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Abstract

We define model-data interaction (MDI) as a two way process between models and data, in 

which on one hand data can serve the modeling purpose by supporting model discrimination, 

parameter refinement, uncertainty analysis, etc., and on the other hand models provide a tool for 

data fusion, interpretation, interpolation, etc. MDI has many applications in the realm of 

groundwater and has been the topic of extensive research in the groundwater community for the 

past several decades. This has led to the development of a multitude of increasingly sophisticated 

methods. The progress of data acquisition technologies and the evolution of models are 

continuously changing the landscape of groundwater MDI, creating new challenges and 

opportunities that must be properly understood and addressed. This paper aims to review, 

analyze and classify research on MDI in groundwater applications, and discusses several related 



  

aspects including: (1) basic theoretical concepts and classification of methods, (2) sources of 

uncertainty and how they are commonly addressed, (3) specific characteristics of groundwater 

models and data that affect the choice of methods, (4) how models and data can interact to 

provide added value in groundwater applications, (5) software and codes for MDI, and (6) key 

issues that will likely form future research directions. The review shows that there are many tools 

and techniques for groundwater MDI, and this diversity is needed to support different MDI 

objectives, assumptions, model and data types and computational constraints. The study 

identifies eight categories of applications for MDI in the groundwater literature, and highlights 

the growing gap between MDI practices in the research community and those in consulting, 

industry and government.

Keywords: Model-data interaction; Groundwater modeling; Uncertainty analysis; Data 

assimilation; Data fusion.

1. Introduction

The complexities of physics-based numerical models of groundwater flow and contaminant 

transport have grown substantially since the 1990s, moving from early two-dimensional steady 

state homogeneous or layer cake models to dynamic three-dimensional models capable of 

simulating highly heterogeneous formations and complex phenomena such as coupled and 

multiscale processes. This growing sophistication has resulted in models with significantly more 

data requirements compared to the past. In the last three decades, we have also seen a significant 

increase in the role of groundwater models in decision-making processes (Refsgaard et al., 

2010). Models are now used throughout the world to assist decision making on issues such as 

optimal groundwater extraction (e.g. Ketabchi and Ataie-Ashtiani, 2015a, b; Triki et al., 2017), 

groundwater contamination response (e.g. Ritzel et al., 1994), aquifer recharge and recovery 



  

(Drumheller et al., 2017), groundwater remediation and cleanup (e.g. Bayer and Finkel, 2004 and 

2007; Singh and Minsker, 2008) and determination of wellhead protection areas (e.g. Wheater et 

al., 2000; Feyen et al., 2001). The increasing role of models in decision making means that 

models are required to provide more reliable predictions with proper estimation of prediction 

uncertainties. Regardless of a model’s level of complexity, this can only be achieved if the 

appropriate data are available and effectively incorporated into the modeling process.

In parallel, hydrogeology has also become increasingly data rich due to the significant progress 

made in technologies that enable the collection, transfer and storage of data (Fasbender, 2008; 

Barnhart et al., 2010). Advances in geophysical, remote sensing (e.g. satellite imaging), smart 

meter and field sensor technologies have led to a massive upsurge in data quantity and 

diversification of data types. Moreover, thanks to the impressive developments in 

communication technologies such as wireless sensor networks (WSNs), data can now be 

delivered at extremely higher rates. The past two decades have also seen the creation and 

expansion of many national and regional databases for geologic and groundwater related data 

(e.g. United States Geological Survey groundwater database: 

https://water.usgs.gov/ogw/data.html, South Africa national groundwater archive: 

http://www.dwa.gov.za/groundwater/nga.aspx, etc.), in which a massive amount of data is being 

continuously collected (Szalkai et al., 2007). These data-related developments have created new 

challenges, such as online data, heterogeneous data and massive data issues, which are well-

known challenges in some other fields of science, but were not previously encountered by the 

groundwater modeling community (Hayley, 2017).

These trends have changed our conception of the relationship between models and data. 

Traditionally, this relationship was mainly concerned with employing data for model calibration 



  

and validation. But in a broadened and increasingly popular perspective that we refer to as 

model-data interaction (MDI), this relationship is viewed as a two way process in which on one 

hand, data can serve the modeling purpose by supporting model refinement, discrimination, 

uncertainty analysis, etc., and on the other hand, models can provide a framework for guidance 

of data collection and data analysis by assisting data fusion, interpretation, interpolation, etc. To 

the author`s knowledge, the term MDI has not been previously used in the groundwater literature 

to describe this two way process, but it has been used in some other fields of science and 

engineering (e.g. Norby et al., 2016).

From this perspective, MDI offers great potential, a number of which we review below, such as:

 Sources of data in groundwater studies are numerous, but no single data source can 

provide a complete picture of a groundwater system (Linde et al., 2017), and therefore 

multiple data sources must be integrated. In many instances, the nature and 

spatiotemporal scale of hydrogeologic data is so diverse that they are not readily related 

to one another, making data integration very difficult (Porter et al., 2000). In these 

increasingly familiar situations, MDI provides a unique framework for integrating 

multiple types of data, and for solving related problems such as data conflict detection 

and resolution, and outlier detection (Brunner et al., 2017).

 With the progress of measurement technologies, we are approaching a state where we are 

no longer hindered by the power to collect more data, but by our ability to extract 

valuable information from available data. In these circumstances, MDI opens new 

opportunities for information extraction from different data types.

 MDI can improve the performance of groundwater models and open the model structure 

selection and parameter estimation processes to new and previously untapped sources of 



  

information (Rajabi and Ataie-Ashtiani, 2016). This can alleviate the data scarcity 

problem frequently encountered in model construction efforts. Moreover, there is a 

growing recognition of the importance of characterizing the uncertainties in our models 

and data (Beven, 2010). In this sense, MDI provides a consistent tool for examining all 

sources of uncertainty in a common framework.

 Data collection in groundwater studies is currently guided mostly by intuition and expert 

knowledge or by practical considerations rather than a quantitative understanding of what 

data will most reduce uncertainties and how much data are required to do so (Kikuchi, 

2015). In this context, MDI techniques can be valuable tools in the guidance of 

groundwater data collection, setting the stage for a shift of paradigm in this area.

MDI has been the topic of extensive research in the groundwater community for the past several 

decades, leading to the development of a large number of increasingly sophisticated algorithms. 

These studies have transformed MDI from the simple direct insertion of data into models, to 

advanced sequential data assimilation techniques (Moradkhani et al., 2005; Liu et al., 2012). A 

significant portion of the progress in groundwater MDI has originated from developments in 

other fields of science and technology such as meteorology, atmospheric sciences, oceanography, 

robotics, defense, aerospace, etc. (examples of reviews include Ghil and Malanotte-Rizzoli, 

1991; Wang et al., 2009; Peng et al., 2011).

Several issues have motivated us to write a review paper on groundwater MDI. These include: 

(1) recent trends that have changed the landscape of MDI in the groundwater literature, creating 

new challenges and opportunities that must be properly understood and addressed, (2) the 

multitude of mathematical algorithms presented in the literature for MDI that have made the 

topic confusing and hard to penetrate even for the experienced modeler, and (3) lack of a 



  

comprehensive review on the subject. Although a number of notable reviews on related terms 

such as inverse modeling (e.g. Carrera et al., 2005, 2010; Zhou et al., 2014) and uncertainty 

analysis (e.g. Refsgaard et al., 2012; Wu and Zeng, 2013; Linde et al., 2017) are available, the 

more general topic of MDI in the groundwater literature has not been yet reviewed.

The key objectives of this paper can be summarized as follows: (1) to review the basic 

theoretical concepts and present a reasonably simple classification of different frameworks and 

algorithms for anyone interested in obtaining an overview of MDI, (2) to analyze the pros, cons, 

and underlying assumptions of key algorithms with the intention of helping researchers and 

practitioners choose appropriate algorithms for various situations, (3) to highlight different ways 

that models and data can interact to provide added value in groundwater applications, (4) to 

identify codes and software previously used for MDI in the groundwater literature and explain 

key trends in this regard, and (5) to identify key issues and gaps that will likely form future 

directions. The outline of the paper is demonstrated in the Fig. 1.

It should be noted that almost every groundwater modeling study in the literature involves some 

component of MDI, because as in any other field of engineering, “models without data are 

fantasy” (Nisbet et al., 2014). So it is rather impossible to be exhaustive in this review. But we 

focus our review on a number of significant papers published largely over the last two decades, 

which deal with novel, formal mathematical algorithms for MDI. The number of citations and 

our (subjective) judgment of the quality and significance of these papers has played a key role in 

their selection.

2. Review of Theoretical Concepts and Techniques

Groundwater models are generic computer codes that use numerical algorithms to solve the 

partial differential equations that govern groundwater flow and (also often) contaminant 



  

transport. These generic codes become site-specific models when data obtained from a particular 

geographical area is used to:

1. Characterize the structure and parameters of the model. These tasks are referred to as 

model structure identification and parameter estimation (or model calibration) 

respectively.

2. Test or validate the model in a procedure often referred to as model verification or 

validation. The term model selection is also used in this regard if alternative plausible 

models exist (Konikow and Bredehoeft, 1992; Oreskes et al., 1994; Beven, 2018).

The resulting models are used by research, government and consulting communities for a variety 

of objectives including understanding of hydrogeological systems and their interacting 

components across different scales, replication of past system behavior, forecast of system 

responses to potential future stresses and management practices, or to guide future data 

collection endeavors (Beven and Young, 2013; Doherty and Simmons, 2013). As it is not 

possible for models to characterize groundwater systems perfectly, model outputs should be 

associated with uncertainty intervals, making uncertainty analysis an important part of the entire 

modelling process (Freeze et al., 1990 and 1992). Data can be used in a systematic way to refine 

both model predictions and their uncertainty estimates within the framework of different 

modeling objectives. This procedure is often called state estimation. Model verification or 

selection, parameter estimation, guidance of future data collection and state estimation 

encompass different aspects of MDI.

The MDI process results in transformation of the initial datasets into new sets of data. For 

instance, assume that we are using sparse hydraulic conductivity ( ) data obtained from 𝐾

pumping tests in conjunction with hydraulic head ( ) data measured in a number of observation ℎ



  

wells, to estimate  values for a groundwater model through model calibration. The original  𝐾 𝐾

values (obtained from the pumping tests) are rarely left unchanged by the time the model is 

calibrated. The calibration hides some of the unknowns (e.g. heterogeneity) but also affects the 

representative scales, as  values for the pumping tests may, for instance, represent a smaller 𝐾

region than the one being used in the calibration process. Moreover, the calibration process uses 

sparse measurements of  to generate estimates that cover the entire modeling domain. It also 𝐾

combines the information contained in  and  data to estimate the hydraulic conductivity. 𝐾 ℎ

These inevitable outcomes of MDI can be leveraged for a variety of purposes including 

customizing data resolution, improving data coverage and fusing different forms of data.

2.1. Framework of Model-Data Interaction

From the above discussions we can infer that MDI is not a one-time occurrence but a continuous 

process that has many aspects and applications. Regardless of the intended application, MDI 

rests on three foundations: forward model, data and synthesis method (Raupach et al., 2005). A 

forward model of the system (denoted by ) propagates the state (e.g. piezometric heads, 𝑓

chemical concentrations, temperatures, etc.) at time  to time  based on: (1) a set of (often 𝑌𝑡 𝑌𝑡 + 1

assumed to be) time-invariant input parameters  which include physical descriptions of 𝜃

subsurface characteristics (e.g. porosity, hydraulic conductivity, etc.) and contaminant transport 

and transformation characteristics (e.g. dispersivity, sorption factor, chemical reaction rates, 

etc.), and (2) time-dependent external forcing terms  which include surface recharge, lateral 𝑢𝑡

inflow, river-aquifer interactions, etc. This notion can be formulated as (Leisenring and 

Moradkhani, 2011):

𝑌𝑡 + 1 = 𝑓(𝑌𝑡,𝑢𝑡,𝜃) + 𝜔𝑡 (1)



  

where the generally state-dependent and stochastic model error vector is represented by and 𝜔𝑡 

the conceptual and mathematical model structure is embedded in . This notion is schematically 𝑓

illustrated in Fig. 2.

Data (denoted by D) can be related to direct or indirect measurements (hard data) or qualitative 

assessments (soft data) of state variables ( ), external forcing terms ( ), parameters ( ) or 𝐷Y 𝐷u 𝐷𝜃

model structure ( ) (Moradkhani et al., 2005; Liu and Gupta, 2007). Table 1 summarizes 𝐷𝑓

common types of data in groundwater MDI. The measurement model or observation equation  ℎ𝑡

is the mapping from the parameters, states and external forcing terms to the various types of data 

(Liu et al., 2012), formulated as:

where the stochastic term  represents observation error which is an inherent part of the 𝜂𝑡

measurement model. The mean values of  and  denote systematic bias and their covariance 𝜔𝑡 𝜂𝑡

signifies the uncertainty in the model predictions and observations (Liu and Gupta, 2007). The 

mean and covariance of  and  are generally not directly observable, and are also difficult to 𝜔𝑡 𝜂𝑡

estimate by indirect methods. Hence, they are often assigned presumptive values. A common 

practice is to assign uncorrelated Gaussian distribution with zero mean (i.e. white noise) to  𝜔𝑡

and  (e.g. Fu and Gómez-Hernández, 2009; Laloy et al., 2013). 𝜂𝑡

The synthesis method is a formal mathematical algorithm that combines the model ( ) and data (𝑓

) by varying some properties of the model to give their optimal combination, accounting for the 𝐷

associated uncertainties (Wang et al., 2009; Keenan et al., 2011). In general, a host of methods 

exist for synthesis with widely varying degrees of sophistication. It is important to realize that 

due to the diversity of model and data types, and the various objectives and simplifying 

assumptions that are subsumed under MDI, no universally best synthesis method exists (Porter et 

𝐷 = ℎ𝑡(𝑌𝑡,𝑢𝑡,𝜃) + 𝜂𝑡 (2)



  

al., 2000; Peng et al., 2011; Zhou et al, 2014). However, groundwater MDI has several specific 

characteristics that affect the choice of a synthesis method: (1) groundwater models are 

moderately to highly nonlinear (Samuel and Jha, 2003; Schöniger et al., 2012; Wallis et al., 

2014; Siade et al., 2017), (2) they result in state variables (e.g. heads and concentrations) that are 

time-dependent (Eigbe et al., 1998), (3) they are commonly CPU-intensive and have high 

computational demands (most notably in real-world applications), as they rely on large systems 

of equations that need to be solved for each model run (Carrera et al., 2010; Rajabi et al., 2015b), 

(4) they are inherently high-dimensional with respect to parameters, external forcing terms and 

states, unless strict parameterization is employed (Siade et al., 2017), (5) their parameter and 

state variables exhibit non-Gaussianity in certain cases such as strong spatial heterogeneity of 

hydraulic conductivity, contaminant transport with sharp fronts as in advection dominated 

processes, and curvilinear crispy geometries (as in river beds) (Hendricks Franssen et al., 2009; 

Hendricks Franssen and Kinzelbach, 2009; Schöniger et al., 2012; Crestani et al., 2013), (6) they 

are controlled by physical properties (e.g. permeability) that are characterized by a high degree 

of heterogeneity, possess scales of variation spanning several orders of magnitude, and are scale-

dependent (Hill and Tiedeman, 2006; Kerrou et al., 2008), (7) complex interactions exist 

between different inputs of a groundwater model, e.g. between hydraulic conductivity and 

dispersivity (Gelhar et al., 1992), (8) groundwater related observations are often sparse and 

incomplete as they include an inadequate set of points in space and time to fully characterize the 

groundwater system (Rajabi and Ataie-Ashtiani, 2016), and (9) groundwater related observations 

are commonly indirect and have scaling differences with model parameters, states and external 

forcing terms (Carrera et al., 2005; Liu and Gupta, 2007).

2.2. Uncertainty in Model-Data Interaction



  

MDI has proven to be promising in improving understanding, quantification, communication and 

reduction of uncertainty in both models and data (Freeze et al., 1992; Porter et al., 2000; Liu et 

al., 2012). In many cases, uncertainty analysis is embedded in the MDI process. Sources of 

uncertainty in groundwater modeling can be classified into the following four interconnected 

categories:

1. Structural uncertainty which arises from the fact that models are inherently simplified and 

imperfect approximations of complex real-world processes (Neuman, 2003). Structural 

uncertainty includes conceptual uncertainty (e.g. characterization of heterogeneity 

patterns, type of boundary conditions, time regime, etc.), and mathematical uncertainty 

(arising from alternatives in the mathematical implementation of conceptual models) 

(Bredehoeft, 2005; Ma and La Pointe, 2011).

2. Parameter uncertainty which results from the fact that groundwater model parameters are 

often aggregate quantities that should be estimated from sparse and sometimes indirect 

measurements or qualitative assessments across the heterogeneous geological domain 

(Yeh, 1986; Rajabi and Ataie-Ashtiani, 2014).

3. Data uncertainty which arises from instrument uncertainty due to imperfect measurement 

devices, and representativeness uncertainty due to inconsistency in spatial and/or 

temporal scales between the measured variables and the associated model variable (Liu 

and Gupta, 2007).

4. Extrapolation uncertainty which stems from the temporal prediction errors in the 

estimation of future external forcing terms from past data (Dessai and Hulme, 2007).

When the past state of the groundwater system is being simulated, structural, parameter and data 

uncertainties collectively propagate through the model and result in model uncertainty. 



  

Alternatively, when the future state is being predicted, all four sources of uncertainty affect 

predictive uncertainty (Liu and Gupta, 2007). Throughout this paper, we will refer to both as 

model output uncertainty. The above concepts are illustrated in Fig. 3.

There is some dispute regarding which source dominates model uncertainty in groundwater 

simulations. Some references suggest parameter uncertainty (e.g. Smith and Schwartz, 1981; 

Hendricks Franssen and Kinzelbach, 2009; Schöniger et al., 2012), and others suggest structural 

uncertainty (e.g. Bredehoeft, 2005; Højberg and Refsgaard, 2005; Refsgaard et al., 2012). This 

dispute is partly due to the different approaches employed in handling uncertainty. Nevertheless, 

there is a wide consensus that: (1) structural uncertainty is the most difficult to quantify 

(Refsgaard et al., 2006), (2) ideally all sources of uncertainty should be simultaneously addressed 

to avoid misleading uncertainty predictions (Pappenberger and Beven, 2006; Linde et al., 2017), 

(3) different uncertainty sources have distinct error characteristics and hence require different 

approaches to deal with (Rajabi and Ataie-Ashtiani, 2016), and (4) a challenging and important 

aspect of quantifying model output uncertainty is to account for the effect of interaction among 

different uncertainty sources (Liu et al., 2012).

A review of the literature shows that there are basically two approaches to handling different 

sources of uncertainty in groundwater MDI. In the first approach, different sources of uncertainty 

are explicitly lumped together and mapped into model parameters. Some have noted that this 

method can create bias in uncertainty estimation (Kerrou et al., 2008). The second approach is to 

address different sources of uncertainty separately, according to their specific characteristics. 

The most common way to do this is to characterize parameter, data and extrapolation 

uncertainties as continuous probability distributions (often normal, log-normal or uniform) 

(Rajabi et al., 2015b). Structural uncertainty is commonly described by discrete scenarios for the 



  

model structure, with probabilities assigned to the scenario’s existence (Refsgaard et al., 2012). 

This results in multi-model ensembles which are formed, for example, by defining different 

parameterizations of the aquifer system (e.g. Feyen et al., 2001). Since the selection of individual 

models in the ensemble is mostly based on expert insight rather than formal methods, this 

approach is quite subjective and the scenarios may not represent a complete sampling of the 

model space (Beven, 1993; Liu et al., 2012). Hence obtaining reliable uncertainty estimates 

becomes a matter of both chance and experience. Nonetheless, since no other commonly 

accepted approach exists, this remains the dominant approach.

2.3. Review of Synthesis Methods

In this sub-section we review and classify a number of key synthesis methods previously used in 

the groundwater literature for MDI. A map of these methods is provided in Fig. 1 to guide the 

interested reader through this sub-section. The review is meant to provide an overview of 

methods, and so the mathematical descriptions are kept to a minimum and references are 

provided for further reading.

2.3.1. Manual Insertion, Direct and Indirect Methods

In the simplest observation scenario, the model structure and values of all model parameters ,  (𝜃)

external forcing terms ( ) and initial states ( ) are measured or inferred from data. In other 𝑢𝑡 𝑌𝑡

words, adequate data is available to fully characterize the groundwater system, perform model 

simulations by manual insertion, and estimate the state variables at a later time  at all (𝑌𝑡 + 1)

points in the discretized domain of the problem (Kerrou et al., 2008). The resulting simulations 

can be augmented with forward uncertainty propagation analysis (UPA) to characterize the effect 



  

of measurement noise on the uncertainty in state estimations (e.g. Rajabi and Ataie-Ashtiani, 

2014; Rajabi et al., 2015a).

An alternative observation scenario is that data on some model parameters and external forcing 

terms is sparse, but the state  is known exhaustively at all nodes of the discretized domain at (𝑌)

times  and . In this scenario the unknown variables of the model can be estimated by the 𝑡 𝑡 + 1

direct approach of solving the inverse problem, formulated simply as ,  𝜃 = 𝑓 ‒ 1(𝑌𝑡,𝑢𝑡, 𝑌𝑡 + 1)

often neglecting the stochastic  term (Neuman, 1973). Only if the relationship between model  𝜔𝑡

inputs and state variables are assumed to be linear, can the solution be calculated by closed-form 

matrix expressions (Wang et al., 2009). Even so, a key challenge of the direct method is the ill-

posedness and the singularity of the matrices involved in the numerical formulation (Zhou et al., 

2014). Some researchers have tried to alleviate this problem by building overdetermined systems 

of equations (i.e. systems that have more equations than unknowns) (e.g. Ponzini and Lozej, 

1982).

These two scenarios (namely having adequate data to fully characterize either all model inputs or 

the state variables) are mostly relevant to hypothetical and laboratory scale problems and are 

rare, if not nonexistent, in real-world cases where data on various model inputs and state 

variables are typically sparse due to physical and financial limitations (Rajabi and Ataie-

Ashtiani, 2016). In the case of data scarcity, the indirect approach should be applied. There are 

two broad classes of indirect approaches in MDI: frequentist (also known as classical or non-

Bayesian) and Bayesian (or probabilistic). We will use this classification in the subsequent sub-

sections, although other classifications for indirect approaches also exist, which include batch vs. 

sequential methods (e.g. Wang et al, 2009) and optimization vs. sampling methods (e.g. Zhou et 

al., 2014).



  

2.3.2. Frequentist Approach

The frequentist approach assumes that model variables (e.g. parameters ) are possibly unknown  𝜃

but have deterministic values, and the only source of randomness is data uncertainty. Based on 

this assumption, the frequentist approach tries to construct a point estimate for each unknown 

variable, often along with its confidence interval that quantifies the accuracy of the estimation 

process (Bernardo and Smith, 2001). These estimated values are then used for deterministic state 

reconstruction or prediction. The frequentist approach assumes no prior distribution for the 

unknown variables, but many algorithms used in the frequentist approach allow for use of prior 

information to provide initial values and lower or upper bounds on the variations of the unknown 

parameters, or to penalize departures from prior estimates (Alcolea et al., 2006).

The most popular method in the framework of the frequentist approach, and historically the first 

widely successful inverse method in groundwater applications is maximum likelihood estimation 

(MLE) (Carrera and Neuman, 1986a). MLE it is not based on the linearity assumption, and does 

not depend on any approximation for the relationship between the state variables and the model 

inputs, and it can also incorporate many types of data. MLE estimates parameters  (or external 𝜃

forcing ) in such a way that the model response (i.e. state variable) fits the data DY in some  𝑢𝑡

optimal sense. In other words, the most likely parameter values are those that maximize the 

likelihood of observing the data:

Where refers to the input parameters  (or similarly ), called arguments, at which the 𝑎𝑟𝑔𝑚𝑎𝑥𝜃  𝜃  𝑢𝑡

function outputs are as large as possible, and  denotes likelihood. A common way to formulate 𝐿

the likelihood function can be expressed as follows (Zhou et al., 2014):

𝜃𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝐿(𝜃;𝐷𝑌) (3)



  

where  is the corresponding covariance of the observation errors and  is the number of 𝐶 ‒ 1
𝑖 𝑁𝑜𝑏𝑠

measurements. In order to facilitate statistical analysis, the measurement error is often assumed 

to be Gaussian in MLE (McLaughlin and Townley, 1996).

Least squares estimation (LSE) is a special case of MLE based on the assumption that errors in 

data are independent and normally distributed with constant (unknown) variance. Nonlinear LSE 

algorithms were first applied to distributed parameter groundwater problems when numerical 

models became widely available in the 1960s and 1970s. In LSE the sum of squared errors (L2 

norm) between the observed values and values predicted by the model are minimized. The 

ordinary least squares estimator is defined as:

Partly due to its simplicity and the ease of implementation, LSE is widely used for parameter 

estimation in groundwater modeling applications and has been employed in several highly 

popular inverse codes (see section 4). In weighted LSE, weighting factors are used to express the 

relative magnitude of values and confidence in data. A regularization or plausibility term can be 

included in the objective function above, in order to ensure stability of the optimization problem 

(Medina and Carrera, 1996). LSE is highly sensitive to outliers and hence some studies employ 

other frequentist objective functions such as absolute value of the difference between measured 

and computed values (L1 norm) (Woodbury et al., 1987), Nash-Sutcliffe index (e.g. Mugunthan 

et al., 2005) and Minkowski distance function (e.g. Zhou et al., 2012).

𝐿(𝜃;𝐷𝑌) ∝ 𝑒𝑥𝑝{ ‒
1
2

𝑁𝑜𝑏𝑠

∑
𝑖 = 1

(𝑓𝑖(𝑌𝑡 ‒ 1,𝑢𝑡,𝜃) ‒ 𝐷𝑌𝑖
)𝑇𝐶 ‒ 1

𝑖 (𝑓𝑖(𝑌𝑡 ‒ 1,𝑢𝑡,𝜃) ‒ 𝐷𝑌𝑖
)} (4)

𝜃𝐿𝐸𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 
𝑛

∑
𝑖 = 1

[𝐷𝑌𝑖 ‒ 𝑓𝑖(𝑌𝑡 ‒ 1,𝑢𝑡,𝜃)]2 (5)



  

MLE, LSE and other similar frequentist optimization problems fall in the field of calculus of 

variations and so they are sometimes referred to as variational methods (Rayner et al., 2016). 

Optimization algorithms used in the context of the frequentist approach include:

1. Local optimization methods which often quickly converge to the optimum if the search is 

started from a point in sufficient proximity of the optimum, but only guarantee local 

convergence as they do not have a mechanism to escape from local optima (Mugunthan 

et al., 2005). Local methods used in the context of groundwater MDI include: (1.1) 

Derivative-based (or gradient-based) methods such as the widely used Levenberg-

Marquardt (LM) algorithm and its modifications (e.g. Nowak and Cirpka, 2004) and the 

conjugate gradient method (e.g. Carrera and Neuman, 1986b), which are both highly 

efficient especially for low dimensional problems and have been widely incorporated in 

popular inverse codes. These methods can fail if the objective function is discontinuous 

(or their derivatives are discontinuous), non-smooth, multi-modal or ill-conditioned. (1.2) 

Derivative-free methods which are used when derivative information is unavailable, 

unreliable or impractical to obtain due to the above mentioned problems (Rios and 

Sahinidis, 2013). Examples of these methods are pattern search (Hooke and Jeeves, 1961) 

including generalized pattern search and mesh adaptive direct search (e.g. Zhou et al., 

2012; Haddad et al. 2013) and Nelder-Mead simplex algorithm (Nelder and Mead, 1965) 

(e.g. Lambot et al., 2002).

2. Global optimization methods which are more likely to find the global optima for the 

objective functions in comparison to local methods (Wang et al., 2009). Global methods 

can be further classified into: (2.1) deterministic (or exact) methods, such as multilevel 

coordinate search (Huyer and Neumaier, 1999) (e.g. Lambot et al., 2002, 2004), and 



  

branch-and-bound method (Huyer and Neumaier, 2008) (e.g. Sun et al., 2006), and (2.2) 

stochastic search algorithms which rely on probabilistic search rules to find good 

solutions and can locate the neighborhood of the global optima relatively fast, but their 

efficiency comes at the cost of computational effort and inability to guarantee global 

optimality. Stochastic optimization methods used in the context of groundwater MDI are 

mostly Meta-heuristic methods. Meta-heuristics are a group of both local and global 

optimization algorithms that are inspired by natural processes (Ketabchi and Ataie-

Ashtiani, 2015c). These include evolution as in genetic algorithm (Holland, 1975) (e.g. 

Samuel and Jha, 2003) and derandomized evolution strategies (Hansen and Ostermeier, 

2001) (e.g. Bayer and Finkel, 2004), social behavior of biological organisms as in ant 

colony optimization (Dorigo and Stützle, 2004) (e.g. Abbaspour et al., 2001), particle 

swarm optimization (Kennedy and Eberhart, 1995) (e.g. Haddad et al. 2013) and 

controlled cooling associated with a physical process as in simulated annealing (e.g. Tsai 

et al., 2003). Meta-heuristic algorithms can find acceptable solutions in a reasonable time 

in both complex and large search domains (e.g. Ketabchi and Ataie-Ashtiani, 2015c).

Local and global methods can be hybridized into efficient optimization methods. For example 

LM can be combined with a stochastic quasi-Monte Carlo algorithm to search for global optimal 

values (Peng et al., 2011).

2.3.3. Bayesian Approach

The Bayesian approach (also referred to as Bayesian Inference) has two key distinctions with the 

frequentist approach: first it formally considers model inputs and outputs as random variables 

and hence formulates the entire problem in a probabilistic framework (Fasbender et al., 2008), 

and second, it allows for formal consideration of prior information in the inference process 



  

(Wang et al., 2009). As discussed throughout the rest of the paper, these two key distinctions 

provide a convenient framework for uncertainty analysis, data fusion, regularization, data worth 

analysis and incorporation of soft data in groundwater applications. We shall first present the 

formulation of Bayesian inference as a parameter estimation problem, and then generalize it to 

other model components. We denote the prior distribution of the parameter set  with   𝜃  𝑃(𝜃)

which is prior beliefs on the parameter values before employing a specific dataset. We also 

represent the likelihood function that characterizes the likelihood of the observations set  𝐷𝑌

given a certain parameter set  by . The distribution of observation given  is tied to 𝜃  𝑃(𝐷𝑌│𝜃) 𝐷𝑌 𝜃

the measurement model. In Bayesian inference, the posterior distribution  is obtained 𝑃(𝜃│𝐷𝑌)

through the application of Bayes theorem (Gamerman and Lopes, 2006):

where  is the proportionality (or normalization) constant which characterizes the evidence 𝑃(𝐷𝑌)

or the marginal probability of the data, and can be computed from (Gamerman and Lopes, 2006):

The lack of prior information can be expressed by using a non-informative prior (Gelman et al., 

2013). In the case where there are multiple measurements (e.g. measurements at different times (

) denoted by ), the joint likelihood of all measurements is the product of 1, 2,…,𝑇  𝐷𝑌1:𝑇

distributions of individual measurements if the measurements are assumed to be conditionally 

independent. The resulting posterior distribution is (Box and Tiao, 2011):

𝑃(𝜃│𝐷𝑌) =
𝑃(𝐷𝑌│𝜃).𝑃(𝜃)

𝑃(𝐷𝑌)
(6)

𝑃(𝐷𝑌) = ∫𝑃(𝐷𝑌│𝜃).𝑃(𝜃)𝑑𝜃 (7)



  

where is the normalization constant given by:𝑍 

The predictive posterior distribution is the distribution of not yet observed state variables when 

all the information in the observed measurements and the model is used. The predictive posterior 

distribution can be estimated as follows (Box and Tiao, 2011):

The Bayesian posterior distribution can be reduced to point estimates through a host of methods 

which include choosing the mean or maximum of the posterior distribution. The latter approach 

is often called the maximum a posteriori (MAP) estimate (e.g. Kowalsky et al., 2004). MLE can 

be seen as a MAP estimate with uniform prior  on the parameter . In other words, the 𝑃(𝜃) ∝ 1  𝜃

Bayesian approach provides a formal way of including prior information and regularization 

terms into MLE (Särkkä, 2013).

The same notion can be applied to the estimation of all model components, based on the 

sequence of conditional dependence described as { } (dependent variables 𝑓→(𝜃 and 𝑢𝑡)→𝑌𝑡

appear at the end of the arrows) (Liu and Gupta, 2007):

𝑃(𝜃│𝐷𝑌1:𝑇
) =

1
𝑍𝑃(𝜃)

𝑇

∏
𝑘 = 1

𝑃(𝐷𝑌𝑘
│𝜃) (8)

𝑍 = ∫𝑃(𝜃)
𝑇

∏
𝑘 = 1

𝑃(𝐷𝑌𝑘
│𝜃)𝑑𝜃 (9)

𝑃(𝑌𝑇 + 𝑛│𝐷𝑌1:𝑇
) = ∫𝑃(𝑌𝑇 + 𝑛│𝜃).𝑃(𝜃│𝐷𝑌1:𝑇

)𝑑𝜃 (10)

𝑃(𝑓│𝐷𝑌) =
𝑃(𝐷𝑌│𝑓).𝑃(𝑓)

𝑃(𝐷𝑌)
(11-1)



  

2.3.3.1. Batch vs. Recursive Bayesian Inference

When various types of data obtained at different time steps are simultaneously taken into account 

as a single whole dataset, the resulting posterior distribution is denoted by batch Bayesian 

estimation. This type of solution to Bayesian inference is very common in groundwater 

applications (e.g. Hassan et al., 2009; Laloy et al., 2013; Rajabi and Ataie-Ashtiani, 2016). 

However, this full posterior formulation has the disadvantage that each time we obtain a new 

measurement, the full posterior distribution must be recomputed. This is particularly a problem 

in dynamic estimation where measurements are typically obtained one at a time and we would 

want to compute the best possible estimate after each measurement (Särkkä, 2013). So 

alternatively, if we treat the posterior distribution obtained from data for the previous time step 

as the prior for the current time step, the result is called recursive or sequential Bayesian 

estimation or Bayesian filtering. The recursive formulation of Bayesian estimation has several 

useful properties: (1) parameter estimates can be updated gradually as soon as new observations 

arrive, paving the way for online learning. This is particularly useful when the problem is 

sequential by nature (Wang et al., 2009) as in a groundwater plume with time-variable source or 

when data is collected gradually and it needs to be incorporated into model estimations without 

having to solve the problem from the start (El Gharamti et al., 2013; Zhou et al., 2014). (2) It 

𝑃(𝜃│𝐷𝑌,𝑓) =
𝑃(𝐷𝑌│𝑓,𝜃).𝑃(𝜃│𝑓)𝑃(𝑓)

𝑃(𝐷𝑌,𝑓) (11-2)

𝑃(𝑢𝑡│𝐷𝑌,𝑓,𝜃) =
𝑃(𝐷𝑌│𝑢𝑡,𝑓,𝜃).𝑃(𝑢𝑡│𝑓,𝜃).𝑃(𝜃│𝑓).𝑃(𝑓)

𝑃(𝐷𝑌,𝑓,𝜃) (11-3)

𝑃(𝑌𝑡│𝐷𝑌,𝑓, 𝜃, 𝑢𝑡) =
𝑃(𝐷𝑌│𝑌𝑡, 𝑓,𝜃,𝑢𝑡).𝑃(𝑌𝑡│𝑓,𝜃,𝑢𝑡).𝑃(𝑢𝑡│𝑓,𝜃).𝑃(𝜃│𝑓).𝑃(𝑓)

𝑃(𝐷𝑌,𝑓, 𝜃, 𝑢𝑡) (11-4)



  

allows for reducing the computational size of the problem when the problem is computationally 

expensive (Bruhwiler et al., 2005). (3) It allows for considering the temporal evolution of 

parameter values, i.e. parameters are assumed to be time-dependent stochastic processes (hence 𝜃

 instead of ) (Särkkä, 2013). (4) It does not require storage of all past information about the (𝑡)  𝜃

states and parameters (Moradkhani et al., 2005; El Gharamti et al., 2013).

2.3.3.2. Numerical Methods for Batch Bayesian Inference

In practical problems involving the estimation of parameters, external forcing terms or model 

states, exact analytical solutions for the continuous posterior distribution in batch Bayesian 

inference are available for very limited combinations of model forms and probability functions, 

such as the normal linear model (Qian et al., 2003; Khaleghi et al., 2013). This necessitates the 

use of numerical approximation techniques. Markov chain Monte Carlo (MCMC) methods (or 

samplers) are a general class of strategies that provide a powerful tool for numerical 

approximation of the posterior distribution in batch Bayesian inference. MCMC came into 

widespread use as a tool for Bayesian inference in science and engineering with the work of 

Tanner and Wong (1987) and Gelfand and Smith (1990). They were introduced into the 

groundwater literature by Oliver et al. (1997), and have been the dominant method for numerical 

approximation of batch Bayesian inference in groundwater modeling applications ever since. As 

the name suggests, MCMC methods employ Monte Carlo concepts in the framework of Markov 

chains. They attempt to generate Monte Carlo samples from the posterior distributions 

conditioned on the observations, by a special sequential process in which each new sample 

depends on the properties of the sample drawn immediately before it (and not the more early 

ones), thus creating a Markovian chain of samples. In MCMC, these samples can be drawn from 

a distribution even if all that is known about the distribution is how to estimate the probability 



  

density for the samples (Gamerman and Lopes, 2006; van Ravenzwaaij et al., 2016), which is a 

very beneficial aspect of MCMC as the posterior distributions are unknown at the onset of 

calculations. If the Markovian chain is sufficiently large (often on the order of 103 to 105 samples 

in previous groundwater applications e.g. Hassan et al., 2009; Laloy et al., 2013; Rajabi and 

Ataie-Ashtiani, 2016), it will eventually converge to the stationary, posterior distribution of the 

parameters (Andrieu et al., 2003). Estimation of the probability density for each sample 

constitutes a forward model simulation and hence when dealing with CPU-intensive groundwater 

numerical models, MCMC methods become extremely demanding in terms of the required 

computations (Hendricks Franssen and Kinzelbach, 2008).

The main difference amongst various MCMC methods is how sampling is implemented based on 

these general concepts. There are two central notions used for building samplers (Tierney and 

Mira, 1999): (1) dimension reduction by conditioning, which is the foundation of the Gibbs 

sampler (e.g. Michalak, 2008), and (2) proposal and rejection, which is the basis of the 

Metropolis-Hastings (e.g. Laloy et al., 2013) and similar algorithms such as adaptive Metropolis 

(AM) (e.g. Hassan et al., 2009; Wu et al., 2011) and delayed rejection adaptive Metropolis 

(DRAM) (e.g. Rajabi and Ataie-Ashtiani, 2016). These two notions have also been combined 

into what is called Metropolis-within-Gibbs samplers (e.g. Cui et al., 2013). Generally speaking, 

there is no universally optimal MCMC algorithm and the choice of an appropriate MCMC 

algorithm depends on the specific nature of the problem. Nevertheless, some researchers have 

proposed MCMC algorithms that seem to offer great potential for increasing the computational 

efficiency in comparison with more traditional MCMC algorithms. These novel MCMC 

algorithms often rely on increasing the acceptance rates of proposals (e.g. Vrugt et al., 2009), 



  

dimensionality reduction of the forward simulations (e.g. Laloy et al., 2013) or parallelization of 

MCMC computations (e.g. Laloy and Vrugt, 2012; Joseph and Guillaume, 2013).

An alternative to MCMC is importance sampling (IS) (e.g. Ng et al., 2009). IS is an algorithm 

for generating weighted samples (i.e. particles) from the posterior distribution. The main 

difference between IS and MCMC is that each of the particles in IS has an associated weight, 

which reflects its ability to match observations (Lu and Zhang, 2003; Särkkä, 2013). Similar to 

MCMC, IS does not rely on the implicit Gaussian and linearity assumptions. But IS can be 

inefficient if the unconditional probability density of the states is a weak approximation of the 

conditional density, and can especially become computationally infeasible when the state vector 

is high-dimensional and particles are computationally demanding (Daum and Huang, 2003).

2.3.3.3. Bayesian Filtering

The objective of Bayesian filtering is to estimate the time-varying state of the system (or 

parameters and external forcing terms as described in section 3) which is observed through 

sparse and noisy measurements (Chen, 2003). In Bayesian filtering, the marginal posterior 

distributions (or filtering distributions) of the state variables at time step  (i.e.  are computed 𝑘 𝑌𝑘)

using the history of measurements up to and including the time step . Bayesian filtering  𝑘

generally includes two stages: a prediction stage and an update stage. In the prediction stage, the 

distribution of the state  is computed based on measurements in previous time steps by 𝑌𝑘

(Doucet et al., 2001; Chen, 2003):

In the update stage, the new measurements  is used to update the distribution obtained in the 𝐷𝑌𝑘

prediction stage by applying Bayes rule:

𝑃(𝑌𝑘│𝐷𝑌1:𝑘 ‒ 1
) = ∫𝑃(𝑌𝑘│𝑌𝑘 ‒ 1)𝑃(𝑌𝑘 ‒ 1│𝐷𝑌1:𝑘 ‒ 1

)𝑑𝑌𝑘 ‒ 1 (12)



  

where  is the normalization constant, given by:𝑍𝑘

2.3.3.4. Closed-form Solutions for the Bayesian Filter

A few classes of filtering problems have closed-form solutions, with the Kalman filter (KF) 

(Kalman, 1960) being the most popular one. KF is based on a linear and Gaussian assumption for 

the state space models, described as follows (Eigbe et al., 1998):

Where  is the process noise,  is the measurement noise, and the 𝑞𝑘 ‒ 1~𝑁(0, 𝑄𝑘 ‒ 1) 𝑟𝑘~𝑁(0, 𝑅𝑘)

initial distribution is assumed to be .  is the transition matrix describing the 𝑌0~𝑁(𝑚0, 𝜓0) 𝛷𝑘 ‒ 1

forward model and  is the measurement model matrix. Starting from the initial distribution of 𝐻𝑘

the state, the prediction stage of the KF tries to estimate the mean and covariance of the state for 

the next time step by (Eigbe et al., 1998):

𝑃(𝑌𝑘│𝐷𝑌1:𝑘
) =

1
𝑍𝑘

𝑃(𝐷𝑌𝑘
│𝑌𝑘).𝑃(𝑌𝑘│𝐷𝑌1:𝑘 ‒ 1

) (13)

𝑍𝑘 = ∫𝑃(𝐷𝑌𝑘
│𝑌𝑘).𝑃(𝑌𝑘│𝐷𝑌1:𝑘 ‒ 1

)𝑑𝑌𝑘 (14)

𝑌𝑘 = 𝛷𝑘 ‒ 1𝑌𝑘 ‒ 1 + 𝑞𝑘 ‒ 1 (15-a)

𝐷𝑌𝑘 = 𝐻𝑘𝑌𝑘 + 𝑟𝑘 (15-b)

𝑚𝑘 = 𝛷𝑘 ‒ 1𝑚𝑘 ‒ 1 (16-a)

𝜓𝑘 = 𝛷𝑘 ‒ 1𝜓𝑘 ‒ 1𝛷 𝑇
𝑘 ‒ 1 + 𝑄𝑘 ‒ 1 (16-b)



  

The update stage subsequently revises these estimations by employing data for time step  ( ) 𝑘 𝐷𝑌𝑘

as follows (Eigbe et al., 1998):

where is the Kalman gain matrix (Wang et al., 2009). KF can be further simplified by 𝐿𝑘 

empirical forcing of the model fields toward the observed values which is called nudging (Lahoz 

et al., 2007).

The use of KF in groundwater MDI problems dates back to the 1970s (e.g. McLaughlin 1976), 

and it has been applied to a range of applications ever since. However, the popularity of the 

classic KF in groundwater literature is considerably less than the more general domain of 

hydrology, where KF is commonly applied to rainfall-runoff modeling, flood forecasting, rainfall 

prediction, etc. (see Liu et al., 2012). The reason is that KF, in its most basic form, has several 

key limitations which are particularly problematic in groundwater applications: (1) it is based on 

the linearity assumption whereas groundwater flow and solute transport models are nonlinear 

(Zhou et al., 2014), (2) it cannot break down the computations over space the way it does over 

time, and hence cannot account for the spatial physical and statistical relationships of 

groundwater systems (Porter et al., 2000), (3) there is often not enough information about error 

structures to fill the large matrixes of Eq. (17-b) with meaningful numbers (Reichle, 2008), and 

(4) it is computationally expensive for high-dimensional problems and is hence strongly 

restricted to small size problems (Hendricks Franssen and Kinzelbach, 2008).

𝑚𝑘 = 𝑚𝑘 + 𝐿𝑘(𝐷𝑌𝑘 ‒ 𝐻𝑘𝑚𝑘) (17-a)

𝜓𝑘 = 𝜓𝑘 ‒ 𝐿𝑘(𝐻𝑘𝜓𝑘𝐻𝑇
𝑘 + 𝑅𝑘)𝐿𝑇

𝑘 (17-b)



  

Variational Bayesian methods (VBMs), notably the sequential 4DVAR method and its batch 

counterparts 1DVAR and 3DVAR (where 1D and 3D refer to one or three spatial dimensions, 

the 4th dimension in 4DVAR is time (Reichle, 2008), and VAR stands for variational data 

assimilation), can be viewed as simplifications of the KF, as they do not propagate the state 

covariance matrix explicitly (Liu et al., 2012). VBMs have relatively low computational demand 

and are preferred for use with computationally expensive models and large-dimensional 

problems with poorly related nonlinear observations (Rawlins et al., 2007). However, VBMs do 

not provide an estimate of predictive uncertainty by themselves (Peng et al., 2011). VBMs have 

been used extensively in the numerical weather prediction community. One of the rather few 

applications in groundwater MDI is Kabir et al. (2017) which employs 3DVAR and 4DVAR for 

state estimation in a hypothetical test case. More applications of VBMs are expected in future 

groundwater studies.

2.3.3.5. Numerical Approximations for the Bayesian Filter

Due to the limiting nature of closed-form solutions and the intractability of the Bayesian filtering 

equations (Särkkä, 2013), several numerical approximation techniques have been proposed. The 

most popular of such techniques in the groundwater literature are briefly reviewed in the 

following paragraphs.

Extended Kalman filter (ExKF) (Gelb, 1974) is a numerical approximation method which forms 

a Taylor series expansion at the nominal (or MAP) solution to provide a linear approximation of 

the nonlinear and non-Gaussian state space models. ExKF has been applied to groundwater MDI 

problems by e.g. Leng and Yeh (2003) and Yeh and Huang (2005). ExKF has several major 

setbacks that affect its application to groundwater MDI: (1) the covariance approximation 

deteriorates with time, particularly when the Taylor series approximation is poor as in highly 



  

heterogeneous fields (Zhou et al., 2014), (2) it can be computationally very demanding due to the 

error covariance propagation (Evensen, 2003) especially for finely discretized groundwater 

models, and (3) it can lead to unstable results or even divergence when the nonlinearity in the 

system is strong (Miller et al., 1994; Moradkhani et al., 2005). Due to these setbacks, the ExKF 

has lost popularity in the groundwater literature.

Ensemble Kalman filter (EnKF) is another method which was first introduced by Evensen (1994) 

and later modified by Burgers et al. (1998), and is a Monte Carlo variant of the KF. In EnKF, the 

probability distribution of state ( ) is represented by ensemble of realizations . 𝑌𝑘  [𝑌1
𝑘, 𝑌2

𝑘,…,𝑌𝑁
𝑘]

This ensemble is built by sampling from the known distribution of  in the first step of 𝑌0

computations. Each of these realizations is then separately propagated through time in the 

subsequent steps by a two-stage prediction/update procedure. In each time step, the mean and 

covariance can be explicitly computed based on the realizations, noting that the prediction stage 

involves a model simulation for each realization in the ensemble. Observations are treated as 

random variables by generating an observation ensemble with a mean equal to the actual 

observation at each time and using a predefined covariance. The EnKF also represents the model 

errors by generating perturbations at each time step (Evensen, 2003, 2009).

The EnKF has a number of advantages which are particularly desirable in groundwater MDI 

problems: (1) it can handle modestly nonlinear state space models (Reichle et al, 2008), (2) it can 

be used to deal with high-dimensional problems (Peng et al., 2011), (3) it is flexible in its 

treatment of errors in model dynamics and parameters (Reichle, 2008), and (4) the necessary 

covariance between states at any given time step are estimated efficiently from a limited 

ensemble of stochastic realizations without requiring sensitivity analyses (Schöniger et al., 



  

2012). In general, the performance of EnKF is affected by the choice of the ensemble size and 

generation method, model characteristics and analysis scheme (Moradkhani et al., 2005).

Due to these advantages and its ease of implementation, model-independence, and robustness in 

solving different types of problems encountered in groundwater applications, the EnKF has 

become more popular than any other method in addressing problems of a sequential nature in the 

groundwater literature. Examples for the use of the EnKF in groundwater applications include 

Chen and Zhang (2006), Drécourt et al. (2006), Liu et al. (2008), Hendricks Franssen et al. 

(2011), El Gharamti et al. (2013), Erdal and Cirpka (2017) and Xu and Gómez-Hernández, 

(2018). However, the basic form of EnKF has the key disadvantage of being based on the 

Gaussian assumption and non-normally distributed state variables. Highly nonlinear dynamics 

can result in increasing underestimation of variance over time (called filter inbreeding) and filter 

divergence in the EnKF (Hendricks Franssen and Kinzelbach, 2009). A number of studies in the 

groundwater literature have tried to make EnKF applicable to non-Gaussian models. For 

example, Schöniger et al. (2012) proposed the use of nonlinear, monotonic transformations to the 

observed states, rendering them Gaussian. Xu and Gómez‐Hernández (2016b) employed the 

normal-score EnKF to jointly estimate non-Gaussian aquifer parameters by assimilating three 

kinds of state variables. Another important disadvantage of EnKF is that the size of the ensemble 

can be computationally prohibitive for CPU-intensive groundwater models, because hundreds of 

ensemble members are usually needed for reliable updating without filter inbreeding (Liu et al., 

2012).

The EnKF has a number of variants such as the ensemble square root Kalman filter (EnSRF) 

(Whitaker and Hamill, 2002), which uses the traditional Kalman gain for updating the ensemble 

mean, but uses a reduced Kalman gain to update deviations (Leisenring and Moradkhani, 2011). 



  

The use of EnSRF and other variants of the EnKF such as the adaptive ensemble Kalman filter 

and the hybrid adaptive ensemble Kalman filter in the groundwater literature is rare (as one of 

the few examples see Rajib et al., 2017).

Sequential Monte Carlo (SMC) methods (Gordon et al., 1993), also known as particle filters and 

bootstrap filters, are another group of numerical approximation techniques that represent the 

posterior distribution in recursive Bayesian inference as a set of Monte Carlo samples with 

associated weights, which are termed particles. The particles sample the state (and/or parameter 

and external forcing) space according to a given prior distribution. The particles are then 

propagated forward in time, with SMC performing updates on particle weights instead of state 

variables (Peng et al., 2011). This has the advantage of reducing numerical instability (Ristic et 

al., 2003). SMC is applicable to any state space model with any format and statistical 

distribution, whether linear or nonlinear, and Gaussian or non-Gaussian (Han and Li, 2008). This 

is a highly advantageous characteristic in certain groundwater problems, such as the inverse 

estimation of hydraulic conductivities for non-multi-Gaussian media. However, the basic form of 

SMC has two key undesirable characteristics: (1) SMC tends to assign very large weights to the 

few particles with strong data support, leading to severe reduction of the effective sample size 

and hence deterioration of the statistics, and (2) applying SMC to a high-dimensional state and 

parameter space requires a very large number of particles and hence a very large amount of CPU 

time (Snyder et al., 2008; Hendricks Franssen and Kinzelbach, 2009; Schöniger et al., 2012). 

Resampling techniques like sequential importance resampling can reduce these problems to 

some extent (Van Leeuwen, 2009; Leisenring and Moradkhani, 2011). SMC may outperform 

EnKF when the number of particles is sufficiently large ( ). But the often larger number of > 100

simulations required by SCM compared to EnKF (Liu et al., 2012) has limited its application to 



  

CPU-intensive real-world groundwater models. Example of SMC application in groundwater 

MDI problems includes Chang et al (2012) and Abbaszadeh et al. (2018). SMC is popular in 

some engineering fields such as tracking and signal processing (Djuric et al., 2003), and it has 

also been applied to many hydrologic problems (Zhou et al., 2006; Smith et al., 2008). SMC can 

be combined with MCMC (see Moradkhani et al., 2012) so that a desirable performance can be 

achieved with a small, manageable ensemble size.

Apart from the three families of methods described above, other techniques for numerical 

approximations of the Bayesian filter exist but are rarely applied to groundwater MDI. An 

example is the unscented Kalman filter (UnKF) (e.g. Chang and Sayemuzzaman, 2014), which 

presumes that the state space is unimodal, symmetric and unbound. Despite the more relaxed 

assumptions of the UnKF, it has received little attention in the groundwater literature to date, and 

so we expect more applications in the future.

2.3.3.6. Bayesian Smoothing

While Bayesian filters in their basic form only compute estimates of the current state of the 

system given the history of measurements, Bayesian smoothers can be used to reconstruct states 

that happened before the current time. Smoothing distributions computed by the Bayesian 

smoothers are the marginal distributions of the state  given a certain interval of measurements 𝑌𝑘

 ( ) in which  (Kitagawa, 1987):𝐷𝑌1:𝑘 𝑘 = 1, 2,…,𝑇  𝑇 > 𝑘

where  is the filtering distribution of the time step . The integration is replaced with 𝑃(𝑌𝑘│𝐷𝑌1;𝑘
) 𝑘

summation if some of the state components are discrete (Särkkä, 2013). Similar to Bayesian 

𝑃(𝑌𝑘│𝐷𝑌1;𝑇
) = 𝑃(𝑌𝑘│𝐷𝑌1;𝑘

)∫[𝑃(𝑌𝑘 + 1│𝑌𝑘) .𝑃(𝑌𝑘 + 1│𝐷𝑌1;𝑇
)

𝑃(𝑌𝑘 + 1│𝐷𝑌1;𝑘
) ]𝑑𝑌𝑘 + 1 (18)



  

filtering, there are both closed-form and numerical solutions for the Bayesian smoothing 

equation. Closed-form solutions include the Kalman smoother (KS) or the Rauch–Tung–Striebel 

smoother (RTSS) (Rauch et al., 1963) for linear Gaussian state space models. Numerical 

solutions include the extended Rauch–Tung–Striebel smoother (ExRTSS) (Cox, 1964; Sage and 

Melsa, 1971), which assumes Gaussian approximation to the smoothing distribution and the 

ensemble smoother (ES) (Van Leeuwen and Evensen, 1996). Among these, the most commonly 

used method in the groundwater literature is ES. Similar to EnKF, the ES employs an ensemble 

of realizations obtained through MCS, but it is based on one-in-all conditioning and can 

assimilate all the measurements at once, using a single analysis step rather than the stepwise 

conditioning of the EnKF. So the ES (and other Bayesian smoothers) are also classified as batch 

methods in some references. However note that employing the ES instead of the EnKF increases 

the nonlinearity of the parameter update step during data assimilation, and also the need for 

iterations of the algorithm (Chen and Oliver, 2013). Examples for the use of ES in the 

groundwater literature includes Bailey and Baù (2010, 2012), Chang et al. (2017) and White 

(2018).

3. Applications

Applications of MDI in groundwater literature can be classified into eight categories: parameter 

estimation and uncertainty quantification, state estimation and uncertainty quantification, state-

parameter estimation and uncertainty quantification, model selection and structural uncertainty 

analysis, guidance of data collection and data worth analysis, improving data coverage, 

customizing data resolution, and fusion of heterogeneous data. These applications are not 

mutually exclusive, and two or more applications may be intended simultaneously. In this 



  

section, we review these applications considering their objectives, basic theoretical concepts, 

types of algorithms used in each application, and significant trends in the groundwater literature.

3.1. Parameter Estimation and Uncertainty Quantification

Parameter estimation is referred to as parameter fitting (optimization, inference or tuning), model 

calibration or inverse modeling in the groundwater literature (Carrera et al., 2005 and 2010; 

Ataie-Ashtiani et al., 2013). Its objective is to employ available data (either directly related to the 

parameter of interest, or associated with state variables) to provide reasonable estimates of model 

parameters and external forcing terms over a past period, conditional on the specification of 

model structure, so that the model makes sufficiently accurate predictions of the true state of the 

system (Liu and Gupta, 2007). Parameter estimation often also includes approximation of 

associated uncertainties.

In both research and practical groundwater modeling studies, parameter estimation has long been 

the dominant method for model improvement by conditioning to data and is often considered a 

necessary step in groundwater modeling (Hill and Tiedeman, 2006). It is by far the most 

explicitly mentioned application of MDI in the groundwater literature. There are several reasons 

for this profound attention toward parameter estimation in the groundwater literature: first, no 

reliable prediction can be made without proper estimation of model parameters and external 

forcing terms (Zhou et al., 2014), and second, it is often much easier to condition parameter and 

external forcing values to data, as compared to model structure (Refsgaard et al., 2006 and 

2012).

Groundwater parameter estimation often involves the estimation of hydraulic conductivity (or 

related parameters such as permeability or transmissivity) and its spatial distribution (e.g. 

Hendricks Franssen and Kinzelbach, 2009; Hendricks Franssen, et al., 2009; Ataie‐Ashtiani et al. 



  

2013) as it highly affects model outputs for the prediction of both groundwater flow and 

transport of contaminants, and also because it may vary over many orders of magnitude in a 

relatively small volume of the media (McLaughlin and Townley, 1996). However, parameter 

estimation may also focus on other parameters and external forcing terms such as the recharge 

rate (Ng et al., 2009; Hendricks Franssen et al., 2004, 2008; Hendricks Franssen and Kinzelbach, 

2008), discharges, fluxes, leakage coefficients and piezometric heads on designated boundaries 

(e.g. Liu et al., 2009; Hendricks Franssen et al., 2011; Irsa and Zhang, 2012), pollutant source 

location and release histories (e.g. Sun et al. 2006; Hendricks Franssen et al., 2011), and 

dispersivity (e.g. Ataie-Ashtiani et al., 2013), or a combination of different parameters (e.g. Xu 

and Gómez-Hernández, 2016a, b, 2018). Amongst these, the estimation of recharge rate is of key 

interest in arid and semi-arid regions due to its more unpredictable nature in these areas 

(Hendricks Franssen et al., 2008).

Parameter estimation has been a topic of intensive research for the past decades and several 

notable review papers are available on the subject, including McLaughlin and Townley (1996), 

Carrera et al. (2005 and 2010), Vrugt et al. (2008) and Zhou et al (2014). As described in all 

these review papers, historically, the common approach for the estimation of groundwater model 

parameters until the end of the 1990s was trial-and-error, in which parameter values are 

manually changed until a reasonable match between model predictions and data is achieved. This 

approach is highly dependent on the subjective judgment of the modeler and by no means 

guarantees the optimal choice of parameter values (Ataie-Ashtiani et al., 2013). These key 

setbacks have resulted in increasing use of automated parameter estimation based on frequentist, 

nonlinear, batch methods. Despite the many advantages of using these methods instead of trial-

and-error parameter estimation, they have several limitations: (1) these methods employ 



  

objective functions that are based on collective measures of uncertainty and ignore the special 

characteristics of the individual components of uncertainty such as structural and data 

uncertainties (Liu et al., 2012; Zhou et al 2014), (2) pursuing a single optimal parameter set can 

create bias in model predictions (Hendricks Franssen et al., 2009), and (3) they do not have the 

ability to gradually reduce parameter (and hence prediction) uncertainty as new data become 

available (Liu and Gupta, 2007). In recognition of these limitations, there has been growing 

interest in the use of Monte Carlo-based Bayesian techniques for parameter estimation. 

Algorithms that have been of key interest include EnKF (e.g. Hendricks Franssen et al., 2011) 

and ES (e.g. Bailey and Baù, 2010, 2012). In Monte Carlo-based methods, likely realizations of 

the input parameters are conditioned to the available measurements with geostatistical techniques 

such as sequential Gaussian simulation (Gómez-Hernández and Journel, 1993) (if local 

measurements of the desired parameters are available) or co-located co-simulation (Almeida and 

Frykman, 1994; Hendricks Franssen et al., 2008).

The estimation of heterogeneous fields of hydraulic conductivity and other similar parameters 

(e.g. transmissivity, storage coefficient and recharge rate) from sparse data is commonly a highly 

underdetermined problem and is prone to ill-posedness, non-uniqueness and instability. To 

alleviate these problems, the estimation of such parameter fields is often done by employing a 

parameterization technique that limits the number of unknown variables and provides the 

modeler with only enough heterogeneity required to simulate observations of past system 

behavior (Sepúlveda and Doherty, 2015). These include non-geostatistical methods such as the 

classical zonation method (Carrera and Neuman, 1986a, b), and geostatistics-based methods such 

as the pilot points method (de Marsily, 1978), regularized pilot points method (Alcolea et al., 

2006), sequential self-calibration (Gómez-Hernánez et al., 1997; Hendricks Franssen et al., 



  

1999), and ridge function (Mantoglou, 2003). Geostatistical methods may turn the parameter 

estimation problem into the estimation of the geostatistical variables of the unknown parameters 

(e.g. range, nugget, sill, etc.). Using these techniques always results in loss of detail and may 

produce overly smoothed parameter fields (Moore and Doherty, 2006). Hence much work is still 

being done by the groundwater research community to develop new methods.

3.2. State Estimation and Uncertainty Quantification

State estimation involves characterization of the past (retrospective), present or future (forecast) 

state of the groundwater system and their uncertainties, by combining state information from 

both the model and available data (Liu and Gupta, 2007; Liu et al., 2012). This may include, for 

example, reconstructing spatial flow and contaminant plume fields. State estimation which is 

also commonly referred to as data assimilation, is typically based on specification of the model 

structure and parameters in advance, and the estimations are solely applied to the state variables. 

Hence state estimations are conditional on the specific model structure(s) and parameter values 

(Moradkhani et al., 2005; Schöniger et al., 2012).

In the groundwater literature, state estimation is often formulated as a filtering or smoothing 

problem and is commonly interrelated with three other application of MDI: improving data 

coverage, customizing data resolution and data fusion. The commonly applied methodologies for 

solving the problem via filtering in recent groundwater literature is the EnKF and SMC methods 

(e.g. Bailey and Baù, 2012). Dual state-state estimation is a term used for the concurrent 

estimation of groundwater flow and contaminant states (El Gharamti et al., 2013).

3.3. Simultaneous State-Parameter Estimation and Uncertainty Quantification

There are basically two formulations for the simultaneous estimation of states and parameters in 

the groundwater literature: (1) the joint (or state augmentation) approach, and (2) the dual 



  

estimation approach. The standard joint approach simultaneously estimates state and parameters 

as a single augmented vector (e.g. Chen and Zhang 2006; Hendricks Franssen and Kinzelbach 

2008, 2009; Liu et al. 2008; Hendricks Franssen et al., 2011). The joint approach is very 

susceptible to instability and intractability as a result of increase in the number of unknown 

variables, especially in highly nonlinear systems (Moradkhani et al., 2005). The alternative dual 

formulation is based on two interactive parallel filters: a filter for the parameters and another for 

the states, with the parameters undergoing an artificial evolution (i.e. random walk) while 

waiting to be updated indirectly by the state variables data (e.g. El Gharamti et al., 2013). An 

example of dual estimation is the dual extended Kalman filter (dual-ExKF) (Thiemann et al., 

2001).

3.4. Model Selection and Structural Uncertainty Analysis

Model selection, also known as model discrimination or identification, is a key part of multi-

model approaches for the consideration of structural uncertainty (Höge et al., 2018). It involves 

using data to choose amongst various independent plausible alternative model structures 

(including governing equations, heterogeneity patterns, type of boundary conditions etc.) that 

best describe the relationship between model inputs and outputs (Refsgaard et al., 2006; Gupta et 

al., 2012). Model selection may also include assigning probabilities to the chosen model 

structures based on their ability to reproduce the available data and then combining predictions 

made by the chosen model structures to form a reliable description of the total prediction 

uncertainty. MDI for model selection and structural uncertainty analysis in the groundwater 

literature is mostly performed using one of the following Bayesian methods: generalized 

likelihood uncertainty estimation (GLUE) (Beven and Binley, 1992), Bayesian model averaging 

(BMA) (Draper et al., 1995) and maximum likelihood Bayesian model averaging (MLBMA) 



  

(Neuman, 2003) or a hybridization of at least two of them (e.g. Rojas et al., 2010a). These 

methods and some of their applications are briefly reviewed in the following sub-sections.

3.4.1. Generalized Likelihood Uncertainty Estimation

GLUE is a conditional MCS technique that involves sequential implementation of the following 

steps: (1) defining alternative candidate model structures, (2) assigning appropriate prior 

parameter uncertainty distributions for each model structure, (3) performing MCS based on 

samples drawn from the parameter distributions of each candidate, (4) using a likelihood 

measure such as the Gaussian (Romanowicz et al., 1994), efficiency (Freer et al., 1996) and 

fuzzy type (Jensen, 2003) measures, to assess the resemblance of each simulation output with 

data on systems states, (5) selecting candidates with likelihoods above a specified threshold as 

“behavioral” models and setting the other candidates aside, (6) calculating weights for each 

behavioral model by normalizing the corresponding likelihood values in a way that all the 

weights sum up to one, and (7) estimating the likelihood-weighted probability distribution of 

model outputs (Beven and Freer, 2001; Liu and Gupta, 2007). In GLUE the likelihoods can be 

updated sequentially as new data becomes available. GLUE allows for the explicit assessment of 

model structure and parameter uncertainties, but does not account for data uncertainty. 

Applications of GLUE in groundwater MDI are numerous, with the majority of applications 

focusing on the uncertainty in geological structures and hydraulic conductivity patterns and to a 

lesser extent on recharge patterns, assuming that other components of the model structure (e.g. 

governing equations) are without uncertainty (e.g. Feyen et al., 2001; Morse et al., 2003; Hassan 

et al., 2008). This is also the case for the other two methods discussed in this sub-section (BMA 

and MLBMA). The GLUE methodology has been criticized for not having a likelihood function 

that is consistent with probability theory, and instead relying on less formal likelihoods that are 



  

defined by the user without satisfying Bayes theorem, resulting in a loss of consistency in 

learning (Mantovan and Todini, 2006; Montanari et al., 2009).

3.4.2. Bayesian Model Averaging

BMA is a more formal Bayesian approach for combining predictions made by multiple model 

structures. The BMA predictive distribution of an output of interest  given data , is estimated  𝑌  𝐷

by (Hoeting et al., 1999):

where  is the number of alternative model structures. In BMA the predictive distribution of  𝑛𝑚 𝑌

is an average of its prediction distributions for each alternative model structure ( ) 𝑃(𝑌│𝐷,𝑓)

weighted by its posterior model probability ( ). BMA can be used to differentiate 𝑃(𝑓│𝐷)

between prediction uncertainties arising from individual models; and is able to identify 

unfavorable models for model selection. Examples for the use of BMA for MDI in the 

groundwater literature include Tsai and Li (2008), Li and Tsai (2009), Ye et al. (2010) and Tsai 

(2010). BMA is computationally very demanding especially when applied to CPU-intensive 

groundwater models.

3.4.3. Maximum Likelihood Bayesian Model Averaging

MLBMA was developed in an attempt to make BMA computationally feasible (Neuman, 2003). 

It is in fact an approximation to BMA that relies on producing maximum likelihood parameter 

estimations and then expanding around these values by MCS. MLBMA subsequently 

approximates the posterior model probabilities using, e.g. the Kashyap information criterion 

(Kashyap, 1982) or the Bayesian information criterion (BIC) (Schwarz, 1978). MLBMA is 

𝑃(𝑌│𝐷) =
𝑛𝑚

∑
𝑖 = 1

𝑃(𝑌│𝐷,𝑓)𝑃(𝑓│𝐷) (19)



  

capable of dealing with lack of prior information on model parameters (Ye et al., 2005). 

Examples of groundwater studies using MLBMA for MDI include Neuman (2003), Ye et al. 

(2004 and 2005), and Lu et al. (2015). Despite the computational convenience, several 

shortcomings have been mentioned for MLBMA in the literature. These include: (1) it relies on 

the calibration of parameters for each alternative model structure hence creating the risk of 

biased parameter estimates that tend to compensate for errors in the model structure (Rojas et al., 

2010b), and (2) prediction of state variables not included in the data used for calibration may 

become biased and may underestimate the effects of model structural uncertainty (Refsgaard et 

al., 2006; Troldborg et al., 2007).

3.5. Guidance of Data Collection and Data worth Analysis

Groundwater data collection campaigns are costly and almost always prone to logistical and 

financial constraints. This implies the need to develop vigorous methodologies for the optimal 

collection of data. Besides (or complementary) to the informal or subjective methods guided by 

professional experience and judgment, and the formal or objective methods based on pure 

geostatistics (e.g. kriging frameworks); simulation-based methods can play a key role in the 

guidance of data collection in groundwater studies. In this regard, models help in the 

identification of the most informative data to collect with respect to a specific objective. This 

process is referred to as experimental design, value-of-information or data worth analyses 

(DWA). Simulation-based DWA has been used in the literature for the identification of the 

optimal number (e.g. Norberg and Rosén, 2006) and location of observation wells (e.g. Siade et 

al., 2017), frequency of sampling (e.g. Kollat et al., 2011), tracer test design including choice of 

the injection rate, duration of test, and type of tracer (e.g. Wallis et al., 2014), choosing between 

different types of data (e.g. choosing between conductivity, piezometric heads and travel times 



  

data as in Fu and Gómez-Hernández, 2009; or between concentration and temperature data as in 

Dausman et al., 2010). In the latter case, the worth of different types of data with different 

measurement accuracies can be analyzed by using simulation-based Pareto methodology (see 

Brunner et al., 2012).

Simulation-based DWA can be carried out in at least two contexts: (1) it can be used to compare 

alternative future data collection schemes at a given stage in a phased survey, and (2) it can be 

used to decide when to stop or limit a staged data collection program to reduce data redundancy 

(i.e. observations having similar information content) (Freeze et al., 1992; Khader and McKee, 

2014). In both of these contexts, a precondition for the use of model-based DWA is that some 

minimal groundwater exploration that allows for the development of a justifiable model has 

taken place (Kikuchi, 2017).

Simulation-based DWA is essentially built on a strategy to quantify the worth of measurements. 

The most common strategy is to compute a measurement’s ability to reduce the uncertainty or 

error variance of key model predictions (e.g. heads, contaminant concentrations or travel times, 

magnitude of plume spreading, etc.) which affect management decisions (e.g. Freeze et al., 1992; 

Cirpka et al., 2004; Dausman et al., 2010; Wallis et al., 2014; Kikuchi et al., 2015; Wöhling et 

al., 2016; Siade et al., 2017). In context (1) above, this is often done in the following two steps 

which are built upon Bayesian statistics and are referred to as Bayesian DWA or Bayesian 

experimental design. In the first step, a prior analysis is performed where the uncertainty in key 

model predictions is quantified on the basis of currently available data. In the second step which 

is called pre-posterior analysis, the uncertainty in key model predictions is re-calculated by 

assuming that new measurements are carried out in a specific timeframe on a set of locations in 

the proposed data collection program. Obviously, the values that are actually going to be 



  

measured at the proposed locations are unknown. But what is known is that measurement will 

reduce the uncertainty at the proposed points to zero (or to some measurement uncertainty) for 

the intended parameters or state variables. This is sufficient to allow for the calculation of the 

uncertainty reduction resulting from the proposed measurements with respect to the uncertainties 

calculated in the prior analysis. Hence in the pre-posterior analysis, the magnitude of predictive 

uncertainties are considered in a relative rather than absolute sense. Some references refer to this 

procedure as a form of sensitivity analysis (Finsterle, 2015). The pre-posterior probabilities are 

often calculated through linear uncertainty analysis (e.g. Dausman et al., 2010), numerous 

variants of MCMC (e.g. Fu and Gómez-Hernández, 2009), null-space Monte Carlo (NSMC) (e.g. 

Siade et al., 2017) or EnKF (e.g. Kollat et al., 2011). Repeating pre-posterior analysis for various 

data collection alternatives in the framework of optimization (e.g. by GA as in Wöhling et al., 

2016) or scenario analysis (e.g. Fu and Gómez-Hernández, 2009) allows for the selection of the 

optimal design.

In the context (2) above, a prior analysis is performed based on data collected in some initial 

stages of the data collection program (initial dataset). Then pre-posterior analysis is replaced by 

posterior analysis in which uncertainty in key model predictions is calculated based upon 

augmenting different subsets of data collected in the subsequent stages (with known 

measurement values) to the initial dataset. By comparing the outcome of posterior analysis for 

different subsets of data, one can choose to stop parts of the measurement program that result in 

the least impact on reducing model prediction uncertainties. Note that prior, pre-posterior and 

posterior analysis all require propagation of uncertainty from model parameters and observation 

data to model forecasts (Leaf, 2017).



  

Some studies go a step further and characterize the worth of data by quantifying the benefits of 

reducing model prediction uncertainty in terms of risk reduction or monetary costs of economic 

regret resulting from making wrong decisions in the context of remedial or aquifer exploitation 

decision making (e.g. Feyen and Gorelick, 2005; Norberg and Rosén, 2006; Neuman et al., 

2012). A common formulation for this notion is to maximize some form of the following 

objective function ( ):𝜍

where  is the benefit (e.g. profit from water sales, etc.),  is the investment cost (including the 𝐵 𝐶𝑖

cost of measurements),  is the risk aversion factor,  is the probability of failure (e.g. failing to 𝛾 𝑃𝑓

abide by a regulation/policy, etc.), and   is the cost of failure (e.g. fines, waste of groundwater 𝐶𝑓

resources, etc.). This strategy has two key interconnected advantages: first, it is based on a more 

direct assessment of cost-effectiveness, and second, communicating the results with stakeholders 

often becomes easier. The downside to such an approach is that it requires a quantitative 

definition of the cost of being wrong due to lack of data, which may not always be known or 

easy to quantify.

In simulation-based methods, DWA may also be quantified based on a measurements ability to 

improve the estimation of unmeasurable (or hard to measure) parameters. This can be done by 

assessing the sensitivity of potential measurements (i.e. states) to model parameters through 

model sensitivity analysis (e.g. Ataie-Ashtiani et al., 2013). An alternative approach is to analyze 

the measurements ability to reduce parameter estimation uncertainty in a Bayesian framework. In 

the latter case, the objective function is usually derived from the covariance matrix of the 

parameters based on A-optimality (minimizing the trace of the covariance matrix, e.g. Hsu and 

𝜍 = 𝐵 ‒ 𝐶𝑖 ‒ 𝛾𝑃𝑓𝐶𝑓 (20)



  

Yeh, 1989), D-optimality (minimizing the determinant of the covariance matrix, e.g. Catania and 

Paladino, 2009; Siade et al., 2017), E-optimality (minimizing the eigenvalue of the covariance 

matrix, e.g. Nordqvist, 2000), or expected Shannon information gain (i.e. relative entropy, e.g. 

Zhang et al., 2016). See Nowak (2010) for a review of these criteria.

Traditionally, DWA studies have relied on a single conceptual/mathematical model of the 

groundwater system, making the predictions prone to statistical bias and underestimation of 

uncertainty (Xue et al., 2014). A more recent approach in the literature is to perform predictions 

by means of multiple models and then characterize data worth as the contribution of a set of 

measurements to: (1) the resulting multi-model prediction uncertainty, or (2) model 

selection/discrimination among a set of viable alternative models. This is often done within a 

BMA (e.g. Pham and Tsai, 2016) or MLBMA (e.g. Neuman et al., 2012; Xue et al., 2014) 

framework. In case (1) data worth can be defined, for example, as the difference between the 

trace of the posterior covariance with and without a set of real measurements (in posterior 

analysis) or randomly chosen estimates of potential measurements (in pre-posterior analysis) 

(Neuman et al, 2012; Xue et al., 2014). In (2) the worth of data can be assessed, for example, 

based on the number of conceptualizations retained in the ensemble after a specific subset of data 

is considered.

3.6. Improving Data Coverage

In groundwater studies models can be used to interpolate and extrapolate data to provide spatial 

and temporal coverage of the desired domain. A classic example is the use of groundwater 

models for the creation of water table or concentration contour maps from sparse and irregularly 

distributed field measurements. Although the use of classic geostatistical interpolation methods 

such as inverse distance weighting and kriging variants are common for this purpose, these 



  

methods are known to be vulnerable to outliers, may contradict obvious characteristics of the 

groundwater system and often fail to represent complex variations between relatively distant 

measurement points (Fasbender et al., 2008; Buchanan and Triantafilis, 2009). These 

shortcomings can be alleviated through the use of models, because the physical constraints 

imposed by models offer additional valuable information in the development of contour maps. 

The methodology is straightforward: the model is calibrated using the sparse field measurements 

of water table and/or concentration, then the current state of the groundwater system is 

reconstructed by the model and the results are used to generate the contour maps. Data 

generalization can also be performed by solving Bayesian filtering or smoothing state estimation 

problems. Use of models in such Bayesian frameworks allows for the incorporation of auxiliary 

data and geostatistics in the data generalization process (for example, see Peeters et al., 2010). 

Despite these advantages, models are rarely developed for the single purpose of creating a 

groundwater contour map for two main reasons: first, the time and effort needed to create and 

calibrate the model compared to the use of pure geostatistics are considerably higher, and 

second, commonly a mismatch remains between observed and simulated values in the 

measurement points.

3.7. Customizing Data Resolution

Models can be used to upscale (or similarly downscale) data. Upscaling refers to the 

transformation of data collected at a fine scale onto a coarser scale. A typical example in 

groundwater studies is the upscaling of hydraulic conductivity data, also referred to as the 

estimation of effective, equivalent, interpreted, homogenized or block hydraulic conductivity 

(Sanchez‐Vila et al., 2006). Another parameter commonly upscaled in groundwater studies is 

dispersivity (de Barros and Dentz, 2016). The basic notion behind model-based data upscaling in 



  

groundwater studies is that quantities such as flows and hydraulic head gradients computed by a 

model at a coarse scale block should match the corresponding average values of these quantities 

modeled at the fine scale blocks that form the course block and pertain to the scale of data 

acquisition. In other words, the upscaled quantity is chosen so that the upscaled blocks can 

reproduce the behavior of the heterogeneous medium through modeling. The advantage of this 

model-based method in comparison to pure geostatistics is that it is not limited to a specific 

spatial distribution pattern, degree of variability or aquifer geometry. A pioneering study in this 

regard is Gómez-Hernández (1991), followed by studies such as Zhou et al. (2010), who 

extended the methodology of Gómez-Hernández (1991) to three dimensions, Li et al. (2012) 

which coupled this upscaling method with inverse modeling through the EnKF, 

Fernàndez‐Garcia et al. (2009) and Li et al. (2011) who applied transport models to upscaling, 

and Godoy et al. (2018) which employed the Laplacian-with-skin method for upscaling of 

hydraulic conductivity.

3.8. Fusion of Heterogeneous Data

Hydrogeological site investigations involve the collection of an array of different types of data 

which should be combined to form a unified picture of the aquifer. For several reasons, 

hydrogeological data fusion is often a difficult task: (1) various types of data may relate to 

different aspects of the system and hence do not share the same nature. These inherently different 

forms of data cannot be readily related to each other. A typical example of this notion is pollutant 

concentration and hydraulic conductivity data. (2) Even data of the same nature generally do not 

share the same quality and may have dissimilar spatial and temporal scales and degrees of 

uncertainty and imperfection. For example in many site investigations, data from traditional 

characterization and monitoring methods (such as core analyses and hydraulic tests) are 



  

supplemented with coverage of greater density from indirect geophysical surveys, and soft data 

based on expert knowledge and field questionnaires. The degree of uncertainty associated with 

each of these types of data is very different from the other. This is known as data heterogeneity 

(Khaleghi et al., 2013). (3) There is the typical problem of handling inconsistency and conflict in 

temporally or spatially overlapping data.

For decades, hydrogeologists have relied on a combination of expert knowledge and 

geostatistical methods for formal data fusion. But most existing geostatistical methods (such as 

classical kriging and cokriging) are limited in their ability to simultaneously account for large 

numbers of information sources (Porter et al., 2000; Fasbender, 2008) and hence research on the 

improvement of geostatistical data fusion methods is ongoing (e.g. Hosseini and Kerachian, 

2017). Model-based data fusion (also called data fusion modeling in the groundwater literature, 

e.g. Porter et al., 2000) is a very powerful tool for solving the problems associated with data 

fusion in hydrogeology. Models provide prior knowledge of the physical relationships between 

dissimilar datasets, and data fusion algorithms use these relationships to extract integrated 

information from the measured data. We classify previous work on model-based data fusion in 

the groundwater literature into three categories, which are described in the following sub-

sections.

3.8.1 Fusion of Different Types of Direct Measurements

This is the most common form of data fusion in groundwater studies, partly because traditional 

frequentist parameter estimation methods implemented in codes such as PEST, MODFLOWP, 

UCODE, iTHOUGH2, etc., embody this form of data fusion. These frequentist methods use 

direct measurements of model parameters (e.g. hydraulic conductivity, porosity, dispersivity, 

etc.) to provide initial estimates and bounds for each of these parameters, and then 



  

simultaneously employ different forms of data related to direct measurements of model state 

variables (e.g. head, concentration, travel time, etc.) to update these initial estimates. Hence, both 

the resulting parameter estimates and model predictions are based on the integration of different 

forms of data. But as previously discussed, these methods do not provide a proper estimation of 

uncertainties. The use of Bayesian fusion techniques alleviates this problem. In Bayesian fusion, 

data on model parameters is employed to build prior estimates for these parameters in the form 

of probability distributions, and the data on state variables are used to update these priors and 

obtain the posterior probability distributions of model parameters. Bayesian fusion has been 

implemented through MCMC algorithms for the fusion of non-sequential data (e.g. Hassan et al., 

2009; Laloy et al., 2013) and variants of the KF have been employed for the fusion of sequential 

data (e.g. Porter et al., 2000; Bailey and Baù, 2012) in the groundwater literature.

3.8.2. Fusion of Direct and Indirect Measurements

Direct point measurements of hydrogeologic data are commonly limited because their 

acquisition is expensive, time-consuming and invasive (Rajabi and Ataie-Ashtiani, 2016). 

Several types of indirect measurement data can be used to alleviate this problem. Two of the 

most commonly used are geophysical data and remote sensing (RS) data. It is well known that 

the use of geophysical data (such as ground-penetrating radar data, electrical resistance 

tomography data, etc.), in conjunction with direct measurement of hydrogeologic variables, can 

substantially improve characterization of subsurface variability (Kowalsky et al., 2005 and 2006; 

Yeh et al., 2007). However, geophysical methods provide data on geophysical properties in the 

subsurface that are nonlinearly related to the variables of interest, and the standard relationships 

commonly used to infer these variables from geophysical data may induce artifacts that cannot 

be interpreted from a hydraulic viewpoint (Camporese et al., 2011). Groundwater models can be 



  

used to solve this problem through for example, coupled hydrogeophysical inversion where the 

hydraulic and geophysical equations are considered as a coupled system (Pollock and Cirpka, 

2012). A common approach for fusing geophysical data with direct measurements of 

hydrogeologic variables in this context is to employ geophysical data as part of the measurement 

model as follows (Kowalsky et al., 2004):

Where  is an augmented vector of all observational data,  is the measurement model that 𝐷𝑎𝑢𝑔 ℎ𝑡𝐻

maps  to the hydrological measurements ( ),  is the measurement model that maps (𝑌𝑡,𝑢𝑡,𝜃) 𝐷𝐻 ℎ𝑡𝐺𝑃

 to the geophysical data ( ), and and  are the observation stochastic error (𝑌𝑡,𝑢𝑡,𝜃) 𝐷𝐺𝑃 𝜂𝑡𝐻 𝜂𝑡𝐺𝑃

vectors for the hydrological and geophysical data respectively.

RS data, usually combined with geographic information systems, can also be a potentially useful 

source of information for groundwater modeling. This is especially true in regional-scale 

modeling in areas where other forms of data are scarce. Current air and satellite-based RS 

technologies can penetrate the ground for only a few centimeters, but this is enough to provide 

data for the inference of surface forcing and some geologic properties, making RS a potentially 

valuable source of information in the study of shallow groundwater (Becker, 2006). RS data is 

often supplemented with ground control measurements in order to scale RS data to the variable 

of interest or to estimate the error statistics (i.e. uncertainty) of the RS data (Hendricks Franssen 

et al., 2008). Examples for the use of RS data in groundwater MDI include:

𝐷𝑎𝑢𝑔 = [ 𝐷𝐻
𝐷𝐺𝑃] = [ ℎ𝑡𝐻(𝑌𝑡,𝑢𝑡,𝜃)

ℎ𝑡𝐺𝑃(𝑌𝑡,𝑢𝑡,𝜃)] + [ 𝜂𝑡𝐻
𝜂𝑡𝐺𝑃] (21)



  

 Estimates of values and spatial patterns of groundwater model recharge rates from 

satellite images pertaining to precipitation, actual evapotranspiration, etc. (e.g. Brunner et 

al., 2004; Hendricks Franssen et al., 2008),

 Use of RS based digital elevation models (DEMs) to constrain groundwater flow model 

outputs and avoid erroneous artesian piezometric head values (Hendricks Franssen et al., 

2008),

 Employing geologic maps derived from RS data for groundwater prospecting, e.g. 

providing information about hydraulic conductivities, water reserves of water bearing 

formations and identification of faults and fracturing for groundwater modeling (Waters 

et al. 1990),

 Using RS imagery to identify and characterize boundary conditions for groundwater 

models. This may include identification of streams, lakes, wetlands, seepage areas, 

recharge and evapotranspiration zones, or dynamic monitoring of stream headwater 

(Becker, 2006).

3.8.3. Fusion of Field Measurements and Expert Knowledge

Expert knowledge has long been identified as a key source of information for groundwater 

modeling because experts have the ability to interpret complex and ambiguous evidence based 

on their broader experiences (O’Hagan, 2012). This has made the fusion of soft data pertaining 

to expert knowledge and hard data obtained from field measurements, an important topic in 

groundwater studies. The informal use of expert knowledge in groundwater model 

conceptualization and parameter estimation is highly common. Formal mechanisms in this 

context are mostly based on the Bayesian approach (Krueger et al., 2012). In the Bayesian 

approach, the subjective belief of an individual expert or the inter-subjective belief of several 



  

experts about the value of parameters or plausibility of alternative model structures can be 

represented by prior probability distributions through expert elicitation techniques (Beer et al., 

2013; Rinderknecht et al., 2014). These priors are then updated based on hard field measurement 

data. This approach has been used in many previous groundwater studies for parameter 

estimation or model selection and structural uncertainty analysis (e.g. Hassan et al., 2009). 

However, this approach has been criticized for a number of reasons, including: (1) it neglects the 

imprecision essentially embedded in expert provided soft data which may lead to biased result 

(Lele and Allen, 2006; Stein et al., 2013), (2) expressing expert knowledge in the form of 

probability distributions is often very difficult (Ross et al., 2009), and (3) it is bound to the 

incorporation of expert knowledge regarding model parameters and structures, and does not 

provide the means to include expert knowledge on other aspects of groundwater models such as 

state variables. To solve these problems, Rajabi and Ataie-Ashtiani (2016) proposed the use of 

fuzzy Bayesian inference based on MCMC, for incorporating expert knowledge in parameter 

estimation. Their method uses the power of fuzzy logic to provide a convenient framework for 

the representation of expert provided information regarding the various inputs to the Bayesian 

inference algorithm. Furthermore, it allows one to distinguishably model both uncertainty and 

imprecision in the fusion process.

4. Software and Codes

The MDI algorithms described in section 2 commonly involve large computational effort and 

hence their implementation inevitably requires computer programming. While many MDI efforts 

in the groundwater literature rely on codes that are developed for the specific problems at hand 

and are not made available to the public, some researchers/institutions have focused their efforts 

on developing generic codes for this purpose. These efforts have resulted in the development of 



  

several MDI software since the 1990s, some of which are reviewed in Table 2. These software 

have essentially transformed the way MDI is conducted in groundwater studies, by paving the 

way for a mainstream change from trial-and-error techniques to automated MDI procedures.

MDI software used in the groundwater literature include:

1. Model-dependent software that are developed for application in conjunction with specific 

groundwater models. An example is MODFLOWP (Hill, 1992),

2. Model-independent generic software such as PEST (Doherty, 1994) PEST++ (Welter et 

al., 2015) and UCODE (Poeter and Hill, 1999),

3. Code packages mostly in R (e.g. MCMC, see http://www.stat.umn.edu/geyer/mcmc/), 

python (e.g. pyNSMC (White et al., 2015), pyEMU (White et al., 2016) and pyMC (Patil 

et al., 2010)) and MATLAB (e.g. DREAM (Vrugt, 2016)).

The second and third categories can be used with any model, often the only requirement is that 

the input and output files of the model are numerical (ASCII or text only). These two categories 

are mostly community-supported and open-source, and are also being used in other engineering 

fields.

Most available codes and software are intended for parameter estimation, and the absolute 

majority employ batch frequentist weighted LSE with local derivative-based optimization 

methods (e.g. LM optimization). The widespread use of these algorithms can be attributed to 

their ease of coding and affordability of computations in low-dimensional problems. There are 

also several codes available that are based on MCMC algorithms for Bayesian parameter 

estimation, e.g. DREAM (in MATLAB), MCMC (in R), and UCODE MCMC (Lu et al., 2014). 

The reason for such focus on parameter estimation as compared to model identification or state 

estimation is twofold: (1) parameter estimation can often be performed by relatively simple 



  

automated modifications to the model input files, while model structure or state updating 

requires a high level of interaction with the numerical model (Liu et al., 2012), and (2) currently 

the generation of model structure realizations is mostly based on expert insight rather than formal 

methods, making the development of automated model structure updating software difficult.

Recent developments in MDI software for groundwater applications include developing parallel 

computing abilities (e.g. parallel PEST, as in Tang et al., 2010, BeoPEST, see Hunt et al., 2010, 

and MCMC UCODE, see Lu et al., 2014), enabling cloud computing (e.g. PEST.cloud, see 

https://pest.cloud/), incorporating advanced regularization (see 

http://www.pesthomepage.org/Highly-parameterized_inversion.php about PEST), using state of 

the art global optimization schemes (see Finsterle, 2010, regarding iTOUGH2), and integrating 

MDI into risk-based environmental management optimization (e.g. ESTPP-OPT, see White et 

al., 2018). The PEST++ suite will likely play a key role in the future of groundwater MDI. One 

reason is that with the new, modular, nonintrusive, parallel run manager named PANTHER it is 

becoming easy for people to add programs to the PEST++ suite, and to run parallel computations 

on the cloud.

5. Discussion and Prognosis for Future Work

We defined MDI as a two way process between models and data, and reviewed recent advances 

in MDI methods and applications in the groundwater literature. The review shows that 

frequentist weighted LSE is still the most widely used method for MDI in groundwater scientific 

literature and professional practice, which is mostly due to the availability of open-source, user-

friendly software, a multitude of case studies, and a number of well-established guidelines for its 

implementation. However aided by advances in computing power and data handling, there is a 

trend toward more extensive use of Monte Carlo-based methods such as MCMC, EnKF, SMC 



  

and ES in the literature, and these methods are also gradually finding their way into professional 

practice. The classic KF became popular in the groundwater scientific literature in 1990s and 

early 2000s, but due to a number of limitations, failed to become a mainstream practical method 

and is now mostly replaced by the EnKF in the literature. The ExKF and VBMs, although 

popular in other fields (e.g. weather prediction and atmospheric sciences), have been given much 

less attention in the groundwater modeling community.

It is clear from this review that there are many tools and techniques for groundwater MDI, and 

this diversity is needed for supporting different MDI objectives, model and data types and 

computational constraints. It is important to understand that the success of groundwater MDI 

does not necessarily depend on providing more data or using more sophisticated models, but is 

mainly governed by their optimal synthesis, and properly addressing the associated uncertainties. 

This is an important reason for the significant interest in improving MDI methods in the 

literature. The continuing progress of data acquisition technologies and the evolution of models, 

means that the landscape of MDI in groundwater applications will continue to evolve in the 

future. Here we discuss a number of key issues that will likely form future directions:

1) Addressing computational challenges: Several key synthesis approaches used in MDI require 

a large number of model simulations. This is most notably true for methods that rely on MCS 

(such as MCMC, EnKF, SMC and ES) or stochastic/meta-heuristic optimization algorithms. 

These synthesis approaches become computationally very expensive when the computational 

demand of a single model run is substantially high. This has been an issue for the past several 

decades, and interestingly the enormous increase of computer processing speed in recent years 

has not solved this problem. The fact that computational demand remains to be an important 

issue to date and probably for the mid-term future, has mainly two reasons: first, recent advances 



  

in groundwater simulation software have mostly focused on increasing model fidelity (i.e. 

improving the degree to which the model reproduces the behavior of the real-world system), 

resulting in continuous increase in their execution times (Carrera et al., 2005). Second, we are 

seeing a constant shift from theoretical research on MDI using synthetic toy problems with 

limited computational demand (e.g. Henry problem (Henry, 1964)), to real-world MDI 

applications involving computationally expensive groundwater models. Due to these reasons, the 

computational challenge must be somehow confronted within the groundwater community in 

order to facilitate the success of MDI. A review of literature shows that four main strategies are 

being pursued to address this problem: (1) parallelization and grid computing applied to either or 

both the model and the synthesis approach, for example see the parallel ParFlow model for 

simulating surface and subsurface flow (Kollet et al., 2010; Bürger et al., 2012, see 

https://parflow.org/), Xu et al. (2013) for parallel MCMC, Joseph and Guillaume (2013) for 

parallel EnKF, and Kurtz et al. (2017) for cloud-based modeling, (2) replacing the model with 

data-driven and physics-free, meta-models such as polynomial chaos expansion (PCE) (e.g. 

Laloy et al., 2013, Rajabi and Ataie-Ashtiani, 2016), (3) improving the computational efficiency 

of synthesis methods (e.g. Vrugt et al., 2009), and (4) employing cloud computing (see Hayley, 

2017). Research on all four strategies is expected to continue in the future, and it is expected that 

cloud computing will play an increasingly important role in solving the computational challenges 

of MDI in groundwater.

2) Accounting for Local Heterogeneities: Every technique currently available for the estimation 

of heterogeneous groundwater model parameters from data, employs some level of averaging or 

smoothing through parameterization and regularization. The consequence is that the results of 

parameter estimation may be locally quite flawed, and this reduces the accuracy of model 



  

predictions that are sensitive to these local values. Hence much work is being currently done and 

will continue in the future on several fronts to alleviate these problems. This includes developing 

methods for: (1) use of by-product information of regularized parameter estimation (such as 

spatial covariance structure of the estimated field) to identify misrepresented local details (Moore 

and Doherty, 2006), (2) optimizing the choice of the limited number of parameters that are used 

for the reconstruction of the heterogeneous field (e.g. Jung et al., 2011), and (3) adapting 

synthesis methods for the incorporation of more local details and hence more parameters in the 

estimation process (e.g. Tonkin and Doherty, 2009). The third approach inevitably includes 

developing strategies for solving the resulting computational challenges such as instability, non-

convergence, solution non-uniqueness, and solution non-optimality.

3) Real-time MDI: Cases for the use of automated field sensors that rely on communication 

technologies such as WSNs, have recently emerged in the groundwater literature. These 

technologies allow for the monitoring of groundwater systems at much finer spatial and temporal 

resolutions than traditional manual sampling and analysis methods. But the resulting data is 

prone to sensor and WSN faults (e.g. stuck readings, out of range errors, abrupt shifts, abnormal 

noise, etc., see Szewczyk et al., 2004), and hence requires the integration of fault detection 

methods in groundwater MDI techniques especially when sensor readings are fed automatically 

into models. An example of studies addressing this issue is Barnhart et al. (2010), which employs 

a data reduction algorithm to identify and remove potentially faulty salinity data, and then uses 

the remaining data for groundwater model parameter estimation by PEST. Progress made in real-

time groundwater monitoring technologies have facilitated the development of real-time or quasi 

real-time decision support systems (DSSs). The traditional and still widely used approach in 

groundwater DSSs is to employ offline rules that optimizes the controls with the objective of 



  

minimizing the cost of operations (e.g. Rajabi and Ketabchi, 2017). But the emerging real-time 

alternative, also known as model predictive control (MPC), constantly revises and optimizes 

controls based on the feedback from the system (Liu et al., 2012). The ability to rapidly 

assimilate real-time data and provide answers to imminent questions is gradually becoming an 

important part of groundwater modeling (Langevin and Panday, 2012). An example reference is 

Drumheller et al. (2017). The study uses hydraulic head and electrical conductivity data from a 

distributed sensor network for quasi real-time model calibration and then performs simulation-

optimization with the aim of controlling aquifer recharge and recovery operations in a laboratory 

setup. Hendricks Franssen et al. (2011) use EnKF for combining online observations of hydraulic 

head with numerical models, for the real-time characterization of groundwater flow in a real-

world urban aquifer. Their computational tool became operational at the Water Works Zurich in 

2009.

4) Developing codes and software for MDI: Despite the hugely valuable efforts by the 

groundwater and other research communities in developing software for MDI, major gaps still 

remain. These gaps, which underpin future research and collaboration opportunities, include: (1) 

developing community-supported, open-source data assimilations tools based on methods such 

as EnKF, SMC etc. Development of such tools (for instance the “parallel data assimilation 

framework”, see http://pdaf.awi.de/trac/wiki), has helped other fields such as numerical weather 

prediction, atmospheric sciences and more recently hydrology. Work on such tools has already 

started in the groundwater modeling community. An example is PESTPP-IES, which is an 

implementation of the iterative ES LM algorithm of Chen and Oliver (2013) within the 

framework of PEST/PEST++ model interface protocols (see https://github.com/dwelter/pestpp). 

(2) Creating computer codes for groundwater model discrimination and structural uncertainty 



  

analysis. Progress in this regard depends greatly on developing algorithms that can automate this 

process and reduce its dependence on subjective expert opinion. (3) Developing codes for formal 

fusion of different types of groundwater related data (e.g. geophysical and remote sensing data, 

expert knowledge, etc.).

5) Bridging the gap between research and professional practice: Lastly, the growing research-

practice gap has already been observed more generally in groundwater science (Simmons et al., 

2012). We also acknowledge that there is an existing gap between MDI practices in the research 

community and those in consulting, industry and government; and this gap seems to be growing. 

This is evident from the fact that many of the more recent MDI methods are rarely applied 

outside of research settings. Closing this gap calls for more user-friendly software, guidelines for 

MDI method selection and application, worked examples and case studies, education and 

training.
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Highlights:
 Discussion are provided on how groundwater numerical models and data interact.
 Frequentist and Bayesian methods are reviewed and classified.
 Eight application areas of groundwater model-data interaction are reviewed.
 Discussions on the state of the art in software and codes are presented.
 Recent trends and issues that will likely form future directions are discussed.

Table 1. Review of common data types relevant to groundwater MDI

Table 2. Review of some popular MDI codes in groundwater applications

Sources of data
Classification Examples

Hard data Soft data
Subsurface characteristics, such as 
hydraulic conductivity, storativity,
porosity, etc.

Slug tests, pumping tests, tracer 
techniques, permeameter test, 
laboratory analysis of field samples

Geophysical surveys,
expert knowledge

Model 
Parameters Contaminant transport and 

transformation characteristics, such 
as dispersivity, sorption factor, 
chemical reaction rates, etc.

Tracer techniques Expert knowledge

External 
Forcing

Surface recharge, lateral inflow, 
river-aquifer interactions, 
extraction/injection rates, etc.

Lysimeter, tracer techniques, water 
balance methods, flowmeters

Remote sensing, expert 
knowledge

Model 
Structure

Site geometry, geological 
formations, etc. Borehole investigations

Geophysical surveys, 
remote sensing, expert 
knowledge

Hydraulic head, water table, tidal 
induced water table fluctuations

Measurement tapes, pressure 
sensors

Chemical concentration Laboratory analysis of field 
samples, portable field instruments

Temperature Portable field instruments
Travel time Tracer techniques

State 
variables

Discharge Flowmeters

Geophysical surveys, 
remote sensing

Code Key algorithms Important 
features

Program
ming 
language

Applications

PEST 
(Doherty, 
1994)

Weighted LSE, GML 
optimization, Tikhonov (and 
other) regularization 
algorithms

MI, OS, Includes 
several utility 
software for, e.g. 
pilot points 
parameterization, 
pre/post processing 
and global, 
derivate-free 
optimization

Fortran

DWA (e.g. Wallis et al., 
2014; Wöhling et al., 2016), 
PE & UA (e.g. Barnhart et 
al., 2010; Ataie-Ashtiani et 
al., 2013; Drumheller et al., 
2017)



  

PEST++ 
(Welter et al., 
2015) and 
various codes 
developed 
within its 
framework, 
e.g. PESTPP-
IES, ESTPP-
OPT, etc.

Weighted LSE, GML 
optimization, Tikhonov (and 
other) regularization 
algorithms

MI, OS, object-
oriented, Integrated 
TCP/IP parallel run 
management

C++
PE & UA (Heywood et al., 
2016; Sovinsky, 2017; 
White et al., 2018)

UCODE 
(Poeter and 
Hill, 1999)

Weighted LSE, Gauss–
Newton optimization

MI, OS, Includes 
MMA program 
which supports the 
use of multiple 
alternative models

Perl, 
Fortran

PE & UA (Sanford et al., 
2009; Rojas et al., 2010b)

MODFLOWP 
(Hill, 1992)

Weighted LSE, modified 
Gauss-Newton or conjugate-
direction optimization

MD (for 
MODFLOW) Fortran PE (Heywood and Yager, 

2003)

iTOUGH2 
(Finsterle, 
1993)

Weighted LSE and other 
robust estimators (L1, 
Huber, Cauchy and 
Andrews), LM, Downhill 
Simplex, Simulated 
Annealing and Grid Search 
optimization

Initially intended as 
a MD code (for 
TOUGH2), but can 
now be used with 
any model

Fortran

PE & UA (James and 
Oldenburg, 1997; Pau et al., 
2016), DWA (Finsterle, 
2015). See: 
http://esd1.lbl.gov/iTOUGH
2/

EnKF3d EnKF MI, OS C

PE & UA (Huber et al., 
2011), SPE (Hendricks 
Franssen and Kinzelbach, 
2009; Hendricks Franssen et 
al., 2011)

WinBUGS 
and 
OpenBUGS 
(Spielgelhalte
r et al., 2003)

MCMC based on Gibs 
sampler

MI, OS, Includes 
spatial models 
(GeoBUGS)

Pascal PE & UA (Stone, 2011)

DREAM 
(Vrugt, 2016)

MCMC based on 
Differential Evolution 
Adaptive Metropolis 
algorithm

MI, OS, Can 
support BMA MATLAB PE & UA (Keating et al., 

2010)

MCMC

MCMC based on random 
walk Metropolis algorithm, 
simulated tempering, and 
morphometric random walk 
Metropolis

MI, OS R PE & UA (Han et al., 2015)

pyEMU 
(White et a., 
2016)

Linear first-order, second-
moment (FOSM) and non-
linear uncertainty analyses

MI, OS, Scalable to 
highly-
parameterized 
inverse problems

Python DWA (Zell et al., 2018)

pyMC (Patil 
et al., 2010)

Several types of MCMC 
algorithms (e.g. Metropolis-
Hastings, Gibs and Random-
walk Metropolis-Hastings)

MI, OS, Includes 
methods includes 
methods for 
summarizing 
output, plotting, 
goodness-of-fit and 
convergence 
diagnostics

Python PE & UA (van der Spek and 
Bakker, 2017)



  

MI: Model-independent
MD: Model-dependent
OS: open-source
GML: Gauss-Marquardt-Levenberg
DWA: Data worth analysis
PE & UA: Parameter estimation and uncertainty analysis
SPE: State-parameter estimation
BMA: Bayesian model averaging



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Outline of the paper  
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Fig. 2. Schematic representation of a groundwater flow and contaminant transport model 

 

 

 

 

 

 

 

 

 

 

Groundwater 
simulation 

code

Conceptual model Mathematical model 

Parameters: 𝜃 

Example: saturated/unsaturated flow and 

solute transport equations, etc. 
Example: geometry of the problem domain, 

boundary conditions, heterogeneity patterns, etc. 

External forcing: 𝑢𝑡 

Past state: 𝑌𝑡 Future state: 𝑌𝑡+1 

Example: 
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concentration, 

degree of 

saturation, etc. 

Example: surface recharge, 

lateral inflow, river-aquifer 

interactions, etc. 
Example: hydraulic 

conductivity, porosity, 

dispersivity, etc. 

Example: MODFLOW, 

SUTRA, FEFLOW, 

TOUGH2, etc.  
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Fig. 3. Types of uncertainty in groundwater modeling 
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