPI Barrier 35.49± 0.17 s 115.63 %

Table 5.1: Average quiescence-induced overhead by mechanism.

5.1.3 Application Overhead from Data Remapping

Next, we quantify data remapping overhead at different scales and input configura-

tions using the three applications introduced in Section 3.4, detailed in Table 3.3. We

study data remapping cost because it is additional runtime overhead often brought
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on by the use of our approach. As previously described in Section 3.3.5, before the

number of active MPI processes can be safely increased or decreased, data must be

exchanged among node-local processes to satisfy all inter-process data dependencies.

Typically, this data remapping occurs via node-local gathers and scatters before and

after Quo-enabled regions, respectively. Here we study two classes of applications:

1. those requiring data remapping irrespective of whether or not Quo is in use and

2. those only requiring data remapping when Quo is enabled. Examples of the for-

mer are 2MESH and ESMD, as data continuously are remapped from one library

domain to another. That said, differences in data movement patterns still exist

between the baseline and Quo-enabled versions, which we will discuss later. An

example of the latter is RAGE, as data remapping occurs as a result of using Quo

and would otherwise be unnecessary.

Table 5.2 details data remapping costs without and with Quo, where the former

serves as our performance baseline. The first column names each experiment, orga-

nized as a hyphen-delimited string comprising an application identifier, input name,

and scale (in the number of available PEs). The two remaining columns contain

three entries each: average time spent on remapping data (Remap), average total

execution time (Total), and percentage of total time spent remapping (R % of Total).

Across the board, our performance baselines spend little to no time remapping

data between library domains, averaging across the 30 experiments approximately

2 % of total runtime—the worst case spending in total ∼6 % (2MESH-W1-512). For

their baseline remapping phases, 2MESH and ESMD use all available MPI processes

in MPI_COMM_WORLD to parallelize data transfers between library domains. Since N

processes (i.e., the size of MPI_COMM_WORLD) participate in mapping data to and from

each domain, we will call this exchange N-N. For Quo-enabled runs, 2MESH and

ESMD use an N-M (or M-N) data exchange pattern wherein N processes exchange

data with M processes before and after Quo-enabled regions, where M < N .
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Without Quo With Quo

Experiment Remap, Total (R% of T) Remap, Total (R% of T)

2MESH-W1-128 29.14 s, 522.73 s (5.58 %) 33.55 s, 229.62 s (14.61 %)
2MESH-W1-512 31.83 s, 518.99 s (6.13 %) 32.37 s, 266.40 s (12.15 %)
2MESH-W1-2048 33.67 s, 710.35 s (4.74 %) 36.93 s, 428.28 s (8.62 %)

2MESH-W2-128 18.18 s, 467.22 s (3.89 %) 10.09 s, 196.38 s (5.14 %)
2MESH-W2-512 18.81 s, 402.55 s (4.67 %) 11.86 s, 202.25 s (5.86 %)
2MESH-W2-2048 21.20 s, 461.08 s (4.60 %) 17.40 s, 304.17 s (5.72 %)

2MESH-W3-128 6.55 s, 106.59 s (6.15 %) 4.74 s, 88.89 s (5.33 %)
2MESH-W3-512 6.69 s, 123.24 s (5.43 %) 5.10 s, 117.83 s (4.33 %)
2MESH-W3-2048 8.03 s, 192.51 s (4.17 %) 5.85 s, 189.68 s (3.09 %)

2MESH-W4-128 1.13 s, 55.98 s (2.02 %) 3.21 s, 69.02 s (4.66 %)
2MESH-W4-512 1.51 s, 82.51 s (1.83 %) 3.35 s, 98.97 s (3.38 %)
2MESH-W4-2048 1.38 s, 133.59 s (1.03 %) 3.89 s, 184.23 s (2.11 %)

2MESH-S5-128 198.08 s, 6556.40 s (3.02 %) 98.04 s, 2764.60 s (3.55 %)
2MESH-S5-512 55.55 s, 1599.57 s (3.47 %) 34.35 s, 679.92 s (5.05 %)
2MESH-S5-2048 20.82 s, 461.07 s (4.52 %) 15.99 s, 305.65 s (5.23 %)

RAGE-W1-64 0.00 s, 1884.65 s (0.00 %) 5.00 s, 908.31 s (0.55 %)
RAGE-W1-256 0.00 s, 1854.61 s (0.00 %) 3.00 s, 1171.06 s (0.26 %)
RAGE-W1-512 0.00 s, 1924.41 s (0.00 %) 3.80 s, 1405.99 s (0.27 %)

RAGE-W2-64 0.00 s, 1581.83 s (0.00 %) 1.90 s, 558.63 s (0.34 %)
RAGE-W2-256 0.00 s, 1549.32 s (0.00 %) 2.00 s, 831.73 s (0.24 %)
RAGE-W2-512 0.00 s, 1629.10 s (0.00 %) 1.85 s, 1067.85 s (0.17 %)

RAGE-S3-64 0.00 s, 10782.28 s (0.00 %) 13.50 s, 1872.14 s (0.72 %)
RAGE-S3-256 0.00 s, 3095.27 s (0.00 %) 4.40 s, 1442.50 s (0.31 %)
RAGE-S3-512 0.00 s, 1929.49 s (0.00 %) 3.40 s, 1406.68 s (0.24 %)

ESMD-W1-80 2.80 s, 291.94 s (0.96 %) 17.23 s, 281.94 s (6.11 %)
ESMD-W1-320 3.36 s, 464.30 s (0.72 %) 17.64 s, 432.42 s (4.08 %)
ESMD-W1-640 17.81 s, 543.06 s (3.28 %) 37.84 s, 486.91 s (7.77 %)

ESMD-S2-80 2.69 s, 768.93 s (0.35 %) 24.56 s, 561.71 s (4.37 %)
ESMD-S2-320 1.74 s, 330.37 s (0.53 %) 14.38 s, 279.36 s (5.15 %)
ESMD-S2-640 1.89 s, 260.95 s (0.72 %) 12.06 s, 273.92 s (4.40 %)

Table 5.2: Application results: average data remapping costs without and with Quo.
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Focusing now on results from Quo-enabled experiments, we notice that on av-

erage the percentage of time spent on remapping data has increased from approxi-

mately 2 % to about 4 %. This increase is not as pronounced as one would expect;

the reasons are twofold. First, in the cases where the use of Quo necessitates data

remapping, only a small fraction of total execution time (less than 1 %) is required.

This phenomenon is observed in the nine RAGE experiments. Second, for the re-

maining cases requiring data remapping irrespective of whether or not Quo is in

use, we see two distinct behaviors. The first, exhibited predominantly by ESMD,

shows N-N outperforming N-M for all six experiments, though not substantially. The

second shows that for the majority of the 2MESH experiments (9/15), N-M data

exchange patterns improve remapping times. Note that since we use optimized exe-

cution times in our remapping overhead calculation, Quo-enabled overheads appear

as a larger percentage of overall execution time.

In general, data remapping overhead is dependent on application-specific features.

The most influential factors determining its impact include:

• Data volume: the amount of data exchanged to meet the remap requirements.

• Frequency : how often data must be exchanged to meet the remap requirements.

• Data layout : how key data structures are organized and accessed in memory.

• Remap methodology : how the remap operation is implemented and parallelized.

5.2 Memory Overhead

In this section, we examine the memory overhead of our reference implementation

and approach. We begin by quantifying the memory requirements of Quo runtime

state, i.e., the amount of memory overhead incurred by applications when using Quo.

Because Quo’s overall runtime memory footprint is influenced primarily by scale,
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MPI implementation, and hardware architecture, we present data from experiments

varying all three of these factors. We then study the impact of maintaining quiesced

processes, as our approach for task elasticity, i.e., changing the number of active

MPI processes at runtime via Quo-provided facilities to match a given paralleliza-

tion strategy, often requires maintaining more MPI processes than would otherwise

be necessary when using a static, under-subscribed approach. So, we compare MPI

library memory usage of fully subscribed configurations to five under-subscribed con-

figurations. The fully subscribed configurations serve as a proxy for Quo-enabled

applications requiring full resource subscription, while the under-subscribed configu-

rations replicate today’s static approach for accommodating thread-level heterogene-

ity in coupled MT-MP programs at different threading levels. For example, the 4

PPN configuration represents a static, under-subscribed configuration with process

threading factors of either 8 (for Trinitite) or 9 (for Snow).

5.2.1 Cost of Quo Runtime State

To quantify the cost of Quo runtime state, we compare the memory usage of Trivial,

described in Section 4.3.1, with that of QuoBench, introduced in Section 5.1.1, where

Trivial acts as our memory usage baseline. Using memnesia, usage statistics were

collected from three MPI implementations running on the Trinitite and Snow systems

(Table 4.3). Average memory overhead is broken into three categories as shown in

Table 5.3. The first category, labeled as MPI, is Quo’s impact on MPI library

memory usage. Recall Quo uses MPI services for some of its operations, so we must

therefore consider Quo’s effect on the message passing system’s memory footprint.

The second category, labeled as App., measures the amount of memory overhead each

Quo-enabled process will incur because of Quo-maintained state. Finally, aggregate

per-process memory overhead (MPI and App.) is presented as Total. Our results

show that for all 18 configurations Quo’s impact on MPI and application memory
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Number of MPI Processes

1 8 27 64 125 216

Open MPI (Snow)

MPI
App.
Total

0.00 MB
0.98 MB
0.98 MB

0.04 MB
0.77 MB
0.81 MB

0.06 MB
0.73 MB
0.79 MB

0.57 MB
0.74 MB
1.31 MB

0.59 MB
0.74 MB
1.33 MB

0.57 MB
0.75 MB
1.32 MB

MVAPICH2 (Snow)

MPI
App.
Total

0.02 MB
0.57 MB
0.59 MB

0.60 MB
0.44 MB
1.04 MB

0.60 MB
0.47 MB
1.07 MB

1.11 MB
0.47 MB
1.58 MB

1.08 MB
0.47 MB
1.55 MB

1.11 MB
0.48 MB
1.59 MB

Cray MPICH (Trinitite)

MPI
App.
Total

0.11 MB
1.63 MB
1.74 MB

0.52 MB
0.97 MB
1.49 MB

0.47 MB
0.93 MB
1.40 MB

1.29 MB
0.91 MB
2.20 MB

0.98 MB
0.92 MB
1.90 MB

1.28 MB
0.92 MB
2.20 MB

Table 5.3: Average per-process cost of Quo runtime state.

usage is small, imposing in total an average of ∼1.4 MB per process—in the worst

case requiring only 2.2 MB.

5.2.2 Cost of Quiesced Processes

Because our approach often requires that more MPI processes be maintained (i.e.,

started and kept for the entirety of the parallel application’s execution) than would

otherwise be necessary when using other approaches, we must examine the amount of

memory required to keep additional MPI process state. For this study, we compare

the memory usage of five hardware resource subscription levels, where the number

of single-threaded MPI processes placed on each compute node varies, to fully sub-

scribed configurations (36 PPN for Snow and 32 PPN for Trinitite). Our experiment

is designed to measure average process- and node-level memory overhead brought on
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Average Process
Memory Footprint

Average Node
Memory Footprint

Open MPI (Snow) 20.69± 0.02 MB 744.97 MB (36 PPN)

MVAPICH2 (Snow) 26.32± 0.02 MB 947.43 MB (36 PPN)

Cray MPICH (Trinitite) 5.46± 0.25 MB 174.83 MB (32 PPN)

Table 5.4: MPI library memory footprint of fully subscribed node configurations.

by fully subscribing a compute node—the highest level of resource subscription that

would be considered in practice—to understand worst-case memory usage overheads,

as the use of Quo does not necessitate full resource subscription. For each subscrip-

tion level, we present MPI library memory usage and resource-subscription-induced

overhead data collected from runs of our Trivial micro-benchmark under memnesia

supervision. The experimental setup is as follows. For each system/MPI pair, we

collect per-process MPI library memory usage statistics from six fully subscribed

compute nodes. Similarly, we also measure MPI library memory usage from five

under-subscribed configurations (e.g., 1 PPN, 2 PPN, 4 PPN), again running across

six compute nodes for each subscription level and system/MPI pair.

Table 5.4 details results from three fully subscribed experiments. From those

data, we see that the amount of memory consumed by MPI libraries again depends

on both the underlying system architecture and MPI implementation. On aver-

age each process requires ∼17 MB of memory to store MPI library state—in the

worst case requiring approximately 26 MB (MVAPICH2 at 36 PPN on Snow) and

in the best case requiring about 5 MB (Cray MPICH at 32 PPN on Trinitite). Ta-

ble 5.5 details results from 15 under-subscribed experiments. At each scale (PPN),

we present average per-process MPI library storage requirements (Proc. Footprint),

their respective translation to per-node memory requirements (Node Footprint),

and finally node-level resource-subscription-induced overhead (Node Overhead)—
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Number of MPI Processes Per Node

1 2 4 8 16

Open MPI (Snow)

Proc. Footprint 21.51 MB 20.93 MB 20.61 MB 20.46 MB 20.46 MB
Node Footprint 21.51 MB 41.85 MB 82.42 MB 163.71 MB 327.43 MB
Node Overhead 723.46 MB 703.12 MB 662.55 MB 581.26 MB 417.54 MB

MVAPICH2 (Snow)

Proc. Footprint 21.87 MB 25.36 MB 25.10 MB 25.12 MB 25.41 MB
Node Footprint 21.87 MB 50.72 MB 100.40 MB 200.96 MB 406.64 MB
Node Overhead 925.55 MB 896.71 MB 847.03 MB 746.46 MB 540.79 MB

Cray MPICH (Trinitite)

Proc. Footprint 8.02 MB 6.77 MB 6.16 MB 4.91 MB 4.97 MB
Node Footprint 8.02 MB 13.54 MB 24.62 MB 39.25 MB 79.50 MB
Node Overhead 166.81 MB 161.30 MB 150.21 MB 135.58 MB 95.34 MB

Table 5.5: Resource-subscription-induced memory overhead.

calculated as the difference of fully subscribed and under-subscribed compute node

memory footprints. For example, node overhead for Cray MPICH at 4 PPN is

150.21 MB = 174.83 MB− 24.62 MB.

Our results show that the resource subscription differential most impacts the

amount of memory overhead brought on by maintaining additional MPI processes

to achieve dynamic task elasticity between corresponding dynamic (i.e., with Quo)

and static (i.e., under-subscribed) configurations, as the difference in PPN acts as a

node memory usage multiplier. For example, the three 1 PPN cases yield the highest

memory overheads, averaging across the experiments 605.27 MB per node, because

when considered against their fully subscribed counterparts they exhibit the highest

resource subscription differentials in our study.

Given today’s MPI library memory requirements, the most evident source of Quo
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memory overhead comes from maintaining additional MPI process state. Even so,

the trade-off between space and speedup is not prohibitive in practice. For example,

in the most severe case (MVAPICH2 at 1 PPN) our approach consumes less than

1 % of total available node memory. As message-passing middleware becomes more

memory efficient, a topic of active research [17, 56, 98, 104], resource-subscription-

induced overheads will follow suit; in turn, making our approach viable in severely

memory-constrained environments.

5.3 Summary

We have presented a study concerning our approach’s runtime and memory overheads

to dynamically reconfigure phased MT-MP programs. Using proxy and full applica-

tions as our case studies, we examined five sources of Quo-induced overhead. Our

runtime overhead results show for the three sources considered that 1. Quo opera-

tions exhibit low operational latencies, averaging ∼2 ms at 16 PPN across 128 nodes,

2. QUO_barrier() significantly outperforms MPI_Barrier(), imposing an 8.24 %

runtime penalty for MPI process quiescence versus 115.63 %, and 3. Quo-induced

data remapping overhead averages approximately 2 % over the time required by the

30 static baseline configurations tested. Our memory overhead results show that

Quo runtime state is small, having a memory footprint of about 1.4 MB per process.

The most apparent source of memory overhead stems from our approach for task

elasticity. Our results show that resource-subscription-induced overheads average

516.91 MB per node—less than 1 % available in our case.
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Conclusion

A tremendous amount of software has and continues to be designed and built around

message passing, as this model has shown to be incredibly robust for expressing par-

allelism in scientific applications. Even so, as computer architectures have evolved, so

too have the techniques used to program them. Our research aims to improve upon

long-standing approaches concerning how coupled, parallel, and distributed message

passing software is structured, executed, and analyzed in the HPC domain.

6.1 Summary of Contributions

We have presented new ways to structure and execute coupled MT-MP programs

with dynamic, phased configuration conflicts. Our design and implementation are

influenced by requirements for generality, composability, efficiency, and pragmatism

in the face of production HPC software realities. The key techniques used are

low-latency runtime hardware/software environment queries, programmable dynamic

task affinities, and efficient node-level process quiescence. Our case study is MPI,

addressing the growing need for adaptive parallelism in massively parallel MT-MP
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programs. Our performance results show that for a majority of the tested scientific

workloads our approach and corresponding open-source reference implementation

render speedups greater than 50 % over the static under-subscribed baseline—the

previous, long-standing mode for production runs of these applications.

We have also presented a new memory usage analysis technique for parallel and

distributed message passing applications. The results show that our approach and

corresponding implementation accurately quantify memory resource usage as a func-

tion of time, scale, communication workload, and software or hardware system archi-

tecture, clearly distinguishing between application and communication library mem-

ory usage at a per-process level—a capability that is not readily available today

through other means. With this new capability, we show that job size, communica-

tion workload, and hardware/software architecture influence peak runtime memory

usage. The key techniques used are function interposition and accurate memory map

analysis. Our case study is MPI, addressing the growing need to understand and con-

trol the memory footprint of HPC applications on memory-constrained hardware.

6.2 Open Related Studies

New questions and potential opportunities for follow-on research have arisen from

our work. Here we discuss open topics that remain work for the immediate future.

6.2.1 Transparent Data Dependency Satisfaction

Recall that only after outstanding inter-process data dependencies are satisfied can

Quo safely enact new task configurations. Currently, the integrator of Quo as-

sumes this burden. Meaning in practical terms that inter-process data dependencies

are managed explicitly and programmatically through message passing. Often, ad-
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ditional source code specific to the use of Quo implements this logic. While in

practice this requirement is not prohibitive, it nevertheless adds complexity and run-

time overhead. For these reasons, we are investigating ways to transparently handle

data dependencies existing between processes that share RAM on a compute node.

Specifically, our prototype implements a cooperative memory allocator that allows for

inter-process data structure access via shared memory. Through the use of a custom

Kokkos memory space [37], we are investigating the efficacy of this approach.

6.2.2 Examination of Other Dynamic Configurations

In this dissertation, we have thoroughly examined the costs and benefits of dynami-

cally (at runtime) resolving configuration conflicts in a way that favors full utilization

of available compute resources throughout all phases (both MP and MT-MP) of a

coupled parallel application. The following dynamic configurations, which in con-

trast run under-subscribed during some computational phases, have not yet been

subject to the same level inquiry as to the ones already considered in this work.

• Under-Subscribed, Fully Subscribed: A variation of the standard static

approach used to accommodate thread-level heterogeneity in coupled MT-MP

applications today. Recall that the conventional method statically (at applica-

tion launch time) under-subscribes compute resources such that the computa-

tional phase with the highest degree of threading per process has one PE per

software thread. Because of this, MP phases with fewer threads per process

run with a potentially suboptimal scheduling policy. In contrast, our approach

can enact affinity schedules specifically tailored for each phase. MP phases

under-subscribe hardware resources such that each single-threaded MP process

is given affinity to a dedicated PE. MT-MP phases fully subscribe hardware

resources such that each MT-MP process is given affinity to an appropriate set
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of PEs determined by the threading degree desired, hardware availability, and

hardware locality. For the reasons described in Chapters 3 and 5, when in this

regime two sources of runtime overhead are avoided, namely process quiescence

and data remapping.

• Fully/Under-Subscribed, Under-Subscribed: A configuration used to ac-

commodate coupled MP phases with different strong scaling characteristics.

Consider a situation where some MP phases demonstrate strong scaling up to

a given processor count, while the others do not. In this case, our efficient

process quiescence mechanism could enable such a configuration.

6.3 Concluding Remarks

At LANL the practicality and utility of our pragmatic approach for adaptive par-

allelism in coupled MT-MP programs have been demonstrated by continuous pro-

duction use for over two years—running at scales well in excess of 200k PEs and

servicing demanding scientific workloads running on a variety of HPC platforms.
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A.1 Pseudocode for a Caller-Driven Quo Policy

QUO_create(&ctx, MPI_COMM_WORLD); // Create a context.
// Query runtime software/hardware environment and gather
// information to influence configuration selection algorithm.
tres = QUO_OBJ_NUMANODE; // Set target resource to NUMA.
// Let QUO find a set of node-local MPI processes (optimized
// for maintaining data locality) that satisfy the
// distribution criterion that no more than max_pe processes
// be assigned to each NUMA domain on the host.
QUO_auto_distrib(ctx, tres, max_pe, &in_dset);
// All MPI processes participate in data dissemination (via
// message passing) to satisfy outstanding data dependencies.
// If in_dset is true, then the calling process is a member of
// the distribution set and will perform the calculation.
if (in_dset) {

// Change binding policy to cover resources with
// affinity to the caller’s closest NUMA domain.
QUO_bind_push(ctx, tres);
// Perform threaded computation with newly
// enacted process hardware affinity policy.
result = A_threaded_library_call(in_args);
// Revert to prior process binding policy
// before entering node-local QUO barrier.
QUO_bind_pop(ctx);

}
// Quiesce set of active MPI processes not in distribution set
// by yielding their use of compute resources, while those who
// are spawn threads onto those resources.
QUO_barrier(ctx);
// Barrier complete, all MPI processes participate in result
// dissemination (via message passing) to relay result to all
// cooperating processes in calculation.
...
QUO_free(ctx); // Relinquish context resources.

Listing A.1: Pseudocode showing a caller-driven policy using hardware queries
and application characteristics to guide a dynamic affinity schedule with Quo.
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A.2 Pseudocode for a Callee-Driven Quo Policy

result_t A_threaded_library_call(args_t in_args) {
if (!ctx) { // Initialization of encapsulated QC required?

QUO_create(&ctx, in_args->mpi_comm);
// Query and cache hardware configuration.

}
if (need_new_target_resource) {

// Determine appropriate runtime configuration
// using library-specific heuristics.
tres = QUO_OBJ_SOCKET; // Target resource.
// Let QUO find a set of node-local MPI processes
// that satisfy the given distribution criteria.
QUO_auto_distrib(ctx, tres, max_pe, &in_dset);

}
// MPI processes participate in data dissemination (via
// message passing) to satisfy data dependencies.
if (in_dset) { // Selected to perform the calculation?

// Change binding policy to cover resources with
// affinity to the caller’s target resource.
QUO_bind_push(ctx, tres);
// Perform threaded computation with newly
// enacted process hardware affinity policy.
result = A_threaded_kernel(in_args);
// Revert to prior process binding policy
// before entering node-local QUO barrier.
QUO_bind_pop(ctx);

}
// Quiesce set of active MPI processes not in distribution
// set by yielding their use of compute resources, while
// those who are spawn threads onto those resources.
QUO_barrier(ctx);
// Barrier complete, MPI processes in in_args->mpi_comm
// participate in result dissemination (via message
// passing) to relay result to all cooperating processes.
return result;

}

Listing A.2: Pseudocode showing a callee-driven policy using hardware queries
and application characteristics to guide a dynamic affinity schedule with Quo.
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[62] L.V. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object Ori-
ented System Based on C++. In A. Paepcke, editor, Proceedings of OOP-
SLA’93, pages 91–108. ACM Press, September 1993.

[63] Erich L. Kaltofen. The “Seven Dwarfs” of Symbolic Computation, pages 95–
104. Springer Vienna, Vienna, 2012.

[64] Ian Karlin, Abhinav Bhatele, Bradford L. Chamberlain, Jonathan Cohen,
Zachary Devito, Maya Gokhale, Riyaz Haque, Rich Hornung, Jeff Keasler, Dan
Laney, Edward Luke, Scott Lloyd, Jim McGraw, Rob Neely, David Richards,
Martin Schulz, Charle H. Still, Felix Wang, and Daniel Wong. Lulesh pro-
gramming model and performance ports overview. Technical Report LLNL-
TR-608824, December 2012.

[65] Ian Karlin, Jeff Keasler, and Rob Neely. LULESH 2.0 Updates and Changes.
Technical Report LLNL-TR-641973, August 2013.

[66] Michael Karo, Richard Lagerstrom, Marlys Kohnke, and Carl Albing. The
Application Level Placement Scheduler. Cray User Group, pages 1–7, 2006.

[67] Hironori Kasahara and Seinosuke Narita. Practical Multiprocessor Scheduling
Algorithms for Efficient Parallel Processing. IEEE Transactions on Computers,
33(11):1023–1029, 1984.

[68] John Kim, Wiliam J Dally, Steve Scott, and Dennis Abts. Technology-Driven,
Highly-Scalable Dragonfly Topology. In ACM SIGARCH Computer Architec-
ture News. IEEE Computer Society, 2008.
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