33 research outputs found

    Toward a Reliable Prediction of Streamflow Uncertainty: Characterizing and Optimization of Uncertainty Using MCMC Bayesian Framework

    Get PDF
    2014 S.C. Water Resources Conference - Informing Strategic Water Planning to Address Natural Resource, Community and Economic Challenge

    Bayesian model averaging with fixed and flexible priors: theory, concepts, and calibration experiments for rainfall-runoff modeling

    Get PDF
    This paper introduces for the first time the concept of Bayesian Model Averaging (BMA) with multiple prior structures, for rainfall‐runoff modeling applications. The original BMA model proposed by Raftery et al. (2005) assumes that the prior probability density function (pdf) is adequately described by a mixture of Gamma and Gaussian distributions. Here we discuss the advantages of using BMA with fixed and flexible prior distributions. Uniform, Binomial, Binomial‐Beta, Benchmark, and Global Empirical Bayes priors along with Informative Prior Inclusion and Combined Prior Probabilities were applied to calibrate daily streamflow records of a coastal plain watershed in the South‐East USA. Various specifications for Zellner's g prior including Hyper, Fixed, and Empirical Bayes Local (EBL) g priors were also employed to account for the sensitivity of BMA and derive the conditional pdf of each constituent ensemble member. These priors were examined using the simulation results of conceptual and semi‐distributed rainfall‐runoff models. The hydrologic simulations were first coupled with a new sensitivity analysis model and a parameter uncertainty algorithm to assess the sensitivity and uncertainty associated with each model. BMA was then used to subsequently combine the simulations of the posterior pdf of each constituent hydrological model. Analysis suggests that a BMA based on combined fixed and flexible priors provides a coherent mechanism and promising results for calculating a weighted posterior probability compared to individual model calibration. Furthermore, the probability of Uniform and Informative Prior Inclusion priors received significantly lower predictive error whereas more uncertainty resulted from a fixed g prior (i.e. EBL)

    Parameter identification of the STICS crop model, using an accelerated formal MCMC approach

    Full text link
    This study presents a Bayesian approach for the parameters’ identification of the STICS crop model based on the recently developed Differential Evolution Adaptive Metropolis (DREAM) algorithm. The posterior distributions of nine specific crop parameters of the STICS model were sampled with the aim to improve the growth simulations of a winter wheat (Triticum aestivum L.) culture. The results obtained with the DREAM algorithm were initially compared to those obtained with a Nelder-Mead Simplex algorithm embedded within the OptimiSTICS package. Then, three types of likelihood functions implemented within the DREAM algorithm were compared, namely the standard least square, the weighted least square, and a transformed likelihood function that makes explicit use of the coefficient of variation (CV). The results showed that the proposed CV likelihood function allowed taking into account both noise on measurements and heteroscedasticity which are regularly encountered in crop modellingPeer reviewe

    An Application Of Services Based Modelling Paradigm To The Hydrologic Domain Using Ewater Source

    Full text link
    The traditional paradigm for the deployment of hydrological models involves the capturing and testing of model concepts and numerical consistency for robustness and accuracy, which is then distributed as binary files with or without source code. The model software is then populated with data and parameters and run locally within the modeller’s organisation, often on their own desktop. This modelling workflow is used by many organisations; however, there are several limitations and potential issues. Once the software is outside the developer’s organisation they rely on the modeller to apply updates and bug fixes in a timely manner, and to correctly describe the model version used for reporting. The developer also loses control of the quality and suitability of the input data for a particular application of the model. With more prevalent access to high bandwidth internet and flexible computing infrastructure there is an increased opportunity to better control model access through the exposure of modelling functionality through web services. As well as giving the developer tighter control over model versioning and IP, it also allows closer coupling of the model to both data sources and computational resources, which is especially beneficial to multi-run use cases such as uncertainty analysis and calibration, where the ability to easily scale to many model instances is of most value. The eWater Source modelling system is an important use case for Australia’s hydrologic community, and provides a rich array of functionality. Source is especially suited to the services modelling paradigm as it has project load times much greater than simulation runtimes, the services based approach allows the hiding of these load times by keeping the project in memory for each instance of a Source Server. This paper investigates the use of a Source service interface for providing hydrological modelling web services

    Developing Efficient Strategies for Automatic Calibration of Computationally Intensive Environmental Models

    Get PDF
    Environmental simulation models have been playing a key role in civil and environmental engineering decision making processes for decades. The utility of an environmental model depends on how well the model is structured and calibrated. Model calibration is typically in an automated form where the simulation model is linked to a search mechanism (e.g., an optimization algorithm) such that the search mechanism iteratively generates many parameter sets (e.g., thousands of parameter sets) and evaluates them through running the model in an attempt to minimize differences between observed data and corresponding model outputs. The challenge rises when the environmental model is computationally intensive to run (with run-times of minutes to hours, for example) as then any automatic calibration attempt would impose a large computational burden. Such a challenge may make the model users accept sub-optimal solutions and not achieve the best model performance. The objective of this thesis is to develop innovative strategies to circumvent the computational burden associated with automatic calibration of computationally intensive environmental models. The first main contribution of this thesis is developing a strategy called “deterministic model preemption” which opportunistically evades unnecessary model evaluations in the course of a calibration experiment and can save a significant portion of the computational budget (even as much as 90% in some cases). Model preemption monitors the intermediate simulation results while the model is running and terminates (i.e., pre-empts) the simulation early if it recognizes that further running the model would not guide the search mechanism. This strategy is applicable to a range of automatic calibration algorithms (i.e., search mechanisms) and is deterministic in that it leads to exactly the same calibration results as when preemption is not applied. One other main contribution of this thesis is developing and utilizing the concept of “surrogate data” which is basically a reasonably small but representative proportion of a full set of calibration data. This concept is inspired by the existing surrogate modelling strategies where a surrogate model (also called a metamodel) is developed and utilized as a fast-to-run substitute of an original computationally intensive model. A framework is developed to efficiently calibrate hydrologic models to the full set of calibration data while running the original model only on surrogate data for the majority of candidate parameter sets, a strategy which leads to considerable computational saving. To this end, mapping relationships are developed to approximate the model performance on the full data based on the model performance on surrogate data. This framework can be applicable to the calibration of any environmental model where appropriate surrogate data and mapping relationships can be identified. As another main contribution, this thesis critically reviews and evaluates the large body of literature on surrogate modelling strategies from various disciplines as they are the most commonly used methods to relieve the computational burden associated with computationally intensive simulation models. To reliably evaluate these strategies, a comparative assessment and benchmarking framework is developed which presents a clear computational budget dependent definition for the success/failure of surrogate modelling strategies. Two large families of surrogate modelling strategies are critically scrutinized and evaluated: “response surface surrogate” modelling which involves statistical or data–driven function approximation techniques (e.g., kriging, radial basis functions, and neural networks) and “lower-fidelity physically-based surrogate” modelling strategies which develop and utilize simplified models of the original system (e.g., a groundwater model with a coarse mesh). This thesis raises fundamental concerns about response surface surrogate modelling and demonstrates that, although they might be less efficient, lower-fidelity physically-based surrogates are generally more reliable as they to-some-extent preserve the physics involved in the original model. Five different surface water and groundwater models are used across this thesis to test the performance of the developed strategies and elaborate the discussions. However, the strategies developed are typically simulation-model-independent and can be applied to the calibration of any computationally intensive simulation model that has the required characteristics. This thesis leaves the reader with a suite of strategies for efficient calibration of computationally intensive environmental models while providing some guidance on how to select, implement, and evaluate the appropriate strategy for a given environmental model calibration problem

    Robust Inverse Modeling of Growing Season Net Ecosystem Exchange in a Mountainous Peatland: Influence of Distributional Assumptions on Estimated Parameters and Total Carbon Fluxes

    Get PDF
    While boreal lowland bogs have been extensively studied using the eddy‐covariance (EC) technique, less knowledge exists on mountainous peatlands. Hence, half‐hourly CO2 fluxes of an ombrotrophic peat bog in the Harz Mountains, Germany, were measured with the EC technique during a growing season with exceptionally dry weather spells. A common biophysical process model for net ecosystem exchange was used to describe measured CO2 fluxes and to fill data gaps. Model parameters and uncertainties were estimated by robust inverse modelling in a Bayesian framework using a population‐based Markov Chain Monte Carlo sampler. The focus of this study was on the correct statistical description of error, i.e. the differences between the measured and simulated carbon fluxes, and the influence of distributional assumptions on parameter estimates, cumulative carbon fluxes, and uncertainties. We tested the Gaussian, Laplace, and Student's t distribution as error models. The t‐distribution was identified as best error model by the deviance information criterion. Its use led to markedly different parameter estimates, a reduction of parameter uncertainty by about 40%, and, most importantly, to a 5% higher estimated cumulative CO2 uptake as compared to the commonly assumed Gaussian error distribution. As open‐path measurement systems have larger measurement error at high humidity, the standard deviation of the error was modeled as a function of measured vapor pressure deficit. Overall, this paper demonstrates the importance of critically assessing the influence of distributional assumptions on estimated model parameters and cumulative carbon fluxes between the land surface and the atmosphere

    Parallel discrete differential dynamic programming for multireservoir

    Get PDF
    Author name used in this publication: Chau, Kwok-Wing.2014-2015 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Model-data interaction in groundwater studies: Review of methods, applications and future directions

    Get PDF
    This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ which permits use, distribution and reproduction in any medium, provided the original work is properly cited. This author accepted manuscript is made available following 24 month embargo from date of publication (Sept 2018) in accordance with the publisher’s archiving policyWe define model-data interaction (MDI) as a two way process between models and data, in which on one hand data can serve the modeling purpose by supporting model discrimination, parameter refinement, uncertainty analysis, etc., and on the other hand models provide a tool for data fusion, interpretation, interpolation, etc. MDI has many applications in the realm of groundwater and has been the topic of extensive research in the groundwater community for the past several decades. This has led to the development of a multitude of increasingly sophisticated methods. The progress of data acquisition technologies and the evolution of models are continuously changing the landscape of groundwater MDI, creating new challenges and opportunities that must be properly understood and addressed. This paper aims to review, analyze and classify research on MDI in groundwater applications, and discusses several related aspects including: (1) basic theoretical concepts and classification of methods, (2) sources of uncertainty and how they are commonly addressed, (3) specific characteristics of groundwater models and data that affect the choice of methods, (4) how models and data can interact to provide added value in groundwater applications, (5) software and codes for MDI, and (6) key issues that will likely form future research directions. The review shows that there are many tools and techniques for groundwater MDI, and this diversity is needed to support different MDI objectives, assumptions, model and data types and computational constraints. The study identifies eight categories of applications for MDI in the groundwater literature, and highlights the growing gap between MDI practices in the research community and those in consulting, industry and government.Behzad Ataie-Ashtiani and Craig T. Simmons acknowledge support from the National Centre for Groundwater Research and Training, Australia. Behzad Ataie-Ashtiani also appreciates the support of the Research Office of the Sharif University of Technology, Iran

    Daily Based Morgan–Morgan–Finney (DMMF) Model : A Spatially Distributed Conceptual Soil Erosion Model to Simulate Complex Soil Surface Configurations

    Get PDF
    In this paper, we present the Daily based Morgan–Morgan–Finney model. The main processes in this model are based on the Morgan–Morgan–Finney soil erosion model, and it is suitable for estimating surface runoff and sediment redistribution patterns in seasonal climate regions with complex surface configurations. We achieved temporal flexibility by utilizing daily time steps, which is suitable for regions with concentrated seasonal rainfall. We introduce the proportion of impervious surface cover as a parameter to reflect its impacts on soil erosion through blocking water infiltration and protecting the soil from detachment. Also, several equations and sequences of sub-processes are modified from the previous model to better represent physical processes. From the sensitivity analysis using the Sobol’ method, the DMMF model shows the rational response to the input parameters which is consistent with the result from the previous versions. To evaluate the model performance, we applied the model to two potato fields in South Korea that had complex surface configurations using plastic covered ridges at various temporal periods during the monsoon season. Our new model shows acceptable performance for runoff and the sediment loss estimation ( NSE ≥ 0.63 , | PBIAS | ≤ 17.00 , and RSR ≤ 0.57 ). Our findings demonstrate that the DMMF model is able to predict the surface runoff and sediment redistribution patterns for cropland with complex surface configurations
    corecore